WO2023207021A1 - 钕铁硼磁体材料及其制备方法、应用、电机 - Google Patents
钕铁硼磁体材料及其制备方法、应用、电机 Download PDFInfo
- Publication number
- WO2023207021A1 WO2023207021A1 PCT/CN2022/129744 CN2022129744W WO2023207021A1 WO 2023207021 A1 WO2023207021 A1 WO 2023207021A1 CN 2022129744 W CN2022129744 W CN 2022129744W WO 2023207021 A1 WO2023207021 A1 WO 2023207021A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnet material
- ndfeb magnet
- amorphous
- rich phase
- ndfeb
- Prior art date
Links
- 229910001172 neodymium magnet Inorganic materials 0.000 title claims abstract description 96
- 239000000463 material Substances 0.000 title claims abstract description 95
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 22
- 239000000203 mixture Substances 0.000 claims abstract description 20
- 229910052742 iron Inorganic materials 0.000 claims abstract description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 59
- 230000032683 aging Effects 0.000 claims description 27
- 229910052779 Neodymium Inorganic materials 0.000 claims description 24
- 229910052796 boron Inorganic materials 0.000 claims description 18
- 229910052802 copper Inorganic materials 0.000 claims description 18
- 229910052733 gallium Inorganic materials 0.000 claims description 18
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 16
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 14
- 238000001816 cooling Methods 0.000 claims description 14
- 229910052726 zirconium Inorganic materials 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 230000005389 magnetism Effects 0.000 abstract description 7
- 230000000052 comparative effect Effects 0.000 description 21
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 10
- 229910052739 hydrogen Inorganic materials 0.000 description 10
- 238000005266 casting Methods 0.000 description 7
- 239000012298 atmosphere Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 238000005245 sintering Methods 0.000 description 6
- 238000006356 dehydrogenation reaction Methods 0.000 description 5
- 238000000227 grinding Methods 0.000 description 5
- 239000000314 lubricant Substances 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 229910052771 Terbium Inorganic materials 0.000 description 2
- QJVKUMXDEUEQLH-UHFFFAOYSA-N [B].[Fe].[Nd] Chemical compound [B].[Fe].[Nd] QJVKUMXDEUEQLH-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000007712 rapid solidification Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 2
- 241001062472 Stokellia anisodon Species 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- ZDVYABSQRRRIOJ-UHFFFAOYSA-N boron;iron Chemical compound [Fe]#B ZDVYABSQRRRIOJ-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/02—Details of the magnetic circuit characterised by the magnetic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0577—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
Definitions
- the invention specifically relates to a neodymium iron boron magnet material and its preparation method, application and motor.
- Neodymium iron boron (RE-TB) permanent magnet material with Nd 2 Fe 14 B as the main component has high remanence, coercive force and maximum magnetic energy product. It has excellent comprehensive magnetic properties and is widely used in computers, communications, national defense, etc. high-tech fields. Motors are the main application field of NdFeB permanent magnets, and their application in hybrid electric vehicles (HEVs) is particularly eye-catching. Material products used in automobiles generally have a service life of more than 10 years, so their materials are required to have long-term stable and reliable performance. The performance of magnetic materials is generally characterized by the following four parameters: residual magnetic induction (BRE for short), coercive force (Hcb), intrinsic coercive force (Hcj) and maximum magnetic energy product (BHmax).
- BRE residual magnetic induction
- Hcb coercive force
- Hcj intrinsic coercive force
- BHmax maximum magnetic energy product
- Tb and Dy are strategic metals with limited reserves and high prices, and they also cause coercive force. While improving, the residual magnetism and magnetic energy product are sacrificed.
- the intrinsic coercivity of NdFeB magnets without heavy rare earth additions when the remanence is 14.0kGs is difficult to reach above 19kOe, which is less than 1/3 of the theoretical intrinsic coercivity of NdFeB. Therefore, how to improve the intrinsic coercivity of RE-T-B series permanent magnet materials without using heavy rare earths or using less heavy rare earths while ensuring remanence and magnetic energy product is an issue that has been urgently needed to be solved in this field.
- the technical problem solved by the present invention is to overcome the existing technology's shortcomings of high cost, scarcity of raw materials, and reduced residual magnetism and magnetic energy product by adding heavy rare earth elements to increase coercivity, and provides neodymium iron boron magnet materials and their preparation methods and applications. , motor.
- the NdFeB magnet material of the present invention can increase the coercive force without using or heavy rare earth elements, while maintaining high remanence and magnetic energy product.
- the invention provides a NdFeB magnet material, which includes an amorphous RE-rich phase located in a grain boundary phase.
- the volume ratio of the amorphous RE-rich phase to the grain boundary phase is 3-8%; wherein, TM are Fe and Co, and RE is a rare earth element.
- the grain boundary phase may have the meaning conventionally understood in the art, and is generally a general term for the two-granule grain boundary phase and the intergranular triangular zone.
- the two-particle grain boundary phase is generally the grain boundary phase between two main phase particles.
- the atomic percentage of the TM in the amorphous RE-rich phase is preferably 15 to 30%, more preferably 15 to 25%, such as 16%, 17%, 18%, 19% or 25%.
- the TM is only Fe.
- the atomic percentage of RE in the amorphous RE-rich phase is preferably 40 to 60%, more preferably 40 to 50%, such as 41%, 45%, 46%, 47%, 49% or 50%.
- the atomic percentage of Ga in the amorphous RE-rich phase is preferably 10 to 20%, such as 11%, 12%, 14%, 16%, 18% or 19%.
- the atomic percentage of Cu in the amorphous RE-rich phase is preferably 12 to 25%, such as 19%, 20%, 21%, 24% or 25%.
- the composition of the amorphous RE-rich phase is Fe 15 ⁇ 19 RE 45 ⁇ 50 Ga 12 ⁇ 19 Cu 19 ⁇ 21 , where the numbers represent the values of each element in the amorphous state Atomic percentage in the RE-rich phase.
- the composition of the amorphous RE-rich phase is Fe 18 RE 47 Ga 14 Cu 21 , where the numbers are the atomic percentages of each element.
- the composition of the amorphous RE-rich phase is Fe 15 RE 49 Ga 16 Cu 20 , where the numbers are the atomic percentages of each element.
- the composition of the amorphous RE-rich phase is Fe 25 RE 40 Ga 11 Cu 24 , where the numbers are the atomic percentages of each element.
- the composition of the amorphous RE-rich phase is Fe 16 RE 45 Ga 14 Cu 25 , where the numbers are the atomic percentages of each element.
- the composition of the amorphous RE-rich phase is Fe 17 RE 45 Ga 18 Cu 20 , where the numbers are the atomic percentages of each element.
- the composition of the amorphous RE-rich phase is Fe 19 RE 41 Ga 18 Cu 12 , where the numbers are the atomic percentages of each element.
- the composition of the amorphous RE-rich phase is Fe 16 RE 46 Ga 19 Cu 19 , where the numbers are the atomic percentages of each element.
- the composition of the amorphous RE-rich phase is Fe 17 RE 50 Ga 12 Cu 21 , where the numbers are the atomic percentages of each element.
- the volume ratio of the amorphous RE-rich phase to the grain boundary phase is preferably 3.5% to 7%, such as 4.2%, 4.3%, 4.4%, 4.5%, 5.6%, 6.2% or 6.5%. .
- the NdFeB magnet material generally also includes a main phase, and the composition of the main phase is generally RE 2 Fe 14 B, where the numbers are the atomic ratios of each element.
- the crystal grain size of the NdFeB magnet material can be conventional in this field, generally 5 to 10 um.
- the invention also provides a NdFeB magnet material, which includes the following components in terms of mass percentage:
- Ga 0.05 ⁇ 0.6wt%
- the contents of Ga, Cu and B satisfy the following formula: (B-0.4)Ga ⁇ Cu ⁇ (Ga+Cu)/2; the sum of the contents of each component of the NdFeB magnet material is 100%; the NdFeB magnet materials include an amorphous RE-rich phase as described above.
- the content of B is preferably 0.9-1.0wt%, such as 0.92wt%, 0.95wt%, 0.96wt% or 0.94wt%.
- the Cu content is preferably 0.1 to 0.4wt%, such as 0.15wt%, 0.20wt%, 0.32wt%, 0.35% or 0.38%.
- the Al content is preferably 0 to 0.5 wt%, such as 0.2 wt%.
- the Ga content is preferably 0.1 to 0.5wt%, such as 0.2wt%, 0.22wt%, 0.35wt%, 0.39% or 0.45wt%.
- the NdFeB magnet material also includes a rare earth element RE, and the RE includes at least Nd.
- the mass percentage of the RE in the NdFeB magnet material can be conventional in the art, preferably 27-33wt%, more preferably 28-32wt%, such as 29.1wt%, 29.6wt%, 29.8 wt%, 30.2% or 31wt%.
- the RE preferably includes Nd and Pr.
- the mass percentage of Nd in the NdFeB magnet material is preferably 21-27wt%, more preferably 22-25wt%, such as 22.35wt%, 22.4%, 23.25wt%, 23.8% or 24.6%.
- the mass percentage of Pr in the NdFeB magnet material is preferably 4-9wt%, more preferably 5-8wt%, such as 5.2wt%, 5.5wt%, 6.5wt%, 7.40wt%, 7.45 wt% or 7.75wt%.
- the RE does not include heavy rare earth elements.
- the heavy rare earth elements generally include Dy and/or Tb.
- the RE further includes heavy rare earth elements, and the heavy rare earth elements include Dy and/or Tb.
- the mass percentage of the heavy rare earth elements in the NdFeB magnet material is preferably 0 to 2wt%, such as 0.2wt%, 0.25wt%, 0.3wt%, 0.4wt%, 0.5wt% or 1.5wt %.
- the NdFeB magnet material preferably further includes Co.
- the mass percentage of Co in the NdFeB magnet material is preferably 0.3 ⁇ 1.2wt%, more preferably 0.4 ⁇ 0.8wt%, such as 0.42wt%, 0.45wt%, 0.5wt% or 0.52 wt%.
- the NdFeB magnet material preferably further includes Zr.
- the mass percentage of Zr in the NdFeB magnet material is preferably 0 to 0.5wt%, such as 0.15wt%, 0.18wt%, 0.35wt%, 0.45wt% or 0.46wt%.
- the NdFeB magnet material may also include Ti.
- the mass percentage of Ti in the NdFeB magnet material is preferably 0 to 0.3wt%, such as 0.1wt%.
- the NdFeB magnet material may also include Nb.
- the content of Nb can be conventional in this field, preferably 0 to 0.3wt%, more preferably 0.1wt%.
- the NdFeB magnet material also includes Fe.
- the mass percentage of Fe in the NdFeB magnet material can be a conventional content in the art that satisfies the sum of the contents of each component of the NdFeB magnet material to be 100%, preferably 62 to 72wt%. , more preferably 65 to 70wt%, such as 68.04wt%, 66.14wt%, 67.74wt%, 66.74wt%, 68.33wt%, 67.85wt% or 67.25wt%.
- the NdFeB magnet material includes the following mass percentages of each component: 22.00-25.00% Nd, 5.00-7.00% Pr, 0.20-0.40% Dy, 0.30- 0.40% Cu, 0.20-0.50% Ga, 0.40-0.60% Co, 0.30-0.50% Zr, 0.90-1.00% B and balance Fe.
- the NdFeB magnet material includes the following mass percentages of each component: 22.35% Nd, 7.45% Pr, 0.20% Al, 0.15% Cu, 0.20% Ga , 0.50% Co, 0.15% Zr, 0.96% B and 68.04% Fe.
- the NdFeB magnet material includes the following mass percentages of each component: 23.25% Nd, 7.75% Pr, 0.50% Al, 0.20% Cu, 0.22% Ga , 0.80% Co, 0.10% Nb, 0.10% Ti, 0.94% B and 66.14% Fe.
- the NdFeB magnet material includes the following mass percentages of each component: 22.20% Nd, 7.40% Pr, 0.50% Dy, 0.20% Al, 0.15% Cu , 0.20% Ga, 0.50% Co, 0.15% Zr, 0.94% B and 67.74% Fe.
- the NdFeB magnet material includes the following mass percentages of each component: 29.60% Nd, 1.50% Dy, 0.20% Al, 0.15% Cu, 0.20% Ga , 0.50% Co, 0.15% Zr, 0.96% B and 66.74% Fe.
- the NdFeB magnet material includes the following mass percentages of each component: 22.40% Nd, 6.50% Pr, 0.20% Dy, 0.38% Cu, and 0.45% Ga , 0.45% Co, 0.35% Zr, 0.94% B and 68.33% Fe.
- the NdFeB magnet material includes the following mass percentages of each component: 23.80% Nd, 5.50% Pr, 0.30% Dy, 0.33% Cu, and 0.39% Ga , 0.42% Co, 0.45% Zr, 0.95% B and 67.87% Fe.
- the NdFeB magnet material includes the following mass percentages of each component: 24.60% Nd, 5.20% Pr, 0.40% Dy, 0.30% Cu, and 0.35% Ga , 0.52% Co, 0.46% Zr, 0.92% B and 67.25% Fe.
- the invention also provides a method for preparing NdFeB magnet material, which includes the following steps:
- S2 Aging treatment is performed on the magnet blank to obtain the magnet blank; wherein, the aging treatment includes primary aging and secondary aging, and the cooling rate after the primary aging is 23 to 150°C/min.
- the first-level aging can be carried out by conventional methods in this field, and generally heating is sufficient.
- the temperature of the first-stage aging can be conventional in the art, preferably 860-940°C, more preferably 880-920°C, such as 890°C, 900°C, 910°C.
- the first-level aging time can be conventional in the art, and is preferably 2 to 4 hours, such as 3 hours.
- the cooling rate is preferably 35-150°C/min, more preferably 40-80°C/min, such as 42°C/min, 45°C/min, 48°C/min, 50°C/min , 52°C/min, 56°C/min or 66°C/min.
- the temperature after cooling of the first-stage aging can be conventional in this field, preferably 420-480°C, more preferably 450°C.
- the temperature of the secondary aging can be conventional in the art, preferably 430 to 550°C, such as 480°C.
- the secondary aging time can be conventional in the art, preferably 1 to 4 hours, such as 3.5 hours.
- the preparation method of the magnet blank can be conventional in the art.
- each component of the NdFeB magnet material can be smelted, cast, pulverized, molded, and sintered in sequence.
- the melting temperature may be conventional in the art, preferably below 1550°C, more preferably between 1480°C and 1550°C, such as 1520°C.
- the melting is generally performed in a vacuum environment.
- the pressure of the vacuum environment can be conventional in the art, and is preferably 2 ⁇ 10 -2 Pa to 8 ⁇ 10 -2 Pa, such as 5 ⁇ 10 -2 Pa.
- the casting method may be conventional in this field, preferably the rapid solidification casting method.
- the casting temperature may be conventional in the art, preferably 1390-1460°C, such as 1410°C.
- the thickness of the alloy cast piece obtained after the casting can be conventional in this field, preferably 0.25 to 0.40 mm.
- the crushing method can be conventional in this field, preferably hydrogen crushing and jet mill crushing are carried out in sequence.
- the hydrogen crushing generally includes hydrogen absorption, dehydrogenation and cooling treatment.
- the hydrogen pressure during the hydrogen absorption process can be conventional in the art, preferably 0.05-0.12MPa, more preferably 0.085MPa.
- the dehydrogenation can be carried out by conventional methods in the art, preferably by raising the temperature under vacuum conditions.
- the temperature after heating can be conventional in the art, preferably 300 to 600°C, such as 500°C.
- the air flow mill can be pulverized in a conventional atmosphere in this field, and preferably the oxidizing gas content is not higher than 100 ppm.
- the oxidizing gas generally includes oxygen and/or water vapor.
- the pressure of the grinding chamber during the air flow mill grinding can be conventional in this field, preferably 0.5 to 1 MPa, and more preferably 0.7 MPa.
- the particle size after pulverization by the jet mill can be conventional in this field, preferably 3 to 6 ⁇ m, such as 4.2 ⁇ m.
- a lubricant is added to the powder obtained after the crushing.
- the lubricant can be conventional in the art, preferably zinc stearate.
- the added amount of the lubricant can be conventional in the art, preferably 0.05 to 0.15%, such as 0.10%, where the percentage is the mass percentage of the lubricant and the powder.
- the molding method can be conventional in this field, preferably magnetic field molding.
- the intensity of the magnetic field in the magnetic field forming can be conventional in this field, and is preferably 1.8-2.5T.
- the magnetic field shaping is preferably carried out in a protective atmosphere.
- the protective atmosphere may be conventional in the art, such as nitrogen.
- the sintering temperature may be conventional in the art, preferably 1000-1100°C, such as 1085°C.
- the sintering time can be conventional in the art, preferably 4 to 8 hours, such as 6 hours.
- cooling treatment is preferably included after the sintering.
- the cooling treatment is preferably carried out under an inert atmosphere.
- the inert atmosphere can be a conventional gas in the art that does not participate in the chemical reaction of the present invention, preferably nitrogen or an inert gas, and more preferably argon.
- the pressure of the inert atmosphere can be conventional in the art, preferably 0.01 to 0.1MPa, more preferably 0.05MPa.
- the invention also provides a NdFeB magnet material prepared by the above preparation method.
- the present invention also provides an application of the above-mentioned NdFeB magnet material in a motor.
- the present invention also provides a motor including the NdFeB magnet material as described above.
- the reagents and raw materials used in the present invention are all commercially available.
- This invention can increase the intrinsic coercivity to above 19kOe, or even as high as 20.60kOe, when heavy rare earth elements are not used and the residual magnetism exceeds 14kGs; at the same time, the maximum magnetic energy product can be higher than 48MGOe, or even as high as 50.95MGOe. ;
- the residual magnetism can be higher than 13.5kGs, and the intrinsic coercive force can be increased to more than 21kOe, or even as high as 23.3kOe, and the maximum magnetic energy product can be All are higher than 43MGOe, even as high as 46.13MGOe.
- Figure 1 is a TEM pattern of the NdFeB magnet material in Example 1;
- Figure 2 is a TEM pattern of the NdFeB magnet material in Example 1.
- the arrow in Figure 2 points to the amorphous RE-rich phase.
- Hydrogen crushing includes hydrogen absorption, dehydrogenation and cooling treatment.
- the hydrogen absorption is carried out under the condition of hydrogen pressure of 0.085MPa
- the dehydrogenation is carried out under the condition of raising the temperature while vacuuming.
- the dehydrogenation temperature is 500°C.
- Jet mill grinding is carried out when the oxidizing gas content is less than 100 ppm, and the particle size obtained by grinding is 4.2 ⁇ m.
- the oxidizing gas refers to oxygen and water vapor.
- the grinding chamber pressure of jet mill is 0.70MPa.
- the lubricant zinc stearate is added in an amount of 0.10% by weight of the powder obtained by airflow mill pulverization.
- Cooling Pour in argon gas to bring the air pressure to 0.05MPa and perform cooling.
- the temperature of the first-level aging is 900°C and the time is 3h; after the first-level aging, it is cooled to 450°C, and the cooling rates are as shown in Table 2; then the second-level aging is carried out, and the temperature of the second-level aging is 480°C. °C, time is 3.5h, and the NdFeB magnet material is obtained.
- the NdFeB magnet materials obtained in Examples 1 to 4 and Comparative Examples 1 to 7 were tested for magnetic properties using the NIM-62000 closed loop demagnetization curve testing equipment prepared by the China Institute of Metrology. The test temperature was 20°C, and the residual magnetism was obtained. (BRE), intrinsic coercive force (Hcj), maximum magnetic energy product (BHmax) and squareness (Hk/Hcj) data, the test results are shown in Table 2.
- TEM-EDS energy dispersion
- Examples/Comparative Examples Amorphous RE-rich phase composition (at%) Example 1 Fe 18 RE 47 Ga 14 Cu 21 Example 2 Fe 15 RE 49 Ga 16 Cu 20 Example 3 Fe 25 RE 40 Ga 11 Cu 24 Example 4 Fe 16 RE 45 Ga 14 Cu 25 Example 5 Fe 19 RE 41 Ga 18 Cu 12 Example 6 Fe 16 RE 46 Ga 19 Cu 19 Example 7 Fe 17 RE 50 Ga 12 Cu 21 Comparative example 1 Fe 17 RE 48 Ga 14 Cu 21 Comparative example 2 Fe 19 RE 47 Ga 14 Cu 20 Comparative example 3 Fe 18 RE 44 Ga 14 Cu 24 Comparative example 4 Fe 20 RE 45 Ga 14 Cu 21 Comparative example 5 Fe 21 RE 47 Ga 14 Cu 18 Comparative example 6 Fe 19 RE 49 Ga 11 Cu 21 Comparative example 7 Fe 23 RE 42 Ga 14 Cu 21
- the specific element ratio and preparation process of the present invention form a specific volume proportion of amorphous neodymium-rich phase in the grain boundary phase, thereby producing neodymium without adding heavy rare earth elements.
- the intrinsic coercive force Hcj is higher than 19kOe, even as high as 20.60kOe; the residual magnetism of neodymium-iron-boron magnet materials prepared by adding a small amount of heavy rare earth elements BRE are all higher than 13.50kGs, and intrinsic coercive force Hcj is higher than 21kOe, even increased to 23.30kOe.
- the element ratios of Comparative Examples 3 and 4 meet the requirements of the formula (B-0.4) Ga ⁇ Cu ⁇ (Ga+Cu)/2, but the Cu element content is respectively lower or higher than the range limited by this application, resulting in The area ratio of the amorphous neodymium-rich phase formed in the grain boundary phase is too small or too large, causing the intrinsic coercive force Hcj of the NdFeB magnet material to be lower than 19kOe.
- the cooling rates after primary aging in Comparative Examples 5 and 6 were respectively lower and higher than the range limited by the present invention, resulting in the area ratio of the amorphous neodymium-rich phase formed in the grain boundary phase being too small or too large. , the intrinsic coercivity Hcj of the obtained NdFeB magnet materials is lower than 18kOe.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Hard Magnetic Materials (AREA)
Abstract
本发明公开了一种钕铁硼磁体材料及其制备方法、应用、电机。本发明的钕铁硼磁体材料包括位于晶界相的非晶态富RE相,非晶态富RE相的元素的组成及其原子比为TM:RE:Cu:Ga=(15~30):(40~60):(10~25):(10~30);非晶态富RE相占晶界相的体积比为3~8%;其中,TM为Fe和Co,RE为稀土元素。本发明的钕铁硼磁体材料可在不使用或重稀土元素的前提下提升矫顽力,同时保持较高的剩磁和磁能积。
Description
本发明具体涉及一种钕铁硼磁体材料及其制备方法、应用、电机。
以Nd
2Fe
14B为主要成分的钕铁硼(RE-T-B)永磁材料具有较高的剩磁、矫顽力和最大磁能积,综合磁性能优良,广泛应用于计算机、通讯、国防等高技术领域。电机是钕铁硼永磁的主要应用领域,其中,在混合动力汽车(HEV)中的应用尤其引人注目。用于汽车中的材料制品一般使用寿命应超过10年,故要求其材料具有长期稳定可靠的性能。磁性材料的性能一般通过以下四个参数来表征:剩余磁感应强度(简称剩磁,BRE)、矫顽力(Hcb)、内禀矫顽力(Hcj)和最大磁能积(BHmax)。为了进一步提升钕铁硼永磁的磁性能,国内外开展了大量的研究工作。
现有技术有在烧结NdFeB母合金中添加一定量的重稀土元素Tb和Dy来提高磁体矫顽力的,但是Tb和Dy贵为战略金属,储量有限且价格昂贵,而且在带来矫顽力提高的同时牺牲剩磁及磁能积。目前无重稀土添加的钕铁硼磁体在剩磁为14.0kGs时的内禀矫顽力很难到19kOe以上,不到NdFeB理论内禀矫顽力的1/3。因此,如何在不使用重稀土或少使用重稀土、且保证剩磁和磁能积的情况下提高RE-T-B系永磁材料的内禀矫顽力是本领域一直亟待解决的问题。
发明内容
本发明解决的技术问题在于克服现有技术通过添加重稀土元素提升矫顽力存在的成本高、原材料稀缺以及剩磁和磁能积降低的缺陷,提供了钕铁硼磁体材料及其制备方法、应用、电机。本发明的钕铁硼磁体材料可在不使用或重稀土元素的前提下提升矫顽力,同时保持较高的剩磁和磁能积。
本发明是通过以下技术方案解决以上技术问题的:
本发明提供了一种钕铁硼磁体材料,其包括位于晶界相的非晶态富RE相,所述非晶态富RE相的元素组成及其原子比为TM:RE:Cu:Ga=(15~30):(40~60):(10~25):(10~30);所述非晶态富RE相占所述晶界相的体积比为3~8%;其中,TM为Fe和Co,RE为稀土元素。
发明人在研究中发现,本发明非晶态富RE相的存在降低了晶界相的熔点,能提高晶界相的流动性,有利于形成连续均匀的晶间富Nd相,从而通过增强晶界相的去磁耦合能力并提高磁体内禀矫顽力。
本发明中,所述晶界相可为本领域常规理解的含义,一般为二颗粒晶界相和晶间三角区的统称。所述二颗粒晶界相一般为两个主相颗粒之间的晶界相。
本发明中,较佳地,所述非晶态富RE相中,所述TM占的原子百分比较佳地为15~30%,更佳地为15~25%,例如16%、17%、18%、19%或25%。
本发明某些较佳实施例中,所述TM仅为Fe。
本发明中,较佳地,所述非晶态富RE相中,所述RE占的原子百分比较佳地为40~60%,更佳地为40~50%,例如41%、45%、46%、47%、49%或50%。
本发明中,较佳地,所述非晶态富RE相中,所述Ga占的原子百分比较佳地为10~20%,例如11%、12%、14%、16%、18%或19%。
本发明中,较佳地,所述非晶态富RE相中,所述Cu占的原子百分比较佳地为12~25%,例如19%、20%、21%、24%或25%。
本发明的某些较佳实施例中,所述非晶态富RE相的组成为Fe
15~19RE
45~50Ga
12~19Cu
19~21,其中数字为各元素在所述非晶态富RE相中所占原子百分比。
本发明的某些较佳实施例中,所述非晶态富RE相的组成为Fe
18RE
47Ga
14Cu
21,其中数字为各元素所占原子百分比。
本发明的某些较佳实施例中,所述非晶态富RE相的组成为 Fe
15RE
49Ga
16Cu
20,其中数字为各元素所占原子百分比。
本发明的某些较佳实施例中,所述非晶态富RE相的组成为Fe
25RE
40Ga
11Cu
24,其中数字为各元素所占原子百分比。
本发明的某些较佳实施例中,所述非晶态富RE相的组成为Fe
16RE
45Ga
14Cu
25,其中数字为各元素所占原子百分比。
本发明的某些较佳实施例中,所述非晶态富RE相的组成为Fe
17RE
45Ga
18Cu
20,其中数字为各元素所占原子百分比。
本发明的某些较佳实施例中,所述非晶态富RE相的组成为Fe
19RE
41Ga
18Cu
12,其中数字为各元素所占原子百分比。
本发明的某些较佳实施例中,所述非晶态富RE相的组成为Fe
16RE
46Ga
19Cu
19,其中数字为各元素所占原子百分比。
本发明的某些较佳实施例中,所述非晶态富RE相的组成为Fe
17RE
50Ga
12Cu
21,其中数字为各元素所占原子百分比。
本发明中,所述非晶态富RE相占所述晶界相的体积比较佳地为3.5~7%,例如4.2%、4.3%、4.4%、4.5%、5.6%、6.2%或6.5%。
本发明中,本领域技术人员常规可以理解,所述钕铁硼磁体材料一般还包括主相,所述主相的成分一般为RE
2Fe
14B,其中数字为各元素的原子比。
本发明中,所述钕铁硼磁体材料的晶粒尺寸可为本领域常规,一般地为5~10um。
本发明还提供了一种钕铁硼磁体材料,以质量百分比计,其包括如下含量的各组分:
B:0.85~1.2wt%;
Cu:0.05~0.6wt%;
Al:0~0.60wt%;
Ga:0.05~0.6wt%;
所述Ga、Cu和B的含量满足如下公式:(B-0.4)Ga≤Cu≤(Ga+Cu)/2;所述钕铁硼磁体材料的各组分含量之和为100%;所述钕铁硼磁体材料包括 如上所述的非晶态富RE相。
本发明中,所述B的含量较佳地为0.9~1.0wt%,例如0.92wt%、0.95wt%、0.96wt%或0.94wt%。
本发明中,所述Cu的含量较佳地为0.1~0.4wt%,例如0.15wt%、0.20wt%、0.32wt%、0.35%或0.38%。
本发明中,所述Al的含量较佳地为0~0.5wt%,例如0.2wt%。
本发明中,所述Ga的含量较佳地为0.1~0.5wt%,例如0.2wt%、0.22wt%、0.35wt%、0.39%或0.45wt%。
本发明中,本领域技术人员常规可以理解,所述钕铁硼磁体材料还包括稀土元素RE,所述RE至少包括Nd。
其中,所述RE占所述钕铁硼磁体材料的质量百分比可为本领域常规,较佳地为27~33wt%,更佳地为28~32wt%,例如29.1wt%、29.6wt%、29.8wt%、30.2%或31wt%。
其中,所述RE较佳地包括Nd和Pr。
所述Nd占所述钕铁硼磁体材料的质量百分比较佳地为21~27wt%,更佳地为22~25wt%,例如22.35wt%、22.4%、23.25wt%、23.8%或24.6%。
所述Pr占所述钕铁硼磁体材料的质量百分比较佳地为4~9wt%,更佳地为5~8wt%,例如5.2wt%、5.5wt%、6.5wt%、7.40wt%、7.45wt%或7.75wt%。
本发明某些较佳实施例中,所述RE不包括重稀土元素。所述重稀土元素一般包括Dy和/或Tb。
本发明的某些较佳实施例中,所述RE还包括重稀土元素,所述重稀土元素包括Dy和/或Tb。
其中,所述重稀土元素占所述钕铁硼磁体材料的质量百分比较佳地为0~2wt%,例如0.2wt%、0.25wt%、0.3wt%、0.4wt%、0.5wt%或1.5wt%。
本发明中,所述钕铁硼磁体材料较佳地还包括Co。
其中,所述Co占所述钕铁硼磁体材料的质量百分比较佳地为0.3~1.2wt%,更佳地为0.4~0.8wt%,例如0.42wt%、0.45wt%、0.5wt%或 0.52wt%。
本发明中,所述钕铁硼磁体材料较佳地还包括Zr。
其中,所述Zr占所述钕铁硼磁体材料的质量百分比较佳地为0~0.5wt%,例如0.15wt%、0.18wt%、0.35wt%、0.45wt%或0.46wt%。
本发明中,所述钕铁硼磁体材料还可以包括Ti。
其中,所述Ti占所述钕铁硼磁体材料的质量百分比较佳地为0~0.3wt%,例如0.1wt%。
本发明中,所述钕铁硼磁体材料还可以包括Nb。
其中,所述Nb的含量可为本领域常规,较佳地为0~0.3wt%,更佳地为0.1wt%。
本发明中,本领域技术人员常规可以理解,所述钕铁硼磁体材料还包括Fe。
其中,所述Fe占所述钕铁硼磁体材料的质量百分比可为本领域常规满足所述钕铁硼磁体材料的各组分的含量加和为100%即可,较佳地62~72wt%,更佳地为65~70wt%,例如68.04wt%、66.14wt%、67.74wt%、66.74wt%、68.33wt%、67.85wt%或67.25wt%。
本发明的某些较佳实施例中,所述钕铁硼磁体材料包括如下质量百分比的各组分:22.00-25.00%的Nd、5.00-7.00%的Pr、0.20-0.40%的Dy、0.30-0.40%的Cu、0.20-0.50%的Ga、0.40-0.60%的Co、0.30-0.50%的Zr、0.90-1.00%的B和余量的Fe。
本发明某些较佳实施例中,所述钕铁硼磁体材料包括如下质量百分比的各组分:22.35%的Nd,7.45%的Pr,0.20%的Al,0.15%的Cu,0.20%的Ga,0.50%的Co,0.15%的Zr,0.96%的B和68.04%的Fe。
本发明某些较佳实施例中,所述钕铁硼磁体材料包括如下质量百分比的各组分:23.25%的Nd,7.75%的Pr,0.50%的Al,0.20%的Cu,0.22%的Ga,0.80%的Co,0.10%的Nb,0.10%的Ti,0.94%的B和66.14%的Fe。
本发明某些较佳实施例中,所述钕铁硼磁体材料包括如下质量百分比的 各组分:22.20%的Nd,7.40%的Pr,0.50%的Dy、0.20%的Al,0.15%的Cu,0.20%的Ga,0.50%的Co,0.15%的Zr,0.94%的B和67.74%的Fe。
本发明某些较佳实施例中,所述钕铁硼磁体材料包括如下质量百分比的各组分:29.60%的Nd,1.50%的Dy、0.20%的Al,0.15%的Cu,0.20%的Ga,0.50%的Co,0.15%的Zr,0.96%的B和66.74%的Fe。
本发明某些较佳实施例中,所述钕铁硼磁体材料包括如下质量百分比的各组分:22.40%的Nd、6.50%的Pr、0.20%的Dy、0.38%的Cu,0.45%的Ga,0.45%的Co,0.35%的Zr,0.94%的B和68.33%的Fe。
本发明某些较佳实施例中,所述钕铁硼磁体材料包括如下质量百分比的各组分:23.80%的Nd、5.50%的Pr、0.30%的Dy、0.33%的Cu,0.39%的Ga,0.42%的Co,0.45%的Zr,0.95%的B和67.87%的Fe。
本发明某些较佳实施例中,所述钕铁硼磁体材料包括如下质量百分比的各组分:24.60%的Nd、5.20%的Pr、0.40%的Dy、0.30%的Cu,0.35%的Ga,0.52%的Co,0.46%的Zr,0.92%的B和67.25%的Fe。
本发明还提供了一种钕铁硼磁体材料的制备方法,其包括如下步骤:
S1:将如上所述的钕铁硼磁体材料的各组分制成磁石毛坯;
S2:将所述磁石毛坯进行时效处理,即得;其中,所述时效处理包括一级时效和二级时效,所述一级时效后的冷却速度为23~150℃/min。
本发明中,所述一级时效可采用本领域常规的方法进行,一般地进行加热即可。
本发明中,所述一级时效的温度可为本领域常规,较佳地为860~940℃,更佳地为880~920℃,例如890℃、900℃、910℃。
本发明中,所述一级时效的时间可为本领域常规,较佳地为2~4h,例如3h。
本发明中,所述冷却速度较佳地为35~150℃/min,更佳地为40~80℃/min,例如42℃/min、45℃/min、48℃/min、50℃/min、52℃/min、56℃/min或66℃/min。
本发明中,所述一级时效经冷却后的温度可为本领域常规,较佳地为420~480℃,更佳地为450℃。
本发明中,所述二级时效的温度可为本领域常规,较佳地为430~550℃,例如480℃。
本发明中,所述二级时效的时间可为本领域常规,较佳地为1~4h,例如3.5h。
S1中,所述磁石毛坯的制备方法可为本领域常规,一般地将所述钕铁硼磁体材料的各组分依次经熔炼、铸造、粉碎、成型、烧结即可。
其中,所述熔炼的温度可为本领域常规,较佳地为1550℃以下,更佳地为1480~1550℃,例如1520℃。
其中,所述熔一般地在真空环境下进行。所述真空环境的压力可为本领域常规,较佳地为2×10
-2Pa~8×10
-2Pa,例如5×10
-2Pa。
其中,所述铸造的方法可为本领域常规,较佳地为速凝铸片法。
其中,所述铸造的温度可为本领域常规,较佳地为1390~1460℃,例如1410℃。
其中,所述铸造之后得到的合金铸片的厚度可为本领域常规,较佳地为0.25~0.40mm。
其中,所述粉碎的方法可为本领域常规,较佳地依次进行氢破粉碎和气流磨粉碎。
所述氢破粉碎一般地包括吸氢、脱氢和冷却处理。
所述吸氢过程中的氢气压力可为本领域常规,较佳地为0.05~0.12MPa,更佳地为0.085MPa。
所述脱氢可采用本领域常规的方法进行,较佳地为在抽真空的条件下进行升温。所述升温后的温度可为本领域常规,较佳地为300~600℃,例如500℃。
所述气流磨粉碎的气氛可为本领域常规,较佳地为氧化性气体含量不高于100ppm下进行。其中,所述氧化性气体一般包括氧气和/或水蒸气。
所述气流磨粉碎中研磨室的压力可为本领域常规,较佳地为0.5~1MPa, 更佳地为0.7MPa。
所述气流磨粉碎后的粒径可为本领域常规,较佳地为3~6μm,例如4.2μm。
其中,较佳地,所述粉碎后所得粉体中添加润滑剂。
所述润滑剂可为本领域常规,较佳地为硬脂酸锌。
所述润滑剂的添加量可为本领域常规,较佳地为0.05~0.15%,例如0.10%,其中百分比为所述润滑剂与所述粉体的质量百分比。
其中,所述成型的方法可为本领域常规,较佳地为磁场成型。
所述磁场成型中磁场的强度可为本领域常规,较佳地为1.8~2.5T。
所述磁场成型较佳地在保护性气氛中进行。所述保护性气氛可为本领域常规,例如氮气。
其中,所述烧结的温度可为本领域常规,较佳地为1000~1100℃,例如1085℃。
其中,所述烧结的时间可为本领域常规,较佳地为4~8h,例如6h。
其中,S1中,所述烧结后较佳地还包括冷却处理。
所述冷却处理较佳地在惰性气氛下进行。
所述惰性气氛可为本领域常规的不参与本发明化学反应的气体,较佳地为氮气或惰性气体,更佳地为氩气。
所述惰性气氛的压力可为本领域常规,较佳地为0.01~0.1MPa,更佳地为0.05MPa。
本发明还提供了一种如上所述的制备方法制得的钕铁硼磁体材料。
本发明还提供了一种如上所述的钕铁硼磁体材料在电机中的应用。
本发明还提供了一种包括如上所述的钕铁硼磁体材料的电机。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明的积极进步效果在于:
(1)本发明可在不使用重稀土元素、剩磁超过14kGs时,内禀矫顽力 提升至19kOe以上,甚至高至20.60kOe;同时最大磁能积可均高于48MGOe,甚至高至50.95MGOe;
(2)本发明在少量(≤1.5wt%)添加重稀土元素时,剩磁可均高于13.5kGs时,内禀矫顽力提升至21kOe以上,甚至高至23.3kOe,同时最大磁能积可均高于43MGOe,甚至高至46.13MGOe。
图1为实施例1钕铁硼磁体材料的TEM图谱;
图2为实施例1钕铁硼磁体材料的TEM图谱,图2的箭头所指即为非晶态富RE相。
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
实施例1~7和对比例1~7
按照表1的成分表配置原料,制备步骤如下:
(1)熔炼:将配制好的原料放入绝压为5×10
-2Pa的高频真空感应熔炼炉中,在1520℃温度下熔炼成熔融液。
(2)铸造:采用速凝铸片法,获得合金铸片,浇铸的温度为1410℃。
(3)粉碎:依次进行氢破粉碎和气流磨粉碎。
氢破粉碎包括吸氢、脱氢和冷却处理。吸氢在氢气压力0.085MPa的条件下进行,脱氢在边抽真空边升温的条件下进行,脱氢温度为500℃。
气流磨粉碎为在氧化性气体含量100ppm以下进行,粉碎得到的粒径为4.2μm,氧化性气体是指氧气和水蒸气。气流磨粉碎的研磨室压力为0.70MPa。粉碎后,添加润滑剂硬脂酸锌,添加量为气流磨粉碎所得粉末重量的0.10%。
(4)成型:在1.8~2.5T的磁场强度和氮气气氛保护下进行磁场成型。
(5)烧结:在绝压为5×10
-3Pa的真空条件下进行,烧结温度为1085℃,烧结时间为6h。
(6)冷却:通入氩气使气压达到0.05MPa,进行冷却。
(7)时效处理:一级时效的温度为900℃、时间为3h;一级时效后冷却至450℃,冷却速度分别如表2所示;随后进行二级时效,二级时效的温度为480℃、时间为3.5h,得到钕铁硼磁体材料。
本领域技术人员均了解,钕铁硼磁体材料各组分的含量和其原材料几乎没有差别,所以各实施例和对比例所得钕铁硼磁体材料的各组分含量如表1所示。
表1实施例和对比例钕铁硼磁体材料原料成分表
表1中,“/”表示未添加或未检测到该元素;“余量”为100%减去其他元素的含量。本领域技术人员知晓,Fe的含量中包含在制备过程中不可避免引入的一些杂质。
效果实施例
1、磁性能的测试
对实施例1~4和对比例1~7所得钕铁硼磁体材料使用中国计量科学研究院制备的NIM-62000闭合回路式退磁曲线测试设备进行磁性能测试,测试温度为20℃,得到剩磁(BRE)、内禀矫顽力(Hcj)、最大磁能积(BHmax)和方形度(Hk/Hcj)的数据,测试结果如表2所示。
2、非晶态富RE相所占体积比的表征
对实施例和对比例所得钕铁硼磁体材料进行TEM测试,表征非晶态富RE相占晶界相的体积比,具体地:利用TEM对晶界相作衍射斑分析,根据非晶态固有的环形衍射斑对非晶态富钕相进行识别和标定(图1),然后利用扫描透射电子像(图2)对非晶态富RE相的体积占比进行统计,结果如表2所示。
3.非晶态富RE相的成分测定
利用TEM-EDS(能谱)分析对非晶态富RE相的成分进行定量分析,结果如表3所示。
表2实施例和对比例磁性能表征结果表
表3实施例和对比例的非晶态富RE相成分表
实施例/对比例 | 非晶态富RE相组成(at%) |
实施例1 | Fe 18RE 47Ga 14Cu 21 |
实施例2 | Fe 15RE 49Ga 16Cu 20 |
实施例3 | Fe 25RE 40Ga 11Cu 24 |
实施例4 | Fe 16RE 45Ga 14Cu 25 |
实施例5 | Fe 19RE 41Ga 18Cu 12 |
实施例6 | Fe 16RE 46Ga 19Cu 19 |
实施例7 | Fe 17RE 50Ga 12Cu 21 |
对比例1 | Fe 17RE 48Ga 14Cu 21 |
对比例2 | Fe 19RE 47Ga 14Cu 20 |
对比例3 | Fe 18RE 44Ga 14Cu 24 |
对比例4 | Fe 20RE 45Ga 14Cu 21 |
对比例5 | Fe 21RE 47Ga 14Cu 18 |
对比例6 | Fe 19RE 49Ga 11Cu 21 |
对比例7 | Fe 23RE 42Ga 14Cu 21 |
表3中,各实施例和对比例的非晶态富RE相组成中的数字代表各元素所占的原子百分比。
从表2可以看出,本发明特定的元素配比以及制备工艺使地在晶界相中形成特定体积比例的非晶态富钕相,从而在不添加重稀土元素的情况下制得的钕铁硼磁体材料在剩磁BRE均高于14kGs时,内禀矫顽力Hcj均高于19kOe,甚至高达20.60kOe;在添加少量重稀土元素的情况下制得的钕铁硼磁体材料的剩磁BRE均高于13.50kGs,内禀矫顽力Hcj均高于21kOe,甚至 提升至23.30kOe。对比例1、对比例2和对比例7的元素配比均不满足本发明的(B-0.4)Ga≤Cu≤(Ga+Cu)/2,使得在晶界相中形成的非晶态富钕相的面积占比均小于3%,得到的钕铁硼磁体材料内禀矫顽力Hcj较低,均低于19kOe。对比例3和对比例4的元素配比满足公式(B-0.4)Ga≤Cu≤(Ga+Cu)/2的要求,但是Cu元素含量分别低于或高于本申请限定的范围,导致在晶界相中形成的非晶态富钕相的面积占比太小或太大,使得钕铁硼磁体材料内禀矫顽力Hcj均低于19kOe。对比例5和对比例6的一级时效后的冷却速度分别低于和高于本发明限定的范围,导致在晶界相中形成的非晶态富钕相的面积占比太小或太大,得到的钕铁硼磁体材料内禀矫顽力Hcj均低于18kOe。
Claims (10)
- 一种钕铁硼磁体材料,其特征在于,其包括位于晶界相的非晶态富RE相,所述非晶态富RE相的元素的组成及其原子比为TM:RE:Cu:Ga=(15~30):(40~60):(10~25):(10~30);所述非晶态富RE相占所述晶界相的体积比为3~8%;其中,TM为Fe和Co,RE为稀土元素。
- 如权利要求1所述的钕铁硼磁体材料,其特征在于,所述非晶态富RE相中,所述TM占的原子百分比为15~30%,较佳地为15~25%,更佳地为16%、17%、18%、19%或25%;和/或,所述TM仅为Fe;和/或,所述非晶态富RE相中,所述RE占的原子百分比为40~60%,较佳地为40~50%,例如41%、45%、46%、47%、49%或50%;和/或,所述非晶态富RE相中,所述Ga占的原子百分比为10~20%,较佳地为11%、12%、14%、16%、18%或19%;和/或,所述非晶态富RE相中,所述Cu占的原子百分比为12~25%,较佳地为19%、20%、21%、24%或25%;或者,所述非晶态富RE相的组成为Fe 15~19RE 45~50Ga 12~19Cu 19~21,其中数字为各元素在所述非晶态富RE相中所占原子百分比;或者,所述非晶态富RE相的组成为Fe 18RE 47Ga 14Cu 21、Fe 15RE 49Ga 16Cu 20、Fe 25RE 40Ga 11Cu 24、Fe 16RE 45Ga 14Cu 25、Fe 17RE 45Ga 18Cu 20、Fe 19RE 41Ga 18Cu 12、Fe 16RE 46Ga 19Cu 19或Fe 17RE 50Ga 12Cu 21,其中数字为各元素在所述非晶态富RE相中所占原子百分比;和/或,所述非晶态富RE相占所述晶界相的体积比为3.5~7%,较佳地为4.2%、4.3%、4.4%、4.5%、5.6%、6.2%或6.5%。
- 一种钕铁硼磁体材料,其特征在于,以质量百分比计,其包括如下含量的各组分:B:0.85~1.2wt%;Cu:0.05~0.6wt%;Al:0~0.60wt%;Ga:0.05~0.6wt%;所述Ga、Cu和B的含量满足如下公式:(B-0.4)Ga≤Cu≤(Ga+Cu)/2;所述钕铁硼磁体材料的全部组分含量之和为100%。
- 如权利要求3所述的钕铁硼磁体材料,其特征在于,所述B的含量为0.9~1.0wt%,较佳地为0.92wt%、0.95wt%、0.96wt%或0.94wt%;和/或,所述Cu的含量为0.1~0.4wt%,较佳地为0.15wt%、0.20wt%、0.32wt%、0.35%或0.38%;和/或,所述Al的含量为0~0.5wt%,较佳地为0.2wt%;和/或,所述Ga的含量为0.1~0.5wt%,较佳地为0.2wt%、0.22wt%、0.35wt%、0.39%或0.45wt%;和/或,所述钕铁硼磁体材料还包括稀土元素RE,所述RE至少包括Nd;所述RE占所述钕铁硼磁体材料的质量百分比较佳地为27~33wt%,更佳地为28~32wt%,进一步更佳地为29.1wt%、29.6wt%、29.8wt%、30.2%或31wt%;所述RE较佳地包括Nd和Pr;所述Nd占所述钕铁硼磁体材料的质量百分比较佳地为21~27wt%,更佳地为22~25wt%,进一步更佳地为22.35wt%、22.4%、23.25wt%、23.8%或24.6%;所述Pr占所述钕铁硼磁体材料的质量百分比较佳地为4~9wt%,更佳地为5~8wt%,进一步更佳地为5.2wt%、5.5wt%、6.5wt%、7.40wt%、7.45wt%或7.75wt%;和/或,所述RE还包括重稀土元素;所述重稀土元素较佳地包括Dy和/或Tb;所述重稀土元素占所述钕铁硼磁体材料的质量百分比较佳地为0~2wt%,更佳地为0.2wt%、0.25wt%、0.3wt%、0.4wt%、0.5wt%或1.5wt%;和/或,所述钕铁硼磁体材料还包括Co;所述Co占所述钕铁硼磁体材料的质量百分比较佳地为0.3~1.2wt%,更佳地为0.4~0.8wt%,进一步更佳地为0.42wt%、0.45wt%、0.5wt%或0.52wt%;和/或,所述钕铁硼磁体材料还包括Zr;所述Zr占所述钕铁硼磁体材料的质量百分比较佳地为0~0.5wt%,更佳地为0.15wt%、0.18wt%、0.35wt%、0.45wt%或0.46wt%;和/或,所述钕铁硼磁体材料还包括Ti;所述Ti占所述钕铁硼磁体材料的质量百分比较佳地为0~0.3wt%,更佳地为0.1wt%;和/或,所述钕铁硼磁体材料还包括Nb;所述Nb占所述钕铁硼磁体材料的质量百分比较佳地为0~0.3wt%,更佳地为0.1wt%;和/或,所述钕铁硼磁体材料还包括Fe;所述Fe占所述钕铁硼磁体材料的质量百分比较佳地62~72wt%,更佳地为65~70wt%,进一步更佳地为68.04wt%、66.14wt%、67.74wt%、66.74wt%、68.33wt%、67.85wt%或67.25wt%。
- 如权利要求3所述的钕铁硼磁体材料,其特征在于,所述钕铁硼磁体材料包括如下质量百分比的各组分:22.00-25.00%的Nd、5.00-7.00%的Pr、0.20-0.40%的Dy、0.30-0.40%的Cu、0.20-0.50%的Ga、0.40-0.60%的Co、0.30-0.50%的Zr、0.90-1.00%的B和余量的Fe;或者,所述钕铁硼磁体材料包括如下质量百分比的各组分:22.35%的Nd、7.45%的Pr、0.20%的Al、0.15%的Cu、0.20%的Ga、0.50%的Co、0.15%的Zr、0.96%的B和68.04%的Fe;或者,所述钕铁硼磁体材料包括如下质量百分比的各组分:23.25%的Nd、7.75%的Pr、0.50%的Al、0.20%的Cu、0.22%的Ga、0.80%的Co、0.10%的Nb、0.10%的Ti、0.94%的B和66.14%的Fe;或者,所述钕铁硼磁体材料包括如下质量百分比的各组分:22.20%的Nd、7.40%的Pr、0.50%的Dy、0.20%的Al、0.15%的Cu、0.20%的Ga、0.50%的Co、0.15%的Zr、0.94%的B和67.74%的Fe;或者,所述钕铁硼磁体材料包括如下质量百分比的各组分:29.60%的Nd、1.50%的Dy、0.20%的Al、0.15%的Cu、0.20%的Ga、0.50%的Co、0.15%的Zr、0.96%的B和66.74%的Fe;或者,所述钕铁硼磁体材料包括如下质量百分比的各组分:22.40%的Nd、6.50%的Pr、0.20%的Dy、0.38%的Cu、0.45%的Ga、0.45%的Co、0.35%的Zr、0.94%的B和68.33%的Fe;或者,所述钕铁硼磁体材料包括如下质量百分比的各组分:23.80%的 Nd、5.50%的Pr、0.30%的Dy、0.33%的Cu、0.39%的Ga、0.42%的Co、0.45%的Zr、0.95%的B和67.87%的Fe;或者,所述钕铁硼磁体材料包括如下质量百分比的各组分:24.60%的Nd、5.20%的Pr、0.40%的Dy、0.30%的Cu、0.35%的Ga、0.52%的Co、0.46%的Zr、0.92%的B和67.25%的Fe。
- 如权利要求3~5中任一项所述的钕铁硼磁体材料,其特征在于,所述钕铁硼磁体材料包括如权利要求1或2所述的非晶态富RE相。
- 一种钕铁硼磁体材料的制备方法,其特征在于,其包括如下步骤:S1:将如权利要求3~5中任一项所述的钕铁硼磁体材料的各组分制成磁石毛坯;S2:将所述磁石毛坯进行时效处理,即得;其中,所述时效处理包括一级时效和二级时效,所述一级时效后的冷却速度为23~150℃/min;其中,所述一级时效的温度较佳地为860~940℃,更佳地为880~920℃,进一步更佳地为890℃、900℃或910℃;所述一级时效的时间较佳地为2~4h,更佳地为3h;所述冷却速度较佳地为35~150℃/min,更佳地为40~80℃/min,进一步更佳地为42℃/min、45℃/min、48℃/min、50℃/min、52℃/min、56℃/min或66℃/min;所述一级时效经冷却后的温度较佳地为420~480℃,更佳地为450℃;所述二级时效的温度较佳地为430~550℃,更佳地为480℃;所述二级时效的时间较佳地为1~4h,更佳地为3.5h。
- 一种如权利要求7所述的制备方法制得的钕铁硼磁体材料。
- 一种如权利要求1~6和8中任一项所述的钕铁硼磁体材料在电机中的应用。
- 一种电机,其包括如权利要求1~6和8中任一项所述的钕铁硼磁体材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22939838.3A EP4421829A1 (en) | 2022-04-29 | 2022-11-04 | Neodymium-iron-boron magnet material and preparation method therefor and use thereof, and motor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210494036.4 | 2022-04-29 | ||
CN202210494036.4A CN117012488A (zh) | 2022-04-29 | 2022-04-29 | 钕铁硼磁体材料及其制备方法、应用、电机 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023207021A1 true WO2023207021A1 (zh) | 2023-11-02 |
Family
ID=88517156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/129744 WO2023207021A1 (zh) | 2022-04-29 | 2022-11-04 | 钕铁硼磁体材料及其制备方法、应用、电机 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4421829A1 (zh) |
CN (1) | CN117012488A (zh) |
TW (1) | TW202342781A (zh) |
WO (1) | WO2023207021A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1805072A (zh) * | 2006-01-13 | 2006-07-19 | 海安县磁性材料二厂 | 力学性能良好的耐热耐腐蚀性钕铁硼永磁材料及生产方法 |
CN101026034A (zh) * | 2006-02-22 | 2007-08-29 | 南京理工大学 | 一种耐腐蚀稀土永磁材料的制备方法 |
US20170140856A1 (en) * | 2015-11-18 | 2017-05-18 | Shin-Etsu Chemical Co., Ltd. | R-(Fe, Co)-B Sintered Magnet and Making Method |
CN107369512A (zh) * | 2017-08-10 | 2017-11-21 | 烟台首钢磁性材料股份有限公司 | 一种r‑t‑b类烧结永磁体 |
CN111091945A (zh) * | 2019-12-31 | 2020-05-01 | 厦门钨业股份有限公司 | 一种r-t-b系永磁材料、原料组合物、制备方法、应用 |
CN111312461A (zh) * | 2020-02-26 | 2020-06-19 | 厦门钨业股份有限公司 | 一种钕铁硼磁体材料、原料组合物及制备方法和应用 |
CN113871122A (zh) * | 2021-09-24 | 2021-12-31 | 烟台东星磁性材料股份有限公司 | 低重稀土磁体及制造方法 |
-
2022
- 2022-04-29 CN CN202210494036.4A patent/CN117012488A/zh active Pending
- 2022-11-04 EP EP22939838.3A patent/EP4421829A1/en active Pending
- 2022-11-04 WO PCT/CN2022/129744 patent/WO2023207021A1/zh active Application Filing
- 2022-12-08 TW TW111147161A patent/TW202342781A/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1805072A (zh) * | 2006-01-13 | 2006-07-19 | 海安县磁性材料二厂 | 力学性能良好的耐热耐腐蚀性钕铁硼永磁材料及生产方法 |
CN101026034A (zh) * | 2006-02-22 | 2007-08-29 | 南京理工大学 | 一种耐腐蚀稀土永磁材料的制备方法 |
US20170140856A1 (en) * | 2015-11-18 | 2017-05-18 | Shin-Etsu Chemical Co., Ltd. | R-(Fe, Co)-B Sintered Magnet and Making Method |
CN107369512A (zh) * | 2017-08-10 | 2017-11-21 | 烟台首钢磁性材料股份有限公司 | 一种r‑t‑b类烧结永磁体 |
CN111091945A (zh) * | 2019-12-31 | 2020-05-01 | 厦门钨业股份有限公司 | 一种r-t-b系永磁材料、原料组合物、制备方法、应用 |
CN111312461A (zh) * | 2020-02-26 | 2020-06-19 | 厦门钨业股份有限公司 | 一种钕铁硼磁体材料、原料组合物及制备方法和应用 |
CN113871122A (zh) * | 2021-09-24 | 2021-12-31 | 烟台东星磁性材料股份有限公司 | 低重稀土磁体及制造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN117012488A (zh) | 2023-11-07 |
TW202342781A (zh) | 2023-11-01 |
EP4421829A1 (en) | 2024-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021098224A1 (zh) | 钕铁硼磁体材料、原料组合物及制备方法和应用 | |
WO2020015389A1 (zh) | 一种高韧性、高矫顽力含Ce烧结稀土永磁体及其制备方法 | |
CN102220538B (zh) | 一种提高内禀矫顽力和耐腐蚀性能的烧结钕铁硼制备方法 | |
WO2021098223A1 (zh) | 钕铁硼磁体材料、原料组合物及制备方法和应用 | |
WO2021135144A1 (zh) | 一种钕铁硼永磁材料、制备方法、应用 | |
WO2021169891A1 (zh) | 钕铁硼磁体材料、原料组合物、制备方法、应用 | |
JP7253071B2 (ja) | R-t-b系永久磁石材料、製造方法、並びに応用 | |
CN107958760B (zh) | 一种稀土永磁材料及其制备方法 | |
WO2021135143A1 (zh) | R-t-b系烧结磁体及其制备方法 | |
WO2021098225A1 (zh) | 钕铁硼磁体材料、原料组合物及制备方法和应用 | |
CN108269665A (zh) | 一种钕铁硼磁体及其制备方法 | |
WO2021114648A1 (zh) | 一种r-t-b系永磁材料、原料组合物、制备方法、应用 | |
CN112992463B (zh) | 一种r-t-b磁体及其制备方法 | |
WO2021169889A1 (zh) | 钕铁硼磁体材料、原料组合物、制备方法、应用 | |
TWI806464B (zh) | 一種釹鐵硼磁體材料及其製備方法和應用 | |
TWI832167B (zh) | 一種釹鐵硼磁體材料及其製備方法和應用 | |
WO2023207021A1 (zh) | 钕铁硼磁体材料及其制备方法、应用、电机 | |
TWI816317B (zh) | 一種r-t-b磁體及其製備方法 | |
WO2022193818A1 (zh) | 一种r-t-b磁体及其制备方法 | |
WO2021169901A1 (zh) | 一种r-t-b系永磁材料及其制备方法和应用 | |
CN113012925B (zh) | 一种高磁性低稀土含量的钕铁硼磁体的制备方法 | |
TW202238634A (zh) | 一種r-t-b磁體及其製備方法 | |
WO2023207020A1 (zh) | 钕铁硼磁体材料及其制备方法、应用 | |
WO2023207019A1 (zh) | 一种钕铁硼磁体材料及其制备方法、应用 | |
US12087481B2 (en) | Auxiliary alloy casting piece, high-remanence and high-coercive force NdFeB permanent magnet, and preparation methods thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22939838 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022939838 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022939838 Country of ref document: EP Effective date: 20240524 |