WO2023190037A1 - シリコーン骨格含有化合物 - Google Patents

シリコーン骨格含有化合物 Download PDF

Info

Publication number
WO2023190037A1
WO2023190037A1 PCT/JP2023/011521 JP2023011521W WO2023190037A1 WO 2023190037 A1 WO2023190037 A1 WO 2023190037A1 JP 2023011521 W JP2023011521 W JP 2023011521W WO 2023190037 A1 WO2023190037 A1 WO 2023190037A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin composition
independently represents
layer
resin
Prior art date
Application number
PCT/JP2023/011521
Other languages
English (en)
French (fr)
Inventor
一郎 小椋
大地 岡崎
駿介 田中
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Publication of WO2023190037A1 publication Critical patent/WO2023190037A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/10Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/08Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F30/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F30/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F30/08Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • C08G77/388Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a silicone skeleton-containing compound, a method for producing the same, and a reaction product between a diamine compound and an isocyanate compound.
  • the present invention also relates to a resin composition, a cured product, a sheet-like laminate material, a resin sheet, an optical waveguide, a printed wiring board, a semiconductor chip package, and a semiconductor device obtained using the silicone skeleton-containing compound.
  • Polyfunctional acrylate compounds generally have radical polymerizability and tend to have excellent properties such as heat resistance and chemical resistance. Therefore, multifunctional acrylate compounds are used in many fields such as printing inks, paints, electronic materials, structural composite materials, adhesives, photoresist materials, stereolithography materials, optical waveguide materials, etc., in thermopolymerizable curing systems and photopolymerizable Curing systems have been used as materials that can be used in both curing methods.
  • Typical polyfunctional acrylate compounds include, for example, polyol-based (meth)acrylate compounds, bisphenol A-type epoxy (meth)acrylate resins (vinyl ester resins), alkylene ether-modified bisphenol A-based (meth)acrylate resins, etc. (Patent Documents 1 and 2). Further, Patent Document 3 describes a silicone oligomer containing an acryloyl group.
  • the present invention was created to solve the above-mentioned problems, and includes a silicone skeleton-containing compound that can achieve both excellent flexibility and toughness, and a method for producing the same; , a reaction product between a diamine compound and an isocyanate compound; a resin composition containing the same; and a cured product obtained using the resin composition, a sheet-like laminate material, a resin sheet, an optical waveguide, a printed wiring board, a semiconductor chip. Its purpose is to provide packages and semiconductor devices.
  • the present inventor has made extensive studies to solve the above problems. As a result, the present inventors discovered that a silicone skeleton-containing compound having a specific molecular structure could solve the above problems, and completed the present invention. That is, the present invention includes the following.
  • a silicone skeleton-containing compound represented by the following formula (1) (In the formula, R 1 each independently represents a monovalent organic group, R 2 each independently represents a divalent organic group, R 3 each independently represents a divalent organic group, R 4 each independently represents a hydrogen atom or a monovalent organic group, n represents a number of 0 or more.
  • R 1 each independently represents a monovalent hydrocarbon group which may have a substituent
  • R 2 each independently represents a divalent hydrocarbon group which may have a substituent
  • R 3 each independently represents a divalent hydrocarbon group which may have a substituent
  • R 1 each independently represents an alkyl group having 1 to 6 carbon atoms
  • R 2 each independently represents a divalent aliphatic hydrocarbon group which may have a substituent
  • R 3 each independently represents a divalent aliphatic hydrocarbon group which may have a substituent
  • R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • n a number from 0 to 50.
  • [5] The silicone skeleton-containing compound according to any one of [1] to [4], which is a reaction product of a diamine compound and an isocyanate compound.
  • [6] The silicone skeleton-containing compound according to [5], wherein the diamine compound is represented by the following formula (4) and the isocyanate compound is represented by the following formula (5).
  • R 1 each independently represents a monovalent organic group
  • R 2 each independently represents a divalent organic group
  • n represents a number of 0 or more
  • R 3 each independently represents a divalent organic group
  • R 4 each independently represents a hydrogen atom or a monovalent organic group.
  • a method for producing a silicone skeleton-containing compound which comprises reacting a diamine compound represented by the following formula (4) with an isocyanate compound represented by the following formula (5).
  • R 1 each independently represents a monovalent organic group
  • R 2 each independently represents a divalent organic group
  • n represents a number of 0 or more
  • R 3 each independently represents a divalent organic group
  • R 4 each independently represents a hydrogen atom or a monovalent organic group.
  • a resin composition comprising the silicone skeleton-containing compound according to any one of [1] to [7].
  • the resin composition according to [10] which is a photocurable resin composition.
  • a printed wiring board comprising an insulating layer containing a cured product of the resin composition according to any one of [10] to [19].
  • a printed wiring board comprising the optical waveguide according to [23].
  • a semiconductor chip package comprising a sealing layer containing a cured product of the resin composition according to any one of [10] to [19].
  • the semiconductor chip package according to [26] which is a fan-out type package.
  • a semiconductor device comprising the optical waveguide according to [23], the printed wiring board according to [24] or [25], or the semiconductor chip package according to [26] or [27].
  • a silicone skeleton-containing compound that can achieve excellent flexibility and toughness, and a method for producing the same; a reaction product of a diamine compound and an isocyanate compound that can achieve excellent both flexibility and toughness; ; a resin composition containing the same; and a cured product obtained using the resin composition, a sheet-like laminate material, a resin sheet, an optical waveguide, a printed wiring board, a semiconductor chip package, and a semiconductor device.
  • FIG. 1 shows a 1 H-NMR chart of the reactive silicone resin (A1) produced in Example 1 of the present invention.
  • FIG. 2 shows an IR chart of the reactive silicone resin (A1) produced in Example 1 of the present invention.
  • FIG. 3 shows a GPC chart of the reactive silicone resin (A1) produced in Example 1 of the present invention.
  • FIG. 4 shows a 1 H-NMR chart of the reactive silicone resin (A2) produced in Example 2 of the present invention.
  • FIG. 5 shows an IR chart of the reactive silicone resin (A2) produced in Example 2 of the present invention.
  • FIG. 6 shows a GPC chart of the reactive silicone resin (A2) produced in Example 2 of the present invention.
  • FIG. 7 shows a 1 H-NMR chart of the reactive silicone resin (A3) produced in Example 3 of the present invention.
  • FIG. 8 shows an IR chart of the reactive silicone resin (A3) manufactured in Example 3 of the present invention.
  • FIG. 9 shows a GPC chart of the reactive silicone resin (A3) produced in Example 3 of the present
  • substituted means a halogen atom, an alkyl group, an alkenyl group, an alkynyl group, an alkapolyenyl group, a cycloalkyl group, a cycloalkenyl group, an alkoxy group, a cycloalkyloxy group, unless otherwise specified.
  • aryl group aryloxy group, arylalkyl group, arylalkoxy group, monovalent heterocyclic group, alkylidene group, amino group, silyl group, acyl group, acyloxy group, carboxy group, sulfo group, cyano group, nitro group , means a hydroxy group, a mercapto group and an oxo group.
  • Groups containing only carbon and hydrogen such as alkyl groups, alkenyl groups, alkynyl groups, alkapolyenyl groups, cycloalkyl groups, cycloalkenyl groups, aryl groups, arylalkyl groups, and alkylidene groups, are collectively referred to as "carbonized" groups. Sometimes referred to as a hydrogen group.
  • aliphatic hydrocarbon groups having no unsaturated bonds such as alkyl groups and cycloalkyl groups
  • saturated aliphatic hydrocarbon groups are sometimes collectively referred to as "saturated aliphatic hydrocarbon groups.”
  • aliphatic hydrocarbon groups having unsaturated bonds such as alkenyl groups, alkynyl groups, alkapolyenyl groups, and cycloalkenyl groups are sometimes collectively referred to as "unsaturated aliphatic hydrocarbon groups.”
  • substituents may further have a substituent (hereinafter sometimes referred to as "secondary substituent").
  • secondary substituent As the secondary substituent, unless otherwise specified, the same substituents as those described above may be used.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • an alkyl group may be linear or branched.
  • the number of carbon atoms in the alkyl group is preferably 1 to 20, more preferably 1 to 14, even more preferably 1 to 12, even more preferably 1 to 6, particularly preferably 1 to 3.
  • Examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, isobutyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, and nonyl group. , and decyl group.
  • an alkenyl group may be linear or branched.
  • the alkenyl group preferably has 2 to 20 carbon atoms, more preferably 2 to 14 carbon atoms, still more preferably 2 to 12 carbon atoms, even more preferably 2 to 6 carbon atoms, particularly preferably 2 or 3 carbon atoms.
  • Examples of the alkenyl group include vinyl group, allyl group, 1-propenyl group, butenyl group, sec-butenyl group, isobutenyl group, tert-butenyl group, pentenyl group, hexenyl group, heptenyl group, octenyl group, nonenyl group, and a decenyl group.
  • an alkynyl group may be linear or branched.
  • the number of carbon atoms in the alkynyl group is preferably 2 to 20, more preferably 2 to 14, still more preferably 2 to 12, even more preferably 2 to 6, particularly preferably 2 or 3.
  • Examples of the alkynyl group include ethynyl group, propynyl group, butynyl group, sec-butynyl group, isobutynyl group, tert-butynyl group, pentynyl group, hexynyl group, heptynyl group, octynyl group, nonynyl group, and decynyl group. It will be done.
  • the alkapolyenyl group may be linear or branched, and the number of double bonds is preferably 2 to 10, more preferably 2 to 6, More preferably 2 to 4, even more preferably 2.
  • the alkapolyenyl group preferably has 3 to 20 carbon atoms, more preferably 3 to 14 carbon atoms, still more preferably 3 to 12 carbon atoms, and even more preferably 3 to 6 carbon atoms.
  • the number of carbon atoms in the cycloalkyl group is preferably 3 to 20, more preferably 3 to 12, and even more preferably 3 to 6.
  • the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
  • the number of carbon atoms in the cycloalkenyl group is preferably 3 to 20, more preferably 3 to 12, and even more preferably 3 to 6.
  • the cycloalkenyl group include a cyclopropenyl group, a cyclobutenyl group, a cyclopentenyl group, and a cyclohexenyl group.
  • an alkoxy group may be either linear or branched.
  • the alkoxy group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, and even more preferably 1 to 6 carbon atoms.
  • Examples of the alkoxy group include methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butoxy group, sec-butoxy group, isobutoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, Examples include octyloxy, nonyloxy, and decyloxy groups.
  • the number of carbon atoms in the cycloalkyloxy group is preferably 3 to 20, more preferably 3 to 12, and even more preferably 3 to 6.
  • the cycloalkyloxy group include a cyclopropyloxy group, a cyclobutyloxy group, a cyclopentyloxy group, and a cyclohexyloxy group.
  • an aryl group is a group obtained by removing one hydrogen atom on an aromatic ring from an aromatic hydrocarbon.
  • the number of carbon atoms in the aryl group is preferably 6 to 24, more preferably 6 to 18, still more preferably 6 to 14, even more preferably 6 to 10.
  • Examples of the aryl group include a phenyl group, a naphthyl group, and an anthracenyl group.
  • the number of carbon atoms in the aryloxy group is preferably 6 to 24, more preferably 6 to 18, still more preferably 6 to 14, and even more preferably 6 to 10.
  • the aryloxy group include phenoxy group, 1-naphthyloxy group, and 2-naphthyloxy group.
  • the number of carbon atoms in the arylalkyl group is preferably 7 to 25, more preferably 7 to 19, even more preferably 7 to 15, and even more preferably 7 to 11.
  • the arylalkyl group include phenyl-C 1 -C 12 alkyl group, naphthyl-C 1 -C 12 alkyl group, and anthracenyl-C 1 -C 12 alkyl group.
  • the number of carbon atoms in the arylalkoxy group is preferably 7 to 25, more preferably 7 to 19, still more preferably 7 to 15, and even more preferably 7 to 11.
  • the arylalkoxy group include phenyl-C 1 -C 12 alkoxy group and naphthyl-C 1 -C 12 alkoxy group.
  • a monovalent heterocyclic group refers to a group obtained by removing one hydrogen atom from the heterocycle of a heterocyclic compound.
  • the monovalent heterocyclic group preferably has 3 to 21 carbon atoms, more preferably 3 to 15 carbon atoms, and even more preferably 3 to 9 carbon atoms.
  • the monovalent heterocyclic group also includes a monovalent aromatic heterocyclic group (heteroaryl group).
  • Examples of the monovalent heterocycle include a thienyl group, a pyrrolyl group, a furanyl group, a furyl group, a pyridyl group, a pyridazinyl group, a pyrimidyl group, a pyrazinyl group, a triazinyl group, a pyrrolidyl group, a piperidyl group, a quinolyl group, and an isoquinolyl group.
  • a thienyl group a pyrrolyl group, a furanyl group, a furyl group
  • a pyridyl group a pyridazinyl group
  • a pyrimidyl group a pyrazinyl group
  • triazinyl group a pyrrolidyl group
  • piperidyl group a piperidyl group
  • a quinolyl group a quinolyl group
  • an alkylidene group refers to a group obtained by removing two hydrogen atoms from the same carbon atom of an alkane.
  • the number of carbon atoms in the alkylidene group is preferably 1 to 20, more preferably 1 to 14, even more preferably 1 to 12, even more preferably 1 to 6, particularly preferably 1 to 3.
  • alkylidene group examples include methylidene group, ethylidene group, propylidene group, isopropylidene group, butylidene group, sec-butylidene group, isobutylidene group, tert-butylidene group, pentylidene group, hexylidene group, heptylidene group, octylidene group, nonylidene group. group, and decylidene group.
  • the alkyl group represented by R may be linear or branched.
  • the aryl group represented by R include a phenyl group, a naphthyl group, and an anthracenyl group.
  • the number of carbon atoms in the acyl group is preferably 2 to 20, more preferably 2 to 13, and still more preferably 2 to 7.
  • Examples of the acyl group include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, and a benzoyl group.
  • the alkyl group represented by R may be linear or branched.
  • the aryl group represented by R include a phenyl group, a naphthyl group, and an anthracenyl group.
  • the number of carbon atoms in the acyloxy group is preferably 2 to 20, more preferably 2 to 13, and still more preferably 2 to 7.
  • Examples of the acyloxy group include an acetoxy group, a propionyloxy group, a butyryloxy group, an isobutyryloxy group, a pivaloyloxy group, and a benzoyloxy group.
  • the term "organic group” refers to a group containing at least a carbon atom as a skeletal atom, and may be linear, branched, or cyclic.
  • the number of skeletal atoms of the organic group is preferably 1 to 3000, more preferably 1 to 1000, even more preferably 1 to 100, even more preferably 1 to 50, particularly preferably 1-30 or 1-20.
  • the organic group include a group consisting of one or more skeleton atoms (including at least a carbon atom) selected from carbon atoms, oxygen atoms, nitrogen atoms, and sulfur atoms.
  • hydrocarbon group refers to a group obtained by removing one or more hydrogen atoms from a hydrocarbon compound.
  • a monovalent hydrocarbon group refers to a group obtained by removing one hydrogen atom from a hydrocarbon compound
  • a divalent hydrocarbon group refers to a group obtained by removing two hydrogen atoms from a hydrocarbon compound.
  • an aliphatic group containing only carbon atoms and hydrogen atoms may be referred to as an "aliphatic hydrocarbon group”
  • an aromatic group containing only carbon atoms and hydrogen atoms may be referred to as an "aromatic hydrocarbon group”.
  • the monovalent hydrocarbon group include an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkapolyenyl group, and an aryl group.
  • Examples of the divalent hydrocarbon group include an alkylene group, a cycloalkylene group, an alkenylene group, a cycloalkenylene group, an alkapolyenylene group, and an arylene group.
  • aliphatic group refers to a group obtained by removing one or more hydrogen atoms bonded to an aliphatic carbon of an aliphatic compound.
  • a monovalent aliphatic group refers to a group in which one hydrogen atom bonded to an aliphatic carbon of an aliphatic compound is removed
  • a divalent aliphatic group refers to a group in which one hydrogen atom bonded to an aliphatic carbon of an aliphatic compound is removed.
  • Examples of the monovalent aliphatic group include an alkyl group that may have a substituent, a cycloalkyl group that may have a substituent, an alkenyl group that may have a substituent, and a substituent. a cycloalkenyl group which may have a substituent, an alkapolyenyl group which may have a substituent (the number of double bonds is preferably 2 to 10, more preferably 2 to 6, even more preferably 2 to 4) , and even more preferably 2).
  • Examples of the divalent aliphatic group include an alkylene group that may have a substituent, a cycloalkylene group that may have a substituent, an alkenylene group that may have a substituent, and a substituent.
  • the number of carbon atoms in the aliphatic group is preferably 1 or more, more preferably 2 or more, still more preferably 3 or more, 4 or more, 5 or more, or 6 or more, unless otherwise specified. It is 50 or less, more preferably 40 or less, even more preferably 30 or less, 20 or less, 18 or less, 16 or less, 14 or less, or 12 or less.
  • the number of carbon atoms does not include the number of carbon atoms of substituents.
  • aromatic group refers to a group obtained by removing one or more hydrogen atoms from the aromatic ring of an aromatic compound.
  • a monovalent aromatic group refers to a group in which one hydrogen atom is removed from the aromatic ring of an aromatic compound
  • divalent aromatic group refers to a group in which one hydrogen atom is removed from the aromatic ring of an aromatic compound.
  • Examples of the monovalent aromatic group include an aryl group that may have a substituent and a heteroaryl group that may have a substituent
  • examples of the divalent aromatic group include, for example, Examples include an arylene group that may have a substituent and a heteroarylene group that may have a substituent.
  • the number of carbon atoms in the aromatic group is preferably 3 or more, more preferably 4 or more or 5 or more, even more preferably 6 or more, and the upper limit thereof is preferably 24 or less. , more preferably 18 or less or 14 or less, still more preferably 10 or less.
  • the number of carbon atoms does not include the number of carbon atoms of substituents.
  • aromatic ring refers to a ring according to Huckel's rule in which the number of electrons contained in the ⁇ -electron system on the ring is 4p+2 (p is a natural number), and includes a monocyclic aromatic ring, and 2 It includes a condensed polycyclic aromatic ring in which more than one monocyclic aromatic ring is condensed.
  • An aromatic ring is an aromatic carbocycle having only carbon atoms as a ring constituent atom, or an aromatic heterocycle having a heteroatom such as an oxygen atom, a nitrogen atom, or a sulfur atom in addition to a carbon atom as a ring constituent atom. obtain.
  • the number of carbon atoms in the aromatic ring is preferably 3 or more, more preferably 4 or more or 5 or more, even more preferably 6 or more, and the upper limit thereof is preferably 24 or less, More preferably it is 18 or less or 14 or less, still more preferably 10 or less.
  • the number of carbon atoms does not include the number of carbon atoms of substituents.
  • aromatic rings include monocyclic rings such as benzene ring, furan ring, thiophene ring, pyrrole ring, pyrazole ring, oxazole ring, isoxazole ring, thiazole ring, imidazole ring, pyridine ring, pyridazine ring, pyrimidine ring, and pyrazine ring.
  • Aromatic ring naphthalene ring, anthracene ring, phenanthrene ring, benzofuran ring, isobenzofuran ring, indole ring, isoindole ring, benzothiophene ring, benzimidazole ring, indazole ring, benzoxazole ring, benzisoxazole ring, benzothiazole ring , quinoline ring, isoquinoline ring, quinoxaline ring, acridine ring, quinazoline ring, cinnoline ring, and phthalazine ring.
  • aromatic carbon a benzene ring, a naphthalene ring, and an anthracene ring are preferable, and a benzene ring and a naphthalene ring are particularly preferable.
  • aromatic carbon carbon atoms constituting an aromatic ring are referred to as "aromatic carbon.”
  • a silicone skeleton-containing compound according to one embodiment of the present invention is represented by the following formula (1).
  • R 1 each independently represents a monovalent organic group
  • R 2 each independently represents a divalent organic group
  • R 3 each independently represents a divalent organic group
  • R 4 each independently represents a hydrogen atom or a monovalent organic group
  • n represents a number of 0 or more.
  • the silicone skeleton-containing compound contains a plurality of ethylenic double bonds, as shown in formula (1). Therefore, usually, silicone skeleton-containing compounds are bonded to each other by the reaction of the ethylenic double bonds, or a silicone skeleton-containing compound and any compound containing an ethylenically unsaturated group (described later as "any unsaturated compound”) ”) can be combined. Therefore, a resin composition containing a silicone skeleton-containing compound can be cured to form a cured product. Note that the above reaction can normally proceed as a radical polymerization reaction.
  • the cured product of the resin composition containing the silicone skeleton-containing compound can be excellent in both flexibility and toughness.
  • the present inventor conjectures the mechanism by which this excellent effect is obtained as follows.
  • the technical scope of the present invention is not limited to the following mechanism.
  • the silicone skeleton-containing compound contains a combination of a silicone skeleton containing a siloxane bond and a urea bond, as shown in formula (1).
  • the silicone skeleton-containing compound contains a combination of a silicone skeleton that connects R 2 and a urea bond that connects R 2 and R 3 .
  • Silicone backbones generally have high flexibility.
  • urea bonds generally have high rigidity. Therefore, the silicone skeleton-containing compound can exhibit a combination of the flexibility of the silicone skeleton and the rigidity of the urea bond, and thus can improve both the flexibility and toughness of the cured product.
  • R 1 each independently represents a monovalent organic group.
  • a plurality of R 1 's may be the same or different.
  • the organic group represented by R 1 is a group containing at least a carbon atom as a skeletal atom, but preferably one or more skeletal atoms selected from a carbon atom, an oxygen atom, a nitrogen atom, and a sulfur atom. It can be a monovalent group.
  • the organic group represented by R 1 preferably contains a carbon atom that is bonded to the silicon atom that is bonded to R 1 in formula (1).
  • it is particularly preferable that the organic group represented by R 1 contains only carbon atoms as skeleton atoms.
  • the number of carbon atoms in R 1 is preferably 1 to 30, more preferably 1 to 20, even more preferably 1 to 10, particularly preferably 1 to 6.
  • R 1 preferably represents a monovalent hydrocarbon group which may have a substituent.
  • the monovalent hydrocarbon group refers to a group obtained by removing one hydrogen atom from a hydrocarbon compound, and may be an aliphatic hydrocarbon group or an aromatic hydrocarbon group.
  • the monovalent hydrocarbon group preferably represents a monovalent aliphatic hydrocarbon group. This aliphatic hydrocarbon group may be linear or branched, and may also be an aliphatic hydrocarbon group containing a ring structure (ie, an alicyclic hydrocarbon group).
  • the monovalent hydrocarbon group is more preferably a monovalent saturated hydrocarbon group having no unsaturated bond, and therefore is even more preferably a monovalent saturated aliphatic hydrocarbon group.
  • Examples of the monovalent hydrocarbon group for R 1 include an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, and an alkapolyenyl group (the number of double bonds is preferably 2 to 10, more preferably 2 to 6, more preferably 2 to 4, even more preferably 2), aryl groups, etc., with alkyl groups, cycloalkyl groups, alkenyl groups, cycloalkenyl groups, and aryl groups being preferred; alkyl groups, cycloalkyl groups, and aryl groups; Aryl groups are more preferred, alkyl groups and aryl groups are even more preferred, and alkyl groups are particularly preferred.
  • the alkyl group in R 1 may be linear or branched, and the number of carbon atoms thereof is preferably 1 to 6, further preferably 1 to 4 or 1 to 3. The number of carbon atoms does not include the number of carbon atoms of substituents.
  • Examples of the alkyl group include methyl group, ethyl group, propyl group, butyl group, pentyl group, and hexyl group.
  • the number of carbon atoms in the cycloalkyl group in R 1 is more preferably 3 to 10, 4 to 10, or 6 to 10.
  • the number of carbon atoms does not include the number of carbon atoms of substituents.
  • Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a decahydronaphthanyl group, a norbornanyl group, a dicyclopentanyl group, and an adamantanyl group.
  • the alkenyl group in R 1 may be linear or branched, and the number of carbon atoms thereof is more preferably 2 to 6, and even more preferably 2 to 4. The number of carbon atoms does not include the number of carbon atoms of substituents.
  • Examples of the alkenyl group include ethenyl group, propenyl group, butenyl group, pentenyl group, hexenyl group, and the like.
  • the number of carbon atoms in the cycloalkenyl group in R 1 is more preferably 3 to 10, 4 to 10, or 6 to 10.
  • the number of carbon atoms does not include the number of carbon atoms of substituents.
  • Examples of the cycloalkenyl group include a cyclopropenyl group, a cyclobutenyl group, a cyclopentenyl group, a cyclohexenyl group, and a norbornenyl group.
  • the number of carbon atoms in the aryl group in R 1 is more preferably 6 to 10.
  • the number of carbon atoms does not include the number of carbon atoms of substituents.
  • Examples of the aryl group include a phenyl group, a naphthyl group, and an indanyl group.
  • R 1 is preferably a monovalent hydrocarbon group having no substituents (that is, a monovalent unsubstituted hydrocarbon group).
  • R 1 is preferably a monovalent hydrocarbon group that may have a substituent; the number of carbon atoms that may have a substituent.
  • an alkyl group having 1 to 6 carbon atoms which may have a substituent is even more preferred; an alkyl group having 1 to 6 carbon atoms without a substituent (unsubstituted Particularly preferred is an alkyl group).
  • R 2 each independently represents a divalent organic group.
  • a plurality of R 2 's may be the same or different.
  • the organic group represented by R 2 is a group containing at least a carbon atom as a skeletal atom, but preferably one or more skeletal atoms selected from a carbon atom, an oxygen atom, a nitrogen atom, and a sulfur atom. It can be a divalent group.
  • the organic group represented by R 2 preferably contains a carbon atom that is bonded to the silicon atom that is bonded to R 2 in formula (1), and also preferably contains a carbon atom that is bonded to the silicon atom that is bonded to R 2 in formula (1).
  • the carbon atom contains . Furthermore, it is particularly preferable that the organic group represented by R 2 contains only carbon atoms as skeleton atoms.
  • the number of carbon atoms in R 2 is preferably 1 to 30, more preferably 1 to 20, even more preferably 1 to 10, particularly preferably 1 to 6.
  • R 2 is a divalent hydrocarbon group that may have a substituent; or a divalent hydrocarbon group that may have a substituent, from the viewpoint of significantly obtaining the desired effects of the present invention; preferably represents a divalent group connected by a divalent linking group selected from the group consisting of an oxygen atom, a sulfonyl group, a carbonyl group, and a carbonate group.
  • the divalent hydrocarbon group in R 2 refers to a group obtained by removing two hydrogen atoms from a hydrocarbon compound, and may be an aliphatic hydrocarbon group or an aromatic hydrocarbon group. good.
  • the divalent hydrocarbon group preferably represents a divalent aliphatic hydrocarbon group. This aliphatic hydrocarbon group may be linear or branched, or may be an alicyclic hydrocarbon group containing a ring structure.
  • the divalent hydrocarbon group is more preferably a divalent saturated hydrocarbon group having no unsaturated bond, and therefore is even more preferably a divalent saturated aliphatic hydrocarbon group.
  • Examples of the divalent hydrocarbon group for R 2 include an alkylene group, a cycloalkylene group, an alkenylene group, a cycloalkenylene group, and an alkaporyenylene group (the number of double bonds is preferably 2 to 10, more preferably 2 to 6, more preferably 2 to 4, still more preferably 2), arylene groups, etc., with alkylene groups, cycloalkylene groups, alkenylene groups, cycloalkenylene groups, and arylene groups being preferred; alkylene groups, cycloalkylene groups, and arylene groups; A group is more preferable, and an alkylene group is particularly preferable.
  • the alkylene group in R 2 may be linear or branched, and the number of carbon atoms thereof is preferably 1 to 6, further preferably 1 to 4 or 1 to 3. The number of carbon atoms does not include the number of carbon atoms of substituents.
  • Examples of the alkylene group include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, and a hexylene group.
  • the number of carbon atoms in the cycloalkylene group in R 2 is more preferably 3 to 10, 4 to 10, or 6 to 10.
  • the number of carbon atoms does not include the number of carbon atoms of substituents.
  • Examples of the cycloalkylene group include a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a decahydronaphthanylene group, a norbornanylene group, a dicyclopentanylene group, and an adamantanylene group.
  • the alkenylene group in R 2 may be linear or branched, and the number of carbon atoms is preferably 2 to 6, and even more preferably 2 to 4. The number of carbon atoms does not include the number of carbon atoms of substituents.
  • Examples of the alkenylene group include ethenylene group, propenylene group, butenylene group, pentenylene group, and hexenylene group.
  • the number of carbon atoms in the cycloalkenylene group in R 2 is more preferably 3 to 10, 4 to 10, or 6 to 10.
  • the number of carbon atoms does not include the number of carbon atoms of substituents.
  • Examples of the cycloalkenylene group include a cyclopropenylene group, a cyclobutenylene group, a cyclopentenylene group, a cyclohexenylene group, and a norbornenylene group.
  • the number of carbon atoms in the arylene group in R 2 is more preferably 6 to 10.
  • the number of carbon atoms does not include the number of carbon atoms of substituents.
  • Examples of the arylene group include a phenylene group, a naphthylene group, and an indandiyl group.
  • the substituents that the divalent hydrocarbon group in R 2 may have are as described above.
  • the substituent is preferably one or more selected from an alkyl group and an aryl group, and one or more selected from an alkyl group having 1 to 6 carbon atoms and an aryl group having 6 to 10 carbon atoms.
  • the above is more preferable.
  • R 2 is a divalent hydrocarbon group having no substituents (that is, a divalent unsubstituted hydrocarbon group).
  • R 2 is preferably a divalent hydrocarbon group that may have a substituent; It is more preferable that it is a divalent group consisting of an aliphatic hydrocarbon group, an arylene group having 6 to 10 carbon atoms which may have a substituent, or a combination thereof; More preferably, it is a divalent aliphatic hydrocarbon group; an alkylene group having 1 to 6 carbon atoms which may have a substituent; an alkylene group having 6 to 6 carbon atoms which may have a substituent; 10 cycloalkylene groups, an alkenylene group having 2 to 6 carbon atoms which may have a substituent, a cycloalkenylene group having 6 to 10 carbon atoms which may have a substituent, or a combination thereof.
  • it is a divalent group having 1 to 6 carbon atoms which may have a substituent, or a cycloalkylene group having 6 to 10 carbon atoms which may have a substituent.
  • a divalent group consisting of , or a combination thereof is more preferred; an alkylene group having 1 to 6 carbon atoms which may have a substituent is particularly preferred.
  • Suitable examples of divalent groups consisting of a combination of hydrocarbon groups include C 1 -C 6 alkylene-C 6 -C 10 arylene-C 1 -C 6 alkylene group, C 1 -C 6 alkylene-C 6 - Examples include C 10 arylene-C 6 -C 10 arylene-C 1 -C 6 alkylene group.
  • the preferable range of the number of carbon atoms of the constituent alkylene group and arylene group and that they may have a substituent group are as described above.
  • R 3 each independently represents a divalent organic group.
  • a plurality of R 3 's may be the same or different.
  • the organic group represented by R 3 is a group containing at least a carbon atom as a skeleton atom.
  • the organic group represented by R 3 preferably contains a carbon atom that is bonded to the oxygen atom that is bonded to R 3 in formula (1), and also preferably contains a carbon atom that is bonded to the oxygen atom that is bonded to R 3 in formula (1). It is preferable that the carbon atom contains .
  • the range of the divalent organic group represented by R 3 may be the same as the divalent organic group represented by R 2 .
  • R 2 and R 3 may be the same or different.
  • R 3 is a divalent hydrocarbon group that may have a substituent, or a divalent hydrocarbon group that may have a substituent.
  • the group is preferably a divalent group connected by a divalent linking group selected from the group consisting of an oxygen atom, a sulfonyl group, a carbonyl group, and a carbonate group; It is more preferable that the hydrocarbon group or the divalent hydrocarbon group which may have a substituent is a divalent group connected by an oxygen atom; More preferably, it is a hydrocarbon group; an optionally substituted divalent aliphatic hydrocarbon group, an optionally substituted arylene group having 6 to 10 carbon atoms, or A divalent group consisting of a combination thereof is more preferable; a divalent aliphatic hydrocarbon group which may have a substituent is even more preferable; a carbon group which may have a substituent Alkylene group having 1 to 6 atoms, cycloalky
  • it is an alkylene group, a cycloalkylene group having 6 to 10 carbon atoms which may have a substituent, or a divalent group consisting of a combination thereof; even if it has a substituent
  • alkylene groups having 1 to 6 carbon atoms particularly preferred are alkylene groups having 1 to 6 carbon atoms.
  • R 4 each independently represents a hydrogen atom or a monovalent organic group.
  • a plurality of R 4 's may be the same or different.
  • the organic group represented by R 4 is a group containing at least a carbon atom as a skeleton atom.
  • the organic group represented by R 4 is a group containing at least a carbon atom as a skeletal atom, but preferably one or more skeletal atoms selected from a carbon atom, an oxygen atom, a nitrogen atom, and a sulfur atom. It can be a monovalent group.
  • the organic group represented by R 4 preferably contains a carbon atom that is bonded to the carbon atom that is bonded to R 4 in formula (1).
  • the range of the organic group represented by R 4 may be the same as R 1 including its preferred examples.
  • R 1 and R 4 may be the same or different.
  • R 4 is preferably a hydrogen atom or a monovalent hydrocarbon group that may have a substituent; an optionally substituted alkyl group having 1 to 6 carbon atoms, an optionally substituted cycloalkyl group having 6 to 10 carbon atoms, and an optionally substituted cycloalkyl group having 2 to 6 carbon atoms; is more preferably an alkenyl group, a cycloalkenyl group having 6 to 10 carbon atoms which may have a substituent, or an aryl group having 6 to 10 carbon atoms which may have a substituent.
  • n represents a number of 0 or more. From the viewpoint of significantly obtaining the effects of the present invention, n is preferably 1 or more, more preferably 3 or more, particularly preferably 5 or more, and preferably 50 or less, more preferably 40 or less, particularly preferably 30 or less. be.
  • silicone skeleton-containing compounds Preferred examples of silicone skeleton-containing compounds - Preferred examples of the silicone skeleton-containing compound represented by formula (1) include compounds represented by formula (2) or formula (3) below.
  • n represents a number from 0 to 50, and is preferably the same as n in formula (1).
  • the molecular weight of the silicone skeleton-containing compound according to one embodiment of the present invention is usually 446 or more, preferably 600 or more, more preferably 800 or more, and preferably 10,000 or less, preferably 8,000 or less, and even more preferably 60,000 or less. Particularly preferably, it is 3000 or less.
  • n is larger than 0 in formula (1)
  • the weight average molecular weight of the silicone skeleton-containing compound is preferably within the above molecular weight range.
  • the weight average molecular weight can be measured as a value in terms of polystyrene by gel permeation chromatography (GPC).
  • the functional group equivalent of the silicone skeleton-containing compound according to one embodiment of the present invention is usually 200 g/eq. Above, more preferably 250g/eq. Above, particularly preferably 300g/eq. or more, preferably 1500g/eq. Below, more preferably 1300g/eq. Below, particularly preferably 1100g/eq. It is as follows.
  • the functional group equivalent of a silicone skeleton-containing compound represents the mass of a silicone skeleton-containing compound containing 1 equivalent of a functional group. Further, the functional group of the silicone skeleton-containing compound refers to a group represented by the following formula (6), unless otherwise specified.
  • R 4 is the same as R 4 in formula (1), and * represents a bond.
  • the silicone skeleton-containing compound according to one embodiment of the present invention can be produced by a production method that includes reacting an amine compound and an isocyanate compound to form a urea bond.
  • a silicone skeleton-containing compound may be produced by a method that includes reacting a diamine compound and an isocyanate compound.
  • a silicone skeleton-containing compound can be produced by using a diamine containing a silicone skeleton and an isocyanate compound containing a functional group represented by formula (6).
  • An example of a particularly preferred method for producing a silicone skeleton-containing compound is a production method that includes reacting a diamine compound represented by the following formula (4) with an isocyanate compound represented by the following formula (5). It will be done.
  • R 1 , R 2 , R 3 , R 4 and n are the same as R 1 , R 2 , R 3 , R 4 and n in formula (1).
  • the diamine compound represented by formula (4) may be obtained from the market, for example, as a double-terminally amino-modified silicone oil such as "X-22-161A” and "KF-8010” manufactured by Shin-Etsu Chemical Co., Ltd. .
  • One type of diamine compound may be used alone, or two or more types may be used in combination.
  • the isocyanate compound represented by formula (5) is, for example, "Karens MOI” (2-isocyanatoethyl methacrylate), “Karens AOI” (2-isocyanatoethyl acrylate), “Karens AOI-VM” manufactured by Showa Denko. ” (2-isocyanatoethyl acrylate) and “Karens MOI-EG” (2-(2-methacryloyloxyethyloxy)ethyl isocyanate).
  • One type of isocyanate compound may be used alone, or two or more types may be used in combination.
  • the mixing ratio of the amine compound and the isocyanate compound in the reaction system of the amine compound and the isocyanate compound can be selected within an appropriate range depending on the physical properties of the desired product and the cured product of the resin composition containing the desired product. Usually, it is preferable that no unreacted amine compound and isocyanate compound remain after the reaction.
  • the molar ratio of the diamine compound and the isocyanate compound (number of moles of diamine compound: number of moles of isocyanate compound) The range is preferably 30:70 to 70:30, more preferably 40:60 to 60:40, particularly preferably 45:55 to 55:45.
  • the reaction between the amine compound and the isocyanate compound may proceed in a solvent-free system without using a solvent, or may proceed in an organic solvent system using an organic solvent.
  • organic solvents include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; acetate ester solvents such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, and carbitol acetate; cellosolve, butyl Carbitol solvents such as carbitol; aromatic hydrocarbon solvents such as toluene and xylene; amide solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, and N-methyl-2-pyrrolidone.
  • One type of organic solvent may be used alone, or two or more types may be used in combination.
  • the reaction temperature between the amine compound and the isocyanate compound is not particularly limited as long as the reaction proceeds, and may be, for example, in the range of -25°C to 150°C.
  • the reaction time between the amine compound and the isocyanate compound is not particularly limited as long as the desired silicone skeleton-containing compound can be obtained, and may be, for example, in the range of 0 seconds to 10 hours.
  • the reaction time of 0 seconds means that the reaction may be terminated immediately upon completion of mixing the amine compound and the isocyanate compound.
  • a silicone skeleton-containing compound can be produced, for example, by stirring one of the amine compound and isocyanate compound (organic solvent type or non-solvent type), dropping the other of the amine compound and isocyanate compound there, and further stirring after the dropwise addition. You may.
  • the dropping time is not particularly limited, but is preferably in the range of 10 minutes to 3 hours.
  • the silicone skeleton-containing compound may be purified after the reaction of the amine compound and the isocyanate compound.
  • a purification method a known method may be employed.
  • the organic solvent may be used as it is as a solvent for the resin composition without being completely removed.
  • the silicone skeleton-containing compound is preferably produced by a production method that includes reacting a diamine compound and an isocyanate compound, as described above.
  • the silicone skeleton-containing compound can be produced as a reaction product of a diamine compound and an isocyanate compound, preferably a diamine compound represented by formula (4) and a compound represented by formula (5). It can be produced as a reaction product with an isocyanate compound.
  • the silicone skeleton-containing compound according to one embodiment of the present invention has a molecular structure that is excellent in both flexibility and toughness. Further, since the silicone skeleton-containing compound can be bonded by reaction of ethylenic double bonds, a resin composition containing the silicone skeleton-containing compound can be cured. Therefore, using a silicone skeleton-containing compound, it is possible to obtain a cured product of a resin composition that is excellent in both flexibility and toughness. Utilizing this excellent property, the silicone skeleton-containing compound can be preferably used as a material for forming an insulating layer of a printed wiring board, a material for sealing a semiconductor chip, a material for photolithography, and the like.
  • the silicone skeleton-containing compound according to one embodiment of the present invention usually has little coloration, and is preferably colorless and transparent. Therefore, light absorption can be reduced in the visible wavelength region of 380 nm or more and 750 nm or less. Therefore, silicone skeleton-containing compounds usually have excellent suitability as optical materials.
  • the silicone skeleton-containing compound according to an embodiment of the present invention is typically used in optical waveguides such as 840 nm to 860 nm (e.g., 850 nm), 1300 nm to 1320 nm (e.g., 1310 nm), and 1540 nm to 1560 nm (e.g., 1550 nm). It can have low absorption at the adopted transmission wavelength. Therefore, silicone skeleton-containing compounds can have excellent suitability as materials for optical waveguides.
  • a resin composition can be manufactured using the silicone skeleton-containing compound described above.
  • This resin composition contains at least the silicone skeleton-containing compound described above, and may further contain arbitrary components as necessary.
  • the resin composition can be cured to form a cured product.
  • the above reaction can be caused to proceed by either heat or light depending on the composition of the resin composition. Therefore, the resin composition may be a thermosetting resin composition that can be cured by heat, or a photocurable resin composition that can be cured by light.
  • the resin composition may contain one type of silicone skeleton-containing compound alone, or may contain a combination of two or more types of silicone skeleton-containing compounds.
  • the content of the silicone skeleton-containing compound in the resin composition according to one embodiment of the present invention may be determined depending on the properties required of the cured product of the resin composition.
  • the content of the silicone skeleton-containing compound in the resin composition can be, for example, 0.1% by mass or more, 1% by mass or more, or 10% by mass or more, when the nonvolatile components in the resin composition are 100% by mass. , preferably 20% by mass or more, more preferably 30% by mass or more, particularly preferably 40% by mass or more.
  • the upper limit can be, for example, 99% by mass or less, 95% by mass or less, 90% by mass or less, etc.
  • the content of the silicone skeleton-containing compound in the resin composition is, for example, 0.1% by mass or more, 1% by mass or more, or 10% by mass or more when the resin component in the resin composition is 100% by mass. It is preferably 20% by mass or more, more preferably 30% by mass or more, particularly preferably 40% by mass or more.
  • the upper limit can be, for example, 99% by mass or less, 95% by mass or less, 90% by mass or less, etc.
  • the resin component in the resin composition refers to the non-volatile components of the resin composition excluding the inorganic filler and glass fiber described below.
  • the resin composition according to one embodiment of the present invention may further contain a compound other than the silicone skeleton-containing compound containing an ethylenically unsaturated group.
  • a compound other than a silicone skeleton-containing compound containing an ethylenically unsaturated group may be referred to as "any unsaturated compound.”
  • any unsaturated compound usually, by reacting the ethylenic double bonds, arbitrary unsaturated compounds can be bonded to each other, or arbitrary unsaturated compounds and a silicone skeleton-containing compound can be bonded.
  • a compound having a radically polymerizable unsaturated group containing an ethylenic double bond can be used as the arbitrary unsaturated compound.
  • the number of radically polymerizable unsaturated groups in one molecule may be one, two, or three or more.
  • Examples of the radically polymerizable unsaturated group include a maleimide group (2,5-dihydro-2,5-dioxo-1H-pyrrol-1-yl group), a vinyl group, an allyl group, a styryl group, a vinylphenyl group, and an acryloyl group. group, methacryloyl group, fumaroyl group, maleoyl group, etc. From the viewpoint of significantly obtaining the effects of the present invention, it is preferable that the arbitrary unsaturated compound contains one or more selected from maleimide resin, (meth)acrylic resin, and styryl resin.
  • maleimide resin a compound having one or more (preferably two or more) maleimide groups (2,5-dihydro-2,5-dioxo-1H-pyrrol-1-yl group) in one molecule can be used.
  • the maleimide resin may be a monomer or an oligomer.
  • Examples of maleimide resins include "BMI-3000J,” “BMI-5000,” “BMI-1400,” “BMI-1500,” “BMI-1700,” and “BMI-689” (all manufactured by Digicner Molecules).
  • a maleimide resin containing an aliphatic skeleton with 36 carbon atoms derived from dimer diamine such as "MIR- 3000-70MT” (manufactured by Nippon Kayaku Co., Ltd.), “BMI-4000” (manufactured by Daiwa Kasei Co., Ltd.), and “BMI-80” (manufactured by KI Kasei Co., Ltd.), aromas that are directly bonded to the nitrogen atom of the maleimide group.
  • Examples include maleimide resins containing a ring skeleton.
  • the (meth)acrylic resin a compound having one or more (preferably two or more) (meth)acryloyl groups in one molecule can be used.
  • the (meth)acrylic resin may be a monomer or an oligomer.
  • the term "(meth)acryloyl group” is a general term for acryloyl groups and methacryloyl groups. Examples of methacrylic resins include "A-DOG” (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.); "DCP-A”, “TMP-A”, “PE-3A”, “PE-4A”, and "DPE-6A".
  • styryl resin a compound having one or more (preferably two or more) styryl groups or vinylphenyl groups in one molecule can be used.
  • the styryl resin may be a monomer or an oligomer.
  • examples of the styryl resin include styryl resins such as "OPE-2St”, “OPE-2St 1200", and “OPE-2St 2200” (all manufactured by Mitsubishi Gas Chemical Company).
  • One type of arbitrary unsaturated compounds may be used alone, or two or more types may be used in combination.
  • the radically polymerizable unsaturated group equivalent of any unsaturated compound is preferably 150 g/eq. Above, more preferably 200g/eq. Above, particularly preferably 300g/eq. or more, preferably 5000g/eq. Below, more preferably 4000g/eq. Below, particularly preferably 3000g/eq. It is as follows.
  • the radically polymerizable unsaturated group equivalent of an arbitrary unsaturated compound represents the mass of an arbitrary unsaturated compound containing 1 equivalent of a radically polymerizable unsaturated group.
  • the content of the arbitrary unsaturated compound in the resin composition is determined depending on the properties required of the cured product of the resin composition. You may decide.
  • the content of any unsaturated compound in the resin composition can be, for example, 0.01% by mass or more or 0.1% by mass or more, and preferably The content is 1% by mass or more, more preferably 2% by mass or more, particularly preferably 5% by mass or more.
  • the upper limit can be, for example, 50% by mass or less, 40% by mass or less, 30% by mass or less, etc.
  • the mass ratio of the silicone skeleton-containing compound to any unsaturated compound is within a specific range. It is preferable.
  • the specific range of the mass ratio is preferably 0.01 or more, more preferably 0.02 or more, particularly preferably 0.05 or more, preferably 1.0 or less, more preferably 0.5 or less, Particularly preferably, it is 0.2 or less.
  • the resin composition according to one embodiment of the present invention may further contain a radical generator from the viewpoint of promoting curing of the resin composition.
  • the resin composition preferably contains a photoradical generator.
  • the resin composition contains a thermal radical generator.
  • photoradical generators examples include benzophenone, methyl o-benzoylbenzoate, 4-benzoyl-4'-methyldiphenylketone, dibenzylketone, benzophenone derivatives such as fluorenone; 2,2'-diethoxyacetophenone, 2- Acetophenone derivatives such as hydroxy-2-methylpropiophenone and 1-hydroxycyclohexylphenyl ketone; Thioxanthone derivatives such as thioxanthone, 2-methylthioxanthone, 2-isopropylthioxanthone, and diethylthioxanthone; benzyl, benzyl dimethyl ketal, benzyl- ⁇ -methoxy Benzyl derivatives such as ethyl acetal; benzoin derivatives such as benzoin and benzoin methyl ether; 1-phenyl-1,2-butanedione-2-(o-methoxycarbonyl)oxime, 1-phenyl-1
  • thermal radical generators include dialkyl peroxides such as di-t-butyl peroxide, dicumyl peroxide, and t-hexyl peroxy-2-ethylhexanoate; lauroyl peroxide, benzoyl peroxide, Diacyl peroxides such as benzoyl toluyl peroxide and tolyyl peroxide; peracid esters such as t-butyl peracetate, t-butyl peroxyoctoate, and t-butyl peroxybenzoate; ketone peroxides; peroxy carbonate Peroxyketals such as 1,1-di(t-amylperoxy)cyclohexane; 2,2'-azobis(2,4-dimethylvaleronitrile), 2,2'-azobis(isobutyronitrile) , 2,2'-azobis(2-methylbutyronitrile), 2,2'-azobis(4-methoxy-2,4-dimethyl
  • One type of radical generator may be used alone, or two or more types may be used in combination.
  • the content of the radical generator in the resin composition may be determined depending on the properties required of the cured product of the resin composition. .
  • the content of the radical generator in the resin composition is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, even more preferably
  • the content is 0.5% by mass or more, preferably 10% by mass or less, more preferably 5% by mass or less, and even more preferably 3% by mass or less.
  • the resin composition according to one embodiment of the present invention may further contain any thermosetting resin.
  • the arbitrary thermosetting resin does not include the above-mentioned silicone skeleton-containing compound, any unsaturated compound, and radical generator.
  • the arbitrary thermosetting resin include epoxy resin, benzocyclobutene resin, epoxy acrylate resin, urethane acrylate resin, urethane resin, cyanate resin, polyimide resin, benzoxazine resin, unsaturated polyester resin, active ester resin, and phenol.
  • examples include resin, melamine resin, silicone resin, and phenoxy resin.
  • the arbitrary thermosetting resin contains an epoxy resin.
  • one type of arbitrary thermosetting resin may be used alone, or two or more types may be used in combination.
  • the type of epoxy resin is not particularly limited as long as it has one or more (preferably two or more) epoxy groups in one molecule.
  • the epoxy resin include bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol S epoxy resin, bisphenol AF epoxy resin, phenol novolak epoxy resin, tert-butyl-catechol epoxy resin, and naphthol epoxy resin.
  • naphthalene type epoxy resin naphthylene ether type epoxy resin, glycidylamine type epoxy resin, glycidyl ester type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, phenol aralkyl type epoxy resin, biphenylaralkyl type epoxy resin, fluorene skeleton type epoxy resin, dicyclopentadiene type epoxy resin, anthracene type epoxy resin, linear aliphatic epoxy resin, epoxy resin with a butadiene structure, alicyclic epoxy resin, heterocyclic epoxy resin, spiro ring-containing epoxy resin, cyclohexane type epoxy resin Examples include methanol type epoxy resin, trimethylol type epoxy resin, and halogenated epoxy resin.
  • Epoxy resins include epoxy resins that are liquid at a temperature of 20°C (hereinafter sometimes referred to as “liquid epoxy resin”) and epoxy resins that are solid at a temperature of 20°C (hereinafter sometimes referred to as “solid epoxy resin”). It can be classified into The resin composition may contain only a liquid epoxy resin, only a solid epoxy resin, or a combination of a liquid epoxy resin and a solid epoxy resin. When containing a combination of liquid epoxy resin and solid epoxy resin, the blending ratio (liquid: solid) is in the range of 20:1 to 1:20 by mass (preferably 10:1 to 1:10, more preferably 3:1 to 1:3).
  • the epoxy group equivalent of the epoxy resin is preferably 50 g/eq. ⁇ 2000g/eq. , more preferably 60g/eq. ⁇ 1000g/eq. , more preferably 80g/eq. ⁇ 500g/eq. It is.
  • the epoxy group equivalent is the mass of an epoxy resin containing 1 equivalent of epoxy group, and can be measured according to JIS K7236.
  • the content of the epoxy resin in the resin composition may be determined depending on the properties required of the cured product of the resin composition.
  • the content of the epoxy resin in the resin composition can be, for example, 1% by mass or more, 5% by mass or more, or 10% by mass or more, preferably 15% by mass, when the resin component in the resin composition is 100% by mass. % or more, more preferably 20% by mass or more, particularly preferably 30% by mass or more.
  • the upper limit can be, for example, 65% by mass or less, 60% by mass or less, 55% by mass or less, or 50% by mass or less.
  • the arbitrary thermosetting resin contains an epoxy resin
  • a crosslinking agent (curing agent) that can react with the epoxy resin to form a bond
  • the crosslinking agent include "EXB9451”, “EXB9460”, “EXB9460S”, "HPC-8000-65T”, “HPC-8000H-65TM”, “EXB-8000L-65TM”, “EXB9416-70BK”, " EXB-8100L-65T”, “EXB-8150L-65T”, “EXB-8150-65T”, “HPC-8150-60T”, “HPC-8150-62T”, “HPB-8151-62T”, “EXB- 8500-65T” (all manufactured by DIC Corporation), "DC808", "YLH1026”, “DC808”, “YLH1026”, “YLH1030", “YLH1048” (all manufactured by Mitsubishi Chemical Corporation), “PC1300-02-65T ” (manufact
  • the active group equivalent of the crosslinking agent is preferably 50 g/eq. ⁇ 3000g/eq. , more preferably 100g/eq. ⁇ 1000g/eq. , more preferably 100g/eq. ⁇ 500g/eq. , particularly preferably 100 g/eq. ⁇ 300g/eq. It is.
  • the active group equivalent of a crosslinking agent represents the mass of the crosslinking agent per equivalent of active group.
  • the active group represents a group of a crosslinking agent that can react with an epoxy group.
  • the number of active groups in the crosslinking agent is preferably 0.01 or more, more preferably 0.1 or more, even more preferably 1 or more, and preferably 10 or less, more preferably 5.
  • the number below is particularly preferably 2 or less.
  • Number of epoxy groups in an epoxy resin refers to the sum of all the values obtained by dividing the mass of nonvolatile components of the epoxy resin present in the resin composition by the epoxy equivalent.
  • the number of active groups of a crosslinking agent represents the total value of all the values obtained by dividing the mass of nonvolatile components of the crosslinking agent present in the resin composition by the active group equivalent.
  • the weight average molecular weight (Mw) of any thermosetting resin such as an epoxy resin or a crosslinking agent is preferably 100 to 5,000, more preferably 250 to 3,000, and still more preferably 400 to 1,500.
  • the weight average molecular weight Mw of any thermosetting resin can be measured as a polystyrene equivalent value by GPC method.
  • the content of the arbitrary thermosetting resin in the resin composition is determined according to the characteristics required for the cured product of the resin composition. You may decide accordingly.
  • the content of any thermosetting resin in the resin composition may be, for example, 1% by mass or more, 5% by mass or more, or 10% by mass or more, when the resin component in the resin composition is 100% by mass.
  • the content is preferably 15% by mass or more, more preferably 20% by mass or more, particularly preferably 30% by mass or more.
  • the upper limit can be, for example, 65% by mass or less, 60% by mass or less, 55% by mass or less, or 50% by mass or less.
  • the resin composition according to one embodiment of the present invention may further contain glass fiber.
  • Glass fibers are commercially available, for example as chopped strands or milled fibers.
  • the average fiber diameter of the glass fibers is preferably 13 ⁇ m or less, more preferably 10 ⁇ m or less, even more preferably 8 ⁇ m or less, particularly preferably 6 ⁇ m or less, for example, 4 ⁇ m or less or 2 ⁇ m or less, from the viewpoint of suppressing the surface roughness of the cured product. It may be the following.
  • the lower limit may generally be 0.5 ⁇ m or more.
  • the average fiber length of the glass fibers is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, even more preferably 20 ⁇ m or more, particularly preferably 30 ⁇ m or more, from the viewpoint of lowering the coefficient of thermal expansion of the cured product, and the dispersibility of the glass fibers is From the viewpoint of increasing the thickness, the thickness is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, even more preferably 60 ⁇ m or less, and particularly preferably 50 ⁇ m or less.
  • the average fiber diameter and average fiber length of the glass fibers can be measured using a microscope such as an optical microscope or an electron microscope.
  • the content of glass fibers in the resin composition may be determined depending on the properties required of the cured product of the resin composition.
  • the content of glass fiber in the resin composition is preferably 2% by mass or more, more preferably 5% by mass or more, particularly preferably 10% by mass or more, when the nonvolatile components in the resin composition are 100% by mass.
  • the content is preferably 60% by mass or less, more preferably 50% by mass or less, even more preferably 40% by mass or less, particularly preferably 30% by mass or less.
  • the resin composition according to one embodiment of the present invention may further contain an inorganic filler.
  • the inorganic filler is usually contained in the resin composition in the form of particles.
  • the inorganic filler does not include the above-mentioned glass fiber.
  • examples of inorganic fillers include silica, alumina, barium sulfate, talc, clay, mica powder, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, boron nitride, aluminum borate, barium titanate, Examples include strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, titanium oxide, barium zirconate, calcium zirconate, and the like. Among them, silica is preferred.
  • silica examples include amorphous silica, fused silica, crystalline silica, synthetic silica, and hollow silica. Further, as the silica, spherical silica is preferable.
  • Commercially available inorganic fillers include, for example, “UFP-30” (manufactured by Denka); “YC100C”, “YA050C”, “YA050C-MJE", “YA010C”, “SC2500SQ”, “SO-C4", “SO-C2”, “SO-C1”, “SC-C2” (all manufactured by Admatex); “Silfill NSS-3N”, “Silfill NSS-4N”, “Silfill NSS-5N” (manufactured by Tokuyama) ) etc. Further, one type of inorganic filler may be used alone, or two or more types may be used in combination.
  • the average particle size of the inorganic filler may be determined depending on the properties required of the cured product of the resin composition.
  • the average particle size of the inorganic filler is preferably 5 ⁇ m or less, more preferably 2 ⁇ m or less, and still more preferably 1 ⁇ m or less.
  • the lower limit of the average particle size is not particularly limited, and may be, for example, 0.01 ⁇ m or more, 0.02 ⁇ m or more, 0.03 ⁇ m or more.
  • the average particle size of the inorganic filler can be measured by a laser diffraction/scattering method based on Mie scattering theory.
  • the measurement sample can be obtained by weighing 100 mg of the inorganic filler and 10 g of methyl ethyl ketone into a vial and dispersing them using ultrasonic waves for 10 minutes.
  • the measurement sample was measured using a laser diffraction particle size distribution measuring device using a light source wavelength of blue and red, and the volume-based particle size distribution of the inorganic filler was measured using a flow cell method.
  • the average particle size can be calculated as the median diameter.
  • Examples of the laser diffraction particle size distribution measuring device include "LA-960" manufactured by Horiba, Ltd.
  • Inorganic fillers include aminosilane coupling agents, ureidosilane coupling agents, epoxysilane coupling agents, mercaptosilane coupling agents, vinylsilane coupling agents, styrylsilane coupling agents, and acrylate silane coupling agents.
  • the surface is treated with a surface treatment agent such as an isocyanate silane coupling agent, a sulfide silane coupling agent, an organosilazane compound, or a titanate coupling agent to improve its moisture resistance and dispersibility.
  • the content of the inorganic filler in the resin composition may be determined depending on the properties required of the cured product of the resin composition. .
  • the content of the inorganic filler in the resin composition can be, for example, 5% by mass or more, 10% by mass or more, preferably 30% by mass or more, when the nonvolatile components in the resin composition are 100% by mass. Preferably it is 40% by mass or more, more preferably 50% by mass or more.
  • the upper limit of the content of the inorganic filler is not particularly limited, but may be, for example, 90% by mass or less, 85% by mass or less, etc.
  • the total content of glass fibers and inorganic fillers is preferably 50% by mass or more, more preferably 55% by mass or more, even more preferably 60% by mass, when the nonvolatile components in the resin composition are 100% by mass.
  • the above content is particularly preferably 65% or more, preferably 90% by mass or less, more preferably 85% by mass or less, particularly preferably 80% by mass or less.
  • the resin composition according to one embodiment of the present invention may further contain arbitrary additives as nonvolatile components.
  • additives include, for example, organic fillers such as rubber particles; crosslinking accelerators such as organic phosphine compounds, imidazole compounds, amine adduct compounds, amine compounds, organometallic complexes, and organometallic salts; polyvinyl acetal resins.
  • thermoplastic resins such as polyamideimide resin, polyetherimide resin, polysulfone resin, polyethersulfone resin, polyphenylene ether resin, polycarbonate resin, polyetheretherketone resin, polyester resin; organic copper compound, organic zinc compound, organic cobalt compound Organometallic compounds such as; coloring agents such as phthalocyanine blue, phthalocyanine green, iodine green, diazo yellow, crystal violet, titanium oxide, and carbon black; polymerization inhibitors such as hydroquinone, catechol, pyrogallol, and phenothiazine; silicone leveling agents, Leveling agents such as acrylic polymer leveling agents; Thickeners such as bentone and montmorillonite; Antifoaming agents such as silicone antifoaming agents, acrylic antifoaming agents, fluorine antifoaming agents, and vinyl resin antifoaming agents; benzo UV absorbers such as triazole-based UV absorbers; adhesion improvers such as urea silane; adhe
  • phosphate ester compounds such as phosphinic acid compounds, red phosphorus), nitrogen-based flame retardants (e.g. melamine sulfate), halogen-based flame retardants, and inorganic flame retardants (e.g.
  • phosphate ester-based dispersants such as acetylene dispersants, silicone dispersants, anionic dispersants, cationic dispersants; borate stabilizers, titanate stabilizers, aluminate stabilizers, zirconate stabilizers, isocyanate stabilizers
  • Stabilizers such as carboxylic acid stabilizers, carboxylic acid anhydride stabilizers, and the like can be mentioned.
  • One type of arbitrary additive may be used alone, or two or more types may be used in combination. The content of such additives may be determined depending on the properties required of the resin composition.
  • the resin composition according to one embodiment of the present invention may further contain an organic solvent as a volatile component.
  • organic solvents include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; methyl acetate, ethyl acetate, butyl acetate, isobutyl acetate, isoamyl acetate, methyl propionate, ethyl propionate, and ⁇ -butyrolactone.
  • Ester solvents such as tetrahydropyran, tetrahydrofuran, 1,4-dioxane, diethyl ether, diisopropyl ether, dibutyl ether, diphenyl ether; alcohol solvents such as methanol, ethanol, propanol, butanol, ethylene glycol; acetic acid 2- Ether ester solvents such as ethoxyethyl, propylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, ethyl diglycol acetate, ⁇ -butyrolactone, methyl methoxypropionate; methyl lactate, ethyl lactate, methyl 2-hydroxyisobutyrate, etc.
  • ether solvents such as tetrahydropyran, tetrahydrofuran, 1,4-dioxane, diethyl ether, diisopropyl ether, dibutyl ether
  • Ester alcohol solvents include ether alcohol solvents such as 2-methoxypropanol, 2-methoxyethanol, 2-ethoxyethanol, propylene glycol monomethyl ether, diethylene glycol monobutyl ether (butyl carbitol); N,N-dimethylformamide, N,N - Amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone; Sulfoxide solvents such as dimethyl sulfoxide; Nitrile solvents such as acetonitrile and propionitrile; Aliphatic carbonization such as hexane, cyclopentane, cyclohexane, and methylcyclohexane Hydrogen solvents include aromatic hydrocarbon solvents such as benzene, toluene, xylene, ethylbenzene, and trimethylbenzene. One type of organic solvent may be used alone, or two or more types may be used in combination.
  • One type of organic solvent may be used alone, or two or more
  • the content of the organic solvent in the resin composition may be determined depending on the properties required of the resin composition.
  • the content of the organic solvent in the resin composition is, for example, 60% by mass or less, 40% by mass or less, 30% by mass or less, 20% by mass or less, 15% by mass or less, when all components in the resin composition are 100% by mass. It may be less than 10% by mass, etc.
  • the lower limit may be, for example, 0% by mass or more, 0.1% by mass or more, 1% by mass or more, 3% by mass or more.
  • the resin composition according to an embodiment of the present invention is produced by appropriately mixing the necessary components among the above components, and, if necessary, using a kneading means such as a three-roll mill, a ball mill, a bead mill, a sand mill, or a super mixer. It can be produced by kneading or mixing using a stirring means such as a planetary mixer.
  • a kneading means such as a three-roll mill, a ball mill, a bead mill, a sand mill, or a super mixer. It can be produced by kneading or mixing using a stirring means such as a planetary mixer.
  • a cured product can be obtained by curing the resin composition according to an embodiment of the present invention.
  • volatile components such as organic solvents contained in a resin composition can be volatilized by heat applied during curing, but silicone skeleton-containing compounds, any unsaturated compounds, radical generators, any thermosetting resins, Nonvolatile components such as glass fibers, inorganic fillers, and optional additives do not volatilize due to the heat during curing. Therefore, the cured product may contain the nonvolatile components of the resin composition or a reaction product thereof.
  • the resin composition according to this embodiment containing a silicone skeleton-containing compound can provide a cured product that is excellent in both flexibility and toughness. Therefore, when the above-mentioned cured product is applied to an insulating layer or a sealing layer of a printed wiring board or a semiconductor chip package, it is possible to suppress the occurrence of cracks in the insulating layer or the sealing layer, and prevent peeling of the insulating layer or the sealing layer. can be suppressed. Furthermore, when the cured product is applied to an optical waveguide, it is possible to suppress the occurrence of cracks in the optical waveguide and to suppress peeling of the optical waveguide.
  • the cured product of the resin composition can have high bending toughness.
  • the bending toughness of the cured product of the resin composition according to this embodiment is preferably 2. It may be 0 MPa or more, more preferably 3.0 MPa or more, particularly preferably 3.5 MPa or more.
  • the cured product of the resin composition can have high tensile toughness.
  • the tensile toughness of the cured product of the resin composition according to the present embodiment is preferably 0. It may be 5 MPa or more, more preferably 1.0 MPa or more, particularly preferably 1.5 MPa or more.
  • the cured product of the resin composition can have high flexibility. For example, when a sheet-like cured product with a size of 50 mm x 50 mm x 2 mm is bent by 180 degrees as described in the [Bending test] column of Examples described below, cracking of the cured product can be suppressed.
  • the cured product of the resin composition can typically have low dielectric properties.
  • the cured product can have a low dielectric constant (Dk) and can also have a low dielectric loss tangent (Df). Therefore, when the cured product is applied to an insulating layer of a printed wiring board or a semiconductor chip package, it can be expected to reduce transmission loss.
  • the above-mentioned relative dielectric constant and dielectric loss tangent can be measured by producing a sheet-shaped cured product by the method described in the Examples described later, and by a cavity resonance method under measurement conditions of a measurement frequency of 5.8 GHz and 23°C.
  • the cured product of the resin composition usually has little coloration, and is preferably colorless and transparent. Therefore, the cured product can have low absorption of light in the visible wavelength range of 380 nm or more and 750 nm or less. For example, when measuring the total light transmittance in the visible wavelength range from 380 nm to 750 nm using a sheet-like cured product with a size of 50 mm x 50 mm x 2 mm, a high total light transmittance can be obtained. The above-mentioned total light transmittance can be measured using a sheet-shaped cured product produced by the method described in the Examples below.
  • the cured product of the resin composition is typically employed in optical waveguides of 840 nm to 860 nm (e.g., 850 nm), 1300 nm to 1320 nm (e.g., 1310 nm), 1540 nm to 1560 nm (e.g., 1550 nm), etc. can have small absorption at certain transmission wavelengths. Therefore, silicone skeleton-containing compounds can have excellent suitability as materials for optical waveguides.
  • the resin composition can be cured by exposure to form a cured product. Therefore, the resin composition can be used as a resin composition for photolithography materials. Further, the resin composition can be suitably used as a resin composition for forming an insulating layer of a printed wiring board (resin composition for forming an insulating layer of a printed wiring board), and can be used as an interlayer insulation of a printed wiring board. It can be more suitably used as a resin composition for forming a layer (a resin composition for forming an insulating interlayer of a printed wiring board). Furthermore, the resin composition can also be suitably used when the printed wiring board is a circuit board with built-in components.
  • the resin composition can also be suitably used as a resin composition for encapsulating a semiconductor chip (resin composition for semiconductor chip encapsulation), and further, as an insulating layer for forming a rewiring layer. It can be suitably used as a resin composition for a rewiring forming layer (resin composition for a rewiring forming layer).
  • the resin composition can further be used as a resin composition for forming an optical waveguide (resin composition for forming an optical waveguide).
  • resin compositions are widely used in applications that require resin compositions, such as sheet-like laminated materials such as resin sheets and prepregs, solder resists, underfill materials, die bonding materials, hole filling resins, and component embedding resins. can.
  • the resin composition according to one embodiment of the present invention can be used as it is, or may be used in the form of a sheet-like laminate material containing the resin composition.
  • the following resin sheets and prepregs are preferred.
  • the resin sheet includes a support and a resin composition layer (hereinafter sometimes simply referred to as a "resin composition layer") formed on the support.
  • the resin composition layer contains the above-mentioned resin composition, and preferably contains only the above-mentioned resin composition.
  • the preferred thickness of the resin composition layer varies depending on the use, and may be determined as appropriate depending on the use.
  • the thickness of the resin composition layer is preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, 120 ⁇ m or less, 100 ⁇ m or less, 80 ⁇ m or less, 60 ⁇ m or less, or 50 ⁇ m or less. It is.
  • the lower limit of the thickness of the resin composition layer is not particularly limited, but may usually be 1 ⁇ m or more, 5 ⁇ m or more, etc.
  • the support examples include thermoplastic resin films, metal foils, and release paper, with thermoplastic resin films and metal foils being preferred. Therefore, in one preferred embodiment, the support is a thermoplastic resin film or a metal foil.
  • thermoplastic resin film When using a thermoplastic resin film as a support, examples of the thermoplastic resin include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), and acrylics such as polycarbonate (PC) and polymethyl methacrylate (PMMA). , cyclic polyolefin, triacetyl cellulose (TAC), polyether sulfide (PES), polyether ketone, polyimide, and the like. Among these, polyethylene terephthalate and polyethylene naphthalate are preferred, and inexpensive polyethylene terephthalate is particularly preferred.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • acrylics such as polycarbonate (PC) and polymethyl methacrylate (PMMA).
  • cyclic polyolefin triacetyl cellulose (TAC), polyether sulfide (PES), polyether ketone, polyimide, and the like.
  • TAC triacetyl
  • the metal foil When using metal foil as a support, examples of the metal foil include copper foil, aluminum foil, etc., with copper foil being preferred.
  • a foil made of a single metal such as copper may be used, or a foil made of an alloy of copper and other metals (for example, tin, chromium, silver, magnesium, nickel, zirconium, silicon, titanium, etc.) may be used. May be used.
  • the support may be subjected to surface treatment such as matte treatment, corona treatment, antistatic treatment, etc. on the surface to be bonded to the resin composition layer.
  • a support with a release layer having a release layer on the surface to be bonded to the resin composition layer may be used.
  • the release agent used in the release layer of the support with a release layer include one or more release agents selected from the group consisting of alkyd resins, polyolefin resins, urethane resins, and silicone resins.
  • the support with a release layer may be a commercially available product, such as "SK-1" manufactured by Lintec Corporation, which is a PET film having a release layer containing an alkyd resin mold release agent as a main component. Examples include “AL-5", “AL-7", “Lumirror T60” manufactured by Toray Industries, “Purex” manufactured by Teijin, and "Unipeel” manufactured by Unitika.
  • the thickness of the support is not particularly limited, but is preferably in the range of 5 ⁇ m to 75 ⁇ m, more preferably in the range of 10 ⁇ m to 60 ⁇ m.
  • a metal foil with a support base material which is a thin metal foil laminated with a removable support base material
  • the metal foil with a support base material includes a support base material, a release layer provided on the support base material, and a metal foil provided on the release layer.
  • the resin composition layer is provided on the metal foil.
  • the material of the supporting base material is not particularly limited, and examples thereof include copper foil, aluminum foil, stainless steel foil, titanium foil, copper alloy foil, and the like.
  • copper foil When copper foil is used as the supporting base material, it may be electrolytic copper foil or rolled copper foil.
  • the peeling layer is not particularly limited as long as the metal foil can be peeled off from the supporting base material, and examples thereof include an alloy layer of an element selected from the group consisting of Cr, Ni, Co, Fe, Mo, Ti, W, and P; Examples include coatings and the like.
  • the material of the metal foil is preferably, for example, copper foil or copper alloy foil.
  • the thickness of the supporting base material is not particularly limited, but is preferably in the range of 10 ⁇ m to 150 ⁇ m, more preferably in the range of 10 ⁇ m to 100 ⁇ m. Further, the thickness of the metal foil may be, for example, in the range of 0.1 ⁇ m to 10 ⁇ m.
  • the resin sheet may further include an arbitrary layer as necessary.
  • an arbitrary layer include a protective film provided on the surface of the resin composition layer that is not bonded to the support (ie, the surface opposite to the support).
  • the thickness of the protective film is not particularly limited, but is, for example, 1 ⁇ m to 40 ⁇ m.
  • the resin sheet can be made, for example, by using a liquid resin composition as it is, or by preparing a resin varnish by dissolving the resin composition in an organic solvent, applying this onto a support using a die coater, and then drying it. It can be manufactured by forming a resin composition layer.
  • organic solvent examples include those similar to the organic solvents described as components of the resin composition.
  • One type of organic solvent may be used alone, or two or more types may be used in combination.
  • Drying may be carried out by a drying method such as heating or blowing hot air. Drying conditions are not particularly limited, but drying is performed so that the content of organic solvent in the resin composition layer is usually 10% by mass or less, preferably 5% by mass or less. Although it varies depending on the boiling point of the organic solvent in the resin composition or resin varnish, for example, when using a resin composition or resin varnish containing 30% by mass to 60% by mass of an organic solvent, the temperature is 50°C to 150°C for 3 minutes to 10 minutes. By drying for minutes, a resin composition layer can be formed.
  • the resin sheet can be stored by winding it up into a roll.
  • the resin sheet has a protective film, it can be used by peeling off the protective film.
  • the prepreg is formed by impregnating a sheet-like fiber base material with a resin composition.
  • the sheet-like fiber base material used for the prepreg is not particularly limited, and those commonly used as base materials for prepregs, such as glass cloth, aramid nonwoven fabric, and liquid crystal polymer nonwoven fabric, can be used. From the viewpoint of reducing the thickness of printed wiring boards and semiconductor chip packages, the thickness of the sheet-like fiber base material is preferably 50 ⁇ m or less, more preferably 40 ⁇ m or less, still more preferably 30 ⁇ m or less, particularly preferably 20 ⁇ m or less.
  • the lower limit of the thickness of the sheet-like fiber base material is not particularly limited. Usually, it is 10 ⁇ m or more.
  • Prepreg can be manufactured by a known method such as a hot melt method or a solvent method.
  • the thickness of the prepreg may be in the same range as the resin composition layer in the resin sheet described above.
  • the sheet-like laminated material can be suitably used for forming an insulating layer of a printed wiring board (for an insulating layer of a printed wiring board), and for forming an interlayer insulating layer of a printed wiring board (for an insulating layer of a printed wiring board). It can be used more suitably for insulation interlayers).
  • the sheet-like laminated material can also be suitably used for encapsulating a semiconductor chip (semiconductor chip encapsulation), and is suitable for a rewiring formation layer as an insulating layer for forming a rewiring layer. It can be used for.
  • the sheet-like laminate material can also be suitably used to form optical waveguides.
  • An optical waveguide according to an embodiment of the present invention includes a cured product of the resin composition described above.
  • an optical waveguide includes a core layer and a cladding layer, and one or both of the core layer and the cladding layer includes a cured product of a resin composition.
  • the core layer may contain only a cured product of the resin composition.
  • the cladding layer may contain only the cured product of the resin composition.
  • the core layer is formed to extend, and the cladding layer is formed to cover the core layer.
  • the core layer is provided in the cladding layer, the entire circumferential surface of the core layer is covered with the cladding layer.
  • the core layer and the cladding layer are in direct contact with each other without any other layer interposed therebetween, so that an interface can be formed between the core layer and the cladding layer.
  • the core layer is formed to have a higher refractive index than the cladding layer, so there is a difference in refractive index between the core layer and the cladding layer. Light for signal transmission can be transmitted within the core layer from one end of the core layer to the other end.
  • the wavelength of light that can be transmitted by the optical waveguide can be selected from various types.
  • preferred wavelength ranges for transmitted light may be 840 nm to 860 nm (eg, 850 nm), 1300 nm to 1320 nm (eg, 1310 nm), 1540 nm to 1560 nm (eg, 1550 nm), and the like.
  • the optical waveguide may be a single mode optical waveguide or a multimode optical waveguide.
  • the optical waveguide may include any elements other than the core layer and the cladding layer, if necessary.
  • an optical waveguide may include a base material that supports a core layer and a cladding layer.
  • the optical waveguide may include a protective layer that protects the core layer and the cladding layer.
  • the optical waveguide is, for example, Step (I) of forming a first resin composition layer using a resin composition for forming a cladding layer; Step (II) of curing the first resin composition layer; Step (III) of forming a second resin composition layer on the first resin composition layer using a resin composition for forming a core layer; Step (IV) of exposing the second resin composition layer; a step (V) of subjecting the second resin composition layer to a development treatment; Step (VI) of forming a third resin composition layer on the second resin composition layer using a resin composition for forming a cladding layer; a step (VII) of curing the third resin composition layer; It can be manufactured by a method including in this order.
  • a first resin composition layer is formed using a resin composition for forming a cladding layer.
  • a resin composition for forming the cladding layer a curable resin composition such as a thermosetting resin composition or a photocurable resin composition may be used.
  • a resin composition containing the silicone skeleton-containing compound described above is used as the resin composition for forming the cladding layer.
  • the first resin composition layer may be formed, for example, by a method of applying a resin composition for forming a cladding layer onto a base material.
  • a resin composition for forming a varnish-like cladding layer containing an organic solvent may be prepared, and the resin composition for forming a varnish-like cladding layer may be applied. After applying the resin composition for forming the cladding layer, drying may be performed as necessary to form a first resin composition layer.
  • the first resin composition layer may be formed using, for example, a resin sheet provided with a resin composition layer containing a resin composition for forming a cladding layer.
  • the first resin composition layer can be formed on the base material by laminating the resin composition layer of the resin sheet onto the base material. Lamination is usually performed by pressing the resin composition layer of the resin sheet onto the base material while heating it. This lamination is preferably performed under reduced pressure by a vacuum lamination method. Moreover, before lamination, a preheating process may be performed to heat the resin sheet and the base material, if necessary.
  • the support is usually peeled off at an appropriate time before step (III).
  • the first resin composition layer is cured. Since the cured first resin composition layer forms a part of the cladding layer, it may be hereinafter referred to as a "lower cladding layer.”
  • the first resin composition layer may be cured by a method depending on the composition of the resin composition for forming the cladding layer.
  • the first resin composition layer may be thermoset.
  • heat curing conditions may preferably range from 150°C to 250°C for 20 minutes to 180 minutes, more preferably from 160°C to 230°C for 30 minutes to 120 minutes.
  • the method for manufacturing an optical waveguide may include, before thermosetting the first resin composition layer, preheating the first resin composition layer at a temperature lower than the thermosetting temperature.
  • the first resin composition layer may be photocured.
  • the first resin composition layer may be photocured by exposure treatment in which the first resin composition layer is irradiated with actinic rays.
  • actinic rays include ultraviolet rays, visible rays, electron beams, and X-rays, with ultraviolet rays being particularly preferred.
  • the amount of ultraviolet rays irradiated is, for example, 10 mJ/cm 2 to 1000 mJ/cm 2 .
  • the first resin composition layer may be cured by a combination of thermal curing and photocuring. For example, after the first resin composition layer is irradiated with light, the first resin composition layer may be further heated to cure the first resin composition layer.
  • a second resin composition layer is formed using the resin composition for forming the core layer on the lower cladding layer as the cured first resin composition layer.
  • a thermosetting resin may be used as the resin composition for forming the core layer, an example using a photocurable resin will be described here.
  • a resin composition containing the silicone skeleton-containing compound described above is used as the resin composition for forming the core layer.
  • the specific resin composition for forming the core layer is adjusted so that the refractive index of the cured product of the resin composition for forming the core layer is higher than the refractive index of the cured product of the resin composition for forming the cladding layer. The composition is determined.
  • the second resin composition layer may be formed by the same method as the first resin composition layer. Therefore, for example, the resin composition for forming the core layer may be applied onto the lower cladding layer and dried as necessary to form the second resin composition layer.
  • a second resin composition layer can be formed by using a resin sheet provided with a resin composition layer containing a resin composition for forming a core layer and laminating the resin composition layer on the lower cladding layer. You may.
  • the second resin composition layer is formed using a resin sheet provided with a support, the support is usually peeled off at an appropriate time before step (V).
  • a latent image is formed on the second resin composition layer by exposure treatment. Specifically, in the exposure treatment, a specific portion of the second resin composition layer is selectively irradiated with light. When the exposure treatment is performed, the second resin composition layer is provided with exposed areas that are irradiated with light and non-exposed areas that are not irradiated with light. In the exposed area, the resin composition is cured by light irradiation, and a latent image corresponding to the core layer is formed.
  • the exposure process in step (IV) is usually performed using a mask.
  • the transparent portion of the mask is formed to have a planar shape corresponding to the core layer of the optical waveguide.
  • planar shape refers to the shape viewed from the thickness direction.
  • the same actinic rays that can be used for photocuring the first resin composition layer in step (II) can be used.
  • the amount of light exposure can be selected within a range that provides a core layer with a desired planar shape.
  • the exposure amount is preferably 10 mJ/cm 2 or more, more preferably 50 mJ/cm 2 or more, particularly preferably 200 mJ/cm 2 or more, preferably 10,000 mJ/cm 2 or less, more preferably 8, 000 mJ/cm 2 or less, more preferably 4,000 mJ/cm 2 or less, particularly preferably 1,000 mJ/cm 2 or less.
  • step (V) the second resin composition layer on which the latent image was formed in step (IV) is subjected to a development treatment.
  • a development treatment In the exposed areas of the second resin composition layer, reactions such as polymerization and crosslinking reactions proceed, resulting in a decrease in solubility in the developer. Therefore, the resin composition for forming the core layer can function as a negative photoresist. Therefore, while the exposed areas are not removed by the development process, the non-exposed areas are removed. Therefore, it is possible to form a core layer as a second resin composition layer having the same planar shape as the light-transmitting portion of the mask.
  • the development method is usually a wet development method in which the second resin composition layer is brought into contact with a developer.
  • the developer one depending on the composition of the resin composition for forming the core layer can be used, and examples thereof include an alkaline aqueous solution, an aqueous developer, an organic solvent, and the like. It is preferable to set the development time appropriately within a range that allows a core portion of a desired shape to be obtained. In one example, the development time is preferably 10 seconds to 5 minutes. Further, the temperature of the developer during development is preferably 20°C or higher, preferably 50°C or lower, and more preferably 40°C or lower.
  • Examples of the development method include a paddle method, a spray method, a dipping method, a brushing method, a lapping method, and an ultrasonic method.
  • the spray method is suitable for improving resolution.
  • the spray pressure is preferably 0.05 MPa to 0.3 MPa.
  • the method for manufacturing an optical waveguide may include a step (VIII) of further curing the second resin composition layer after step (V) and before step (VI), if necessary.
  • the second resin composition layer can be cured by the exposure treatment in step (IV), but the mechanical strength of the second resin composition layer can be increased by further curing in step (VIII).
  • the second resin composition layer in step (VIII) may be cured by either thermal curing or photocuring, or may be performed by a combination of thermal curing and photocuring. Thermal curing and photocuring can be performed, for example, under the same conditions as described in step (II).
  • a third resin composition layer is formed using a resin composition for forming a cladding layer on the cured core layer as a second resin composition layer.
  • the third resin composition layer is usually formed to cover the entire peripheral surface of the core layer that is not in contact with the lower cladding layer. Therefore, the third resin composition layer is formed so as to cover the core layer, and may also be formed on the lower cladding layer.
  • the third resin composition layer may be formed by the same method as the first resin composition layer. Therefore, for example, a resin composition for forming a cladding layer is applied on the core layer (and on the lower cladding layer as necessary), and dried as necessary to form a third resin composition layer. Good too. Alternatively, for example, by using a resin sheet provided with a resin composition layer containing a resin composition for forming a cladding layer, the resin composition layer may be laminated onto the core layer (and the lower cladding layer, if necessary). The third resin composition layer may be formed by.
  • step (VII) the third resin composition layer is cured. Since the cured third resin composition layer forms a part of the cladding layer, it may be hereinafter referred to as an "upper cladding layer.”
  • the third resin composition layer can be cured, for example, under the same conditions as described in step (II).
  • a core layer having a desired planar shape can be formed between the lower cladding layer and the upper cladding layer. Therefore, it is possible to obtain an optical waveguide including a cladding layer including a lower cladding layer and an upper cladding layer, and a core layer provided within this cladding layer.
  • an opto-electrical hybrid board includes an optical waveguide and an electric circuit board.
  • the electric circuit board can include an electronic component and wiring connected to the electronic component.
  • the optical waveguide and the wiring of the electric circuit board can be connected via a photoelectric conversion element.
  • the photoelectric conversion element may include a combination of a light emitting element (for example, a surface-emitting light emitting diode) capable of converting electricity into light, and a light receiving element (for example, a photodiode) capable of converting light into electricity.
  • the opto-electric hybrid board may include an optical element such as a mirror for optical path adjustment.
  • a printed wiring board according to an embodiment of the present invention includes a cured product of the resin composition described above.
  • a first example of a printed wiring board is a printed wiring board provided with the above-mentioned optical waveguide.
  • the printed wiring board according to the first example includes a conductive layer as wiring for transmitting electrical signals and an optical waveguide for transmitting optical signals, and can function as an opto-electrical hybrid board.
  • a specific example of this printed wiring board is one that includes a chip in which an optical integrated circuit is formed on a silicon wafer.
  • the optical waveguide may be formed to connect the chip and the conductor layer, or to connect a plurality of chips.
  • a second example of the printed wiring board is a printed wiring board that includes an insulating layer formed from a cured product of the resin composition described above.
  • the insulating layer includes a cured product of the resin composition described above, and preferably contains only a cured product of the resin composition described above.
  • the printed wiring board according to the second example is, for example, It can be manufactured by a method including: (i) forming a resin composition layer on the inner layer substrate; and (ii) curing the resin composition layer to form an insulating layer.
  • the resin composition layer may be formed by coating the resin composition on the inner layer substrate, but the resin composition layer of the resin sheet may be bonded to the inner layer substrate by placing a resin sheet on the inner layer substrate. It is preferable to form them by laminating them in such a manner.
  • the “inner layer substrate” used in step (i) is a member that becomes the substrate of a printed wiring board, and includes, for example, a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, and a thermosetting polyphenylene ether substrate. etc. Further, the substrate may have a conductor layer on one or both sides, and this conductor layer may be patterned.
  • an inner layer board in which a conductor layer (circuit) is formed on one or both sides of the board is sometimes referred to as an "inner layer circuit board.”
  • an intermediate product on which an insulating layer and/or a conductive layer is further formed is also included in the "inner layer substrate" as referred to in this specification. If the printed wiring board is a circuit board with built-in components, an inner layer board with built-in components may be used.
  • Lamination of the inner layer substrate and the resin sheet can be performed, for example, by heat-pressing the resin sheet to the inner layer substrate from the support side.
  • the member for heat-pressing the resin sheet to the inner layer substrate include a heated metal plate (SUS mirror plate, etc.) or a metal roll (SUS roll, etc.).
  • the thermocompression bonding member may be directly pressed onto the resin sheet, or may be pressed through an elastic material such as heat-resistant rubber so that the resin sheet sufficiently follows the surface irregularities of the inner layer substrate.
  • the inner layer substrate and the resin sheet may be laminated by a vacuum lamination method.
  • the heat-pressing temperature is preferably in the range of 60°C to 160°C, more preferably 80°C to 140°C
  • the heat-pressing pressure is preferably in the range of 0.098 MPa to 1.77 MPa, more preferably 0.
  • the pressure is in the range of .29 MPa to 1.47 MPa
  • the heat-pressing time is preferably in the range of 20 seconds to 400 seconds, more preferably 30 seconds to 300 seconds.
  • Lamination may be carried out under reduced pressure conditions, preferably at a pressure of 26.7 hPa or less.
  • Lamination can be performed using a commercially available vacuum laminator.
  • commercially available vacuum laminators include a vacuum pressure laminator manufactured by Meiki Seisakusho, a vacuum applicator manufactured by Nikko Materials, and a batch vacuum pressure laminator.
  • the laminated resin sheets may be smoothed under normal pressure (atmospheric pressure), for example, by pressing a thermocompression bonding member from the support side.
  • the pressing conditions for the smoothing treatment may be the same as the heat-pressing conditions for the lamination described above.
  • the smoothing process can be performed using a commercially available laminator. Note that the lamination and smoothing treatment may be performed continuously using the above-mentioned commercially available vacuum laminator.
  • the support may be removed between step (i) and step (ii) or after step (ii).
  • the conductor layer may be formed using the metal foil without peeling off the support.
  • the support base material and release layer
  • the conductor layer can be formed using metal foil.
  • the resin composition layer is cured to form an insulating layer made of a cured product of the resin composition.
  • the resin composition layer can be cured by a method suitable for the resin composition, such as thermal curing or photocuring.
  • the curing conditions for the resin composition layer are not particularly limited, and conditions commonly employed for forming an insulating layer of a printed wiring board may be used.
  • thermosetting a resin composition layer when thermosetting a resin composition layer, the thermosetting conditions may vary depending on the type of resin composition.
  • the curing temperature is preferably 120°C to 250°C, more preferably 150°C to 240°C, even more preferably 180°C to 230°C.
  • the curing time can be preferably 5 minutes to 240 minutes, more preferably 10 minutes to 150 minutes, even more preferably 15 minutes to 120 minutes.
  • the resin composition layer Before thermally curing the resin composition layer, the resin composition layer may be preheated at a temperature lower than the curing temperature. For example, before thermosetting the resin composition layer, the resin composition layer is cured for usually 5 minutes at a temperature of usually 50°C to 120°C, preferably 60°C to 115°C, more preferably 70°C to 110°C. Preheating may be performed for preferably 5 minutes to 150 minutes, more preferably 15 minutes to 120 minutes, and even more preferably 15 minutes to 100 minutes.
  • the photocuring conditions may vary depending on the type of resin composition.
  • the active light rays to be irradiated onto the resin composition layer include, for example, ultraviolet rays, visible rays, electron beams, X-rays, etc., and ultraviolet rays are particularly preferred.
  • the amount of ultraviolet rays irradiated is, for example, 10 mJ/cm 2 to 1000 mJ/cm 2 .
  • the resin composition layer may be irradiated with actinic light through a patterned mask.
  • the resin composition layer may be subjected to development treatment, if necessary.
  • a pattern can be formed on the insulating layer by removing the portion that has not been photocured (unexposed portion). Development is usually performed by wet development.
  • post-baking treatment may be performed after photocuring and development, if necessary.
  • the post-baking treatment include ultraviolet irradiation treatment using a high-pressure mercury lamp, heat treatment using a clean oven, and the like.
  • the ultraviolet irradiation treatment can be performed at an irradiation dose of, for example, about 0.05 J/cm 2 to 10 J/cm 2 .
  • the heat treatment can be performed, for example, preferably at 150° C. to 250° C. for 20 minutes to 180 minutes, more preferably at 160° C. to 230° C. for 30 minutes to 120 minutes.
  • steps of (iii) drilling holes in the insulating layer, (iv) roughening the insulating layer, and (v) forming a conductor layer may be further carried out.
  • These steps (iii) to (v) may be performed according to various methods used in the manufacture of printed wiring boards and known to those skilled in the art. Note that when the support is removed after step (ii), the support may be removed between step (ii) and step (iii), between step (iii) and step (iv), or during step (iv). It may be carried out between iv) and step (v). Further, if necessary, the steps (i) to (v) for forming the insulating layer and the conductor layer may be repeated to form a multilayer wiring board.
  • printed wiring boards can be manufactured using the prepreg described above.
  • the manufacturing method is basically the same as when using a resin sheet.
  • Step (iii) is a step of drilling a hole in the insulating layer, whereby holes such as via holes and through holes can be formed in the insulating layer.
  • Step (iii) may be carried out using, for example, a drill, laser, plasma, etc., depending on the composition of the resin composition used to form the insulating layer. The size and shape of the hole may be determined as appropriate depending on the design of the printed wiring board.
  • Step (iv) is a step of roughening the insulating layer.
  • smear removal is also performed.
  • the procedure and conditions for the roughening treatment are not particularly limited, and known procedures and conditions commonly used in forming an insulating layer of a printed wiring board can be adopted.
  • the insulating layer can be roughened by performing a swelling treatment using a swelling liquid, a roughening treatment using an oxidizing agent, and a neutralization treatment using a neutralizing liquid in this order.
  • the swelling liquid used in the roughening treatment is not particularly limited, but includes, for example, an alkaline solution, a surfactant solution, etc., and preferably an alkaline solution.
  • an alkaline solution sodium hydroxide solution and potassium hydroxide solution are more preferable.
  • commercially available swelling liquids include "Swelling Dip Securigance P" and "Swelling Dip Securigance SBU” manufactured by Atotech Japan.
  • Swelling treatment with a swelling liquid is not particularly limited, but can be carried out, for example, by immersing the insulating layer in a swelling liquid at 30° C. to 90° C. for 1 minute to 20 minutes. From the viewpoint of suppressing the swelling of the resin in the insulating layer to an appropriate level, it is preferable to immerse the insulating layer in a swelling liquid at 40° C. to 80° C. for 5 minutes to 15 minutes.
  • the oxidizing agent used in the roughening treatment is not particularly limited, but includes, for example, an alkaline permanganate solution in which potassium permanganate or sodium permanganate is dissolved in an aqueous solution of sodium hydroxide.
  • the roughening treatment with an oxidizing agent such as an alkaline permanganic acid solution is preferably performed by immersing the insulating layer in an oxidizing agent solution heated to 60° C. to 100° C. for 10 minutes to 30 minutes.
  • the concentration of permanganate in the alkaline permanganic acid solution is preferably 5% by mass to 10% by mass.
  • Examples of commercially available oxidizing agents include alkaline permanganate solutions such as "Concentrate Compact CP" and "Dosing Solution Securigance P" manufactured by Atotech Japan.
  • an acidic aqueous solution is preferable, and a commercially available product includes, for example, "Reduction Solution Securigant P" manufactured by Atotech Japan.
  • the treatment with the neutralizing liquid can be carried out by immersing the treated surface, which has been roughened with an oxidizing agent, in the neutralizing liquid at 30° C. to 80° C. for 5 minutes to 30 minutes. From the viewpoint of workability, it is preferable to immerse the object that has been roughened with an oxidizing agent in a neutralizing solution at 40° C. to 70° C. for 5 minutes to 20 minutes.
  • Step (v) is a step of forming a conductor layer, and the conductor layer is formed on the insulating layer.
  • the conductor material used for the conductor layer is not particularly limited.
  • the conductor layer includes one or more selected from the group consisting of gold, platinum, palladium, silver, copper, aluminum, cobalt, chromium, zinc, nickel, titanium, tungsten, iron, tin, and indium. Contains metal.
  • the conductor layer may be a single metal layer or an alloy layer, and the alloy layer may be, for example, an alloy of two or more metals selected from the above group (for example, a nickel-chromium alloy, a copper-chromium alloy, a copper-chromium alloy, etc.).
  • nickel alloys and copper-titanium alloys are monometallic layers of chromium, nickel, titanium, aluminum, zinc, gold, palladium, silver, or copper, nickel-chromium alloys, copper, etc.
  • An alloy layer of nickel alloy or copper/titanium alloy is preferable, a single metal layer of chromium, nickel, titanium, aluminum, zinc, gold, palladium, silver or copper, or an alloy layer of nickel/chromium alloy is more preferable, and a single metal layer of chromium, nickel, titanium, aluminum, zinc, gold, palladium, silver or copper is more preferable. More preferred is a metal layer.
  • the conductor layer may have a single layer structure or a multilayer structure in which two or more single metal layers or alloy layers made of different types of metals or alloys are laminated.
  • the layer in contact with the insulating layer is preferably a single metal layer of chromium, zinc, or titanium, or an alloy layer of nickel-chromium alloy.
  • the thickness of the conductor layer depends on the desired design of the printed wiring board, but is generally 3 ⁇ m to 35 ⁇ m, preferably 5 ⁇ m to 30 ⁇ m.
  • the conductor layer may be formed by plating.
  • a conductive layer having a desired wiring pattern can be formed by plating the surface of the insulating layer using a conventionally known technique such as a semi-additive method or a fully additive method. From the viewpoint of manufacturing simplicity, it is preferable to form by a semi-additive method.
  • a semi-additive method An example of forming a conductor layer by a semi-additive method will be shown below.
  • a plating seed layer is formed on the surface of the insulating layer by electroless plating.
  • a mask pattern is formed on the formed plating seed layer to expose a portion of the plating seed layer corresponding to a desired wiring pattern.
  • the mask pattern is removed. Thereafter, unnecessary plating seed layers can be removed by etching or the like to form a conductor layer having a desired wiring pattern.
  • the conductor layer may be formed using metal foil.
  • step (v) is preferably carried out between step (i) and step (ii).
  • the support is removed and a metal foil is laminated on the exposed surface of the resin composition layer.
  • the resin composition layer and the metal foil may be laminated by vacuum lamination.
  • the lamination conditions may be the same as those described for step (i).
  • step (ii) is performed to form an insulating layer.
  • a conductor layer having a desired wiring pattern can be formed using the metal foil on the insulating layer by a conventional known technique such as a subtractive method or a modified semi-additive method.
  • the metal foil can be manufactured by a known method such as an electrolytic method or a rolling method.
  • Commercially available metal foils include, for example, HLP foil and JXUT-III foil manufactured by JX Nippon Mining Co., Ltd., 3EC-III foil and TP-III foil manufactured by Mitsui Kinzoku Mining Co., Ltd.
  • the conductor layer may be formed using the metal foil.
  • the semiconductor chip package includes a sealing layer formed of a cured product of the resin composition described above.
  • the sealing layer contains a cured product of the resin composition described above, and preferably contains only a cured product of the resin composition described above.
  • the semiconductor chip package may include an insulating layer (rewiring formation layer) for forming a rewiring layer, which is made of a cured product of the resin composition described above.
  • a semiconductor chip package can be manufactured, for example, using the resin composition or resin sheet described above by a method including the steps (1) to (6) below.
  • the resin composition and resin sheet described above can be used to form the sealing layer in step (3) or the rewiring forming layer in step (5).
  • An example of forming a sealing layer and a rewiring formation layer using a resin composition and a resin sheet will be shown below, but techniques for forming a sealing layer and a rewiring formation layer of a semiconductor chip package are well known and can be understood by those skilled in the art. If so, a semiconductor package can be manufactured using a resin composition and a resin sheet according to a known technique.
  • Base materials include silicon wafers; glass wafers; glass substrates; metal substrates such as copper, titanium, stainless steel, and cold-rolled steel sheets (SPCC); substrates made by impregnating glass fibers with epoxy resin and heat-curing them (for example, FR- 4 Substrate): A substrate made of bismaleimide triazine resin (BT resin), etc. may be mentioned.
  • BT resin bismaleimide triazine resin
  • the material of the temporary fixing film is not particularly limited as long as it can be peeled off from the semiconductor chip in step (4) and can temporarily fix the semiconductor chip.
  • a commercially available product can be used as the temporary fixing film.
  • Commercially available products include Riva Alpha manufactured by Nitto Denko Corporation.
  • the semiconductor chip can be temporarily fixed using a known device such as a flip chip bonder or a die bonder.
  • the layout and number of semiconductor chips can be set as appropriate depending on the shape and size of the temporary fixing film, the number of semiconductor packages to be produced, etc. For example, a matrix with multiple rows and multiple columns. They can be temporarily fixed by arranging them in a shape.
  • a resin composition layer is formed on the semiconductor chip and cured to form a sealing layer.
  • the resin composition layer can be formed, for example, by a method of laminating a resin composition layer of a resin sheet on a semiconductor chip, or a method of applying a resin composition on a semiconductor chip.
  • the semiconductor chip and the resin sheet can be laminated by removing the protective film of the resin sheet and then heat-pressing the resin sheet onto the semiconductor chip from the support side.
  • the thermocompression bonding member for thermocompression bonding the resin sheet to the semiconductor chip include a heated metal plate (SUS mirror plate, etc.) or a metal roll (SUS roll, etc.).
  • the resin sheet instead of pressing the thermocompression bonding member directly onto the resin sheet, it is preferable to press the resin sheet through an elastic material such as heat-resistant rubber so that the resin sheet sufficiently follows the surface irregularities of the semiconductor chip.
  • Lamination of the semiconductor chip and the resin sheet may be performed by a vacuum lamination method, and the lamination conditions may be similar to the lamination conditions described in connection with the method for manufacturing a printed wiring board, and the preferred range may also be the same. .
  • the resin composition is cured to form a sealing layer.
  • the resin composition layer can be cured by a method suitable for the resin composition, such as thermal curing or photocuring. Curing conditions may be similar to those described in connection with the printed wiring board manufacturing method.
  • the support for the resin sheet may be peeled off after the resin sheet is laminated on the semiconductor chip and cured, or the support may be peeled off before the resin sheet is laminated on the semiconductor chip.
  • the application conditions may be the same as those for forming the resin composition layer described in relation to the resin sheet, and the preferred range is also the same. It's possible.
  • the method of peeling the base material and the temporary fixing film can be changed as appropriate depending on the material of the temporary fixing film.
  • a method of peeling the temporary fixing film by heating and foaming (or expanding) and Examples include a method of irradiating ultraviolet rays to reduce the adhesive strength of the temporary fixing film and peeling it off.
  • the heating conditions are usually 100° C. to 250° C. for 1 second to 90 seconds or 5 minutes to 15 minutes.
  • the amount of ultraviolet ray irradiation is usually 10 mJ/cm 2 to 1000 mJ/cm 2 .
  • the material for forming the rewiring formation layer is not particularly limited as long as the rewiring formation layer (insulating layer) has insulating properties. From the viewpoint of ease of manufacturing semiconductor chip packages, ultraviolet curable resins and thermosetting resins are preferred.
  • the rewiring formation layer may be formed using the resin composition or resin sheet described above.
  • via holes may be formed in the rewiring formation layer in order to connect the semiconductor chip and the conductor layer described later.
  • the via hole may be formed by a known method depending on the material of the rewiring formation layer.
  • steps (5) and (6) may be repeated to stack up conductor layers (rewiring layers) and rewiring formation layers (insulating layers) alternately (build-up).
  • the semiconductor package may be a fan-in type package or a fan-out type package. It is possible to realize a semiconductor chip package in which cracks and peeling are suppressed, regardless of whether they occur or not.
  • the semiconductor chip package is a fan-out package.
  • the resin composition and resin sheet according to the embodiments described above can be applied to both fan-out panel level packages (FO-PLP) and fan-out wafer level packages (FO-WLP).
  • the semiconductor package is a fan-out panel level package (FOPLP).
  • the semiconductor package is a fan-out wafer level package (FOWLP).
  • a semiconductor device includes a cured product of the resin composition according to the embodiment described above.
  • This semiconductor device usually includes the above-described optical waveguide, printed wiring board, or semiconductor chip package.
  • semiconductor devices include various semiconductor devices used in electrical products (e.g., computers, mobile phones, digital cameras, televisions, etc.) and vehicles (e.g., motorcycles, automobiles, trains, ships, aircraft, etc.). It will be done.
  • ⁇ GPC measurement conditions In the Examples described below, measurements were performed by permeation chromatography (GPC) under the following measurement conditions.
  • Measuring device “HLC-8420GPC” manufactured by Tosoh Corporation Column: Guard column “HXL-L” manufactured by Tosoh Corporation + “TSK-GEL SuperHZ2000” manufactured by Tosoh Corporation + “TSK-GEL SuperHZ2000” manufactured by Tosoh Corporation + “TSK-GEL SuperHZ3000” manufactured by Tosoh Corporation + “TSK-GEL SuperHZ3000” manufactured by Tosoh Corporation "TSK-GEL SuperHZ4000” Detector: RI (differential refractometer) Data processing: “GPC Workstation EcoSEC-WorkStation” manufactured by Tosoh Corporation Column temperature: 40°C Developing solvent: Tetrahydrofuran Flow rate: 0.35 ml/min Standard: The following monodisperse polystyrene with a known molecular weight was used in accord
  • TSKgel F-10, F-4, F-1, A-5000, A-1000, A-500 (manufactured by Tosoh Corporation)
  • Sample A 0.2% by mass tetrahydrofuran solution (calculated as resin solid content) filtered through a microfilter (10 ⁇ l)
  • IR measurement conditions In the Examples described below, measurements were performed using infrared spectroscopy (IR) under the following measurement conditions. Measuring device: “FT/IR-4600” manufactured by JASCO Corporation
  • a silicone oil with amine groups at both ends is a silicone oil with amine groups at both ends (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KF-8010, in formula (4), R 1 is a methyl group and R 2 is a propylene group). , n is about 8, molecular weight 860) 38.7 g, and the amount of 2-methacryloyloxyethyl isocyanate "Karens MOI” was changed to 14.0 g. 51 g of reactive silicone resin (A2) represented by structural formula (A2) was obtained.
  • the appearance of the reactive silicone resin (A2) is colorless and transparent, and the methacryloyl group equivalent (calculated value) is 585 g/eq. Met. 1 H-NMR, IR, and GPC charts of the obtained reactive silicone resin (A2) are shown in FIGS. 4, 5, and 6, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

下記式(1)で表される、シリコーン骨格含有化合物。 (式中、 Rは、それぞれ独立に、1価の有機基を表し、 Rは、それぞれ独立に、2価の有機基を表し、 Rは、それぞれ独立に、2価の有機基を表し、 Rは、それぞれ独立に、水素原子又は1価の有機基を表し、 nは、0以上の数を表す。)

Description

シリコーン骨格含有化合物
 本発明は、シリコーン骨格含有化合物及びその製造方法、並びに、ジアミン化合物とイソシアネート化合物との反応生成物に関する。また、本発明は、前記のシリコーン骨格含有化合物を用いて得られる樹脂組成物、硬化物、シート状積層材料、樹脂シート、光導波路、プリント配線板、半導体チップパッケージ及び半導体装置に関する。
 多官能アクリレート化合物は、一般にラジカル重合性を有し、耐熱性及び耐薬品性等の特性に優れる傾向がある。そのため、多官能アクリレート化合物は、印刷インキ、塗料、電子材料、構造複合材料、接着剤、フォトレジスト材料、光造形材料、光導波路材料などの多くの分野において、熱重合性硬化システム及び光重合性硬化システムの両方の硬化方法で使用可能な材料として使われてきた。
 代表的な多官能アクリレート化合物としては、例えば、ポリオールベースの(メタ)アクリレート化合物、ビスフェノールA型エポキシ(メタ)アクリレート樹脂(ビニルエステル樹脂)、アルキレンエーテル変性ビスフェノールAベースの(メタ)アクリレート樹脂、などが挙げられる(特許文献1及び2)。また、特許文献3には、アクリロイル基を含有するシリコーンオリゴマーが記載されている。
特開2016-79297号公報 特開2018-5250号公報 国際公開第2017/199893号
 近年、封止材、アンダーフィル材、ビルドアップ基板などの半導体周辺材料の用途では、構造の微細化及び複雑化が進行している。微細化及び複雑化の進行に伴い、一般に、クラック及び剥離が生じやすくなる。そこで、前記のクラック及び剥離を抑制する観点から、前記の用途に用いる材料には、柔軟性及び靭性の両方に優れることが求められる。ところが、特許文献1~3に記載された多官能アクリレート化合物等の従来のラジカル重合性化合物は、柔軟性には優れるが、靭性が弱い傾向があった。
 本発明は、前記の課題を解決するべく創案されたもので、柔軟性及び靭性の両方に優れることを達成できるシリコーン骨格含有化合物及びその製造方法;柔軟性及び靭性の両方に優れることを達成できる、ジアミン化合物とイソシアネート化合物との反応生成物;それを含む樹脂組成物;並びに、その樹脂組成物を用いて得られる硬化物、シート状積層材料、樹脂シート、光導波路、プリント配線板、半導体チップパッケージ及び半導体装置;を提供することを目的とする。
 本発明者は、前記の課題を解決するべく鋭意検討した。その結果、本発明者は、特定の分子構造を有するシリコーン骨格含有化合物が前記の課題を解決できることを見い出し、本発明を完成させた。すなわち、本発明は、下記のものを含む。
 [1] 下記式(1)で表される、シリコーン骨格含有化合物。
Figure JPOXMLDOC01-appb-C000006
(式中、
 Rは、それぞれ独立に、1価の有機基を表し、
 Rは、それぞれ独立に、2価の有機基を表し、
 Rは、それぞれ独立に、2価の有機基を表し、
 Rは、それぞれ独立に、水素原子又は1価の有機基を表し、
 nは、0以上の数を表す。)
 [2] Rが、それぞれ独立に、置換基を有していてもよい1価の炭化水素基を表し、
 Rが、それぞれ独立に、置換基を有していてもよい2価の炭化水素基を表し、
 Rが、それぞれ独立に、置換基を有していてもよい2価の炭化水素基を表し、
 Rが、それぞれ独立に、水素原子、又は、置換基を有していてもよい1価の炭化水素基を表す、[1]に記載のシリコーン骨格含有化合物。
 [3] Rが、それぞれ独立に、炭素原子数1~6のアルキル基を表し、
 Rが、それぞれ独立に、置換基を有していてもよい2価の脂肪族炭化水素基を表し、
 Rが、それぞれ独立に、置換基を有していてもよい2価の脂肪族炭化水素基を表し、
 Rが、それぞれ独立に、水素原子、又は、炭素原子数1~3のアルキル基を表す、[1]又は[2]に記載のシリコーン骨格含有化合物。
 「4] 下記式(2)又は式(3)で表される、[1]~[3]のいずれか一項に記載のシリコーン骨格含有化合物。
Figure JPOXMLDOC01-appb-C000007
(式(2)及び(3)において、nは、0以上50以下の数を表す。)
 [5] ジアミン化合物とイソシアネート化合物との反応生成物である、[1]~[4]のいずれか一項に記載のシリコーン骨格含有化合物。
 [6] ジアミン化合物が下記式(4)で表され、イソシアネート化合物が下記式(5)で表される、[5]に記載のシリコーン骨格含有化合物。
Figure JPOXMLDOC01-appb-C000008
(式(4)及び(5)において、
 Rは、それぞれ独立に、1価の有機基を表し、
 Rは、それぞれ独立に、2価の有機基を表し、
 nは、0以上の数を表し、
 Rは、それぞれ独立に、2価の有機基を表し、
 Rは、それぞれ独立に、水素原子又は1価の有機基を表す。)
 [7] 官能基当量が、200g/eq.~1500g/eq.の範囲である、[1]~[6]のいずれか一項に記載のシリコーン骨格含有化合物。
 [8] 下記式(4)で表されるジアミン化合物と、下記式(5)で表されるイソシアネート化合物との反応生成物。
Figure JPOXMLDOC01-appb-C000009
(式(4)及び(5)において、
 Rは、それぞれ独立に、1価の有機基を表し、
 Rは、それぞれ独立に、2価の有機基を表し、
 nは、0以上の数を表し、
 Rは、それぞれ独立に、2価の有機基を表し、
 Rは、それぞれ独立に、水素原子又は1価の有機基を表す。)
 [9] 下記式(4)で表されるジアミン化合物と、下記式(5)で表されるイソシアネート化合物とを反応させることを含む、シリコーン骨格含有化合物の製造方法。
Figure JPOXMLDOC01-appb-C000010
(式(4)及び(5)において、
 Rは、それぞれ独立に、1価の有機基を表し、
 Rは、それぞれ独立に、2価の有機基を表し、
 nは、0以上の数を表し、
 Rは、それぞれ独立に、2価の有機基を表し、
 Rは、それぞれ独立に、水素原子又は1価の有機基を表す。)
 [10] [1]~[7]のいずれか1項に記載のシリコーン骨格含有化合物を含む、樹脂組成物。
 [11] 光硬化性樹脂組成物である、[10]に記載の樹脂組成物。
 [12] エポキシ樹脂を更に含む、[10]又は[11]に記載の樹脂組成物。
 [13] エチレン性不飽和基を含有する前記シリコーン骨格含有化合物以外の化合物を更に含む、[10]~[12]のいずれか1項に記載の樹脂組成物。
 [14] 無機充填材を更に含む、[10]~[13]のいずれか1項に記載の樹脂組成物。
 [15] 有機溶媒を更に含む、[10]~[14]のいずれか1項に記載の樹脂組成物。
 [16] ガラス繊維を更に含む、[10]~[15]のいずれか1項に記載の樹脂組成物。
 [17] プリント配線板の絶縁層形成用の[10]~[16]のいずれか1項に記載の樹脂組成物。
 [18] 半導体チップ封止用の[10]~[16]のいずれか1項に記載の樹脂組成物。
 [19] フォトリソグラフィ材料用の[10]~[16]のいずれか1項に記載の樹脂組成物。
 [20] [10]~[19]のいずれか1項に記載の樹脂組成物の硬化物。
 [21] [10]~[19]のいずれか1項に記載の樹脂組成物を含む、シート状積層材料。
 [22] 支持体と、当該支持体上に形成された樹脂組成物層とを備え、
 樹脂組成物層が、[10]~[19]のいずれか一項に記載の樹脂組成物を含む、樹脂シート。
 [23] [10]~[19]のいずれか1項に記載の樹脂組成物の硬化物を含む、光導波路。
 [24] [10]~[19]のいずれか1項に記載の樹脂組成物の硬化物を含む絶縁層を備える、プリント配線板。
 [25] [23]に記載の光導波路を備える、プリント配線板。
 [26] [10]~[19]のいずれか1項に記載の樹脂組成物の硬化物を含む封止層を備える、半導体チップパッケージ。
 [27] ファンアウト(Fan-Out)型パッケージである、[26]に記載の半導体チップパッケージ。
 [28] [23]に記載の光導波路、[24]若しくは[25]に記載のプリント配線板、又は、[26]若しくは[27]に記載の半導体チップパッケージを備える、半導体装置。
 本発明によれば、柔軟性及び靭性の両方に優れることを達成できるシリコーン骨格含有化合物及びその製造方法;柔軟性及び靭性の両方に優れることを達成できる、ジアミン化合物とイソシアネート化合物との反応生成物;それを含む樹脂組成物;並びに、その樹脂組成物を用いて得られる硬化物、シート状積層材料、樹脂シート、光導波路、プリント配線板、半導体チップパッケージ及び半導体装置;を提供できる。
図1は、本発明の実施例1で製造した反応性シリコーン樹脂(A1)のH-NMRチャートを示す。 図2は、本発明の実施例1で製造した反応性シリコーン樹脂(A1)のIRチャートを示す。 図3は、本発明の実施例1で製造した反応性シリコーン樹脂(A1)のGPCチャートを示す。 図4は、本発明の実施例2で製造した反応性シリコーン樹脂(A2)のH-NMRチャートを示す。 図5は、本発明の実施例2で製造した反応性シリコーン樹脂(A2)のIRチャートを示す。 図6は、本発明の実施例2で製造した反応性シリコーン樹脂(A2)のGPCチャートを示す。 図7は、本発明の実施例3で製造した反応性シリコーン樹脂(A3)のH-NMRチャートを示す。 図8は、本発明の実施例3で製造した反応性シリコーン樹脂(A3)のIRチャートを示す。 図9は、本発明の実施例3で製造した反応性シリコーン樹脂(A3)のGPCチャートを示す。
 <用語の説明>
 本明細書において、化合物又は基についていう「置換基を有していてもよい」という用語は、該化合物又は基の水素原子が置換基で置換されていない場合、及び、該化合物又は基の水素原子の一部又は全部が置換基で置換されている場合の双方を意味する。
 本明細書において、「置換基」という用語は、特に説明のない限り、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、アルカポリエニル基、シクロアルキル基、シクロアルケニル基、アルコキシ基、シクロアルキルオキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、1価の複素環基、アルキリデン基、アミノ基、シリル基、アシル基、アシルオキシ基、カルボキシ基、スルホ基、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基及びオキソ基を意味する。なお、アルキル基、アルケニル基、アルキニル基、アルカポリエニル基、シクロアルキル基、シクロアルケニル基、アリール基、アリールアルキル基、アルキリデン基のように炭素と水素のみを含む基を総称して、「炭化水素基」ということがある。また、アルキル基及びシクロアルキル基のように不飽和結合を有さない脂肪族炭化水素基を総称して、「飽和脂肪族炭化水素基」ということがある。さらに、アルケニル基、アルキニル基、アルカポリエニル基、シクロアルケニル基のように不飽和結合を有する脂肪族炭化水素基を総称して、「不飽和脂肪族炭化水素基」ということがある。
 上述の置換基は、さらに置換基(以下、「二次置換基」という場合がある。)を有していてもよい。二次置換基としては、特に記載のない限り、上述の置換基と同じものを用いてよい。
 本明細書において、特に説明のない限り、ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられる。
 本明細書において、特に説明のない限り、アルキル基は、直鎖状又は分岐状のいずれであってもよい。該アルキル基の炭素原子数は、好ましくは1~20、より好ましくは1~14、さらに好ましくは1~12、さらにより好ましくは1~6、特に好ましくは1~3である。該アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、及びデシル基が挙げられる。
 本明細書において、特に説明のない限り、アルケニル基は、直鎖状又は分岐状のいずれであってもよい。該アルケニル基の炭素原子数は、好ましくは2~20、より好ましくは2~14、さらに好ましくは2~12、さらにより好ましくは2~6、特に好ましくは2又は3である。該アルケニル基としては、例えば、ビニル基、アリル基、1-プロペニル基、ブテニル基、sec-ブテニル基、イソブテニル基、tert-ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、及びデセニル基が挙げられる。
 本明細書において、特に説明のない限り、アルキニル基は、直鎖状又は分岐状のいずれであってもよい。該アルキニル基の炭素原子数は、好ましくは2~20、より好ましくは2~14、さらに好ましくは2~12、さらにより好ましくは2~6、特に好ましくは2又は3である。該アルキニル基としては、例えば、エチニル基、プロピニル基、ブチニル基、sec-ブチニル基、イソブチニル基、tert-ブチニル基、ペンチニル基、ヘキシニル基、ヘプチニル基、オクチニル基、ノニニル基、及びデシニル基が挙げられる。
 本明細書において、特に説明のない限り、アルカポリエニル基は、直鎖状又は分岐状のいずれであってもよく、二重結合の数は好ましくは2~10、より好ましくは2~6、さらに好ましくは2~4、さらにより好ましくは2である。該アルカポリエニル基の炭素原子数は、好ましくは3~20、より好ましくは3~14、さらに好ましくは3~12、さらにより好ましくは3~6である。
 本明細書において、特に説明のない限り、シクロアルキル基の炭素原子数は、好ましくは3~20、より好ましくは3~12、さらに好ましくは3~6である。該シクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、及びシクロヘキシル基等が挙げられる。
 本明細書において、特に説明のない限り、シクロアルケニル基の炭素原子数は、好ましくは3~20、より好ましくは3~12、さらに好ましくは3~6である。該シクロアルケニル基としては、例えば、シクロプロペニル基、シクロブテニル基、シクロペンテニル基、及びシクロヘキセニル基等が挙げられる。
 本明細書において、特に説明のない限り、アルコキシ基は、直鎖状又は分岐状のいずれであってもよい。該アルコキシ基の炭素原子数は、好ましくは1~20、より好ましくは1~12、さらに好ましくは1~6である。該アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、sec-ブトキシ基、イソブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、及びデシルオキシ基が挙げられる。
 本明細書において、特に説明のない限り、シクロアルキルオキシ基の炭素原子数は、好ましくは3~20、より好ましくは3~12、さらに好ましくは3~6である。該シクロアルキルオキシ基としては、例えば、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、及びシクロヘキシルオキシ基が挙げられる。
 本明細書において、特に説明のない限り、アリール基は、芳香族炭化水素から芳香環上の水素原子を1個除いた基である。アリール基の炭素原子数は、好ましくは6~24、より好ましくは6~18、さらに好ましくは6~14、さらにより好ましくは6~10である。該アリール基としては、例えば、フェニル基、ナフチル基、及びアントラセニル基が挙げられる。
 本明細書において、特に説明のない限り、アリールオキシ基の炭素原子数は、好ましくは6~24、より好ましくは6~18、さらに好ましくは6~14、さらにより好ましくは6~10である。アリールオキシ基としては、例えば、フェノキシ基、1-ナフチルオキシ基、及び2-ナフチルオキシ基が挙げられる。
 本明細書において、特に説明のない限り、アリールアルキル基の炭素原子数は、好ましくは7~25、より好ましくは7~19、さらに好ましくは7~15、さらにより好ましくは7~11である。該アリールアルキル基としては、例えば、フェニル-C~C12アルキル基、ナフチル-C~C12アルキル基、及びアントラセニル-C~C12アルキル基が挙げられる。
 本明細書において、特に説明のない限り、アリールアルコキシ基の炭素原子数は、好ましくは7~25、より好ましくは7~19、さらに好ましくは7~15、さらにより好ましくは7~11である。該アリールアルコキシ基としては、例えば、フェニル-C~C12アルコキシ基、及びナフチル-C~C12アルコキシ基が挙げられる。
 本明細書において、特に説明のない限り、1価の複素環基とは、複素環式化合物の複素環から水素原子1個を除いた基をいう。該1価の複素環基の炭素原子数は、好ましくは3~21、より好ましくは3~15、さらに好ましくは3~9である。該1価の複素環基には、1価の芳香族複素環基(ヘテロアリール基)も含まれる。該1価の複素環としては、例えば、チエニル基、ピロリル基、フラニル基、フリル基、ピリジル基、ピリダジニル基、ピリミジル基、ピラジニル基、トリアジニル基、ピロリジル基、ピペリジル基、キノリル基、及びイソキノリル基が挙げられる。
 本明細書において、特に説明のない限り、アルキリデン基とは、アルカンの同一の炭素原子から水素原子を2個除いた基をいう。該アルキリデン基の炭素原子数は、好ましくは1~20、より好ましくは1~14、さらに好ましくは1~12、さらにより好ましくは1~6、特に好ましくは1~3である。該アルキリデン基としては、例えば、メチリデン基、エチリデン基、プロピリデン基、イソプロピリデン基、ブチリデン基、sec-ブチリデン基、イソブチリデン基、tert-ブチリデン基、ペンチリデン基、ヘキシリデン基、ヘプチリデン基、オクチリデン基、ノニリデン基、及びデシリデン基が挙げられる。
 本明細書において、特に説明のない限り、アシル基は、式:-C(=O)-Rで表される基(式中、Rはアルキル基又はアリール基)をいう。Rで表されるアルキル基は直鎖状又は分岐状のいずれであってもよい。Rで表されるアリール基としては、例えば、フェニル基、ナフチル基、及びアントラセニル基が挙げられる。該アシル基の炭素原子数は、好ましくは2~20、より好ましくは2~13、さらに好ましくは2~7である。該アシル基としては、例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、及びベンゾイル基が挙げられる。
 本明細書において、特に説明のない限り、アシルオキシ基は、式:-O-C(=O)-Rで表される基(式中、Rはアルキル基又はアリール基)をいう。Rで表されるアルキル基は直鎖状又は分岐状のいずれであってもよい。Rで表されるアリール基としては、例えば、フェニル基、ナフチル基、及びアントラセニル基が挙げられる。該アシルオキシ基の炭素原子数は、好ましくは2~20、より好ましくは2~13、さらに好ましくは2~7である。該アシルオキシ基としては、例えば、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、ピバロイルオキシ基、及びベンゾイルオキシ基が挙げられる。
 本明細書において、「有機基」という用語は、骨格原子として少なくとも炭素原子を含む基をいい、直鎖状、分岐状又は環状のいずれであってもよい。本明細書において、有機基の骨格原子数は、特に記載のない限り、好ましくは1~3000、より好ましくは1~1000、さらに好ましくは1~100、さらにより好ましくは1~50、特に好ましくは1~30又は1~20である。有機基としては、例えば、炭素原子、酸素原子、窒素原子、及び硫黄原子から選ばれる1個以上の骨格原子(但し炭素原子を少なくとも含む)からなる基が挙げられる。
 本明細書において、「炭化水素基」という用語は、炭化水素化合物から水素原子を1個以上除いた基をいう。詳細には、1価の炭化水素基とは、炭化水素化合物から水素原子を1個除いた基をいい、2価の炭化水素基とは、炭化水素化合物から水素原子を2個除いた基をいう。炭化水素基としては、例えば、後述する脂肪族基及び芳香族基のうち、炭素原子と水素原子のみを含む基が挙げられる。本明細書において、炭素原子と水素原子のみを含む脂肪族基を「脂肪族炭化水素基」、炭素原子と水素原子のみを含む芳香族基を「芳香族炭化水素基」ということがある。1価の炭化水素基としては、例えば、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルカポリエニル基、アリール基が挙げられる。2価の炭化水素基としては、例えば、アルキレン基、シクロアルキレン基、アルケニレン基、シクロアルケニレン基、アルカポリエニレン基、アリーレン基が挙げられる。
 本明細書において、「脂肪族基」という用語は、脂肪族化合物の脂肪族炭素に結合した水素原子を1個以上除いた基をいう。詳細には、1価の脂肪族基とは、脂肪族化合物の脂肪族炭素に結合した水素原子を1個除いた基をいい、2価の脂肪族基とは、脂肪族化合物の脂肪族炭素に結合した水素原子を2個除いた基をいう。1価の脂肪族基としては、例えば、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよいアルケニル基、置換基を有していてもよいシクロアルケニル基、置換基を有していてもよいアルカポリエニル基(二重結合の数は好ましくは2~10、より好ましくは2~6、さらに好ましくは2~4、さらにより好ましくは2)が挙げられる。2価の脂肪族基としては、例えば、置換基を有していてもよいアルキレン基、置換基を有していてもよいシクロアルキレン基、置換基を有していてもよいアルケニレン基、置換基を有していてもよいシクロアルケニレン基、置換基を有していてもよいアルカポリエニレン基(二重結合の数は好ましくは2~10、より好ましくは2~6、さらに好ましくは2~4、さらにより好ましくは2)が挙げられる。本明細書において、脂肪族基の炭素原子数は、特に記載のない限り、好ましくは1以上、より好ましくは2以上、さらに好ましくは3以上、4以上、5以上又は6以上であり、好ましくは50以下、より好ましくは40以下、さらに好ましくは30以下、20以下、18以下、16以下、14以下又は12以下である。該炭素原子数に置換基の炭素原子数は含まれない。
 本明細書において、「芳香族基」という用語は、芳香族化合物の芳香環から水素原子を1個以上除いた基をいう。詳細には、1価の芳香族基とは、芳香族化合物の芳香環から水素原子を1個除いた基をいい、2価の芳香族基とは、芳香族化合物の芳香環から水素原子を2個除いた基をいう。1価の芳香族基としては、例えば、置換基を有していてもよいアリール基、置換基を有していてもよいヘテロアリール基が挙げられ、2価の芳香族基としては、例えば、置換基を有していてもよいアリーレン基、置換基を有していてもよいヘテロアリーレン基が挙げられる。本明細書において、芳香族基の炭素原子数は、特に記載のない限り、好ましくは3以上、より好ましくは4以上又は5以上、さらに好ましくは6以上であり、その上限は、好ましくは24以下、より好ましくは18以下又は14以下、さらに好ましくは10以下である。該炭素原子数に置換基の炭素原子数は含まれない。
 本明細書において、「芳香環」という用語は、環上のπ電子系に含まれる電子数が4p+2個(pは自然数)であるヒュッケル則に従う環を意味し、単環式芳香環、及び2個以上の単環式芳香環が縮合した縮合多環式芳香環を含む。芳香環は、環構成原子として炭素原子のみを有する芳香族炭素環、又は環構成原子として、炭素原子に加えて、酸素原子、窒素原子、硫黄原子等のヘテロ原子を有する芳香族複素環であり得る。本明細書において、芳香環の炭素原子数は、特に記載のない限り、好ましくは3以上、より好ましくは4以上又は5以上、さらに好ましくは6以上であり、その上限は、好ましくは24以下、より好ましくは18以下又は14以下、さらに好ましくは10以下である。該炭素原子数に置換基の炭素原子数は含まれない。芳香環としては、例えば、ベンゼン環、フラン環、チオフェン環、ピロール環、ピラゾール環、オキサゾール環、イソオキサゾール環、チアゾール環、イミダゾール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環等の単環式芳香環;ナフタレン環、アントラセン環、フェナントレン環、ベンゾフラン環、イソベンゾフラン環、インドール環、イソインドール環、ベンゾチオフェン環、ベンゾイミダゾール環、インダゾール環、ベンゾオキサゾール環、ベンゾイソオキサゾール環、ベンゾチアゾール環、キノリン環、イソキノリン環、キノキサリン環、アクリジン環、キナゾリン環、シンノリン環、フタラジン環等の2個以上の単環式芳香環が縮合した縮合多環式芳香環が挙げられる。中でも、芳香環としては、ベンゼン環、ナフタレン環及びアントラセン環が好ましく、ベンゼン環及びナフタレン環が特に好ましい。なお、本明細書において、芳香環を構成する炭素原子を指して「芳香族炭素」という。
 以下、本発明をその好適な実施形態に即して詳細に説明する。ただし、本発明は、下記実施形態及び例示物に限定されるものではなく、請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施されうる。
 <シリコーン骨格含有化合物>
 本発明の一実施形態に係るシリコーン骨格含有化合物は、下記式(1)で表される。
Figure JPOXMLDOC01-appb-C000011
(式中、
 Rは、それぞれ独立に、1価の有機基を表し、
 Rは、それぞれ独立に、2価の有機基を表し、
 Rは、それぞれ独立に、2価の有機基を表し、
 Rは、それぞれ独立に、水素原子又は1価の有機基を表し、
 nは、0以上の数を表す。)
 前記のシリコーン骨格含有化合物は、式(1)に示されるように、複数のエチレン性二重結合を含有する。よって、通常、エチレン性二重結合が反応することにより、シリコーン骨格含有化合物同士が結合したり、シリコーン骨格含有化合物とエチレン性不飽和基を含有する任意の化合物(後述する「任意の不飽和化合物」)とが結合したりすることができる。したがって、シリコーン骨格含有化合物を含む樹脂組成物は、硬化して硬化物を形成することができる。なお、前記の反応は、通常、ラジカル重合反応として進行しうる。
 前記のシリコーン骨格含有化合物を含む樹脂組成物の硬化物は、柔軟性及び靭性の両方に優れることができる。この優れた効果が得られる仕組みを、本発明者は下記のように推察する。ただし、本発明の技術的範囲は、下記の仕組みに限定されるものではない。
 シリコーン骨格含有化合物は、式(1)に示されるように、シロキサン結合を含むシリコーン骨格と、ウレア結合と、を組み合わせて含有する。具体的には、シリコーン骨格含有化合物は、R同士の間を連結するシリコーン骨格と、RとRとの間を連結するウレア結合と、を組み合わせて含有する。シリコーン骨格は、一般に、高い柔軟性を有する。また、ウレア結合は、一般に、高い剛性を有する。したがって、シリコーン骨格含有化合物は、シリコーン骨格の柔軟性とウレア結合の剛性とを組み合わせて発揮できるので、硬化物の柔軟性及び靭性の両方を向上させることができる。
 従来、シリコーン骨格を含有する多官能アクリレート化合物は知られていた。しかし、従来の多官能アクリレート化合物は、シリコーン骨格による柔軟性は得られていたが、脆性が高く、よって靭性に優れる硬化物を得ることはできなかった。よって、シリコーン骨格を含有する多官能アクリレート化合物を用いて得られる従来の硬化物は、脆い傾向があるというのが従来の当業者の認識であった。このような背景に鑑みれば、本実施形態に係るシリコーン骨格含有化合物が柔軟性及び靭性の両方の改善を達成できるという本発明の所望の効果は、本発明者が初めて見出したものであり、工業上、有益である。
-Rについて-
 式(1)において、Rは、それぞれ独立に、1価の有機基を表す。複数のRは、それぞれ同一でもよく、異なっていてもよい。Rが示す有機基は、先述のとおり、骨格原子として少なくとも炭素原子を含む基であるが、好ましくは、炭素原子、酸素原子、窒素原子、及び硫黄原子から選ばれる1個以上の骨格原子からなる1価の基でありうる。中でも、Rが示す有機基は、式(1)においてRに結合するケイ素原子と結合する炭素原子を含有することが好ましい。さらには、Rが示す有機基は、骨格原子として炭素原子のみを含むことが特に好適である。Rの炭素原子数は、好ましくは1~30、より好ましくは1~20、更に好ましくは1~10、特に好ましくは1~6である。
 Rは、本発明の所望の効果を顕著に得る観点から、置換基を有していてもよい1価の炭化水素基を表すことが好ましい。1価の炭化水素基は、先述の通り、炭化水素化合物から水素原子を1個除いた基をいい、脂肪族炭化水素基であってもよく、芳香族炭化水素基であってもよい。1価の炭化水素基は、1価の脂肪族炭化水素基を表すことが好ましい。この脂肪族炭化水素基は、直鎖状又は分岐状のいずれであってもよく、また、環構造を含む脂肪族炭化水素基(即ち、脂環式炭化水素基)であってもよい。1価の炭化水素基は、不飽和結合を有さない1価の飽和炭化水素基であることが更に好ましく、よって1価の飽和脂肪族炭化水素基であることが更に好ましい。
 Rにおける1価の炭化水素基としては、例えば、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルカポリエニル基(二重結合の数は好ましくは2~10、より好ましくは2~6、さらに好ましくは2~4、さらにより好ましくは2)、アリール基等が挙げられ、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、及びアリール基が好ましく、アルキル基、シクロアルキル基及びアリール基がより好ましく、アルキル基及びアリール基が更に好ましく、アルキル基が特に好ましい。
 Rにおけるアルキル基は、直鎖状又は分岐状のいずれであってもよく、その炭素原子数は、より好ましくは1~6、さらに好ましくは1~4又は1~3である。該炭素原子数に置換基の炭素原子数は含まれない。該アルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられる。
 Rにおけるシクロアルキル基の炭素原子数は、より好ましくは3~10、4~10、又は6~10である。該炭素原子数に置換基の炭素原子数は含まれない。シクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、デカヒドロナフタニル基、ノルボルナニル基、ジシクロペンタニル基、アダマンタニル基等が挙げられる。
 Rにおけるアルケニル基は、直鎖状又は分岐状のいずれであってもよく、その炭素原子数は、より好ましくは2~6、さらに好ましくは2~4である。該炭素原子数に置換基の炭素原子数は含まれない。アルケニル基としては、例えば、エテニル基、プロペニル基、ブテニル基、ペンテニル基、へキセニル基等が挙げられる。
 Rにおけるシクロアルケニル基の炭素原子数は、より好ましくは3~10、4~10又は6~10である。該炭素原子数に置換基の炭素原子数は含まれない。シクロアルケニル基としては、例えば、シクロプロペニル基、シクロブテニル基、シクロペンテニル基、シクロへキセニル基、ノルボルネニル基等が挙げられる。
 Rにおけるアリール基の炭素原子数は、より好ましくは6~10である。該炭素原子数に置換基の炭素原子数は含まれない。アリール基としては、例えば、フェニル基、ナフチル基、インダニル基等が挙げられる。
 Rにおける1価の炭化水素基が有していてもよい置換基は先述のとおりである。中でも、Rは、置換基を有さない1価の炭化水素基(即ち、1価の無置換の炭化水素基)であることが好ましい。
 本発明の所望の効果を顕著に得る観点から、Rは、置換基を有していてもよい1価の炭化水素基であることが好ましく;置換基を有していてもよい炭素原子数1~6のアルキル基、置換基を有していてもよい炭素原子数6~10のシクロアルキル基、置換基を有していてもよい炭素原子数2~6のアルケニル基、置換基を有していてもよい炭素原子数6~10のシクロアルケニル基、又は、置換基を有していてもよい炭素原子数6~10のアリール基であることがより好ましく;置換基を有していてもよい炭素原子数1~6のアルキル基、置換基を有していてもよい炭素原子数6~10のシクロアルキル基、又は、置換基を有していてもよい炭素原子数6~10のアリール基であることが更に好ましく;置換基を有していてもよい炭素原子数1~6のアルキル基、又は、置換基を有していてもよい炭素原子数6~10のアリール基であることが更に好ましく;置換基を有していてもよい炭素原子数1~6のアルキル基であることが更に好ましく;置換基を有していない炭素原子数1~6のアルキル基(無置換のアルキル基)であることが特に好ましい。
-Rについて-
 式(1)において、Rは、それぞれ独立に、2価の有機基を表す。複数のRは、それぞれ同一でもよく、異なっていてもよい。Rが示す有機基は、先述のとおり、骨格原子として少なくとも炭素原子を含む基であるが、好ましくは、炭素原子、酸素原子、窒素原子、及び硫黄原子から選ばれる1個以上の骨格原子からなる2価の基でありうる。中でも、Rが示す有機基は、式(1)においてRに結合するケイ素原子と結合する炭素原子を含有することが好ましく、また、式(1)においてRに結合する窒素原子と結合する炭素原子を含有することが好ましい。さらには、Rが示す有機基は、骨格原子として炭素原子のみを含むことが特に好適である。Rの炭素原子数は、好ましくは1~30、より好ましくは1~20、更に好ましくは1~10、特に好ましくは1~6である。
 Rは、本発明の所望の効果を顕著に得る観点から、置換基を有していてもよい2価の炭化水素基;又は、置換基を有していてもよい2価の炭化水素基が、酸素原子、スルホニル基、カルボニル基及びカーボネート基からなる群より選ばれる2価の連結基で連結された2価の基;を表すことが好ましい。
 Rにおける2価の炭化水素基は、先述の通り、炭化水素化合物から水素原子を2個除いた基をいい、脂肪族炭化水素基であってもよく、芳香族炭化水素基であってもよい。2価の炭化水素基は、2価の脂肪族炭化水素基を表すことが好ましい。この脂肪族炭化水素基は、直鎖状又は分岐状のいずれであってもよく、また、環構造を含む脂環式炭化水素基であってもよい。2価の炭化水素基は、不飽和結合を有さない2価の飽和炭化水素基であることが更に好ましく、よって2価の飽和脂肪族炭化水素基であることが更に好ましい。
 Rにおける2価の炭化水素基としては、例えば、アルキレン基、シクロアルキレン基、アルケニレン基、シクロアルケニレン基、アルカポリエニレン基(二重結合の数は好ましくは2~10、より好ましくは2~6、さらに好ましくは2~4、さらにより好ましくは2)、アリーレン基等が挙げられ、アルキレン基、シクロアルキレン基、アルケニレン基、シクロアルケニレン基、アリーレン基が好ましく、アルキレン基、シクロアルキレン基及びアリーレン基がより好ましく、アルキレン基が特に好ましい。
 Rにおけるアルキレン基は、直鎖状又は分岐状のいずれであってもよく、その炭素原子数は、より好ましくは1~6、さらに好ましくは1~4又は1~3である。該炭素原子数に置換基の炭素原子数は含まれない。該アルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基等が挙げられる。
 Rにおけるシクロアルキレン基の炭素原子数は、より好ましくは3~10、4~10、又は6~10である。該炭素原子数に置換基の炭素原子数は含まれない。シクロアルキレン基としては、例えば、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、デカヒドロナフタニレン基、ノルボルナニレン基、ジシクロペンタニレン基、アダマンタニレン基等が挙げられる。
 Rにおけるアルケニレン基は、直鎖状又は分岐状のいずれであってもよく、その炭素原子数は、より好ましくは2~6、さらに好ましくは2~4である。該炭素原子数に置換基の炭素原子数は含まれない。アルケニレン基としては、例えば、エテニレン基、プロペニレン基、ブテニレン基、ペンテニレン基、へキセニレン基等が挙げられる。
 Rにおけるシクロアルケニレン基の炭素原子数は、より好ましくは3~10、4~10又は6~10である。該炭素原子数に置換基の炭素原子数は含まれない。シクロアルケニレン基としては、例えば、シクロプロペニレン基、シクロブテニレン基、シクロペンテニレン基、シクロへキセニレン基、ノルボルネニレン基等が挙げられる。
 Rにおけるアリーレン基の炭素原子数は、より好ましくは6~10である。該炭素原子数に置換基の炭素原子数は含まれない。アリーレン基としては、例えば、フェニレン基、ナフチレン基、インダンジイル基等が挙げられる。
 Rにおける2価の炭化水素基が有していてもよい置換基は先述のとおりである。中でも、該置換基としては、アルキル基、及びアリール基から選択される1種以上が好ましく、炭素原子数1~6のアルキル基、及び炭素原子数6~10のアリール基から選択される1種以上がより好ましい。さらには、Rは、置換基を有さない2価の炭化水素基(即ち、2価の無置換の炭化水素基)であることが特に好ましい。
 本発明の所望の効果を顕著に得る観点から、Rとしては、置換基を有していてもよい2価の炭化水素基であることが好ましく;置換基を有していてもよい2価の脂肪族炭化水素基、置換基を有していてもよい炭素原子数6~10のアリーレン基、又はそれらの組み合わせからなる2価の基であることがより好ましく;置換基を有していてもよい2価の脂肪族炭化水素基であることが更に好ましく;置換基を有していてもよい炭素原子数1~6のアルキレン基、置換基を有していてもよい炭素原子数6~10のシクロアルキレン基、置換基を有していてもよい炭素原子数2~6のアルケニレン基、置換基を有していてもよい炭素原子数6~10のシクロアルケニレン基、又はそれらの組み合わせからなる2価の基であることが更に好ましく;置換基を有していてもよい炭素原子数1~6のアルキレン基、置換基を有していてもよい炭素原子数6~10のシクロアルキレン基、又はそれらの組み合わせからなる2価の基であることがさらに好ましく;置換基を有していてもよい炭素原子数1~6のアルキレン基であることが特に好ましい。炭化水素基の組み合わせからなる2価の基の好適な例としては、C~Cアルキレン-C~C10アリーレン-C~Cアルキレン基、C~Cアルキレン-C~C10アリーレン-C~C10アリーレン-C~Cアルキレン基等が挙げられる。これらの組み合わせからなる2価の基において、構成するアルキレン基及びアリーレン基の炭素原子数の好適範囲、並びに置換基を有していてもよいことは、先述のとおりである。
-Rについて-
 式(1)において、Rは、それぞれ独立に、2価の有機基を表す。複数のRは、それぞれ同一でもよく、異なっていてもよい。Rが示す有機基は、先述のとおり、骨格原子として少なくとも炭素原子を含む基である。中でも、Rが示す有機基は、式(1)においてRに結合する酸素原子と結合する炭素原子を含有することが好ましく、また、式(1)においてRに結合する窒素原子と結合する炭素原子を含有することが好ましい。Rが示す2価の有機基の範囲は、Rが示す2価の有機基と同じでありうる。ここで、RとRとは、同一でもよく、異なっていてもよい。
 本発明の所望の効果を顕著に得る観点から、Rとしては、置換基を有していてもよい2価の炭化水素基、又は、置換基を有していてもよい2価の炭化水素基が酸素原子、スルホニル基、カルボニル基及びカーボネート基からなる群より選ばれる2価の連結基で連結された2価の基であることが好ましく;置換基を有していてもよい2価の炭化水素基、又は、置換基を有していてもよい2価の炭化水素基が酸素原子で連結された2価の基であることがより好ましく;置換基を有していてもよい2価の炭化水素基であることが更に好ましく;置換基を有していてもよい2価の脂肪族炭化水素基、置換基を有していてもよい炭素原子数6~10のアリーレン基、又は、それらの組み合わせからなる2価の基であることが更に好ましく;置換基を有していてもよい2価の脂肪族炭化水素基であることが更に好ましく;置換基を有していてもよい炭素原子数1~6のアルキレン基、置換基を有していてもよい炭素原子数6~10のシクロアルキレン基、置換基を有していてもよい炭素原子数2~6のアルケニレン基、置換基を有していてもよい炭素原子数6~10のシクロアルケニレン基、又はそれらの組み合わせからなる2価の基であることが更に好ましく;置換基を有していてもよい炭素原子数1~6のアルキレン基、置換基を有していてもよい炭素原子数6~10のシクロアルキレン基、又は、それらの組み合わせからなる2価の基であることが更に好ましく;置換基を有していてもよい炭素原子数1~6のアルキレン基が特に好ましい。
-Rについて-
 式(1)において、Rは、それぞれ独立に、水素原子又は1価の有機基を表す。複数のRは、それぞれ同一でもよく、異なっていてもよい。Rが示す有機基は、先述のとおり、骨格原子として少なくとも炭素原子を含む基である。Rが示す有機基は、先述のとおり、骨格原子として少なくとも炭素原子を含む基であるが、好ましくは、炭素原子、酸素原子、窒素原子、及び硫黄原子から選ばれる1個以上の骨格原子からなる1価の基でありうる。中でも、Rが示す有機基は、式(1)においてRに結合する炭素原子と結合する炭素原子を含有することが好ましい。Rが示す有機基の範囲は、その好適な例を含めて、Rと同じでありうる。ここで、RとRとは、同一でもよく、異なっていてもよい。
 本発明の所望の効果を顕著に得る観点から、Rは、水素原子、又は、置換基を有していてもよい1価の炭化水素基であることが好ましく;水素原子、置換基を有していてもよい炭素原子数1~6のアルキル基、置換基を有していてもよい炭素原子数6~10のシクロアルキル基、置換基を有していてもよい炭素原子数2~6のアルケニル基、置換基を有していてもよい炭素原子数6~10のシクロアルケニル基、又は、置換基を有していてもよい炭素原子数6~10のアリール基であることがより好ましく;水素原子、置換基を有していてもよい炭素原子数1~6のアルキル基、置換基を有していてもよい炭素原子数6~10のシクロアルキル基、又は、置換基を有していてもよい炭素原子数6~10のアリール基であることが更に好ましく;水素原子、又は、置換基を有していてもよい炭素原子数1~6のアルキル基であることが更に好ましく;水素原子、又は、無置換の炭素原子数1~6のアルキル基であることが更に好ましく;水素原子、又は、無置換の炭素原子数1~3のアルキル基であることが特に好ましい。
-nについて-
 式(1)において、nは、0以上の数を表す。本発明の効果を顕著に得る観点から、nは、好ましくは1以上、より好ましくは3以上、特に好ましくは5以上であり、好ましくは50以下、より好ましくは40以下、特に好ましくは30以下である。
-シリコーン骨格含有化合物の好ましい例-
 式(1)で表されるシリコーン骨格含有化合物の好ましい例としては、下記式(2)又は式(3)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000012
(式(2)及び(3)において、nは、0以上50以下の数を表し、式(1)におけるnと同じであることが好ましい。)
 本発明の一実施形態に係るシリコーン骨格含有化合物の分子量は、通常446以上、好ましくは600以上、より好ましくは800以上であり、好ましくは10000以下、折好ましくは8000以下、更に好ましくは60000以下、特に好ましくは3000以下である。式(1)においてnが0より大きい場合、シリコーン骨格含有化合物の重量平均分子量が、前記の分子量の範囲にあることが好ましい。重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により、ポリスチレン換算の値として測定できる。
 本発明の一実施形態に係るシリコーン骨格含有化合物の官能基当量は、通常200g/eq.以上、より好ましくは250g/eq.以上、特に好ましくは300g/eq.以上であり、好ましくは1500g/eq.以下、より好ましくは1300g/eq.以下、特に好ましくは1100g/eq.以下である。シリコーン骨格含有化合物の官能基当量とは、1当量の官能基を含むシリコーン骨格含有化合物の質量を表す。また、シリコーン骨格含有化合物の官能基とは、別に断らない限り、下記式(6)で表される基を表す。
Figure JPOXMLDOC01-appb-C000013
(式(6)において、Rは、式(1)におけるRと同じであり、*は結合手を表す。)
<シリコーン骨格含有化合物の製造方法>
 以下、本発明の一実施形態に係るシリコーン骨格含有化合物の製造方法の例を示す。
 本発明の一実施形態に係るシリコーン骨格含有化合物は、アミン化合物とイソシアネート化合物とを反応させてウレア結合を形成することを含む製造方法によって製造できる。例えば、ジアミン化合物とイソシアネート化合物とを反応させることを含む方法により、シリコーン骨格含有化合物を製造してもよい。この方法では、シリコーン骨格を含有するジアミンと、式(6)で表される官能基を含有するイソシアネート化合物とを用いることにより、シリコーン骨格含有化合物を製造することができる。
 特に好ましいシリコーン骨格含有化合物の製造方法の例としては、下記式(4)で表されるジアミン化合物と、下記式(5)で表されるイソシアネート化合物と、を反応させることを含む製造方法が挙げられる。式(4)及び式(5)において、R、R、R、R及びnは、式(1)におけるR、R、R、R及びnと同じである。
Figure JPOXMLDOC01-appb-C000014
 式(4)で表されるジアミン化合物は、例えば、信越化学工業社製の「X-22-161A」、「KF-8010」等の両末端アミノ変性シリコーンオイルとして、市場から入手してもよい。ジアミン化合物は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 式(5)で表されるイソシアネート化合物は、例えば、昭和電工社製の「カレンズMOI」(2-イソシアナトエチルメタクリレート)、「カレンズAOI」(2-イソシアナトエチルアクリレート)、「カレンズAOI-VM」(2-イソシアナトエチルアクリレート)、「カレンズMOI-EG」(2-(2-メタクリロイルオキシエチルオキシ)エチルイソシアナート)等のイソシアネートモノマーとして、市場から入手してもよい。イソシアネート化合物は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 アミン化合物とイソシアネート化合物との反応系における、アミン化合物及びイソシアネート化合物の混合比率は、目的生成物及び当該目的生成物を含む樹脂組成物の硬化物の物性に合わせて適宜な範囲を選択しうる。通常、反応後には、未反応のアミン化合物及びイソシアネート化合物が残存しないことが好ましい。例えば式(4)で表されるジアミン化合物と式(5)で表されるイソシアネート化合物とを反応させる場合、ジアミン化合物とイソシアネート化合物とのモル比(ジアミン化合物のモル数:イソシアネート化合物のモル数)の範囲は、好ましくは30:70~70:30、より好ましくは40:60~60:40、特に好ましくは45:55~55:45の範囲である。
 アミン化合物とイソシアネート化合物との反応は、溶媒を使用せずに無溶媒系で進行させてもよいし、有機溶媒を使用して有機溶媒系でも進行させてもよい。有機溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル系溶媒;セロソルブ、ブチルカルビトール等のカルビトール系溶媒;トルエン、キシレン等の芳香族炭化水素溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド系溶媒が挙げられる。有機溶媒は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 アミン化合物とイソシアネート化合物との反応温度は、反応が進行する範囲で特に限定されず、例えば、マイナス25℃~150℃の範囲でありうる。また、アミン化合物とイソシアネート化合物との反応時間は、目的とするシリコーン骨格含有化合物が得られる範囲で特に限定されず、例えば、0秒間~10時間の範囲でありうる。ここで、反応時間が0秒とは、アミン化合物とイソシアネート化合物との混合終了時に直ちに反応を終了させてもよいことを表す。
 シリコーン骨格含有化合物は、例えば、アミン化合物及びイソシアネート化合物の一方(有機溶媒系又は無溶媒系)を攪拌しながら、そこにアミン化合物及びイソシアネート化合物の他方を滴下し、滴下後にさらに撹拌することによって製造してもよい。この場合、滴下時間は、特に限定されるものではないが、10分間~3時間の範囲が好ましい。
 シリコーン骨格含有化合物の製造方法では、アミン化合物及びイソシアネート化合物の反応後にシリコーン骨格含有化合物を精製してもよい。精製方法としては、公知の方法を採用してもよい。有機溶媒を用いて反応を行った場合、有機溶媒を完全に除去しないでそのまま樹脂組成物の溶媒に使用してもよい。
 高い収率を達成する観点から、シリコーン骨格含有化合物は、上述したように、ジアミン化合物とイソシアネート化合物とを反応させることを含む製造方法で製造することが好ましい。このように好ましい製造方法を採用した場合、シリコーン骨格含有化合物は、ジアミン化合物とイソシアネート化合物との反応生成物として製造でき、好ましくは式(4)で表されるジアミン化合物と式(5)で表されるイソシアネート化合物との反応生成物として製造できる。
<シリコーン骨格含有化合物の特性及び用途>
 本発明の一実施形態に係るシリコーン骨格含有化合物は、柔軟性及び靭性の両方に優れた分子構造を有する。また、シリコーン骨格含有化合物は、エチレン性二重結合の反応によって結合できるので、当該シリコーン骨格含有化合物を含む樹脂組成物を硬化させることができる。よって、シリコーン骨格含有化合物によれば、柔軟性及び靭性の両方に優れる樹脂組成物の硬化物を得ることができる。この優れた特性を利用して、シリコーン骨格含有化合物は、プリント配線板の絶縁層形成用材料、半導体チップの封止用材料、フォトリソグラフィ用材料、などの材料として好ましく用いることができる。
 また、本発明の一実施形態に係るシリコーン骨格含有化合物は、通常は呈色が小さく、好ましくは無色透明である。したがって、波長380nm以上750nm以下の可視波長領域において光の吸収が小さいことができる。よって、シリコーン骨格含有化合物は、通常、光学材料としての優れた適性を有することができる。
 さらに、本発明の一実施形態に係るシリコーン骨格含有化合物は、通常、840nm~860nm(例えば、850nm)、1300nm~1320nm(例えば、1310nm)、1540nm~1560nm(例えば、1550nm)などの、光導波路で採用されている伝送波長において小さい吸収を有することができる。したがって、シリコーン骨格含有化合物は、光導波路の材料としての優れた適性を有することができる。
 <樹脂組成物>
 上述したシリコーン骨格含有化合物を用いて樹脂組成物を製造することができる。この樹脂組成物は、少なくとも前記のシリコーン骨格含有化合物を含み、更に必要に応じて任意の成分を含みうる。
 エチレン性二重結合の反応によって結合を形成することができるので、前記の樹脂組成物は硬化して硬化物を形成することができる。前記の反応は、樹脂組成物の組成に応じて、熱及び光のいずれによって進行させることも可能である。よって、樹脂組成物は、熱によって硬化可能な熱硬化性樹脂組成物であってもよく、光によって硬化可能な光硬化性樹脂組成物であってもよい。
 樹脂組成物は、1種類のシリコーン骨格含有化合物を単独で含んでいてもよく、2種類以上のシリコーン骨格含有化合物を組み合わせて含んでいてもよい。
 本発明の一実施形態に係る樹脂組成物中のシリコーン骨格含有化合物の含有量は、樹脂組成物の硬化物に要求される特性に応じて決定してよい。樹脂組成物中のシリコーン骨格含有化合物の含有量は、樹脂組成物中の不揮発成分を100質量%とした場合、例えば、0.1質量%以上、1質量%以上、又は10質量%以上でありえ、好ましくは20質量%以上、より好ましくは30質量%以上、特に好ましくは40質量%以上である。上限は、例えば、99質量%以下、95質量%以下、90質量%以下などでありえる。
 また、樹脂組成物中のシリコーン骨格含有化合物の含有量は、樹脂組成物中の樹脂成分を100質量%とした場合、例えば、0.1質量%以上、1質量%以上、又は10質量%以上でありえ、好ましくは20質量%以上、より好ましくは30質量%以上、特に好ましくは40質量%以上である。上限は、例えば、99質量%以下、95質量%以下、90質量%以下などでありえる。樹脂組成物中の樹脂成分とは、樹脂組成物の不揮発成分のうち、後述する無機充填材及びガラス繊維を除いた成分をいう。
 本発明の一実施形態に係る樹脂組成物は、エチレン性不飽和基を含有するシリコーン骨格含有化合物以外の化合物を更に含んでいてもよい。本明細書では、「エチレン性不飽和基を含有するシリコーン骨格含有化合物以外の化合物」を、「任意の不飽和化合物」ということがある。通常、エチレン性二重結合が反応することにより、任意の不飽和化合物同士が結合したり、任意の不飽和化合物とシリコーン骨格含有化合物とが結合したりすることができる。
 任意の不飽和化合物としては、エチレン性二重結合を含有するラジカル重合性不飽和基を有する化合物を用いうる。1分子中のラジカル重合性不飽和基の数は、1個でもよく、2個でもよく、3個以上でもよい。
 ラジカル重合性不飽和基としては、例えば、マレイミド基(2,5-ジヒドロ-2,5-ジオキソ-1H-ピロール-1-イル基)、ビニル基、アリル基、スチリル基、ビニルフェニル基、アクリロイル基、メタクリロイル基、フマロイル基、マレオイル基などが挙げられる。本発明の効果を顕著に得る観点から、任意の不飽和化合物は、マレイミド樹脂、(メタ)アクリル樹脂及びスチリル樹脂から選ばれる1種以上を含むことが好ましい。
 マレイミド樹脂としては、1分子中に1個以上(好ましくは2個以上)のマレイミド基(2,5-ジヒドロ-2,5-ジオキソ-1H-ピロール-1-イル基)を有する化合物を用いうる。マレイミド樹脂は、モノマーであってもよく、オリゴマーであってもよい。マレイミド樹脂としては、例えば、「BMI-3000J」、「BMI-5000」、「BMI-1400」、「BMI-1500」、「BMI-1700」、「BMI-689」(いずれもデジクナーモレキュールズ社製)などの、ダイマージアミン由来の炭素原子数36の脂肪族骨格を含むマレイミド樹脂;発明協会公開技報公技番号2020-500211号に記載される、インダン骨格を含むマレイミド樹脂;「MIR-3000-70MT」(日本化薬社製)、「BMI-4000」(大和化成社製)、「BMI-80」(ケイアイ化成社製)などの、マレイミド基の窒素原子と直接結合している芳香環骨格を含むマレイミド樹脂が挙げられる。
 (メタ)アクリル樹脂としては、1分子中に1個以上(好ましくは2個以上)の(メタ)アクリロイル基を有する化合物を用いうる。(メタ)アクリル樹脂は、モノマーであってもよく、オリゴマーであってもよい。「(メタ)アクリロイル基」という用語は、アクリロイル基及びメタクリロイル基の総称である。メタクリル樹脂としては、例えば、「A-DOG」(新中村化学工業社製);「DCP-A」、「TMP-A」、「PE-3A」、「PE-4A」、「DPE-6A」(何れも共栄社化学社製);「NPDGA」、「FM-400」、「R-687」、「THE-330」、「PET-30」、「DPHA」、「D-310」、「DPCA-20」、「DPCA-30」、「DPCA-60」、「DPCA-120」、「GPO-303」、「TMPTA」、「T-1420(T)」、「RP-1040」、「DPEA-12」、「THE-330」(何れも日本化薬社製);「TMPTA」(大阪有機化学工業社製);などの、(メタ)アクリル樹脂が挙げられる。
 スチリル樹脂としては、1分子中に1個以上(好ましくは2個以上)のスチリル基又はビニルフェニル基を有する化合物を用いうる。スチリル樹脂は、モノマーであってもよく、オリゴマーであってもよい。スチリル樹脂としては、例えば、「OPE-2St」、「OPE-2St 1200」、「OPE-2St 2200」(何れも三菱ガス化学社製)などの、スチリル樹脂が挙げられる。
 任意の不飽和化合物は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 任意の不飽和化合物のラジカル重合性不飽和基当量は、好ましくは150g/eq.以上、より好ましくは200g/eq.以上、特に好ましくは300g/eq.以上であり、好ましくは5000g/eq.以下、より好ましくは4000g/eq.以下、特に好ましくは3000g/eq.以下である。任意の不飽和化合物のラジカル重合性不飽和基当量とは、1当量のラジカル重合性不飽和基を含む任意の不飽和化合物の質量を表す。
 本発明の一実施形態に係る樹脂組成物が任意の不飽和化合物を含む場合、樹脂組成物中の任意の不飽和化合物の含有量は、樹脂組成物の硬化物に要求される特性に応じて決定してよい。樹脂組成物中の任意の不飽和化合物の含有量は、樹脂組成物中の不揮発成分を100質量%とした場合、例えば、0.01質量%以上又は0.1質量%以上でありえ、好ましくは1質量%以上、より好ましくは2質量%以上、特に好ましくは5質量%以上である。上限は、例えば、50質量%以下、40質量%以下、30質量%以下などでありえる。
 本発明の所望の効果を顕著に得る観点では、シリコーン骨格含有化合物と任意の不飽和化合物との質量比(任意の不飽和化合物の質量/シリコーン骨格含有化合物の質量)は、特定の範囲にあることが好ましい。前記の質量比の具体的範囲は、好ましくは0.01以上、より好ましくは0.02以上、特に好ましくは0.05以上であり、好ましくは1.0以下、より好ましくは0.5以下、特に好ましくは0.2以下である。
 本発明の一実施形態に係る樹脂組成物は、当該樹脂組成物の硬化を促進する観点から、ラジカル発生剤を更に含んでいてもよい。光硬化性を有する樹脂組成物を得る観点では、当該樹脂組成物は光ラジカル発生剤を含むことが好ましい。また、熱硬化性を有する樹脂組成物を得る観点では、当該樹脂組成物は熱ラジカル発生剤を含むことが好ましい。
 光ラジカル発生剤としては、例えば、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-ベンゾイル-4’-メチルジフェニルケトン、ジベンジルケトン、フルオレノン等のベンゾフェノン誘導体;2,2’-ジエトキシアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン等のアセトフェノン誘導体;チオキサントン、2-メチルチオキサントン、2-イソプロピルチオキサントン、ジエチルチオキサントン等のチオキサントン誘導体;ベンジル、ベンジルジメチルケタール、ベンジル-β-メトキシエチルアセタール等のベンジル誘導体;ベンゾイン、ベンゾインメチルエーテル等のベンゾイン誘導体;1-フェニル-1,2-ブタンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-ベンゾイル)オキシム、1,3-ジフェニルプロパントリオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-3-エトキシプロパントリオン-2-(o-ベンゾイル)オキシム等のオキシム類;N-フェニルグリシン等のN-アリールグリシン類;ベンゾイルパークロライド等の過酸化物類;芳香族ビイミダゾール類;チタノセン類;α-(n-オクタンスルフォニルオキシイミノ)-4-メトキシベンジルシアニド;等が挙げられる。
 熱ラジカル発生剤としては、例えば、ジ-t-ブチルパーオキサイド、ジクミルパーオキサイド、t-へキシルパーオキシ-2-エチルヘキサノエート等のジアルキルパーオキサイド類;ラウロイルパーオキサイド、ベンゾイルパーオキサイド、ベンゾイルトルイルパーオキサイド、トルイルパーオキサイド等のジアシルパーオキサイド類;過酢酸t-ブチル、t-ブチルパーオキシオクトエート、t-ブチルパーオキシベンゾエート等の過酸エステル類;ケトンパーオキサイド類;パーオキシカーボネート類;1,1-ジ(t-アミルパーオキシ)シクロヘキサン等のパーオキシケタール類;2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等のアゾニトリル化合物;2,2’-アゾビス{2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド}等のアゾアミド化合物;2,2’-アゾビス(2-アミジノプロパン)二塩酸塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]二塩酸塩等のアゾアミジン化合物;2,2’-アゾビス(2,4,4-トリメチルペンタン)、4,4’-アゾビス(4-シアノペンタン酸)等のアゾアルカン化合物;2,2’-アゾビス(2-メチルプロピオンアミドオキシム)等オキシム骨格を有するアゾ化合物;2,2’-アゾビス(イソ酪酸)ジメチル等のアゾ系化合物;等が挙げられる。
 ラジカル発生剤は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 本発明の一実施形態に係る樹脂組成物がラジカル発生剤を含む場合、樹脂組成物中のラジカル発生剤の含有量は、樹脂組成物の硬化物に要求される特性に応じて決定してよい。樹脂組成物中のラジカル発生剤の含有量は、樹脂組成物中の不揮発成分を100質量%とした場合、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、さらに好ましくは0.5質量%以上であり、好ましくは10質量%以下、より好ましく5質量%以下、さらに好ましくは3質量%以下である。
 本発明の一実施形態に係る樹脂組成物は、任意の熱硬化性樹脂を更に含んでいてもよい。ただし、任意の熱硬化性樹脂には、上述したシリコーン骨格含有化合物、任意の不飽和化合物及びラジカル発生剤は含めない。任意の熱硬化性樹脂としては、例えば、エポキシ樹脂、ベンゾシクロブテン樹脂、エポキシアクリレート樹脂、ウレタンアクリレート樹脂、ウレタン樹脂、シアネート樹脂、ポリイミド樹脂、ベンゾオキサジン樹脂、不飽和ポリエステル樹脂、活性エステル樹脂、フェノール樹脂、メラミン樹脂、シリコーン樹脂、フェノキシ樹脂等が挙げられる。中でも、任意の熱硬化性樹脂は、エポキシ樹脂を含むことが好ましい。また、任意の熱硬化性樹脂は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 エポキシ樹脂は、1分子中に1個以上(好ましくは2個以上)のエポキシ基を有する限り、その種類は特に限定されない。エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert-ブチル-カテコール型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、フルオレン骨格型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、アントラセン型エポキシ樹脂、線状脂肪族エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、スピロ環含有エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、トリメチロール型エポキシ樹脂、ハロゲン化エポキシ樹脂等が挙げられる。
 エポキシ樹脂は、温度20℃で液状のエポキシ樹脂(以下「液状エポキシ樹脂」ということがある。)と、温度20℃で固体状のエポキシ樹脂(以下「固体状エポキシ樹脂」ということがある。)に分類しうる。樹脂組成物は、液状エポキシ樹脂のみを含んでもよく、固体状エポキシ樹脂のみを含んでもよく、液状エポキシ樹脂と固体状エポキシ樹脂とを組み合わせて含んでもよい。液状エポキシ樹脂と固体状エポキシ樹脂とを組み合わせて含む場合、配合割合(液状:固体状)は質量比で20:1~1:20の範囲(好ましくは10:1~1:10、より好ましくは3:1~1:3)としてよい。
 エポキシ樹脂のエポキシ基当量は、好ましくは50g/eq.~2000g/eq.、より好ましくは60g/eq.~1000g/eq.、さらに好ましくは80g/eq.~500g/eq.である。エポキシ基当量は、1当量のエポキシ基を含むエポキシ樹脂の質量であり、JIS K7236に従って測定することができる。
 本発明の一実施形態に係る樹脂組成物がエポキシ樹脂を含む場合、樹脂組成物中のエポキシ樹脂の含有量は、樹脂組成物の硬化物に要求される特性に応じて決定してよい。樹脂組成物中のエポキシ樹脂の含有量は、樹脂組成物中の樹脂成分を100質量%とした場合、例えば、1質量%以上、5質量%以上又は10質量%以上でありえ、好ましくは15質量%以上、より好ましくは20質量%以上、特に好ましくは30質量%以上である。上限は、例えば、65質量%以下、60質量%以下、55質量%以下又は50質量%以下などでありうる。
 任意の熱硬化性樹脂がエポキシ樹脂を含む場合、当該任意の熱硬化性樹脂は、エポキシ樹脂と反応して結合を形成できる架橋剤(硬化剤)を含むことが好ましい。架橋剤としては、例えば、「EXB9451」、「EXB9460」、「EXB9460S」、「HPC-8000-65T」、「HPC-8000H-65TM」、「EXB-8000L-65TM」、「EXB9416-70BK」、「EXB-8100L-65T」、「EXB-8150L-65T」、「EXB-8150-65T」、「HPC-8150-60T」、「HPC-8150-62T」、「HPB-8151-62T」、「EXB-8500-65T」(何れもDIC社製)、「DC808」、「YLH1026」、「DC808」、「YLH1026」、「YLH1030」、「YLH1048」(いずれも三菱ケミカル社製)、「PC1300-02-65T」(エア・ウォーター社製)、などの活性エステル樹脂;「TD2090」、「TD2131」(DIC社製)、「MEH-7600」、「MEH-7851」、「MEH-8000H」(明和化成社製)、「NHN」、「CBN」、「GPH-65」、「GPH-103」(日本化薬社製)、「SN170」、「SN180」、「SN190」、「SN475」、「SN485」、「SN495」、「SN375」、「SN395」(日鉄ケミカル&マテリアル社製)、「LA7052」、「LA7054」、「LA3018」、「LA1356」(DIC社製)等のフェノール樹脂;「F-a」、「P-d」(四国化成社製)、「HFB2006M」(昭和高分子社製)等のベンゾオキサジン樹脂;メチルヘキサヒドロ無水フタル酸、メチルナジック酸無水物、水素化メチルナジック酸無水物などの酸無水物;「PT30」、「PT60」、「BA230S75」(ロンザジャパン社製)などのシアネートエステル樹脂;などが挙げられる。
 架橋剤の活性基当量は、好ましくは50g/eq.~3000g/eq.、より好ましくは100g/eq.~1000g/eq.、さらに好ましくは100g/eq.~500g/eq.、特に好ましくは100g/eq.~300g/eq.である。架橋剤の活性基当量は、活性基1当量あたりの架橋剤の質量を表す。また、活性基とは、エポキシ基と反応可能な架橋剤の基を表す。
 エポキシ樹脂のエポキシ基数を1とした場合、架橋剤の活性基数は、好ましくは0.01以上、より好ましくは0.1以上、更に好ましくは1以上であり、好ましくは10以下、より好ましくは5以下、特に好ましくは2以下である。「エポキシ樹脂のエポキシ基数」とは、樹脂組成物中に存在するエポキシ樹脂の不揮発成分の質量をエポキシ当量で割り算した値を全て合計した値を表す。また、「架橋剤の活性基数」とは、樹脂組成物中に存在する架橋剤の不揮発成分の質量を活性基当量で割り算した値を全て合計した値を表す。
 エポキシ樹脂、架橋剤等の任意の熱硬化性樹脂の重量平均分子量(Mw)は、好ましくは100~5,000、より好ましくは250~3,000、さらに好ましくは400~1,500である。任意の熱硬化性樹脂の重量平均分子量Mwは、GPC法により、ポリスチレン換算の値として測定できる。
 本発明の一実施形態に係る樹脂組成物が任意の熱硬化性樹脂を含む場合、樹脂組成物中の任意の熱硬化性樹脂の含有量は、樹脂組成物の硬化物に要求される特性に応じて決定してよい。樹脂組成物中の任意の熱硬化性樹脂の含有量は、樹脂組成物中の樹脂成分を100質量%とした場合、例えば、1質量%以上、5質量%以上又は10質量%以上でありえ、好ましくは15質量%以上、より好ましくは20質量%以上、特に好ましくは30質量%以上である。上限は、例えば、65質量%以下、60質量%以下、55質量%以下又は50質量%以下などでありうる。
 本発明の一実施形態に係る樹脂組成物は、ガラス繊維を更に含んでいてもよい。ガラス繊維は、例えば、チョップドストランド、ミルドファイバーとして、市場から入手できる。
 ガラス繊維の平均繊維径は、硬化物の表面粗さを抑える観点から、好ましくは13μm以下、より好ましくは10μm以下、更に好ましくは8μm以下、特に好ましくは6μm以下であり、例えば、4μm以下又は2μm以下であってもよい。下限は、通常0.5μm以上でありうる。
 ガラス繊維の平均繊維長は、硬化物の熱膨張率を低くする観点から、好ましくは5μm以上、より好ましくは10μm以上、更に好ましくは20μm以上、特に好ましくは30μm以上であり、ガラス繊維の分散性を高める観点から、好ましくは100μm以下、より好ましくは80μm以下、更により好ましくは60μm以下、特に好ましくは50μm以下である。
 ガラス繊維の平均繊維径及び平均繊維長は、例えば、光学顕微鏡又は電子顕微鏡などの顕微鏡を用いて測定できる。
 本発明の一実施形態に係る樹脂組成物がガラス繊維を含む場合、樹脂組成物中のガラス繊維の含有量は、樹脂組成物の硬化物に要求される特性に応じて決定してよい。樹脂組成物中のガラス繊維の含有量は、樹脂組成物中の不揮発成分を100質量%とした場合、好ましくは2質量%以上、より好ましくは5質量%以上、特に好ましくは10質量%以上であり、好ましくは60質量%以下、より好ましくは50質量%以下、更に好ましくは40質量%以下、特に好ましくは30質量%以下である。
 本発明の一実施形態に係る樹脂組成物は、無機充填材を更に含んでもよい。無機充填材は、通常、粒子の状態で樹脂組成物に含まれる。無機充填材には、前記のガラス繊維は含めない。無機充填材としては、例えば、シリカ、アルミナ、硫酸バリウム、タルク、クレー、雲母粉、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、ホウ酸アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウムなどが挙げられる。中でもシリカが好適である。シリカとしては、例えば、無定形シリカ、溶融シリカ、結晶シリカ、合成シリカ、中空シリカ等が挙げられる。また、シリカとしては、球状シリカが好ましい。無機充填材の市販品としては、例えば、「UFP-30」(デンカ社製);「YC100C」、「YA050C」、「YA050C-MJE」、「YA010C」、「SC2500SQ」、「SO-C4」、「SO-C2」、「SO-C1」、「SC-C2」(何れもアドマテックス社製);「シルフィルNSS-3N」、「シルフィルNSS-4N」、「シルフィルNSS-5N」(トクヤマ社製)等が挙げられる。また、無機充填材は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 無機充填材の平均粒径は、樹脂組成物の硬化物に要求される特性に応じて決定してよい。一例において、無機充填材の平均粒径は、好ましくは5μm以下、より好ましくは2μm以下、さらに好ましくは1μm以下である。該平均粒径の下限は、特に限定されず、例えば0.01μm以上、0.02μm以上、0.03μm以上などでありうる。無機充填材の平均粒径は、ミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的には、レーザー回折散乱式粒径分布測定装置により、無機充填材の粒径分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、無機充填材100mg、メチルエチルケトン10gをバイアル瓶に秤取り、超音波にて10分間分散させたものを使用することができる。測定サンプルを、レーザー回折式粒径分布測定装置を使用して、使用光源波長を青色及び赤色とし、フローセル方式で無機充填材の体積基準の粒径分布を測定し、得られた粒径分布からメディアン径として平均粒径を算出しうる。レーザー回折式粒径分布測定装置としては、例えば堀場製作所社製「LA-960」等が挙げられる。
 無機充填材は、アミノシラン系カップリング剤、ウレイドシラン系カップリング剤、エポキシシラン系カップリング剤、メルカプトシラン系カップリング剤、ビニルシラン系カップリング剤、スチリルシラン系カップリング剤、アクリレートシラン系カップリング剤、イソシアネートシラン系カップリング剤、スルフィドシラン系カップリング剤、オルガノシラザン化合物、チタネート系カップリング剤等の表面処理剤で表面処理してその耐湿性、分散性を向上させたものが好ましい。
 本発明の一実施形態に係る樹脂組成物が無機充填材を含む場合、樹脂組成物中の無機充填材の含有量は、樹脂組成物の硬化物に要求される特性に応じて決定してよい。樹脂組成物中の無機充填材の含有量は、樹脂組成物中の不揮発成分を100質量%とした場合、例えば、5質量%以上、10質量%以上でありえ、好ましくは30質量%以上、より好ましくは40質量%以上、さらに好ましくは50質量%以上である。無機充填材の含有量の上限は、特に限定されないが、例えば90質量%以下、85質量%以下などでありうる。
 ガラス繊維と無機充填材との合計の含有量は、樹脂組成物中の不揮発成分を100質量%とした場合、好ましくは50質量%以上、より好ましくは55質量%以上、更に好ましくは60質量%以上、特に好ましくは65%以上であり、好ましくは90質量%以下、より好ましくは85質量%以下、特に好ましくは80質量%以下である。
 本発明の一実施形態に係る樹脂組成物は、不揮発成分として、任意の添加剤を更に含んでもよい。このような任意の添加剤としては、例えば、ゴム粒子等の有機充填材;有機ホスフィン化合物、イミダゾール化合物、アミンアダクト化合物、アミン化合物、有機金属錯体、有機金属塩等の架橋促進剤;ポリビニルアセタール樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、ポリエーテルエーテルケトン樹脂、ポリエステル樹脂等の熱可塑性樹脂;有機銅化合物、有機亜鉛化合物、有機コバルト化合物等の有機金属化合物;フタロシアニンブルー、フタロシアニングリーン、アイオディングリーン、ジアゾイエロー、クリスタルバイオレット、酸化チタン、カーボンブラック等の着色剤;ハイドロキノン、カテコール、ピロガロール、フェノチアジン等の重合禁止剤;シリコーン系レベリング剤、アクリルポリマー系レベリング剤等のレベリング剤;ベントン、モンモリロナイト等の増粘剤;シリコーン系消泡剤、アクリル系消泡剤、フッ素系消泡剤、ビニル樹脂系消泡剤等の消泡剤;ベンゾトリアゾール系紫外線吸収剤等の紫外線吸収剤;尿素シラン等の接着性向上剤;トリアゾール系密着性付与剤、テトラゾール系密着性付与剤、トリアジン系密着性付与剤等の密着性付与剤;ヒンダードフェノール系酸化防止剤等の酸化防止剤;スチルベン誘導体等の蛍光増白剤;フッ素系界面活性剤、シリコーン系界面活性剤等の界面活性剤;リン系難燃剤(例えばリン酸エステル化合物、ホスファゼン化合物、ホスフィン酸化合物、赤リン)、窒素系難燃剤(例えば硫酸メラミン)、ハロゲン系難燃剤、無機系難燃剤(例えば三酸化アンチモン)等の難燃剤;リン酸エステル系分散剤、ポリオキシアルキレン系分散剤、アセチレン系分散剤、シリコーン系分散剤、アニオン性分散剤、カチオン性分散剤等の分散剤;ボレート系安定剤、チタネート系安定剤、アルミネート系安定剤、ジルコネート系安定剤、イソシアネート系安定剤、カルボン酸系安定剤、カルボン酸無水物系安定剤等の安定剤等が挙げられる。任意の添加剤は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。斯かる添加剤の含有量は、樹脂組成物に要求される特性に応じて決定してよい。
 本発明の一実施形態に係る樹脂組成物は、揮発性成分として、有機溶媒を更に含んでもよい。有機溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソブチル、酢酸イソアミル、プロピオン酸メチル、プロピオン酸エチル、γ-ブチロラクトン等のエステル系溶媒;テトラヒドロピラン、テトラヒドロフラン、1,4-ジオキサン、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジフェニルエーテル等のエーテル系溶媒;メタノール、エタノール、プロパノール、ブタノール、エチレングリコール等のアルコール系溶媒;酢酸2-エトキシエチル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセタート、エチルジグリコールアセテート、γ-ブチロラクトン、メトキシプロピオン酸メチル等のエーテルエステル系溶媒;乳酸メチル、乳酸エチル、2-ヒドロキシイソ酪酸メチル等のエステルアルコール系溶媒;2-メトキシプロパノール、2-メトキシエタノール、2-エトキシエタノール、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル(ブチルカルビトール)等のエーテルアルコール系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;アセトニトリル、プロピオニトリル等のニトリル系溶媒;ヘキサン、シクロペンタン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素系溶媒;ベンゼン、トルエン、キシレン、エチルベンゼン、トリメチルベンゼン等の芳香族炭化水素系溶媒等が挙げられる。有機溶媒は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 本発明の一実施形態に係る樹脂組成物が有機溶媒を含む場合、樹脂組成物中の有機溶媒の含有量は、樹脂組成物に要求される特性に応じて決定してよい。樹脂組成物中の有機溶媒の含有量は、樹脂組成物中の全成分を100質量%とした場合、例えば、60質量%以下、40質量%以下、30質量%以下、20質量%以下、15質量%以下、10質量%以下などでありうる。下限は、例えば、0質量%以上、0.1質量%以上、1質量%以上、3質量%以上などでありうる。
 本発明の一実施形態に係る樹脂組成物は、上記の成分のうち必要な成分を適宜混合し、また、必要に応じて三本ロール、ボールミル、ビーズミル、サンドミル等の混練手段、あるいはスーパーミキサー、プラネタリーミキサー等の撹拌手段により混練または混合することにより製造することができる。
 本発明の一実施形態に係る樹脂組成物を硬化することにより、硬化物を得ることができる。通常、樹脂組成物に含まれる有機溶媒等の揮発性成分は、硬化時に与えられる熱によって揮発しうるが、シリコーン骨格含有化合物、任意の不飽和化合物、ラジカル発生剤、任意の熱硬化性樹脂、ガラス繊維、無機充填材、及び任意の添加剤等の不揮発成分は、硬化時の熱によっては揮発しない。よって、硬化物は、樹脂組成物の不揮発成分又はその反応生成物を含みうる。
 シリコーン骨格含有化合物を含む本実施形態に係る樹脂組成物は、柔軟性及び靭性の両方に優れる硬化物をもたらすことができる。よって、前記の硬化物をプリント配線板又は半導体チップパッケージの絶縁層又は封止層に適用した場合に、絶縁層又は封止層におけるクラックの発生を抑制したり、絶縁層又は封止層の剥離を抑制したりすることができる。また、前記の硬化物を光導波路に適用した場合に、光導波路におけるクラックの発生を抑制したり、光導波路の剥離を抑制したりできる。
 一実施形態において、樹脂組成物の硬化物は、高い曲げ靭性を有することができる。例えば、後述する実施例の[曲げ靭性の測定試験]欄に記載のようにJIS K7171に従って曲げ試験を実施した場合、本実施形態に係る樹脂組成物の硬化物の曲げ靭性は、好ましくは2.0MPa以上、より好ましくは3.0MPa以上、特に好ましくは3.5MPa以上でありうる。
 一実施形態において、樹脂組成物の硬化物は、高い引張靭性を有することができる。例えば、後述する実施例の[引張靭性の測定試験]欄に記載のようにJIS K7161に従って引張試験を実施した場合、本実施形態に係る樹脂組成物の硬化物の引張靭性は、好ましくは0.5MPa以上、より好ましくは1.0MPa以上、特に好ましくは1.5MPa以上でありうる。
 一実施形態において、樹脂組成物の硬化物は、高い柔軟性を有することができる。例えば、後述する実施例の[折曲げ試験]欄に記載のようにサイズ50mmx50mmx2mmのシート状の硬化物を180°折り曲げた場合、当該硬化物が割れることを抑制できる。
 一実施形態において、樹脂組成物の硬化物は、通常は低い誘電特性を有することができる。例えば、硬化物は、低い比誘電率(Dk)を有することができ、また、低い誘電正接(Df)を有することができる。したがって、前記の硬化物をプリント配線板又は半導体チップパッケージの絶縁層に適用した場合に、伝送損失を低くすることが期待できる。前記の比誘電率及び誘電正接は、後述する実施例に記載の方法でシート状の硬化物を作製し、測定周波数5.8GHz、23℃の測定条件で空洞共振法によって測定しうる。
 一実施形態において、樹脂組成物の硬化物は、通常は呈色が小さいことができ、好ましくは無色透明であることができる。よって、硬化物は、波長380nm以上750nm以下の可視波長領域において光の吸収が小さいことができる。例えば、サイズ50mmx50mmx2mmのシート状の硬化物を用いて波長380nm以上750nm以下の可視波長領域における全光線透過率を測定した場合に、高い全光線透過率を得ることができる。前記の全光線透過率は、後述する実施例に記載の方法で製造されるシート状の硬化物を用いて測定しうる。
 一実施形態において、樹脂組成物の硬化物は、通常、840nm~860nm(例えば、850nm)、1300nm~1320nm(例えば、1310nm)、1540nm~1560nm(例えば、1550nm)などの、光導波路で採用されている伝送波長において小さい吸収を有することができる。したがって、シリコーン骨格含有化合物は、光導波路の材料としての優れた適性を有することができる。
 一実施形態において、樹脂組成物は、露光によって硬化して硬化物を形成することができる。よって、樹脂組成物は、フォトリソグラフィ材料用の樹脂組成物として使用することができる。また、樹脂組成物は、プリント配線板の絶縁層を形成するための樹脂組成物(プリント配線板の絶縁層形成用の樹脂組成物)として好適に使用することができ、プリント配線板の層間絶縁層を形成するための樹脂組成物(プリント配線板の絶層間縁層形成用の樹脂組成物)としてより好適に使用することができる。さらに、樹脂組成物は、プリント配線板が部品内蔵回路板である場合にも好適に使用することができる。樹脂組成物はまた、半導体チップを封止するための樹脂組成物(半導体チップ封止用の樹脂組成物)として好適に使用することができ、さらには、再配線層を形成するための絶縁層としての再配線形成層用の樹脂組成物(再配線形成層用の樹脂組成物)として好適に使用することができる。樹脂組成物はさらに、光導波路を形成するための樹脂組成物(光導波路形成用の樹脂組成物)として使用することができる。また、樹脂組成物は、樹脂シート、プリプレグ等のシート状積層材料、ソルダーレジスト、アンダーフィル材、ダイボンディング材、穴埋め樹脂、部品埋め込み樹脂等、樹脂組成物が必要とされる用途で広範囲に使用できる。
 <シート状積層材料(樹脂シート、プリプレグ)>
 本発明の一実施形態に係る樹脂組成物は、そのまま使用することもできるが、該樹脂組成物を含むシート状積層材料の形態で用いてもよい。
 シート状積層材料としては、以下に示す樹脂シート、プリプレグが好ましい。
 一実施形態において、樹脂シートは、支持体と、該支持体上に形成された樹脂組成物の層(以下、単に「樹脂組成物層」ということがある。)とを備える。樹脂組成物層は、上述した樹脂組成物を含み、好ましくは上述した樹脂組成物のみを含む。
 樹脂組成物層の厚さは、用途によって好適値は異なり、用途に応じて適宜決定してよい。例えば、樹脂組成物層の厚さは、プリント配線板及び半導体チップパッケージの薄型化の観点から、好ましくは200μm以下、より好ましくは150μm以下、120μm以下、100μm以下、80μm以下、60μm以下又は50μm以下である。樹脂組成物層の厚さの下限は、特に限定されないが、通常、1μm以上、5μm以上などでありうる。
 支持体としては、例えば、熱可塑性樹脂フィルム、金属箔、離型紙が挙げられ、熱可塑性樹脂フィルム、金属箔が好ましい。したがって好適な一実施形態において、支持体は、熱可塑性樹脂フィルム又は金属箔である。
 支持体として熱可塑性樹脂フィルムを使用する場合、熱可塑性樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)等のアクリル、環状ポリオレフィン、トリアセチルセルロース(TAC)、ポリエーテルサルファイド(PES)、ポリエーテルケトン、ポリイミド等が挙げられる。中でも、ポリエチレンテレフタレート、ポリエチレンナフタレートが好ましく、安価なポリエチレンテレフタレートが特に好ましい。
 支持体として金属箔を使用する場合、金属箔としては、例えば、銅箔、アルミニウム箔等が挙げられ、銅箔が好ましい。銅箔としては、銅の単金属からなる箔を用いてもよく、銅と他の金属(例えば、スズ、クロム、銀、マグネシウム、ニッケル、ジルコニウム、ケイ素、チタン等)との合金からなる箔を用いてもよい。
 支持体は、樹脂組成物層と接合する面にマット処理、コロナ処理、帯電防止処理等の表面処理を施してあってもよい。また、支持体としては、樹脂組成物層と接合する面に離型層を有する離型層付き支持体を使用してもよい。離型層付き支持体の離型層に使用する離型剤としては、例えば、アルキド樹脂、ポリオレフィン樹脂、ウレタン樹脂、及びシリコーン樹脂からなる群から選択される1種以上の離型剤が挙げられる。離型層付き支持体は、市販品を用いてもよく、例えば、アルキド樹脂系離型剤を主成分とする離型層を有するPETフィルムである、リンテック社製の「SK-1」、「AL-5」、「AL-7」、東レ社製の「ルミラーT60」、帝人社製の「ピューレックス」、ユニチカ社製の「ユニピール」等が挙げられる。
 支持体の厚さは、特に限定されないが、5μm~75μmの範囲が好ましく、10μm~60μmの範囲がより好ましい。なお、離型層付き支持体を使用する場合、離型層付き支持体全体の厚さが上記範囲であることが好ましい。
 支持体として金属箔を用いる場合、薄い金属箔に剥離が可能な支持基材を貼り合わせた支持基材付き金属箔を用いてよい。一実施形態において、支持基材付き金属箔は、支持基材と、該支持基材上に設けられた剥離層と、該剥離層上に設けられた金属箔とを含む。支持体として支持基材付き金属箔を用いる場合、樹脂組成物層は、金属箔上に設けられる。
 支持基材付き金属箔において、支持基材の材質は、特に限定されないが、例えば、銅箔、アルミニウム箔、ステンレス鋼箔、チタン箔、銅合金箔等が挙げられる。支持基材として、銅箔を用いる場合、電解銅箔、圧延銅箔であってよい。また、剥離層は、支持基材から金属箔を剥離できれば特に限定されず、例えば、Cr、Ni、Co、Fe、Mo、Ti、W、Pからなる群から選択される元素の合金層;有機被膜等が挙げられる。
 支持基材付き金属箔において、金属箔の材質としては、例えば、銅箔、銅合金箔が好ましい。
 支持基材付き金属箔において、支持基材の厚さは、特に限定されないが、10μm~150μmの範囲が好ましく、10μm~100μmの範囲がより好ましい。また、金属箔の厚さは、例えば、0.1μm~10μmの範囲としてよい。
 一実施形態において、樹脂シートは、必要に応じて、任意の層をさらに含んでいてもよい。斯かる任意の層としては、例えば、樹脂組成物層の支持体と接合していない面(即ち、支持体とは反対側の面)に設けられた、保護フィルム等が挙げられる。保護フィルムの厚さは、特に限定されるものではないが、例えば、1μm~40μmである。保護フィルムを積層することにより、樹脂組成物層の表面へのゴミの付着及びキズを抑制することができる。
 樹脂シートは、例えば、液状の樹脂組成物をそのまま、或いは有機溶媒に樹脂組成物を溶解した樹脂ワニスを調製し、これを、ダイコーター等を用いて支持体上に塗布し、更に乾燥させて樹脂組成物層を形成させることにより製造することができる。
 有機溶媒としては、樹脂組成物の成分として説明した有機溶媒と同様のものが挙げられる。有機溶媒は1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 乾燥は、加熱、熱風吹きつけ等の乾燥方法により実施してよい。乾燥条件は特に限定されないが、樹脂組成物層中の有機溶媒の含有量が通常10質量%以下、好ましくは5質量%以下となるように乾燥させる。樹脂組成物又は樹脂ワニス中の有機溶媒の沸点によっても異なるが、例えば30質量%~60質量%の有機溶媒を含む樹脂組成物又は樹脂ワニスを用いる場合、50℃~150℃で3分間~10分間乾燥させることにより、樹脂組成物層を形成することができる。
 樹脂シートは、ロール状に巻きとって保存することが可能である。樹脂シートが保護フィルムを有する場合、保護フィルムを剥がすことによって使用可能となる。
 一実施形態において、プリプレグは、シート状繊維基材に樹脂組成物を含浸させて形成される。
 プリプレグに用いるシート状繊維基材は特に限定されず、ガラスクロス、アラミド不織布、液晶ポリマー不織布等の、プリプレグ用基材として常用されているものを用いることができる。プリント配線板や半導体チップパッケージの薄型化の観点から、シート状繊維基材の厚さは、好ましくは50μm以下、より好ましくは40μm以下、さらに好ましくは30μm以下、特に好ましくは20μm以下である。シート状繊維基材の厚さの下限は特に限定されない。通常、10μm以上である。
 プリプレグは、ホットメルト法、ソルベント法等の公知の方法により製造することができる。
 プリプレグの厚さは、上述の樹脂シートにおける樹脂組成物層と同様の範囲でありうる。
 シート状積層材料は、プリント配線板の絶縁層を形成するため(プリント配線板の絶縁層用)に好適に使用することができ、プリント配線板の層間絶縁層を形成するため(プリント配線板の絶層間縁層用)により好適に使用することができる。シート状積層材料はまた、半導体チップを封止するため(半導体チップの封止用)に好適に使用することができ、再配線層を形成するための絶縁層としての再配線形成層用に好適に使用することができる。シート状積層材料はさらに、光導波路を形成するために好適に使用することができる。
 <光導波路>
 本発明の一実施形態に係る光導波路は、上述した樹脂組成物の硬化物を含む。通常、光導波路は、コア層及びクラッド層を備え、コア層及びクラッド層の一方又は両方が樹脂組成物の硬化物を含む。コア層は、樹脂組成物の硬化物のみを含んでいてもよい。また、クラッド層は、樹脂組成物の硬化物のみを含んでいてもよい。
 通常、コア層は延在するように形成され、クラッド層はコア層を覆うように形成される。一般的には、コア層がクラッド層中に設けられるので、コア層の全周面がクラッド層に覆われる。コア層とクラッド層とは、間に他の層を介することなく直接に接しており、よって、コア層とクラッド層との間には界面が形成されうる。通常、コア層はクラッド層の屈折率よりも高い屈折率を有するように形成されるので、コア層とクラッド層との間には屈折率差がある。信号伝送用の光は、コア層の一端から他端まで、コア層内を伝送されることができる。
 光導波路が伝送可能な光の波長は、さまざまに選択しうる。例を挙げると、伝送される光の好ましい波長の範囲は、840nm~860nm(例えば、850nm)、1300nm~1320nm(例えば、1310nm)、1540nm~1560nm(例えば、1550nm)などでありうる。また、光導波路は、シングルモードの光導波路であってもよく、マルチモードの光導波路であってもよい。
 光導波路は、必要に応じて、コア層及びクラッド層以外の任意の要素を備えていてもよい。例えば、光導波路は、コア層及びクラッド層を支持する基材を備えていてもよい。また、光導波路は、コア層及びクラッド層を保護する保護層を備えていてもよい。
 光導波路は、例えば、
 クラッド層形成用の樹脂組成物によって第一樹脂組成物層を形成する工程(I)と、
 第一樹脂組成物層を硬化させる工程(II)と、
 第一樹脂組成物層上に、コア層形成用の樹脂組成物によって第二樹脂組成物層を形成する工程(III)と、
 第二樹脂組成物層に露光処理を施す工程(IV)と、
 第二樹脂組成物層に現像処理を施す工程(V)と、
 第二樹脂組成物層上に、クラッド層形成用の樹脂組成物によって第三樹脂組成物層を形成する工程(VI)と、
 第三樹脂組成物層を硬化させる工程(VII)と、
 をこの順に含む方法によって、製造できる。
 工程(I)においては、クラッド層形成用の樹脂組成物によって第一樹脂組成物層を形成する。クラッド層形成用の樹脂組成物としては、熱硬化性樹脂組成物、光硬化性樹脂組成物等の硬化性樹脂組成物を用いてもよい。好ましくは、クラッド層形成用の樹脂組成物として上述したシリコーン骨格含有化合物を含む樹脂組成物を用いる。
 第一樹脂組成物層は、例えば、クラッド層形成用の樹脂組成物を基材上に塗布する方法によって形成してもよい。具体例を挙げると、有機溶媒を含むワニス状のクラッド層形成用の樹脂組成物を用意し、そのワニス状のクラッド層形成用の樹脂組成物を塗布してもよい。クラッド層形成用の樹脂組成物の塗布の後、必要に応じて乾燥を行って、第一樹脂組成物層を形成できる。
 第一樹脂組成物層は、例えば、クラッド層形成用の樹脂組成物を含む樹脂組成物層を備えた樹脂シートを用いて形成してもよい。具体例を挙げると、樹脂シートの樹脂組成物層を基材にラミネートすることにより、基材上に第一樹脂組成物層を形成できる。ラミネートは、通常、樹脂シートの樹脂組成物層を加熱しながら基材に圧着することによって行われる。このラミネートは、真空ラミネート法により、減圧下で行うことが好ましい。また、ラミネートの前に、必要に応じて、樹脂シート及び基材を加熱するプレヒート処理を行ってもよい。支持体を備える樹脂シートを用いて第一樹脂組成物層を形成した場合、通常は、工程(III)より前の適切な時期に支持体を剥離する。
 工程(II)においては、第一樹脂組成物層を硬化させる。硬化した第一樹脂組成物層は、クラッド層の一部を形成するので、以下「下部クラッド層」と呼ぶことがある。第一樹脂組成物層の硬化は、クラッド層形成用の樹脂組成物の組成に応じた方法によって行ってよい。
 例えば、クラッド層形成用の樹脂組成物が熱硬化性樹脂組成物である場合、第一樹脂組成物層を熱硬化させてもよい。一例において、熱硬化条件は、好ましくは150℃~250℃で20分間~180分間の範囲、より好ましくは160℃~230℃で30分間~120分間の範囲でありうる。また、光導波路の製造方法は、第一樹脂組成物層の熱硬化の前に、第一樹脂組成物層を熱硬化温度よりも低い温度で予備加熱することを含んでいてもよい。
 例えば、クラッド層形成用の樹脂組成物が光硬化性樹脂組成物である場合、第一樹脂組成物層を光硬化させてもよい。一例において、第一樹脂組成物層に活性光線を照射する露光処理によって、第一樹脂組成物層を光硬化させてもよい。活性光線としては、例えば、紫外線、可視光線、電子線、X線等が挙げられ、特に紫外線が好ましい。紫外線の照射量は、例えば、10mJ/cm2~1000mJ/cm2である。
 また、第一樹脂組成物層の硬化は、熱硬化と光硬化とを組み合わせて行ってもよい。例えば、第一樹脂組成物層に光を照射した後、更に加熱して、第一樹脂組成物層を硬化させてもよい。
 工程(III)においては、硬化した第一樹脂組成物層としての下部クラッド層上に、コア層形成用の樹脂組成物によって第二樹脂組成物層を形成する。コア層形成用の樹脂組成物としては、熱硬化性樹脂を用いてもよいが、ここでは、光硬化性樹脂を用いた例を説明する。特に好ましい実施形態において、コア層形成用の樹脂組成物として、上述したシリコーン骨格含有化合物を含む樹脂組成物を用いる。通常、コア層形成用の樹脂組成物の硬化物の屈折率がクラッド層形成用の樹脂組成物の硬化物の屈折率よりも高くなるように、コア層形成用の樹脂組成物の具体的な組成が決定される。
 第二樹脂組成物層は、第一樹脂組成物層と同じ方法によって形成してもよい。よって、例えば、コア層形成用の樹脂組成物を下部クラッド層上に塗布し、必要に応じて乾燥して、第二樹脂組成物層を形成してもよい。また、例えば、コア層形成用の樹脂組成物を含む樹脂組成物層を備えた樹脂シートを用いて、その樹脂組成物層を下部クラッド層にラミネートすることにより、第二樹脂組成物層を形成してもよい。支持体を備える樹脂シートを用いて第二樹脂組成物層を形成した場合、通常は、工程(V)より前の適切な時期に支持体を剥離する。
 工程(IV)においては、露光処理により、第二樹脂組成物層に潜像を形成する。具体的には、露光処理では、第二樹脂組成物層の特定の部分に選択的に光を照射する。露光処理を施されると、第二樹脂組成物層には、光を照射された露光部と、光を照射されていない非露光部とが設けられる。露光部では光の照射を受けて樹脂組成物の硬化が進行して、コア層に対応する潜像が形成される。
 選択的な露光を行う観点から、工程(IV)での露光処理は、通常、マスクを用いて行われる。マスクの透光部は、光導波路のコア層に対応した平面形状を有するように形成される。「平面形状」とは、別に断らない限り、厚み方向から見た形状を表す。また、露光処理において用いる光としては、工程(II)における第一樹脂組成物層の光硬化に用いうるのと同じ活性光線を用いうる。光の露光量は、所望の平面形状のコア層が得られる範囲で選択できる。一例において、露光量は、好ましくは10mJ/cm以上、より好ましくは50mJ/cm以上、特に好ましくは200mJ/cm以上であり、好ましくは10,000mJ/cm以下、より好ましくは8,000mJ/cm以下、更に好ましくは4,000mJ/cm以下、特に好ましくは1,000mJ/cm以下である。
 工程(V)においては、工程(IV)において潜像が形成された第二樹脂組成物層に現像処理を施す。第二樹脂組成物層の露光部では、重合反応及び架橋反応等の反応が進行して現像液に対する溶解性が低下している。よって、コア層形成用の樹脂組成物がネガ型のフォトレジストとして機能できる。したがって、現像処理によって露光部は除去されない一方で、非露光部が除去される。よって、マスクの透光部と同じ平面形状を有する第二樹脂組成物層としてのコア層を形成できる。
 現像方法は、通常、第二樹脂組成物層と現像液とを接触させるウエット現像法を行う。現像液としては、コア層形成用の樹脂組成物の組成に応じたものを使用でき、例えば、アルカリ性水溶液、水系現像液、有機溶媒等が挙げられる。現像時間は、所望の形状のコア部が得られる範囲で、適切に設定することが好ましい。一例において、現像時間は10秒~5分が好ましい。また、現像時の現像液の温度は、好ましくは20℃以上であり、好ましくは50℃以下、より好ましくは40℃以下である。現像方式としては、例えば、パドル法、スプレー法、浸漬法、ブラッシング法、スラッピング法、超音波法等が挙げられる。中でも、スプレー法が解像度向上のためには好適である。スプレー法を採用する場合のスプレー圧としては、0.05MPa~0.3MPaが好ましい。
 光導波路の製造方法は、工程(V)の後、工程(VI)の前に、必要に応じて、第二樹脂組成物層を更に硬化させる工程(VIII)を含んでいてもよい。通常、工程(IV)における露光処理によって第二樹脂組成物層は硬化しうるが、工程(VIII)において更に硬化させることにより、第二樹脂組成物層の機械的強度を高めることができる。工程(VIII)における第二樹脂組成物層の硬化は、熱硬化及び光硬化のいずれで行なってもよく、熱硬化及び光硬化を組み合わせて行ってもよい。熱硬化及び光硬化は、例えば、工程(II)で説明したのと同じ条件で行いうる。
 工程(VI)においては、硬化した第二樹脂組成物層としてのコア層上に、クラッド層形成用の樹脂組成物によって第三樹脂組成物層を形成する。第三樹脂組成物層は、通常、コア層の周面のうち、下部クラッド層に接していない面の全体を覆うように形成される。よって、第三樹脂組成物層は、コア層を覆うように形成されるとともに、下部クラッド層上にも形成されうる。
 第三樹脂組成物層は、第一樹脂組成物層と同じ方法によって形成してもよい。よって、例えば、クラッド層形成用の樹脂組成物をコア層上(及び、必要に応じて下部クラッド層上)に塗布し、必要に応じて乾燥して、第三樹脂組成物層を形成してもよい。また、例えば、クラッド層形成用の樹脂組成物を含む樹脂組成物層を備えた樹脂シートを用いて、その樹脂組成物層をコア層(及び、必要に応じて下部クラッド層)にラミネートすることにより、第三樹脂組成物層を形成してもよい。
 工程(VII)においては、第三樹脂組成物層を硬化させる。硬化した第三樹脂組成物層は、クラッド層の一部を形成するので、以下「上部クラッド層」と呼ぶことがある。第三樹脂組成物層の硬化は、例えば、工程(II)で説明したのと同じ条件で行いうる。
 前記の製造方法によれば、下部クラッド層と上部クラッド層との間に、所望の平面形状を有するコア層を形成できる。したがって、下部クラッド層及び上部クラッド層を含むクラッド層と、このクラッド層内に設けられたコア層とを備える光導波路を得ることができる。
 前記の光導波路は、光電気混載基板に設けてもよい。通常、光電気混載基板は、光導波路と、電気回路基板とを備える。電気回路基板は、電子部品と、当該電子部品に接続された配線とを備えうる。そして、光導波路と電気回路基板の配線とは、光電変換素子を介して接続されうる。光電変換素子は、電気を光に変換可能な発光素子(例えば、面発光型発光ダイオード)、及び、光を電気に変換可能な受光素子(例えば、フォトダイオード)を組み合わせて含みうる。さらに、光電気混載基板は、光路調整のためにミラー等の光学素子を備えていてもよい。
 <プリント配線板>
 本発明の一実施形態に係るプリント配線板は、上述した樹脂組成物の硬化物を含む。
 プリント配線板の第一の例としては、上述した光導波路を備えるプリント配線板が挙げられる。第一の例に係るプリント配線板は、電気信号を伝送するための配線としての導体層と、光信号を伝送するための光導波路とを備え、光電気混載基板として機能しうる。このプリント配線板の具体例を挙げると、シリコンウェハに光集積回路を形成したチップを備えるものが挙げられる。光導波路は、前記のチップと導体層とを接続したり、複数のチップ間を接続したりできるように形成されていてもよい。
 プリント配線板の第二の例としては、上述した樹脂組成物の硬化物で形成された絶縁層を備えるプリント配線板が挙げられる。前記の絶縁層は、上述した樹脂組成物の硬化物を含み、好ましくは上述した樹脂組成物の硬化物のみを含む。
 第二の例に係るプリント配線板は、例えば、
 (i)内層基板上に樹脂組成物層を形成する工程
 (ii)樹脂組成物層を硬化して絶縁層を形成する工程
 を含む方法によって製造できる。
 工程(i)において、樹脂組成物層は、樹脂組成物を内層基板上に塗布して形成してもよいが、内層基板上に樹脂シートを当該樹脂シートの樹脂組成物層が内層基板と接合するように積層して形成することが好ましい。
 工程(i)で用いる「内層基板」とは、プリント配線板の基板となる部材であって、例えば、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等が挙げられる。また、該基板は、その片面又は両面に導体層を有していてもよく、この導体層はパターン加工されていてもよい。基板の片面または両面に導体層(回路)が形成された内層基板は「内層回路基板」ということがある。またプリント配線板を製造する際に、さらに絶縁層及び/又は導体層が形成されるべき中間製造物も、本明細書でいう「内層基板」に含まれる。プリント配線板が部品内蔵回路板である場合、部品を内蔵した内層基板を使用してもよい。
 内層基板と樹脂シートの積層は、例えば、支持体側から樹脂シートを内層基板に加熱圧着することにより行うことができる。樹脂シートを内層基板に加熱圧着する部材(以下、「加熱圧着部材」ということがある。)としては、例えば、加熱された金属板(SUS鏡板等)又は金属ロール(SUSロール等)が挙げられる。なお、加熱圧着部材を樹脂シートに直接プレスしてもよく、内層基板の表面凹凸に樹脂シートが十分に追随するよう、耐熱ゴム等の弾性材を介してプレスしてもよい。
 内層基板と樹脂シートの積層は、真空ラミネート法により実施してよい。真空ラミネート法において、加熱圧着温度は、好ましくは60℃~160℃、より好ましくは80℃~140℃の範囲であり、加熱圧着圧力は、好ましくは0.098MPa~1.77MPa、より好ましくは0.29MPa~1.47MPaの範囲であり、加熱圧着時間は、好ましくは20秒間~400秒間、より好ましくは30秒間~300秒間の範囲である。積層は、好ましくは圧力26.7hPa以下の減圧条件下で実施されうる。
 積層は、市販の真空ラミネーターによって行うことができる。市販の真空ラミネーターとしては、例えば、名機製作所社製の真空加圧式ラミネーター、ニッコー・マテリアルズ社製のバキュームアップリケーター、バッチ式真空加圧ラミネーター等が挙げられる。
 積層の後に、常圧下(大気圧下)、例えば、加熱圧着部材を支持体側からプレスすることにより、積層された樹脂シートの平滑化処理を行ってもよい。平滑化処理のプレス条件は、上記積層の加熱圧着条件と同様の条件としてもよい。平滑化処理は、市販のラミネーターによって行うことができる。なお、積層と平滑化処理は、上記の市販の真空ラミネーターを用いて連続的に行ってもよい。
 支持体は、工程(i)と工程(ii)の間に除去してもよく、工程(ii)の後に除去してもよい。なお、支持体として、金属箔を使用した場合、支持体を剥離することなく、該金属箔を用いて導体層を形成してよい。また、支持体として、支持基材付き金属箔を使用した場合、支持基材(と剥離層)を剥離してもよい。そして、金属箔を用いて導体層を形成することができる。
 工程(ii)において、樹脂組成物層を硬化して、樹脂組成物の硬化物からなる絶縁層を形成する。樹脂組成物層の硬化は、熱硬化、光硬化のように、樹脂組成物に適した方法で行いうる。樹脂組成物層の硬化条件は特に限定されず、プリント配線板の絶縁層を形成するに際して通常採用される条件を使用してよい。
 例えば、樹脂組成物層を熱硬化する場合、その熱硬化条件は、樹脂組成物の種類によっても異なりうる。一実施形態において、硬化温度は、好ましくは120℃~250℃、より好ましくは150℃~240℃、さらに好ましくは180℃~230℃である。硬化時間は好ましくは5分間~240分間、より好ましくは10分間~150分間、さらに好ましくは15分間~120分間とすることができる。
 樹脂組成物層を熱硬化させる前に、樹脂組成物層を硬化温度よりも低い温度にて予備加熱してもよい。例えば、樹脂組成物層を熱硬化させるのに先立ち、通常50℃~120℃、好ましくは60℃~115℃、より好ましくは70℃~110℃の温度にて、樹脂組成物層を通常5分間以上、好ましくは5分間~150分間、より好ましくは15分間~120分間、さらに好ましくは15分間~100分間予備加熱してもよい。
 例えば、樹脂組成物を光硬化する場合、その光硬化条件は、樹脂組成物の種類によっても異なりうる。一実施形態において、樹脂組成物層に照射する活性光線としては、例えば、紫外線、可視光線、電子線、X線等が挙げられ、特に紫外線が好ましい。紫外線の照射量は、例えば、10mJ/cm2~1000mJ/cm2である。活性光線は、パターンを形成されたマスクを通して樹脂組成物層に照射してもよい。
 活性光線を照射した後で、必要に応じて、樹脂組成物層に現像処理を施してもよい。現像処理によれば、光硬化されていない部分(未露光部)を除去して、絶縁層にパターンを形成することができる。現像は、通常、ウェット現像により行う。
 樹脂組成物層を光硬化させる場合、光硬化及び現像の後で、必要に応じて、ポストベーク処理を行ってもよい。ポストベーク処理としては、例えば、高圧水銀ランプによる紫外線照射処理、クリーンオーブンを用いた加熱処理、などが挙げられる。紫外線照射処理は、例えば、0.05J/cm~10J/cm程度の照射量で行いうる。また、加熱処理は、例えば、好ましくは150℃~250℃で20分間~180分間の範囲、より好ましくは160℃~230℃で30分間~120分間の範囲で行いうる。
 プリント配線板を製造するに際しては、(iii)絶縁層に穴あけする工程、(iv)絶縁層を粗化処理する工程、(v)導体層を形成する工程をさらに実施してもよい。これらの工程(iii)乃至工程(v)は、プリント配線板の製造に用いられる、当業者に公知の各種方法に従って実施してよい。なお、支持体を工程(ii)の後に除去する場合、該支持体の除去は、工程(ii)と工程(iii)との間、工程(iii)と工程(iv)の間、又は工程(iv)と工程(v)との間に実施してよい。また、必要に応じて、工程(i)~工程(v)の絶縁層及び導体層の形成を繰り返して実施し、多層配線板を形成してもよい。
 他の実施形態において、プリント配線板は、上述のプリプレグを用いて製造することができる。製造方法は基本的に樹脂シートを用いる場合と同様である。
 工程(iii)は、絶縁層に穴あけする工程であり、これにより絶縁層にビアホール、スルーホール等のホールを形成することができる。工程(iii)は、絶縁層の形成に使用した樹脂組成物の組成等に応じて、例えば、ドリル、レーザー、プラズマ等を使用して実施してよい。ホールの寸法及び形状は、プリント配線板のデザインに応じて適宜決定してよい。
 工程(iv)は、絶縁層を粗化処理する工程である。通常、この工程(iv)において、スミアの除去(デスミア)も行われる。粗化処理の手順、条件は特に限定されず、プリント配線板の絶縁層を形成するに際して通常使用される公知の手順、条件を採用することができる。例えば、膨潤液による膨潤処理、酸化剤による粗化処理、中和液による中和処理をこの順に実施して絶縁層を粗化処理することができる。
 粗化処理に用いる膨潤液としては、特に限定されないが、例えばアルカリ溶液、界面活性剤溶液等が挙げられ、好ましくはアルカリ溶液である。該アルカリ溶液としては、水酸化ナトリウム溶液、水酸化カリウム溶液がより好ましい。市販されている膨潤液としては、例えば、アトテックジャパン社製の「スウェリング・ディップ・セキュリガンスP」、「スウェリング・ディップ・セキュリガンスSBU」等が挙げられる。膨潤液による膨潤処理は、特に限定されないが、例えば、30℃~90℃の膨潤液に絶縁層を1分間~20分間浸漬することにより行うことができる。絶縁層の樹脂の膨潤を適度なレベルに抑える観点から、40℃~80℃の膨潤液に絶縁層を5分間~15分間浸漬させることが好ましい。
 粗化処理に用いる酸化剤としては、特に限定されないが、例えば、水酸化ナトリウムの水溶液に過マンガン酸カリウム又は過マンガン酸ナトリウムを溶解したアルカリ性過マンガン酸溶液が挙げられる。アルカリ性過マンガン酸溶液等の酸化剤による粗化処理は、60℃~100℃に加熱した酸化剤溶液に絶縁層を10分間~30分間浸漬させて行うことが好ましい。また、アルカリ性過マンガン酸溶液における過マンガン酸塩の濃度は5質量%~10質量%が好ましい。市販されている酸化剤としては、例えば、アトテックジャパン社製の「コンセントレート・コンパクトCP」、「ドージングソリューション・セキュリガンスP」等のアルカリ性過マンガン酸溶液が挙げられる。
 また、粗化処理に用いる中和液としては、酸性の水溶液が好ましく、市販品としては、例えば、アトテックジャパン社製の「リダクションソリューション・セキュリガントP」が挙げられる。中和液による処理は、酸化剤による粗化処理がなされた処理面を30℃~80℃の中和液に5分間~30分間浸漬させることにより行うことができる。作業性等の点から、酸化剤による粗化処理がなされた対象物を、40℃~70℃の中和液に5分間~20分間浸漬する方法が好ましい。
 工程(v)は、導体層を形成する工程であり、絶縁層上に導体層を形成する。導体層に使用する導体材料は特に限定されない。好適な実施形態では、導体層は、金、白金、パラジウム、銀、銅、アルミニウム、コバルト、クロム、亜鉛、ニッケル、チタン、タングステン、鉄、スズ及びインジウムからなる群から選択される1種以上の金属を含む。導体層は、単金属層であっても合金層であってもよく、合金層としては、例えば、上記の群から選択される2種以上の金属の合金(例えば、ニッケル・クロム合金、銅・ニッケル合金及び銅・チタン合金)から形成された層が挙げられる。中でも、導体層形成の汎用性、コスト、パターニングの容易性等の観点から、クロム、ニッケル、チタン、アルミニウム、亜鉛、金、パラジウム、銀若しくは銅の単金属層、又はニッケル・クロム合金、銅・ニッケル合金、銅・チタン合金の合金層が好ましく、クロム、ニッケル、チタン、アルミニウム、亜鉛、金、パラジウム、銀若しくは銅の単金属層、又はニッケル・クロム合金の合金層がより好ましく、銅の単金属層が更に好ましい。
 導体層は、単層構造であっても、異なる種類の金属若しくは合金からなる単金属層又は合金層が2層以上積層した複層構造であってもよい。導体層が複層構造である場合、絶縁層と接する層は、クロム、亜鉛若しくはチタンの単金属層、又はニッケル・クロム合金の合金層であることが好ましい。
 導体層の厚さは、所望のプリント配線板のデザインによるが、一般に3μm~35μm、好ましくは5μm~30μmである。
 一実施形態において、導体層は、メッキにより形成してよい。例えば、セミアディティブ法、フルアディティブ法等の従来公知の技術により絶縁層の表面にメッキして、所望の配線パターンを有する導体層を形成することができる。製造の簡便性の観点から、セミアディティブ法により形成することが好ましい。以下、導体層をセミアディティブ法により形成する例を示す。
 まず、絶縁層の表面に、無電解メッキによりメッキシード層を形成する。次いで、形成されたメッキシード層上に、所望の配線パターンに対応してメッキシード層の一部を露出させるマスクパターンを形成する。露出したメッキシード層上に、電解メッキにより金属層を形成した後、マスクパターンを除去する。その後、不要なメッキシード層をエッチング等により除去して、所望の配線パターンを有する導体層を形成することができる。
 他の実施形態において、導体層は、金属箔を使用して形成してよい。金属箔を使用して導体層を形成する場合、工程(v)は、工程(i)と工程(ii)の間に実施することが好適である。例えば、工程(i)の後、支持体を除去し、露出した樹脂組成物層の表面に金属箔を積層する。樹脂組成物層と金属箔との積層は、真空ラミネート法により実施してよい。積層の条件は、工程(i)について説明した条件と同様としてよい。次いで、工程(ii)を実施して絶縁層を形成する。その後、絶縁層上の金属箔を利用して、サブトラクティブ法、モディファイドセミアディティブ法等の従来の公知の技術により、所望の配線パターンを有する導体層を形成することができる。
 金属箔は、例えば、電解法、圧延法等の公知の方法により製造することができる。金属箔の市販品としては、例えば、JX日鉱日石金属社製のHLP箔、JXUT-III箔、三井金属鉱山社製の3EC-III箔、TP-III箔等が挙げられる。
 あるいは、樹脂シートの支持体として、金属箔、又は支持基材付き金属箔を使用した場合、該金属箔を用いて導体層を形成してよいことは先述のとおりである。
 <半導体チップパッケージ>
 半導体チップパッケージは、上述した樹脂組成物の硬化物で形成された封止層を備える。封止層は、上述した樹脂組成物の硬化物を含み、好ましくは上述した樹脂組成物の硬化物のみを含む。また、半導体チップパッケージは、上述した樹脂組成物の硬化物からなる、再配線層を形成するための絶縁層(再配線形成層)を備えていてもよい。
 半導体チップパッケージは、例えば、上述した樹脂組成物又は樹脂シートを用いて、下記(1)乃至(6)の工程を含む方法により製造することができる。工程(3)の封止層あるいは工程(5)の再配線形成層を形成するために、上述した樹脂組成物及び樹脂シートを用いうる。以下、樹脂組成物及び樹脂シートを用いて封止層及び再配線形成層を形成する一例を示すが、半導体チップパッケージの封止層及び再配線形成層を形成する技術は公知であり、当業者であれば、樹脂組成物及び樹脂シートを用いて、公知の技術に従って半導体パッケージを製造することができる。
 (1)基材に仮固定フィルムを積層する工程、
 (2)半導体チップを、仮固定フィルム上に仮固定する工程、
 (3)半導体チップ上に封止層を形成する工程、
 (4)基材及び仮固定フィルムを半導体チップから剥離する工程、
 (5)半導体チップの基材及び仮固定フィルムを剥離した面に、絶縁層としての再配線形成層を形成する工程、及び
 (6)再配線形成層上に、導体層としての再配線層を形成する工程
 -工程(1)-
 基材に使用する材料は特に限定されない。基材としては、シリコンウェハ;ガラスウェハ;ガラス基板;銅、チタン、ステンレス、冷間圧延鋼板(SPCC)等の金属基板;ガラス繊維にエポキシ樹脂等をしみこませ熱硬化処理した基板(例えばFR-4基板);ビスマレイミドトリアジン樹脂(BT樹脂)からなる基板などが挙げられる。
 仮固定フィルムは、工程(4)において半導体チップから剥離することができると共に、半導体チップを仮固定することができれば材料は特に限定されない。仮固定フィルムは市販品を用いることができる。市販品としては、日東電工社製のリヴァアルファ等が挙げられる。
 -工程(2)-
 半導体チップの仮固定は、フリップチップボンダー、ダイボンダー等の公知の装置を用いて行うことができる。半導体チップの配置のレイアウト及び配置数は、仮固定フィルムの形状、大きさ、目的とする半導体パッケージの生産数等に応じて適宜設定することができ、例えば、複数行で、かつ複数列のマトリックス状に整列させて仮固定することができる。
 -工程(3)-
 半導体チップ上に樹脂組成物層を形成し、硬化させて封止層を形成する。樹脂組成物層は、例えば、樹脂シートの樹脂組成物層を半導体チップ上に積層する方法、又は、樹脂組成物を半導体チップ上に塗布する方法により、形成できる。
 例えば、半導体チップと樹脂シートの積層は、樹脂シートの保護フィルムを除去した後支持体側から樹脂シートを半導体チップに加熱圧着することにより行うことができる。樹脂シートを半導体チップに加熱圧着する加熱圧着部材としては、例えば、加熱された金属板(SUS鏡板等)又は金属ロール(SUSロール等)が挙げられる。なお、加熱圧着部材を樹脂シートに直接プレスするのではなく、半導体チップの表面凹凸に樹脂シートが十分に追随するよう、耐熱ゴム等の弾性材を介してプレスするのが好ましい。半導体チップと樹脂シートの積層は、真空ラミネート法により実施してもよく、その積層条件は、プリント配線板の製造方法に関連して説明した積層条件と同様でありえ、好ましい範囲も同様でありうる。
 積層の後、樹脂組成物を硬化させて封止層を形成する。樹脂組成物層の硬化は、熱硬化、光硬化のように、樹脂組成物に適した方法で行いうる。硬化の条件は、プリント配線板の製造方法に関連して説明した硬化の条件と同様でありうる。
 樹脂シートの支持体は、半導体チップ上に樹脂シートを積層し硬化した後に剥離してもよく、半導体チップ上に樹脂シートを積層する前に支持体を剥離してもよい。
 樹脂組成物を塗布して封止層を形成する場合、その塗布条件としては、樹脂シートに関連して説明した樹脂組成物層を形成する際の塗布条件と同様でありえ、好ましい範囲も同様でありうる。
 -工程(4)-
 基材及び仮固定フィルムを剥離する方法は、仮固定フィルムの材質に応じて適宜変更することができ、例えば、仮固定フィルムを加熱、発泡(又は膨張)させて剥離する方法、及び基材側から紫外線を照射させ、仮固定フィルムの粘着力を低下させ剥離する方法等が挙げられる。
 仮固定フィルムを加熱、発泡(又は膨張)させて剥離する方法において、加熱条件は、通常、100℃~250℃で1秒~90秒間又は5分~15分間である。また、基材側から紫外線を照射させ、仮固定フィルムの粘着力を低下させ剥離する方法において、紫外線の照射量は、通常、10mJ/cm~1000mJ/cmである。
 -工程(5)-
 再配線形成層(絶縁層)を形成する材料は、その再配線形成層(絶縁層)が絶縁性を有していれば特に限定されない。半導体チップパッケージの製造のしやすさの観点から、紫外線硬化性樹脂、熱硬化性樹脂が好ましい。上述した樹脂組成物又は樹脂シートを用いて再配線形成層を形成してもよい。
 再配線形成層を形成後、半導体チップと後述する導体層を層間接続するために、再配線形成層にビアホールを形成してもよい。ビアホールは、再配線形成層の材料に応じて、公知の方法により形成してよい。
 -工程(6)-
 再配線形成層上への導体層の形成は、プリント配線板の製造方法に関連して説明した工程(v)と同様に実施してよい。なお、工程(5)及び工程(6)を繰り返し行い、導体層(再配線層)及び再配線形成層(絶縁層)を交互に積み上げて(ビルドアップ)もよい。
 半導体チップパッケージを製造するにあたって、(7)導体層(再配線層)上にソルダーレジスト層を形成する工程、(8)バンプを形成する工程、(9)複数の半導体チップパッケージを個々の半導体チップパッケージにダイシングし、個片化する工程をさらに実施してもよい。これらの工程は、半導体チップパッケージの製造に用いられる、当業者に公知の各種方法に従って実施してよい。
 上述した樹脂組成物又は樹脂シートを用いて封止層又は再配線形成層を形成した場合、半導体パッケージが、ファンイン(Fan-In)型パッケージであるかファンアウト(Fan-Out)型パッケージであるかの別を問わず、クラック及び剥離が抑制された半導体チップパッケージを実現することができる。一実施形態において、半導体チップパッケージは、ファンアウト(Fan-Out)型パッケージである。上述した実施形態に係る樹脂組成物及び樹脂シートは、ファンアウト型パネルレベルパッケージ(FO-PLP)、ファンアウト型ウェハレベルパッケージ(FO-WLP)の別を問わず、適用できる。一実施形態において、半導体パッケージは、ファンアウト型パネルレベルパッケージ(FOPLP)である。他の一実施形態において、半導体パッケージは、ファンアウト型ウェハレベルパッケージ(FOWLP)である。
 <半導体装置>
 本発明の一実施形態に係る半導体装置は、上述した実施形態に係る樹脂組成物の硬化物を含む。この半導体装置は、通常、上述した光導波路、プリント配線板又は半導体チップパッケージを備える。半導体装置としては、例えば、電気製品(例えば、コンピューター、携帯電話、デジタルカメラ及びテレビ等)及び乗物(例えば、自動二輪車、自動車、電車、船舶及び航空機等)等に供される各種半導体装置が挙げられる。
 以下、本発明を実施例により具体的に説明する。本発明はこれらの実施例に限定されるものではない。なお、以下において、量を表す「部」及び「%」は、別途明示のない限り、それぞれ「質量部」及び「質量%」を意味する。特に温度の指定が無い場合の温度条件は、室温(23℃)である。特に気圧の指定が無い場合の圧力条件は、大気圧(1atm)である。
<GPC測定条件>
 後述する実施例では、下記の測定条件で、浸透クロマトグラフ分析法(GPC)による測定を行った。
 測定装置:東ソー株式会社製「HLC-8420GPC」
 カラム:東ソー株式会社製ガードカラム「HXL-L」+東ソー株式会社製「TSK-GEL SuperHZ2000」+東ソー株式会社製「TSK-GEL SuperHZ2000」+東ソー株式会社製「TSK-GEL SuperHZ3000」+東ソー株式会社製「TSK-GEL SuperHZ4000」
 検出器:RI(示差屈折計)
 データ処理:東ソー株式会社製「GPCワークステーション EcoSEC-WorkStation」
 カラム温度:40℃
 展開溶媒:テトラヒドロフラン
 流速:0.35ml/分
 標準:前記「GPCワークステーション EcoSEC-WorkStation」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた。
TSKgel F-10、F-4、F-1、A-5000、A-1000、A-500(東ソー株式会社製)
 試料:樹脂固形分換算で0.2質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(10μl)
<IR測定条件>
 後述する実施例では、下記の測定条件で、赤外分光分析法(IR)による測定を行った。
 測定装置:JASCO株式会社製「FT/IR-4600」
<実施例1>
Figure JPOXMLDOC01-appb-C000015
 攪拌装置、加熱装置、温度計、コンデンサー及び滴下漏斗が装着された200ミリリットル四つ口丸フラスコに、両末端アミン基シリコーンオイル(信越化学工業製、製品名:X-22-161A、式(4)においてRがメチル基、Rがプロピレン基、nが約18の化合物、分子量1600)48.0gを仕込んだ。前記フラスコに、室温で攪拌しながら、2-メタクリロイルオキシエチルイソシアネート(昭和電工株式会社製、製品名:カレンズMOI)9.3g(0.06モル)を30分間要して滴下した。その後、60℃で60分間攪拌して、上記構造式(A1)で表される反応性シリコーン樹脂(A1)55gを得た。反応性シリコーン樹脂(A1)の外観は無色透明であり、メタクリロイル基当量(計算値)は955g/eq.であった。得られた反応性シリコーン樹脂(A1)のH-NMR、IR及びGPCチャートをそれぞれ図1、図2及び図3に示す。
<実施例2>
Figure JPOXMLDOC01-appb-C000016
 両末端アミン基シリコーンオイル「X-22-161A」を、両末端アミン基シリコーンオイル(信越化学工業製、製品名:KF-8010、式(4)においてRがメチル基、Rがプロピレン基、nが約8の化合物、分子量860)38.7gに変更し、2-メタクリロイルオキシエチルイソシアネート「カレンズMOI」の量を14.0gに変更したこと以外は、実施例1と同様にして、上記構造式(A2)で表される反応性シリコーン樹脂(A2)51gを得た。反応性シリコーン樹脂(A2)の外観は無色透明であり、メタクリロイル基当量(計算値)は585g/eq.であった。得られた反応性シリコーン樹脂(A2)のH-NMR、IR及び、GPCチャートをそれぞれ図4、図5、図6に示す。
<実施例3>
Figure JPOXMLDOC01-appb-C000017
 2-メタクリロイルオキシエチルイソシアネート「カレンズMOI」を2-アクリロイルオキシエチルイソシアネート(昭和電工株式会社製、製品名:カレンズAOI)8.4gに変更したこと以外は、実施例1と同様にして、上記構造式(A3)で表される反応性シリコーン樹脂(A3)48gを得た。反応性シリコーン樹脂(A3)の外観は無色透明であり、メタクリル基当量(計算値)は941g/eq.であった。得られた反応性シリコーン樹脂(A3)のH-NMR、IR及びGPCチャートをそれぞれ図7、図8及び図9に示す。
<実施例4~6及び比較例1>
 (1)樹脂組成物の調製:
 実施例1~3で合成した反応性シリコーン樹脂(A1)、(A2)及び(A3)、反応性シリコーン樹脂(A4)(両末端メタクリロイル基シリコーン樹脂、信越化学工業株式会社製、製品名:X-22-164A、メタクリロイル基当量:860g/eq.)、多官能アクリレート化合物(トリメチロールプロパントリアクリレート、大阪有機化学工業株式会社製、製品名:ビスコート#295、TMPTA)、並びに、過酸化物(パーオキシエステル系過酸化物、日本油脂株式会社製、製品名:パーヘキシルO)を、表1に示す量(単位:グラム)で秤取し、室温で均一に混合して、樹脂組成物を調製した。
 (2)硬化物の製造:
 離型剤を塗布した2枚のガラス板の間にスペーサーを挟み込んで、ギャップ約2mmの注型枠を作製した。注型枠のガラス板の間に前記の樹脂組成物を注入した。100℃で2時間、次いで150℃で3時間の条件で加熱して樹脂組成物を硬化させて、シート状の硬化物を作製した。この硬化物について、下記要領で評価試験を行った。
 [曲げ靭性の測定試験]
 JIS K7171に従って、島津製作所社製「AUTOGRAPH AG-X/R」を用いて前記硬化物の曲げ試験を実施し、S-Sカーブ(応力-ひずみ曲線)を得た。このS-Sカーブの積分値から計算された単位面積当たりのエネルギーを、曲げ靭性として得た。
 [引張靭性の測定試験]
 JIS K7161に従って、島津製作所社製「AUTOGRAPH AG-Xplus」を用いて前記硬化物の引張試験を実施し、S-Sカーブ(応力-ひずみ曲線)を得た。このS-Sカーブの積分値から計算された単位面積当たりのエネルギーを引張靭性として得た。
 [折曲げ試験]
 前記硬化物の(サイズ:50mmx50mmx2mm)を手で180°折り曲げして、割れるか否かを評価した。
<結果>
 実施例4~6及び比較例1の結果を、下記の表1に示す。表1において、樹脂組成物に含まれる成分の量の単位は「グラム」である。
Figure JPOXMLDOC01-appb-T000018
<検討>
 表1に示すとおり、本発明の反応性シリコーン樹脂は、無色透明の光学特性を有し、更にその硬化物は曲げ靭性及び引張靭性、更には折り曲げ性の全てにおいて優れることを確認した。

Claims (28)

  1.  下記式(1)で表される、シリコーン骨格含有化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、
     Rは、それぞれ独立に、1価の有機基を表し、
     Rは、それぞれ独立に、2価の有機基を表し、
     Rは、それぞれ独立に、2価の有機基を表し、
     Rは、それぞれ独立に、水素原子又は1価の有機基を表し、
     nは、0以上の数を表す。)
  2.  Rが、それぞれ独立に、置換基を有していてもよい1価の炭化水素基を表し、
     Rが、それぞれ独立に、置換基を有していてもよい2価の炭化水素基を表し、
     Rが、それぞれ独立に、置換基を有していてもよい2価の炭化水素基を表し、
     Rが、それぞれ独立に、水素原子、又は、置換基を有していてもよい1価の炭化水素基を表す、請求項1に記載のシリコーン骨格含有化合物。
  3.  Rが、それぞれ独立に、炭素原子数1~6のアルキル基を表し、
     Rが、それぞれ独立に、置換基を有していてもよい2価の脂肪族炭化水素基を表し、
     Rが、それぞれ独立に、置換基を有していてもよい2価の脂肪族炭化水素基を表し、
     Rが、それぞれ独立に、水素原子、又は、炭素原子数1~3のアルキル基を表す、請求項1に記載のシリコーン骨格含有化合物。
  4.  下記式(2)又は式(3)で表される、請求項1に記載のシリコーン骨格含有化合物。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)及び(3)において、nは、0以上50以下の数を表す。)
  5.  ジアミン化合物とイソシアネート化合物との反応生成物である、請求項1に記載のシリコーン骨格含有化合物。
  6.  ジアミン化合物が下記式(4)で表され、イソシアネート化合物が下記式(5)で表される、請求項5に記載のシリコーン骨格含有化合物。
    Figure JPOXMLDOC01-appb-C000003
    (式(4)及び(5)において、
     Rは、それぞれ独立に、1価の有機基を表し、
     Rは、それぞれ独立に、2価の有機基を表し、
     nは、0以上の数を表し、
     Rは、それぞれ独立に、2価の有機基を表し、
     Rは、それぞれ独立に、水素原子又は1価の有機基を表す。)
  7.  官能基当量が、200g/eq.~1500g/eq.の範囲である、請求項1に記載のシリコーン骨格含有化合物。
  8.  下記式(4)で表されるジアミン化合物と、下記式(5)で表されるイソシアネート化合物との反応生成物。
    Figure JPOXMLDOC01-appb-C000004
    (式(4)及び(5)において、
     Rは、それぞれ独立に、1価の有機基を表し、
     Rは、それぞれ独立に、2価の有機基を表し、
     nは、0以上の数を表し、
     Rは、それぞれ独立に、2価の有機基を表し、
     Rは、それぞれ独立に、水素原子又は1価の有機基を表す。)
  9.  下記式(4)で表されるジアミン化合物と、下記式(5)で表されるイソシアネート化合物とを反応させることを含む、シリコーン骨格含有化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000005
    (式(4)及び(5)において、
     Rは、それぞれ独立に、1価の有機基を表し、
     Rは、それぞれ独立に、2価の有機基を表し、
     nは、0以上の数を表し、
     Rは、それぞれ独立に、2価の有機基を表し、
     Rは、それぞれ独立に、水素原子又は1価の有機基を表す。)
  10.  請求項1に記載のシリコーン骨格含有化合物を含む、樹脂組成物。
  11.  光硬化性樹脂組成物である、請求項10に記載の樹脂組成物。
  12.  エポキシ樹脂を更に含む、請求項10に記載の樹脂組成物。
  13.  エチレン性不飽和基を含有する前記シリコーン骨格含有化合物以外の化合物を更に含む、請求項10に記載の樹脂組成物。
  14.  無機充填材を更に含む、請求項10に記載の樹脂組成物。
  15.  有機溶媒を更に含む、請求項10に記載の樹脂組成物。
  16.  ガラス繊維を更に含む、請求項10に記載の樹脂組成物。
  17.  プリント配線板の絶縁層形成用の請求項10に記載の樹脂組成物。
  18.  半導体チップ封止用の請求項10に記載の樹脂組成物。
  19.  フォトリソグラフィ材料用の請求項10に記載の樹脂組成物。
  20.  請求項10に記載の樹脂組成物の硬化物。
  21.  請求項10に記載の樹脂組成物を含む、シート状積層材料。
  22.  支持体と、当該支持体上に形成された樹脂組成物層とを備え、
     樹脂組成物層が、請求項10に記載の樹脂組成物を含む、樹脂シート。
  23.  請求項10に記載の樹脂組成物の硬化物を含む、光導波路。
  24.  請求項10に記載の樹脂組成物の硬化物を含む絶縁層を備える、プリント配線板。
  25.  請求項23に記載の光導波路を備える、プリント配線板。
  26.  請求項10に記載の樹脂組成物の硬化物を含む封止層を備える、半導体チップパッケージ。
  27.  ファンアウト(Fan-Out)型パッケージである、請求項26に記載の半導体チップパッケージ。
  28.  請求項23に記載の光導波路、請求項24若しくは25に記載のプリント配線板、又は、請求項26若しくは27に記載の半導体チップパッケージを備える、半導体装置。
PCT/JP2023/011521 2022-03-28 2023-03-23 シリコーン骨格含有化合物 WO2023190037A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-052176 2022-03-28
JP2022052176 2022-03-28

Publications (1)

Publication Number Publication Date
WO2023190037A1 true WO2023190037A1 (ja) 2023-10-05

Family

ID=88202062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011521 WO2023190037A1 (ja) 2022-03-28 2023-03-23 シリコーン骨格含有化合物

Country Status (2)

Country Link
TW (1) TW202402855A (ja)
WO (1) WO2023190037A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08507563A (ja) * 1993-03-11 1996-08-13 ミネソタ マイニング アンド マニュファクチャリング カンパニー 放射線硬化性アクリレート/シリコーンの恒久的再▲剥▼離性感圧接着剤
JP2002302664A (ja) * 2001-04-06 2002-10-18 Three Bond Co Ltd 難接着材質用光硬化シリコーン組成物
JP2005202023A (ja) * 2004-01-14 2005-07-28 Japan Epoxy Resin Kk アルカリ現像型感光性樹脂組成物及びその硬化物
JP2008031307A (ja) * 2006-07-28 2008-02-14 Three Bond Co Ltd 光硬化性オルガノポリシロキサン組成物
JP2017206626A (ja) * 2016-05-19 2017-11-24 信越化学工業株式会社 伸縮性膜及びその形成方法、配線被覆基板の製造方法、並びに伸縮性配線膜及びその製造方法
JP2019038867A (ja) * 2017-08-22 2019-03-14 信越化学工業株式会社 オルガノポリシロキサン化合物およびそれを含む活性エネルギー線硬化性組成物
WO2019194107A1 (ja) * 2018-04-06 2019-10-10 Jnc株式会社 樹脂組成物
US20200248034A1 (en) * 2017-09-28 2020-08-06 3M Innovative Properties Company Photo-radical cure of silicones
US20200270494A1 (en) * 2017-09-28 2020-08-27 3M Innovative Properties Company Silicone-based pressure-sensitive adhesive
WO2020189307A1 (ja) * 2019-03-19 2020-09-24 信越化学工業株式会社 オルガノポリシロキサン、紫外線硬化性シリコーン組成物及び硬化物

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08507563A (ja) * 1993-03-11 1996-08-13 ミネソタ マイニング アンド マニュファクチャリング カンパニー 放射線硬化性アクリレート/シリコーンの恒久的再▲剥▼離性感圧接着剤
JP2002302664A (ja) * 2001-04-06 2002-10-18 Three Bond Co Ltd 難接着材質用光硬化シリコーン組成物
JP2005202023A (ja) * 2004-01-14 2005-07-28 Japan Epoxy Resin Kk アルカリ現像型感光性樹脂組成物及びその硬化物
JP2008031307A (ja) * 2006-07-28 2008-02-14 Three Bond Co Ltd 光硬化性オルガノポリシロキサン組成物
JP2017206626A (ja) * 2016-05-19 2017-11-24 信越化学工業株式会社 伸縮性膜及びその形成方法、配線被覆基板の製造方法、並びに伸縮性配線膜及びその製造方法
JP2019038867A (ja) * 2017-08-22 2019-03-14 信越化学工業株式会社 オルガノポリシロキサン化合物およびそれを含む活性エネルギー線硬化性組成物
US20200248034A1 (en) * 2017-09-28 2020-08-06 3M Innovative Properties Company Photo-radical cure of silicones
US20200270494A1 (en) * 2017-09-28 2020-08-27 3M Innovative Properties Company Silicone-based pressure-sensitive adhesive
WO2019194107A1 (ja) * 2018-04-06 2019-10-10 Jnc株式会社 樹脂組成物
WO2019194108A1 (ja) * 2018-04-06 2019-10-10 Jnc株式会社 ウレア結合型四官能(メタ)アクリレート化合物およびこれを含む組成物
WO2020189307A1 (ja) * 2019-03-19 2020-09-24 信越化学工業株式会社 オルガノポリシロキサン、紫外線硬化性シリコーン組成物及び硬化物

Also Published As

Publication number Publication date
TW202402855A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
KR102459496B1 (ko) 수지 조성물, 수지 시트, 다층 프린트 배선판, 및 반도체 장치
TWI714240B (zh) 樹脂組成物、樹脂片、多層印刷配線板、及半導體裝置
EP3915784A1 (en) Resin composition, resin sheet, multilayered printed circuit board, and semiconductor device
EP3950334B1 (en) Resin composition, resin sheet, multilayer printed wiring board, and semiconductor device
TWI841812B (zh) 化合物及其製造方法、樹脂組成物、樹脂片、多層印刷電路板、以及半導體裝置
KR20190022517A (ko) 수지 조성물, 수지 시트, 다층 프린트 배선판 및 반도체 장치
WO2023190037A1 (ja) シリコーン骨格含有化合物
WO2022202703A1 (ja) ジエステル化合物
JP2021039202A (ja) 感光性樹脂組成物
JP2020144394A (ja) 感光性樹脂組成物
WO2023095783A1 (ja) 変性ビニルエステル樹脂を含む樹脂組成物
JP7191276B1 (ja) 樹脂組成物、硬化物、樹脂シート、プリプレグ、金属箔張積層板、多層プリント配線板、封止用材料、繊維強化複合材料、接着剤及び半導体装置
JP7435906B2 (ja) ポリエステル樹脂
WO2024070808A1 (ja) 感光性フィルム及び感光性樹脂組成物
WO2024018949A1 (ja) ポリエステル樹脂、および樹脂組成物、その硬化物、その用途
WO2023190020A1 (ja) 活性エステル樹脂
WO2023054422A1 (ja) ポリエステル樹脂
JP2023154205A (ja) 光導波路の製造方法
JP2024085324A (ja) エステル樹脂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780048

Country of ref document: EP

Kind code of ref document: A1