WO2023189203A1 - 組成物、膜及び表示装置 - Google Patents

組成物、膜及び表示装置 Download PDF

Info

Publication number
WO2023189203A1
WO2023189203A1 PCT/JP2023/008023 JP2023008023W WO2023189203A1 WO 2023189203 A1 WO2023189203 A1 WO 2023189203A1 JP 2023008023 W JP2023008023 W JP 2023008023W WO 2023189203 A1 WO2023189203 A1 WO 2023189203A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
composition
particles
meth
mass
Prior art date
Application number
PCT/JP2023/008023
Other languages
English (en)
French (fr)
Inventor
駒田 めぐみ 早坂
良永 裕佳子 西川
真芳 ▲徳▼田
崇夫 土谷
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2023189203A1 publication Critical patent/WO2023189203A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Definitions

  • the present invention relates to a composition containing particles, a film formed from the composition, and a display device including the film.
  • Patent Document 1 describes a photosensitive resin composition containing particles that is used to form a color filter.
  • a film exhibiting desired properties, such as optical properties, can be produced by forming a film of a composition containing particles responsible for the properties.
  • a composition containing particles The particles include first particles (A-1) having an average particle diameter d of 100 x 10 -7 cm or more, The composition further includes at least one selected from the group consisting of a resin (C) and a polymerizable compound (D), The composition has a sedimentation velocity ⁇ represented by formula (i) of 400 ⁇ 10 ⁇ 9 cm/s or less.
  • g is the gravitational acceleration [cm/s 2 ]
  • ⁇ s is the density of the first particle (A-1) [g/cm 3 ]
  • is the above composition except that it does not contain the above particle.
  • the density [g/cm 3 ] of the same composition as the above-mentioned composition, ⁇ represents the viscosity [g/(cm ⁇ s)] of the composition at 25°C. ]
  • [4] The composition according to any one of [1] to [3], wherein the particles further include second particles (A-2) having an average particle size of 50 ⁇ 10 ⁇ 7 cm or less.
  • the polar group is at least one group selected from the group consisting of a carboxy group, a thiol group, and an amino group.
  • a display device comprising the film according to [9].
  • composition containing particles exhibiting desired characteristics and capable of forming a film exhibiting the characteristics well, a film formed from the composition, and a display device including the film. can do.
  • composition is a composition containing particles.
  • the particles include first particles (A-1) having an average particle diameter d of 100 ⁇ 10 ⁇ 7 cm (100 nm) or more.
  • the particles may include, in addition to the first particles (A-1), second particles (A-2) that are different particles.
  • the composition further includes at least one binder component selected from the group consisting of a resin (C) and a polymerizable compound (D).
  • binder component selected from the group consisting of a resin (C) and a polymerizable compound (D).
  • First particle (A-1) The first particles (A-1) are usually solid particles that can exhibit specific properties (functions).
  • the specific property is preferably an optical property.
  • a film obtained by forming a composition containing the first particles (A-1) can exhibit the above-mentioned specific properties (functions), and can be, for example, an optically functional film (a film exhibiting an optical function).
  • the composition can include one or more types of first particles (A-1).
  • the average particle diameter d of the first particles (A-1) is 100 ⁇ 10 ⁇ 7 cm (100 nm) or more.
  • the average particle diameter d of the first particles (A-1) may be 150 ⁇ 10 ⁇ 7 cm or more, 180 ⁇ 10 ⁇ 7 cm or more, or 200 ⁇ 10 ⁇ 7 cm or more.
  • the average particle diameter d of the first particles (A-1) is usually 5000 ⁇ 10 ⁇ 7 cm or less, 1000 ⁇ 10 ⁇ 7 cm or less, 800 ⁇ 10 ⁇ 7 cm or less, 500 ⁇ 10 ⁇ 7 cm or less, or It may be 300 ⁇ 10 ⁇ 7 cm or less.
  • the first particles (A-1) include, but are not particularly limited to, light scattering particles.
  • the light scattering particles have the function of scattering incident light.
  • a film containing light-scattering particles can be used as a light-scattering film (light-diffusing film).
  • the composition and film can further contain luminescent particles as second particles (A-2).
  • the light-scattering particles can have the function of improving the luminescence intensity by scattering the light emitted from the luminescent particles.
  • the composition further contains luminescent particles as second particles (A-2) the sedimentation velocity ⁇ expressed by formula (i), which will be detailed later, is 400 ⁇ 10 -9 cm/s or less. By this, the luminescence intensity of a film formed from the composition can be improved.
  • Examples of light scattering particles include inorganic particles such as metal or metal oxide particles and glass particles.
  • Examples of the metal oxide include TiO 2 , SiO 2 , BaTiO 3 , ZnO, etc., and particles of TiO 2 are preferable because they scatter light efficiently.
  • the light scattering particles may be inorganic particles or organic particles, but are preferably inorganic particles. Further, it is preferable that the light scattering particles have a high refractive index.
  • the refractive index of the first particles (A-1) is preferably 1.5 or more, more preferably 2.0 or more.
  • values listed in known literature, catalog values, or general physical property tables may be used.
  • the density ⁇ s of the first particles (A-1) is usually 6 g/cm 3 or less, and usually 2.5 g/cm 3 or more.
  • the first particles (A-1) may be particles with a relatively large density ⁇ s .
  • the density ⁇ s of the first particle (A-1) can be adjusted by selecting the material constituting it. Further, the density ⁇ s can also be adjusted by known methods such as forming the particles into a hollow structure or a core-shell structure having a surface layer made of a material with low density.
  • the content of the first particles (A-1) in the composition is, for example, 0.001% by mass or more and 50% by mass or less based on the total solid content of the composition, and is based on the first particles (A-1). From the viewpoint of improving the properties of the membrane, preferably 0.01% by mass or more, more preferably 0.1% by mass or more, even more preferably 1% by mass or more, even more preferably 2% by mass or more, particularly preferably 5% by mass. % or more, and preferably 30% by mass or less, more preferably 15% by mass or less, even more preferably 10% by mass or less.
  • the total amount of solid content means the total of the components included in the composition, excluding the solvent (H).
  • the solid content of the composition can be measured by known analytical means such as liquid chromatography or gas chromatography.
  • the content of each component in the solid content of the composition may be calculated from the formulation at the time of preparing the composition.
  • the composition may include second particles (A-2) that are different particles from the first particles (A-1).
  • the second particles (A-2) are particles having a smaller particle size than the first particles (A-1), for example, the average particle size is 50 ⁇ 10 ⁇ 7 cm or less.
  • the composition can include one or more types of second particles (A-2).
  • the second particles (A-2) are usually solid particles that can exhibit specific properties (functions).
  • the specific property is preferably an optical property.
  • the film obtained by forming the composition containing the second particles (A-2) can exhibit the above-mentioned specific properties (functions).
  • the second particles (A-2) include, but are not particularly limited to, luminescent particles. Examples of the luminescent particles include luminescent (fluorescent) semiconductor particles (hereinafter also simply referred to as "semiconductor particles").
  • the semiconductor particles may be, for example, red light-emitting semiconductor particles that emit light with a peak emission wavelength in a wavelength range of 605 nm or more and 665 nm or less, or emit light that has a peak emission wavelength in a wavelength range of 500 nm or more and 560 nm or less.
  • the semiconductor particles may be green-emitting semiconductor particles, or may be blue-emitting semiconductor particles that emit light having an emission peak wavelength in a wavelength range of 420 nm or more and 480 nm or less.
  • the semiconductor particles are preferably red-emitting semiconductor particles and/or green-emitting semiconductor particles.
  • the emission peak wavelength of the semiconductor particles can be confirmed, for example, in the emission spectrum measured using an ultraviolet-visible spectrophotometer.
  • the full width at half maximum of the emission spectrum of the semiconductor particles is preferably 60 nm or less, more preferably 55 nm or less, even more preferably 50 nm or less, particularly preferably 45 nm or less. This makes it possible to emit light with higher color purity.
  • the lower limit of the full width at half maximum of the emission spectrum of the semiconductor particles is not particularly limited, but may be 5 nm or more, or 15 nm or more.
  • the semiconductor particles are particles made of semiconductor crystals, preferably nanoparticles made of semiconductor crystals.
  • Preferred examples of semiconductor particles include semiconductor quantum dots (hereinafter also referred to as “quantum dots”) and particles of compounds having a perovskite crystal structure (hereinafter also referred to as “perovskite compounds”), and more preferably It is a quantum dot.
  • the average particle diameter of the quantum dots is, for example, 0.5 ⁇ 10 ⁇ 7 cm or more and 20 ⁇ 10 ⁇ 7 cm or less, preferably 1 ⁇ 10 ⁇ 7 cm or more and 15 ⁇ 10 ⁇ 7 cm or less (for example, 2 ⁇ 10 ⁇ 7 cm 15 ⁇ 10 ⁇ 7 cm or less). Since the energy state of a quantum dot depends on its size, it is possible to freely select the emission wavelength by changing the particle size.
  • the particle diameters are 2.3 ⁇ 10 ⁇ 7 cm, 3.0 ⁇ 10 ⁇ 7 cm, 3.8 ⁇ 10 ⁇ 7 cm, and 4.6 ⁇ 10 ⁇ 7 cm
  • the peak wavelengths of the emission spectra are 528 nm, 570 nm, 592 nm, and 637 nm, respectively.
  • the quantum dot is, for example, one selected from the group consisting of a Group 2 element, a Group 11 element, a Group 12 element, a Group 13 element, a Group 14 element, a Group 15 element, and a Group 16 element of the periodic table. It can be composed of a semiconductor material containing a species or two or more kinds of elements.
  • semiconductor materials that can constitute quantum dots are: Compounds of Group 14 elements and Group 16 elements such as SnS 2 , SnS, SnSe, SnTe, PbS, PbSe, PbTe; Compounds of Group 13 elements and Group 15 elements such as GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, InGaN, InGaP; Group 13 elements and Group 16 elements such as Ga 2 O 3 , Ga 2 S 3 , Ga 2 Se 3 , Ga 2 Te 3 , In 2 O 3 , In 2 S 3 , In 2 Se 3 and In 2 Te 3 Compounds with; ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, HgO, HgS, HgSe, HgTe, ZnSTe, ZnSeS, ZnSeTe, CdSTe, CdSeTe, Hg
  • Group 12 elements and Group 16 elements Compounds with; As2O3 , As2S3 , As2Se3 , As2Te3 , Sb2O3 , Sb2S3 , Sb2Se3 , Sb2Te3 , Bi2O3 , Bi2S3 , Compounds of Group 15 elements and Group 16 elements such as Bi 2 Se 3 and Bi 2 Te 3 ; Compounds of Group 2 elements and Group 16 elements such as MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe; Contains simple substances of Group 14 elements, Group 15 elements, or Group 16 elements such as Si and Ge.
  • Quantum dots may have a single layer structure made of a single semiconductor material, or the surface of a core particle (core layer) made of a single semiconductor material may be made of one or more different semiconductors. It may be a core-shell structure covered with a covering layer (shell layer) made of a material. In the latter case, the semiconductor material constituting the shell layer usually has a larger bandgap energy than the semiconductor material constituting the core layer.
  • the quantum dot may have two or more types of shell layers.
  • the shape of the quantum dots is not particularly limited, and may be, for example, spherical or approximately spherical, rod-shaped, disc-shaped, or the like.
  • a perovskite compound is a compound having a perovskite-type crystal structure containing A, B, and X as components.
  • A is a component located at each vertex of a hexahedron centered on B, and is a monovalent cation.
  • X represents a component located at each vertex of an octahedron centered on B, and is at least one ion selected from the group consisting of a halide ion and a thiocyanate ion.
  • B is a component located at the center of the hexahedron with A at the apex and the octahedron with X at the apex, and is a metal ion.
  • the average particle size of the semiconductor particles made of a perovskite compound is preferably 3 ⁇ 10 ⁇ 7 cm or more, more preferably 4 ⁇ 10 ⁇ 7 cm or more, and even more preferably 5 ⁇ 10 ⁇ 7 cm from the viewpoint of maintaining a good crystal structure. 7 cm or more, and usually 50 ⁇ 10 ⁇ 7 cm or less.
  • the perovskite compound containing A, B, and X as components is not particularly limited, and may be a compound having any structure such as a three-dimensional structure, a two-dimensional structure, or a pseudo-two-dimensional structure.
  • the perovskite compound is represented by ABX (3+ ⁇ ) .
  • the perovskite compound is represented by A 2 BX (4+ ⁇ ) .
  • is a number that can be changed as appropriate depending on the charge balance of B, and is ⁇ 0.7 or more and 0.7 or less.
  • Preferred specific examples of perovskite compounds having a two-dimensional perovskite crystal structure represented by A 2 BX (4+ ⁇ ) include: ( C4H9NH3 ) 2PbBr4 , ( C4H9NH3 ) 2PbCl4 , ( C4H9NH3 ) 2PbI4 , ( C7H15NH3 ) 2PbBr4 , ( C 7 H 15 NH 3 ) 2 PbCl 4 , (C 7 H 15 NH 3 ) 2 PbI 4 , (C 4 H 9 NH 3 ) 2 Pb (1-a) Li a Br (4+ ⁇ ) (0 ⁇ a ⁇ 0.
  • the semiconductor particles may be ligand-containing semiconductor particles containing an organic ligand (G) coordinated to the semiconductor particles.
  • the organic ligand (G) can be, for example, an organic compound having a polar group that exhibits coordination ability to semiconductor particles.
  • the organic ligand (G) can be coordinated to the surface of the semiconductor particle, for example.
  • the organic ligand (G) may be one type of ligand or two or more types of ligands.
  • the organic ligand (G) is usually coordinated to the semiconductor particle via the polar group.
  • the fact that the organic ligand (G) is coordinated can be confirmed from the fact that the semiconductor particles are uniformly dispersed in a dispersion medium suitable for the organic ligand (G).
  • a ligand-containing semiconductor particle as the semiconductor particle can be advantageous from the viewpoint of improving the stability and dispersibility of the semiconductor particle and the emission intensity.
  • the polar group of the organic ligand (G) is, for example, at least one group selected from the group consisting of a thiol group (-SH), a carboxy group (-COOH), and an amino group (-NH 2 ). is preferred. Polar groups selected from this group can be advantageous in enhancing coordination to semiconductor particles. Among these, from the viewpoint of increasing the emission intensity, the polar group is more preferably at least one group selected from the group consisting of a thiol group and a carboxy group.
  • the organic ligand (G) may have one or more polar groups.
  • the organic ligand (G) has, for example, the following formula (x): X A -R X (x) It can be an organic compound represented by In the formula, X A is the above polar group, and R X is a monovalent hydrocarbon group that may contain a hetero atom (N, O, S, halogen atom, etc.). The hydrocarbon group may have one or more unsaturated bonds such as a carbon-carbon double bond. The hydrocarbon group may have a linear, branched or cyclic structure. The number of carbon atoms in the hydrocarbon group is, for example, 1 or more and 40 or less, and may be 1 or more and 30 or less.
  • the group R X may contain a polar group.
  • the above description regarding the polar group XA is cited.
  • organic ligands having a carboxyl group as the polar group XA include formic acid, acetic acid, propionic acid, and saturated or unsaturated fatty acids.
  • saturated or unsaturated fatty acids are butyric acid, pentanoic acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, pentadecylic acid, palmitic acid, margaric acid, stearic acid, arachidic acid, behenic acid, lignocerin.
  • Saturated fatty acids such as myristoleic acid, palmitoleic acid, oleic acid, icosenoic acid, erucic acid, nervonic acid; monounsaturated fatty acids such as linoleic acid, ⁇ -linolenic acid, ⁇ -linolenic acid, stearic acid, dihomo- Contains polyunsaturated fatty acids such as ⁇ -linolenic acid, arachidonic acid, eicosatetraenoic acid, docosadienoic acid, and adrenic acid (docosatetraenoic acid).
  • organic ligands having a thiol group or an amino group as the polar group XA include those in which the carboxyl group of the organic ligand having a carboxyl group as the polar group Contains organic ligands.
  • examples of the organic ligand represented by the above formula (x) include compound (G-1) and compound (G-2).
  • Compound (G-1) is a compound having a first functional group and a second functional group.
  • the first functional group is a carboxy group (-COOH)
  • the second functional group is a carboxy group or a thiol group (-SH). Since compound (G-1) has a carboxy group and/or a thiol group, it can serve as a ligand that coordinates to semiconductor particles.
  • the semiconductor particles may contain only one type of compound (G-1) or may contain two or more types of compound (G-1).
  • Compound (G-1) is a compound represented by the following formula (G-1a).
  • Compound (G-1) may be an acid anhydride of the compound represented by formula (G-1a).
  • R B represents a divalent hydrocarbon group. When multiple R B 's exist, they may be the same or different.
  • the above hydrocarbon group may have one or more substituents. When a plurality of substituents exist, they may be the same or different, and they may be bonded to each other to form a ring with the atoms to which they are bonded.
  • -CH 2 - contained in the above hydrocarbon group may be replaced with at least one of -O-, -S-, -SO 2 -, -CO- and -NH-.
  • p represents an integer from 1 to 10.
  • Examples of the divalent hydrocarbon group represented by R B include a chain hydrocarbon group, an alicyclic hydrocarbon group, an aromatic hydrocarbon group, and the like.
  • Examples of the chain hydrocarbon group include linear or branched alkanediyl groups, which usually have 1 to 50 carbon atoms, preferably 1 to 20 carbon atoms, and more preferably 1 to 10 carbon atoms.
  • Examples of the alicyclic hydrocarbon group include monocyclic or polycyclic cycloalkanediyl groups, which usually have 3 to 50 carbon atoms, preferably 3 to 20 carbon atoms, and more preferably 3 to 10 carbon atoms. It is.
  • Examples of the aromatic hydrocarbon group include monocyclic or polycyclic arenediyl groups, which usually have 6 to 20 carbon atoms.
  • substituents that the above hydrocarbon group may have include an alkyl group having 1 to 50 carbon atoms, a cycloalkyl group having 3 to 50 carbon atoms, an aryl group having 6 to 20 carbon atoms, a carboxy group, an amino group, halogen atom, etc.
  • the substituent that the hydrocarbon group may have is preferably a carboxy group, an amino group, or a halogen atom.
  • -CH 2 - contained in the above hydrocarbon group is replaced with at least one of -O-, -CO- and -NH-
  • -CH 2 - is preferably replaced with -CO- and -NH-.
  • p is preferably 1 or 2.
  • Examples of the compound represented by formula (G-1a) include compounds represented by the following formulas (1-1) to (1-9).
  • Specific examples of the compound represented by formula (G-1a) are chemical names such as mercaptoacetic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid, 3-mercaptobutanoic acid, 4-mercaptobutanoic acid, Mercaptosuccinic acid, mercaptostearic acid, mercaptooctanoic acid, 4-mercaptobenzoic acid, 2,3,5,6-tetrafluoro-4-mercaptobenzoic acid, L-cysteine, N-acetyl-L-cysteine, 3-mercapto Examples include 3-methoxybutyl propionate and 3-mercapto-2-methylpropionic acid. Among these, 3-mercaptopropionic acid and mercaptosuccinic acid are preferred.
  • compound (G-1) is a polyhydric carboxylic acid compound, preferably a compound represented by the above formula (G-1a), in which -SH in formula (G-1a) is a carboxy group ( -COOH) is included (G-1b).
  • Examples of the compound (G-1b) include the following compounds. Succinic acid, glutaric acid, adipic acid, octafluoroadipic acid, azelaic acid, dodecanedioic acid, tetradecanedioic acid, hexadecanedioic acid, heptadecanedioic acid, octadecanedioic acid, nonadecanedioic acid, dodecafluorosuberic acid, 3-ethyl- 3-Methylglutaric acid, hexafluoroglutaric acid, trans-3-hexenedioic acid, sebacic acid, hexadecafluorosebacic acid, acetylene dicarboxylic acid, trans-aconitic acid, 1,3-adamantanedicarboxylic acid, bicyclo[2.2 .2] Octane-1,4-dicarboxylic acid, cis-4-cyclohe
  • the molecular weight of compound (G-1) is preferably 3000 or less, more preferably 2500 or less, still more preferably 2000 or less, and even more preferably It is 1000 or less, particularly preferably 800 or less, and most preferably 500 or less.
  • the molecular weight of compound (G-1) is usually 100 or more.
  • the above molecular weight may be a number average molecular weight or a weight average molecular weight.
  • the number average molecular weight and weight average molecular weight are the number average molecular weight and weight average molecular weight, respectively, measured by gel permeation chromatography (GPC) in terms of standard polystyrene.
  • the content ratio of the compound (G-1) to the semiconductor particles is preferably 0.001 or more and 1 or less, more preferably 0.001 or more and 1 or less, in terms of mass ratio. 01 or more and 0.5 or less, more preferably 0.02 or more and 0.45 or less. When the content ratio is within this range, it may be advantageous from the viewpoint of improving the stability and dispersibility of semiconductor particles and the emission intensity.
  • Compound (G-2) is a compound different from compound (G-1), which contains a polyalkylene glycol structure and has a polar group at the end of the molecule.
  • the terminus of the molecule is preferably the terminus of the longest carbon chain (the carbon atoms in the carbon chain may be replaced with other atoms such as oxygen atoms) in compound (G-2).
  • the semiconductor particles may contain only one type of compound (G-2), or may contain two or more types of compound (G-2).
  • the semiconductor particles may contain compound (G-1) or compound (G-2), or may contain compound (G-1) and compound (G-2). Note that the compound containing a polyalkylene glycol structure and having the first functional group and the second functional group belongs to compound (G-1).
  • the polyalkylene glycol structure has the following formula: (n is an integer of 2 or more).
  • R C is an alkylene group, such as an ethylene group or a propylene group.
  • a specific example of the compound (G-2) is a polyalkylene glycol compound represented by the following formula (G-2a).
  • X is a polar group
  • Y is a monovalent group
  • Z C is a divalent or trivalent group.
  • n is an integer of 2 or more.
  • m is 1 or 2.
  • R C is an alkylene group.
  • the polar group X is preferably at least one group selected from the group consisting of a thiol group (-SH), a carboxy group (-COOH), and an amino group (-NH 2 ).
  • Polar groups selected from this group can be advantageous in enhancing coordination to semiconductor particles.
  • the polar group X is at least one group selected from the group consisting of a thiol group and a carboxy group.
  • the group Y is a monovalent group.
  • the group Y is not particularly limited, and includes monovalent hydrocarbon groups that may have substituents (N, O, S, halogen atoms, etc.).
  • the number of carbon atoms in the hydrocarbon group is, for example, 1 or more and 12 or less.
  • the hydrocarbon group may have an unsaturated bond.
  • an alkyl group having 1 to 12 carbon atoms having a linear, branched or cyclic structure an alkoxy group having 1 to 12 carbon atoms having a linear, branched or cyclic structure, etc.
  • the number of carbon atoms in the alkyl group and the alkoxy group is preferably 1 or more and 8 or less, more preferably 1 or more and 6 or less, and still more preferably 1 or more and 4 or less.
  • the group Y is preferably a linear or branched alkoxy group having 1 to 4 carbon atoms, and preferably a linear alkoxy group having 1 to 4 carbon atoms. More preferred.
  • the group Y may contain a polar group.
  • the polar group include at least one group selected from the group consisting of a thiol group (-SH), a carboxy group (-COOH), and an amino group (-NH 2 ).
  • a compound containing a polyalkylene glycol structure and having the first functional group and the second functional group belongs to compound (G-1).
  • the polar group is preferably placed at the end of the group Y.
  • the group Z C is a divalent or trivalent group.
  • the group Z C is not particularly limited, and includes divalent or trivalent hydrocarbon groups which may contain a hetero atom (N, O, S, halogen atom, etc.).
  • the number of carbon atoms in the hydrocarbon group is, for example, 1 or more and 24 or less.
  • the hydrocarbon group may have an unsaturated bond.
  • the group ZC which is a divalent group, is an alkylene group having 1 to 24 carbon atoms and having a linear, branched, or cyclic structure; 1 or more carbon atoms having a linear, branched, or cyclic structure; Examples include alkenylene groups of 24 or less.
  • the number of carbon atoms in the alkyl group and alkenylene group is preferably 1 or more and 12 or less, more preferably 1 or more and 8 or less, and even more preferably 1 or more and 4 or less.
  • the group Z C which is a trivalent group include a group obtained by removing one hydrogen atom from the group Z C which is a divalent group.
  • the group Z C may have a branched structure.
  • the group Z C having a branched structure has a polyalkylene glycol structure shown in the above formula (G-2a) in a branch chain different from the branch chain containing the polyalkylene glycol structure shown in the above formula (G-2a). may have another polyalkylene glycol structure.
  • the group ZC is preferably a linear or branched alkylene group having 1 to 6 carbon atoms, and preferably a linear alkylene group having 1 to 4 carbon atoms. is more preferable.
  • R C is an alkylene group, preferably a linear or branched alkylene group having 1 to 6 carbon atoms, and preferably a linear alkylene group having 1 to 4 carbon atoms. It is more preferable.
  • n in formula (G-2a) is an integer of 2 or more, preferably 2 or more and 540 or less, more preferably 2 or more and 120 or less, and even more preferably 2 or more and 60 or less.
  • the molecular weight of compound (G-2) may be, for example, about 150 or more and 10,000 or less, but from the viewpoint of improving the stability and dispersibility of semiconductor particles and the emission intensity, it is preferably 150 or more and 5,000 or less. More preferably, it is 150 or more and 4000 or less.
  • the molecular weight may be a number average molecular weight or a weight average molecular weight. In this case, the number average molecular weight and weight average molecular weight are the number average molecular weight and weight average molecular weight, respectively, measured by GPC in terms of standard polystyrene.
  • the content ratio of the compound (G-2) to the semiconductor particles is preferably 0.001 or more and 2 or less, more preferably 0.001 or more and 2 or less, in terms of mass ratio. 01 or more and 1.5 or less, more preferably 0.1 or more and 1 or less. When the content ratio is within this range, it may be advantageous from the viewpoint of improving the stability and dispersibility of semiconductor particles and the emission intensity.
  • the ratio of the content of the organic ligand to the semiconductor particles is preferably 0.001 or more and 1 or less, more preferably 0.01 or more and 0.8 in terms of mass ratio. Below, it is more preferably 0.02 or more and 0.5 or less. When the content ratio is within this range, it may be advantageous from the viewpoint of improving the stability and dispersibility of semiconductor particles and the emission intensity.
  • the content of organic ligands here refers to the total content of all organic ligands.
  • the composition can include light-scattering particles as first particles (A-1) and luminescent semiconductor particles as second particles (A-2).
  • A-1 first particles
  • A-2 luminescent semiconductor particles
  • the light-scattering particles can be present in the vicinity of the semiconductor particles, which can be advantageous in improving the emission intensity.
  • the composition includes a second particle (A-2), the second particle (A-2) in the composition (however, in the case of a ligand-containing semiconductor particle containing an organic ligand (G),
  • the content of the organic ligand (G) is, for example, 1% by mass or more and 70% by mass or less based on the total solid content of the composition, and the content of From the viewpoint of improving properties (e.g.
  • the content is preferably 2% by mass or more, more preferably 5% by mass or more, even more preferably 8% by mass or more, even more preferably 10% by mass or more, and the composition From the viewpoint of developability, the content is preferably 65% by mass or less, more preferably 60% by mass or less, even more preferably 55% by mass or less, even more preferably 50% by mass or less, particularly preferably 48% by mass or less.
  • the composition may contain one or more dispersants (B).
  • the dispersibility of the first particles (A-1) in the composition can be improved.
  • the first particles (A-1) can be dispersed in advance in part or all of the solvent (H) using the dispersant (B) and used for preparing the composition.
  • the organic ligand (G) described above, the resin (Cb) that can improve the dispersibility of particles described below, and the polymerizable compound (Da) that can improve the dispersibility of particles described below are a dispersant ( B) is not included.
  • Dispersant (B) Commercially available products can be used as the dispersant (B). Examples of commercially available products include: DISPERBYK-101, 102, 103, 106, 107, 108, 109, 110, 111, 116, 118, 130, 140, 154, 161, 162, 163, 164, 165, 166, 170, manufactured by Big Chemie Japan.
  • the content of the dispersant (B) in the composition is, for example, 0.001% by mass or more and 5% by mass or less based on the total solid content of the composition, and the content of the dispersant (B) is, for example, 0.001% by mass or more and 5% by mass or less, based on the characteristics of the film based on the first particles (A-1). From the viewpoint of improving the developability of the film and the sedimentation velocity ⁇ expressed by formula (i) to be described in detail later, it is preferably 0.05% by mass or more2. It is not more than 0.1% by mass and not more than 1% by mass.
  • Resin (C) The composition contains at least one binder component selected from the group consisting of a resin (C) and a polymerizable compound (D). When the composition contains resin (C), it can contain one or more resins. Examples of the resin (C) include the following resins [K1] to [K4].
  • Resin [K1] at least one type (a) selected from the group consisting of unsaturated carboxylic acids and unsaturated carboxylic acid anhydrides (hereinafter also referred to as "(a)”), and a resin copolymerizable with (a) Copolymer with monomer (c) (however, different from (a)) (hereinafter also referred to as "(c)”); Resin [K2]; Monomer (b) having a cyclic ether structure having 2 to 4 carbon atoms and an ethylenically unsaturated bond in a copolymer of (a) and (c) (hereinafter referred to as "(b)") A resin having a structure derived from (a), (c), and (b), which can be obtained by reacting (also referred to as ); Resin [K3]: A resin having a structure derived from (b), (c), and (a), which can be obtained by reacting (a) with a copolymer of (b) and
  • unsaturated monocarboxylic acids such as (meth)acrylic acid, crotonic acid, o-, m-, p-vinylbenzoic acid; Maleic acid, fumaric acid, citraconic acid, mesaconic acid, itaconic acid, 3-vinylphthalic acid, 4-vinylphthalic acid, 3,4,5,6-tetrahydrophthalic acid, 1,2,3,6-tetrahydrophthalic acid, dimethyl Unsaturated dicarboxylic acids such as tetrahydrophthalic acid and 1,4-cyclohexenedicarboxylic acid; Methyl-5-norbornene-2,3-dicarboxylic acid, 5-carboxybicyclo[2.2.1]hept-2-ene, 5,6-dicarboxybicyclo[2.2.1]hept-2-ene, 5-Carboxy-5-methylbicyclo[2.2.1]hept-2-ene, 5-carboxy-5-ethylbicy
  • Examples include unsaturated (meth)acrylates containing a hydroxy group and a carboxy group in the same molecule, such as ⁇ -(hydroxymethyl)(meth)acrylic acid.
  • (meth)acrylic acid, maleic anhydride, and the like are preferred from the viewpoint of copolymerization reactivity and the like.
  • (meth)acrylic acid means acrylic acid and/or methacrylic acid. The same applies to "(meth)acryloyl", "(meth)acrylate”, etc.
  • (b) is, for example, a monomer having a cyclic ether structure having 2 to 4 carbon atoms (for example, at least one member selected from the group consisting of an oxirane ring, an oxetane ring, and a tetrahydrofuran ring) and an ethylenically unsaturated bond.
  • (b) is preferably a monomer having a cyclic ether structure having 2 to 4 carbon atoms and a (meth)acryloyloxy group.
  • Examples of (b) include glycidyl (meth)acrylate, ⁇ -methylglycidyl (meth)acrylate, ⁇ -ethylglycidyl (meth)acrylate, glycidyl vinyl ether, o-vinylbenzylglycidyl ether, m-vinylbenzylglycidyl ether, p- -Vinylbenzylglycidyl ether, ⁇ -methyl-o-vinylbenzylglycidyl ether, ⁇ -methyl-m-vinylbenzylglycidyl ether, ⁇ -methyl-p-vinylbenzylglycidyl ether, 2,3-bis(glycidyloxymethyl)styrene , 2,4-bis(glycidyloxymethyl)styrene, 2,5-bis(glycidyloxymethyl)styrene, 2,6-bis(glycidyloxymethyl)st
  • a monomer having; Examples include monomers having a tetrahydrofuran ring and an ethylenically unsaturated bond, such as tetrahydrofurfuryl acrylate (for example, Viscoat V #150, manufactured by Osaka Organic Chemical Industry Co., Ltd.) and tetrahydrofurfuryl methacrylate. Since the reactivity during the production of resins [K2] to [K4] is high and unreacted (b) is difficult to remain, (b) is a monomer having an oxirane ring and an ethylenically unsaturated bond. is preferred.
  • Examples of (c) include methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, sec-butyl (meth)acrylate, tert-butyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate.
  • tricyclodecyl (meth)acrylate tricyclo[5.2.1.0 2,6 ]decen-8-yl (meth)acrylate (commonly referred to as “dicyclopentenyl (meth)acrylate” in the technical field).
  • dicyclopentanyloxyethyl (meth)acrylate isobornyl (meth)acrylate, adamantyl (meth)acrylate, allyl (meth)acrylate, propargyl (meth)acrylate, phenyl (meth)acrylate, naphthyl (meth)acrylate, benzyl (meth)acrylic acid esters such as (meth)acrylate; Hydroxy group-containing (meth)acrylic acid esters such as 2-hydroxyethyl (meth)acrylate and 2-hydroxypropyl (meth)acrylate; Dicarboxylic acid diesters such as diethyl maleate, diethyl fumarate, diethyl itaconate; Bicyclo[2.2.1]hept-2-ene, 5-methylbicyclo[2.2.1]hept-2-ene, 5-ethylbicyclo[2.2.1]hept-2-ene, 5- Hydroxybicyclo[2.2.1]hept-2-ene, 5-hydroxy
  • the ratio of the constituent units derived from each is as follows among all the constituent units constituting the resin [K1]: Structural units derived from (a); 2 mol% or more and 60 mol% or less structural units derived from (c); preferably 40 mol% or more and 98 mol% or less; Structural units derived from (a): 10 mol% or more and 50 mol% or less Structural units derived from (c): More preferably 50 mol% or more and 90 mol% or less.
  • the ratio of the constituent units of the resin [K1] is within the above range, the storage stability of the composition and the solvent resistance of the film tend to be excellent.
  • resin (B) contains structural units derived from (a), it can contain two or more types of structural units derived from (a), and in this case, the ratio of structural units derived from (a) (Content on a molar basis) is the sum of the ratios of each structural unit.
  • structural units derived from other monomers such as (b) and (c).
  • Resin [K1] can be prepared, for example, by the method described in the document "Experimental Methods of Polymer Synthesis” (written by Takayuki Otsu, published by Kagaku Dojin Co., Ltd., 1st edition, 1st printing, published March 1, 1972) and the document. It can be manufactured by referring to the cited literature described in .
  • predetermined amounts of (a) and (c), a polymerization initiator, a solvent, etc. are placed in a reaction vessel, and a deoxidized atmosphere is created by replacing oxygen with nitrogen, for example, and while stirring, Examples include methods of heating and keeping warm.
  • the polymerization initiator, solvent, etc. used are not particularly limited, and those commonly used in the field can be used.
  • an azo compound (2,2'-azobisisobutyronitrile, 2,2'-azobis(2,4-dimethylvaleronitrile), etc.) or an organic peroxide (benzoyl peroxide, etc.
  • the solvent include those that can dissolve each monomer, and examples of the solvent (H) that may be included in the composition include the solvents described below.
  • the obtained copolymer may be used as it is as a solution after the reaction, a concentrated or diluted solution, or a solid (powder) obtained by a method such as reprecipitation. May be used. If the below-mentioned solvent (H) is used as a solvent during polymerization, the solution after the reaction can be used as it is for preparing the composition, thereby simplifying the production process of the composition.
  • H below-mentioned solvent
  • Resin [K2] is a copolymer of (a) and (c), and a cyclic ether having 2 to 4 carbon atoms in (b) is added to the carboxylic acid and/or carboxylic acid anhydride in (a). It can be manufactured by First, a copolymer of (a) and (c) is produced in the same manner as described as the method for producing resin [K1]. In this case, the ratio of the structural units derived from each is preferably the same as the ratio described for resin [K1].
  • the resin [K2] can be produced by reacting for 1 to 10 hours at a temperature of 60°C or higher and 130°C or lower in the presence of a compound, a metal complex, an amine compound, etc.) and a polymerization inhibitor (such as hydroquinone, etc.). can.
  • the amount of (b) used is preferably 5 mol or more and 80 mol or less, more preferably 10 mol or more and 75 mol or less, per 100 mol of (a). By setting it within this range, the storage stability of the composition and the balance between solvent resistance, heat resistance, and mechanical strength of the film tend to be good.
  • the organic phosphorus compound as a reaction catalyst examples include triphenylphosphine.
  • the amine compound as a reaction catalyst for example, an aliphatic tertiary amine compound or an aliphatic quaternary ammonium salt compound can be used, and specific examples thereof include tris(dimethylaminomethyl)phenol, triethylamine, Examples include tetrabutylammonium bromide and tetrabutylammonium chloride.
  • the reaction catalyst is preferably an organic phosphorus compound.
  • the amount of the reaction catalyst used is preferably 0.001 parts by mass or more and 5 parts by mass or less, based on 100 parts by mass of the total amount of (a), (b) and (c).
  • the amount of the polymerization inhibitor used is preferably 0.001 parts by mass or more and 5 parts by mass or less, based on 100 parts by mass of the total amount of (a), (b) and (c).
  • the reaction conditions such as the charging method, reaction temperature, and time can be adjusted as appropriate by taking into consideration the manufacturing equipment, the amount of heat generated by polymerization, and the like.
  • the charging method and reaction temperature can be adjusted as appropriate, taking into account the manufacturing equipment, the amount of heat generated by polymerization, and the like.
  • resin [K3] is obtained as a copolymer of (b) and (c) in the same manner as the above-mentioned method for producing resin [K1].
  • the obtained copolymer may be used as it is as a solution after the reaction, a concentrated or diluted solution may be used, or it may be converted into a solid (powder) by a method such as reprecipitation. You may use the one taken out.
  • the ratio of the structural units derived from (b) and (c) is, respectively, relative to the total number of moles of all structural units constituting the above copolymer.
  • Resin [K3] is produced by adding the carboxylic acid or the cyclic ether derived from (b) of the copolymer of (b) and (c) to the carboxylic acid or It can be obtained by reacting carboxylic acid anhydride.
  • the amount of (a) used to react with the above copolymer is preferably 5 mol or more and 80 mol or less per 100 mol of (b).
  • Resin [K4] is a resin obtained by reacting resin [K3] with a carboxylic acid anhydride.
  • a carboxylic acid anhydride is reacted with a hydroxy group generated by the reaction of a cyclic ether and a carboxylic acid or a carboxylic acid anhydride.
  • the carboxylic anhydride include maleic anhydride, citraconic anhydride, itaconic anhydride, 3-vinylphthalic anhydride, 4-vinylphthalic anhydride, and 3,4,5,6-tetrahydrophthalic anhydride.
  • the amount of carboxylic acid anhydride used is preferably 0.5 mol or more and 1 mol or less per 1 mol of the amount of (a) used.
  • resin [K1], resin [K2], resin [K3], and resin [K4] include: Resin [K1] such as benzyl (meth)acrylate/(meth)acrylic acid copolymer, styrene/(meth)acrylic acid copolymer; Resin in which glycidyl (meth)acrylate is added to benzyl (meth)acrylate/(meth)acrylic acid copolymer, glycidyl (meth)acrylate to tricyclodecyl (meth)acrylate/styrene/(meth)acrylic acid copolymer Resins such as resins to which glycidyl (meth)acrylate is added to tricyclodecyl (meth)acrylate/benzyl (meth)acrylate/(meth)acrylic acid copolymers [K2]; A resin made by reacting a copolymer of tricyclodecyl (meth)acrylate/glycid
  • resin (C) examples include resins described in JP-A-2018-123274.
  • the resin has a double bond in the side chain, and a structural unit ( ⁇ ) represented by the following formula (I) and a structural unit ( ⁇ ) represented by the following formula (II) in the main chain. and further contains an acid group (hereinafter also referred to as "resin (Ca)").
  • the acid group may be introduced into the resin, for example, when the resin (Ca) contains a structural unit ( ⁇ ) derived from an acid group-containing monomer (for example, (meth)acrylic acid, etc.).
  • the resin (Ca) preferably includes structural units ( ⁇ ), ( ⁇ ) and ( ⁇ ) in the main chain skeleton.
  • R A and R B are the same or different and represent a hydrogen atom or a hydrocarbon group having 1 to 25 carbon atoms.
  • n represents the average number of repeating units of the structural unit represented by formula (I), and is a number of 1 or more.
  • R C is the same or different and represents a hydrogen atom or a methyl group.
  • R D are the same or different and represent a straight or branched hydrocarbon group having 4 to 20 carbon atoms.
  • m represents the average number of repeating units of the structural unit represented by formula (II), and is a number of 1 or more.
  • the content ratio of the structural unit ( ⁇ ) is determined from the viewpoint of heat resistance and storage stability of the resin (Ca), based on the total amount of all monomer units that provide the main chain skeleton of the resin (Ca) per 100 mass. %, for example, from 0.5% by mass to 50% by mass, preferably from 1% by mass to 40% by mass, more preferably from 5% by mass to 30% by mass.
  • n in formula (I) represents the average number of repeating units of the structural unit ( ⁇ ) in the resin (Ca), and n can be set so that the content ratio of the structural unit ( ⁇ ) is within the above range. can.
  • the content of the structural unit ( ⁇ ) is, for example, 10% by mass or more and 90% by mass with respect to 100% by mass of all the monomer units that provide the main chain skeleton of the resin (Ca).
  • the content is preferably 20% by mass or more and 80% by mass or less, more preferably 30% by mass or more and 75% by mass or less.
  • m in formula (II) represents the average number of repeating units of the structural unit ( ⁇ ) in the resin (Ca), and m is set so that the content ratio of the structural unit ( ⁇ ) is within the above range. I can do it.
  • the content ratio of the structural unit ( ⁇ ) is determined from the viewpoint of solubility of the resin (Ca) in the solvent (H), For example, from 0.5% by mass to 50% by mass, preferably from 2% by mass to 50% by mass, more preferably from 5% by mass to 100% by mass of all monomer units providing the main chain skeleton of the resin (Ca). It is not less than 45% by mass and not more than 45% by mass.
  • resin (C) examples include polyalkylene glycol compounds.
  • examples of the polyalkylene glycol compound include polyethylene glycol, polypropylene glycol, and the like.
  • the weight average molecular weight (Mw) of the resin (C) measured by gel permeation chromatography (GPC) in terms of standard polystyrene is preferably 9,000 or less.
  • Mw molecular weight
  • the Mw of the resin (C) in terms of standard polystyrene is, for example, 1,000 or more and 9,000 or less, and from the viewpoint of optical properties such as film strength, it is preferably 2,000 or more and 8,500 or less, more preferably 3,000 or more and 8,500 or less.
  • reaction conditions such as selection of raw materials, preparation method, reaction temperature and time can be adjusted by appropriately combining them.
  • the molecular weight distribution [weight average molecular weight (Mw)/number average molecular weight (Mn)] of the resin (C) measured by GPC is, for example, 1.0 or more and 6.0 or less, and from the viewpoint of improving the optical properties of the film, Preferably it is 1.2 or more and 4.0 or less.
  • the acid value of the resin (C) is preferably from 90 mgKOH/g to 150 mgKOH/g, more preferably from 95 mgKOH/g to 140 mgKOH/g, and even more preferably from the viewpoint of improving the optical properties and solvent resistance of the film. It is 100 mgKOH/g or more and 130 mgKOH/g or less.
  • the acid value is a value measured as the amount (mg) of potassium hydroxide required to neutralize 1 g of resin (C), and can be determined, for example, by titration using an aqueous potassium hydroxide solution.
  • the resin (C) preferably includes a resin whose double bond equivalent is 300 g/eq or more and 2000 g/eq or less, and includes a resin whose double bond equivalent is 500 g/eq or more and 1500 g/eq or less. It is more preferable.
  • the resin having a double bond equivalent of 300 g/eq or more and 2000 g/eq or less include (meth)acrylic resins.
  • Resin (C) preferably consists of (meth)acrylic resin.
  • the resin (C) preferably contains a resin (Cb) that can improve the dispersibility of particles, and is more preferably a resin (Cb).
  • the resin (Cb) include resins having polar groups.
  • the polar group can be adsorbed onto the first particle (A-1) or the second particle (A-2). Therefore, it is advantageous for resin (C) to contain resin (Cb) in reducing the sedimentation velocity ⁇ expressed by formula (i).
  • the polar group include at least one group selected from the group consisting of a carboxy group (-COOH), a thiol group (-SH), and an amino group (-NH 2 ), preferably a carboxy group.
  • the resin (Cb) may have two or more types of polar groups.
  • the content of resin (C) in the composition is, for example, 5% by mass or more, preferably 10% by mass or more, more preferably The content is 15% by mass or more, more preferably 20% by mass or more, particularly preferably 25% by mass or more, and is, for example, 90% by mass or less, preferably 85% by mass or less, more preferably 80% by mass or less.
  • the optical properties of the film tend to be high.
  • the composition can include a polymerizable compound (D).
  • the polymerizable compound (D) is a compound that can be polymerized by active radicals, acids, etc. generated from the polymerization initiator (E), which will be described later.
  • the composition may contain two or more kinds of polymerizable compounds (D).
  • the composition may or may not contain the polymerizable compound (D).
  • the composition does not contain the resin (C)
  • the composition contains the polymerizable compound (D).
  • Examples of the polymerizable compound (D) include photopolymerizable compounds that are cured by irradiation with light and thermopolymerizable compounds that are cured by heat.
  • Examples of the photopolymerizable compound include photoradical polymerizable compounds that are cured by a radical polymerization reaction when irradiated with light, and photocationic polymerizable compounds that are cured by a cationic polymerization reaction when irradiated with light.
  • the photopolymerizable compound is preferably a photoradically polymerizable compound.
  • the weight average molecular weight of the photopolymerizable compound is, for example, 150 or more and 3000 or less, preferably 150 or more and 2900 or less, and more preferably 250 or more and 1500 or less.
  • Examples of the photoradically polymerizable compound include compounds having a polymerizable ethylenically unsaturated bond, and among them, (meth)acrylate compounds are preferred.
  • Examples of (meth)acrylate compounds include monofunctional (meth)acrylate monomers having one (meth)acryloyloxy group in the molecule (hereinafter also referred to as "compound (D-1)"), two monofunctional (meth)acrylate monomers having one (meth)acryloyloxy group in the molecule; A bifunctional (meth)acrylate monomer having a (meth)acryloyloxy group (hereinafter also referred to as "compound (D-2)”), and a polyfunctional monomer having three or more (meth)acryloyloxy groups in the molecule. Examples include functional (meth)acrylate monomers (hereinafter also referred to as "compound (D-3)").
  • Examples of compound (D-1) include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, amyl (meth)acrylate, hexyl (meth)acrylate, and 2-ethylhexyl.
  • Compound (D-2) includes 1,3-butylene glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,5-pentanediol di(meth)acrylate, 3-methyl-1 , 5-pentanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, 1,8-octanediol di(meth)acrylate, 1,9-nonanediol Di(meth)acrylate, tricyclodecane dimethanol di(meth)acrylate, ethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, The two hydroxyl groups of tripropylene glycol di(meth)acrylate, polypropylene glycol di(meth
  • Di(meth)acrylate di(meth)acrylate obtained by adding 2 moles of ethylene oxide or propylene oxide to 1 mole of bisphenol A, in which two hydroxyl groups of the diol are substituted with (meth)acryloyloxy groups, trimethylolpropane 1 di(meth)acrylate in which two hydroxyl groups of a triol obtained by adding 3 moles or more of ethylene oxide or propylene oxide to 1 mole of bisphenol A are substituted with (meth)acryloyloxy groups; 4 moles or more of ethylene oxide or ethylene oxide to 1 mole of bisphenol A;
  • Examples include di(meth)acrylate in which two hydroxyl groups of a diol obtained by adding propylene oxide are substituted with (meth)acryloyloxy groups.
  • Compound (D-3) includes glycerin tri(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, Dipentaerythritol hexa(meth)acrylate, tripentaerythritol octa(meth)acrylate, tripentaerythritol hepta(meth)acrylate, tetrapentaerythritol deca(meth)acrylate, tetrapentaerythritol nona(meth)acrylate, Tris(2-( meth)acryloyloxyethyl)isocyanurate, ethylene glycol modified pentaerythritol tetra(meth)acrylate, ethylene glycol modified dipentaerythr
  • photocationic polymerizable compounds include compounds having at least one oxetane ring (four-membered ring ether) in the molecule (hereinafter also simply referred to as “oxetane compounds”), and compounds having at least one oxirane ring (four-membered ring ether) in the molecule (hereinafter also simply referred to as “oxetane compounds”). (hereinafter also simply referred to as "epoxy compound”), vinyl ether compounds, and the like.
  • Oxetane compounds include 3-ethyl-3-hydroxymethyloxetane, 1,4-bis[(3-ethyl-3-oxetanyl)methoxymethyl]benzene, 3-ethyl-3-(phenoxymethyl)oxetane, di[( Examples thereof include 3-ethyl-3-oxetanyl)methyl]ether, 3-ethyl-3-(2-ethylhexyloxymethyl)oxetane, and phenol novolac oxetane. These oxetane compounds can be easily obtained as commercial products, and all commercial products are sold by Toagosei Co., Ltd.
  • Alignetane (registered trademark) OXT-101 under the trade name "Aron Oxetane (registered trademark) OXT-101”. ”, “Aronoxetane (registered trademark) OXT-121”, “Aronoxetane (registered trademark) OXT-211”, “Aronoxetane (registered trademark) OXT-221”, “Aronoxetane (registered trademark) OXT-212”, etc. can be mentioned.
  • epoxy compound examples include aromatic epoxy compounds, glycidyl ethers of polyols having an alicyclic ring, aliphatic epoxy compounds, alicyclic epoxy compounds, and the like.
  • Aromatic epoxy compounds include bisphenol-type epoxy resins such as diglycidyl ether of bisphenol A, diglycidyl ether of bisphenol F, and diglycidyl ether of bisphenol S; phenol novolac epoxy resin, cresol novolac epoxy resin, and hydroxybenzaldehyde phenol novolac epoxy.
  • Examples include novolak type epoxy resins such as resins; polyfunctional type epoxy resins such as glycidyl ether of tetrahydroxyphenylmethane, glycidyl ether of tetrahydroxybenzophenone, and epoxidized polyvinylphenol.
  • glycidyl ether of a polyol having an alicyclic ring a nuclear hydrogenated polyhydroxy compound obtained by selectively hydrogenating the aromatic ring of an aromatic polyol under pressure in the presence of a catalyst is used as a glycidyl ether.
  • aromatic polyols include bisphenol type compounds such as bisphenol A, bisphenol F, and bisphenol S; novolac type resins such as phenol novolak resin, cresol novolak resin, and hydroxybenzaldehyde phenol novolak resin; tetrahydroxydiphenylmethane, tetrahydroxybenzophenone, and polyvinylphenol.
  • polyfunctional compounds such as.
  • a glycidyl ether can be obtained by reacting an alicyclic polyol obtained by hydrogenating the aromatic ring of these aromatic polyols with epichlorohydrin.
  • an alicyclic polyol obtained by hydrogenating the aromatic ring of these aromatic polyols with epichlorohydrin.
  • hydrogenated diglycidyl ether of bisphenol A is preferred.
  • Examples of aliphatic epoxy compounds include polyglycidyl ethers of aliphatic polyhydric alcohols or alkylene oxide adducts thereof. Specifically, diglycidyl ether of 1,4-butanediol; diglycidyl ether of 1,6-hexanediol; triglycidyl ether of glycerin; triglycidyl ether of trimethylolpropane; diglycidyl ether of polyethylene glycol; propylene glycol diglycidyl ether of neopentyl glycol; obtained by adding one or more alkylene oxides (ethylene oxide or propylene oxide) to an aliphatic polyhydric alcohol such as ethylene glycol, propylene glycol or glycerin. Examples include polyglycidyl ethers of polyether polyols.
  • Alicyclic epoxy compounds are compounds that have at least one structure in the molecule that forms an oxirane ring together with the carbon atom of the alicyclic ring. (manufactured by Dow Chemical Company), "Cyracure UVR” series (manufactured by Dow Chemical Company), etc. can be used.
  • vinyl ether compounds include 2-hydroxyethyl vinyl ether, triethylene glycol vinyl monoether, tetraethylene glycol divinyl ether, trimethylolpropane trivinyl ether, and the like.
  • the photopolymerizable compound preferably contains a polyfunctional (meth)acrylate monomer (compound (D-3)) having three or more (meth)acryloyloxy groups in the molecule.
  • compound (D-3) polyfunctional (meth)acrylate monomer
  • the compound (D-3) in the composition it is possible to increase the heat resistance and mechanical strength of the film, and it may also be advantageous in improving optical properties such as luminescence intensity. Further, by including the compound (D-3) in the composition, the curability of the composition can be improved.
  • Compound (D-3) is a compound (D-3a) having three or more (meth)acryloyloxy groups in the molecule and having an acidic functional group, and a compound (D-3a) having three or more (meth)acryloyloxy groups in the molecule.
  • Examples include a compound (D-3b) having an acryloyloxy group and no acidic functional group.
  • the photopolymerizable compound preferably contains at least one of compound (D-3a) and compound (D-3b), two or more of compound (D-3a) and two or more of compound (D-3b). , or may contain at least one compound (D-3a) and at least one compound (D-3b).
  • the acidic functional groups include carboxy groups, sulfonic acid groups, and phosphoric acid groups. Among these, the acidic functional group is preferably a carboxy group.
  • the number of (meth)acryloyloxy groups that one molecule of compound (D-3) has is, for example, 3 or more and 6 or less, preferably 3 or more and 5 or less, and more preferably 3.
  • the number of acidic functional groups per molecule of compound (D-3a) is 1 or more, preferably 1.
  • each acidic functional group may be different or the same, but it is preferable to have at least one carboxy group.
  • a dicarboxylic acid is esterified with a compound having three or more (meth)acryloyloxy groups and hydroxyl groups, such as pentaerythritol tri(meth)acrylate or dipentaerythritol penta(meth)acrylate.
  • Examples include compounds obtained by Examples of such compounds include compounds obtained by monoesterifying pentaerythritol tri(meth)acrylate and succinic acid, compounds obtained by monoesterifying dipentaerythritol penta(meth)acrylate and succinic acid, and pentaerythritol tri(meth)acrylate.
  • Examples include a compound obtained by monoesterifying acrylate and maleic acid, and a compound obtained by monoesterifying dipentaerythritol penta(meth)acrylate and maleic acid. Among these, a compound obtained by monoesterifying pentaerythritol tri(meth)acrylate and succinic acid is preferred.
  • compound (D-3a) Commercially available products of compound (D-3a) include, for example, "Aronix M-510” manufactured by Toagosei Co., Ltd., which contains a dibasic acid anhydride adduct of pentaerythritol tri(meth)acrylate as a main component, dipentaerythritol Examples include “Aronix M-520D” manufactured by Toagosei Co., Ltd., which has a dibasic acid anhydride adduct of penta(meth)acrylate as its main component. These commercially available products have a carboxy group as an acidic functional group.
  • the polymerizable compound (D) preferably contains a polymerizable compound (Da) that can improve the dispersibility of particles, and is more preferably a polymerizable compound (Da).
  • Examples of the polymerizable compound (Da) include polymerizable compounds having a polar group. The polar group can be adsorbed onto the first particle (A-1) or the second particle (A-2). Therefore, it is advantageous for the polymerizable compound (D) to contain the polymerizable compound (Da) in order to reduce the sedimentation rate ⁇ expressed by formula (i).
  • Examples of the polar group include at least one group selected from the group consisting of a carboxy group (-COOH), a thiol group (-SH), and an amino group (-NH 2 ), preferably a carboxy group.
  • the polymerizable compound (Da) may have two or more types of polar groups. Examples of the polymerizable compound (Da) include the above-mentioned compound (D-3a).
  • the content of compound (D-3) is determined from the viewpoint of improving optical properties such as curability of the composition, heat resistance of the film, and luminescence intensity. It is preferably 5% by mass or more, more preferably 10% by mass or more, even more preferably 20% by mass or more, 30% by mass or more, 50% by mass or more, 70% by mass or more, based on the total amount of sexual compounds. , 90% by mass or more, or 100% by mass.
  • the content of compound (D-3) is determined from the viewpoint of improving optical properties such as curability of the composition, heat resistance of the film, and luminescence intensity.
  • the photopolymerizable compound is a (meth)acrylate monomer having a vinyl ether group and a (meth)acryloyl group (preferably a (meth)acryloyloxy group) in the same molecule (hereinafter also referred to as "compound (D-4)"). ) may be included.
  • compound (D-4) it may be advantageous in improving optical properties such as luminescence intensity of the film.
  • Compound (D-4) may be a compound belonging to any one of compounds (D-1) to (D-3).
  • the number of vinyl ether groups that the compound (D-4) has is preferably 1 or more and 4 or less, more preferably 1 or more and 2 or less, particularly preferably 1.
  • the number of (meth)acryloyl groups that compound (D-4) has is preferably 1 or more and 4 or less, more preferably 1 or more and 2 or less, particularly preferably 1.
  • Compound (D-4) includes 2-vinyloxyethyl (meth)acrylate, 3-vinyloxypropyl (meth)acrylate, 2-vinyloxypropyl (meth)acrylate, 1-vinyloxypropyl (meth)acrylate, 1-methyl -2-vinyloxyethyl (meth)acrylate, 4-vinyloxybutyl (meth)acrylate, 3-vinyloxybutyl (meth)acrylate, 2-vinyloxybutyl (meth)acrylate, 1-methyl-3-vinyloxypropyl (meth)acrylate, 2-methyl -3-vinyloxypropyl (meth)acrylate, 1-methyl-2-vinyloxypropyl (meth)acrylate, 1,1-dimethyl-2-vinyloxyethyl (meth)acrylate, 6-vinyloxyhexyl (meth)acrylate, 4 - Vinyloxycyclohexyl (meth)acrylate, (4-vinyloxymethylcyclo
  • vinyloxyC 1-6 alkyl (meth)acrylate or (vinyloxyC 1-4 alkoxy)C 1-4 alkyl (meth)acrylate is preferable, and (vinyloxyC 1-4 alkoxy)C 1 -4 alkyl (meth)acrylate is more preferred, and 2-(2-vinyloxyethoxy)ethyl (meth)acrylate is particularly preferred.
  • the content of compound (D-4) is determined based on the total amount of the photopolymerizable compound, from the viewpoint of improving optical properties such as luminescence intensity of the film. It is preferably 5% by mass or more, more preferably 10% by mass or more, even more preferably 20% by mass or more, even more preferably 25% by mass or more, and preferably 85% by mass or less, more preferably Preferably it is 75% by weight or less, more preferably 65% by weight or less, even more preferably 60% by weight or less, particularly preferably 55% by weight or less.
  • the content of compound (D-4) is determined based on the total solid content of the composition, from the viewpoint of improving optical properties such as luminescence intensity of the film. , preferably 3% by mass or more and 50% by mass or less, more preferably 5% by mass or more and 45% by mass or less, even more preferably 10% by mass or more and 40% by mass or less, still more preferably 15% by mass or more and 35% by mass or less. .
  • the content of compound (D-1) is preferably 5% by mass or more, more preferably 10% by mass or more based on the total amount of the photopolymerizable compound. At least 15% by mass, more preferably at least 15% by mass, even more preferably at least 20% by mass, particularly preferably at least 25% by mass, and preferably at most 75% by mass, more preferably at most 65% by mass. , more preferably 60% by mass or less, even more preferably 55% by mass or less, particularly preferably 50% by mass or less.
  • the content of compound (D-1) is preferably 5% by mass or more and 50% by mass or less, more preferably 5% by mass or more and 50% by mass or less, based on the total solid content of the composition. is 8% by mass or more and 45% by mass or less, more preferably 10% by mass or more and 40% by mass or less, even more preferably 15% by mass or more and 35% by mass or less.
  • the content of the polymerizable compound (D) in the composition is preferably 0.5% by mass or more and 90% by mass or less based on the total solid content of the composition. , more preferably 1% by mass or more and 80% by mass or less, still more preferably 2% by mass or more and 75% by mass or less, even more preferably 2% by mass or more and 70% by mass or less.
  • Polymerization initiator (E) When the composition contains the polymerizable compound (D), it is preferable that the composition further contains a polymerization initiator (E).
  • the polymerization initiator (E) is a compound that can generate active radicals, acids, etc. under the action of light or heat, and can initiate polymerization of the polymerizable compound (D).
  • the composition can contain one or more polymerization initiators (E). Examples of the polymerization initiator (E) include photopolymerization initiators such as oxime compounds, alkylphenone compounds, biimidazole compounds, triazine compounds, and acylphosphine compounds, and thermal polymerization initiators such as azo compounds and organic peroxides. .
  • oxime compound (1) An example of the oxime compound is an oxime compound having a first molecular structure represented by the following formula (1).
  • the oxime compound will also be referred to as "oxime compound (1)”.
  • Including the oxime compound (1) as the polymerization initiator (E) can be advantageous from the viewpoint of improving optical properties such as luminescence intensity of the film.
  • One reason why this effect can be achieved is due to the unique molecular structure of the oxime compound (1), which is necessary for the oxime compound (1) to initiate photopolymerization. Since the absorption wavelength of oxime compound (1) changes significantly before and after cleavage (decomposition), it is presumed that oxime compound (1) has a high ability to initiate photoradical polymerization.
  • R 1 represents R 11 , OR 11 , COR 11 , SR 11 , CONR 12 R 13 or CN.
  • R 11 , R 12 and R 13 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, or an aralkyl group having 2 to 20 carbon atoms. Represents a heterocyclic group.
  • R 21 , R 22 and R 23 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, or an aralkyl group having 2 to 20 carbon atoms. Represents a heterocyclic group.
  • the hydrogen atom of the group represented by R 21 , R 22 or R 23 may be substituted with CN, a halogen atom, a hydroxy group or a carboxy group.
  • the alkylene moiety is -O-, -S-, -COO-, -OCO-, It may be interrupted 1 to 5 times by -NR 24 -, -NR 24 CO-, -NR 24 COO-, -OCONR 24 -, -SCO-, -COS-, -OCS- or -CSO-.
  • R 24 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, or a heterocyclic group having 2 to 20 carbon atoms.
  • the alkyl moiety may be branched or cyclic.
  • R 12 and R 13 and R 22 and R 23 may each be taken together to form a ring.
  • * represents a bond with a second molecular structure that is a molecular structure other than the first molecular structure that the oxime compound (1) has.
  • Examples of the alkyl group having 1 to 20 carbon atoms represented by R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in formula (1) include a methyl group, an ethyl group, and a propyl group.
  • Examples of the aryl group having 6 to 30 carbon atoms represented by R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in formula (1) include phenyl group, tolyl group, and xylyl group. group, ethylphenyl group, naphthyl group, anthryl group, phenanthryl group, phenyl group substituted with one or more of the above alkyl groups, biphenylyl group, naphthyl group, anthryl group, and the like.
  • Examples of the aralkyl group having 7 to 30 carbon atoms represented by R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in formula (1) include benzyl group, ⁇ -methylbenzyl group, ⁇ , ⁇ -dimethylbenzyl group, phenylethyl group, etc.
  • Examples of the heterocyclic group having 2 to 20 carbon atoms represented by R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in formula (1) include a pyridyl group, a pyrimidyl group, furyl group, thienyl group, tetrahydrofuryl group, dioxolanyl group, benzoxazol-2-yl group, tetrahydropyranyl group, pyrrolidyl group, imidazolidyl group, pyrazolidyl group, thiazolidyl group, isothiazolidyl group, oxazolidyl group, isoxazolidyl group, Examples include piperidyl group, piperazyl group, morpholinyl group, etc., and preferably a 5- to 7-membered heterocycle.
  • R 12 and R 13 and R 22 and R 23 in formula (1) may be taken together to form a ring means that R 12 and R 13 and R 22 and R 23 are taken together, This means that it may form a ring together with a nitrogen atom, carbon atom, or oxygen atom that is connected to it.
  • Examples of the ring that Ra 12 and Ra 13 and Ra 22 and Ra 23 in formula (1) can form together include a cyclopentane ring, a cyclohexane ring, a cyclopentene ring, a benzene ring, a piperidine ring, a morpholine ring, Examples include lactone rings and lactam rings, preferably 5- to 7-membered rings.
  • Examples of the halogen atom that R 11 , R 12 , R 13 , R 21 , R 22 and R 23 in formula (1) may have as a substituent include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. It will be done.
  • R 1 in formula (1) is preferably R 11 , more preferably an alkyl group having 1 to 20 carbon atoms, even more preferably an alkyl group having 1 to 10 carbon atoms, even more preferably 1 -6 alkyl group.
  • the second molecular structure connected to the first molecular structure represented by formula (1) is a structure represented by formula (2) below.
  • the second molecular structure means a molecular structure portion other than the first molecular structure that the oxime compound (1) has.
  • the bond represented by "*" in formula (2) is directly bonded to the bond represented by "*" in formula (1). That is, when the second molecular structure is a structure represented by formula (2), a benzene ring having "-*" in formula (2) and a carbonyl group having "-*" in formula (1) are directly connected.
  • R 2 and R 3 are each independently R 11 , OR 11 , SR 11 , COR 11 , CONR 12 R 13 , NR 12 COR 11 , OCOR 11 , COOR 11 , SCOR 11 , OCSR 11 , COSR 11 , CSOR 11 , CN or a halogen atom.
  • R2 's When a plurality of R2 's exist, they may be the same or different. When multiple R 3 's exist, they may be the same or different.
  • R 11 , R 12 and R 13 have the same meanings as above.
  • s and t each independently represent an integer of 0 to 4.
  • L represents a sulfur atom, CR 31 R 32 , CO or NR 33 .
  • R 31 , R 32 and R 33 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an aralkyl group having 7 to 30 carbon atoms.
  • the alkyl moiety may be branched or cyclic, and R 31 , R 32 and R 33 may each independently form a ring together with either adjacent benzene ring.
  • R 4 is a hydroxy group, a carboxy group, or the following formula (2-1)
  • L 1 represents -O-, -S-, -NR 22 -, -NR 22 CO-, -SO 2 -, -CS-, -OCO- or -COO- .
  • R 22 represents the same meaning as above.
  • L2 is a group obtained by removing v hydrogen atoms from an alkyl group having 1 to 20 carbon atoms, a group obtained by removing v hydrogen atoms from an aryl group having 6 to 30 carbon atoms, an aralkyl group having 7 to 30 carbon atoms represents a group obtained by removing v hydrogen atoms from a heterocyclic group having 2 to 20 carbon atoms, or a group obtained by removing v hydrogen atoms from a heterocyclic group having 2 to 20 carbon atoms.
  • the alkylene moiety is -O-, -S-, -COO-, -OCO-, -NR 22 -, -NR 22 COO-, -OCONR 22 - , -SCO-, -COS-, -OCS- or -CSO- may be interrupted one to five times, and the alkylene moiety may be branched or cyclic.
  • R 4a represents OR 41 , SR 41 , CONR 42 R 43 , NR 42 COR 43 , OCOR 41 , COOR 41 , SCOR 41 , OCSR 41 , COSR 41 , CSOR 41 , CN or a halogen atom.
  • R 41 , R 42 and R 43 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an aralkyl group having 7 to 30 carbon atoms;
  • the groups represented by 42 and R 43 have an alkyl moiety, the alkyl moiety may be branched or cyclic, and R 42 and R 43 together form a ring. It may be formed.
  • v represents an integer from 1 to 3.
  • ) represents a group represented by * represents a bond with the first molecular structure of the oxime compound (1).
  • Examples of the alkyl group having 1 to 20 carbon atoms, aryl group having 6 to 30 carbon atoms, and aralkyl group having 7 to 30 carbon atoms represented by R 41 , R 42 and R 43 include R 11 in formula (1), The same examples apply to R 12 , R 13 , R 21 , R 22 , R 23 and R 24 .
  • Examples of the ring group are the same as those for R 11 , R 12 , R 13 , R 21 , R 22 , R 23 and R 24 in formula (1).
  • R 31 , R 32 and R 33 in formula (2) may each independently form a ring together with either adjacent benzene ring means that R 31 , R 32 and R 33 means that each independently may form a ring together with the nitrogen atom connected together with either of the adjacent benzene rings.
  • Examples of rings that can be formed by R 31 , R 32 and R 33 in formula (2) together with any of the adjacent benzene rings include Ra 12 , Ra 13 and Ra 22 in formula (1). Similar examples for the rings that Ra 23 can form together.
  • L 2 is an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, or a heterocyclic group having 2 to 20 carbon atoms. Represents a group with v hydrogen atoms removed.
  • Examples of groups obtained by removing v hydrogen atoms from an alkyl group having 1 to 20 carbon atoms include, for example, when v is 1, methylene group, ethylene group, propylene group, methylethylene group, butylene group, 1-methylpropylene group.
  • Examples of groups obtained by removing v hydrogen atoms from an aryl group having 6 to 30 carbon atoms include, for example, when v is 1, a 1,2-phenylene group, a 1,3-phenylene group, a 1,4-phenylene group, 2,6-naphthylene group, 1,4-naphthylene group, 2,5-dimethyl-1,4-phenylene group, diphenylmethane-4,4'-diyl group, 2,2-diphenylpropane-4,4'-diyl and arylene groups such as diphenylsulfide-4,4'-diyl group and diphenylsulfone-4,4'-diyl group.
  • Examples of groups obtained by removing v hydrogen atoms from an aralkyl group having 7 to 30 carbon atoms include a group represented by the following formula (a) and a group represented by the following formula (b) when v is 1. etc.
  • L 3 and L 5 represent an alkylene group having 1 to 10 carbon atoms
  • L 4 and L 6 represent a single bond or an alkylene group having 1 to 10 carbon atoms.
  • alkylene group having 1 to 10 carbon atoms examples include methylene group, ethylene group, propylene group, methylethylene group, butylene group, 1-methylpropylene group, 2-methylpropylene group, 1,2-dimethylpropylene group, 1 , 3-dimethylpropylene group, 1-methylbutylene group, 2-methylbutylene group, 3-methylbutylene group, 4-methylbutylene group, 2,4-dimethylbutylene group, 1,3-dimethylbutylene group, pentylene group, Examples include hexylene group, heptylene group, octylene group, nonylene group, decylene group, and the like.
  • Examples of groups obtained by removing v hydrogen atoms from a heterocyclic group having 2 to 20 carbon atoms include, for example, when v is 1, 2,5-pyridinediyl group, 2,6-pyridinediyl group, 2,5- Pyrimidinediyl group, 2,5-thiophenediyl group, 3,4-tetrahydrofurandiyl group, 2,5-tetrahydrofurandiyl group, 2,5-furandiyl group, 3,4-thiazolediyl group, 2,5-benzofurandiyl group divalent heterocyclic groups such as 2,5-benzothiophenediyl group, N-methylindole-2,5-diyl group, 2,5-benzothiazolediyl group, and 2,5-benzoxazolediyl group. It will be done.
  • Examples of the halogen atom represented by R 2 and R 3 in formula (2) and R 4a in the above formula (2-1) include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a preferable example of the structure represented by formula (2) is a structure represented by formula (2a) below.
  • L' represents a sulfur atom or NR 50
  • R 50 represents a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms
  • R 2 , R 3 , R 4 , s and t have the same meanings as above.
  • R 44 is a hydroxy group, a carboxy group, or the following formula (2-2)
  • L 11 represents -O- or *-OCO-
  • * represents a bond with L 12
  • L 12 represents an alkylene group having 1 to 20 carbon atoms
  • the alkylene group may be interrupted by 1 to 3 -O-
  • R 44a represents OR 55 or COOR 55
  • R 55 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. .) represents a group represented by ]
  • R 44 is preferably a group represented by formula (2-2). In this case, it is advantageous in terms of the solubility of the oxime compound (1) in the solvent (H) and the developability of the composition.
  • the alkylene group represented by L 12 preferably has 1 to 10 carbon atoms, more preferably 1 to 4 carbon atoms.
  • R 44a is preferably a hydroxy group or a carboxy group, more preferably a hydroxy group.
  • the method for producing the oxime compound (1) having the second molecular structure represented by formula (2) is not particularly limited, but it can be produced, for example, by the method described in JP-A-2011-132215.
  • Another example of the second molecular structure connected to the first molecular structure represented by formula (1) is a structure represented by formula (3) below.
  • the bond represented by "*" in formula (3) is directly bonded to the bond represented by "*" in formula (1). That is, when the second molecular structure is a structure represented by formula (3), a benzene ring having "-*" in formula (3) and a carbonyl group having "-*" in formula (1) are directly connected.
  • R 5 is a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, or a heterocyclic group having 2 to 20 carbon atoms. represents.
  • the alkyl moiety may be branched or cyclic.
  • R 21 , R 22 and R 23 have the same meanings as above.
  • the hydrogen atom of the group represented by R 21 , R 22 or R 23 may be substituted with CN, a halogen atom, a hydroxy group or a carboxy group.
  • the groups represented by R 21 , R 22 and R 23 have an alkylene moiety, the alkylene moiety is -O-, -S-, -COO-, -OCO-, -NR 24 -, -NR 24 CO It may be interrupted 1 to 5 times by -, -NR 24 COO-, -OCONR 24 -, -SCO-, -COS-, -OCS- or -CSO-.
  • R 24 represents the same meaning as above.
  • R 21 , R 22 and R 23 When the groups represented by R 21 , R 22 and R 23 have an alkyl moiety, the alkyl moiety may be branched or cyclic, and R 22 and R 23 are They may also form a ring together.
  • R 6 , R 7 , R 8 and R 9 are each independently R 61 , OR 61 , SR 61 , COR 62 , CONR 63 R 64 , NR 65 COR 61 , OCOR 61 , COOR 62 , SCOR 61 , OCSR 61 , COSR 62 , CSOR 61 represents a hydroxyl group, a nitro group, CN or a halogen atom.
  • R 61 , R 62 , R 63 , R 64 and R 65 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an arylalkyl group having 7 to 30 carbon atoms. Or represents a heterocyclic group having 2 to 20 carbon atoms.
  • R 6 and R 7 , R 7 and R 8 , and R 8 and R 9 may each be taken together to form a ring. * represents a bond with the first molecular structure of the oxime compound (1).
  • Alkyl group having 1 to 20 carbon atoms , carbon number Examples of the aryl group having 6 to 30 carbon atoms, the aralkyl group having 7 to 30 carbon atoms, and the heterocyclic group having 2 to 20 carbon atoms include R 11 , R 12 , R 13 , R 21 , R 22 , Similar to the example for R 23 and R 24 .
  • R 22 and R 23 in formula (3) may be taken together to form a ring, which means that R 22 and R 23 together form a ring together with the connecting nitrogen atom, carbon atom, or oxygen atom. This means that it may be formed.
  • Examples of the ring that can be formed by combining R 22 and R 23 in formula (3) are the rings that can be formed by combining Ra 12 and Ra 13 and Ra 22 and Ra 23 in formula (1). This is similar to the example for .
  • Examples of the halogen atom that may replace the hydrogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • R 5 is a group represented by the following formula (3-1).
  • Z is a group obtained by removing one hydrogen atom from an alkyl group having 1 to 20 carbon atoms, a group obtained by removing one hydrogen atom from an aryl group having 6 to 30 carbon atoms, Represents a group obtained by removing one hydrogen atom from an aralkyl group having 7 to 30 carbon atoms or a group obtained by removing one hydrogen atom from a heterocyclic group having 2 to 20 carbon atoms,
  • the alkylene moiety is -O-, -S-, -COO-, -OCO-, -NR 24 -, -NR 24 COO-, -OCONR 24 -, It may be interrupted 1 to 5 times by -SCO-, -COS-, -OCS- or -CSO-, and the alkylene moiety may be branched or cyclic, R 21 , R 22 and R 24 have the same meanings as above. ]
  • Z in formula (3-1) is preferably a methylene group, ethylene or phenylene group.
  • R 21 and R 22 in formula (3-1) are preferably an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 30 carbon atoms, and more preferably methyl. group, ethyl group or phenyl group.
  • R 7 is a nitro group.
  • the method for producing the oxime compound (1) having the second molecular structure represented by formula (3) is not particularly limited, but for example, the method described in JP-A No. 2000-80068 and JP-A No. 2011-178776. It can be manufactured in
  • Yet another example of the second molecular structure connected to the first molecular structure represented by formula (1) is a structure represented by formula (4) below.
  • the bond represented by "*" in formula (4) is directly bonded to the bond represented by "*" in formula (1). That is, when the second molecular structure is a structure represented by formula (4), a benzene ring having "-*" in formula (4) and a carbonyl group having "-*" in formula (1) are directly connected.
  • R 71 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, or a heterocyclic group having 2 to 20 carbon atoms. represent.
  • the alkyl moiety may be branched or cyclic.
  • R 21 , R 22 and R 23 have the same meanings as above.
  • the hydrogen atom of the group represented by R 21 , R 22 or R 23 may be substituted with CN, a halogen atom, a hydroxy group or a carboxy group.
  • the groups represented by R 21 , R 22 and R 23 have an alkylene moiety, the alkylene moiety is -O-, -S-, -COO-, -OCO-, -NR 24 -, -NR 24 CO It may be interrupted 1 to 5 times by -, -NR 24 COO-, -OCONR 24 -, -SCO-, -COS-, -OCS- or -CSO-.
  • R 24 represents the same meaning as above.
  • R 21 , R 22 and R 23 When the groups represented by R 21 , R 22 and R 23 have an alkyl moiety, the alkyl moiety may be branched or cyclic, and R 22 and R 23 are They may also form a ring together.
  • R 72 , R 73 and three R 74 are each independently R 61 , OR 61 , SR 61 , COR 62 , CONR 63 R 64 , NR 65 COR 61 , OCOR 61 , COOR 62 , SCOR 61 , OCSR 61 , COSR 62 , CSOR 61 represents a hydroxyl group, a nitro group, CN or a halogen atom.
  • R 61 , R 62 , R 63 , R 64 and R 65 each independently represent a hydrogen atom, a carbon number of 1 represents an alkyl group having ⁇ 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an arylalkyl group having 7 to 30 carbon atoms, or a heterocyclic group having 2 to 20 carbon atoms.
  • R 72 and R 73 and two R 74 may each be taken together to form a ring. * represents a bond with the first molecular structure of the oxime compound (1).
  • Alkyl group having 1 to 20 carbon atoms , carbon number Examples of the aryl group having 6 to 30 carbon atoms, the aralkyl group having 7 to 30 carbon atoms, and the heterocyclic group having 2 to 20 carbon atoms include R 11 , R 12 , R 13 , R 21 , R 22 , Similar to the example for R 23 and R 24 .
  • R 22 and R 23 in formula (4) may be combined to form a ring, which means that R 22 and R 23 together form a ring together with the nitrogen atom, carbon atom, or oxygen atom to which they are connected. This means that it may be formed.
  • Examples of the ring that can be formed by combining R 22 and R 23 in formula (4) are the rings that can be formed by combining Ra 12 and Ra 13 and Ra 22 and Ra 23 in formula (1). This is similar to the example for .
  • Examples of the halogen atom which may be substituted include fluorine atom, chlorine atom, bromine atom and iodine atom.
  • the method for producing the oxime compound (1) having the second molecular structure represented by formula (4) is not particularly limited, but for example, the method described in International Publication No. 2017/051680 and International Publication No. 2020/004601 It can be manufactured in
  • Yet another example of the second molecular structure connected to the first molecular structure represented by formula (1) is a structure represented by formula (5) below.
  • the bond represented by "*" in formula (5) is directly bonded to the bond represented by "*" in formula (1). That is, when the second molecular structure is a structure represented by formula (5), a pyrrole ring having "-*" in formula (5) and a carbonyl group having "-*" in formula (1) are directly connected.
  • R 81 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, or a heterocyclic group having 2 to 20 carbon atoms. represent.
  • the alkyl moiety may be branched or cyclic.
  • R 21 , R 22 and R 23 have the same meanings as above.
  • the hydrogen atom of the group represented by R 21 , R 22 or R 23 may be substituted with CN, a halogen atom, a hydroxy group or a carboxy group.
  • the groups represented by R 21 , R 22 and R 23 have an alkylene moiety, the alkylene moiety is -O-, -S-, -COO-, -OCO-, -NR 24 -, -NR 24 CO It may be interrupted 1 to 5 times by -, -NR 24 COO-, -OCONR 24 -, -SCO-, -COS-, -OCS- or -CSO-.
  • R 24 represents the same meaning as above.
  • R 21 , R 22 and R 23 When the groups represented by R 21 , R 22 and R 23 have an alkyl moiety, the alkyl moiety may be branched or cyclic, and R 22 and R 23 are They may also form a ring together.
  • R 82 , R 83 , R 84 , R 85 and R 86 are each independently R 61 , OR 61 , SR 61 , COR 62 , CONR 63 R 64 , NR 65 COR 61 , OCOR 61 , COOR 62 , SCOR 61 , OCSR 61 , COSR 62 , CSOR 61 , represents a hydroxyl group, a nitro group, CN or a halogen atom.
  • R 61 , R 62 , R 63 , R 64 and R 65 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an arylalkyl group having 7 to 30 carbon atoms. Or represents a heterocyclic group having 2 to 20 carbon atoms.
  • R 83 and R 84 , R 84 and R 85 , and R 85 and R 86 may each be taken together to form a ring. * represents a bond with the first molecular structure of the oxime compound (1).
  • Alkyl group having 1 to 20 carbon atoms , carbon number Examples of the aryl group having 6 to 30 carbon atoms, the aralkyl group having 7 to 30 carbon atoms, and the heterocyclic group having 2 to 20 carbon atoms include R 11 , R 12 , R 13 , R 21 , R 22 , Similar to the example for R 23 and R 24 .
  • R 22 and R 23 in formula (5) may be taken together to form a ring, which means that R 22 and R 23 together form a ring together with the connecting nitrogen atom, carbon atom, or oxygen atom. This means that it may be formed.
  • Examples of the ring that can be formed by combining R 22 and R 23 in formula (5) are the rings that can be formed by combining Ra 12 and Ra 13 and Ra 22 and Ra 23 in formula (1). This is similar to the example for .
  • Examples of the halogen atom that may be substituted for the hydrogen atom of R 65 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the method for producing the oxime compound (1) having the second molecular structure represented by formula (5) is not particularly limited, but for example, the method described in International Publication No. 2017/051680 and International Publication No. 2020/004601 It can be manufactured in
  • Yet another example of the second molecular structure connected to the first molecular structure represented by formula (1) is a structure represented by formula (6) below.
  • the bond represented by "*" in formula (6) is directly bonded to the bond represented by "*" in formula (1). That is, when the second molecular structure is a structure represented by formula (6), a benzene ring having "-*" in formula (6) and a carbonyl group having "-*" in formula (1) are directly connected.
  • the four R 91 , R 92 , R 93 , R 94 , R 95 , R 96 and R 97 are each independently R 61 , OR 61 , SR 61 , COR 62 , CONR 63 R 64 , NR 65 COR 61 , OCOR 61 , COOR 62 , SCOR 61 , OCSR 61 , COSR 62 , CSOR 61 represents a hydroxyl group, a nitro group, CN or a halogen atom.
  • R 61 , R 62 , R 63 , R 64 and R 65 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, or an arylalkyl group having 7 to 30 carbon atoms. Or represents a heterocyclic group having 2 to 20 carbon atoms.
  • R 21 , R 22 and R 23 have the same meanings as above.
  • R 92 and R 93 , R 94 and R 95 , R 95 and R 96 , and R 96 and R 97 may each be taken together to form a ring.
  • * represents a bond with the first molecular structure of the oxime compound (1).
  • Examples of the aralkyl group having 7 to 30 carbon atoms and the heterocyclic group having 2 to 20 carbon atoms are the examples for R 11 , R 12 , R 13 , R 21 , R 22 and R 23 in formula (1). The same is true.
  • R 22 and R 23 in formula (6) may be taken together to form a ring, which means that R 22 and R 23 together form a ring together with the nitrogen atom, carbon atom, or oxygen atom to which they are connected. This means that it may be formed.
  • Examples of the ring that can be formed by combining R 22 and R 23 in formula (6) are the rings that can be formed by combining Ra 12 and Ra 13 and Ra 22 and Ra 23 in formula (1). This is similar to the example for .
  • Halogen atoms represented by R 91 , R 92 , R 93 , R 94 , R 95 , R 96 and R 97 in formula (6), R 21 , R 22 , R 23 , R 61 , R 62 , R 63 , R 64 and R 65 include fluorine atom, chlorine atom, bromine atom and iodine atom.
  • the method for producing the oxime compound (1) having the second molecular structure represented by formula (6) is not particularly limited, but for example, the method described in International Publication No. 2017/051680 and International Publication No. 2020/004601 It can be manufactured in
  • photopolymerization initiator is a photopolymerization initiator other than the oxime compound (1).
  • photopolymerization initiators include oxime compounds other than oxime compound (1), alkylphenone compounds, biimidazole compounds, triazine compounds, and acylphosphine compounds.
  • oxime compounds other than oxime compound (1) include oxime compounds having a partial structure represented by the following formula (d1). * represents a bond.
  • Examples of oxime compounds having a partial structure represented by formula (d1) include N-benzoyloxy-1-(4-phenylsulfanylphenyl)butan-1-one-2-imine, N-benzoyloxy-1- (4-phenylsulfanylphenyl)octan-1-one-2-imine, N-benzoyloxy-1-(4-phenylsulfanylphenyl)-3-cyclopentylpropan-1-one-2-imine, N-acetoxy-1 -[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]ethane-1-imine, N-acetoxy-1-[9-ethyl-6- ⁇ 2-methyl-4-( 3,3-dimethyl-2,4-dioxacyclopentanylmethyloxy)benzoyl ⁇ -9H-carbazol-3-yl]ethane-1-imine, N-acetoxy-1-[9-ethy
  • oxime compounds having a partial structure represented by formula (d1) include N-benzoyloxy-1-(4-phenylsulfanylphenyl)butan-1-one-2-imine, N-benzoyloxy-1-( At least one selected from the group consisting of 4-phenylsulfanylphenyl)octan-1-one-2-imine and N-benzoyloxy-1-(4-phenylsulfanylphenyl)-3-cyclopentylpropan-1-one-2-imine.
  • One type is preferred, and N-benzoyloxy-1-(4-phenylsulfanylphenyl)octan-1-one-2-imine is more preferred.
  • the alkylphenone compound is a compound having a partial structure represented by the following formula (d2) or a partial structure represented by the following formula (d3).
  • the benzene ring may have a substituent.
  • Examples of the compound having the structure represented by formula (d2) include 2-methyl-2-morpholino-1-(4-methylsulfanylphenyl)propan-1-one, 2-dimethylamino-1-(4-morpholinophenyl) )-2-benzylbutan-1-one, 2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-[4-(4-morpholinyl)phenyl]butan-1-one, etc. It will be done.
  • Commercial products such as OMNIRAD (registered trademark) 369, 907, and 379 (all manufactured by IGM Resins) may be used.
  • Examples of the compound having the structure represented by formula (d3) include 2-hydroxy-2-methyl-1-phenylpropan-1-one, 2-hydroxy-2-methyl-1-[4-(2-hydroxyethoxy) ) phenyl]propan-1-one, 1-hydroxycyclohexylphenyl ketone, oligomer of 2-hydroxy-2-methyl-1-(4-isopropenylphenyl)propan-1-one, ⁇ , ⁇ -diethoxyacetophenone, benzyl Examples include dimethyl ketal.
  • the alkylphenone compound is preferably a compound having a structure represented by formula (d2).
  • biimidazole compound examples include a compound represented by formula (d5).
  • R E to R J represent an aryl group having 6 to 10 carbon atoms which may have a substituent.
  • Examples of the aryl group having 6 to 10 carbon atoms include phenyl group, tolyl group, xylyl group, ethylphenyl group and naphthyl group, with phenyl group being preferred.
  • Examples of the substituent include a halogen atom, an alkoxy group having 1 to 4 carbon atoms, and the like.
  • Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, with a chlorine atom being preferred.
  • Examples of the alkoxy group having 1 to 4 carbon atoms include methoxy group, ethoxy group, propoxy group, butoxy group, and methoxy group is preferred.
  • biimidazole compound for example, 2,2'-bis(2-chlorophenyl)-4 , 4',5,5'-tetraphenylbiimidazole, 2,2'-bis(2,3-dichlorophenyl)-4,4',5,5'-tetraphenylbiimidazole (for example, JP-A-06-75372 2,2'-bis(2-chlorophenyl)-4,4',5,5'-tetraphenylbiimidazole, 2,2'-bis(2-chlorophenyl)-4,4',5,5'-tetraphenylbiimidazole, -chlorophenyl)-4,4',5,5'-tetra(alkoxyphenyl)biimidazole, 2,2'-bis(2-chlorophenyl)-4,4',5,5'-tetra(dialkoxyphenyl) Biimidazole, 2,2'-bis(2-chlor
  • imidazole compounds in which the phenyl group at the 4,4'5,5'-position is substituted with a carbalkoxy group (see, for example, JP-A-7-10913), and the like.
  • compounds represented by the following formulas or mixtures thereof are preferred.
  • triazine compounds examples include 2,4-bis(trichloromethyl)-6-(4-methoxyphenyl)-1,3,5-triazine, 2,4-bis(trichloromethyl)-6-(4-methoxyphenyl) naphthyl)-1,3,5-triazine, 2,4-bis(trichloromethyl)-6-piperonyl-1,3,5-triazine, 2,4-bis(trichloromethyl)-6-(4-methoxystyryl) )-1,3,5-triazine, 2,4-bis(trichloromethyl)-6-[2-(5-methylfuran-2-yl)ethenyl]-1,3,5-triazine, 2,4- Bis(trichloromethyl)-6-[2-(furan-2-yl)ethenyl]-1,3,5-triazine, 2,4-bis(trichloromethyl)-6-[2-(4-dielamino-2) -methylphenyl
  • acylphosphine compound examples include bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, (2,4,6-trimethylbenzoyl)diphenylphosphine oxide, and the like.
  • a commercial product such as OMNIRAD (registered trademark) 819 (manufactured by IGM Resins) may be used.
  • photopolymerization initiators other than the oxime compound (1) include benzoin compounds such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzoin isobutyl ether; benzophenone, o-benzoyl benzoin; Methyl acid, 4-phenylbenzophenone, 4-benzoyl-4'-methyldiphenyl sulfide, 3,3',4,4'-tetra(tert-butylperoxycarbonyl)benzophenone, 2,4,6-trimethylbenzophenone, 4 , 4'-bis(diethylamino)benzophenone and other benzophenone compounds; 9,10-phenanthrenequinone, 2-ethylanthraquinone, camphorquinone and other quinone compounds; 10-butyl-2-chloroacridone, benzyl, phenylglyoxylic acid Examples include methyl
  • the content of the polymerization initiator (E) in the composition is, for example, 0.01% by mass or more and 20% by mass or less based on the total solid content of the composition. From the viewpoint of increasing the sensitivity of the composition and the luminescence intensity and heat resistance of the film, preferably from 0.1% by mass to 15% by mass, more preferably from 0.15% by mass to 10% by mass, More preferably, it is 0.2% by mass or more and 8% by mass or less, and may be 5% by mass or less or 3% by mass or less.
  • the composition can include an antioxidant (F).
  • the antioxidant (F) is not particularly limited as long as it is an antioxidant commonly used industrially, and includes phenolic antioxidants, phosphorus antioxidants, phosphorus/phenol composite antioxidants, and sulfur-based antioxidants. Antioxidants and the like can be used. Two or more kinds of antioxidants (F) may be used in combination.
  • the phosphorus/phenol composite antioxidant can be a compound having one or more phosphorus atoms and one or more phenol structures in the molecule. From the viewpoint of optical properties such as luminescence intensity of the film, the antioxidant (F) preferably includes a phosphorus/phenol complex type antioxidant.
  • phenolic antioxidant examples include Irganox (registered trademark) 1010 (Irganox 1010: pentaerythritol tetrakis [3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate], manufactured by BASF Corporation) ), 1076 (Irganox 1076: octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate, manufactured by BASF Corporation), 1330 (Irganox 1330: 3,3',3) '',5,5',5''-hexa-tert-butyl-a,a',a''-(mesitylene-2,4,6-triyl)tri-p-cresol, manufactured by BASF Corporation) , 3114 (Irganox 3114: 1,3,5-tris(3,5-di-tert-butyl-4-hydroxybenzyl)-1,3,5-triazine-2
  • Examples of the phosphorus antioxidant include Irgafos (registered trademark) 168 (Irgafos 168: tris(2,4-di-tert-butylphenyl) phosphite, manufactured by BASF Corporation) and Irgafos 12 (Irgafos 12: tris).
  • Examples of the phosphorus/phenol complex antioxidant include Sumilizer (registered trademark) GP (6-[3-(3-tert-butyl-4-hydroxy-5-methylphenyl)propoxy]-2,4,8, Examples include 10-tetra-tert-butyldibenz[d,f][1.3.2]dioxaphosphepine (manufactured by Sumitomo Chemical Co., Ltd.).
  • sulfur-based antioxidants include dialkyl thiodipropionate compounds such as dilauryl thiodipropionate, dimyristyl or distearyl thiodipropionate, and ⁇ -alkylmercaptopropionate esters of polyols such as tetrakis[methylene(3-dodecylthio)propionate]methane. Examples include compounds.
  • the content of the antioxidant (F) in the composition is, for example, 0.1% by mass or more and 20% by mass or less, based on the total solid content of the composition.
  • the content is preferably 0.5% by mass or more and 15% by mass or less, more preferably 1% by mass or more and 10% by mass or less, and even more preferably 1% by mass or more and 5% by mass or less.
  • the resin composition can contain a solvent (H).
  • the solvent (H) include ester solvents (solvents containing -COO- but not -O- in the molecule), ether solvents (solvents containing -O- but not -COO- in the molecule) , ether ester solvents (solvents containing -COO- and -O- in the molecule), ketone solvents (solvents containing -CO- but not -COO- in the molecule), alcohol solvents (solvents containing -COO- in the molecule), Examples include solvents containing -O-, -CO- and COO-), aromatic hydrocarbon solvents, amide solvents, dimethyl sulfoxide, and the like. Two or more types of solvents (H) may be used in combination.
  • Ester solvents include methyl lactate, ethyl lactate, n-butyl lactate, methyl 2-hydroxyisobutanoate, ethyl acetate, n-butyl acetate, isobutyl acetate, n-pentyl formate, isopentyl acetate, n-butyl propionate, isopropyl butyrate.
  • ethyl butyrate n-butyl butyrate, methyl pyruvate, ethyl pyruvate, propyl pyruvate, methyl acetoacetate, ethyl acetoacetate, cyclohexanol acetate, and ⁇ -butyrolactone.
  • Ether solvents include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether.
  • propylene glycol monopropyl ether propylene glycol monobutyl ether, 3-methoxy-1-butanol, 3-methoxy-3-methylbutanol, tetrahydrofuran, tetrahydropyran, 1,4-dioxane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl
  • examples include ether, diethylene glycol dipropyl ether, diethylene glycol dibutyl ether, anisole, phenetol, and methylanisole.
  • Ether ester solvents include methyl methoxy acetate, ethyl methoxy acetate, butyl methoxy acetate, methyl ethoxy acetate, ethyl ethoxy acetate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, 3-ethoxy Ethyl propionate, methyl 2-methoxypropionate, ethyl 2-methoxypropionate, propyl 2-methoxypropionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate, methyl 2-methoxy-2-methylpropionate, Ethyl 2-ethoxy-2-methylpropionate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl
  • Ketone solvents include 4-hydroxy-4-methyl-2-pentanone, acetone, 2-butanone, 2-heptanone, 3-heptanone, 4-heptanone, 4-methyl-2-pentanone, cyclopentanone, cyclohexanone and isophorone. etc.
  • alcohol solvents include methanol, ethanol, propanol, butanol, hexanol, cyclohexanol, ethylene glycol, propylene glycol, and glycerin.
  • aromatic hydrocarbon solvents include benzene, toluene, xylene, and mesitylene.
  • amide solvent include N,N-dimethylformamide, N,N-dimethylacetamide, and N-methylpyrrolidone.
  • solvent (H) propylene glycol monomethyl ether acetate, ethyl lactate, propylene glycol monomethyl ether, ethyl 3-ethoxypropionate, ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, 4-hydroxy-4- Methyl-2-pentanone or toluene or a mixture of two or more thereof is preferred.
  • composition may contain polymerization inhibitors, fillers, other polymer compounds, adhesion promoters, light stabilizers, chain transfer agents, polymerization initiation aids, leveling agents, etc. as necessary. It may further contain additives known in the art.
  • Sedimentation rate ⁇ of the composition has a sedimentation velocity ⁇ expressed by formula (i) of 400 ⁇ 10 ⁇ 9 cm/s or less.
  • Equation (i) is the Stokes equation.
  • g is the gravitational acceleration, i.e. 980.665 cm/ s2 .
  • ⁇ s is the density [g/cm 3 ] of the first particle (A-1).
  • is the density [g/ cm 3 ], and hereinafter, this density is also referred to as "fluid density”.
  • is the viscosity [g/(cm ⁇ s)] of the composition at 25°C.
  • the unit of the average particle diameter d of the first particles (A-1) is cm.
  • the sedimentation velocity ⁇ expressed by formula (i) is 400 ⁇ 10 ⁇ 9 cm/s or less.
  • the sedimentation velocity ⁇ of the composition By setting the sedimentation velocity ⁇ of the composition to be 400 ⁇ 10 ⁇ 9 cm/s or less, the properties of the particles can be maintained even though the composition contains the first particles (A-1) having a relatively large average particle diameter d. A film with good properties can be formed. At least part of the reason for this is that the first particles (A-1) are difficult to sediment in the composition. According to the present invention, for example, when comparing a film made from a composition immediately after preparation with a film made from a composition left standing for 10 days after preparation, the variation in properties (optical properties, etc.) is small; A film having excellent properties can also be obtained.
  • the composition further contains luminescent particles as the second particles (A-2), the sedimentation velocity ⁇ expressed by formula (i) is 400 ⁇ 10 -9 cm/s or less, The luminescence intensity of a film formed from the composition can be improved.
  • the sedimentation velocity ⁇ of the composition is preferably 300 ⁇ 10 ⁇ 9 cm/s or less, more preferably 250 ⁇ 10 ⁇ 9 cm/s or less, even more preferably 200 ⁇ 10 ⁇ 9 cm/s or less, even more preferably It is 150 ⁇ 10 ⁇ 9 cm/s or less, particularly preferably 100 ⁇ 10 ⁇ 9 cm/s or less, and most preferably 70 ⁇ 10 ⁇ 9 cm/s or less.
  • the sedimentation velocity ⁇ is usually 1 ⁇ 10 ⁇ 9 cm/s or more, preferably 5 ⁇ 10 ⁇ 9 cm/s or more, more preferably 10 ⁇ 10 ⁇ 9 cm/s or more.
  • the sedimentation rate ⁇ of the composition can be controlled by adjusting the average particle diameter d and density ⁇ s of the first particles (A-1), the solid content (solvent amount) of the composition, the viscosity, and the like.
  • the viscosity ⁇ of the composition at 25° C. is, for example, 0.1 g/(cm ⁇ s) or more and 300 g/(cm ⁇ s) or less, preferably 0.2 g/(cm ⁇ s) or more and 300 g/(cm ⁇ s) or less.
  • the viscosity ⁇ of the composition can be measured using a Brookfield rotational viscometer.
  • the density ⁇ s and the average particle diameter d of the first particles (A-1) may be measured before preparing the composition, or may be measured by taking out the first particles (A-1) from the composition. good.
  • the physical properties related to the particles may be measured by regarding the dispersant and the like adsorbed on the separated particles as part of the particles.
  • the fluid density ⁇ may be measured by regarding the remainder of the particles separated by the separation as a fluid.
  • the composition contains first particles (A-1) and second particles (A-2), the first particles (A-2) are separated by centrifugation or the like. If it is possible to separate the particles 1) and the second particles (A-2) individually, it is possible to separate them individually by this method and measure the density and average particle size of each particle.
  • another method for obtaining the average particle size of these particles is to extract the first particles (A-2) from the composition. 1) and the second particle (A-2) is taken out, the particle size distribution of the mixture is measured, and the particle size distribution is divided into that of the first particle (A-1) and the second particle (A-2). ) to find the average particle size of each.
  • the composition can be manufactured by a method that includes mixing the predetermined components as well as other components used as necessary.
  • the method for producing the composition can further include a step of preparing resin (C).
  • composition M includes first particles (A-1) and a resin (C).
  • Composition M may include first particles (A-1), a dispersant (B), and a resin (C).
  • Composition M may further contain a polymerizable compound (D), and in this case preferably further contains a polymerization initiator (E).
  • Composition M preferably contains a solvent (H) in order to improve the coating properties of the composition and the flatness of the composition layer during coating.
  • the content of the polymerizable compound (D) in the composition M is, for example, 0.5% by mass or more and 50% by mass with respect to the total solid content of the composition.
  • the content is preferably 1% by mass or more and 40% by mass or less, more preferably 2% by mass or more and 30% by mass or less, and even more preferably 2% by mass or more and 25% by mass or less.
  • the content of the solvent (H) in composition M is, for example, 40% by mass or more and 95% by mass or less, preferably 45% by mass or more and 90% by mass or less, more preferably 50% by mass or more, based on the total amount of composition M. It is 80% by mass or less.
  • the solid content concentration of the composition is, for example, 5% by mass or more and 60% by mass or less, preferably 10% by mass or more and 55% by mass or less, and more preferably 20% by mass or more and 50% by mass or less.
  • the solid content concentration of the composition is preferably 30% by mass or more, more preferably 34% by mass or more, and even more preferably 36% by mass or more. A solid content concentration within this range is advantageous in suppressing pinholes that may occur in the film.
  • composition N does not contain resin (C).
  • Composition N contains first particles (A-1) and a polymerizable compound (D), and preferably further contains a polymerization initiator (E).
  • Composition N may include first particles (A-1), a dispersant (B), and a polymerizable compound (D).
  • Composition N may contain a solvent (H), but it is preferable that it does not contain the solvent (H) or its content is small.
  • the content of the polymerizable compound (D) in the composition N is, for example, 10% by mass or more and 90% by mass or less, preferably 20% by mass or more and 80% by mass or less, more preferably The content is 30% by mass or more and 75% by mass or less, more preferably 40% by mass or more and 70% by mass or less, even more preferably 50% by mass or more and 70% by mass or less.
  • the content of the solvent (H) in the composition N is preferably 10% by mass or less, more preferably 5% by mass or less, still more preferably 3% by mass or less, even more preferably 2% by mass or less, based on the total amount of composition N. It is not more than 1% by mass, particularly preferably not more than 1% by mass, and may be 0% by mass or more than 0.5% by mass.
  • Composition N can be suitably used as an ink for an inkjet printer for producing a film.
  • the film according to the present invention is a film formed from the composition according to the present invention.
  • the method for manufacturing a membrane includes, for example, the following steps. a step of forming a composition layer by applying the composition to a substrate or discharging the composition onto an area delimited by the bank on a substrate on which a bank is formed; and a step of heat-treating the composition layer.
  • the film may be formed on the entire surface of the substrate, or on a part of the surface of the substrate (for example, in a pattern). may be formed.
  • the method for manufacturing a membrane can include steps other than the above steps.
  • Other steps include, for example, an exposure step in which the composition layer is irradiated with light, a development step in which the composition layer is subjected to the exposure step, and the like.
  • methods for applying the composition to the substrate include spin coating, slit coating, slit and spin coating, and the like.
  • the step of forming the composition layer by discharging the composition may be a step of selectively discharging and adhering the composition to the area defined by the bank, for example, by an inkjet method.
  • a patterned composition layer may be formed by a stencil printing method, a screen printing method, or printing coating using an applicator.
  • Substrates include glass plates such as quartz glass, borosilicate glass, alumina silicate glass, and soda lime glass whose surface is coated with silica, resin plates such as polycarbonate, polymethyl methacrylate, and polyethylene terephthalate, silicon, and the above substrates. Examples include those in which aluminum, silver, silver/copper/palladium alloy thin films, etc. are formed.
  • a patterned film can be formed on a base material, for example, as follows. First, a patterned composition layer is formed by applying the composition onto a base material through a mask or by discharging it into areas defined by banks.
  • This heat treatment may include a step of drying the composition layer (a step of removing volatile components such as a solvent).
  • the drying method include heat drying, reduced pressure drying, or a combination thereof.
  • the heating drying temperature is preferably 30°C or higher and 120°C or lower, more preferably 50°C or higher and 110°C or lower.
  • the heating time is preferably 10 seconds or more and 60 minutes or less, more preferably 30 seconds or more and 30 minutes or less.
  • drying under reduced pressure it is preferably carried out under a pressure of 50 Pa or more and 150 Pa or less.
  • the composition layer may be dried in multiple stages, for example by performing multiple drying steps at different drying temperatures.
  • the step of heat-treating the composition layer may include the above-mentioned drying step (pre-bake) and a subsequent post-bake step.
  • the heating temperature in the baking step is preferably 150°C or higher and 250°C or lower, more preferably 160°C or higher and 235°C or lower.
  • the heating time is preferably from 1 minute to 120 minutes, more preferably from 10 minutes to 60 minutes.
  • the method for producing a film preferably includes the above-mentioned exposure step.
  • a patterned cured film formed from a photocurable composition can be formed on a substrate in the following manner, for example, using a photolithography method. First, a composition layer is formed on a base material, and a drying process of heat drying (prebake) and/or vacuum drying is performed. Examples of the method for forming and drying the composition layer include the same methods as described above.
  • the composition layer is exposed to light through a photomask to form a desired pattern shape.
  • the light source used for exposure is preferably a light source that generates light with a wavelength of 250 nm or more and 450 nm or less. For example, from the light of this wavelength, depending on the absorption wavelength of the photopolymerization initiator, light around 436 nm, around 408 nm, or around 365 nm may be selectively extracted using a bandpass filter.
  • Specific examples of the light source include a mercury lamp, a light emitting diode, a metal halide lamp, and a halogen lamp.
  • the exposed composition layer is cured by polymerizing the photopolymerizable compound contained in the composition layer.
  • the unexposed portions of the composition layer are dissolved in the developer and removed, resulting in a patterned cured film.
  • the developer include aqueous solutions of alkaline compounds such as potassium hydroxide, sodium hydrogen carbonate, sodium carbonate, and tetramethylammonium hydroxide, and organic solvents.
  • the concentration of the alkaline compound in the aqueous solution is preferably 0.01% by mass or more and 10% by mass or less, more preferably 0.03% by mass or more and 5% by mass or less.
  • the organic solvent include those similar to the above-mentioned solvent (H).
  • the developer may contain a surfactant.
  • the developing method may be any of the paddle method, dipping method, spray method, etc.
  • the substrate may be tilted at any angle during development.
  • the heating temperature is preferably 150°C or more and 250°C or less, more preferably 160°C or more and 235°C or less.
  • the heating time is preferably from 1 minute to 120 minutes, more preferably from 10 minutes to 60 minutes.
  • a method for forming a film on the entire surface of a substrate there is a method in which a composition layer is formed on the substrate, dried if necessary, and the composition layer is heated and/or the entire surface of the composition layer is exposed to light. Can be mentioned.
  • the thickness of the film is not particularly limited and may be selected appropriately depending on the purpose, for example, 1 ⁇ m or more and 30 ⁇ m or less, preferably 3 ⁇ m or more and 25 ⁇ m or less, more preferably 5 ⁇ m or more and 25 ⁇ m or less, and even more preferably 5 ⁇ m or more and 20 ⁇ m or less. It is as follows.
  • the shape and dimensions of the patterned resin film are not particularly limited.
  • the patterned resin film has, for example, a rectangular shape in plan view.
  • a display device includes at least a light source and the film described above.
  • Examples of the display device include a liquid crystal display device, an organic EL display device, and an inorganic EL display device. Examples include display devices described in Japanese Patent Application Publication No. 2009-251129, Japanese Patent Application Publication No. 2014-2363, and the like.
  • a display device includes a backlight that is a blue light source and a plurality of patterns provided on the viewing side of the backlight.
  • the plurality of patterns may be a red pattern, a green pattern, and a white (transparent, achromatic) pattern, and at least one of these patterns may be a film according to the present invention.
  • the chromatic pattern which is a red pattern or a green pattern, has a function of converting the wavelength of incident light and emitting it, and has a composition including a first particle (A-1) and a second particle (A-2). It may be a film formed from a substance.
  • the white (transparent, achromatic) pattern may be a film formed from a composition containing the first particles (A-1) and not containing the second particles (A-2).
  • the density ⁇ s [g/cm 3 ] of the fluid was measured using a Gerussac type pycnometer in an environment of 25°C.
  • the fluid here refers to a composition that has the same composition as the composition prepared in Examples and Comparative Examples, except that it does not contain particles (first particles and second particles).
  • Weight average molecular weight Mw and number average molecular weight Mn of resin (C) The weight average molecular weight Mw and number average molecular weight Mn of the resin (C) were measured by GPC method under the following conditions.
  • Acid value of resin (C) Accurately weigh 3 g of resin (C) solution, dissolve it in a mixed solvent of 90 g of acetone and 10 g of water, and perform automatic titration using 0.1N KOH aqueous solution as the titrant.
  • the acid value of the resin (C) solution is measured using a device (trade name "COM-555" manufactured by Hiranuma Sangyo Co., Ltd.), and the acid value Av per 1 g of solid content [mgKOH] is determined from the acid value of the solution and the solid content of the solution. /g] was calculated.
  • a substrate having a film made from the composition S1 immediately after preparation was placed on the surface of the glass substrate.
  • the backlight was turned on, and the luminescence intensity E1 [W ⁇ sr ⁇ 1 ⁇ m ⁇ 2 ⁇ nm ⁇ 1 ] was measured as the integrated radiant flux in the wavelength range of 485 nm to 780 nm for the light emitted from the film.
  • the above-mentioned spectral radiance meter (“SR-UL1R" manufactured by Topcon Corporation) was used to measure the luminescence intensity E1.
  • the luminescence intensity E2 [W ⁇ sr ⁇ 1 ⁇ m ⁇ 2 ⁇ nm ⁇ 1 ] was measured in the same manner as above for a film produced from the composition S2 which was left to stand for 10 days after preparation at a temperature of 25° C.
  • Rate of change X [%] 100 x luminous intensity E2/luminous intensity E1
  • ⁇ Production Example 1 Preparation of dispersion liquid of first particles (A1a)> 70 parts of titanium oxide particles (average particle size d: 219 ⁇ 10 ⁇ 7 cm, density ⁇ s : 4.260 g/cm 3 ) as the first particles (A1a) were added with “DISPERBYK21116” (dispersant (B1)). After adding 3 parts of solid content (manufactured by BIC Chemie Japan) and 100 parts of PGMEA in total, they were stirred with a paint shaker until they were sufficiently dispersed. 73%).
  • ⁇ Production Example 2 Preparation of dispersion liquid of first particles (A1b)> Except that titanium oxide particles (average particle size d: 192 ⁇ 10 ⁇ 7 cm, density ⁇ s : 4.260 g/cm 3 ) were used as the first particles (A1b) instead of the first particles (A1a). In the same manner as in Production Example 1, a dispersion liquid (solid content: 73%) of the first particles (A1b) was obtained.
  • ⁇ Production Example 3 Preparation of dispersion liquid of second particles (A2a)> A toluene dispersion of the second particles (A2a) was prepared.
  • the second particles (A2a) are InP/ZnSeS quantum dots (average particle size: 6.0 ⁇ 10 ⁇ 7 cm) coordinated with oleic acid as an organic ligand (G1).
  • the toluene dispersion was distilled under reduced pressure to remove toluene. 50 parts of cyclohexyl acetate was added to 50 parts of solid content to obtain a dispersion liquid (solid content of 50%) of second particles (A2a).
  • the resin (C1) had a weight average molecular weight Mw of 5200 in terms of standard polystyrene, a molecular weight distribution of 2.3, an acid value of 100 mgKOH/g, and the solid content in the resin (C1) solution was 50% by mass.
  • Comparative Example 1 (1) Preparation of composition A dispersion of the first particles (A1a) obtained in Production Example 1 or a dispersion of the first particles (A1b) obtained in Production Example 2 and a dispersion of the first particles (A1b) obtained in Production Example 3 are combined. A dispersion of 2 particles (A2a) or a dispersion of second particles (A2b) obtained in Production Example 4, a resin (C1) solution obtained in Production Example 5, and other components shown in Table 1. A composition was prepared by mixing predetermined amounts of each.
  • the content of each component in the composition determined from the amount added is as shown in Table 1.
  • Table 1 the contents of components other than the solvent (H) are expressed in terms of solid content (unit: parts by mass).
  • the unit of content of the solvent (H) is parts by mass.
  • the first particles are blended as a dispersion of the first particles in preparing the composition, and the content shown in Table 1 is the amount of the first particles themselves contained in the dispersion.
  • the solvent (H) in Table 1 includes the solvent contained in the dispersion liquid or solution used for preparing the composition.
  • the content of the organic ligand (G1) in the composition shown in Table 1 the content of the organic ligand (G1) in the dispersion of the second particles obtained in Production Example 2 or 3 according to the following method.
  • the concentration was measured and calculated based on this. That is, after vacuum-drying the second particle dispersion at 150°C to remove the solvent, the weight change of the remaining solid content was measured using a thermogravimetric analyzer "TGDTA6200" at a heating rate of 5°C/min. The temperature was measured from 50°C to 550°C.
  • the concentration of the organic ligand (G1) in the dispersion liquid of the second particles was calculated using the weight change from 50° C. to 500° C. as the weight of the organic ligand (G1).
  • the sedimentation rate ⁇ was calculated for the compositions of each example and comparative example. Furthermore, the rate of change in luminescence intensity X was determined for the obtained film. The results are shown in Table 1.
  • the reason why the rate of change X may exceed 100% is that the apparent particle size may have increased due to partial aggregation of the first particles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Luminescent Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Optical Filters (AREA)
  • Polymerisation Methods In General (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

粒子を含有する組成物であって、該粒子は平均粒径dが100×10-7cm以上である第1粒子(A-1)を含み、該組成物は樹脂(C)及び重合性化合物(D)からなる群より選択される少なくとも1種をさらに含み、該組成物は、式(i)で表される沈降速度νが400×10-9cm/s以下である組成物が提供される。

Description

組成物、膜及び表示装置
 本発明は、粒子を含有する組成物及びそれから形成される膜、並びに該膜を含む表示装置に関する。
 特許文献1には、カラーフィルタの形成に用いられる、粒子を含有する感光性樹脂組成物が記載されている。
国際公開第2014/157296号
 光学特性など、所望の特性を示す膜は、該特性を担う粒子を含む組成物の製膜によって作製することができる。
 本発明は、所望の特性を示す粒子を含有する組成物であって、該特性を良好に示す膜を形成することができる組成物を提供することにある。本発明の他の目的は、該組成物から形成される膜、及び、該膜を含む表示装置を提供することにある。
 本発明は、以下に示される組成物、膜及び表示装置を提供する。
 [1] 粒子を含有する組成物であって、
 前記粒子は、平均粒径dが100×10-7cm以上である第1粒子(A-1)を含み、
 前記組成物は、樹脂(C)及び重合性化合物(D)からなる群より選択される少なくとも1種をさらに含み、
 前記組成物は、式(i)で表される沈降速度νが400×10-9cm/s以下である、組成物。
Figure JPOXMLDOC01-appb-M000002

[式(i)中、gは重力加速度〔cm/s〕、ρは第1粒子(A-1)の密度〔g/cm〕、ρは前記粒子を含まないこと以外は前記組成物と同じ組成物の密度〔g/cm〕、μは前記組成物の25℃における粘度〔g/(cm・s)〕を表す。]
 [2] 第1粒子(A-1)が光散乱粒子である、[1]に記載の組成物。
 [3] 第1粒子(A-1)が無機粒子である、[1]又は[2]に記載の組成物。
 [4] 前記粒子は、平均粒径が50×10-7cm以下である第2粒子(A-2)をさらに含む、[1]~[3]のいずれかに記載の組成物。
 [5] 第2粒子(A-2)が発光性粒子である、[4]に記載の組成物。
 [6] 樹脂(C)が極性基を有する樹脂であり、重合性化合物(D)が極性基を有する重合性化合物である、[1]~[5]のいずれかに記載の組成物。
 [7] 前記極性基は、カルボキシ基、チオール基及びアミノ基からなる群より選択される少なくとも1種の基である、[6]に記載の組成物。
 [8] 光学機能膜形成用の組成物である、[1]~[7]のいずれかに記載の組成物。
 [9] [1]~[8]のいずれかに記載の組成物から形成される膜。
 [10] [9]に記載の膜を含む表示装置。
 所望の特性を示す粒子を含有する組成物であって、該特性を良好に示す膜を形成することができる組成物、該組成物から形成される膜、及び、該膜を含む表示装置を提供することができる。
 <組成物>
 本発明に係る組成物(以下、単に「組成物」ともいう。)は、粒子を含有する組成物である。該粒子は、平均粒径dが100×10-7cm(100nm)以上である第1粒子(A-1)を含む。該粒子は、第1粒子(A-1)に加えて、これとは異なる粒子である第2粒子(A-2)を含んでいてもよい。組成物は、樹脂(C)及び重合性化合物(D)からなる群より選択される少なくとも1種のバインダ成分をさらに含む。以下、組成物に含まれる又は含まれ得る成分について説明する。
 なお、本明細書において組成物に含まれる、又は含まれ得る各成分として例示する化合物は、特に断りのない限り、単独で、又は、複数種を組み合わせて使用することができる。
 [1]第1粒子(A-1)
 第1粒子(A-1)は通常、特定の特性(機能)を示すことができる固体粒子である。特定の特性は、好ましくは光学特性である。第1粒子(A-1)を含有する組成物を製膜して得られる膜は、上記特定の特性(機能)を示すことができ、例えば光学機能膜(光学機能を示す膜)となり得る。組成物は、1種又は2種以上の第1粒子(A-1)を含むことができる。
 第1粒子(A-1)の平均粒径dは、100×10-7cm(100nm)以上である。このような比較的大きい粒径を有する粒子を含有する組成物から膜を形成する場合において、該粒子の示す特性が該膜において良好に発揮されないことがあるという課題を生じやすいところ、本発明によれば、該課題を解決して、該粒子の特性を良好に示す膜を形成することができる。第1粒子(A-1)の平均粒径dは、150×10-7cm以上、180×10-7cm以上又は200×10-7cm以上であってもよい。第1粒子(A-1)の平均粒径dは、通常5000×10-7cm以下であり、1000×10-7cm以下、800×10-7cm以下、500×10-7cm以下又は300×10-7cm以下であってもよい。
 第1粒子(A-1)としては、特に制限されないが、光散乱粒子が挙げられる。光散乱粒子は、入射された光を散乱する機能を有する。光散乱粒子を含有する膜は、光散乱膜(光拡散膜)として使用できる。後述するように、組成物及び膜は、第2粒子(A-2)としての発光性粒子をさらに含有することができる。この場合、光散乱粒子は、発光性粒子から発せされる光を散乱させることにより、発光強度を向上させる機能を有することができる。組成物が第2粒子(A-2)としての発光性粒子をさらに含有する場合、後で詳述する式(i)で表される沈降速度νが400×10-9cm/s以下であることにより、該組成物から形成される膜の発光強度を向上させ得る。
 光散乱粒子としては、金属又は金属酸化物の粒子、ガラス粒子等の無機粒子が挙げられる。金属酸化物としては、TiO、SiO、BaTiO、ZnO等が挙げられ、効率的に光を散乱することから、好ましくはTiOの粒子である。光散乱粒子は、無機粒子であっても有機粒子であってもよいが、無機粒子であることが好ましい。また、光散乱粒子は、屈折率が高いことが好ましい。
 第1粒子(A-1)の屈折率は、1.5以上が好ましく、2.0以上がより好ましい。屈折率は公知の文献及びカタログ値や一般的な物性表に記載の数値を使用してもよい。
 第1粒子(A-1)の密度ρは、通常6g/cm以下であり、通常2.5g/cm以上である。第1粒子(A-1)は、密度ρが比較的大きい粒子であってもよい。組成物を静置しておくと、密度の大きい粒子は沈降しやすいが、本発明によれば、粒子の沈降が生じにくく、すなわち、ポットライフが改善された組成物を提供することができる。これにより、第1粒子(A-1)の特性を良好に示す膜を形成することができる。
 第1粒子(A-1)の密度ρは、これを構成する材料の選択によって調整できる。また、密度ρは、粒子を中空構造にしたり、密度の小さい材料からなる表層を有するコア-シェル構造にしたりするなどの公知の方法で調整することもできる。
 組成物における第1粒子(A-1)の含有率は、組成物の固形分の総量に対し、例えば0.001質量%以上50質量%以下であり、第1粒子(A-1)に基づく膜の特性を向上させる観点から、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、さらに好ましくは1質量%以上、なおさらに好ましくは2質量%以上、特に好ましくは5質量%以上であり、また、好ましくは30質量%以下、より好ましくは15質量%以下、さらに好ましくは10質量%以下である。
 本明細書において固形分の総量とは、組成物に含まれる成分のうち、溶剤(H)を除いた成分の合計を意味する。組成物の固形分中の含有率は、液体クロマトグラフィ又はガスクロマトグラフィ等の公知の分析手段で測定することができる。組成物の固形分中における各成分の含有率は、該組成物調製時の配合から算出されてもよい。
 [2]第2粒子(A-2)
 組成物は、第1粒子(A-1)とは異なる粒子である第2粒子(A-2)を含んでいてもよい。第2粒子(A-2)は、第1粒子(A-1)よりも粒径が小さい粒子であり、例えば平均粒径が50×10-7cm以下である。組成物は、1種又は2種以上の第2粒子(A-2)を含むことができる。第2粒子(A-2)は通常、特定の特性(機能)を示すことができる固体粒子である。特定の特性は、好ましくは光学特性である。第2粒子(A-2)を含有する組成物を製膜して得られる膜は、上記特定の特性(機能)を示すことができる。第2粒子(A-2)としては、特に制限されないが、発光性粒子が挙げられる。発光性粒子としては、発光性(蛍光発光性)の半導体粒子(以下、単に「半導体粒子」ともいう。)等が挙げられる。
 半導体粒子は、例えば、605nm以上665nm以下の波長域に発光ピーク波長を有する光を発する赤色発光性の半導体粒子であってもよく、500nm以上560nm以下の波長域に発光ピーク波長を有する光を発する緑色発光性の半導体粒子であってよく、420nm以上480nm以下の波長域に発光ピーク波長を有する光を発する青色発光性の半導体粒子であってもよい。半導体粒子は、好ましくは、赤色発光性の半導体粒子及び/又は緑色発光性の半導体粒子である。半導体粒子の発光ピーク波長は、例えば、紫外可視分光光度計を用いて測定される発光スペクトルにおいて確認することできる。
 半導体粒子の発光スペクトルの半値全幅は、60nm以下であることが好ましく、より好ましくは55nm以下、さらに好ましくは50nm以下、特に好ましくは45nm以下である。これにより、より色純度の高い光を発することができる。半導体粒子の発光スペクトルの半値全幅の下限は特に限定されないが、5nm以上であってもよく、15nm以上であってもよい。
 半導体粒子は、半導体結晶からなる粒子、好ましくは半導体結晶からなるナノ粒子である。半導体粒子の好ましい例としては、半導体量子ドット(以下、「量子ドット」ともいう。)及びペロブスカイト型結晶構造を有する化合物(以下、「ペロブスカイト化合物」ともいう。)の粒子が挙げられ、より好ましくは量子ドットである。
 量子ドットの平均粒径は、例えば0.5×10-7cm以上20×10-7cm以下、好ましくは1×10-7cm以上15×10-7cm以下(例えば2×10-7cm以上15×10-7cm以下)である。量子ドットのエネルギー状態はその大きさに依存するため、粒子径を変えることにより自由に発光波長を選択することが可能である。例えば、CdSeのみから構成される量子ドットの場合、粒子径が2.3×10-7cm、3.0×10-7cm、3.8×10-7cm、4.6×10-7cmであるときの発光スペクトルのピーク波長は、それぞれ528nm、570nm、592nm、637nmである。
 量子ドットは、例えば、周期表第2族元素、第11族元素、第12族元素、第13族元素、第14族元素、第15族元素及び第16族元素からなる群より選択される1種又は2種以上の元素を含む半導体材料から構成することができる。
 量子ドットを構成し得る半導体材料の具体例は、
 SnS、SnS、SnSe、SnTe、PbS、PbSe、PbTe等の第14族元素と第16族元素との化合物;
 GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、InGaN、InGaP等の第13族元素と第15族元素との化合物;
 Ga、Ga、GaSe、GaTe、In、In、InSe、InTe等の第13族元素と第16族元素との化合物;
 ZnO、ZnS、ZnSe、ZnTe、CdO、CdS、CdSe、CdTe、HgO、HgS、HgSe、HgTe、ZnSTe、ZnSeS、ZnSeTe、CdSTe、CdSeTe、HgSTe、HgSeS、HgSeTe等の第12族元素と第16族元素との化合物;
 As、As、AsSe、AsTe、Sb、Sb、SbSe、SbTe、Bi、Bi、BiSe、BiTe等の第15族元素と第16族元素との化合物;
 MgS、MgSe、MgTe、CaS、CaSe、CaTe、SrS、SrSe、SrTe、BaS、BaSe、BaTe等
の第2族元素と第16族元素との化合物;
 Si、Ge等の第14族元素、第15族元素又は第16族元素の単体
を含む。
 量子ドットは、単一の半導体材料からなる単層構造であってもよいし、単一の半導体材料からなる核粒子(コア層)の表面が、これとは異なる1種又は2種以上の半導体材料からなる被覆層(シェル層)によって被覆されたコアシェル構造であってもよい。後者の場合、シェル層を構成する半導体材料としては通常、コア層を構成する半導体材料よりもバンドギャップエネルギーが大きいものを用いる。量子ドットは、シェル層を2種以上有していてもよい。量子ドットの形状は特に限定されず、例えば、球状又は略球状、棒状、円盤状等であり得る。
 ペロブスカイト化合物は、A、B及びXを成分とする、ペロブスカイト型結晶構造を有する化合物である。
 Aは、ペロブスカイト型結晶構造において、Bを中心とする6面体の各頂点に位置する成分であって、1価の陽イオンである。
 Xは、ペロブスカイト型結晶構造において、Bを中心とする8面体の各頂点に位置する成分を表し、ハロゲン化物イオン及びチオシアン酸イオンからなる群より選ばれる少なくとも一種のイオンである。
 Bは、ペロブスカイト型結晶構造において、Aを頂点に配置する6面体及びXを頂点に配置する8面体の中心に位置する成分であって、金属イオンである。
 ペロブスカイト化合物からなる半導体粒子の平均粒径は、良好に結晶構造を維持させる観点から、好ましくは3×10-7cm以上、より好ましくは4×10-7cm以上、さらに好ましくは5×10-7cm以上であり、また、通常50×10-7cm以下である。
 A、B及びXを成分とするペロブスカイト化合物としては、特に限定されず、3次元構造、2次元構造、疑似2次元構造のいずれの構造を有する化合物であってもよい。
 3次元構造の場合には、ペロブスカイト化合物は、ABX(3+δ)で表される。
 2次元構造の場合には、ペロブスカイト化合物は、ABX(4+δ)で表される。
 ここで、δは、Bの電荷バランスに応じて適宜変更が可能な数であり、-0.7以上0.7以下である。
 ペロブスカイト化合物であって、ABX(3+δ)で表される、3次元構造のペロブスカイト型の結晶構造を有する化合物の好ましい具体例としては、
 CHNHPbBr、CHNHPbCl、CHNHPbI、CHNHPbBr(3-y)(0<y<3)、CHNHPbBr(3-y)Cl(0<y<3)、(HN=CH-NH)PbBr、(HN=CH-NH)PbCl、(HN=CH-NH)PbI
 CHNHPb(1-a)CaBr(0<a≦0.7)、CHNHPb(1-a)SrBr(0<a≦0.7)、CHNHPb(1-a)LaBr(3+δ)(0<a≦0.7,0<δ≦0.7)、CHNHPb(1-a)BaBr(0<a≦0.7)、CHNHPb(1-a)DyBr(3+δ)(0<a≦0.7,0<δ≦0.7)、
 CHNHPb(1-a)NaBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、CHNHPb(1-a)LiBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、
 CsPb(1-a)NaBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、CsPb(1-a)LiBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、
 CHNHPb(1-a)NaBr(3+δ-y)(0<a≦0.7,-0.7≦δ<0,0<y<3)、CHNHPb(1-a)LiBr(3+δ-y)(0<a≦0.7,-0.7≦δ<0,0<y<3)、CHNHPb(1-a)NaBr(3+δ-y)Cl(0<a≦0.7,-0.7≦δ<0,0<y<3)、CHNHPb(1-a)LiBr(3+δ-y)Cl(0<a≦0.7,-0.7≦δ<0,0<y<3)、
 (HN=CH-NH)Pb(1-a)NaBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、(HN=CH-NH)Pb(1-a)LiBr(3+δ)(0<a≦0.7,-0.7≦δ<0)、(HN=CH-NH)Pb(1-a)NaBr(3+δ-y)(0<a≦0.7,-0.7≦δ<0,0<y<3)、(HN=CH-NH)Pb(1-a)NaBr(3+δ-y)Cl(0<a≦0.7,-0.7≦δ<0,0<y<3)、
 CsPbBr、CsPbCl、CsPbI、CsPbBr(3-y)(0<y<3)、CsPbBr(3-y)Cl(0<y<3)、CHNHPbBr(3-y)Cl(0<y<3)、
 CHNHPb(1-a)ZnBr(0<a≦0.7)、CHNHPb(1-a)AlBr(3+δ)(0<a≦0.7,0≦δ≦0.7)、CHNHPb(1-a)CoBr(0<a≦0.7)、CHNHPb(1-a)MnBr(0<a≦0.7)、CHNHPb(1-a)MgBr(0<a≦0.7)、
 CsPb(1-a)ZnBr(0<a≦0.7)、CsPb(1-a)AlBr(3+δ)(0<a≦0.7,0<δ≦0.7)、CsPb(1-a)CoBr(0<a≦0.7)、CsPb(1-a)MnBr(0<a≦0.7)、CsPb(1-a)MgBr(0<a≦0.7)、
 CHNHPb(1-a)ZnBr(3-y)(0<a≦0.7,0<y<3)、CHNHPb(1-a)AlBr(3+δ-y)(0<a≦0.7,0<δ≦0.7,0<y<3)、CHNHPb(1-a)CoBr(3-y)(0<a≦0.7,0<y<3)、CHNHPb(1-a)MnBr(3-y)(0<a≦0.7,0<y<3)、CHNHPb(1-a)MgBr(3-y)(0<a≦0.7,0<y<3)、CHNHPb(1-a)ZnBr(3-y)Cl(0<a≦0.7,0<y<3)、CHNHPb(1-a)AlBr(3+δ-y)Cl(0<a≦0.7,0<δ≦0.7,0<y<3)、CHNHPb(1-a)CoBr(3+δ-y)Cl(0<a≦0.7,0<y<3)、CHNHPb(1-a)MnBr(3-y)Cl(0<a≦0.7,0<y<3)、CHNHPb(1-a)MgBr(3-y)Cl(0<a≦0.7,0<y<3)、
 (HN=CH-NH)ZnBr(0<a≦0.7)、(HN=CH-NH)MgBr(0<a≦0.7)、(HN=CH-NH)Pb(1-a)ZnBr(3-y)(0<a≦0.7,0<y<3)、(HN=CH-NH)Pb(1-a)ZnBr(3-y)Cl(0<a≦0.7,0<y<3)等が挙げられる。
 ペロブスカイト化合物であって、ABX(4+δ)で表される、2次元構造のペロブスカイト型の結晶構造を有する化合物の好ましい具体例としては、
 (CNHPbBr、(CNHPbCl、(CNHPbI、(C15NHPbBr、(C15NHPbCl、(C15NHPbI、(CNHPb(1-a)LiBr(4+δ)(0<a≦0.7,-0.7≦δ<0)、(CNHPb(1-a)NaBr(4+δ)(0<a≦0.7,-0.7≦δ<0)、(CNHPb(1-a)RbBr(4+δ)(0<a≦0.7,-0.7≦δ<0)、
 (C15NHPb(1-a)NaBr(4+δ)(0<a≦0.7,-0.7≦δ<0)、(C15NHPb(1-a)LiBr(4+δ)(0<a≦0.7,-0.7≦δ<0)、(C15NHPb(1-a)RbaBr(4+δ)(0<a≦0.7,-0.7≦δ<0)、
 (CNHPb(1-a)NaBr(4+δ-y)(0<a≦0.7,-0.7≦δ<0,0<y<4)、(CNHPb(1-a)LiBr(4+δ-y)(0<a≦0.7,-0.7≦δ<0,0<y<4)、(CNHPb(1-a)RbBr(4+δ-y)(0<a≦0.7,-0.7≦δ<0,0<y<4)、
 (CNHPb(1-a)NaBr(4+δ-y)Cl(0<a≦0.7,-0.7≦δ<0,0<y<4)、(CNHPb(1-a)LiBr(4+δ-y)Cl(0<a≦0.7,-0.7≦δ<0,0<y<4)、(CNHPb(1-a)RbBr(4+δ-y)Cl(0<a≦0.7,-0.7≦δ<0,0<y<4)、
 (CNHPbBr、(C15NHPbBr
 (CNHPbBr(4-y)Cl(0<y<4)、(CNHPbBr(4-y)(0<y<4)、
 (CNHPb(1-a)ZnBr(0<a≦0.7)、(CNHPb(1-a)MgBr(0<a≦0.7)、(CNHPb(1-a)CoBr(0<a≦0.7)、(CNHPb(1-a)MnBr(0<a≦0.7)、
 (C15NHPb(1-a)ZnBr(0<a≦0.7)、(C15NHPb(1-a)MgBr(0<a≦0.7)、(C15NHPb(1-a)CoBr(0<a≦0.7)、(C15NHPb(1-a)MnBr(0<a≦0.7)、
 (CNHPb(1-a)ZnBr(4-y)(0<a≦0.7,0<y<4)、(CNHPb(1-a)MgBr(4-y)(0<a≦0.7,0<y<4)、(CNHPb(1-a)CoBr(4-y)(0<a≦0.7,0<y<4)、(CNHPb(1-a)MnBr(4-y)(0<a≦0.7,0<y<4)、
 (CNHPb(1-a)ZnBr(4-y)Cl(0<a≦0.7,0<y<4)、(CNHPb(1-a)MgBr(4-y)Cl(0<a≦0.7,0<y<4)、(CNHPb(1-a)CoBr(4-y)Cl(0<a≦0.7,0<y<4)、(CNHPb(1-a)MnBr(4-y)Cl(0<a≦0.7,0<y<4)等が挙げられる。
 半導体粒子は、半導体粒子に配位する有機配位子(G)を含む配位子含有半導体粒子であってもよい。有機配位子(G)は、例えば、半導体粒子に対する配位能を示す極性基を有する有機化合物であることができる。有機配位子(G)は、例えば半導体粒子の表面に配位することができる。
 有機配位子(G)は、1種の配位子であってもよいし2種以上の配位子であってもよい。有機配位子(G)が極性基を有する有機化合物である場合、有機配位子(G)は通常、その極性基を介して半導体粒子に配位する。有機配位子(G)が配位していることは、有機配位子(G)に好適な分散媒に半導体粒子が均一分散することから確認することができる。半導体粒子として配位子含有半導体粒子を用いることは、半導体粒子の安定性及び分散性、並びに、発光強度を向上させる観点から有利となり得る。
 有機配位子(G)の極性基は、例えば、チオール基(-SH)、カルボキシ基(-COOH)及びアミノ基(-NH)からなる群より選択される少なくとも1種の基であることが好ましい。該群より選択される極性基は、半導体粒子への配位性を高めるうえで有利となり得る。中でも、発光強度を高める観点から、極性基は、チオール基及びカルボキシ基からなる群より選択される少なくとも1種の基であることがより好ましい。有機配位子(G)は、1個又は2個以上の極性基を有し得る。
 有機配位子(G)は、例えば、下記式(x):
 X-R   (x)
で表される有機化合物であることができる。式中、Xは上記の極性基であり、Rはヘテロ原子(N、O、S、ハロゲン原子等)を含んでいてもよい1価の炭化水素基である。該炭化水素基は、炭素-炭素二重結合等の不飽和結合を1個又は2個以上有していてもよい。該炭化水素基は、直鎖状、分岐鎖状又は環状構造を有していてもよい。該炭化水素基の炭素数は、例えば1以上40以下であり、1以上30以下であってもよい。該炭化水素基に含まれるメチレン基は、-O-、-S-、-C(=O)-、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-、-NH-等で置換されていてもよい。
 基Rは、極性基を含んでいてもよい。該極性基の具体例については極性基Xに係る上記記述が引用される。
 極性基Xとしてカルボキシ基を有する有機配位子の具体例として、ギ酸、酢酸、プロピオン酸のほか、飽和又は不飽和脂肪酸を挙げることができる。飽和又は不飽和脂肪酸の具体例は、ブチル酸、ペンタン酸、カプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、マルガリン酸、ステアリン酸、アラキジン酸、ベヘン酸、リグノセリン酸等の飽和脂肪酸;ミリストレイン酸、パルミトレイン酸、オレイン酸、イコセン酸、エルカ酸、ネルボン酸等の一価不飽和脂肪酸;リノール酸、α-リノレン酸、γ-リノレン酸、ステアドリン酸、ジホモ-γ-リノレン酸、アラキドン酸、エイコサテトラエン酸、ドコサジエン酸、アドレン酸(ドコサテトラエン酸)等の多価不飽和脂肪酸を含む。
 極性基Xとしてチオール基又はアミノ基を有する有機配位子の具体例は、上で例示した極性基Xとしてカルボキシ基を有する有機配位子のカルボキシ基がチオール基又はアミノ基に置き換わった有機配位子を含む。
 上記のほか、上記式(x)で表される有機配位子としては、化合物(G-1)及び化合物(G-2)が挙げられる。
 〔化合物(G-1)〕
 化合物(G-1)は、第1官能基及び第2官能基を有する化合物である。第1官能基はカルボキシ基(-COOH)であり、第2官能基はカルボキシ基又はチオール基(-SH)である。化合物(G-1)は、カルボキシ基及び/又はチオール基を有しているため、半導体粒子に配位する配位子となり得る。半導体粒子は、化合物(G-1)を1種のみ含んでいてもよいし2種以上含んでいてもよい。
 化合物(G-1)の一例は、下記式(G-1a)で表される化合物である。化合物(G-1)は、式(G-1a)で表される化合物の酸無水物であってもよい。
Figure JPOXMLDOC01-appb-C000003

[式中、Rは、2価の炭化水素基を表す。複数のRが存在する場合、それらは同一でも異なっていてもよい。上記炭化水素基は1以上の置換基を有していてもよい。置換基が複数存在する場合、それらは同一でも異なっていてもよく、それらは互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。上記炭化水素基に含まれる-CH-は-O-、-S-、-SO-、-CO-及び-NH-の少なくとも1つに置き換わっていてもよい。
 pは、1~10の整数を表す。]
 Rで表される2価の炭化水素基としては、例えば、鎖状炭化水素基、脂環式炭化水素基、芳香族炭化水素基等が挙げられる。
 鎖状炭化水素基としては、例えば、直鎖状又は分岐状のアルカンジイル基が挙げられ、その炭素数は通常1~50であり、好ましくは1~20、より好ましくは1~10である。脂環式炭化水素基としては、例えば、単環式又多環式のシクロアルカンジイル基が挙げられ、その炭素数は通常3~50であり、好ましくは3~20、より好ましくは3~10である。芳香族炭化水素基としては、例えば、単環式又多環式のアレーンジイル基が挙げられ、その炭素数は通常6~20である。
 上記炭化水素基が有していてもよい置換基としては、例えば、炭素数1~50のアルキル基、炭素数3~50のシクロアルキル基、炭素数6~20のアリール基、カルボキシ基、アミノ基、ハロゲン原子等が挙げられる。上記炭化水素基が有していてもよい置換基は、好ましくは、カルボキシ基、アミノ基又はハロゲン原子である。
 上記炭化水素基に含まれる-CH-が-O-、-CO-及び-NH-の少なくとも1つに置き換わる場合、-CH-が置き換わるのは、好ましくは-CO-及び-NH-の少なくとも1つであり、より好ましくは-NH-である。pは、好ましくは1又は2である。
 式(G-1a)で表される化合物としては、例えば、下記式(1-1)~(1-9)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 式(G-1a)で表される化合物の具体例を化学名で示せば、例えば、メルカプト酢酸、2-メルカプトプロピオン酸、3-メルカプトプロピオン酸、3-メルカプトブタン酸、4-メルカプトブタン酸、メルカプトコハク酸、メルカプトステアリン酸、メルカプトオクタン酸、4-メルカプト安息香酸、2,3,5,6-テトラフルオロ-4-メルカプト安息香酸、L-システイン、N-アセチル-L-システイン、3-メルカプトプロピオン酸3-メトキシブチル、3-メルカプト-2-メチルプロピオン酸等が挙げられる。中でも3-メルカプトプロピオン酸、メルカプトコハク酸が好ましい。
 化合物(G-1)の他の一例は、多価カルボン酸化合物であり、好ましくは上記式(G-1a)で表される化合物において、式(G-1a)中の-SHがカルボキシ基(-COOH)に置き換わった化合物(G-1b)が挙げられる。
 化合物(G-1b)としては、例えば、以下の化合物が挙げられる。
 コハク酸、グルタル酸、アジピン酸、オクタフルオロアジピン酸、アゼライン酸、ドデカン二酸、テトラデカン二酸、ヘキサデカン二酸、ヘプタデカン二酸、オクタデカン二酸、ノナデカン二酸、ドデカフルオロスベリン酸、3-エチル-3-メチルグルタル酸、ヘキサフルオログルタル酸、trans-3-ヘキセン二酸、セバシン酸、ヘキサデカフルオロセバシン酸、アセチレンジカルボン酸、trans-アコニット酸、1,3-アダマンタンジカルボン酸、ビシクロ[2.2.2]オクタン-1,4-ジカルボン酸、cis-4-シクロヘキセン-1,2-ジカルボン酸、1,1-シクロプロパンジカルボン酸、1,1-シクロブタンジカルボン酸、cis-又はtrans-1,3-シクロヘキサンジカルボン酸、cis-又はtrans-1,4-シクロヘキサンジカルボン酸、1,1-シクロペンタン二酢酸、1,2,3,4-シクロペンタンテトラカルボン酸、デカヒドロ-1,4-ナフタレンジカルボン酸、2,3-ノルボルナンジカルボン酸、5-ノルボルネン-2,3-ジカルボン酸、フタル酸、3-フルオロフタル酸、イソフタル酸、テトラフルオロイソフタル酸、テレフタル酸、テトラフルオロテレフタル酸、2,5-ジメチルテレフタル酸、2,6-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,1’-フェロセンジカルボン酸、2,2’-ビフェニルジカルボン酸、4,4’-ビフェニルジカルボン酸、2,5-フランジカルボン酸、ベンゾフェノン-2,4’-ジカルボン酸一水和物、ベンゾフェノン-4,4’-ジカルボン酸、2,3-ピラジンジカルボン酸、2,3-ピリジンジカルボン酸、2,4-ピリジンジカルボン酸、3,5-ピリジンジカルボン酸、2,5-ピリジンジカルボン酸、2,6-ピリジンジカルボン酸、3,4-ピリジンジカルボン酸、ピラゾール-3,5-ジカルボン酸一水和物、4,4’-スチルベンジカルボン酸、アントラキノン-2,3-ジカルボン酸、4-(カルボキシメチル)安息香酸、ケリドン酸一水和物、アゾベンゼン-4,4’-ジカルボン酸、アゾベンゼン-3,3’-ジカルボン酸、クロレンド酸、1H-イミダゾール-4,5-ジカルボン酸、2,2-ビス(4-カルボキシフェニル)ヘキサフルオロプロパン、1,10-ビス(4-カルボキシフェノキシ)デカン、ジプロピルマロン酸、ジチオジグリコール酸、3,3’-ジチオジプロピオン酸、4,4’-ジチオジブタン酸、4,4’-ジカルボキシジフェニルエーテル、4,4’-ジカルボキシジフェニルスルホン、エチレングリコール ビス(4-カルボキシフェニル)エーテル、3,4-エチレンジオキシチオフェン-2,5-ジカルボン酸、4,4’-イソプロピリデンジフェノキシ酢酸、1,3-アセトンジカルボン酸、メチレンジサリチル酸、5,5’-チオジサリチル酸、トリス(2-カルボキシエチル)イソシアヌレート、テトラフルオロコハク酸、α,α,α’,α’-テトラメチル-1,3-ベンゼンジプロピオン酸、1,3,5-ベンゼントリカルボン酸等。
 半導体粒子の安定性及び分散性、並びに、発光強度を向上させる観点から、化合物(G-1)の分子量は、好ましくは3000以下、より好ましくは2500以下、さらに好ましくは2000以下、なおさらに好ましくは1000以下、特に好ましくは800以下、最も好ましくは500以下である。化合物(G-1)の分子量は、通常100以上である。
 上記分子量は、数平均分子量であってもよいし重量平均分子量であってもよい。この場合、数平均分子量及び重量平均分子量はそれぞれ、ゲルパーミエーションクロマトグラフィ(GPC)により測定される標準ポリスチレン換算の数平均分子量及び重量平均分子量である。
 配位子含有半導体粒子が化合物(G-1)を含む場合、半導体粒子に対する化合物(G-1)の含有量比は、質量比で、好ましくは0.001以上1以下、より好ましくは0.01以上0.5以下、さらに好ましくは0.02以上0.45以下である。該含有量比がこの範囲にあると、半導体粒子の安定性及び分散性、並びに、発光強度を向上させる観点から有利となり得る。
 〔化合物(G-2)〕
 化合物(G-2)は、化合物(G-1)とは異なる化合物であって、ポリアルキレングリコール構造を含み、かつ極性基を分子末端に有する化合物である。分子末端とは、化合物(G-2)中、最も長い炭素鎖(炭素鎖中の炭素原子は、酸素原子等の他の原子に置き換わっていてもよい。)の末端であることが好ましい。
 半導体粒子は、化合物(G-2)を1種のみ含んでいてもよいし2種以上含んでいてもよい。半導体粒子は、化合物(G-1)又は化合物(G-2)を含んでいてもよいし、化合物(G-1)及び化合物(G-2)を含んでいてもよい。
 なお、ポリアルキレングリコール構造を含み、上記第1官能基及び第2官能基を有する化合物は、化合物(G-1)に属するものとする。
 ポリアルキレングリコール構造とは、下記式:
Figure JPOXMLDOC01-appb-C000005

で表される構造をいう(nは2以上の整数)。式中、Rはアルキレン基であり、例えば、エチレン基、プロピレン基等が挙げられる。
 化合物(G-2)の具体例として、下記式(G-2a)で表されるポリアルキレングリコール系化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000006
 式(G-2a)中、Xは極性基であり、Yは1価の基であり、Zは2価又は3価の基である。nは2以上の整数である。mは1又は2である。Rはアルキレン基である。
 極性基Xは、チオール基(-SH)、カルボキシ基(-COOH)及びアミノ基(-NH)からなる群より選択される少なくとも1種の基であることが好ましい。該群より選択される極性基は、半導体粒子への配位性を高めるうえで有利となり得る。中でも、半導体粒子の安定性及び分散性、並びに、発光強度を向上させる観点から、極性基Xは、チオール基及びカルボキシ基からなる群より選択される少なくとも1種の基であることがより好ましい。
 基Yは1価の基である。基Yとしては特に制限されず、置換基(N、O、S、ハロゲン原子等)を有していてもよい1価の炭化水素基が挙げられる。該炭化水素基に含まれる-CH-は、-O-、-S-、-C(=O)-、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-、-NH-等で置換されていてもよい。上記炭化水素基の炭素数は、例えば1以上12以下である。該炭化水素基は、不飽和結合を有していてもよい。
 基Yとしては、直鎖状、分岐鎖状又は環状構造を有する炭素数1以上12以下のアルキル基;直鎖状、分岐鎖状又は環状構造を有する炭素数1以上12以下のアルコキシ基等が挙げられる。該アルキル基及びアルコキシ基の炭素数は、好ましくは1以上8以下であり、より好ましくは1以上6以下であり、さらに好ましくは1以上4以下である。該アルキル基及びアルコキシ基に含まれる-CH-は、-O-、-S-、-C(=O)-、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-、-NH-等で置換されていてもよい。中でも、基Yは、炭素数が1以上4以下である直鎖状又は分岐鎖状のアルコキシ基であることが好ましく、炭素数が1以上4以下である直鎖状のアルコキシ基であることがより好ましい。
 基Yは、極性基を含んでいてもよい。該極性基としては、チオール基(-SH)、カルボキシ基(-COOH)及びアミノ基(-NH)からなる群より選択される少なくとも1種の基が挙げられる。ただし、上述のとおり、ポリアルキレングリコール構造を含み、上記第1官能基及び第2官能基を有する化合物は、化合物(G-1)に属するものとする。該極性基は、好ましくは基Yの末端に配置される。
 基Zは2価又は3価の基である。基Zとしては特に制限されず、ヘテロ原子(N、O、S、ハロゲン原子等)を含んでいてもよい2価又は3価の炭化水素基が挙げられる。該炭化水素基の炭素数は、例えば1以上24以下である。該炭化水素基は、不飽和結合を有していてもよい。
 2価の基である基Zとしては、直鎖状、分岐鎖状又は環状構造を有する炭素数1以上24以下のアルキレン基;直鎖状、分岐鎖状又は環状構造を有する炭素数1以上24以下のアルケニレン基等が挙げられる。該アルキル基及びアルケニレン基の炭素数は、好ましくは1以上12以下であり、より好ましくは1以上8以下であり、さらに好ましくは1以上4以下である。該アルキル基及びアルケニレン基に含まれる-CH-は、-O-、-S-、-C(=O)-、-C(=O)-O-、-O-C(=O)-、-C(=O)-NH-、-NH-等で置換されていてもよい。3価の基である基Zの例としては、上記2価の基である基Zから水素原子を1つ取り除いた基を挙げることができる。
 基Zは、分岐構造を有していてもよい。分岐構造を有する基Zは、上記式(G-2a)に示されるポリアルキレングリコール構造を含む分岐鎖とは別の分岐鎖において、上記式(G-2a)に示されるポリアルキレングリコール構造とは別のポリアルキレングリコール構造を有していてもよい。
 中でも、基Zは、炭素数が1以上6以下である直鎖状又は分岐鎖状のアルキレン基であることが好ましく、炭素数が1以上4以下である直鎖状のアルキレン基であることがより好ましい。
 Rはアルキレン基であり、炭素数が1以上6以下である直鎖状又は分岐鎖状のアルキレン基であることが好ましく、炭素数が1以上4以下である直鎖状のアルキレン基であることがより好ましい。
 式(G-2a)中のnは2以上の整数であり、好ましくは2以上540以下であり、より好ましくは2以上120以下であり、さらに好ましくは2以上60以下である。
 化合物(G-2)の分子量は、例えば150以上10000以下程度であり得るが、半導体粒子の安定性及び分散性、並びに、発光強度を向上させる観点から、150以上5000以下であることが好ましく、150以上4000以下であることがより好ましい。該分子量は、数平均分子量であってもよいし重量平均分子量であってもよい。この場合、数平均分子量及び重量平均分子量はそれぞれ、GPCにより測定される標準ポリスチレン換算の数平均分子量及び重量平均分子量である。
 配位子含有半導体粒子が化合物(G-2)を含む場合、半導体粒子に対する化合物(G-2)の含有量比は、質量比で、好ましくは0.001以上2以下、より好ましくは0.01以上1.5以下、さらに好ましくは0.1以上1以下である。該含有量比がこの範囲にあると、半導体粒子の安定性及び分散性、並びに、発光強度を向上させる観点から有利となり得る。
 半導体粒子が配位子含有半導体粒子である場合、半導体粒子に対する有機配位子の含有量の比は、質量比で、好ましくは0.001以上1以下、より好ましくは0.01以上0.8以下、さらに好ましくは0.02以上0.5以下である。該含有量比がこの範囲にあると、半導体粒子の安定性及び分散性、並びに、発光強度を向上させる観点から有利となり得る。ここでいう有機配位子の含有量とは、すべての有機配位子の合計含有量である。
 組成物は、第1粒子(A-1)である光散乱粒子と、第2粒子(A-2)である発光性の半導体粒子とを含むことができる。光散乱粒子及び発光性の半導体粒子の両方を含有させることにより、半導体粒子の近傍に光散乱粒子を存在させることができるため、発光強度向上に有利となり得る。
 組成物が第2粒子(A-2)を含む場合、組成物における第2粒子(A-2)(ただし、有機配位子(G)を含む配位子含有半導体粒子である場合には、有機配位子(G)は除く。)の含有率は、組成物の固形分の総量に対し、例えば1質量%以上70質量%以下であり、第2粒子(A-2)に基づく膜の特性(例えば発光特性)を向上させる観点から、好ましくは2質量%以上、より好ましくは5質量%以上、さらに好ましくは8質量%以上、なおさらに好ましくは10質量%以上であり、また、組成物の現像性の観点から、好ましくは65質量%以下、より好ましくは60質量%以下、さらに好ましくは55質量%以下、なおさらに好ましくは50質量%以下、特に好ましくは48質量%以下である。
 [3]分散剤(B)
 組成物は、1種又は2種以上の分散剤(B)を含んでよい。分散剤(B)を含有させることにより、組成物における第1粒子(A-1)の分散性を高めることができる。例えば、分散剤(B)を用いて溶剤(H)の一部又は全部に予め第1粒子(A-1)を分散させたものを組成物の調製に用いることができる。なお、上述の有機配位子(G)、後述する粒子の分散性を高めることができる樹脂(Cb)及び後述する粒子の分散性を高めることができる重合性化合物(Da)は、分散剤(B)には含まれない。
 分散剤(B)としては市販品を用いることができる。市販品の例としては、
 ビックケミー・ジャパン社製のDISPERBYK-101、102、103、106、107、108、109、110、111、116、118、130、140、154、161、162、163、164、165、166、170、171、174、180、181、182、183、184、185、190、192、2000、2001、2020、2025、2050、2070、2095、2150、2155;ANTI-TERRA-U、U100、203、204、250、;BYK-P104、P104S、P105、220S、6919;BYK-LPN6919、21116;LACTIMON、LACTIMON-WS;Bykumen等;
 日本ルーブリゾール社製のSOLSPERSE-3000、9000、13000、13240、13650、13940、16000、17000、18000、20000、21000、24000、26000、27000、28000、31845、32000、32500、32550、33500、32600、34750、35100、36600、38500、41000、41090、53095、55000、76500等;
 BASF社製のEFKA-46、47、48、452、4008、4009、4010、4015、4020、4047、4050、4055、4060、4080、4400、4401、4402、4403、4406、4408、4300、4310、4320、4330、4340、450、451、453、4540、4550、4560、4800、5010、5065、5066、5070、7500、7554、1101、120、150、1501、1502、1503等;
 味の素ファインテクノ社製のアジスパーPA111、PB711、PB821、PB822、PB824等が挙げられる。
 組成物における分散剤(B)の含有率は、組成物の固形分の総量に対し、例えば0.001質量%以上5質量%以下であり、第1粒子(A-1)に基づく膜の特性や膜の現像性を向上させる観点及び後で詳述する式(i)で表される沈降速度νを400×10-9cm/s以下にする観点から、好ましくは0.05質量%以上2質量%以下、より好ましくは0.1質量%以上1質量%以下である。
 [4]樹脂(C)
 組成物は、樹脂(C)及び重合性化合物(D)からなる群より選択される少なくとも1種のバインダ成分を含む。組成物が樹脂(C)を含む場合、1種又は2種以上の樹脂を含むことができる。樹脂(C)としては、以下の樹脂[K1]~[K4]等が挙げられる。
 樹脂[K1];不飽和カルボン酸及び不飽和カルボン酸無水物からなる群より選ばれる少なくとも1種(a)(以下、「(a)」ともいう。)と、(a)と共重合可能な単量体(c)(ただし、(a)とは異なる。)(以下、「(c)」ともいう。)との共重合体;
 樹脂[K2];(a)と(c)との共重合体に炭素数2~4の環状エーテル構造とエチレン性不飽和結合とを有する単量体(b)(以下、「(b)」ともいう。)を反応させることにより得ることができる、(a)と(c)と(b)とに由来する構造を有する樹脂;
 樹脂[K3];(b)と(c)との共重合体に(a)を反応させることにより得ることができる、(b)と(c)と(a)とに由来する構造を有する樹脂;
 樹脂[K4];(b)と(c)との共重合体に(a)を反応させ、さらにカルボン酸無水物を反応させることにより得ることができる、(b)と(c)と(a)とカルボン酸無水物とに由来する構造を有する樹脂。
 (a)としては、例えば、(メタ)アクリル酸、クロトン酸、o-、m-、p-ビニル安息香酸等の不飽和モノカルボン酸;
 マレイン酸、フマル酸、シトラコン酸、メサコン酸、イタコン酸、3-ビニルフタル酸、4-ビニルフタル酸、3,4,5,6-テトラヒドロフタル酸、1,2,3,6-テトラヒドロフタル酸、ジメチルテトラヒドロフタル酸、1,4-シクロヘキセンジカルボン酸等の不飽和ジカルボン酸;
 メチル-5-ノルボルネン-2,3-ジカルボン酸、5-カルボキシビシクロ[2.2.1]ヘプト-2-エン、5,6-ジカルボキシビシクロ[2.2.1]ヘプト-2-エン、5-カルボキシ-5-メチルビシクロ[2.2.1]ヘプト-2-エン、5-カルボキシ-5-エチルビシクロ[2.2.1]ヘプト-2-エン、5-カルボキシ-6-メチルビシクロ[2.2.1]ヘプト-2-エン、5-カルボキシ-6-エチルビシクロ[2.2.1]ヘプト-2-エン等のカルボキシ基を含有するビシクロ不飽和化合物;
 無水マレイン酸、シトラコン酸無水物、イタコン酸無水物、3-ビニルフタル酸無水物、4-ビニルフタル酸無水物、3,4,5,6-テトラヒドロフタル酸無水物、1,2,3,6-テトラヒドロフタル酸無水物、ジメチルテトラヒドロフタル酸無水物、5,6-ジカルボキシビシクロ[2.2.1]ヘプト-2-エン無水物等の不飽和ジカルボン酸無水物;
 こはく酸モノ〔2-(メタ)アクリロイルオキシエチル〕、フタル酸モノ〔2-(メタ)アクリロイルオキシエチル〕等の2価以上の多価カルボン酸の不飽和モノ〔(メタ)アクリロイルオキシアルキル〕エステル;
 α-(ヒドロキシメチル)(メタ)アクリル酸のような、同一分子中にヒドロキシ基及びカルボキシ基を含有する不飽和(メタ)アクリレート
等が挙げられる。
 これらのうち、共重合反応性等の観点から、(メタ)アクリル酸、無水マレイン酸等が好ましい。
 本明細書において(メタ)アクリル酸とは、アクリル酸及び/又はメタクリル酸を意味する。「(メタ)アクリロイル」、「(メタ)アクリレート」等においても同様である。
 (b)は、例えば、炭素数2~4の環状エーテル構造(例えば、オキシラン環、オキセタン環及びテトラヒドロフラン環からなる群より選ばれる少なくとも1種)とエチレン性不飽和結合とを有する単量体である。(b)は、炭素数2~4の環状エーテル構造と(メタ)アクリロイルオキシ基とを有する単量体であることが好ましい。
 (b)としては、例えば、グリシジル(メタ)アクリレート、β-メチルグリシジル(メタ)アクリレート、β-エチルグリシジル(メタ)アクリレート、グリシジルビニルエーテル、o-ビニルベンジルグリシジルエーテル、m-ビニルベンジルグリシジルエーテル、p-ビニルベンジルグリシジルエーテル、α-メチル-o-ビニルベンジルグリシジルエーテル、α-メチル-m-ビニルベンジルグリシジルエーテル、α-メチル-p-ビニルベンジルグリシジルエーテル、2,3-ビス(グリシジルオキシメチル)スチレン、2,4-ビス(グリシジルオキシメチル)スチレン、2,5-ビス(グリシジルオキシメチル)スチレン、2,6-ビス(グリシジルオキシメチル)スチレン、2,3,4-トリス(グリシジルオキシメチル)スチレン、2,3,5-トリス(グリシジルオキシメチル)スチレン、2,3,6-トリス(グリシジルオキシメチル)スチレン、3,4,5-トリス(グリシジルオキシメチル)スチレン、2,4,6-トリス(グリシジルオキシメチル)スチレン等のオキシラン環とエチレン性不飽和結合とを有する単量体;
 3-メチル-3-メタクリルロイルオキシメチルオキセタン、3-メチル-3-アクリロイルオキシメチルオキセタン、3-エチル-3-メタクリロイルオキシメチルオキセタン、3-エチル-3-アクリロイルオキシメチルオキセタン、3-メチル-3-メタクリロイルオキシエチルオキセタン、3-メチル-3-アクリロイルオキシエチルオキセタン、3-エチル-3-メタクリロイルオキシエチルオキセタン、3-エチル-3-アクリロイルオキシエチルオキセタン等のオキセタン環とエチレン性不飽和結合とを有する単量体;
 テトラヒドロフルフリルアクリレート(例えば、ビスコートV#150、大阪有機化学工業(株)製)、テトラヒドロフルフリルメタクリレート等のテトラヒドロフラン環とエチレン性不飽和結合とを有する単量体
等が挙げられる。
 樹脂[K2]~[K4]の製造時の反応性が高く、未反応の(b)が残存しにくいことから、(b)としては、オキシラン環とエチレン性不飽和結合とを有する単量体が好ましい。
 (c)としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-メチルシクロヘキシル(メタ)アクリレート、トリシクロ[5.2.1.02,6]デカン-8-イル(メタ)アクリレート(当該技術分野では、慣用名として「ジシクロペンタニル(メタ)アクリレート」といわれている。また、「トリシクロデシル(メタ)アクリレート」という場合がある。)、トリシクロ[5.2.1.02,6]デセン-8-イル(メタ)アクリレート(当該技術分野では、慣用名として「ジシクロペンテニル(メタ)アクリレート」といわれている。)、ジシクロペンタニルオキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、アリル(メタ)アクリレート、プロパルギル(メタ)アクリレート、フェニル(メタ)アクリレート、ナフチル(メタ)アクリレート、ベンジル(メタ)アクリレート等の(メタ)アクリル酸エステル;
 2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート等のヒドロキシ基含有(メタ)アクリル酸エステル;
 マレイン酸ジエチル、フマル酸ジエチル、イタコン酸ジエチル等のジカルボン酸ジエステル;
 ビシクロ[2.2.1]ヘプト-2-エン、5-メチルビシクロ[2.2.1]ヘプト-2-エン、5-エチルビシクロ[2.2.1]ヘプト-2-エン、5-ヒドロキシビシクロ[2.2.1]ヘプト-2-エン、5-ヒドロキシメチルビシクロ[2.2.1]ヘプト-2-エン、5-(2’-ヒドロキシエチル)ビシクロ[2.2.1]ヘプト-2-エン、5-メトキシビシクロ[2.2.1]ヘプト-2-エン、5-エトキシビシクロ[2.2.1]ヘプト-2-エン、5,6-ジヒドロキシビシクロ[2.2.1]ヘプト-2-エン、5,6-ジ(ヒドロキシメチル)ビシクロ[2.2.1]ヘプト-2-エン、5,6-ジ(2’-ヒドロキシエチル)ビシクロ[2.2.1]ヘプト-2-エン、5,6-ジメトキシビシクロ[2.2.1]ヘプト-2-エン、5,6-ジエトキシビシクロ[2.2.1]ヘプト-2-エン、5-ヒドロキシ-5-メチルビシクロ[2.2.1]ヘプト-2-エン、5-ヒドロキシ-5-エチルビシクロ[2.2.1]ヘプト-2-エン、5-ヒドロキシメチル-5-メチルビシクロ[2.2.1]ヘプト-2-エン、5-tert-ブトキシカルボニルビシクロ[2.2.1]ヘプト-2-エン、5-シクロヘキシルオキシカルボニルビシクロ[2.2.1]ヘプト-2-エン、5-フェノキシカルボニルビシクロ[2.2.1]ヘプト-2-エン、5,6-ビス(tert-ブトキシカルボニル)ビシクロ[2.2.1]ヘプト-2-エン、5,6-ビス(シクロヘキシルオキシカルボニル)ビシクロ[2.2.1]ヘプト-2-エン等のビシクロ不飽和化合物;
 N-フェニルマレイミド、N-シクロヘキシルマレイミド、N-ベンジルマレイミド、N-スクシンイミジル-3-マレイミドベンゾエート、N-スクシンイミジル-4-マレイミドブチレート、N-スクシンイミジル-6-マレイミドカプロエート、N-スクシンイミジル-3-マレイミドプロピオネート、N-(9-アクリジニル)マレイミド等のジカルボニルイミド誘導体;
 スチレン、α-メチルスチレン、m-メチルスチレン、p-メチルスチレン、ビニルトルエン、p-メトキシスチレン、アクリロニトリル、メタクリロニトリル、塩化ビニル、塩化ビニリデン、アクリルアミド、メタクリルアミド、酢酸ビニル、1,3-ブタジエンイソプレン、2,3-ジメチル-1,3-ブタジエン
等が挙げられる。
 これらのうち、共重合反応性及び樹脂(C)の耐熱性の点からは、スチレン、ビニルトルエン、N-フェニルマレイミド、N-シクロヘキシルマレイミド、N-ベンジルマレイミド、ビシクロ[2.2.1]ヘプト-2-エン等が好ましい。
 樹脂[K1]において、それぞれに由来する構成単位の比率は、樹脂[K1]を構成する全構成単位中、
(a)に由来する構成単位;2モル%以上60モル%以下
(c)に由来する構成単位;40モル%以上98モル%以下
であることが好ましく、
(a)に由来する構成単位;10モル%以上50モル%以下
(c)に由来する構成単位;50モル%以上90モル%以下
であることがより好ましい。
 樹脂[K1]の構成単位の比率が上記の範囲にあると、組成物の保存安定性及び膜の耐溶剤性に優れる傾向がある。
 なお、樹脂(B)が(a)に由来する構成単位を含む場合、(a)に由来する構成単位を2種以上を含むことができ、この場合、(a)に由来する構成単位の比率(モル基準の含有率)は、各構成単位の比率の総和である。(b)、(c)等の他の単量体に由来する構成単位についても同様である。
 樹脂[K1]は、例えば、文献「高分子合成の実験法」(大津隆行著 発行所(株)化学同人 第1版第1刷 1972年3月1日発行)に記載された方法及び当該文献に記載された引用文献を参考にして製造することができる。
 具体的には、(a)及び(c)の所定量、重合開始剤並びに溶剤等を反応容器中に入れて、例えば、窒素により酸素を置換することにより、脱酸素雰囲気にし、攪拌しながら、加熱及び保温する方法が挙げられる。
 用いられる重合開始剤及び溶剤等は、特に限定されず、当該分野で通常使用されているものを使用することができる。例えば、重合開始剤としては、アゾ化合物(2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等)や有機過酸化物(ベンゾイルペルオキシド等)が挙げられ、溶剤としては、各モノマーを溶解するものであればよく、組成物に含まれていてもよい溶剤(H)として後述する溶剤等が挙げられる。
 得られた共重合体は、反応後の溶液をそのまま使用してもよいし、濃縮あるいは希釈した溶液を使用してもよいし、再沈殿等の方法で固体(粉体)として取り出したものを使用してもよい。重合の際の溶剤として後述の溶剤(H)を使用すれば、反応後の溶液をそのまま組成物の調製に使用することができるため、組成物の製造工程を簡略化できる。
 樹脂[K2]は、(a)と(c)との共重合体に、(b)が有する炭素数2~4の環状エーテルを(a)が有するカルボン酸及び/又はカルボン酸無水物に付加させることにより製造することができる。
 まず(a)と(c)との共重合体を、樹脂[K1]の製造方法として記載した方法と同様にして製造する。この場合、それぞれに由来する構成単位の比率は、樹脂[K1]について述べた比率と同じであることが好ましい。
 次に、上記共重合体中の(a)に由来するカルボン酸及び/又はカルボン酸無水物の一部に、(b)が有する炭素数2~4の環状エーテルを反応させる。
 (a)と(c)との共重合体の製造に引き続き、フラスコ内雰囲気を窒素から空気に置換し、(b)、カルボン酸又はカルボン酸無水物と環状エーテルとの反応触媒(例えば有機リン化合物、金属錯体、アミン化合物等)及び重合禁止剤(例えばハイドロキノン等)等の存在下、例えば60℃以上130℃以下で、1~10時間反応することにより、樹脂[K2]を製造することができる。
 (b)の使用量は、(a)100モルに対して、好ましくは5モル以上80モル以下、より好ましくは10モル以上75モル以下である。この範囲にすることにより、組成物の保存安定性、並びに、膜の耐溶剤性、耐熱性及び機械強度のバランスが良好になる傾向がある。
 反応触媒としての有機リン化合物としては、例えばトリフェニルホスフィン等が挙げられる。反応触媒としてのアミン化合物としては、例えば脂肪族第三級アミン化合物又は脂肪族第四級アンモニウム塩化合物等が使用可能であり、その具体例としては、例えばトリス(ジメチルアミノメチル)フェノール、トリエチルアミン、テトラブチルアンモニウムブロミド、テトラブチルアンモニウムクロリド等が挙げられる。膜の発光強度等の光学特性の観点から、反応触媒は、好ましくは有機リン化合物である。
 反応触媒の使用量は、(a)、(b)及び(c)の合計量100質量部に対して、好ましくは0.001質量部以上5質量部以下である。
 重合禁止剤の使用量は、(a)、(b)及び(c)の合計量100質量部に対して、好ましくは0.001質量部以上5質量部以下である。
 仕込方法、反応温度及び時間等の反応条件は、製造設備や重合による発熱量等を考慮して適宜調整することができる。なお、重合条件と同様に、製造設備や重合による発熱量等を考慮し、仕込方法や反応温度を適宜調整することができる。
 樹脂[K3]は、第一段階として、上述した樹脂[K1]の製造方法と同様にして、(b)と(c)との共重合体を得る。上記と同様に、得られた共重合体は、反応後の溶液をそのまま使用してもよいし、濃縮あるいは希釈した溶液を使用してもよいし、再沈殿等の方法で固体(粉体)として取り出したものを使用してもよい。
 (b)及び(c)に由来する構成単位の比率は、上記共重合体を構成する全構成単位の合計モル数に対して、それぞれ、
(b)に由来する構成単位;5モル%以上95モル%以下
(c)に由来する構成単位;5モル%以上95モル%以下
であることが好ましく、
(b)に由来する構成単位;10モル%以上90モル%以下
(c)に由来する構成単位;10モル%以上90モル%以下
であることがより好ましい。
 樹脂[K3]は、樹脂[K2]の製造方法と同様の条件で(b)と(c)との共重合体が有する(b)に由来する環状エーテルに、(a)が有するカルボン酸又はカルボン酸無水物を反応させることにより得ることができる。
 上記共重合体に反応させる(a)の使用量は、(b)100モルに対して、5モル以上80モル以下が好ましい。
 樹脂[K4]は、樹脂[K3]に、さらにカルボン酸無水物を反応させた樹脂である。環状エーテルとカルボン酸又はカルボン酸無水物との反応により発生するヒドロキシ基に、カルボン酸無水物を反応させる。
 カルボン酸無水物としては、例えば、無水マレイン酸、シトラコン酸無水物、イタコン酸無水物、3-ビニルフタル酸無水物、4-ビニルフタル酸無水物、3,4,5,6-テトラヒドロフタル酸無水物、1,2,3,6-テトラヒドロフタル酸無水物、ジメチルテトラヒドロフタル酸無水物、5,6-ジカルボキシビシクロ[2.2.1]ヘプト-2-エン無水物等が挙げられる。
 カルボン酸無水物の使用量は、(a)の使用量1モルに対して、0.5モル以上1モル以下が好ましい。
 樹脂[K1]、樹脂[K2]、樹脂[K3]及び樹脂[K4]としては、例えば、
 ベンジル(メタ)アクリレート/(メタ)アクリル酸共重合体、スチレン/(メタ)アクリル酸共重合体等の樹脂[K1];
 ベンジル(メタ)アクリレート/(メタ)アクリル酸共重合体にグリシジル(メタ)アクリレートを付加させた樹脂、トリシクロデシル(メタ)アクリレート/スチレン/(メタ)アクリル酸共重合体にグリシジル(メタ)アクリレートを付加させた樹脂、トリシクロデシル(メタ)アクリレート/ベンジル(メタ)アクリレート/(メタ)アクリル酸共重合体にグリシジル(メタ)アクリレートを付加させた樹脂等の樹脂[K2];
 トリシクロデシル(メタ)アクリレート/グリシジル(メタ)アクリレートの共重合体に(メタ)アクリル酸を反応させた樹脂、トリシクロデシル(メタ)アクリレート/スチレン/グリシジル(メタ)アクリレートの共重合体に(メタ)アクリル酸を反応させた樹脂等の樹脂[K3];
 トリシクロデシル(メタ)アクリレート/グリシジル(メタ)アクリレートの共重合体に(メタ)アクリル酸を反応させた樹脂にさらにテトラヒドロフタル酸無水物を反応させた樹脂等の樹脂[K4]等が挙げられる。
 樹脂(C)の更なる例として、特開2018-123274号公報に記載の樹脂が挙げられる。該樹脂としては、側鎖に二重結合を有するとともに、主鎖に、下記式(I)で表される構成単位(α)と、下記式(II)で表される構成単位(β)とを含み、さらに酸基を含む重合体(以下、「樹脂(Ca)」ともいう。)が挙げられる。
 酸基は、例えば樹脂(Ca)が、酸基含有単量体(例えば(メタ)アクリル酸等)に由来する構成単位(γ)を含むことで、樹脂中に導入されたものであることができる。樹脂(Ca)は、好ましくは、主鎖骨格に構成単位(α)、(β)及び(γ)を含む。
Figure JPOXMLDOC01-appb-C000007

[式中、R及びRは、同一又は異なって、水素原子又は炭素数1~25の炭化水素基を表す。nは、式(I)で表される構成単位の平均繰り返し単位数を表し、1以上の数である。]
Figure JPOXMLDOC01-appb-C000008

[式中、Rは、同一又は異なって、水素原子又はメチル基を表す。Rは、同一又は異なって、炭素数4~20の直鎖状又は分岐鎖状炭化水素基を表す。mは、式(II)で表される構成単位の平均繰り返し単位数を表し、1以上の数である。]
 樹脂(Ca)において、構成単位(α)の含有割合は、樹脂(Ca)の耐熱性や保存安定性の観点から、樹脂(Ca)の主鎖骨格を与える全単量体単位の総量100質量%に対し、例えば0.5質量%以上50質量%以下、好ましくは1質量%以上40質量%以下、より好ましくは5質量%以上30質量%以下である。式(I)中のnは、樹脂(Ca)中の構成単位(α)の平均繰り返し単位数を表し、構成単位(α)の含有割合が上記範囲内になるようにnを設定することができる。
 構成単位(β)の含有割合は、膜の耐溶剤性の観点から、樹脂(Ca)の主鎖骨格を与える全単量体単位の総量100質量%に対し、例えば10質量%以上90質量%以下、好ましくは20質量%以上80質量%以下、より好ましくは30質量%以上75質量%以下である。式(II)中のmは、樹脂(Ca)中の構成単位(β)の平均繰り返し単位数を表し、構成単位(β)の含有割合が上述した範囲内になるようにmを設定することができる。
 構成単位(γ)の含有割合は、溶剤(H)に対する樹脂(Ca)の溶解性の観点から、
樹脂(Ca)の主鎖骨格を与える全単量体単位の総量100質量%に対し、例えば0.5質量%以上50質量%以下、好ましくは2質量%以上50質量%以下、より好ましくは5質量%以上45質量%以下である。
 樹脂(C)の更なる例として、ポリアルキレングリコール化合物が挙げられる。ポリアルキレングリコール化合物としては、ポリエチレングリコール、ポリプロピレングリコール等が挙げられる。
 樹脂(C)は、ゲルパーミエーションクロマトグラフィ(GPC)によって測定される標準ポリスチレン換算の重量平均分子量(Mw)が、好ましくは9000以下である。樹脂(C)が上記Mwを有することにより、膜の発光強度等の光学特性を向上させやすい傾向にある。樹脂(C)の標準ポリスチレン換算のMwは、例えば1000以上9000以下であり、膜の強度強度等の光学特性の観点から、好ましくは2000以上8500以下、より好ましくは3000以上8500以下である。
 樹脂(C)のMwを上記範囲とするために、用いる原料の選択、仕込方法、反応温度及び時間等の反応条件を適宜組み合わせて調整することができる。
 GPCによって測定される樹脂(C)の分子量分布[重量平均分子量(Mw)/数平均分子量(Mn)]は、例えば1.0以上6.0以下であり、膜の光学特性を高める観点から、好ましくは1.2以上4.0以下である。
 樹脂(C)の酸価は、膜の光学特性及び耐溶剤性を高める観点から、好ましくは90mgKOH/g以上150mgKOH/g以下、より好ましくは95mgKOH/g以上140mgKOH/g以下であり、さらに好ましくは100mgKOH/g以上130mgKOH/g以下である。酸価は、樹脂(C)1gを中和するに必要な水酸化カリウムの量(mg)として測定される値であり、例えば水酸化カリウム水溶液を用いて滴定することにより求めることができる。
 樹脂(C)は、膜の光学特性を高める観点から、二重結合当量が、300g/eq以上2000g/eq以下の樹脂を含むことが好ましく、500g/eq以上1500g/eq以下である樹脂を含むことがより好ましい。300g/eq以上2000g/eq以下の二重結合当量を有する樹脂としては、(メタ)アクリル系樹脂が挙げられる。樹脂(C)は、好ましくは(メタ)アクリル系樹脂からなる。
 樹脂(C)は、粒子の分散性を高めることができる樹脂(Cb)を含むことが好ましく、樹脂(Cb)であることがより好ましい。樹脂(Cb)としては、例えば、極性基を有する樹脂が挙げられる。極性基は、第1粒子(A-1)や第2粒子(A-2)に吸着することが可能である。したがって、樹脂(C)が樹脂(Cb)を含むことは、式(i)で表される沈降速度νを小さくするうえで有利である。極性基としては、カルボキシ基(-COOH)、チオール基(-SH)及びアミノ基(-NH)からなる群より選択される少なくとも1種の基が挙げられ、好ましくはカルボキシ基である。樹脂(Cb)は、2種以上の極性基を有していてもよい。
 組成物が樹脂(C)を含む場合、組成物における樹脂(C)の含有率は、組成物の固形分の総量に対して、例えば5質量%以上、好ましくは10質量%以上、より好ましくは15質量%以上、さらに好ましくは20質量%以上、特に好ましくは25質量%以上であり、例えば90質量%以下、好ましくは85質量%以下、より好ましくは80質量%以下である。樹脂(C)の含有率が上記範囲以内であると、膜の光学特性が高くなりやすい傾向にある。
 [5]重合性化合物(D)
 組成物は、重合性化合物(D)を含むことができる。重合性化合物(D)は、後述する重合開始剤(E)から発生した活性ラジカル、酸等によって重合し得る化合物である。組成物は、重合性化合物(D)を2種以上含んでいてもよい。組成物が樹脂(C)を含む場合、組成物は、重合性化合物(D)を含んでいても含んでいなくてもよい。組成物が樹脂(C)を含まない場合、組成物は、重合性化合物(D)を含む。
 重合性化合物(D)としては、光の照射によって硬化する光重合性化合物、及び、熱により硬化する熱重合性化合物が挙げられる。光重合性化合物としては、光の照射によって、ラジカル重合反応により硬化する光ラジカル重合性化合物、並びに光の照射によってカチオン重合反応により硬化する光カチオン重合性化合物等が挙げられる。光重合性化合物は、光ラジカル重合性化合物であることが好ましい。
 光重合性化合物の重量平均分子量は、例えば150以上3000以下、好ましくは150以上2900以下、より好ましくは250以上1500以下である。
 光ラジカル重合性化合物としては、重合性のエチレン性不飽和結合を有する化合物等が挙げられ、中でも(メタ)アクリレート化合物が好ましい。(メタ)アクリレート化合物としては、分子内に1個の(メタ)アクリロイルオキシ基を有する単官能(メタ)アクリレートモノマー(以下、「化合物(D-1)」ともいう。)、分子内に2個の(メタ)アクリロイルオキシ基を有する2官能(メタ)アクリレートモノマー(以下、「化合物(D-2)」ともいう。)、及び、分子内に3個以上の(メタ)アクリロイルオキシ基を有する多官能(メタ)アクリレートモノマー(以下、「化合物(D-3)」ともいう。)が挙げられる。
 化合物(D-1)としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、アミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、ドデシル(メタ)アクリレート(ラウリル(メタ)アクリレート)、ヘキサデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ノニルフェノキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニロキシエチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、コハク酸モノ(2-アクリロイルオキシエチル)、N-[2-(アクリロイルオキシ)エチル]フタルイミド、N-[2-(アクリロイルオキシ)エチル]テトラヒドロフタルイミド、2-(2-ビニロキシエトキシ)エチル(メタ)アクリレート、ω-カルボキシ-ポリカプロラクトンモノアクリレート、エチルカルビトール(メタ)アクリレート(エトキシエトキシエチル(メタ)アクリレート)、3,3,5-トリメチルシクロヘキシル(メタ)アクリレート等が挙げられる。
 化合物(D-2)としては、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,5-ペンタンジオールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,8-オクタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコ-ルヒドロキシピバリン酸エステルジ(メタ)アクリレ-ト、トリス(2-ヒドロキシエチル)イソシアヌレートの2つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、ネオペンチルグリコール1モルに4モル以上のエチレンオキサイド若しくはプロピレンオキサイドを付加して得られるジオールの2つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、ビスフェノールA1モルに2モルのエチレンオキサイド若しくはプロピレンオキサイドを付加して得られるジオールの2つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、トリメチロールプロパン1モルに3モル以上のエチレンオキサイド若しくはプロピレンオキサイドを付加して得られるトリオールの2つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、ビスフェノールA1モルに4モル以上のエチレンオキサイド若しくはプロピレンオキサイドを付加して得られるジオールの2つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレートなどが挙げられる。
 化合物(D-3)としては、グリセリントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、トリペンタエリスリトールヘプタ(メタ)アクリレート、テトラペンタエリスリトールデカ(メタ)アクリレート、テトラペンタエリスリトールノナ(メタ)アクリレート、トリス(2-(メタ)アクリロイルオキシエチル)イソシアヌレート、エチレングリコール変性ペンタエリスリトールテトラ(メタ)アクリレート、エチレングリコール変性ジペンタエリスリトールヘキサ(メタ)アクリレート、プロピレングリコール変性ペンタエリスリトールテトラ(メタ)アクリレート、プロピレングリコール変性ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ペンタエリスリトールテトラ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、ペンタエリスリトールトリアクリレートコハク酸モノエステル、ジペンタエリスリトールペンタアクリレートコハク酸モノエステル、ペンタエリスリトールトリアクリレートマレイン酸モノエステル、ジペンタエリスリトールペンタアクリレートマレイン酸モノエステル等が挙げられる。
 光カチオン重合性化合物としては、分子内に少なくとも1個のオキセタン環(4員環エーテル)を有する化合物(以下、単に「オキセタン化合物」ともいう。)、分子内に少なくとも1個のオキシラン環(3員環エーテル)を有する化合物(以下、単に「エポキシ化合物」ともいう。)、及びビニルエーテル化合物等が挙げられる。
 オキセタン化合物としては、3-エチル-3-ヒドロキシメチルオキセタン、1,4-ビス〔(3-エチル-3-オキセタニル)メトキシメチル〕ベンゼン、3-エチル-3-(フェノキシメチル)オキセタン、ジ〔(3-エチル-3-オキセタニル)メチル〕エーテル、3-エチル-3-(2-エチルヘキシロキシメチル)オキセタン、フェノールノボラックオキセタン等が挙げられる。これらのオキセタン化合物は、市販品を容易に入手することが可能であり、市販品としては、いずれも東亞合成(株)から販売されている商品名で、“アロンオキセタン(登録商標) OXT-101”、“アロンオキセタン(登録商標) OXT-121”、“アロンオキセタン(登録商標) OXT-211”、“アロンオキセタン(登録商標) OXT-221”、“アロンオキセタン(登録商標)OXT-212”等が挙げられる。
 エポキシ化合物としては、芳香族エポキシ化合物、脂環式環を有するポリオールのグリシジルエーテル、脂肪族エポキシ化合物、脂環式エポキシ化合物等が挙げられる。
 芳香族エポキシ化合物としては、ビスフェノールAのジグリシジルエーテル、ビスフェールFのジグリシジルエーテル及びビスフェノールSのジグリシジルエーテル等のビスフェノール型エポキシ樹脂;フェノールノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂及びヒドロキシベンズアルデヒドフェノールノボラックエポキシ樹脂等のノボラック型のエポキシ樹脂;テトラヒドロキシフェニルメタンのグリシジルエーテル、テトラヒドロキシベンゾフェノンのグリシジルエーテル及びエポキシ化ポリビニルフェノール等の多官能型のエポキシ樹脂等が挙げられる。
 脂環式環を有するポリオールのグリシジルエーテルとしては、芳香族ポリオールを触媒の存在下、加圧下で芳香環に選択的に水素化反応を行うことにより得られる核水添ポリヒドロキシ化合物を、グリシジルエーテル化したものが挙げられる。芳香族ポリオールとしては、ビスフェノールA、ビスフェールF、ビスフェノールS等のビスフェノール型化合物;フェノールノボラック樹脂、クレゾールノボラック樹脂、ヒドロキシベンズアルデヒドフェノールノボラック樹脂等のノボラック型樹脂;テトラヒドロキシジフェニルメタン、テトラヒドロキシベンゾフェノン、ポリビニルフェノール等の多官能型の化合物等が挙げられる。これら芳香族ポリオールの芳香環に水素化反応を行って得られる脂環式ポリオールに、エピクロロヒドリンを反応させることにより、グリシジルエーテルとすることができる。このような脂環式環を有するポリオールのグリシジルエーテルのなかでも好ましいものとして、水素化されたビスフェノールAのジグリシジルエーテルが挙げられる。
 脂肪族エポキシ化合物としては、脂肪族多価アルコール又はそのアルキレンオキサイド付加物のポリグリシジルエーテル等が挙げられる。具体的には、1,4-ブタンジオールのジグリシジルエーテル;1,6-ヘキサンジオールのジグリシジルエーテル;グリセリンのトリグリシジルエーテル;トリメチロールプロパンのトリグリシジルエーテル;ポリエチレングリコールのジグリシジルエーテル;プロピレングリコールのジグリシジルエーテル;ネオペンチルグリコールのジグリシジルエーテル;エチレングリコール、プロピレングリコール若しくはグリセリン等の脂肪族多価アルコールに1種又は2種以上のアルキレンオキサイド(エチレンオキサイドやプロピレンオキサイド)を付加することにより得られるポリエーテルポリオールのポリグリシジルエーテル等が挙げられる。
 脂環式エポキシ化合物は、脂環式環の炭素原子とともにオキシラン環を形成している構造を分子内に少なくとも1個有する化合物であり、“セロキサイド”シリーズ及び“サイクロマー”(全て、株式会社ダイセル製)、“サイラキュア UVR”シリーズ(ダウケミカル社製)等が使用できる。
 ビニルエーテル化合物としては、2-ヒドロキシエチルビニルエーテル、トリエチレングリコールビニルモノエーテル、テトラエチレングリコールジビニルエーテル、トリメチロールプロパントリビニルエーテル等が挙げられる。
 光重合性化合物は、分子内に3個以上の(メタ)アクリロイルオキシ基を有する多官能(メタ)アクリレートモノマー(化合物(D-3))を含むことが好ましい。組成物が化合物(D-3)を含むことにより、膜の耐熱性及び機械的強度を高めることができ、さらには発光強度等の光学特性を向上させるうえでも有利となり得る。また、組成物が化合物(D-3)を含むことにより、組成物の硬化性を向上させ得る。
 化合物(D-3)としては、分子内に3個以上の(メタ)アクリロイルオキシ基を有し、かつ、酸性官能基を有する化合物(D-3a)、分子内に3個以上の(メタ)アクリロイルオキシ基を有し、かつ、酸性官能基を有しない化合物(D-3b)が挙げられる。光重合性化合物は、化合物(D-3a)及び化合物(D-3b)の少なくとも1種を含むことが好ましく、化合物(D-3a)を2種以上、化合物(D-3b)を2種以上、又は化合物(D-3a)の少なくとも1種と化合物(D-3b)の少なくとも1種とを含んでいてもよい。上記酸性官能基としては、例えば、カルボキシ基、スルホン酸基、リン酸基等が挙げられる。中でも、酸性官能基は、カルボキシ基であることが好ましい。
 化合物(D-3)1分子が有する(メタ)アクリロイルオキシ基の数は、例えば3以上6以下、好ましくは3以上5以下、より好ましくは3である。化合物(D-3a)1分子が有する酸性官能基の数は、1以上であり、好ましくは1である。2以上の酸性官能基を有する場合は、それぞれの酸性官能基は異なってもいてもよく同一であってもよいが、少なくとも1つのカルボキシ基を有することが好ましい。
 化合物(D-3a)としては、ペンタエリスリトールトリ(メタ)アクリレート又はジペンタエリスリトールペンタ(メタ)アクリレート等の3つ以上の(メタ)アクリロイルオキシ基及びヒドロキシ基を有する化合物と、ジカルボン酸とをエステル化して得られた化合物が挙げられる。該化合物としては、例えば、ペンタエリスリトールトリ(メタ)アクリレートとコハク酸とをモノエステル化した化合物、ジペンタエリスリトールペンタ(メタ)アクリレートとコハク酸とをモノエステル化した化合物、ペンタエリスリトールトリ(メタ)アクリレートとマレイン酸とをモノエステル化した化合物、ジペンタエリスリトールペンタ(メタ)アクリレートとマレイン酸とをモノエステル化した化合物等が挙げられる。中でも、ペンタエリスリトールトリ(メタ)アクリレートとコハク酸とをモノエステル化した化合物が好ましい。
 化合物(D-3a)の市販品としては、例えば、ペンタエリスリトールトリ(メタ)アクリレートの二塩基酸無水物付加物を主成分とする東亞合成(株)製「アロニックス M-510」、ジペンタエリスリトールペンタ(メタ)アクリレートの二塩基酸無水物付加物を主成分とする、東亞合成(株)製「アロニックス M-520D」等を挙げることができる。これらの市販品は、酸性官能基としてカルボキシ基を有する。
 重合性化合物(D)は、粒子の分散性を高めることができる重合性化合物(Da)を含むことが好ましく、重合性化合物(Da)であることがより好ましい。重合性化合物(Da)としては、例えば、極性基を有する重合性化合物が挙げられる。極性基は、第1粒子(A-1)や第2粒子(A-2)に吸着することが可能である。したがって、重合性化合物(D)が重合性化合物(Da)を含むことは、式(i)で表される沈降速度νを小さくするうえで有利である。極性基としては、カルボキシ基(-COOH)、チオール基(-SH)及びアミノ基(-NH)からなる群より選択される少なくとも1種の基が挙げられ、好ましくはカルボキシ基である。重合性化合物(Da)は、2種以上の極性基を有していてもよい。重合性化合物(Da)としては、上述の化合物(D-3a)が挙げられる。
 光重合性化合物が化合物(D-3)を含む場合、化合物(D-3)の含有率は、組成物の硬化性、膜の耐熱性及び発光強度等の光学特性を高める観点から、光重合性化合物の総量に対して、5質量%以上であることが好ましく、より好ましくは10質量%以上、さらに好ましくは20質量%以上であり、30質量%以上、50質量%以上、70質量%以上、90質量%以上又は100質量%であってもよい。
 光重合性化合物が化合物(D-3)を含む場合、化合物(D-3)の含有率は、組成物の硬化性、膜の耐熱性及び発光強度等の光学特性を高める観点から、組成物の固形分の総量に対して、好ましくは0.5質量%以上50質量%以下、より好ましくは1質量%以上40質量%以下、さらに好ましくは2質量%以上30質量%以下、なおさらに好ましくは2質量%以上25質量%以下である。
 光重合性化合物は、ビニルエーテル基と(メタ)アクリロイル基(好ましくは、(メタ)アクリロイルオキシ基)を同一分子内に有する(メタ)アクリレートモノマー(以下、「化合物(D-4)」ともいう。)を含んでいてもよい。組成物が化合物(D-4)を含むと、膜の発光強度等の光学特性を向上させるうえで有利なことがある。化合物(D-4)は、化合物(D-1)~化合物(D-3)のいずれかに属する化合物であり得る。
 化合物(D-4)が有するビニルエーテル基の数は、1以上4以下であることが好ましく、より好ましくは1以上2以下、特に好ましくは1である。化合物(D-4)が有する(メタ)アクリロイル基の数は、1以上4以下であることが好ましく、より好ましくは1以上2以下、特に好ましくは1である。
 化合物(D-4)としては、2-ビニロキシエチル(メタ)アクリレート、3-ビニロキシプロピル(メタ)アクリレート、2-ビニロキシプロピル(メタ)アクリレート、1-ビニロキシプロピル(メタ)アクリレート、1-メチル-2-ビニロキシエチル(メタ)アクリレート、4-ビニロキシブチル(メタ)アクリレート、3-ビニロキシブチル(メタ)アクリレート、2-ビニロキシブチル(メタ)アクリレート、1-メチル-3-ビニロキシプロピル(メタ)アクリレート、2-メチル-3-ビニロキシプロピル(メタ)アクリレート、1-メチル-2-ビニロキシプロピル(メタ)アクリレート、1,1-ジメチル-2-ビニロキシエチル(メタ)アクリレート、6-ビニロキシヘキシル(メタ)アクリレート、4-ビニロキシシクロヘキシル(メタ)アクリレート、(4-ビニロキシメチルシクロヘキシル)メチル(メタ)アクリレート、(3-ビニロキシメチルシクロヘキシル)メチル(メタ)アクリレート、(2-ビニロキシメチルシクロヘキシル)メチル(メタ)アクリレート、(4-ビニロキシメチルフェニル)メチル(メタ)アクリレート、(3-ビニロキシメチルフェニル)メチル(メタ)アクリレート、2-ビニロキシメチルフェニルメチル(メタ)アクリレート、2-(2-ビニロキシイソプロポキシ)エチル(メタ)アクリレート、2-(2-ビニロキシエトキシ)エチル(メタ)アクリレート、2-(2-ビニロキシエトキシ)プロピル(メタ)アクリレート、2-(2-ビニロキシイソプロポキシ)プロピル(メタ)アクリレート、2-(2-ビニロキシエトキシ)イソプロピル(メタ)アクリレート、2-(2-ビニロキシイソプロポキシ)イソプロピル(メタ)アクリレート、2-{2-(2-ビニロキシエトキシ)エトキシ}エチル(メタ)アクリレート、2-{2-(2-ビニロキシイソプロポキシ)エトキシ}エチル(メタ)アクリレート、2-{2-(2-ビニロキシイソプロポキシ)イソプロポキシ}エチル(メタ)アクリレート、2-{2-(2-ビニロキシエトキシ)エトキシ}プロピル(メタ)アクリレート、2-{2-(2-ビニロキシエトキシ)イソプロポキシ}プロピル(メタ)アクリレート、2-{2-(2-ビニロキシイソプロポキシ)エトキシ}プロピル(メタ)アクリレート、2-{2-(2-ビニロキシイソプロポキシ)イソプロポキシ}プロピル(メタ)アクリレート、2-{2-(2-ビニロキシエトキシ)エトキシ}イソプロピル(メタ)アクリレート、2-{2-(2-ビニロキシエトキシ)イソプロポキシ}イソプロピル(メタ)アクリレート、2-{2-(2-ビニロキシイソプロポキシ)エトキシ}イソプロピル(メタ)アクリレート、2-{2-(2-ビニロキシイソプロポキシ)イソプロポキシ}イソプロピル(メタ)アクリレート、2-[2-{2-(2-ビニロキシエトキシ)エトキシ}エトキシ]エチル(メタ)アクリレート、2-[2-{2-(2-ビニロキシイソプロポキシ)エトキシ}エトキシ]エチル(メタ)アクリレート、2-(2-[2-{2-(2-ビニロキシエトキシ)エトキシ}エトキシ]エトキシ)エチル(メタ)アクリレート等が挙げられる。
 化合物(D-4)としては、ビニロキシC1-6アルキル(メタ)アクリレート又は(ビニロキシC1-4アルコキシ)C1-4アルキル(メタ)アクリレートが好ましく、(ビニロキシC1-4アルコキシ)C1-4アルキル(メタ)アクリレートがより好ましく、2-(2-ビニロキシエトキシ)エチル(メタ)アクリレートが特に好ましい。
 光重合性化合物が化合物(D-4)を含む場合、化合物(D-4)の含有率は、膜の発光強度等の光学特性を高める観点等から、光重合性化合物の総量に対して、5質量%以上であることが好ましく、より好ましくは10質量%以上、さらに好ましくは20質量%以上、なおさらに好ましくは25質量%以上であり、また、85質量%以下であることが好ましく、より好ましくは75質量%以下、さらに好ましくは65質量%以下、なおさらに好ましくは60質量%以下、特に好ましくは55質量%以下である。
 光重合性化合物が化合物(D-4)を含む場合、化合物(D-4)の含有率は、膜の発光強度等の光学特性を高める観点等から、組成物の固形分の総量に対して、好ましくは3質量%以上50質量%以下、より好ましくは5質量%以上45質量%以下、さらに好ましくは10質量%以上40質量%以下、なおさらに好ましくは15質量%以上35質量%以下である。
 光重合性化合物が化合物(D-1)を含む場合、化合物(D-1)の含有率は、光重合性化合物の総量に対して、5質量%以上であることが好ましく、より好ましくは10質量%以上、さらに好ましくは15質量%以上、なおさらに好ましくは20質量%以上、特に好ましくは25質量%以上であり、また、75質量%以下であることが好ましく、より好ましくは65質量%以下、さらに好ましくは60質量%以下、なおさらに好ましくは55質量%以下、特に好ましくは50質量%以下である。
 光重合性化合物が化合物(D-1)を含む場合、化合物(D-1)の含有率は、組成物の固形分の総量に対して、好ましくは5質量%以上50質量%以下、より好ましくは8質量%以上45質量%以下、さらに好ましくは10質量%以上40質量%以下、なおさらに好ましくは15質量%以上35質量%以下である。
 組成物が重合性化合物(D)を含む場合、組成物における重合性化合物(D)の含有率は、組成物の固形分の総量に対して、好ましくは0.5質量%以上90質量%以下、より好ましくは1質量%以上80質量%以下、さらに好ましくは2質量%以上75質量%以下、なおさらに好ましくは2質量%以上70質量%以下である。
 [6]重合開始剤(E)
 組成物が重合性化合物(D)を含む場合、重合開始剤(E)をさらに含むことが好ましい。重合開始剤(E)は、光又は熱の作用により活性ラジカル、酸等を発生し、重合性化合物(D)の重合を開始し得る化合物である。組成物は、1種又は2種以上の重合開始剤(E)を含むことができる。
 重合開始剤(E)としては、オキシム化合物、アルキルフェノン化合物、ビイミダゾール化合物、トリアジン化合物及びアシルホスフィン化合物等の光重合開始剤、アゾ系化合物や有機過酸化物等の熱重合開始剤が挙げられる。
 オキシム化合物の一例は、下記式(1)で表される第1分子構造を有するオキシム化合物である。以下、該オキシム化合物を「オキシム化合物(1)」ともいう。
Figure JPOXMLDOC01-appb-C000009
 重合開始剤(E)としてオキシム化合物(1)を含むことは、膜の発光強度等の光学特性を向上させる観点から有利となり得る。このような効果を奏することができる一因は、オキシム化合物(1)が有する特有の分子構造に起因して、オキシム化合物(1)が光重合を開始させる際に必要となるオキシム化合物(1)の開裂(分解)前後でのオキシム化合物(1)の吸収波長が大きく変化することから、オキシム化合物(1)は光ラジカル重合開始能力が高いことにあると推定される。
 式(1)中、Rは、R11、OR11、COR11、SR11、CONR1213又はCNを表す。
 R11、R12及びR13は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアラルキル基又は炭素数2~20の複素環基を表す。
 R11、R12又はR13で表わされる基の水素原子は、OR21、COR21、SR21、NR22Ra23、CONR2223、-NR22-OR23、-N(COR22)-OCOR23、-C(=N-OR21)-R22、-C(=N-OCOR21)-R22、CN、ハロゲン原子、又はCOOR21で置換されていてもよい。
 R21、R22及びR23は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアラルキル基又は炭素数2~20の複素環基を表す。
 R21、R22又はR23で表される基の水素原子は、CN、ハロゲン原子、ヒドロキシ基又はカルボキシ基で置換されていてもよい。
 R11、R12、R13、R21、R22又はR23で表される基がアルキレン部分を有する場合、該アルキレン部分は、-O-、-S-、-COO-、-OCO-、-NR24-、-NR24CO-、-NR24COO-、-OCONR24-、-SCO-、-COS-、-OCS-又は-CSO-により1~5回中断されていてもよい。
 R24は、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアラルキル基又は炭素数2~20の複素環基を表す。
 R11、R12、R13、R21、R22又はR23で表される基がアルキル部分を有する場合、該アルキル部分は、分枝鎖状であってもよく、環状であってもよく、また、R12とR13及びR22とR23はそれぞれ一緒になって環を形成していてもよい。
 *は、オキシム化合物(1)が有する第1分子構造以外の他の分子構造である第2分子構造との結合手を表す。
 式(1)中のR11、R12、R13、R21、R22、R23及びR24で表される炭素数1~20のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、tert-ペンチル基、ヘキシル基、ヘプチル基、オクチル基、イソオクチル基、2-エチルヘキシル基、tert-オクチル基、ノニル基、イソノニル基、デシル基、イソデシル基、ウンデシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、イコシル基、シクロペンチル基、シクロヘキシル基、シクロヘキシルメチル、シクロヘキシルエチル基等が挙げられる。
 式(1)中のR11、R12、R13、R21、R22、R23及びR24で表される炭素数6~30のアリール基としては、例えば、フェニル基、トリル基、キシリル基、エチルフェニル基、ナフチル基、アントリル基、フェナントリル基、上記アルキル基で1つ以上置換されたフェニル基、ビフェニリル基、ナフチル基、アントリル基等が挙げられる。
 式(1)中のR11、R12、R13、R21、R22、R23及びR24で表される炭素数7~30のアラルキル基としては、例えば、ベンジル基、α-メチルベンジル基、α、α-ジメチルベンジル基、フェニルエチル基等が挙げられる。
 式(1)中のR11、R12、R13、R21、R22、R23及びR24で表される炭素数2~20の複素環基としては、例えば、ピリジル基、ピリミジル基、フリル基、チエニル基、テトラヒドロフリル基、ジオキソラニル基、ベンゾオキサゾール-2-イル基、テトラヒドロピラニル基、ピロリジル基、イミダゾリジル基、ピラゾリジル基、チアゾリジル基、イソチアゾリジル基、オキサゾリジル基、イソオキサゾリジル基、ピペリジル基、ピペラジル基、モルホリニル基等が挙げられ、好ましくは5~7員複素環である。
 式(1)中のR12とR13及びR22とR23はそれぞれ一緒になって環を形成していてもよいとは、R12とR13及びR22とR23はそれぞれ一緒になって接続する窒素原子、炭素原子又は酸素原子とともに環を形成していてもよいことを意味する。
 式(1)中のRa12とRa13及びRa22とRa23が一緒になって形成し得る環としては、例えば、シクロペンタン環、シクロヘキサン環、シクロペンテン環、ベンゼン環、ピペリジン環、モルホリン環、ラクトン環、ラクタム環等が挙げられ、好ましくは5~7員環である。
 式(1)中のR11、R12、R13、R21、R22及びR23が置換基として有してもよいハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 式(1)中のRは、好ましくはR11であり、より好ましくは炭素数1~20のアルキル基であり、さらに好ましくは炭素数1~10のアルキル基であり、なおさらに好ましくは1~6のアルキル基である。
 式(1)で表される第1分子構造に連結される第2分子構造の一例は、下記式(2)で表される構造である。第2分子構造とは、オキシム化合物(1)が有する上記第1分子構造以外の他の分子構造部分を意味する。
 式(2)において「*」で表される結合手は、式(1)において「*」で表される結合手と直接結合している。すなわち、第2分子構造が式(2)で表される構造である場合、式(2)中の「-*」を有するベンゼン環と式(1)中の「-*」を有するカルボニル基とは直接結合している。
Figure JPOXMLDOC01-appb-C000010
 式(2)中、R及びRは、それぞれ独立に、R11、OR11、SR11、COR11、CONR1213、NR12COR11、OCOR11、COOR11、SCOR11、OCSR11、COSR11、CSOR11、CN又はハロゲン原子を表す。
 Rが複数存在するとき、それらは同じであっても異なっていてもよい。
 Rが複数存在するとき、それらは同じであっても異なっていてもよい。
 R11、R12及びR13は、上記と同じ意味を表す。
 s及びtは、それぞれ独立に、0~4の整数を表す。
 Lは、硫黄原子、CR3132、CO又はNR33を表す。
 R31、R32及びR33は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基又は炭素数7~30のアラルキル基を表す。
 R31、R32又はR33で表される基がアルキル部分を有する場合、該アルキル部分は、分枝鎖状であってもよく、環状であってもよく、R31、R32及びR33は、それぞれ独立に、隣接するどちらかのベンゼン環と一緒になって環を形成していてもよい。
 Rは、ヒドロキシ基、カルボキシ基又は下記式(2-1)
Figure JPOXMLDOC01-appb-C000011

(式(2-1)中、Lは、-O-、-S-、-NR22-、-NR22CO-、-SO-、-CS-、-OCO-又は-COO-を表す。
 R22は、上記と同じ意味を表す。
 Lは、炭素数1~20のアルキル基からv個の水素原子を除いた基、炭素数6~30のアリール基からv個の水素原子を除いた基、炭素数7~30のアラルキル基からv個の水素原子を除いた基又は炭素数2~20の複素環基からv個の水素原子を除いた基を表す。
 Lで表される基がアルキレン部分を有する場合、該アルキレン部分は、-O-、-S-、-COO-、-OCO-、-NR22-、-NR22COO-、-OCONR22-、-SCO-、-COS-、-OCS-又は-CSO-により1~5回中断されていてもよく、該アルキレン部分は分枝鎖状であってもよく、環状であってもよい。
 R4aは、OR41、SR41、CONR4243、NR42COR43、OCOR41、COOR41、SCOR41、OCSR41、COSR41、CSOR41、CN又はハロゲン原子を表す。
 R4aが複数存在するとき、それらは同じであっても異なっていてもよい。
 R41、R42及びR43は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基又は炭素数7~30のアラルキル基を表し、R41、R42及びR43で表される基がアルキル部分を有する場合、該アルキル部分は分枝鎖状であってもよく、環状であってもよく、R42とR43は、一緒になって環を形成していてもよい。
 vは1~3の整数を表す。)
で表される基を表す。
 *は、オキシム化合物(1)が有する第1分子構造との結合手を表す。
 式(2)中のR11、R12、R13、R21、R22、R23、R24、R31、R32及びR33、並びに上記式(2-1)中のR22、R41、R42及びR43で表される炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアラルキル基の例は、式(1)中のR11、R12、R13、R21、R22、R23及びR24についての例と同様である。
 式(2)中のR11、R12、R13、R21、R22、R23、R24、並びに上記式(2-1)中のR22で表される炭素数2~20の複素環基の例は、式(1)中のR11、R12、R13、R21、R22、R23及びR24についての例と同様である。
 式(2)中のR31、R32及びR33は、それぞれ独立に、隣接するどちらかのベンゼン環と一緒になって環を形成していてもよいとは、R31、R32及びR33は、それぞれ独立に、隣接するどちらかのベンゼン環と一緒になって接続する窒素原子とともに環を形成していてもよいことを意味する。
 式(2)中のR31、R32及びR33が隣接するどちらかのベンゼン環と一緒になって形成し得る環の例は、式(1)中のRa12とRa13及びRa22とRa23が一緒になって形成し得る環についての例と同様である。
 上記式(2-1)中のLは、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアラルキル基又は炭素数2~20の複素環基からv個の水素原子を除いた基を表す。
 炭素数1~20のアルキル基からv個の水素原子を除いた基としては、例えば、vが1の場合、メチレン基、エチレン基、プロピレン基、メチルエチレン基、ブチレン基、1-メチルプロピレン基、2-メチルプロピレン基、1,2-ジメチルプロピレン基、1,3-ジメチルプロピレン基、1-メチルブチレン基、2-メチルブチレン基、3-メチルブチレン基、4-メチルブチレン基、2,4-ジメチルブチレン基、1,3-ジメチルブチレン基、ペンチレン基、へキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基、ドデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基、エタン-1,1-ジイル基、プロパン-2,2-ジイル基等のアルキレン基が挙げられる。
 炭素数6~30のアリール基からv個の水素原子を除いた基としては、例えば、vが1の場合、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、2,6-ナフチレン基、1,4-ナフチレン基、2,5-ジメチル-1,4-フェニレン基、ジフェニルメタン-4,4’-ジイル基、2,2-ジフェニルプロパン-4,4’-ジイル基、ジフェニルスルフィド-4,4’-ジイル基、ジフェニルスルホン-4,4’-ジイル基等のアリーレン基が挙げられる。
 炭素数7~30のアラルキル基からv個の水素原子を除いた基としては、例えば、vが1の場合、下記式(a)で表される基及び下記式(b)で表される基等が挙げられる。
Figure JPOXMLDOC01-appb-C000012

[式(a)及び(b)中、L及びLは、炭素数1~10のアルキレン基を表し、L及びLは、単結合又は炭素数1~10のアルキレン基を表す。]
 炭素数1~10のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、メチルエチレン基、ブチレン基、1-メチルプロピレン基、2-メチルプロピレン基、1,2-ジメチルプロピレン基、1,3-ジメチルプロピレン基、1-メチルブチレン基、2-メチルブチレン基、3-メチルブチレン基、4-メチルブチレン基、2,4-ジメチルブチレン基、1,3-ジメチルブチレン基、ペンチレン基、へキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基等が挙げられる。
 炭素数2~20の複素環基からv個の水素原子を除いた基としては、例えば、vが1の場合、2,5-ピリジンジイル基、2,6-ピリジンジイル基、2,5-ピリミジンジイル基、2,5-チオフェンジイル基、3,4-テトラヒドロフランジイル基、2,5-テトラヒドロフランジイル基、2,5-フランジイル基、3,4-チアゾールジイル基、2,5-ベンゾフランジイル基、2,5-ベンゾチオフェンジイル基、N-メチルインドール-2,5-ジイル基、2,5-ベンゾチアゾールジイル基、2,5-ベンゾオキサゾールジイル基等の2価の複素環基が挙げられる。
 式(2)中のR及びR、並びに上記式(2-1)中のR4aで表されるハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 溶剤(H)への溶解性及び組成物の現像性の観点から、式(2)で表される構造の好ましい例は、下記式(2a)で表される構造である。
Figure JPOXMLDOC01-appb-C000013

[式(2a)中、L’は、硫黄原子又はNR50を表し、R50は、直鎖状、分枝鎖状又は環状の炭素数1~20のアルキル基を表し、R、R、R、s及びtは、前記と同じ意味を表す。]
 上記と同様の観点から、式(2)で表される構造の他の好ましい例は、下記式(2b)で表される構造である。
Figure JPOXMLDOC01-appb-C000014

[式(2b)中、R44は、ヒドロキシ基、カルボキシ基又は下記式(2-2)
Figure JPOXMLDOC01-appb-C000015

(式(2-2)中、L11は、-O-又は*-OCO-を表し、*はL12との結合手を表し、L12は、炭素数1~20のアルキレン基を表し、該アルキレン基は、1~3個の-O-により中断されていてもよく、R44aは、OR55又はCOOR55を表し、R55は、水素原子又は炭素数1~6のアルキル基を表す。)
で表される基を表す。]
 R44は、好ましくは、式(2-2)で表される基である。この場合、オキシム化合物(1)の溶剤(H)への溶解性及び組成物の現像性の点で有利となる。
 L12で表されるアルキレン基の炭素数は、好ましくは1~10であり、より好ましくは1~4である。
 R44aは、好ましくはヒドロキシ基又はカルボキシ基であり、より好ましくはヒドロキシ基である。
 式(2)で表される第2分子構造を有するオキシム化合物(1)の製造方法は、特に限定されないが、例えば、特開2011-132215号公報に記載の方法で製造することができる。
 式(1)で表される第1分子構造に連結される第2分子構造の他の一例は、下記式(3)で表される構造である。
 式(3)において「*」で表される結合手は、式(1)において「*」で表される結合手と直接結合している。すなわち、第2分子構造が式(3)で表される構造である場合、式(3)中の「-*」を有するベンゼン環と式(1)中の「-*」を有するカルボニル基とは直接結合している。
Figure JPOXMLDOC01-appb-C000016
 式(3)中、Rは、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基又は炭素数2~20の複素環基を表す。
 Rで表される基がアルキル部分を有する場合、該アルキル部分は、分枝鎖状であってもよく、環状であってもよい。
 Rで表される基の水素原子は、R21、OR21、COR21、SR21、NR2223、CONR2223、-NR22-OR23、-N(COR22)-OCOR23、NR22COR21、OCOR21、COOR21、-C(=N-OR21)-R22、-C(=N-OCOR21)-R22、SCOR21、OCSR21、COSR21、CSOR21、水酸基、ニトロ基、CN、ハロゲン原子、又はCOOR21で置換されていてもよい。
 R21、R22及びR23は、上記と同じ意味を表す。
 R21、R22又はR23で表される基の水素原子は、CN、ハロゲン原子、ヒドロキシ基又はカルボキシ基で置換されていてもよい。
 R21、R22及びR23で表される基がアルキレン部分を有する場合、該アルキレン部分は、-O-、-S-、-COO-、-OCO-、-NR24-、-NR24CO-、-NR24COO-、-OCONR24-、-SCO-、-COS-、-OCS-又は-CSO-により1~5回中断されていてもよい。
 R24は、上記と同じ意味を表す。
 R21、R22及びR23で表される基がアルキル部分を有する場合、該アルキル部分は、分枝鎖状であってもよく、環状であってもよく、また、R22とR23は一緒になって環を形成していてもよい。
 R、R、R及びRは、それぞれ独立に、R61、OR61、SR61、COR62、CONR6364、NR65COR61、OCOR61、COOR62、SCOR61、OCSR61、COSR62、CSOR61、水酸基、ニトロ基、CN又はハロゲン原子を表す。
 R61、R62、R63、R64及びR65は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基又は炭素数2~20の複素環基を表す。
 R61、R62、R63、R64又はR65で表わされる基の水素原子は、OR21、COR21、SR21、NR22Ra23、CONR2223、-NR22-OR23、-N(COR22)-OCOR23、-C(=N-OR21)-R22、-C(=N-OCOR21)-R22、CN、ハロゲン原子、又はCOOR21で置換されていてもよい。
 RとR、RとR及びRとRはそれぞれ一緒になって環を形成していてもよい。
 *は、オキシム化合物(1)が有する第1分子構造との結合手を表す。
 式(3)中のR、R21、R22、R23、R24、R61、R62、R63、R64及びR65で表される炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアラルキル基、炭素数2~20の複素環基の例は、式(1)中のR11、R12、R13、R21、R22、R23及びR24についての例と同様である。
 式(3)中のR22とR23は一緒になって環を形成していてもよいとは、R22とR23は一緒になって接続する窒素原子、炭素原子又は酸素原子とともに環を形成していてもよいことを意味する。
 式(3)中のR22とR23が一緒になって形成し得る環の例は、式(1)中のRa12とRa13及びRa22とRa23が一緒になって形成し得る環についての例と同様である。
 式(3)中のR、R、R及びRで表されるハロゲン原子、R、R21、R22、R23、R61、R62、R63、R64及びR65の水素原子を置換してもよいハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 溶剤(H)への溶解性及び組成物の現像性の観点から、1つの好ましい形態において、Rは、下記式(3-1)で表される基である。
Figure JPOXMLDOC01-appb-C000017

[式(3-1)中、Zは、炭素数1~20のアルキル基から1個の水素原子を除いた基、炭素数6~30のアリール基から1個の水素原子を除いた基、炭素数7~30のアラルキル基から1個の水素原子を除いた基又は炭素数2~20の複素環基から1個の水素原子を除いた基を表し、
 Zで表される基がアルキレン部分を有する場合、該アルキレン部分は、-O-、-S-、-COO-、-OCO-、-NR24-、-NR24COO-、-OCONR24-、-SCO-、-COS-、-OCS-又は-CSO-により1~5回中断されていてもよく、該アルキレン部分は分枝鎖状であってもよく、環状であってもよく、
 R21、R22及びR24は、前記と同じ意味を表す。]
 式(3-1)中のZは、上記と同様の観点から、好ましくは、メチレン基、エチレン又はフェニレン基である。
 式(3-1)中のR21及びR22は、上記と同様の観点から、好ましくは、炭素数1~20のアルキル基又は炭素数6~30のアリール基であり、より好ましくは、メチル基、エチル基又はフェニル基である。
 上記と同様の観点から、他の1つの好ましい形態において、Rは、ニトロ基である。
 式(3)で表される第2分子構造を有するオキシム化合物(1)の製造方法は、特に限定されないが、例えば、特開2000-80068号公報及び特開2011-178776号公報に記載の方法で製造することができる。
 式(1)で表される第1分子構造に連結される第2分子構造のさらに他の一例は、下記式(4)で表される構造である。
 式(4)において「*」で表される結合手は、式(1)において「*」で表される結合手と直接結合している。すなわち、第2分子構造が式(4)で表される構造である場合、式(4)中の「-*」を有するベンゼン環と式(1)中の「-*」を有するカルボニル基とは直接結合している。
Figure JPOXMLDOC01-appb-C000018
 式(4)中、R71は、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアラルキル基又は炭素数2~20の複素環基を表す。
 R71で表される基がアルキル部分を有する場合、該アルキル部分は、分枝鎖状であってもよく、環状であってもよい。
 R71で表される基の水素原子は、R21、OR21、COR21、SR21、NR2223、CONR2223、-NR22-OR23、-N(COR22)-OCOR23、NR22COR21、OCOR21、COOR21、-C(=N-OR21)-R22、-C(=N-OCOR21)-R22、SCOR21、OCSR21、COSR21、CSOR21、水酸基、ニトロ基、CN、ハロゲン原子、又はCOOR21で置換されていてもよい。
 R21、R22及びR23は、前記と同じ意味を表す。
 R21、R22又はR23で表される基の水素原子は、CN、ハロゲン原子、ヒドロキシ基又はカルボキシ基で置換されていてもよい。
 R21、R22及びR23で表される基がアルキレン部分を有する場合、該アルキレン部分は、-O-、-S-、-COO-、-OCO-、-NR24-、-NR24CO-、-NR24COO-、-OCONR24-、-SCO-、-COS-、-OCS-又は-CSO-により1~5回中断されていてもよい。
 R24は、上記と同じ意味を表す。
 R21、R22及びR23で表される基がアルキル部分を有する場合、該アルキル部分は、分枝鎖状であってもよく、環状であってもよく、また、R22とR23は一緒になって環を形成していてもよい。
 R72、R73及び3個のR74は、それぞれ独立に、R61、OR61、SR61、COR62、CONR6364、NR65COR61、OCOR61、COOR62、SCOR61、OCSR61、COSR62、CSOR61、水酸基、ニトロ基、CN又はハロゲン原子を表す。
 R61、R62、R63、R64及びR65は、それぞれ独立に、水素原子、炭素数1
~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基又は炭素数2~20の複素環基を表す。
 R61、R62、R63、R64又はR65で表わされる基の水素原子は、OR21、COR21、SR21、NR22Ra23、CONR2223、-NR22-OR23、-N(COR22)-OCOR23、-C(=N-OR21)-R22、-C(=N-OCOR21)-R22、CN、ハロゲン原子、又はCOOR21で置換されていてもよい。
 R72とR73及び2個のR74はそれぞれ一緒になって環を形成していてもよい。
 *は、オキシム化合物(1)が有する第1分子構造との結合手を表す。
 式(4)中のR71、R21、R22、R23、R24、R61、R62、R63、R64及びR65で表される炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアラルキル基、炭素数2~20の複素環基の例は、式(1)中のR11、R12、R13、R21、R22、R23及びR24についての例と同様である。
 式(4)中のR22とR23は一緒になって環を形成していてもよいとは、R22とR23は一緒になって接続する窒素原子、炭素原子又は酸素原子とともに環を形成していてもよいことを意味する。
 式(4)中のR22とR23が一緒になって形成し得る環の例は、式(1)中のRa12とRa13及びRa22とRa23が一緒になって形成し得る環についての例と同様である。
 式(4)中のR72、R73及びR74で表されるハロゲン原子、R71、R21、R22、R23、R61、R62、R63、R64及びR65の水素原子を置換してもよいハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 式(4)で表される第2分子構造を有するオキシム化合物(1)の製造方法は、特に限定されないが、例えば、国際公開第2017/051680号及び国際公開第2020/004601号に記載の方法で製造することができる。
 式(1)で表される第1分子構造に連結される第2分子構造のさらに他の一例は、下記式(5)で表される構造である。
 式(5)において「*」で表される結合手は、式(1)において「*」で表される結合手と直接結合している。すなわち、第2分子構造が式(5)で表される構造である場合、式(5)中の「-*」を有するピロール環と式(1)中の「-*」を有するカルボニル基とは直接結合している。
Figure JPOXMLDOC01-appb-C000019
 式(5)中、R81は、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアラルキル基又は炭素数2~20の複素環基を表す。
 R81で表される基がアルキル部分を有する場合、該アルキル部分は、分枝鎖状であってもよく、環状であってもよい。
 R81で表される基の水素原子は、R21、OR21、COR21、SR21、NR2223、CONR2223、-NR22-OR23、-N(COR22)-OCOR23、NR22COR21、OCOR21、COOR21、-C(=N-OR21)-R22、-C(=N-OCOR21)-R22、SCOR21、OCSR21、COSR21、CSOR21、水酸基、ニトロ基、CN、ハロゲン原子、又はCOOR21で置換されていてもよい。
 R21、R22及びR23は、上記と同じ意味を表す。
 R21、R22又はR23で表される基の水素原子は、CN、ハロゲン原子、ヒドロキシ基又はカルボキシ基で置換されていてもよい。
 R21、R22及びR23で表される基がアルキレン部分を有する場合、該アルキレン部分は、-O-、-S-、-COO-、-OCO-、-NR24-、-NR24CO-、-NR24COO-、-OCONR24-、-SCO-、-COS-、-OCS-又は-CSO-により1~5回中断されていてもよい。
 R24は、上記と同じ意味を表す。
 R21、R22及びR23で表される基がアルキル部分を有する場合、該アルキル部分は、分枝鎖状であってもよく、環状であってもよく、また、R22とR23は一緒になって環を形成していてもよい。
 R82、R83、R84、R85及びR86は、それぞれ独立に、R61、OR61、SR61、COR62、CONR6364、NR65COR61、OCOR61、COOR62、SCOR61、OCSR61、COSR62、CSOR61、水酸基、ニトロ基、CN又はハロゲン原子を表す。
 R61、R62、R63、R64及びR65は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基又は炭素数2~20の複素環基を表す。
 R61、R62、R63、R64又はR65で表わされる基の水素原子は、OR21、COR21、SR21、NR22Ra23、CONR2223、-NR22-OR23、-N(COR22)-OCOR23、-C(=N-OR21)-R22、-C(=N-OCOR21)-R22、CN、ハロゲン原子、又はCOOR21で置換されていてもよい。
 R83とR84、R84とR85及びR85とR86はそれぞれ一緒になって環を形成していてもよい。
 *は、オキシム化合物(1)が有する第1分子構造との結合手を表す。
 式(5)中のR81、R21、R22、R23、R24、R61、R62、R63、R64及びR65で表される炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアラルキル基、炭素数2~20の複素環基の例は、式(1)中のR11、R12、R13、R21、R22、R23及びR24についての例と同様である。
 式(5)中のR22とR23は一緒になって環を形成していてもよいとは、R22とR23は一緒になって接続する窒素原子、炭素原子又は酸素原子とともに環を形成していてもよいことを意味する。
 式(5)中のR22とR23が一緒になって形成し得る環の例は、式(1)中のRa12とRa13及びRa22とRa23が一緒になって形成し得る環についての例と同様である。
 式(5)中のR82、R83、R84、R85及びR86で表されるハロゲン原子、R81、R21、R22、R23、R61、R62、R63、R64及びR65の水素原子を置換してもよいハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 式(5)で表される第2分子構造を有するオキシム化合物(1)の製造方法は、特に限定されないが、例えば、国際公開第2017/051680号及び国際公開第2020/004601号に記載の方法で製造することができる。
 式(1)で表される第1分子構造に連結される第2分子構造のさらに他の一例は、下記式(6)で表される構造である。
 式(6)において「*」で表される結合手は、式(1)において「*」で表される結合手と直接結合している。すなわち、第2分子構造が式(6)で表される構造である場合、式(6)中の「-*」を有するベンゼン環と式(1)中の「-*」を有するカルボニル基とは直接結合している。
Figure JPOXMLDOC01-appb-C000020
 式(6)中、4個のR91、R92、R93、R94、R95、R96及びR97は、それぞれ独立に、R61、OR61、SR61、COR62、CONR6364、NR65COR61、OCOR61、COOR62、SCOR61、OCSR61、COSR62、CSOR61、水酸基、ニトロ基、CN又はハロゲン原子を表す。
 R61、R62、R63、R64及びR65は、それぞれ独立に、水素原子、炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアリールアルキル基又は炭素数2~20の複素環基を表す。
 R61、R62、R63、R64又はR65で表わされる基の水素原子は、OR21、COR21、SR21、NR22Ra23、CONR2223、-NR22-OR23、-N(COR22)-OCOR23、-C(=N-OR21)-R22、-C(=N-OCOR21)-R22、CN、ハロゲン原子、又はCOOR21で置換されていてもよい。
 R21、R22及びR23は、上記と同じ意味を表す。
 R92とR93、R94とR95、R95とR96及びR96とR97はそれぞれ一緒になって環を形成していてもよい。
 *は、オキシム化合物(1)が有する第1分子構造との結合手を表す。
 式(6)中のR21、R22、R23、R61、R62、R63、R64及びR65で表される炭素数1~20のアルキル基、炭素数6~30のアリール基、炭素数7~30のアラルキル基、炭素数2~20の複素環基の例は、式(1)中のR11、R12、R13、R21、R22及びR23についての例と同様である。
 式(6)中のR22とR23は一緒になって環を形成していてもよいとは、R22とR23は一緒になって接続する窒素原子、炭素原子又は酸素原子とともに環を形成していてもよいことを意味する。
 式(6)中のR22とR23が一緒になって形成し得る環の例は、式(1)中のRa12とRa13及びRa22とRa23が一緒になって形成し得る環についての例と同様である。
 式(6)中のR91、R92、R93、R94、R95、R96及びR97で表されるハロゲン原子、R21、R22、R23、R61、R62、R63、R64及びR65の水素原子を置換してもよいハロゲン原子の例としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 式(6)で表される第2分子構造を有するオキシム化合物(1)の製造方法は、特に限定されないが、例えば、国際公開第2017/051680号及び国際公開第2020/004601号に記載の方法で製造することができる。
 光重合開始剤の他の例は、オキシム化合物(1)以外の他の光重合開始剤である。他の光重合開始剤としては、オキシム化合物(1)以外のオキシム化合物、アルキルフェノン化合物、ビイミダゾール化合物、トリアジン化合物及びアシルホスフィン化合物が挙げられる。
 オキシム化合物(1)以外のオキシム化合物としては、下記式(d1)で表される部分構造を有するオキシム化合物が挙げられる。*は結合手を表す。
Figure JPOXMLDOC01-appb-C000021
 式(d1)で表される部分構造を有するオキシム化合物としては、例えば、N-ベンゾイルオキシ-1-(4-フェニルスルファニルフェニル)ブタン-1-オン-2-イミン、N-ベンゾイルオキシ-1-(4-フェニルスルファニルフェニル)オクタン-1-オン-2-イミン、N-ベンゾイルオキシ-1-(4-フェニルスルファニルフェニル)-3-シクロペンチルプロパン-1-オン-2-イミン、N-アセトキシ-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタン-1-イミン、N-アセトキシ-1-[9-エチル-6-{2-メチル-4-(3,3-ジメチル-2,4-ジオキサシクロペンタニルメチルオキシ)ベンゾイル}-9H-カルバゾール-3-イル]エタン-1-イミン、N-アセトキシ-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-3-シクロペンチルプロパン-1-イミン、N-ベンゾイルオキシ-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-3-シクロペンチルプロパン-1-オン-2-イミン;特開2011-132215号公報、国際公開2008/78678号、国際公開2008/78686号、国際公開2012/132558号記載の化合物等が挙げられる。イルガキュア(登録商標)OXE01、同OXE02、同OXE03(以上、BASF社製)、N-1919、NCI-930、NCI-831(以上、ADEKA社製)等の市販品を用いてもよい。
 中でも、式(d1)で表される部分構造を有するオキシム化合物は、N-ベンゾイルオキシ-1-(4-フェニルスルファニルフェニル)ブタン-1-オン-2-イミン、N-ベンゾイルオキシ-1-(4-フェニルスルファニルフェニル)オクタン-1-オン-2-イミン及びN-ベンゾイルオキシ-1-(4-フェニルスルファニルフェニル)-3-シクロペンチルプロパン-1-オン-2-イミンからなる群より選ばれる少なくとも1種が好ましく、N-ベンゾイルオキシ-1-(4-フェニルスルファニルフェニル)オクタン-1-オン-2-イミンがより好ましい。
 アルキルフェノン化合物は、下記式(d2)で表される部分構造又は下記式(d3)で表される部分構造を有する化合物である。これらの部分構造中、ベンゼン環は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000022
 式(d2)で表される構造を有する化合物としては、2-メチル-2-モルホリノ-1-(4-メチルスルファニルフェニル)プロパン-1-オン、2-ジメチルアミノ-1-(4-モルホリノフェニル)-2-ベンジルブタン-1-オン、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]ブタン-1-オン等が挙げられる。OMNIRAD(登録商標)369、同907、同379(以上、IGM Resins社製)等の市販品を用いてもよい。
 式(d3)で表される構造を有する化合物としては、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、2-ヒドロキシ-2-メチル-1-〔4-(2-ヒドロキシエトキシ)フェニル〕プロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-(4-イソプロペニルフェニル)プロパン-1-オンのオリゴマー、α,α-ジエトキシアセトフェノン、ベンジルジメチルケタール等が挙げられる。
 感度の点で、アルキルフェノン化合物としては、式(d2)で表される構造を有する化合物が好ましい。
 ビイミダゾール化合物としては、例えば、式(d5)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000023

[式(d5)中、R~Rは、置換基を有していてもよい炭素数6~10のアリール基を表す。]
 炭素数6~10のアリール基としては、例えば、フェニル基、トルイル基、キシリル基、エチルフェニル基及びナフチル基等が挙げられ、好ましくはフェニル基である。
 置換基としては、例えば、ハロゲン原子、炭素数1~4のアルコキシ基等が挙げられる。ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ、好ましくは塩素原子である。炭素数1~4のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等挙げられ、好ましくはメトキシ基である。
 ビイミダゾール化合物としては、例えば、2,2’-ビス(2-クロロフェニル)-4
,4’,5,5’-テトラフェニルビイミダゾール、2,2’-ビス(2,3-ジクロロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾール(例えば、特開平06-75372号公報、特開平06-75373号公報等参照。)、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラフェニルビイミダゾール、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラ(アルコキシフェニル)ビイミダゾール、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラ(ジアルコキシフェニル)ビイミダゾール、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラ(トリアルコキシフェニル)ビイミダゾール(例えば、特公昭48-38403号公報、特開昭62-174204号公報等参照。)、4,4’5,5’-位のフェニル基がカルボアルコキシ基により置換されているイミダゾール化合物(例えば、特開平7-10913号公報等参照。)等が挙げられる。中でも、下記式で表される化合物又はこれらの混合物が好ましい。
Figure JPOXMLDOC01-appb-C000024
 トリアジン化合物としては、例えば、2,4-ビス(トリクロロメチル)-6-(4-メトキシフェニル)-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-(4-メトキシナフチル)-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-ピペロニル-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-(4-メトキシスチリル)-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-〔2-(5-メチルフラン-2-イル)エテニル〕-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-〔2-(フラン-2-イル)エテニル〕-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-〔2-(4-ジエルアミノ-2-メチルフェニル)エテニル〕-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-〔2-(3,4-ジメトキシフェニル)エテニル〕-1,3,5-トリアジン等が挙げられる。中でも、2,4-ビス(トリクロロメチル)-6-ピペロニル-1,3,5-トリアジンが好ましい。
 アシルホスフィン化合物としては、例えば、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、(2,4,6-トリメチルベンゾイル)ジフェニルホスフィンオキサイド等が挙げられる。OMNIRAD(登録商標)819(IGM Resins社製)等の市販品を用いてもよい。
 オキシム化合物(1)以外の他の光重合開始剤の別の例としては、例えば、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾイン化合物;ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、3,3’,4,4’-テトラ(tert-ブチルパーオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン等のベンゾフェノン化合物;9,10-フェナンスレンキノン、2-エチルアントラキノン、カンファーキノン等のキノン化合物;10-ブチル-2-クロロアクリドン、ベンジル、フェニルグリオキシル酸メチル、チタノセン化合物等が挙げられる。
 組成物が重合開始剤(E)を含む場合、組成物における重合開始剤(E)の含有率は、組成物の固形分の総量に対して、例えば0.01質量%以上20質量%以下であり、組成物の感度を高める観点、並びに膜の発光強度及び耐熱性を高める観点から、好ましくは0.1質量%以上15質量%以下、より好ましくは0.15質量%以上10質量%以下、さらに好ましくは0.2質量%以上8質量%以下であり、5質量%以下又は3質量%以下であってもよい。
 [7]酸化防止剤(F)
 組成物は、酸化防止剤(F)を含むことができる。酸化防止剤(F)としては、工業的に一般に使用される酸化防止剤であれば特に限定はなく、フェノール系酸化防止剤、リン系酸化防止剤、リン/フェノール複合型酸化防止剤及び硫黄系酸化防止剤等を用いることができる。酸化防止剤(F)は、2種以上を併用してもよい。
 リン/フェノール複合型酸化防止剤は、分子中にリン原子とフェノール構造とをそれぞれ1以上有する化合物であることができる。膜の発光強度等の光学特性の観点から、酸化防止剤(F)は、リン/フェノール複合型酸化防止剤を含むことが好ましい。
 フェノール系酸化防止剤としては、例えば、イルガノックス(登録商標)1010(Irganox 1010:ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、BASF(株)製)、同1076(Irganox 1076:オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、BASF(株)製)、同1330(Irganox 1330:3,3’,3’’,5,5’,5’’-ヘキサ-tert-ブチル-a,a’,a’’-(メシチレン-2,4,6-トリイル)トリ-p-クレゾール、BASF(株)製)、同3114(Irganox 3114:1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、BASF(株)製)、同3790(Irganox 3790:1,3,5-トリス((4-tert-ブチル-3-ヒドロキシ-2,6-キシリル)メチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、BASF(株)製)、同1035(Irganox 1035:チオジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、BASF(株)製)、同1135(Irganox 1135:ベンゼンプロパン酸の3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシ-C7-C9側鎖アルキルエステル、BASF(株)製)、同1520L(Irganox 1520L:4,6-ビス(オクチルチオメチル)-o-クレゾール、BASF(株)製)、同3125(Irganox 3125、BASF(株)製)、同565(Irganox 565:2,4-ビス(n-オクチルチオ)-6-(4-ヒドロキシ-3’、5’-ジ-tert-ブチルアニリノ)-1,3,5-トリアジン、BASF(株)製)、アデカスタブ(登録商標)AO-80(アデカスタブ AO-80:3,9-ビス(2-(3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ)-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ(5,5)ウンデカン、(株)ADEKA製)、スミライザー(登録商標)BHT、同GA-80、同GS(以上、住友化学(株)製)、サイアノックス(登録商標)1790(Cyanox 1790、(株)サイテック製)、ビタミンE(エーザイ(株)製)等が挙げられる。
 リン系酸化防止剤としては、例えば、イルガフォス(登録商標)168(Irgafos 168:トリス(2,4-ジ-tert-ブチルフェニル)フォスファイト、BASF(株)製)、同12(Irgafos 12:トリス[2-[[2,4,8,10-テトラ-tert-ブチルジベンゾ[d、f][1,3,2]ジオキサフォスフィン-6-イル]オキシ]エチル]アミン、BASF(株)製)、同38(Irgafos 38:ビス(2,4-ビス(1,1-ジメチルエチル)-6-メチルフェニル)エチルエステル亜りん酸、BASF(株)製)、アデカスタブ(登録商標)329K、同PEP36、同PEP-8(以上、(株)ADEKA製)、Sandstab P-EPQ(クラリアント社製)、Weston(登録商標)618、同619G(以上、GE社製)、Ultranox626(GE社製)等が挙げられる。
 リン/フェノール複合型酸化防止剤としては、例えば、スミライザー(登録商標)GP(6-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ]-2,4,8,10-テトラ-tert-ブチルジベンズ[d,f][1.3.2]ジオキサホスフェピン)(住友化学(株)製)等が挙げられる。
 硫黄系酸化防止剤としては、例えば、チオジプロピオン酸ジラウリル、ジミリスチル又はジステアリール等のジアルキルチオジプロピオネート化合物及びテトラキス[メチレン(3-ドデシルチオ)プロピオネート]メタン等のポリオールのβ-アルキルメルカプトプロピオン酸エステル化合物等が挙げられる。
 組成物が酸化防止剤(F)を含む場合、組成物における酸化防止剤(F)の含有率は、組成物の固形分の総量に対して、例えば0.1質量%以上20質量%以下、好ましくは0.5質量%以上15質量%以下、より好ましくは1質量%以上10質量%以下、さらに好ましくは1質量%以上5質量%以下である。
 [8]溶剤(H)
 樹脂組成物は、溶剤(H)を含むことができる。溶剤(H)としては、例えば、エステル溶剤(分子内に-COO-を含み、-O-を含まない溶剤)、エーテル溶剤(分子内に-O-を含み、-COO-を含まない溶剤)、エーテルエステル溶剤(分子内に-COO-と-O-とを含む溶剤)、ケトン溶剤(分子内に-CO-を含み、-COO-を含まない溶剤)、アルコール溶剤(分子内にOHを含み、-O-、-CO-及びCOO-を含まない溶剤)、芳香族炭化水素溶剤、アミド溶剤、ジメチルスルホキシド等が挙げられる。溶剤(H)は、2種以上を併用してもよい。
 エステル溶剤としては、乳酸メチル、乳酸エチル、乳酸n-ブチル、2-ヒドロキシイソブタン酸メチル、酢酸エチル、酢酸n-ブチル、酢酸イソブチル、ギ酸n-ペンチル、酢酸イソペンチル、プロピオン酸n-ブチル、酪酸イソプロピル、酪酸エチル、酪酸n-ブチル、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、アセト酢酸メチル、アセト酢酸エチル、シクロヘキサノールアセテート及びγ-ブチロラクトン等が挙げられる。
 エーテル溶剤としては、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、3-メトキシ-1-ブタノール、3-メトキシ-3-メチルブタノール、テトラヒドロフラン、テトラヒドロピラン、1,4-ジオキサン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル、アニソール、フェネトール及びメチルアニソール等が挙げられる。
 エーテルエステル溶剤としては、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、2-メトキシプロピオン酸メチル、2-メトキシプロピオン酸エチル、2-メトキシプロピオン酸プロピル、2-エトキシプロピオン酸メチル、2-エトキシプロピオン酸エチル、2-メトキシ-2-メチルプロピオン酸メチル、2-エトキシ-2-メチルプロピオン酸エチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート及びジエチレングリコールモノブチルエーテルアセテート等が挙げられる。
 ケトン溶剤としては、4-ヒドロキシ-4-メチル-2-ペンタノン、アセトン、2-ブタノン、2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、4-メチル-2-ペンタノン、シクロペンタノン、シクロヘキサノン及びイソホロン等が挙げられる。
 アルコール溶剤としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、シクロヘキサノール、エチレングリコール、プロピレングリコール及びグリセリン等が挙げられる。芳香族炭化水素溶剤としては、ベンゼン、トルエン、キシレン及びメシチレン等が挙げられる。アミド溶剤としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド及びN-メチルピロリドン等が挙げられる。
 溶剤(H)としては、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、プロピレングリコールモノメチルエーテル、3-エトキシプロピオン酸エチル、エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングコールモノエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン若しくはトルエン、又はこれらのうちの2種以上の混合物が好ましい。
 [9]その他の成分
 組成物は、必要に応じて、重合禁止剤、充填剤、他の高分子化合物、密着促進剤、光安定剤、連鎖移動剤、重合開始助剤、レベリング剤等、当該技術分野で公知の添加剤をさらに含んでいてもよい。
 [10]組成物の沈降速度ν
 組成物は、式(i)で表される沈降速度νが400×10-9cm/s以下である。
Figure JPOXMLDOC01-appb-M000025
 式(i)は、ストークスの式である。式中、gは重力加速度、すなわち、980.665cm/sである。ρは、第1粒子(A-1)の密度〔g/cm〕である。ρは、組成物中に含まれる粒子(第1粒子及び第2粒子)を含まないこと以外は組成物と同じ構成である組成物(以下、単に「流体」ともいう。)の密度〔g/cm〕であり、以下、該密度を「流体密度」ともいう。μは組成物の25℃における粘度〔g/(cm・s)〕である。第1粒子(A-1)の平均粒径dの単位は、cmである。組成物が平均粒径の異なる2種以上の第1粒子(A-1)を含む場合、これらの粒子の特性を良好に示す膜を形成できることから、2種以上の第1粒子(A-1)のそれぞれについて、式(i)で表される沈降速度νが400×10-9cm/s以下であることが好ましい。
 組成物の沈降速度νが400×10-9cm/s以下であることにより、平均粒径dが比較的大きい第1粒子(A-1)を含有するにもかかわらず、該粒子の特性を良好に示す膜を形成することができる。この理由の少なくとも一部は、組成物中において、第1粒子(A-1)が沈降しにくいことによる。本発明によれば、例えば、調製直後の組成物から作製した膜と、調製から10日間静置した組成物から作製した膜とを対比すると、特性(光学特性等)のバラツキが小さく、いずれにおいても該特性に優れた膜であり得る。
 また、組成物が第2粒子(A-2)としての発光性粒子をさらに含有する場合、式(i)で表される沈降速度νが400×10-9cm/s以下であることにより、該組成物から形成される膜の発光強度を向上させ得る。
 組成物の沈降速度νは、好ましくは300×10-9cm/s以下、より好ましくは250×10-9cm/s以下、さらに好ましくは200×10-9cm/s以下、なおさらに好ましくは150×10-9cm/s以下であり、特に好ましくは100×10-9cm/s以下、最も好ましくは70×10-9cm/s以下である。沈降速度νは、通常1×10-9cm/s以上であり、好ましくは5×10-9cm/s以上、より好ましくは10×10-9cm/s以上である。
 組成物の沈降速度νは、第1粒子(A-1)の平均粒径d及び密度ρ、組成物の固形分量(溶剤量)、粘度等の調整によって制御できる。
 組成物の25℃における粘度μは、例えば0.1g/(cm・s)以上300g/(cm・s)以下、好ましくは0.2g/(cm・s)以上300g/(cm・s)以下、より好ましくは0.35g/(cm・s)以上250g/(cm・s)以下、さらに好ましくは0.5g/(cm・s)以上200g/(cm・s)以下、なおさらに好ましくは1g/(cm・s)以上150g/(cm・s)以下、特に好ましくは4g/(cm・s)以上100g/(cm・s)以下である。組成物の粘度μは、Brookfield回転粘度計を用いて測定することができる。
 第1粒子(A-1)の密度ρ及び平均粒径dは、組成物の調製前に測定されてもよいし、組成物から第1粒子(A-1)を取り出して測定されてもよい。第2粒子(A-2)の平均粒径についても同様であり、流体密度ρについても同様である。例えば、遠心分離等により組成物から粒子を分離することによって、粒子に関わる物性(第1粒子(A-1)の密度ρ及び平均粒径d、並びに第2粒子(A-2)の平均粒径)を測定することができる。この際、分離された粒子に吸着している分散剤等は粒子の一部とみなして粒子に関わる物性を測定してもよい。また、上記分離によって粒子が分離された残部を流体とみなして流体密度ρを測定してもよい。
 組成物から粒子を分離して測定を行うにあたり、組成物が第1粒子(A-1)及び第2粒子(A-2)を含有する場合には、遠心分離等によって第1粒子(A-1)と第2粒子(A-2)とを個別に分離することが可能である場合には、該方法によって個別に分離して、各粒子の密度や平均粒径を測定することができる。あるいは、組成物が第1粒子(A-1)及び第2粒子(A-2)を含有する場合において、これら粒子の平均粒径を得る他の方法は、組成物から第1粒子(A-1)と第2粒子(A-2)との混合物を取り出し、該混合物の粒子径分布を測定し、該粒子径分布を第1粒子(A-1)のものと第2粒子(A-2)のものとに分離することによってそれぞれの平均粒径を求めることである。
 <組成物の製造方法>
 組成物は、所定の成分、並びに必要に応じて使用される他の成分を混合する工程を含む方法によって製造することができる。組成物の製造方法は、樹脂(C)を調製する工程をさらに含むことができる。
 第1実施形態に係る組成物(以下、「組成物M」ともいう。)は、第1粒子(A-1)及び樹脂(C)を含む。組成物Mは、第1粒子(A-1)、分散剤(B)及び樹脂(C)を含むものであってもよい。組成物Mは、重合性化合物(D)をさらに含んでいてもよく、この場合、好ましくは重合開始剤(E)をさらに含む。組成物Mは、該組成物の塗工性や、塗布時の組成物層の平坦性を良好なものとするために、溶剤(H)を含むことが好ましい。
 組成物Mが重合性化合物(D)を含む場合、組成物Mにおける重合性化合物(D)の含有率は、組成物の固形分の総量に対して、例えば0.5質量%以上50質量%以下、好ましくは1質量%以上40質量%以下、より好ましくは2質量%以上30質量%以下、さらに好ましくは2質量%以上25質量%以下である。
 組成物Mにおける溶剤(H)の含有率は、組成物Mの総量に対して、例えば40質量%以上95質量%以下、好ましくは45質量%以上90質量%以下、より好ましくは50質量%以上80質量%以下である。言い換えると、組成物の固形分濃度は、例えば5質量%以上60質量%以下、好ましくは10質量%以上55質量%以下、より好ましくは20質量%以上50質量%以下である。中でも、組成物の固形分濃度は、好ましくは30質量%以上、より好ましくは34質量%以上、さらに好ましくは36質量%以上である。固形分濃度がこの範囲であると、膜に生じ得るピンホールの抑制に有利である。
 第2実施形態に係る組成物(以下、「組成物N」ともいう。)は、樹脂(C)を含まない。組成物Nは、第1粒子(A-1)及び重合性化合物(D)を含み、好ましくは重合開始剤(E)をさらに含む。組成物Nは、第1粒子(A-1)、分散剤(B)及び重合性化合物(D)を含むものであってもよい。組成物Nは、溶剤(H)を含んでいてもよいが、溶剤(H)を含まないか又はその含有率は少ないことが好ましい。
 組成物Nにおける重合性化合物(D)の含有率は、組成物の固形分の総量に対して、例えば10質量%以上90質量%以下、好ましくは20質量%以上80質量%以下、より好ましくは30質量%以上75質量%以下、さらに好ましくは40質量%以上70質量%以下、なおさらに好ましくは50質量%以上70質量%以下である。
 組成物Nにおける溶剤(H)の含有率は、組成物Nの総量に対して、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは3質量%以下、なおさらに好ましくは2質量%以下、特に好ましくは1質量%以下であり、また、0質量%であってもよく、0.5質量%以上であってもよい。溶剤(H)の含有量を少なくすることにより、硬化膜を形成する際の膜厚のコントロールが容易になり、また製造コストや溶剤による地球環境や作業環境への負荷を低減することができる。組成物Nは、膜を作製するためのインクジェットプリンター用インクとして好適に使用できる。
 <樹脂膜及びその製造方法>
 本発明に係る膜は、上記本発明に係る組成物から形成される膜である。膜の製造方法は、例えば以下の工程を含む。
 組成物を基板に塗布するか又は組成物をバンクが形成された基板における該バンクによって区画された領域に吐出することにより、組成物層を形成する工程、及び
 組成物層を熱処理する工程。
 膜は、基板全面に形成されていてもよいし、基板表面の一部に(例えばパターン状に)
形成されていてもよい。
 膜の製造方法は、上記工程以外の他の工程を含むことができる。他の工程としては、例えば、組成物層に対して光を照射する露光工程、露光工程後の組成物層に対して実施する現像工程等が挙げられる。
 組成物層を形成する工程において、組成物を基板に塗布する方法としては、スピンコート法、スリットコート法、スリット アンド スピンコート法等が挙げられる。組成物を吐出することにより組成物層を形成する工程は、組成物を例えばインクジェット法により、バンクによって区画された領域に選択的に吐出及び付着させる工程であってよい。ステンシル印刷法、スクリーン印刷法、アプリケーターによる印刷塗工によりパターン状の組成物層を形成してもよい。
 基板としては、石英ガラス、ホウケイ酸ガラス、アルミナケイ酸塩ガラス、表面をシリカコートしたソーダライムガラス等のガラス板や、ポリカーボネート、ポリメタクリル酸メチル、ポリエチレンテレフタレート等の樹脂板、シリコン、上記基板上にアルミニウム、銀、銀/銅/パラジウム合金薄膜等を形成したもの等が挙げられる。
 パターン状の膜は、例えば、以下のようにして基材上に形成することができる。まず、組成物をマスクを介して基材上に塗布するか又はバンクによって区画された領域に吐出することによりパターン状の組成物層を形成する。
 次に、組成物層を熱処理して膜を得る。この熱処理は、組成物層の乾燥工程(溶剤等の揮発成分を除去する工程)を含んでいてもよい。乾燥方法としては、加熱乾燥、減圧乾燥又はこれらの組み合わせが挙げられる。加熱乾燥の温度は、30℃以上120℃以下が好ましく、50℃以上110℃以下がより好ましい。加熱時間は、10秒間以上60分間以下であることが好ましく、30秒間以上30分間以下であることがより好ましい。減圧乾燥を行う場合は、50Pa以上150Pa以下の圧力下で行うことが好ましい。組成物層の乾燥は、例えば乾燥温度の異なる複数の乾燥工程を実施するなど、複数段で実施してもよい。
 組成物層を熱処理する工程は、上記乾燥工程(プリベーク)とその後に実施されるポストベーク工程とを含んでいてもよい。ベーク工程における加熱温度は、150℃以上250℃以下が好ましく、160℃以上235℃以下がより好ましい。加熱時間は、1分間以上120分間以下が好ましく、10分間以上60分間以下がより好ましい。
 組成物が硬化性である(重合性化合物(D)及び好ましくはさらに重合開始剤(E)を含む)場合、膜の製造方法は、好ましくは上記露光工程を含む。光硬化性の組成物から形成されるパターン状の硬化膜は、フォトリソグラフ法を用いる方法を例に挙げると、例えば、以下のようにして基材上に形成することができる。まず、組成物層を基材上に形成し、加熱乾燥(プリベーク)及び/又は減圧乾燥の乾燥工程を実施する。組成物層の形成方法及び乾燥方法としては、上記と同様の方法が挙げられる。
 次に、組成物層は、目的のパターン形状を形成するためのフォトマスクを介して露光される。露光に用いられる光源としては、250nm以上450nm以下の波長の光を発生する光源が好ましい。例えば、該波長の光から、光重合開始剤の吸収波長に応じて、436nm付近、408nm付近、又は365nm付近の光をバンドパスフィルタにより選択的に取り出してもよい。光源として具体的には、水銀灯、発光ダイオード、メタルハライドランプ、ハロゲンランプ等が挙げられる。
 露光面全体に均一に平行光線を照射することができたり、フォトマスクと組成物層が形成された基材との正確な位置合わせを行うことができたりするため、マスクアライナ及びステッパ等の露光装置を使用することが好ましい。露光された組成物層は、該組成物層に含まれる光重合性化合物等が重合することにより硬化する。
 露光後の組成物層を現像液に接触させて上記現像工程を実施することにより、組成物層の未露光部が現像液に溶解して除去されて、パターン状の硬化膜が得られる。現像液としては、例えば、水酸化カリウム、炭酸水素ナトリウム、炭酸ナトリウム、水酸化テトラメチルアンモニウム等のアルカリ性化合物の水溶液や有機溶剤が挙げられる。アルカリ性化合物の水溶液中の濃度は、好ましくは0.01質量%以上10質量%以下であり、より好ましくは0.03質量%以上5質量%以下である。有機溶剤としては、上述の溶剤(H)と同様のものが挙げられる。現像液は、界面活性剤を含んでいてもよい。
 現像方法は、パドル法、ディッピング法及びスプレー法等のいずれでもよい。さらに現像時に基材を任意の角度に傾けてもよい。
 現像により得られたパターン状の膜に対して、さらに加熱(ポストベーク)を行うことが好ましい。加熱温度は、150℃以上250℃以下が好ましく、160℃以上235℃以下がより好ましい。加熱時間は、1分間以上120分間以下が好ましく、10分間以上60分間以下がより好ましい。現像後に加熱を行うことにより、膜に含まれる未反応の光重合性化合物等の重合を進行させることができるため、より耐薬品性に優れた硬化膜を得ることができる。現像を行わない場合においても、露光された組成物層に対して、加熱(ポストベーク)をさらに行うことが好ましい。
 一方、基材全面に膜を形成する方法としては、組成物層を基材に形成し、必要に応じて乾燥させ、該組成物層を加熱及び/又は該組成物層全面に露光する方法が挙げられる。
 膜の膜厚は、特に限定されず、目的に応じて適宜選択すればよく、例えば1μm以上30μm以下であり、好ましくは3μm以上25μm以下、より好ましくは5μm以上25μm以下、さらに好ましくは5μm以上20μm以下である。パターン状の樹脂膜の形状及び寸法は特に制限されない。パターン状の樹脂膜は、例えばその平面視形状が方形形状である。
 <表示装置>
 本発明に係る表示装置は、光源と上記膜とを少なくとも備える。表示装置としては、例えば、液晶表示装置、有機EL表示装置又は無機EL表示装置が挙げられ、具体的には、特開2006-309219号公報、特開2006-310303号公報、特開2013-15812号公報、特開2009-251129号公報、特開2014-2363号公報等に記載される表示装置が挙げられる。
 一実施形態に係る表示装置は、青色光源であるバックライトと、バックライトの視認側に設けられる複数のパターンとを備える。複数のパターンは、赤色パターン、緑色パターン及び白色(透明、無彩色)のパターンであってよく、これらのパターンの少なくとも1つが本発明に係る膜であり得る。赤色パターン又は緑色パターンである有彩色のパターンは、入射された光の波長を変換して出射する機能を有し、第1粒子(A-1)及び第2粒子(A-2)を含む組成物から形成される膜であってよい。白色(透明、無彩色)のパターンは、第1粒子(A-1)を含み、かつ第2粒子(A-2)を含まない組成物から形成される膜であってよい。
 以下、実施例により本発明をさらに詳細に説明する。例中の「%」及び「部」は、特記のない限り、質量%及び質量部である。
 <測定・評価>
 (1)第1粒子(A-1)の平均粒径dの測定
 下記の遠心沈降式分散安定性粒子径分布装置を用い、下記の条件で、第1粒子(A-1)である酸化チタン(TiO)粒子の粒子径分布を、プロピレングリコールモノメチルエーテルアセテート(PGMEA)を溶媒とする該粒子の分散液を測定試料として測定し、体積基準のメディアン径(D50)として平均粒径d〔cm〕を求めた。
 装置 :LUM GmbH社製 LUMiSizer 611
 回転数:1000rpm
 設定密度:酸化チタン 4.260g/cm、PGMEA 0.9700g/cm
 設定屈折率:酸化チタン 2.720、PGMEA 1.400
 (2)第2粒子(A-2)の平均粒径の測定
 下記の走査透過型電子顕微鏡を用い、PGMEAを溶媒とする第2粒子(A-2)である量子ドットの分散液を測定試料として、下記の条件で粒子画像を取得し、画像処理ソフト「ImagePro」で二値化を行い、600個の粒子直径を画像より算出し、それらの中央値として、第2粒子(A-2)である量子ドットの平均粒径〔cm〕を求めた。
 装置  :FEI社製 HeliosG4UX
 モード :STEM BFモード
 加速電圧:23kV
 電流値 :50pA
 (3)第1粒子(A-1)の密度ρの測定
 25℃の環境下、ゲーリュサック型比重瓶を用いて、第1粒子(A-1)の密度ρ〔g/cm〕を測定した。
 (4)流体密度ρの測定
 25℃の環境下、ゲーリュサック型比重瓶を用いて、流体の密度ρ〔g/cm〕を測定した。ここでいう流体とは、粒子(第1粒子及び第2粒子)を含まないこと以外は実施例・比較例で調製した組成物と同じ構成である組成物をいう。
 (5)組成物の粘度μ(25℃)の測定
 Brookfield回転粘度計を用いて、25℃の恒温下、回転数3rpmの条件下で、実施例・比較例で調製した組成物の粘度〔g/(cm・s)〕を測定した。
 (6)組成物の沈降速度ν
 上記式(i)に従って、沈降速度ν〔cm/s〕を算出した。
 (7)樹脂(C)の重量平均分子量Mw及び数平均分子量Mn
 樹脂(C)の重量平均分子量Mw及び数平均分子量Mnの測定は、GPC法により以下の条件で行った。
 装置;K2479((株)島津製作所製)
 カラム;SHIMADZU Shim-pack GPC-80M
 カラム温度;40℃
 溶媒;テトラヒドロフラン
 流速;1.0mL/min
 検出器;RI
 校正用標準物質 ;TSK STANDARD POLYSTYRENE F-40、F-4、F-288、A-2500、A-500(東ソー(株)製)
 (8)樹脂(C)の酸価
 樹脂(C)溶液3gを精秤し、アセトン90gと水10gとの混合溶剤に溶解し、0.1規定のKOH水溶液を滴定液として用いて、自動滴定装置(平沼産業社製の商品名「COM-555」)により、樹脂(C)溶液の酸価を測定し、溶液の酸価と溶液の固形分とから固形分1g当たりの酸価Av〔mgKOH/g〕を求めた。
 (9)樹脂(C)溶液の固形分
 樹脂(C)溶液をアルミカップに約1gはかり取り、180℃で1時間乾燥した後、質量を測定した。その質量減少量から、樹脂(C)溶液の固形分〔質量%〕を求めた。
 (10)発光強度の変化率の評価
 発光ピーク波長が450nmである青色LEDランプを点光源とするバックライト上に光拡散板を配置してバックライト部とした。光拡散板を上に向けてバックライト部を載置し、光拡散板の表面から高さ60cmの位置に、分光放射輝度計(トプコン(株)製の「SR-UL1R」)を設置した。
 次に、上記ガラス基板の表面に、調製直後の組成物S1から作製した膜を有する基板を配置した。この状態でバックライトを点灯させ、膜から発せされる光について、波長485nm以上780nm以下の範囲における積算放射束として発光強度E1〔W・sr-1・m-2・nm-1〕を測定した。発光強度E1の測定には、上記の分光放射輝度計(トプコン(株)製の「SR-UL1R」)を用いた。
 また、温度25℃で、調製から10日間静置した組成物S2から作製した膜について、上記と同様にして発光強度E2〔W・sr-1・m-2・nm-1〕を測定した。
 以上の結果に基づき、下記の発光強度の変化率Xを求めた。
 変化率X〔%〕=100×発光強度E2/発光強度E1
 <製造例1:第1粒子(A1a)の分散液の調製>
 第1粒子(A1a)である酸化チタン粒子(平均粒径d:219×10-7cm、密度ρ:4.260g/cm)70部に、分散剤(B1)である「DISPERBYK21116」(ビックケミー・ジャパン製)を固形分で3部、PGMEAを全量が100部になるように加えた後、ペイントシェイカーで十分に分散するまで撹拌して、第1粒子(A1a)の分散液(固形分73%)を得た。
 <製造例2:第1粒子(A1b)の分散液の調製>
 第1粒子(A1a)の代わりに第1粒子(A1b)である酸化チタン粒子(平均粒径d:192×10-7cm、密度ρ:4.260g/cm)を用いたこと以外は製造例1と同様にして、第1粒子(A1b)の分散液(固形分73%)を得た。
 <製造例3:第2粒子(A2a)の分散液の調製>
 第2粒子(A2a)のトルエン分散液を準備した。第2粒子(A2a)は、有機配位子(G1)としてオレイン酸が配位したInP/ZnSeS量子ドット(平均粒径:6.0×10-7cm)である。トルエン分散液を減圧蒸留し、トルエンを除去した。固形分50部に対しシクロヘキシルアセテート50部を添加して、第2粒子(A2a)の分散液(固形分50%)を得た。
 <製造例4:第2粒子(A2b)の分散液の調製>
 第2粒子(A2a)の代わりに第2粒子(A2b)である、有機配位子(G1)としてオレイン酸が配位したInP/ZnSeS量子ドット(平均粒径:4.6×10-7cm)を用いたこと以外は製造例3と同様にして、第2粒子(A2b)の分散液(固形分50%)を得た。
 <製造例5:樹脂(C1)溶液の調製>
 撹拌器、温度計付き還流冷却管、滴下ロート及び窒素導入管を具備したフラスコに、PGMEAを110部投入した後、窒素置換しながら撹拌し、80℃に昇温した。ジシクロペンタニルメタクリレート25部、メチルメタクリレート26部、メタクリル酸16部、2,2’-アゾビス(2,4-ジメチルバレロニトリル)14部をPGMEA110部に溶解した溶液を、滴下ロートからフラスコ中に滴下した後、80℃で3時間撹拌した。
 次に、グリシジルメタクリレート16部、2、2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)0.4部、トリフェニルホスフィン0.8部をフラスコ内に投入して110℃まで昇温、8時間撹拌することで重合体中のカルボン酸とエポキシ基とを反応させて、重合性不飽和結合を導入した。次いで、1,2,3,6-テトラヒドロフタル酸無水物17部を加え3時間反応を続けて、側鎖にカルボキシ基を導入した。反応液を室温まで冷却することで樹脂(C1)溶液を得た。
 樹脂(C1)は、標準ポリスチレン換算の重量平均分子量Mwが5200、分子量分布が2.3、酸価が100mgKOH/gであり、樹脂(C1)溶液中の固形分は50質量%であった。
 <実施例1~9、比較例1>
 (1)組成物の調製
 製造例1で得られた第1粒子(A1a)の分散液又は製造例2で得られた第1粒子(A1b)の分散液と、製造例3で得られた第2粒子(A2a)の分散液又は製造例4で得られた第2粒子(A2b)の分散液と、製造例5で得られた樹脂(C1)溶液と、表1に示される他の成分をそれぞれ所定量混合して、組成物を調製した。
 添加量から求められる組成物における各成分の含有量は表1に示されるとおりである。表1において、溶剤(H)以外の成分は固形分換算の含有量(単位:質量部)である。溶剤(H)の含有量の単位は質量部である。例えば第1粒子は、組成物の調製において第1粒子の分散液として配合されているが、表1に示される含有量は、その分散液に含まれる第1粒子それ自体の量である。表1における溶剤(H)には、組成物の調製に用いた分散液や溶液に含有される溶剤が含まれている。
 表1に示される、組成物における有機配位子(G1)の含有量については、次の方法に従って製造例2又は3で得られた第2粒子の分散液における有機配位子(G1)の濃度を測定し、これに基づいて算出した。すなわち、第2粒子の分散液を150℃で真空乾燥して溶媒を除去した後、残った固形分について、熱重量分析装置「TGDTA6200」を用いて、重量変化を昇温速度5℃/minで50℃から550℃まで測定した。50℃から500℃までの変化重量を有機配位子(G1)の重量として、第2粒子の分散液における有機配位子(G1)の濃度を算出した。
 (2)膜の作製
 5cm角のガラス基板(イーグル2000;コーニング社製)上に、組成物をスピンコート法で厚みが6μmとなるように塗布した。次いで、100℃で3分間乾燥させた後、180℃で10分間乾燥させることにより膜を形成して、膜を有する基板を得た。
 各実施例及び比較例の組成物について沈降速度νを算出した。また、得られた膜について、発光強度の変化率Xを求めた。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000026
 表1に示される成分の略称の詳細は次のとおりである。
 〔1〕有機配位子(G1):オレイン酸
 〔2〕重合性化合物(D1):アロニックス M-510(光重合性化合物、カルボキシ基含有多官能(メタ)アクリレート、東亞合成(株)製、固形分100%)
 〔3〕重合性化合物(D2):A-9550(光重合性化合物、ジペンタエリスリトールポリアクリレート、新中村化学工業株式会社製、固形分100%)
 〔4〕重合開始剤(E1):下記式で表される光重合開始剤。特開2011-132215号公報に記載される方法により製造した(固形分100%)。
Figure JPOXMLDOC01-appb-C000027

 〔5〕酸化防止剤(F1):Sumilizer-GP(リン/フェノール複合型酸化防止剤、住友化学社製、固形分100%)
 〔6〕溶剤(H1):PGMEA(プロピレングリコールモノメチルエーテルアセテート)
 〔7〕溶剤(H2):シクロヘキシルアセテート
 実施例の組成物から形成された膜はいずれも、調製から10日間静置した組成物を用いて膜を作製しても、調製直後の組成物から作製した場合と同等又はこれに近い発光強度を示し、発光特性のバラツキが抑制された。これに対して、比較例1の組成物では、調製から10日間静置した組成物を用いて膜を作製すると、調製直後の組成物から作製した場合と比較して、発光強度が顕著に低下した(変化率X=79%)。10日間静置したことによる第1粒子の沈降の結果としての過度の又は堅固な凝集が理由であると推定される。
 なお、実施例において、変化率Xが100%を超える場合がある理由としては、第1粒子の一部凝集により、みかけの粒径が増大した可能性が挙げられる。

Claims (10)

  1.  粒子を含有する組成物であって、
     前記粒子は、平均粒径dが100×10-7cm以上である第1粒子(A-1)を含み、
     前記組成物は、樹脂(C)及び重合性化合物(D)からなる群より選択される少なくとも1種をさらに含み、
     前記組成物は、式(i)で表される沈降速度νが400×10-9cm/s以下である、組成物。
    Figure JPOXMLDOC01-appb-M000001

    [式(i)中、gは重力加速度〔cm/s〕、ρは第1粒子(A-1)の密度〔g/cm〕、ρは前記粒子を含まないこと以外は前記組成物と同じ組成物の密度〔g/cm〕、μは前記組成物の25℃における粘度〔g/(cm・s)〕を表す。]
  2.  第1粒子(A-1)が光散乱粒子である、請求項1に記載の組成物。
  3.  第1粒子(A-1)が無機粒子である、請求項1に記載の組成物。
  4.  前記粒子は、平均粒径が50×10-7cm以下である第2粒子(A-2)をさらに含む、請求項1に記載の組成物。
  5.  第2粒子(A-2)が発光性粒子である、請求項4に記載の組成物。
  6.  樹脂(C)が極性基を有する樹脂であり、重合性化合物(D)が極性基を有する重合性化合物である、請求項1~5のいずれか1項に記載の組成物。
  7.  前記極性基は、カルボキシ基、チオール基及びアミノ基からなる群より選択される少なくとも1種の基である、請求項6に記載の組成物。
  8.  光学機能膜形成用の組成物である、請求項1~5のいずれか1項に記載の組成物。
  9.  請求項1~5のいずれか1項に記載の組成物から形成される膜。
  10.  請求項9に記載の膜を含む表示装置。
PCT/JP2023/008023 2022-03-31 2023-03-03 組成物、膜及び表示装置 WO2023189203A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-059791 2022-03-31
JP2022059791 2022-03-31
JP2022-111365 2022-07-11
JP2022111365 2022-07-11

Publications (1)

Publication Number Publication Date
WO2023189203A1 true WO2023189203A1 (ja) 2023-10-05

Family

ID=88201169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008023 WO2023189203A1 (ja) 2022-03-31 2023-03-03 組成物、膜及び表示装置

Country Status (3)

Country Link
JP (1) JP2023152724A (ja)
TW (1) TW202340352A (ja)
WO (1) WO2023189203A1 (ja)

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838403A (ja) 1971-09-17 1973-06-06
JPS62174204A (ja) 1986-01-27 1987-07-31 Toyobo Co Ltd 感光性組成物
JPH0675372A (ja) 1992-08-28 1994-03-18 Toppan Printing Co Ltd 感光性着色組成物およびカラーフィルターの製造方法およびカラーフィルター
JPH0675373A (ja) 1992-08-28 1994-03-18 Toppan Printing Co Ltd 感光性着色組成物およびカラーフィルターの製造方法およびカラーフィルター
JPH0710913A (ja) 1993-06-22 1995-01-13 Mitsubishi Chem Corp 光重合性組成物
JP2000080068A (ja) 1998-06-26 2000-03-21 Ciba Specialty Chem Holding Inc 新規o―アシルオキシム光開始剤
JP2005281386A (ja) * 2004-03-29 2005-10-13 Toray Ind Inc 黒色樹脂組成物、樹脂ブラックマトリクス、カラーフィルターおよび液晶表示装置
JP2006309219A (ja) 2005-04-25 2006-11-09 Samsung Electronics Co Ltd 自発光液晶表示装置
JP2006310303A (ja) 2005-04-29 2006-11-09 Samsung Electronics Co Ltd 自発光液晶表示装置
JP2008078686A (ja) 2007-12-13 2008-04-03 Renesas Technology Corp 半導体装置
JP2008078678A (ja) 2007-11-02 2008-04-03 Hitachi Ltd プラズマ処理方法
JP2008088270A (ja) * 2006-09-29 2008-04-17 Brother Ind Ltd インクジェット記録用インク
JP2008101040A (ja) * 2006-10-17 2008-05-01 Nissan Chem Ind Ltd 硬化アミノ樹脂粒子及びその表面処理方法
JP2009251129A (ja) 2008-04-02 2009-10-29 Optoelectronic Industry & Technology Development Association 液晶表示装置用カラーフィルタ、液晶表示装置
JP2011132215A (ja) 2009-11-27 2011-07-07 Adeka Corp オキシムエステル化合物及び該化合物を含有する光重合開始剤
JP2011178776A (ja) 2010-02-05 2011-09-15 Jsr Corp 新規化合物及びそれを含有する感放射線性組成物
JP2012132558A (ja) 2010-12-18 2012-07-12 Boeing Co:The 定常流の熱力学的ポンプ
JP2013015812A (ja) 2011-07-05 2013-01-24 Lg Display Co Ltd 光変換層を含む液晶表示パネル及び液晶表示装置
JP2014002363A (ja) 2012-06-14 2014-01-09 Samsung Display Co Ltd 表示装置
WO2014157296A1 (ja) 2013-03-29 2014-10-02 富士フイルム株式会社 感光性樹脂組成物、硬化膜、画像形成方法、固体撮像素子、カラーフィルタおよび紫外線吸収剤
WO2017051680A1 (ja) 2015-09-25 2017-03-30 株式会社Adeka オキシムエステル化合物及び該化合物を含有する重合開始剤
JP2018123274A (ja) 2017-02-03 2018-08-09 株式会社日本触媒 アルカリ可溶性樹脂、感光性樹脂組成物及びその用途
JP2019163429A (ja) * 2018-03-20 2019-09-26 株式会社リコー 硬化型組成物、インク、組成物収容容器、インクジェット印刷方法、インクジェット印刷装置、硬化物の処理方法、硬化物、立体造形物、成形加工品
WO2020004601A1 (ja) 2018-06-29 2020-01-02 株式会社Adeka オキシムエステル化合物およびこれを含有する光重合開始剤

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838403A (ja) 1971-09-17 1973-06-06
JPS62174204A (ja) 1986-01-27 1987-07-31 Toyobo Co Ltd 感光性組成物
JPH0675372A (ja) 1992-08-28 1994-03-18 Toppan Printing Co Ltd 感光性着色組成物およびカラーフィルターの製造方法およびカラーフィルター
JPH0675373A (ja) 1992-08-28 1994-03-18 Toppan Printing Co Ltd 感光性着色組成物およびカラーフィルターの製造方法およびカラーフィルター
JPH0710913A (ja) 1993-06-22 1995-01-13 Mitsubishi Chem Corp 光重合性組成物
JP2000080068A (ja) 1998-06-26 2000-03-21 Ciba Specialty Chem Holding Inc 新規o―アシルオキシム光開始剤
JP2005281386A (ja) * 2004-03-29 2005-10-13 Toray Ind Inc 黒色樹脂組成物、樹脂ブラックマトリクス、カラーフィルターおよび液晶表示装置
JP2006309219A (ja) 2005-04-25 2006-11-09 Samsung Electronics Co Ltd 自発光液晶表示装置
JP2006310303A (ja) 2005-04-29 2006-11-09 Samsung Electronics Co Ltd 自発光液晶表示装置
JP2008088270A (ja) * 2006-09-29 2008-04-17 Brother Ind Ltd インクジェット記録用インク
JP2008101040A (ja) * 2006-10-17 2008-05-01 Nissan Chem Ind Ltd 硬化アミノ樹脂粒子及びその表面処理方法
JP2008078678A (ja) 2007-11-02 2008-04-03 Hitachi Ltd プラズマ処理方法
JP2008078686A (ja) 2007-12-13 2008-04-03 Renesas Technology Corp 半導体装置
JP2009251129A (ja) 2008-04-02 2009-10-29 Optoelectronic Industry & Technology Development Association 液晶表示装置用カラーフィルタ、液晶表示装置
JP2011132215A (ja) 2009-11-27 2011-07-07 Adeka Corp オキシムエステル化合物及び該化合物を含有する光重合開始剤
JP2011178776A (ja) 2010-02-05 2011-09-15 Jsr Corp 新規化合物及びそれを含有する感放射線性組成物
JP2012132558A (ja) 2010-12-18 2012-07-12 Boeing Co:The 定常流の熱力学的ポンプ
JP2013015812A (ja) 2011-07-05 2013-01-24 Lg Display Co Ltd 光変換層を含む液晶表示パネル及び液晶表示装置
JP2014002363A (ja) 2012-06-14 2014-01-09 Samsung Display Co Ltd 表示装置
WO2014157296A1 (ja) 2013-03-29 2014-10-02 富士フイルム株式会社 感光性樹脂組成物、硬化膜、画像形成方法、固体撮像素子、カラーフィルタおよび紫外線吸収剤
WO2017051680A1 (ja) 2015-09-25 2017-03-30 株式会社Adeka オキシムエステル化合物及び該化合物を含有する重合開始剤
JP2018123274A (ja) 2017-02-03 2018-08-09 株式会社日本触媒 アルカリ可溶性樹脂、感光性樹脂組成物及びその用途
JP2019163429A (ja) * 2018-03-20 2019-09-26 株式会社リコー 硬化型組成物、インク、組成物収容容器、インクジェット印刷方法、インクジェット印刷装置、硬化物の処理方法、硬化物、立体造形物、成形加工品
WO2020004601A1 (ja) 2018-06-29 2020-01-02 株式会社Adeka オキシムエステル化合物およびこれを含有する光重合開始剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Experimental Method for Polymer Synthesis", 1 March 1972, KAGAKU-DOJIN PUBLISHING COMPANY, INC

Also Published As

Publication number Publication date
JP2023152724A (ja) 2023-10-17
TW202340352A (zh) 2023-10-16

Similar Documents

Publication Publication Date Title
JP7406983B2 (ja) 組成物および表示装置
WO2023157561A1 (ja) 硬化性組成物、硬化膜及び表示装置
WO2022044824A1 (ja) 積層体及び表示装置
WO2022230326A1 (ja) 硬化膜及び表示装置
WO2023189203A1 (ja) 組成物、膜及び表示装置
WO2023189205A1 (ja) 組成物、膜及び表示装置
WO2023189204A1 (ja) 組成物、膜及び表示装置
WO2024185881A1 (ja) 組成物、硬化膜及び表示装置
WO2024084904A1 (ja) 硬化性組成物、硬化膜及び表示装置
WO2022044823A1 (ja) 積層体及び表示装置
JP2024127830A (ja) 組成物、硬化膜及び表示装置
WO2023085058A1 (ja) 樹脂組成物、樹脂膜及び表示装置
WO2023085059A1 (ja) 樹脂組成物、樹脂膜及び表示装置
WO2023085060A1 (ja) 樹脂組成物、樹脂膜及び表示装置
WO2024018770A1 (ja) 組成物、膜及び表示装置
WO2023085061A1 (ja) 樹脂膜及び表示装置
WO2024195219A1 (ja) 硬化性組成物
WO2023120215A1 (ja) 組成物、膜及び表示装置
WO2024195218A1 (ja) 硬化性組成物
WO2022044822A1 (ja) 樹脂組成物、樹脂膜及び表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779232

Country of ref document: EP

Kind code of ref document: A1