WO2023188770A1 - 真空断熱材 - Google Patents

真空断熱材 Download PDF

Info

Publication number
WO2023188770A1
WO2023188770A1 PCT/JP2023/002749 JP2023002749W WO2023188770A1 WO 2023188770 A1 WO2023188770 A1 WO 2023188770A1 JP 2023002749 W JP2023002749 W JP 2023002749W WO 2023188770 A1 WO2023188770 A1 WO 2023188770A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
thin film
vacuum
heat
gas
Prior art date
Application number
PCT/JP2023/002749
Other languages
English (en)
French (fr)
Inventor
洸紀 前嶋
司 宅島
行男 森川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2024511314A priority Critical patent/JPWO2023188770A1/ja
Publication of WO2023188770A1 publication Critical patent/WO2023188770A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum

Definitions

  • the present disclosure relates to vacuum insulation materials.
  • Patent Document 1 describes a core material made of an inorganic fiber aggregate, an outer packaging material having a surface protection layer, a gas barrier layer, and a heat welding layer, and an adsorbent that adsorbs moisture and gas components of the core material and the outer packaging material.
  • a vacuum heat insulating material in which a gas barrier layer of an outer packaging material is laminated such that the metal surfaces of at least two metal layers face each other.
  • the present disclosure provides a vacuum insulation material that can suppress the gas held in the base material layer before vacuum from flowing into the vacuum insulation material and exhibit high insulation performance.
  • the vacuum insulation material according to the present disclosure includes a core material and an outer covering material 20 formed by sealing the peripheral edge of one or more laminate films, and in the vacuum-sealed vacuum insulation material, the outer covering material comprises a heat welding layer disposed on the core material side and a base material layer disposed outside the heat welding layer, and one or more thin film barriers between the heat welding layer and the base material layer. It has layers.
  • This specification includes all contents of Japanese patent application/patent application No. 2022-055059 filed in Japan on March 30, 2022.
  • the vacuum insulation material in the present disclosure forms a thin film barrier layer between the heat welding layer and the base material layer, the gas retained in the base material layer cannot pass through the thin film barrier layer. It is possible to suppress movement toward the heat-welding layer side. Therefore, it is possible to suppress an increase in the internal pressure of the vacuum heat insulating material due to gas, and it is possible to suppress a decrease in the heat insulation performance of the vacuum heat insulating material.
  • FIG. 1 is a schematic cross-sectional view showing a vacuum insulation material according to Embodiment 1.
  • FIG. 2 is a schematic cross-sectional view showing the outer covering material according to the first embodiment.
  • FIG. 3 is an explanatory diagram showing the gas movement state in Embodiment 1.
  • the outer cover material of the vacuum insulation material had a barrier layer consisting of a base layer and a thin film barrier layer, and in order to improve gas barrier properties, a two-layer thin film barrier made of metal was used. There was a technique in which the layers were arranged opposite each other. However, if the base material layer is placed closer to the core material than the thin film barrier layer and a material with high gas permeability is used, the base material layer will quickly absorb gases such as oxygen and nitrogen from the outside air during storage before vacuuming.
  • the present disclosure provides a vacuum heat insulating material that can suppress the gas held in the base material layer before vacuum from flowing into the vacuum heat insulating material and exhibit high heat insulation performance.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a vacuum heat insulating material according to an embodiment.
  • the vacuum insulation material 1 includes a core material 10, a gas adsorbent 11, a moisture adsorbent 12, and an outer covering material 20 that covers the core material 10 and the gas adsorbent 11.
  • the vacuum heat insulating material 1 is constructed by covering a core material 10, a gas adsorbent 11, and a moisture adsorbent 12 with an outer covering material 20, and reducing the pressure inside.
  • the core material 10 may be one that can maintain its thickness against atmospheric pressure when sealed under reduced pressure, has a high porosity, and has a low solid thermal conductivity.
  • inorganic powder aggregates, especially silica powder, and inorganic fiber aggregates, especially glass fiber aggregates are preferable.
  • the gas adsorbent 11 for example, a chemical adsorption substance such as calcium oxide or magnesium oxide, a physical adsorption substance such as zeolite, a mixture thereof, or a gas adsorption alloy such as BaLi4 can be applied. Further, copper ion exchange ZSM-5 type zeolite, which has high gas adsorption capacity and adsorption ability, may be used. Note that, depending on the use of the vacuum heat insulating material 1, the gas adsorbent 11 may be omitted or may be enclosed in the jacket material 20 together with the moisture absorbent. Further, the material of the moisture adsorbent 12 is preferably one that has a large binding energy with moisture once adsorbed and a large amount of adsorption per unit weight, and for example, calcium oxide, potassium oxide, etc. can be used.
  • FIG. 2 is a schematic cross-sectional view of the outer cover material according to the first embodiment.
  • the outer cover material 20 has excellent gas barrier properties, and even if the vacuum heat insulating material 1 is stored in the atmosphere, little air will enter the inside.
  • the outer covering material 20 includes a heat welding layer 21 located on the core material 10 side and a base material layer 22 located outside the heat welding layer 21.
  • An arbitrary layer such as a protective layer 23 may be provided outside the base layer 22.
  • the heat welding layer 21 is made of, for example, polyethylene or polypropylene.
  • the base material layer 22 is made of, for example, polyethylene terephthalate, nylon, polypropylene, or polyethylene.
  • the optional layers may include a protective layer 23, second and third base layers, a thin film barrier layer, and the like.
  • the protective layer 23 is preferably made of a material having high puncture strength, impact resistance, and scratch resistance, such as nylon.
  • a thin film barrier layer 24 is formed between the heat-welding layer 21 and the base material layer 22.
  • the thin film barrier layer 24 is composed of a vapor-deposited layer of a metal material such as aluminum, for example.
  • a metal material such as aluminum, for example.
  • the barrier properties can be enhanced by the metal material, it is possible to suppress the diffusion of gases such as nitrogen and oxygen to the core material 10 side after vacuum sealing the vacuum insulation material 1. .
  • the other thin film barrier layer 24 may be a vapor-deposited layer made of a ceramic material such as a silica material or an alumina material.
  • a vapor deposited layer made of a metal material is used for the thin film barrier layer 24, heat conduction occurs due to the thin film barrier layer 24, but so-called heat bridges due to heat conduction can be suppressed by using a vapor deposited layer made of a ceramic material. It becomes possible to do so.
  • the thin film barrier layer 24 is formed of a vapor-deposited layer of a metal material or a vapor-deposited layer of a ceramic material is selected depending on the intended use of the vacuum heat insulating material 1.
  • the thin film barrier layer 24 is formed by coating either the heat welding layer 21 or the base material layer 22 .
  • An adhesive layer may be provided between the thin film barrier layer 24 and the heat welding layer 21 or between the thin film barrier layer 24 and the base material layer 22.
  • the thin film barrier layer 24 may be formed into two or more layers, and may include a resin coat layer.
  • the outer covering material 20 includes polyethylene as the thermal welding layer 21, an adhesive layer, an aluminum vapor deposited layer as the thin film barrier layer 24, and polyethylene terephthalate as the base layer 22. Furthermore, nylon is sequentially laminated as an adhesive layer/aluminum vapor deposited layer/polyethylene terephthalate/adhesive layer/protective layer 23 on the outer layer.
  • the outer sheathing material 20 includes polyethylene as the heat-welding layer 21, an adhesive layer, a polyvinyl alcohol coat/aluminum vapor deposited layer as the thin film barrier layer 24, and polyethylene terephthalate as the base layer 22, and further as an outer layer. It is constructed by sequentially laminating adhesive layer/polyvinyl alcohol layer/aluminum vapor deposition layer/polyethylene terephthalate.
  • the outer cover material 20 includes polyethylene as the heat-welding layer 21, an adhesive layer, an alumina-silica composite vapor deposited layer as the thin film barrier layer 24, and polyethylene terephthalate as the base material layer 22, which are laminated in this order.
  • An adhesive layer/alumina-silica composite vapor deposited layer and polyethylene terephthalate as a protective layer 23 are laminated in this order.
  • the outer cover material 20 may include polypropylene as the thermal welding layer 21, an aluminum vapor deposition layer/adhesive layer/aluminum vapor deposition layer as the thin film barrier layer 24, and polyethylene terephthalate as the base material layer 22, and further, It is constructed by sequentially laminating an adhesive layer/aluminum vapor deposition layer/polyethylene terephthalate on the outer layer.
  • the outer cover material 20 can be made of a combination of various materials, and the thin film barrier layer 24 may be composed of multiple layers.
  • the outer covering material 20 may be formed by folding back a single film constituting the outer covering material 20 and sealing both sides and end sides. Further, as another example, the outer covering material 20 may be formed by pasting together a plurality of films constituting the outer covering material 20 and sealing the four sides.
  • FIG. 3 is an explanatory diagram showing the state of gas movement in the first embodiment. Note that the circles in FIG. 3 indicate gas molecules.
  • an outer cover material 20 is created in which a thin film barrier layer 24 is provided between a heat-welding layer 21 and a base material layer 22. In this state, the outer covering material 20 is formed into a bag shape, and the core material 10 is covered with the outer covering material 20.
  • the gas retained in the heat welding layer 21 is gradually released from the core material 10 side, as shown in FIG.
  • the gas held in the base layer 22 is released to the outside from the protective layer 23 side or side surface.
  • the thin film barrier layer 24 is formed between the heat welding layer 21 and the base material layer 22, the gas retained in the base material layer 22 cannot pass through the thin film barrier layer 24. It does not move to the heat welding layer 21 side.
  • the vacuum insulation material 1 is formed by sealing the outer covering material 20 while the inside of the outer covering material 20 is being evacuated. At this time, most of the gas held in the heat welding layer 21 is released from the core material 10 side during the vacuuming process. On the other hand, the gas held in the base material layer 22 is difficult to be exhausted by evacuation and remains in the base material layer 22. At this time, the thin film barrier layer 24 prevents the gas held in the base material layer 22 from moving toward the heat-welding layer 21 side, so that an increase in the internal pressure of the vacuum heat insulating material 1 due to the gas can be suppressed. As a result, a decrease in the heat insulation performance of the vacuum heat insulating material 1 can be suppressed.
  • the thin film barrier layer 24 is not provided between the base material layer 22 and the heat welding layer 21, gas will slowly diffuse toward the core material 10 side after the vacuum insulation material 1 is vacuum-sealed, and the internal pressure will increase. I know that.
  • the base layer 22 is formed of a commonly used ethylene-vinyl alcohol copolymer, the diffusion coefficient D of the ethylene-vinyl alcohol copolymer is small, and the amount of gas retained in the base layer 22 is small. There is no problem even if the thin film barrier layer 24 is not provided between the base material layer 22 and the heat-welding layer 21.
  • the base layer 22 is made of a material with a large diffusion coefficient D, that is, gas permeability P, such as polyethylene terephthalate, nylon, polypropylene, or polyethylene, as in this embodiment, the amount of gas retained in the base layer 22 is If the thin film barrier layer 24 is not provided, gas will be gradually released to the core material 10 side, leading to an increase in internal pressure.
  • gas permeability P such as polyethylene terephthalate, nylon, polypropylene, or polyethylene
  • the present embodiment includes a core material 10 and an outer covering material 20 formed by sealing the peripheral edge of one or more laminate films, and the outer covering material 20 is a core material 10 side, and a base material layer 22 disposed outside the heat welding layer 21, and one or more thin film barrier layers 24 between the heat welding layer 21 and the base material layer 22. It is equipped with According to this, since the thin film barrier layer 24 is formed between the heat welding layer 21 and the base material layer 22, the gas retained in the base material layer 22 cannot permeate the thin film barrier layer 24. First, it is possible to suppress movement toward the heat-welding layer 21 side. Therefore, an increase in the internal pressure of the vacuum heat insulating material 1 due to the gas can be suppressed, and a decrease in the heat insulation performance of the vacuum heat insulating material 1 can be suppressed.
  • the base material layer 22 is made of polyethylene terephthalate, nylon, polypropylene, and polyethylene
  • the heat-welding layer 21 is made of polyethylene and polypropylene.
  • the thin film barrier layer 24 includes a vapor-deposited layer of a metal material. According to this, the barrier properties of the thin film barrier layer 24 can be enhanced by the metal material, and after the vacuum insulation material 1 is vacuum-sealed, diffusion of gases such as nitrogen and oxygen to the core material 10 side is suppressed. becomes possible.
  • the thin film barrier layer 24 includes a deposited layer of silica material or alumina material. According to this, by forming the thin film barrier layer 24 from a ceramic material such as a silica material or an alumina material, it is possible to suppress so-called heat bridges due to heat conduction.
  • Embodiment 1 has been described as an example of the technology disclosed in this application.
  • the technology in the present disclosure is not limited to this, and can also be applied to embodiments in which changes, replacements, additions, omissions, etc. are made.
  • the present disclosure can suppress an increase in the internal pressure of the vacuum insulation material due to the gas by suppressing the gas held before vacuum from flowing into the interior, thereby suppressing a decrease in the insulation performance of the vacuum insulation material. It can be suitably used as a vacuum insulation material.
  • Vacuum insulation material 10 Core material 11 Gas adsorbent 12 Moisture adsorption agent 20 Outer covering material 21 Heat welding layer 22 Base material layer 23 Protective layer 24 Thin film barrier layer

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)

Abstract

本開示は、真空前に保持されたガスの内部への流入を抑制し、高い断熱性能を発揮することができる真空断熱材を提供する。 芯材10と、単数または複数のラミネートフィルムの周縁部を封止してなる外被材20とを有し、外被材20は、芯材10側に配置された熱溶着層21と、熱溶着層21の外側に配置された基材層22とを備え、熱溶着層21と基材層22の間に1層以上の薄膜バリア層24を備えている。

Description

真空断熱材
 本開示は、真空断熱材に関する。
 特許文献1には、無機繊維集合体からなる芯材と、表面保護層とガスバリア層と熱溶着層とを有する外包材と、芯材及び外包材の水分やガス成分を吸着する吸着剤とを備え、外包材のガスバリア層が少なくとも2層の金属層の金属面が向かい合うように積層された真空断熱材を開示する。
特開2007-263335号公報
 本開示は、真空前に基材層に保持されたガスの真空断熱材の内部への流入を抑制し、高い断熱性能を発揮することができる真空断熱材を提供する。
 本開示における真空断熱材は、芯材と、単数または複数のラミネートフィルムの周縁部を封止してなる外被材20とを有し、真空封止された真空断熱材において、前記外被材は、前記芯材側に配置された熱溶着層と、前記熱溶着層の外側に配置された基材層とを備え、前記熱溶着層と前記基材層の間に1層以上の薄膜バリア層を備えている。
 なお、この明細書には、2022年3月30日付けで日本国に出願された日本国特許出願・特願2022-055059のすべての内容が含まれる。
 本開示における真空断熱材は、熱溶着層と基材層との間に薄膜バリア層を形成しているので、基材層に保持されたガスは、薄膜バリア層を透過することができず、熱溶着層側に移動することを抑制することができる。そのため、ガスによる真空断熱材の内部圧力の上昇を抑制することができ、真空断熱材の断熱性能の低下を抑制することができる。
図1は、実施の形態1に係る真空断熱材を示す概略断面図 図2は、実施の形態1に係る外被材を示す概略断面図 図3は、実施の形態1のガス移動状態を示す説明図
 (本開示の基礎となった知見等)
 発明者らが本開示に想到するに至った当時、真空断熱材の外被材が基材層と薄膜バリア層からなるバリア層を有し、ガスバリア性を高めるため金属からなる2層の薄膜バリア層が対向するように配置された技術があった。
 しかしながら、基材層を薄膜バリア層より芯材側に配置し、かつガス透過度が大きい材料を用いた場合、真空前の保管中に基材層が外気中の酸素や窒素等のガスを速やかに保持し、真空封止後に基材層の保持されたガスが真空断熱材の内側に徐々に排出されてしまい、真空断熱材の内部圧力が上昇し、熱伝導率が低下するという課題があることを発明者らは発見し、その課題を解決するために、本開示の主題を構成するに至った。
 そこで、本開示は、真空前に基材層に保持されたガスの真空断熱材の内部への流入を抑制し、高い断熱性能を発揮することができる真空断熱材を提供する。
 以下、図面を参照しながら実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。
 なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することを意図していない。
 (実施の形態1)
 [1-1.構成]
 [1-1-1.真空断熱材の構成]
 以下、図1から図3を参照しながら、実施の形態1について説明する。
 図1は実施形態に係る真空断熱材の実施の形態を示す概略断面図である。
 図1に示すように、真空断熱材1は、芯材10と、気体吸着剤11と、水分吸着剤12と、芯材10および気体吸着剤11を被覆する外被材20と、を備えている。
 真空断熱材1は、芯材10と、気体吸着剤11と、水分吸着剤12とを、外被材20で覆い、内部を減圧して構成される。
 芯材10は、例えば、減圧封止した際に大気圧に抗して厚さを保つことができ、空隙率が高く、固体熱伝導率が低いものを用いることができる。例えば、無機粉末集合体、特にシリカ粉末や、無機繊維集合体、特に、ガラス繊維集合体が好ましい。
 気体吸着剤11は、例えば、酸化カルシウム、酸化マグネシウム等の化学吸着物質や、ゼオライトのような物理吸着物質、あるいは、それらの混合物やBaLi4等の気体吸着合金を適用することができる。また、気体吸着容量、吸着能力が高い銅イオン交換ZSM-5型ゼオライトを用いても良い。なお、真空断熱材1の用途によっては、気体吸着剤11を省略しても良く、水分吸収剤と共に外被材20内に封入しても良い。
 また、水分吸着剤12の材料は、例えば、一度吸着した水分との結合エネルギが大きく、単位重量あたりの吸着量が多いものが好ましく、例えば、酸化カルシウム、酸化カリウムなどを用いることができる。
 [1-1-2.外被材の構成]
 次に、外被材20の構成について説明する。
 図2は、実施形態1に係る外被材の概略断面図である。
 図2に示すように、外被材20は、気体バリア性に優れており、大気中に真空断熱材1を保存しても、内部に侵入する空気が少ないものである。
 外被材20は、芯材10側に位置する熱溶着層21と、熱溶着層21の外側に位置する基材層22を備えている。基材層22より外側には、保護層23など任意の層を備えてもよい。
 熱溶着層21は、例えば、ポリエチレン、ポリプロピレンから構成されている。
 基材層22は、例えば、ポリエチレンテレフタレート、ナイロン、ポリプロピレン、ポリエチレンから構成されている。
 任意の層は、保護層23や第2・第3の基材層または薄膜バリア層などを設けてもよい。保護層23は、例えば、ナイロンなどの突刺強度、耐衝撃強度、耐傷強度が高いものが好ましい。
 本実施の形態においては、熱溶着層21と、基材層22との間には、薄膜バリア層24が形成されている。
 薄膜バリア層24は、例えば、アルミニウムなどの金属材料による蒸着層で構成されている。この場合は、金属材料によりバリア性を高めることができるので、真空断熱材1を真空封止した後、芯材10側に窒素や酸素などのガスが拡散することを抑制することが可能となる。
 また、その他の薄膜バリア層24としては、例えば、シリカ材料またはアルミナ材料などのセラミック材料による蒸着層で構成してもよい。この場合は、薄膜バリア層24に金属材料による蒸着層を用いた場合、薄膜バリア層24による熱伝導が発生するが、セラミック材料による蒸着層で構成することで、熱伝導によるいわゆるヒートブリッジを抑制することが可能となる。
 薄膜バリア層24を金属材料による蒸着層で構成するか、セラミック材料による蒸着層で構成するかは、真空断熱材1の使用目的に応じて選択される。
 薄膜バリア層24は、熱溶着層21または基材層22のいずれかに塗布することで形成される。薄膜バリア層24と熱溶着層21または薄膜バリア層24と基材層22との間には、接着剤層が設けられていてもよい。
 さらに、薄膜バリア層24は、2層以上に形成されていてもよく、また、樹脂コート層を含んでいてもよい。
 外被材20の構成の具体例としては、例えば、外被材20は、熱溶着層21としてポリエチレン、接着層、薄膜バリア層24としてアルミニウム蒸着層、基材層22としてポリエチレンテレフタレートが順次積層され、さらに外層に接着剤層/アルミニウム蒸着層/ポリエチレンテレフタレート/接着層/保護層23としてナイロンを順次積層して構成される。
 他の例としては、外被材20は、熱溶着層21としてポリエチレン、接着層、薄膜バリア層24としてポリビニルアルコールコート/アルミニウム蒸着層、基材層22としてポリエチレンテレフタレートが順次積層され、さらに外層に接着剤層/ポリビニルアルコール層/アルミニウム蒸着層/ポリエチレンテレフタレートを順次積層して構成される。
 また、他の例としては、外被材20は、熱溶着層21としてポリエチレン、接着層、薄膜バリア層24としてアルミナ-シリカ複合蒸着層、基材層22としてポリエチレンテレフタレートが順次積層され、さらに外層に接着剤層/アルミナ-シリカ複合蒸着層、保護層23としてポリエチレンテレフタレートを順次積層して構成される。
 また、他の例としては、外被材20は、熱溶着層21としてポリプロピレン、薄膜バリア層24としてアルミニウム蒸着層/接着層/アルミニウム蒸着層、基材層22としてポリエチレンテレフタレートが順次積層され、さらに外層に接着剤層/アルミニウム蒸着層/ポリエチレンテレフタレートを順次積層して構成される。
 このように、外被材20は、各種材料を組み合わせることができ、薄膜バリア層24は、複数層で構成されてもよい。
 外被材20は、外被材20を構成する単体フィルムを折り返した状態で、両側辺および端辺を封止することで、外被材20を形成するようにしてもよい。
 また、その他の例として、外被材20は、外被材20を構成する複数のフィルムを互いに貼り合わせ、4辺を封止することで、外被材20を形成するようにしてもよい。
 [1-2.作用]
 次に、本実施形態の作用について説明する。
 図3は、実施の形態1におけるガスの移動状態を示す説明図である。なお、図3中丸印は、ガス分子を示している。
 まず、熱溶着層21と基材層22との間に、薄膜バリア層24を設けた外被材20を作成する。
 この状態で、外被材20を袋状に形成し、外被材20により芯材10を被覆する。
 図3に示すように、外被材20は外気にさらされているので、保護層23側または芯材10側あるいは側面部からガスが侵入する。
 このガスは、時間の経過とともに増大し、熱溶着層21および基材層22には、ガスが保持される。
 その後、外被材20の内部を真空引きすると、図3に示すように、熱溶着層21に保持されたガスは、徐々に芯材10側から放出される。一方、基材層22に保持されたガスは、保護層23側または側面部から外部に放出される。
 このとき、熱溶着層21と基材層22との間に薄膜バリア層24を形成しているので、基材層22に保持されたガスは、薄膜バリア層24を透過することができず、熱溶着層21側に移動することはない。
 そして、外被材20の内部の真空引き中に外被材20を封止することで、真空断熱材1が形成される。この時、熱溶着層21に保持されたガスは、真空引き工程でほとんど芯材10側から放出された状態となる。一方、基材層22に保持されたガスは、真空排気により排出されにくく、基材層22中に留まる。
 この時、薄膜バリア層24により、基材層22に保持されたガスが熱溶着層21側に移動することができないので、ガスによる真空断熱材1の内部圧力の上昇を抑制することができる。その結果、真空断熱材1の断熱性能の低下を抑制することができる。
 ここで、ガスの透過度P、溶解度係数S、拡散係数Dの関係は次式で表される。
 P=S×D
 ポリマーにおける溶解度係数Sの差は少ないとされており、拡散係数Dの寄与度が大きいとされている。
 基材層22の拡散係数Dが大きいと熱溶着層21を通じて窒素や酸素などのガス分子が拡散・保持されやすく、フィルム製造時から時間をかけてガス分子が保持されていく。しかし、基材層22に含まれたガス分子は、短い真空排気時間中には完全に脱気されない。そのため、基材層22と熱溶着層21との間に薄膜バリア層24を設けない場合、真空断熱材1の真空封止後にゆっくりと芯材10側にガスが拡散して内部圧力が上昇することがわかっている。
 基材層22を一般的に用いられるエチレン-ビニルアルコール共重合体で形成した場合、エチレン-ビニルアルコール共重合体の拡散係数Dは小さく、基材層22へのガスの保持量が少ないため、基材層22と熱溶着層21との間に薄膜バリア層24を設けなくても、あまり問題はない。
 しかしながら、本実施の形態のように、基材層22をポリエチレンテレフタレート、ナイロン、ポリプロピレン、ポリエチレンといった拡散係数Dすなわちガス透過度Pが大きい材料で構成する場合、基材層22へのガスの保持量が多くなり、薄膜バリア層24を設けないと、芯材10側にガスが徐々に放出されて内部圧力の上昇を招いてしまう。
 本実施の形態では、このような基材層22としてガス透過度Pが大きい材料を用いる場合や、基材層22と熱溶着層21との窒素透過度が、20℃ドライ条件において1000倍以内である場合に、特に有効である。
 [1-3.効果等]
 以上説明したように、本実施の形態においては、芯材10と、単数または複数のラミネートフィルムの周縁部を封止してなる外被材20とを有し、外被材20は、芯材10側に配置された熱溶着層21と、熱溶着層21の外側に配置された基材層22とを備え、熱溶着層21と基材層22の間に1層以上の薄膜バリア層24を備えている。
 これによれば、熱溶着層21と基材層22との間に薄膜バリア層24を形成しているので、基材層22に保持されたガスは、薄膜バリア層24を透過することができず、熱溶着層21側に移動することを抑制することができる。そのため、ガスによる真空断熱材1の内部圧力の上昇を抑制することができ、真空断熱材1の断熱性能の低下を抑制することができる。
 また、本実施の形態においては、基材層22は、ポリエチレンテレフタレート、ナイロン、ポリプロピレン、ポリエチレンから構成され、前記熱溶着層21は、ポリエチレン、ポリプロピレンから構成されている。
 これによれば、基材層22をガス透過度が大きい材料で構成した場合に、薄膜バリア層24により基材層22から真空断熱材1の芯材10側へのガスの放出を抑制することができる。そのため、ガスによる真空断熱材1の内部圧力の上昇を抑制することができ、真空断熱材1の断熱性能の低下を抑制することができる。
 また、本実施の形態においては、薄膜バリア層24は、金属材料による蒸着層を含んでいる。
 これによれば、金属材料により薄膜バリア層24のバリア性を高めることができ、真空断熱材1を真空封止した後、芯材10側に窒素や酸素などのガスが拡散することを抑制することが可能となる。
 また、本実施の形態においては、薄膜バリア層24は、シリカ材料またはアルミナ材料による蒸着層を含んでいる。
 これによれば、シリカ材料またはアルミナ材料などのセラミック材料により薄膜バリア層24を構成することで、熱伝導によるいわゆるヒートブリッジを抑制することが可能となる。
 (他の実施の形態)
 以上のように、本出願において開示する技術の例示として、実施の形態1を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施の形態にも適用できる。
 本開示は、真空前に保持されたガスの内部への流入を抑制することで、ガスによる真空断熱材の内部圧力の上昇を抑制することができ、真空断熱材の断熱性能の低下を抑制することができる真空断熱材として好適に利用可能である。
 1 真空断熱材
 10 芯材
 11 気体吸着剤
 12 水分吸着剤
 20 外被材
 21 熱溶着層
 22 基材層
 23 保護層
 24 薄膜バリア層

Claims (4)

  1.  芯材と、単数または複数のラミネートフィルムの周縁部を封止してなる外被材20とを有し、真空封止された真空断熱材において、
     前記外被材は、前記芯材側に配置された熱溶着層と、前記熱溶着層の外側に配置された基材層とを備え、
     前記熱溶着層と前記基材層の間に1層以上の薄膜バリア層を備えている
     ことを特徴とする真空断熱材。
  2.  前記基材層は、ポリエチレンテレフタレート、ナイロン、ポリプロピレン、ポリエチレンから構成され、前記熱溶着層は、ポリエチレン、ポリプロピレンから構成されている
     ことを特徴とする請求項1に記載の真空断熱材。
  3.  前記薄膜バリア層は、金属材料による蒸着層を含んでいる
     ことを特徴とする請求項1または請求項2に記載の真空断熱材。
  4.  前記薄膜バリア層は、シリカ材料またはアルミナ材料による蒸着層を含んでいる
     ことを特徴とする請求項1または請求項2に記載の真空断熱材。
PCT/JP2023/002749 2022-03-30 2023-01-27 真空断熱材 WO2023188770A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024511314A JPWO2023188770A1 (ja) 2022-03-30 2023-01-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022055059 2022-03-30
JP2022-055059 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023188770A1 true WO2023188770A1 (ja) 2023-10-05

Family

ID=88200260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002749 WO2023188770A1 (ja) 2022-03-30 2023-01-27 真空断熱材

Country Status (2)

Country Link
JP (1) JPWO2023188770A1 (ja)
WO (1) WO2023188770A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005132004A (ja) * 2003-10-31 2005-05-26 Toppan Printing Co Ltd 断熱パネル用バリア性外装材料及び断熱パネル
WO2012026715A2 (en) * 2010-08-23 2012-03-01 Lg Electronics Inc. Vacuum insulation material
WO2016006694A1 (ja) * 2014-07-11 2016-01-14 株式会社クラレ エチレン-ビニルアルコール共重合体、樹脂組成物、及びこれらを用いた成形体
JP2016038013A (ja) * 2014-08-07 2016-03-22 大日本印刷株式会社 真空断熱材、真空断熱材用外装材、および断熱物品
WO2017115851A1 (ja) * 2015-12-28 2017-07-06 大日本印刷株式会社 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005132004A (ja) * 2003-10-31 2005-05-26 Toppan Printing Co Ltd 断熱パネル用バリア性外装材料及び断熱パネル
WO2012026715A2 (en) * 2010-08-23 2012-03-01 Lg Electronics Inc. Vacuum insulation material
WO2016006694A1 (ja) * 2014-07-11 2016-01-14 株式会社クラレ エチレン-ビニルアルコール共重合体、樹脂組成物、及びこれらを用いた成形体
JP2016038013A (ja) * 2014-08-07 2016-03-22 大日本印刷株式会社 真空断熱材、真空断熱材用外装材、および断熱物品
WO2017115851A1 (ja) * 2015-12-28 2017-07-06 大日本印刷株式会社 真空断熱材用外包材、真空断熱材、および真空断熱材付き物品

Also Published As

Publication number Publication date
JPWO2023188770A1 (ja) 2023-10-05

Similar Documents

Publication Publication Date Title
KR101286342B1 (ko) 진공단열재용 복합심재, 그 제조방법 및 이를 이용한 진공단열재
EP2546425B1 (en) Core material for vacuum insulation panel and manufacturing method for same
US20160230918A1 (en) Vacuum insulation panel and method for manufacturing the same
KR101283728B1 (ko) 진공 단열재 및 그 제조 방법
TWI641488B (zh) 真空絕熱板用包覆層及包含該包覆層的高性能真空絕熱板
KR101560442B1 (ko) 진공단열재용 외피재, 진공단열재 및 단열 벽체
MXPA01009946A (es) Paneles aislantes de vacio.
JP2011058537A (ja) 真空断熱材及びそれを用いた冷却機器または断熱容器
JP2018512544A5 (ja)
JP2010031958A (ja) 真空断熱材
US20210301970A1 (en) Laminate for vacuum insulation material, and vacuum insulation material using the laminate
JP5695212B2 (ja) フェノール樹脂硬化発泡体からなる真空断熱材用芯材とそれを用いた真空断熱材及びその製造方法
WO2023188770A1 (ja) 真空断熱材
JP2008114520A (ja) 真空断熱材
JPH0341198Y2 (ja)
WO2017029727A1 (ja) 真空断熱材及び断熱箱
KR20030072717A (ko) 진공단열재 판넬 및 그의 제조방법
JP2019135094A (ja) 真空断熱材用積層体および真空断熱材
WO2024084774A1 (ja) 真空断熱材
JPH09138058A (ja) 真空断熱材
KR20180099442A (ko) 진공단열재 외피재용 적층재 및 이를 포함한 진공단열재 외피재
KR101749397B1 (ko) 진공 단열재
JPH10160092A (ja) 真空断熱材
WO2019171566A1 (ja) 真空断熱材及び断熱箱
JP2014213240A (ja) 気体吸着デバイス及び真空断熱材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778807

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024511314

Country of ref document: JP

Kind code of ref document: A