WO2017029727A1 - 真空断熱材及び断熱箱 - Google Patents

真空断熱材及び断熱箱 Download PDF

Info

Publication number
WO2017029727A1
WO2017029727A1 PCT/JP2015/073243 JP2015073243W WO2017029727A1 WO 2017029727 A1 WO2017029727 A1 WO 2017029727A1 JP 2015073243 W JP2015073243 W JP 2015073243W WO 2017029727 A1 WO2017029727 A1 WO 2017029727A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
insulating material
vacuum heat
adsorbent
outer packaging
Prior art date
Application number
PCT/JP2015/073243
Other languages
English (en)
French (fr)
Inventor
一正 藤村
犬塚 隆之
貴祥 向山
尚平 安孫子
浩明 ▲高▼井
洋輔 藤森
靖 増田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to AU2015405840A priority Critical patent/AU2015405840B2/en
Priority to PCT/JP2015/073243 priority patent/WO2017029727A1/ja
Priority to JP2017535191A priority patent/JPWO2017029727A1/ja
Priority to CN201580082331.7A priority patent/CN107923565B/zh
Priority to TW105122356A priority patent/TWI604150B/zh
Publication of WO2017029727A1 publication Critical patent/WO2017029727A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum

Definitions

  • the present invention relates to a vacuum heat insulating material used for a heat insulating box such as a refrigerator, and a heat insulating box using the vacuum heat insulating material.
  • a core material that holds a vacuum space is covered with two outer packaging materials together with an adsorbent that adsorbs water vapor, and is formed under reduced pressure and sealed. Vacuum insulation is known.
  • the outer packaging material is composed of a surface protective layer, a barrier layer, and a heat sealing layer, and the thermal conductivity of the vacuum heat insulating material is reduced by maintaining the inside in a vacuum by the outer packaging material. .
  • Patent Document 1 proposes to use a linear low-density polyethylene film having a film thickness of 50 ⁇ m or the like for the heat-sealing layer in order to prevent bag breakage due to the occurrence of pinholes.
  • Patent Document 2 proposes to use calcium oxide having a moisture absorption rate of 13.2 wt% / h, for example, as an adsorbent that adsorbs water vapor in order to realize an internal vacuum state.
  • JP 2006-38122 A Japanese Patent Application Laid-Open No. 2015-59642
  • the invasion path through which water vapor enters the inside is a surface of the outer packaging material and a heat-sealed layer formed by fusing two outer packaging materials.
  • Patent Document 1 when the thickness of the heat-fusible layer is increased to 50 ⁇ m or the like, the water vapor intrusion route is expanded, and the amount of water vapor entering the inside is expected to increase. In this case, even if bag breakage failure due to the occurrence of pinholes can be suppressed, the amount of water vapor that can enter from the fused heat-sealing layer increases, so that the vacuum state inside the vacuum heat insulating material is maintained over a long period of time and the thermal conductivity is reduced. The rise cannot be suppressed.
  • the adsorbent of Patent Document 2 since the adsorbent of Patent Document 2 has a moisture absorption rate of 13.2 wt% / h, it adsorbs both water vapor that has entered from the heat-fusible layer and water vapor that has entered from the defective portion generated in the gas barrier layer. The moisture absorption rate is insufficient. Even in this case, it is difficult to suppress an increase in the thermal conductivity of the vacuum heat insulating material over a long period of time.
  • the present invention has been made in order to solve the above-described problems, suppresses pinholes from being generated due to piercing of the core material, resulting in poor bag breaking, and maintains heat insulation performance over a long period of time. It aims at providing the vacuum heat insulating material and heat insulation box which can be performed.
  • a vacuum heat insulating material includes a core material that holds a vacuum space, an adsorbent that adsorbs moisture, and an outer packaging material that covers the core material and the adsorbent, and the inside of the outer packaging material is sealed under reduced pressure.
  • the outer packaging material is composed of a surface protective layer, a gas barrier layer, and a heat-sealing layer, and the outer packaging material is formed by fusing the heat-sealing layers at the periphery of the outer packaging material.
  • the thickness of the heat-fusion layer is 35 ⁇ m or more and 70 ⁇ m or less
  • the adsorbent contains calcium oxide having a moisture absorption rate of 15 wt% / h or more and 32 wt% / h or less.
  • the vacuum heat insulating material of the present invention by adopting the above-described structure, it is sufficient that a pinhole is generated due to the piercing of the core material by increasing the film thickness of the heat sealing layer, resulting in poor bag breaking.
  • the adsorbent quickly adsorbs water vapor entering from the heat-fusible layer.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of a vacuum heat insulating material according to Embodiment 1.
  • FIG. It is a scatter diagram which shows the relationship between the increase amount of the heat transfer rate of the vacuum heat insulating material of FIG. 1, and a moisture absorption rate. It is a scatter diagram which shows the relationship between the relative piercing strength of the vacuum heat insulating material of FIG. 1, and the film thickness of a heat-fusion layer.
  • FIG. 2 is a scatter diagram showing the relationship between the number of defective bag breakage due to the occurrence of pinholes in the vacuum heat insulating material of FIG. It is a scatter diagram which shows the relationship between the increase amount of the heat transfer rate of the vacuum heat insulating material of FIG. 1, and the film thickness of a heat sealing
  • FIG. 1 is a cross-sectional view showing a schematic configuration of the vacuum heat insulating material 1 according to the first embodiment.
  • the dimensional relationship and shape of each component may differ from the actual ones. Specific dimensions and the like of each constituent material should be determined in consideration of the following explanation.
  • the vacuum heat insulating material 1 is a heat insulating material that realizes a low thermal conductivity by evacuating the inside, and a core material 2 that holds a vacuum space, and an adsorbent 3 that adsorbs at least moisture. And an outer packaging material 4 for covering the core material 2 and the adsorbent 3.
  • the vacuum space defined by the outer packaging material 4 is sealed under reduced pressure by being fused by heat sealing or the like with the opening being decompressed.
  • the vacuum heat insulating material 1 has a substantially rectangular flat plate shape as a whole.
  • the surface of the vacuum heat insulating material 1 is provided with an uneven shape for the purpose of avoiding interference with a copper pipe for heat dissipation.
  • the uneven portion may be provided as necessary, and the difference between the surface of the concave portion and the surface of the convex portion, that is, the depth of the groove is from about 2 mm to 10 mm since the diameter of the copper pipe is about 4 mm. Good.
  • Core material 2 is used for the purpose of maintaining a vacuum space.
  • the core material 2 it is common to use a fiber assembly such as glass wool.
  • the fiber aggregate constituting the core material 2 may be bonded by a binder, whether it is heat-pressed or hermetically sealed using an inner packaging material. Also good.
  • the adsorbent 3 adsorbs water vapor inside the vacuum heat insulating material 1 and maintains the degree of vacuum to suppress an increase in heat transfer coefficient, and an oxidation rate of 15 wt% / h to 32 wt% / h. Calcium (CaO) is used.
  • the moisture absorption rate is a value calculated from the weight increase rate when left in an atmosphere with an air temperature of 25 ° C. and a relative humidity of 90%.
  • the adsorbent 3 may be packaged by a packaging material having air permeability.
  • the air-permeable packaging material is made of an air-permeable member selected from paper, non-woven fabric, plastic film or mesh-like cloth, and improvement in workability can be expected.
  • the packaging material may be a laminate of two or more members selected from these air-permeable members.
  • the outer packaging material 4 is composed of two laminated films having a multilayer structure of a surface protective layer 41, a gas barrier layer 42, and a heat fusion layer 43.
  • the heat fusion layers 43 are fused together and joined at a sealing portion 43a.
  • the core material 2 and the adsorbent 3 are covered.
  • the sealing material 43a is fused and sealed under reduced pressure in the outer packaging material 4 in a state where the pressure is reduced to about 1 to 3 Pa (pascal).
  • the film thickness of the surface protective layer 41 is 25 ⁇ m and the material is preferably a thermoplastic resin having a melting point of 150 ° C. or more and excellent scratch resistance.
  • stretched polyamide such as stretched nylon, polyethylene terephthalate, stretched polypropylene or the like can be used. Stretched nylon is abbreviated as ONY, polyethylene terephthalate is abbreviated as PET, and stretched polypropylene is sometimes abbreviated as OPP.
  • thermoplastic resin or a metal film having an excellent barrier property against water vapor and air is selected as a material.
  • a single layer having a thickness of 24 ⁇ m or two layers having a thickness of 12 ⁇ m are laminated. Formed.
  • aluminum vapor-deposited polyethylene terephthalate, aluminum vapor-deposited ethylene vinyl alcohol, aluminum foil, or a combination thereof may be used.
  • the inorganic material deposited on the thermoplastic resin is not limited to aluminum, and may be alumina, silica, or a combination thereof.
  • Ethylene vinyl alcohol is sometimes abbreviated as EVOH.
  • the heat sealing layer 43 has a film thickness t of 35 ⁇ m or more and 70 ⁇ m or less, and the film thickness T of the sealing portion 43a formed by fusing the heat sealing layers 43 to each other is 70 ⁇ m or more. It may be 140 ⁇ m or less.
  • a thermoplastic resin having a melting point of 150 ° C. or lower is selected as the material, but is not particularly specified.
  • As the heat sealing layer 43 for example, low density polyethylene, linear low density polyethylene, or the like is used. High density polyethylene having a high elastic modulus and excellent water vapor barrier properties or unstretched polypropylene is even better.
  • Low density polyethylene may be abbreviated as LDPE
  • linear low density polyethylene may be abbreviated as LLDPE
  • high density polyethylene may be abbreviated as HDPE
  • unstretched polypropylene may be abbreviated as CPP.
  • FIG. 2 is a scatter diagram showing the relationship between the moisture absorption rate and the increase in thermal conductivity in the vacuum heat insulating material 1 of FIG.
  • LLDPE linear low density polyethylene
  • CPP unstretched polypropylene
  • FIG. 2 when calcium oxide (CaO) is used as the adsorbent 3, if the moisture absorption rate of calcium oxide (CaO) is changed, the thermal conductivity is within a range of 15 wt% / h or more. The state where the increase amount is small is maintained.
  • the moisture absorption rate is 15 wt% / h or more, the vacuum is maintained for a long time and the increase in thermal conductivity is suppressed.
  • the moisture absorption rate is 15 wt% / h or less, the amount of increase in thermal conductivity is greatly increased around 15 wt% / h. This is because the moisture absorption rate of the adsorbent is not sufficient, the amount of water vapor is increased, and the thermal conductivity is increased. Even when the material used for the heat-fusible layer 43 is changed, the same tendency is shown without depending on the material.
  • the heat conductivity of the vacuum heat insulating material 1 can be maintained high over a long period of time by using calcium oxide (CaO) having a moisture absorption rate of 15 wt% / h or more as the adsorbent 3. Further, since the amount of water that calcium oxide (CaO) can theoretically adsorb is 32 wt%, 32 wt% / h is the upper limit of the moisture absorption rate that the adsorbent 3 can take. Furthermore, when the moisture absorption rate is 17 wt% / h or more, a state in which the amount of increase in heat transfer coefficient is low can be stably maintained.
  • CaO calcium oxide
  • the moisture absorption rate is 22 wt% / h or less, moisture is absorbed and deactivated in the manufacturing process. It is suppressed. Therefore, it is more preferable that the moisture absorption rate of the adsorbent 3 is 17 wt% / h or more and 22 wt% / h or less.
  • the moisture absorption rate is measured by the following method. First, the weight of calcium oxide (CaO) is measured with an electronic balance to obtain a sample. Then, the sample is allowed to stand for 1 hour in a constant temperature and humidity chamber having an air temperature of 25 ° C. and a relative humidity of 90%, and then the weight of the sample is quickly measured with an electronic balance. The moisture absorption rate is calculated from the change in weight before and after standing in a thermostatic chamber. When calcium oxide (CaO) has been used, the moisture absorption rate can be calculated by the same method after heating in an electric furnace at a temperature of 1000 ° C. for 4 hours.
  • FIG. 3 is a scatter diagram showing the relationship between the relative piercing strength of the vacuum heat insulating material 1 of FIG. 1 and the film thickness t of the heat-fusible layer 43
  • FIG. 4 is a result of pinhole generation in the vacuum heat insulating material 1 of FIG.
  • It is a scatter diagram which shows the relationship between the number of defective bag breaking and the film thickness t of the heat sealing
  • FIG. FIG. 5 is a scatter diagram showing the relationship between the amount of increase in the thermal conductivity of the vacuum heat insulating material 1 in FIG. 1 and the film thickness t of the thermal fusion layer 43.
  • LLDPE linear low density polyethylene
  • CPP unstretched polypropylene
  • the relative piercing strength indicates the relative piercing strength when the strength when a needle having a diameter of 0.4 mm is pierced into 30 ⁇ m linear low density polyethylene (LLDPE) is taken as 100%.
  • FIG. 4 1000 pieces of vacuum heat insulating materials 1 having different film thicknesses t of the heat-sealing layer 43 are produced, and the number of vacuum heat insulating materials 1 in which pinholes are generated and the bag breakage is defective is pinned. The number of broken bags due to holes.
  • the film thickness t of the heat-sealing layer 43 is 35 ⁇ m or more. Compared with the relative piercing strength when the thickness t is 30 ⁇ m, it rapidly increases to twice. In addition, as shown in FIG. 4, when the film thickness t of the heat sealing layer 43 is 35 ⁇ m or more, the number of defective bag breaking due to the occurrence of pinholes is drastically reduced as compared to when the film thickness t is 35 ⁇ m. Yes. When the film thickness t is 50 ⁇ m or more, the relative puncture strength is maintained, and a state where the number of defective bag breakage due to pinhole generation is small is stably maintained.
  • the amount of increase in thermal conductivity shows a gradual increase until the film thickness t of the thermal fusion layer 43 is changed from 20 ⁇ m to 80 ⁇ m.
  • the film thickness t reaches around 80 ⁇ m, it rapidly increases. That the film thickness t of the heat-fusible layer 43 is 80 ⁇ m indicates that the amount of increase in thermal conductivity is nearly twice that of when the film thickness t is 20 ⁇ m.
  • the water vapor that has entered the adsorbent 3 can be adsorbed, so that low thermal conductivity is maintained.
  • the film thickness t of the heat-sealing layer 43 is 35 ⁇ m or more and 70 ⁇ m or less, and the film thickness T of the sealing portion 43a where the heat-sealing layers 43 are fused is 70 ⁇ m or more. It is determined as 140 ⁇ m or more. Further, the moisture absorption rate of the adsorbent 3 is determined as 15 wt% / h or more and 32 wt% / h or less.
  • the manufacturing process of the vacuum heat insulating material 1 which concerns on this Embodiment 1 is demonstrated.
  • the core material 2 is covered with the outer packaging material 4 having a multilayer structure of the surface protective layer 41, the gas barrier layer 42, and the heat fusion layer 43. Is done.
  • the film thickness t of the heat sealing layer 43 is set to 35 ⁇ m or more and 70 ⁇ m or less.
  • the core material 2 and the outer packaging material 4 are dried. Water is removed from the core material 2 and the outer packaging material 4 by subjecting the core material 2 covered with the outer packaging material 4 to heat treatment at 100 ° C. for 2 hours.
  • the adsorbent 3 is disposed between the core material 2 and the outer packaging material 4.
  • the adsorbent 3 has a moisture absorption rate of 15 wt% / h or more and 32 wt% / h or less.
  • the inside of the outer packaging material 4 is depressurized to a degree of vacuum of about 1 to 3 Pa, and the opening is fused by heat sealing or the like in the depressurized state, and the inside of the outer packaging material 4 is sealed under reduced pressure.
  • the outer packaging material 4 is sealed under reduced pressure, so that the core material 2 is pierced in the heat-sealing layer 43.
  • the film thickness t of the heat-sealing layer 43 is 35 ⁇ m or more and 70 ⁇ m or less, It is suppressed that pinholes are generated and bag breakage is poor.
  • the vacuum heat insulating material 1 obtained through the above steps water vapor easily enters due to the thickness of the sealing portion 43a formed by the fused heat sealing layers 43, but the moisture absorption rate is 15 wt% / h or more.
  • the invaded water vapor is quickly adsorbed by the adsorbent 3 of 32 wt% / h or less. Therefore, the degree of vacuum inside the vacuum heat insulating material 1 is maintained, and the state in which the increase in thermal conductivity is suppressed can be maintained for a long period of time.
  • the moisture absorption rate of the adsorbent 3 is 17 wt% / h or more and 22 wt% / h or less, the increase in heat transfer coefficient is stably reduced, and it is avoided that the hygroscopic capacity is lowered during the manufacturing process. Is done.
  • the vacuum heat insulating material 1 may be subjected to press work in order to give an uneven shape for the purpose of avoiding interference with a copper pipe for heat dissipation.
  • the unevenness formed by pressing may be 2 mm or more and 10 mm or less.
  • the outer packaging material 4 may have different thicknesses of the respective heat-sealing layers 43, and the sealing material 43a formed by fusing the heat-sealing layers 43 having a film thickness t of 35 ⁇ m or more and 70 ⁇ m or less.
  • the film thickness T should just be 70 micrometers or more and 140 micrometers or less.
  • two outer packaging materials 4 may be used, or a single outer packaging material 4 may be folded and used.
  • the number of outer packaging materials 4 is not limited as long as the core material 2 and the adsorbent 3 can be sealed under reduced pressure.
  • Example 1 In Example 1, the relationship between the number of defective bag breakage due to the occurrence of pinholes and the film thickness t of the heat fusion layer 43 was examined.
  • the vacuum heat insulating material 1 comprised the core material 2 with glass wool.
  • the surface protective layer 41 is made of stretched nylon (ONY) having a film thickness of 25 ⁇ m
  • the gas barrier layer 42 is made of aluminum-deposited polyethylene terephthalate (PET) having a film thickness of 12 ⁇ m and aluminum-deposited ethylene vinyl alcohol (EVOH) having a film thickness of 12 ⁇ m. .
  • stacked was comprised as the outer packaging material 4.
  • FIG. And the core material 2 was coat
  • the vacuum heat insulating material 1 having the heat fusion layer 43 with a film thickness t of 35 ⁇ m and the heat fusion layer 43 with a film thickness t of 50 ⁇ m was used.
  • LLDPE linear low density polyethylene
  • CPP unstretched polypropylene
  • the sample used in Comparative Example 1 is a linear low-density polyethylene (LLDPE) having a film thickness of 30 ⁇ m as the heat-sealing layer 43 of the outer packaging material 4 of the vacuum heat insulating material, and other configurations are the same as those of the sample of Example 1. It was the composition of. Similar to the sample of Example 1, 1000 samples of Comparative Example 1 were prepared.
  • LLDPE linear low-density polyethylene
  • Table 1 shows the results of comparing the number of bag breakage defects due to the occurrence of pinholes in the samples of Example 1 and Comparative Example 1.
  • Example 1 employing non-stretched polypropylene (CPP) in which the film thickness t of the heat-fusible layer 43 was 35 ⁇ m, the number of defective bag breaking due to the occurrence of pinholes was reduced to 7. The formation of pinholes was further suppressed by forming the heat-fusible layer 43 from a material having a high elastic modulus. Further, the number of bag breakage defects due to the occurrence of pinholes when the film thickness t was 50 ⁇ m was 5 when the film thickness t was 35 ⁇ m, which was only a slight decrease of 2 sheets.
  • CPP non-stretched polypropylene
  • Example 2 the relationship between the increase in the thermal conductivity of the vacuum heat insulating material 1 and the moisture absorption rate of the adsorbent 3 was examined.
  • the sample used in Example 2 had the same configuration as Example 1 except for the configuration described below.
  • the moisture absorption rate was a value calculated from the rate of weight increase when left in an atmosphere with an air temperature of 25 ° C. and a relative humidity of 90%.
  • the increase in thermal conductivity the thermal conductivity immediately after production and the thermal conductivity after storage for 30 days in an atmosphere at an air temperature of 25 ° C. and a relative humidity of 60% are investigated, and the difference is taken as the increase amount. Calculated.
  • the thermal conductivity was the same value of 1.8 mW / (m ⁇ K) in any sample, and the adsorbent 3 There was no difference in heat transfer coefficient depending on the moisture absorption rate.
  • Example 2 the vacuum heat insulating material 1 in which the adsorbent 3 was covered with the outer packaging material 4 together with the core material 2 was prepared as a sample.
  • Adsorbent 3 had moisture absorption rates of 15 wt% / h, 18 wt% / h, and 32 wt% / h.
  • linear low density polyethylene (LLDPE) and unstretched polypropylene (CPP) were employ
  • fusion layer 43 was made into the constant value of 50 micrometers, the film thickness T of the sealing part 43a was 100 micrometers.
  • the adsorbent 3 was calcium oxide having a moisture absorption rate of 14 wt% / h, and the other configuration was the same as that of the vacuum heat insulating material 1 of Comparative Example 1.
  • the film thickness t of the heat-sealing layer 43 was a constant value of 50 ⁇ m, and the film thickness T of the sealing portion 43a was 100 ⁇ m.
  • Table 2 shows the results of comparing the increase in the thermal conductivity of the vacuum heat insulating material 1 in the samples of Example 2 and Comparative Example 2.
  • the increase in thermal conductivity was 0.4 mW / (m ⁇ K).
  • the amount of increase in thermal conductivity was 0.2 mW / (m ⁇ K) in all the adsorbents 3 having a moisture absorption rate of 15 wt% / h or more.
  • the amount of increase in thermal conductivity was even lower, 0.1 mW / (m ⁇ K).
  • Example 3 the relationship between the number of bag breakage defects due to the occurrence of pinholes in the vacuum heat insulating material 1 and the moisture absorption rate was examined. In addition, about the sample used in Example 3 and Comparative Example 3, it was set as the structure demonstrated in Example 1 except the structure demonstrated below.
  • Example 3 the thickness t of the heat-fusible layer 43 was set to 50 ⁇ m. Further, in Comparative Example 3, the film thickness t of the heat sealing layer 43 was set to 30 ⁇ m which is equal to or lower than the lower limit value of the heat sealing layer 43 and 80 ⁇ m which is equal to or higher than the upper limit value of the heat sealing layer 43.
  • LLDPE linear low density polyethylene
  • the adsorption rate of the adsorbent 3 was a constant value of 18 wt% / h.
  • Table 3 shows the result of comparing the number of defective bag breakage due to the occurrence of pinholes in the samples of Example 3 and Comparative Example 3 and the amount of increase in thermal conductivity during vacuum insulation.
  • the film thickness t of the heat-sealing layer 43 is 80 ⁇ m which is the upper limit or more, the number of defective bag breaking due to the occurrence of pinholes is 15, and the increase in thermal conductivity is 0.3 mW / (m ⁇ K). As a result, the increase in thermal conductivity could not be suppressed.
  • Example 3 the number of defective bag breaking due to the occurrence of pinholes was 14, and the amount of change in thermal conductivity was 0.2 mW / (m ⁇ K). And the increase in heat transfer coefficient was also suppressed.
  • the heat sealing layer 43 has a film thickness t of 35 ⁇ m or more and 70 ⁇ m or less. Therefore, it has a thickness that can sufficiently suppress the occurrence of pinholes due to the piercing of the core material 2 and the bag breaking failure. Further, since the adsorbent 3 has a moisture absorption rate of 15 wt% / h or more and 32 wt% / h or less, the heat-sealing layers 43 are fused together, and the sealing portion 43a has a film thickness T of 70 ⁇ m or more and 140 ⁇ m or more. It has a moisture absorption rate that can sufficiently adsorb the invading water vapor. Thereby, the degree of vacuum in the vacuum space is maintained, the increase in thermal conductivity is suppressed, and the heat insulating properties can be maintained for a long time.
  • the moisture absorption rate of the adsorbent 3 is 17 wt% / h or more and 22 wt% / h or less, an increase in thermoelastic modulus can be stably reduced, and a decrease in moisture absorption capability in the manufacturing process can be suppressed. .
  • the heat exchange between the vacuum heat insulating material 1 and the copper pipe for heat dissipation is provided on the surface of the vacuum heat insulating material 1 by providing an uneven portion having a difference between the surface of the concave portion and the surface of the convex portion of 2 mm or more and 10 mm or less. Can be promoted.
  • the adsorbent 3 when the adsorbent 3 is covered with a packaging material formed from any one of paper, non-woven fabric, plastic film, or mesh cloth, workability can be improved while ensuring the air permeability of the adsorbent 3.
  • the packaging material may be formed by laminating a plurality of layers made of paper, non-woven fabric, plastic film, or mesh cloth.
  • the core material 2 may be a fiber assembly having low thermal conductivity and easy handling, particularly glass wool.
  • FIG. FIG. 6 is a cross-sectional view illustrating a schematic configuration of the heat insulating box 100 according to the second embodiment.
  • the heat insulation box 100 is, for example, a refrigerator or the like that requires heat insulation performance over a long period of time.
  • the heat insulating box 100 has an inner box 110 and an outer box 120.
  • the vacuum heat insulating material 1 demonstrated in Embodiment 1 is arrange
  • the position where the vacuum heat insulating material 1 is disposed is, for example, a position in close contact with the outer wall surface of the inner box 110, and is disposed at a position where heat insulation can be performed between the inner box 110 and the outer box 120.
  • the heat insulating box 100 is provided with the vacuum heat insulating material 1 having a low thermal conductivity. Thereby, since the state with low heat conductivity between the inner box 110 and the outer box 120 is maintained, the heat insulation performance of the heat insulation box 100 can be maintained high over a long period of time. In a refrigerator equipped with the heat insulation box 100, power consumption is reduced.
  • the heat insulating box 100 can obtain higher heat insulating performance than the heat insulating box 100 using only the urethane foam heat insulating material 130.
  • a portion other than the vacuum heat insulating material 1 may be filled with the urethane foam heat insulating material 130.
  • the vacuum heat insulating material 1 of the heat insulating box 100 is in close contact with the outer wall surface of the inner box 110, but the vacuum heat insulating material 1 may be in close contact with the inner wall surface of the outer box 120.
  • the vacuum heat insulating material 1 may be disposed in a space between the inner box 110 and the outer box 120 so as not to be in close contact with either the inner box 110 or the outer box 120 by using a spacer or the like.
  • illustration and description are abbreviate
  • the vacuum heat insulating material 1 according to the present invention is not limited to the above-described embodiment, and various modifications are possible, and the above-described embodiments and modifications can be implemented in combination with each other.
  • the core material 2 and the outer packaging material 4 are dried by a heat treatment at 100 ° C. for 2 hours in the manufacturing process. And if it is the temperature and time which can remove the water
  • the core material 2 and the outer packaging material 4 are dried in a state where the core material 2 is covered with the outer packaging material 4, after the core material 2 and the outer packaging material 4 are separately dried, the core material 2 is encapsulated. You may coat
  • the adsorbent 3 is arrange
  • the adsorbent 3 may be disposed before the core material 2 and the outer packaging material 4 are dried.
  • the configuration in which the vacuum heat insulating material 1 is used for the heat insulating box 100 of the refrigerator provided with the cold heat source is exemplified, but the present invention is not limited to this.
  • the vacuum heat insulating material 1 can also be used for a heat insulation box of a heat insulation box provided with a heat source or a heat insulation box not provided with a cold heat source and a heat source, for example, a cooler box.
  • the vacuum heat insulating material 1 may be used not only as the heat insulating box 100 but also as a heat insulating member of a cooling device or a heating device such as an air conditioner, a vehicle air conditioner, or a water heater, and the shape thereof is not a predetermined shape. Further, it may be used for a heat insulating bag having a deformable outer bag and an inner bag, a heat insulating container, or the like.

Abstract

真空断熱材は、真空空間を保持する芯材と、水分を吸着する吸着剤と、芯材と吸着剤を被覆する外包材とを備え、外包材の内部を減圧密封した真空断熱材であって、外包材は、表面保護層とガスバリア層と熱融着層からなり、外包材は、当該外包材の周縁部の熱融着層同士が融着された封止部を有し、熱融着層の厚みが35μm以上70μm以下であり、吸着剤には吸湿速度が15wt%/h以上32wt%/h以下の酸化カルシウムを含む。

Description

真空断熱材及び断熱箱
 本発明は、冷蔵庫などの断熱箱に用いられる真空断熱材、及び、真空断熱材を用いた断熱箱に関するものである。
 冷蔵庫等の断熱材として用いられている従来の真空断熱材としては、真空空間を保持する芯材が、水蒸気を吸着する吸着剤とともに2枚の外包材により被覆され、減圧密封されて形成される真空断熱材が知られている。外包材は、表面保護層と、バリア層と、熱融着層とから構成されるものであり、外包材により内部を真空に維持することで、真空断熱材の熱伝導率を低減している。外包材としては、例えば、特許文献1では、ピンホール発生による破袋不良を防止するため、熱融着層に膜厚が、50μmなどの直鎖状低密度ポリエチレンフィルムを用いることが提案されている。また、例えば、特許文献2では、内部の真空状態を実現するため、水蒸気を吸着する吸着剤に吸湿速度が、例えば、13.2wt%/hの酸化カルシウムを用いることも提案されている。
特開2006-38122号公報 特開2015-59642号公報
 真空断熱材においては、水蒸気が内部に侵入する侵入経路は、外包材の表面、及び2枚の外包材が融着されて形成された熱融着層であることが考えられる。特許文献1のように、熱融着層の膜厚を50μmなどに増加させると、水蒸気の侵入経路が拡大されることになり、内部に侵入する水蒸気の量が増加することが予想される。これでは、ピンホール発生による破袋不良を抑制できても、融着した熱融着層から侵入できる水蒸気が増量するため、真空断熱材内部の真空状態を長期間にわたって維持して熱伝導率の上昇を抑制することができない。
 また、特許文献2の吸着剤は、吸湿速度が13.2wt%/hであるので、熱融着層から侵入した水蒸気と、ガスバリア層に生じる欠損部分から侵入した水蒸気との双方を吸着するためには吸湿速度が不十分である。この場合にも、長期間にわたって真空断熱材の熱伝導率の上昇を抑制することは困難である。
 本発明は、上述のような課題を解決するためになされたものであり、芯材の突刺しによりピンホールが発生し破袋不良となることを抑制し、且つ、長期間にわたって断熱性能を維持できる真空断熱材及び断熱箱を提供することを目的とする。
 本発明に係る真空断熱材は、真空空間を保持する芯材と、水分を吸着する吸着剤と、前記芯材と前記吸着剤を被覆する外包材とを備え、前記外包材の内部を減圧密封した真空断熱材であって、前記外包材は、表面保護層とガスバリア層と熱融着層からなり、前記外包材は、当該外包材の周縁部の前記熱融着層同士が融着された封止部を有し、前記熱融着層の厚みが35μm以上70μm以下であり、前記吸着剤には吸湿速度が15wt%/h以上32wt%/h以下の酸化カルシウムを含むものである。
 本発明の真空断熱材によれば、上記の構成を採用したことによって、熱融着層の膜厚を増加させることで芯材の突刺しによりピンホールが発生し破袋不良となることを十分に抑制し、且つ、熱融着層から侵入する水蒸気を吸着剤が素早く吸着する。これにより、真空断熱材の内部の真空度が維持されて熱伝達率の上昇を抑制できるので、真空断熱材の断熱特性が長期間維持できる、という効果を奏する。
実施の形態1に係る真空断熱材の概略構成を示す断面図である。 図1の真空断熱材の熱伝達率の増加量と吸湿速度の関係を示す散布図である。 図1の真空断熱材の相対突き刺し強度と熱融着層の膜厚の関係を示す散布図である。 図1の真空断熱材のピンホール発生による破袋不良枚数と熱融着層の膜厚の関係を示す散布図である。 図1の真空断熱材の熱伝達率の増加量と熱融着層の膜厚との関係を示す散布図である。 実施の形態2に係る断熱箱の概略構成を示す断面図である。
 実施の形態1.
 本発明の実施の形態1に係る真空断熱材について説明する。図1は、本実施の形態1に係る真空断熱材1の概略構成を示す断面図である。なお、図1を含む以下の図面では、各構成部材の寸法の関係や形状等が実際のものとは異なる場合がある。各構成材の具体的な寸法等は、以下の説明を参酌した上で判断すべきものである。
 図1に示すように、真空断熱材1は、内部を真空にすることで低い熱伝導率を実現する断熱材であり、真空空間を保持する芯材2と、少なくとも水分を吸着する吸着剤3と、芯材2と吸着剤3を被覆する外包材4とを備えるものである。外包材4で規定される真空空間は、開口部が減圧された状態でヒートシール等により融着されることで減圧密封される。真空断熱材1は、全体として概略長方形平板状の形状を有している。
 真空断熱材1の表面には、放熱用の銅配管との干渉等を避ける目的で、凹凸の形状が付与されている。凹凸部は必要に応じて設ければよく、凹部の表面と凸部の表面と差、つまり、溝の深さは、銅配管の径が4mm程度であることから、2mm以上10mm以内であればよい。
 芯材2は、真空空間を保持する目的で使用される。芯材2としては、グラスウールなどの繊維集合体を用いることが一般的である。また、芯材2を構成する繊維集合体は、加熱加圧成形をしたものであっても、内包材を用いて密封封止したものであっても、結合剤により結着したものであってもよい。
 吸着剤3は、真空断熱材1の内部の水蒸気を吸着し、真空度を保つことで熱伝達率の上昇を抑制するものであり、吸湿速度が15wt%/h以上32wt%/h以下の酸化カルシウム(CaO)が使用される。吸湿速度とは、気温25℃、相対湿度90%の雰囲気下に静置したときの重量増加率から算出される値である。
 吸着剤3は、通気性を有する包材により包装されていてもよい。通気性を有する包材は、紙、不織布、プラスチックフィルム又は網目状の布から選択した通気性を有する部材からなるものであり、作業性の向上が期待できる。包材は、これら通気性を有する部材から選択された2種類以上の部材が積層されたものであってもよい。
 外包材4は、表面保護層41とガスバリア層42と熱融着層43との多層構造をなす2枚のラミネートフィルムからなり、熱融着層43同士が融着し、封止部43aにおいて接合されて芯材2と、吸着剤3とを被覆する。このとき、外包材4は、1から3Pa(パスカル)程度の真空度に減圧された状態で封止部43aが融着され、減圧密封される。
 表面保護層41の膜厚は25μmなどであり、材料は、融点が150℃以上で耐傷付性に優れた熱可塑性樹脂等であるとよい。例えば、延伸ナイロンなどの延伸ポリアミド、ポリエチレンテレフタレート、延伸ポリプロピレン等を用いることができる。延伸ナイロンはONYと略称され、ポリエチレンテレフタレートはPETと略称され、延伸ポリプロピレンはOPPと略称されることもある。
 ガスバリア層42は、材料に水蒸気及び空気の遮断性に優れた熱可塑性樹脂又は金属膜が選択され、例えば、膜厚が24μmの単層から、又は、膜厚が12μmの層が2層積層されて形成される。ガスバリア層42の材料には、アルミ蒸着ポリエチレンテレフタレート、アルミ蒸着エチレンビニルアルコール、アルミ箔、又はこれらの組合せなどを用いればよい。また、熱可塑性樹脂に蒸着される無機材料は、アルミに限定されず、アルミナ、シリカ、又はこれらの組合せでもよい。エチレンビニルアルコールは、EVOHと略称されることもある。
 熱融着層43は、熱融着層43は、膜厚tを35μm以上70μm以下とし、熱融着層43同士が融着して形成される封止部43aの膜厚Tは、70μm以上140μm以下であればよい。材料に融点が150℃以下の熱可塑性樹脂等などが選択されるが、特に指定されるものではない。熱融着層43として、例えば、低密度ポリエチレン、直鎖状低密度ポリエチレン等が用いられる。弾性率が高く、水蒸気の遮断性に優れた高密度ポリエチレン、又は、無延伸ポリプロピレンであれば更に良い。低密度ポリエチレンはLDPEと略称され、直鎖状低密度ポリエチレンはLLDPEと略称され、高密度ポリエチレンはHDPEと略称され、無延伸ポリプロピレンはCPPと略称されることもある。なお、以下の説明においては、上記の略称は括弧内に記載することとする。
 次に、吸着剤3の吸湿速度について図2を参照しながら詳細に説明する。
 図2は、図1の真空断熱材1に吸湿速度と熱伝導率の増加量との関係を示す散布図である。図2においては、熱融着層43として、直鎖状低密度ポリエチレン(LLDPE)を用いた場合を黒丸印で示し、無延伸ポリプロピレン(CPP)を用いた場合を黒四角印で示している。図2に示すように、吸着剤3として酸化カルシウム(CaO)を用いた場合、酸化カルシウム(CaO)の吸湿速度を変化させると、吸湿速度が15wt%/h以上の範囲では、熱伝導率の増加量が小さい状態が維持されている。これは、吸湿速度が15wt%/h以上であると、真空が長く維持され、熱伝導率の上昇が抑制されるためである。一方吸湿速度が15wt%/h以下になると、15wt%/h付近を境に熱伝導率の増加量が大きく上昇している。吸着剤の吸湿速度が十分ではなく、水蒸気が増量し、熱伝導率が上昇したためである。熱融着層43に用いる材料を変更した場合にも、材料に依存することなく同様の傾向を示している。
 以上より、吸着剤3として吸湿速度が15wt%/h以上の酸化カルシウム(CaO)を用いることで、真空断熱材1の熱伝導率が長期間に渡り高く維持できると考えることができる。また、酸化カルシウム(CaO)が理論上吸着することができる水分量は32wt%であるため、32wt%/hが吸着剤3の取り得る吸湿速度の上限値である。更に、吸湿速度が17wt%/h以上であると、熱伝達率の増加量が低い状態を安定して維持でき、吸湿速度を22wt%/h以下とすると、製造工程において吸湿し、失活することが抑制される。そのため、吸着剤3の吸湿速度を17wt%/h以上22wt%/h以下とするとより好ましい。
 なお、吸湿速度の測定は、次の方法により行われる。まず、酸化カルシウム(CaO)の重量を電子天秤で測定し、試料とする。そして、試料を気温25℃、相対湿度90%の雰囲気の恒温恒湿槽に1時間静置した後、速やかに試料の重量を電子天秤で測定する。恒温恒湿槽に静置した前後の重量変化から、吸湿速度を算出する。酸化カルシウム(CaO)が使用済みである場合は、気温1000℃の電気炉で4時間加熱した後、同様の方法により吸湿速度を算出することができる。
 次に、熱融着層43について図3~5を参照しながら詳細に説明する。
 図3は、図1の真空断熱材1の相対突き刺し強度と熱融着層43の膜厚tの関係を示す散布図であり、図4は、図1の真空断熱材1のピンホール発生による破袋不良枚数と熱融着層43の膜厚tの関係を示す散布図である。また、図5は、図1の真空断熱材1の熱伝導率の増加量と熱融着層43の膜厚tとの関係を示す散布図である。図3~5においても、熱融着層43として、直鎖状低密度ポリエチレン(LLDPE)を用いた場合を黒丸印で示し、無延伸ポリプロピレン(CPP)を用いた場合を黒四角印で示している。相対突き刺し強度とは、直径φ0.4mmの針を30μmの直鎖状低密度ポリエチレン(LLDPE)に突き刺したときの強度を100%とした場合の相対的な突き刺し強度を示したものである。また、図4においては、熱融着層43の膜厚tが異なる真空断熱材1を1000枚ずつ作製し、そのうちピンホールが発生し、破袋不良となった真空断熱材1の枚数をピンホール発生による破袋不良枚数としている。
 熱融着層43の膜厚tに着目すると、図3に示すように、いずれの材料を用いた熱融着層43でも、熱融着層43の膜厚tが35μm以上であると、膜厚tが30μmのときの相対突き刺し強度と比較して2倍にまで急増する。また、図4に示すように、熱融着層43の膜厚tが35μm以上であると、膜厚tが35μmのときと比較してピンホール発生による破袋不良枚数が急激に低減している。そして、膜厚tが50μm以上になると、相対突き刺し強度が維持され、ピンホール発生による破袋不良枚数が小さい状態が安定して維持される。
 一方、熱伝導率の増加量に着目すると、図5に示すように、熱融着層43の膜厚tが20μmから80μmになるまでは、熱伝導率の増加量は緩やかな上昇を示しているが、膜厚tが80μm付近になると急激に上昇している。熱融着層43の膜厚tが80μmであるとは、膜厚tが20μmであるときと比較して熱伝導率の増加量が2倍近くの値を示している。熱融着層43の膜厚tが20μmから80μmまでの範囲では、吸着剤3が侵入した水蒸気を吸着できるため、低い熱伝導率が維持される。しかし、熱融着層43の膜厚tが増加すると、侵入する水蒸気が封止部43aの膜厚Tの増加に伴い増量し、吸着剤3の吸湿速度が低下するため、時間とともに内部の真空度が低下して熱伝導率が増加してしまう。
 以上より、図2~図5の説明に基づき、熱融着層43の膜厚tは35μm以上70μm以下とし、熱融着層43同士が融着した封止部43aの膜厚Tを70μm以上140μm以上として決定される。また、吸着剤3の吸湿速度は、15wt%/h以上32wt%/h以下として決定される。
 次に、本実施の形態1に係る真空断熱材1の製造工程について説明する。
 本実施の形態1に係る真空断熱材1の製造工程においては、まず、表面保護層41と、ガスバリア層42と、熱融着層43との多層構造から成る外包材4により芯材2が被覆される。このとき、熱融着層43の膜厚tは、35μm以上70μm以下とする。そして、芯材2及び外包材4の乾燥が行われる。外包材4で被覆した芯材2を100℃で2時間加熱処理を行うことによって、水分が芯材2及び外包材4から除去される。
 次に、吸着剤3が芯材2及び外包材4の間に配置される。吸着剤3は、吸湿速度が15wt%/h以上32wt%/h以下である。そして、外包材4の内部を1から3Pa程度の真空度に減圧し、その減圧状態で開口部をヒートシール等で融着し、外包材4の内部を減圧密封する。このとき、外包材4が減圧密封されることで、熱融着層43に芯材2の突き刺しが発生するが、熱融着層43の膜厚tを35μm以上70μm以下としているため、突き刺しによりピンホールが発生し破袋不良となることが抑制される。
 以上の工程を経て得られた真空断熱材1は、融着された熱融着層43同士が形成する封止部43aの厚みにより、水蒸気が侵入しやすいが、吸湿速度が15wt%/h以上32wt%/h以下の吸着剤3により侵入した水蒸気が素早く吸着される。そのため、真空断熱材1の内部の真空度が維持され、熱伝導率の増加量が抑制された状態を長期間に渡り維持することができる。特に、吸着剤3の吸湿速度が17wt%/h以上22wt%/h以下であると、熱伝達率の上昇が安定して低減され、且つ、製造工程の途中で吸湿能力が低下することが回避される。
 なお、真空断熱材1は、放熱用の銅配管との干渉等を避ける目的で、凹凸の形状を付与するために、プレス加工が施される場合もある。この場合、プレス加工によって形成される凹凸の差は2mm以上10mm以内などでよい。
 また、外包材4は、それぞれの熱融着層43が異なる厚みであってもよく、膜厚tが35μm以上70μm以下の熱融着層43同士が融着されて形成する封止部43aの膜厚Tが70μm以上140μm以下であればよい。更に、芯材2と吸着剤3とを被覆する外包材4は、2枚の外包材4を用いてもよく、1枚の外包材4を折りたたんで用いることもできる。芯材2と吸着剤3とを減圧密封することができれば、外包材4の枚数は限定されない。
 次に、本実施の形態1の真空断熱材1を作製し、実施例1~3について比較例1~3との比較を行った。以下にその比較結果について説明する。
<実施例1>
 実施例1では、ピンホールの発生による破袋不良枚数と熱融着層43の膜厚tとの関係について調べた。真空断熱材1は、芯材2をグラスウールで構成した。外包材4は、表面保護層41を膜厚25μmの延伸ナイロン(ONY)、ガスバリア層42を膜厚12μmのアルミ蒸着ポリエチレンテレフタレート(PET)と膜厚12μmのアルミ蒸着エチレンビニルアルコール(EVOH)とした。そして、表面保護層41と、ガスバリア層42と、熱融着層43とが積層されたラミネートフィルムを外包材4として構成した。そして、外包材4により芯材2を被覆して真空断熱材1を作製した。
 実施例1の試料には、膜厚tが35μmの熱融着層43と、膜厚tが50μmの熱融着層43とを有する真空断熱材1を用いた。熱融着層43の材料は、直鎖状低密度ポリエチレン(LLDPE)と、それよりも弾性率が高い無延伸ポリプロピレン(CPP)とであった。そして、それぞれ膜厚及び材料から成る試料を1000枚ずつ用意した。
 比較例1に用いた試料は、真空断熱材の外包材4の熱融着層43を膜厚30μmの直鎖状低密度ポリエチレン(LLDPE)であり、そのほかの構成を実施例1の試料と同様の構成としたものであった。実施例1の試料と同様、比較例1の試料についても1000枚用意した。
 表1は、実施例1及び比較例1の試料におけるピンホール発生による破袋不良枚数を比較した結果である。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、比較例1において、直鎖状低密度ポリエチレン(LLDPE)の熱融着層43の膜厚tを30μmとした場合、ピンホール発生による破袋不良枚数が42枚であり、発生頻度は4.2%であった。
 これに対し、実施例1の試料において、直鎖状低密度ポリエチレン(LLDPE)の熱融着層43の膜厚tを35μmとした場合、ピンホール発生による破袋不良枚数は19枚であり、発生頻度が1.9%であった。つまり、実施例1の試料では、ピンホールの発生頻度が比較例1と比較して2.3%も減少していた。また、熱融着層43の膜厚tを50μmとした場合には、ピンホール発生による破袋不良枚数は、14枚にまで低減したものの、膜厚tが35μmとした場合と比較すると、5枚減少したに過ぎなかった。
 熱融着層43の膜厚tを30μmから35μmに増加させると、ピンホール発生による破袋不良枚数が大幅に減少し、膜厚tを35μmから50μmに増加させると、ピンホール発生による破袋不良枚数に大きな変化はみられないことがわかった。
 なお、熱融着層43の膜厚tを35μmとした無延伸ポリプロピレン(CPP)を採用した実施例1の試料においても、ピンホール発生による破袋不良枚数が7枚にまで減少した。熱融着層43を弾性率の高い材料から形成することでピンホールの発生が更に抑制された。また、膜厚tを50μmとした場合のピンホール発生による破袋不良枚数は、膜厚tを35μmとした場合5枚であり、わずかに2枚減少しただけであった。熱融着層43の材料に無延伸ポリプロピレン(CPP)を採用した場合でも、膜厚tを35μmとした場合と、膜厚tを50μmとした場合とでは、ピンホール発生による破袋不良枚数に大きな変化はみられなかった。
<実施例2>
 実施例2では、真空断熱材1の熱伝導率の増加量と吸着剤3の吸湿速度との関係について調べた。実施例2で使用した試料は、以下で説明する構成以外は、実施例1と同様の構成とした。吸湿速度は、気温25℃、相対湿度90%の雰囲気下に静置したときの重量増加率から算出される値とした。また、熱伝導率の増加量については、製造直後の熱伝導率と、気温25℃、相対湿度60%の雰囲気下で30日間保管した後の熱伝導率とを調べ、その差を増加量として算出した。
 実施例2の真空断熱材1及び比較例2の真空断熱材を製造した直後において、いずれの試料においても、熱伝導率が1.8mW/(m・K)の同値であり、吸着剤3の吸湿速度による熱伝達率の相違はみられなかった。
 実施例2では、試料として、芯材2とともに、吸着剤3が外包材4により被覆された真空断熱材1を作製した。吸着剤3は、吸湿速度が15wt%/h、18wt%/h、及び32wt%/hであった。また、実施例1と同様、それぞれの試料の熱融着層43の材料には、直鎖状低密度ポリエチレン(LLDPE)と、無延伸ポリプロピレン(CPP)とを採用した。なお、熱融着層43の膜厚tは、50μmの一定値としたため、封止部43aの膜厚Tは100μmであった。
 比較例2においては、吸着剤3が吸湿速度14wt%/hである酸化カルシウムを用い、他の構成は、比較例1の真空断熱材1と同様とした。また、比較例2でも、実施例2と同様、熱融着層43の膜厚tは、50μmの一定値であり、封止部43aの膜厚Tは100μmであった。
 表2は、実施例2及び比較例2の試料における真空断熱材1の熱伝導率の増加量を比較した結果である。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、比較例2の真空断熱材では、熱伝導率の増加量が0.4mW/(m・K)であった。これに対し、実施例2の真空断熱材1では、吸湿速度が15wt%/h以上である全ての吸着剤3で熱伝導率の増加量が0.2mW/(m・K)を示していた。熱融着層43に無延伸ポリプロピレン(CPP)を採用した試料では、熱伝導率の増加量が更に低く、0.1mW/(m・K)であった。
 このように、吸着剤3の吸湿速度が15wt%/h以上であることで、熱伝達率の増加量が低い値が長期間に渡り維持された。また、熱融着層43に無延伸ポリプロピレン(CPP)を採用することで、更に低い熱伝導率の変化量が得られた。
<実施例3>
 実施例3では、真空断熱材1のピンホール発生による破袋不良枚数と吸湿速度との関係について調べた。なお、実施例3及び比較例3において使用した試料については、以下で説明する構成以外は、実施例1で説明した構成と同様とした。
 実施例3は、熱融着層43の膜厚tを50μmとした。また、比較例3では、熱融着層43の膜厚tを熱融着層43の下限値以下の30μm及び熱融着層43の上限値以上の80μmとした。いずれの試料においても、熱融着層43の材料には、直鎖状低密度ポリエチレン(LLDPE)が用いられ、吸着剤3の吸着速度は、18wt%/hの一定値とした。
 表3は、実施例3及び比較例3の試料におけるピンホールの発生による破袋不良枚数及び真空断熱時の熱伝導率の増加量を比較した結果である。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、比較例3のうち、熱融着層43の膜厚tを下限値以下の30μmとした試料では、ピンホール発生による破袋不良枚数が42枚であった。また、熱伝導率の増加量が0.2mW/(m・K)であり、ピンホール発生による破袋不良枚数が抑制できなかった。
 熱融着層43の膜厚tを上限値以上の80μmとした試料では、ピンホール発生による破袋不良枚数が15枚であり、熱伝導率の増加量が0.3mW/(m・K)であったので、熱伝導率の増加量が抑制できなかった。
 これに対し、実施例3では、ピンホール発生による破袋不良枚数が14枚であり、熱伝導率の変化量は、0.2mW/(m・K)であり、ピンホールによる破袋不良発生を抑制するとともに、熱伝達率の増加量も抑制されていた。
 以上より、熱融着層43の膜厚tを、35μm以上70μm以下とし、吸着剤3の吸湿速度を、15wt%/h以上32wt%/h以下とすることで、ピンホールによる破袋不良発生を抑制し、且つ、内部に侵入した水蒸気を吸着できる真空断熱材1が得られることがわかった。
 以上説明した本実施の形態1の真空断熱材1においては、熱融着層43が、膜厚tを35μm以上70μm以下としている。そのため、芯材2の突刺しによりピンホールが発生し破袋不良となることを十分抑制できる厚さを有する。また、吸着剤3は、吸湿速度が15wt%/h以上32wt%/h以下であるため、熱融着層43同士が融着され、膜厚Tが70μm以上140μm以上である封止部43aから侵入した水蒸気を十分吸着できる吸湿速度を有する。これにより、真空空間の真空度が維持されて熱伝導率の上昇が抑制され、断熱特性を長期間維持できる。
 特に、吸着剤3の吸湿速度が17wt%/h以上22wt%/h以下とすることで、熱弾性率の上昇を安定して低減できるとともに、製造工程における吸湿能力の低下を抑制することができる。
 また、熱溶着層を、高い弾性率を有し、水蒸気の遮断性に優れた高密度ポリエチレン、又は、無延伸ポリプロピレンにより形成することで、芯材2の突き刺しによりピンホールが発生し破袋不良となることが更に抑制され、水蒸気の侵入量を低減することができる。
 また、真空断熱材1の表面に、凹部の表面と凸部の表面との差が2mm以上10mm以下の凹凸部を設けることで、真空断熱材1と放熱用の銅配管との間の熱交換を促進することができる。
 また、吸着剤3を、紙、不織布、プラスチックフィルム、又は網目状の布のいずれかから形成された包材により覆うと、吸着剤3の通気性を確保しながら作業性を向上させることができる。包材は、紙、不織布、プラスチックフィルム、又は網目状の布から成る層を複数積層させて形成してもよい。
 芯材2は、熱伝導率が低く、取り扱いが容易な繊維集合体、特にグラスウールなどであるとよい。
 実施の形態2.
 図6は、本実施の形態2に係る断熱箱100の概略構成を示す断面図である。断熱箱100は、長期間にわたる断熱性能が求められる、例えば、冷蔵庫などである。
 図6に示すように、断熱箱100は、内箱110と外箱120とを有する。そして、内箱110と外箱120との間の空間には、実施の形態1において説明した真空断熱材1が配置されており、内箱110と外箱120との間で断熱を行う。真空断熱材1が配置される位置は、例えば内箱110の外壁面に密着した位置などであり、内箱110と、外箱120との間で断熱できる位置に配置される。
 このように、断熱箱100は、熱伝導率の低い真空断熱材1が設けられている。これにより、内箱110と外箱120との間の熱伝導率が低い状態が維持されるため、断熱箱100の断熱性能を長期間にわたり高く維持することができる。断熱箱100を備えた冷蔵庫などにおいては、消費電力の削減につながる。
 真空断熱材1は、発泡ウレタン断熱材130等と比較して高い断熱性能を有するため、断熱箱100は、発泡ウレタン断熱材130のみを用いた断熱箱100よりも高い断熱性能を得られる。しかし、内箱110と外箱120との間の空間のうち、真空断熱材1以外の部分には発泡ウレタン断熱材130が充填されていてもよい。
 また、上記の説明では、断熱箱100の真空断熱材1が内箱110の外壁面に密着しているが、真空断熱材1は外箱120の内壁面に密着していてもよい。真空断熱材1は、スペーサなどを用いることにより、内箱110と外箱120との間の空間に、内箱110及び外箱120のいずれにも密着しないように配置されていてもよい。
 なお、上記の説明において、一般的な冷蔵庫などに用いられる断熱箱と同等である部分については、図示及び説明を省略している。
 なお、本発明に係る真空断熱材1は、上述の実施の形態に限らず種々の変形が可能であり、上述の各実施の形態や変形例は、互いに組み合わせて実施することが可能である。
 例えば、上記では、製造工程において芯材2及び外包材4の乾燥は100℃で2時間の加熱処理により行われていることを例示しているが、加熱処理の温度及び時間は、芯材2及び外包材4の水分が除去できる温度及び時間であればこれに限定されない。また、芯材2及び外包材4の乾燥は芯材2を外包材4で被覆した状態で行っているが、芯材2と外包材4の乾燥を別々に行った後に、芯材2を外包材4で被覆してもよい。
 また、上述の実施の形態1に係る真空断熱材1の製造工程においては、芯材2及び外包材4を乾燥した後に吸着剤3を芯材2と外包材4との間に配置しているが、芯材2及び外包材4を乾燥する前に吸着剤3を配置してもよい。
 また、上述の実施の形態2では、冷熱源を備える冷蔵庫の断熱箱100に真空断熱材1が用いられた構成を例に挙げたが、本発明はこれに限られない。真空断熱材1は、温熱源を備える保温庫の断熱箱や、冷熱源及び温熱源を備えない断熱箱、例えば、クーラーボックス等に用いることもできる。また、真空断熱材1は、断熱箱100だけでなく、空調機、車両用空調機、給湯機などの冷熱機器又は温熱機器の断熱部材として用いてもよく、その形状も、所定の形状ではなく、変形自在な外袋及び内袋を備えた断熱袋や、断熱容器などに用いてもよい。
 1 真空断熱材、2 芯材、3 吸着剤、4 外包材、41 表面保護層、42 ガスバリア層、43 熱融着層、43a 封止部、100 断熱箱、110 内箱、120 外箱、130 発泡ウレタン断熱材、T 封止部の膜厚。

Claims (8)

  1.  真空空間を保持する芯材と、
     水分を吸着する吸着剤と、
     前記芯材と前記吸着剤を被覆する外包材とを備え、
     前記外包材の内部を減圧密封した真空断熱材であって、
     前記外包材は、表面保護層とガスバリア層と熱融着層からなり、
     前記外包材は、当該外包材の周縁部の前記熱融着層同士が融着された封止部を有し、
     前記熱融着層の厚みが35μm以上70μm以下であり、
     前記吸着剤には吸湿速度が15wt%/h以上32wt%/h以下の酸化カルシウムを含む真空断熱材。
  2.  前記吸着剤の吸湿速度が17wt%/h以上22wt%/h以下である
     請求項1に記載の真空断熱材。
  3.  前記熱溶着層が、高密度ポリエチレン又は無延伸ポリプロピレンである
     請求項1又は2に記載の真空断熱材。
  4.  表面に2mm以上10mm以下の凹凸部を有する
     請求項1~3のいずれか一項に記載の真空断熱材。
  5.  前記吸着剤の包材は、紙、不織布、プラスチックフィルム、及び網目状の布からなる第1の群より選択される部材、又は前記第1の群より選択される2種類以上の部材を積層した部材である
     請求項1~4のいずれか一項に記載の真空断熱材。
  6.  前記芯材は繊維集合体である
     請求項1~5のいずれか一項に記載の真空断熱材。
  7.  前記芯材はグラスウールである
     請求項1~6のいずれか一項に記載の真空断熱材。
  8.  請求項1~7のいずれか一項に記載の真空断熱材を備える断熱箱。
PCT/JP2015/073243 2015-08-19 2015-08-19 真空断熱材及び断熱箱 WO2017029727A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2015405840A AU2015405840B2 (en) 2015-08-19 2015-08-19 Vacuum thermal insulator and thermal insulation container
PCT/JP2015/073243 WO2017029727A1 (ja) 2015-08-19 2015-08-19 真空断熱材及び断熱箱
JP2017535191A JPWO2017029727A1 (ja) 2015-08-19 2015-08-19 真空断熱材及び断熱箱
CN201580082331.7A CN107923565B (zh) 2015-08-19 2015-08-19 真空隔热件及隔热箱
TW105122356A TWI604150B (zh) 2015-08-19 2016-07-15 Vacuum heat insulation material and heat insulation box

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/073243 WO2017029727A1 (ja) 2015-08-19 2015-08-19 真空断熱材及び断熱箱

Publications (1)

Publication Number Publication Date
WO2017029727A1 true WO2017029727A1 (ja) 2017-02-23

Family

ID=58051232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073243 WO2017029727A1 (ja) 2015-08-19 2015-08-19 真空断熱材及び断熱箱

Country Status (5)

Country Link
JP (1) JPWO2017029727A1 (ja)
CN (1) CN107923565B (ja)
AU (1) AU2015405840B2 (ja)
TW (1) TWI604150B (ja)
WO (1) WO2017029727A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111801525A (zh) * 2018-03-09 2020-10-20 三菱电机株式会社 真空隔热件和隔热箱

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110892187B (zh) * 2017-07-25 2021-08-27 三菱电机株式会社 真空隔热件、隔热箱以及真空隔热件的制造方法
WO2021124555A1 (ja) * 2019-12-20 2021-06-24 三菱電機株式会社 真空断熱材及び断熱箱

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004245258A (ja) * 2003-02-12 2004-09-02 Matsushita Electric Ind Co Ltd 真空断熱材、及び真空断熱材を用いた冷凍機器及び冷温機器
JP2013508640A (ja) * 2009-10-23 2013-03-07 エルジー・ハウシス・リミテッド 真空断熱材
JP2015510442A (ja) * 2011-12-26 2015-04-09 エルジー・ハウシス・リミテッドLg Hausys,Ltd. 高比表面積のゲッター材を含む真空断熱材
JP2015145696A (ja) * 2014-02-03 2015-08-13 三菱電機株式会社 真空断熱材、真空断熱材を用いた断熱箱、及び真空断熱材の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1657282A (zh) * 2004-02-04 2005-08-24 松下电器产业株式会社 真空绝热材料及其制造方法、保温保冷设备、以及绝热板
KR101360474B1 (ko) * 2011-08-31 2014-02-11 (주)엘지하우시스 복합 게터제를 포함하는 진공 단열재
JP2013141656A (ja) * 2012-01-12 2013-07-22 Yabashi Mine Parc Kk 吸湿剤、及びその製造方法
JP2015059642A (ja) * 2013-09-20 2015-03-30 パナソニック株式会社 真空断熱材及びそれを用いた冷蔵庫

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004245258A (ja) * 2003-02-12 2004-09-02 Matsushita Electric Ind Co Ltd 真空断熱材、及び真空断熱材を用いた冷凍機器及び冷温機器
JP2013508640A (ja) * 2009-10-23 2013-03-07 エルジー・ハウシス・リミテッド 真空断熱材
JP2015510442A (ja) * 2011-12-26 2015-04-09 エルジー・ハウシス・リミテッドLg Hausys,Ltd. 高比表面積のゲッター材を含む真空断熱材
JP2015145696A (ja) * 2014-02-03 2015-08-13 三菱電機株式会社 真空断熱材、真空断熱材を用いた断熱箱、及び真空断熱材の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111801525A (zh) * 2018-03-09 2020-10-20 三菱电机株式会社 真空隔热件和隔热箱

Also Published As

Publication number Publication date
AU2015405840B2 (en) 2019-02-21
AU2015405840A1 (en) 2018-03-29
CN107923565B (zh) 2019-08-20
CN107923565A (zh) 2018-04-17
TW201719068A (zh) 2017-06-01
JPWO2017029727A1 (ja) 2018-04-05
TWI604150B (zh) 2017-11-01

Similar Documents

Publication Publication Date Title
KR101286342B1 (ko) 진공단열재용 복합심재, 그 제조방법 및 이를 이용한 진공단열재
JP6214648B2 (ja) 破裂不良が改善された真空断熱材およびその製造方法
KR101301504B1 (ko) 진공단열재 및 그 제조방법
KR101560442B1 (ko) 진공단열재용 외피재, 진공단열재 및 단열 벽체
WO2017029727A1 (ja) 真空断熱材及び断熱箱
JP6132826B2 (ja) 真空断熱材及び断熱箱
JP2008256125A (ja) 真空断熱材及びこれを用いた冷蔵庫
JP2006316872A (ja) 真空断熱材、および真空断熱材を適用した保温機器
JP2007155135A (ja) 真空断熱材及びその製造方法
JP2011089740A (ja) 袋体、および真空断熱材
JPH0886394A (ja) 真空断熱材及びその製造方法
TWI697413B (zh) 真空隔熱材及隔熱箱
WO2018025399A1 (ja) 真空断熱材及び断熱箱
JP2012026512A (ja) 袋体および真空断熱材
JP2011208763A (ja) 真空断熱材
JP6793571B2 (ja) 真空断熱材、それを備えた機器及び真空断熱材の製造方法
JP6094088B2 (ja) 真空断熱材用積層体
JP5377451B2 (ja) 真空断熱材およびこの真空断熱材を用いた断熱箱
JP2011185413A (ja) 真空断熱材の製造方法
JP2014109334A (ja) 真空断熱材及びそれに用いる真空断熱材用外包材
JP2012219955A (ja) 真空断熱材及び真空断熱材を搭載した冷蔵庫
WO2018042612A1 (ja) 真空断熱材及び断熱箱
JP2017137955A (ja) 真空断熱材用外装材及びそれを用いた真空断熱材
WO2021124555A1 (ja) 真空断熱材及び断熱箱
JP2012026511A (ja) 袋体および真空断熱材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15901709

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017535191

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015405840

Country of ref document: AU

Date of ref document: 20150819

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15901709

Country of ref document: EP

Kind code of ref document: A1