WO2018042612A1 - 真空断熱材及び断熱箱 - Google Patents
真空断熱材及び断熱箱 Download PDFInfo
- Publication number
- WO2018042612A1 WO2018042612A1 PCT/JP2016/075755 JP2016075755W WO2018042612A1 WO 2018042612 A1 WO2018042612 A1 WO 2018042612A1 JP 2016075755 W JP2016075755 W JP 2016075755W WO 2018042612 A1 WO2018042612 A1 WO 2018042612A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat insulating
- vacuum heat
- insulating material
- outer packaging
- layer
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/06—Arrangements using an air layer or vacuum
- F16L59/065—Arrangements using an air layer or vacuum using vacuum
Definitions
- the present invention relates to a vacuum heat insulating material that maintains heat insulating performance and a heat insulating box including the vacuum heat insulating material.
- a conventional vacuum heat insulating material used as a heat insulating material for a refrigerator or the like includes a core material that holds a vacuum space and an outer packaging material that covers the core material, and the inside of the outer packaging material is in a reduced pressure state. Yes. And a vacuum heat insulating material is maintained at low heat conductivity by maintaining an inside with a vacuum with an outer packaging material. For this reason, the outer packaging material of the conventional vacuum heat insulating material reduces the invasion of gas such as water vapor and air into the outer packaging material from the outside of the outer packaging material, and keeps the thermal conductivity low over a long period of time.
- a gas barrier layer is provided over the entire area.
- the gas barrier layer is composed of a metal foil, a metal vapor deposition layer, or a metal oxide vapor deposition layer (see, for example, Patent Document 1).
- the outer packaging material is formed into a bag shape with a part of the outer periphery opened.
- the outer packaging material of the vacuum heat insulating material includes a heat fusion layer on one surface.
- one outer packaging material is folded so that the heat-sealing layer is disposed on the inner side, or two outer packaging materials are overlapped so that the heat-sealing layer faces each other, and the outer periphery is heat-sealed.
- the outer packaging material is formed in a bag shape with a part of the outer peripheral portion opened.
- a core material is inserted into the outer packaging material, the inside of the outer packaging material is decompressed, and then the opening is fused by heat sealing or the like to form a sealing portion, thereby completing the vacuum heat insulating material.
- the vacuum heat insulating material a sealing portion that does not cover the core material is formed on the outer peripheral side of the core material. Since the sealing portion of the outer packaging material does not contribute to heat insulation, the vacuum heat insulating material may be used with the sealing portion being bent along the shape of the core material.
- a vacuum heat insulating material used for a heat insulating box such as a refrigerator may be used in combination with a urethane foam heat insulating material.
- the sealing portion of the outer packaging material may be bent along the shape of the core material and a vacuum heat insulating material may be used.
- a thermal bridge heat bridge
- the effective thermal conductivity ⁇ eff in consideration of the thermal bridge (heat bridge) at the end of the vacuum heat insulating material can be obtained by the following equation (1).
- ⁇ eff ⁇ cop + ⁇ (d) ⁇ d ⁇ p ⁇ A
- ⁇ cop is the thermal conductivity at a position that becomes the center of the vacuum heat insulating material when the vacuum heat insulating material is observed in the thickness direction, which is the heat insulating direction.
- ⁇ cop is the thermal conductivity at a position that becomes the central portion of the core material when the vacuum heat insulating material is observed in the thickness direction, which is the heat insulating direction.
- ⁇ (d) is the thermal conductivity of the outer packaging material portion that does not cover the core material, such as the sealing portion.
- d is the thickness of the vacuum heat insulating material.
- p is the circumference of the vacuum heat insulating material when the vacuum heat insulating material is observed in the thickness direction which is the heat insulating direction.
- A is the area of the vacuum heat insulating material when the vacuum heat insulating material is observed in the thickness direction which is the heat insulating direction.
- Patent Document 1 when a gas barrier layer composed of a metal foil, a metal vapor-deposited layer, or a metal oxide vapor-deposited layer is provided over the entire area of the outer packaging material, the inside of the outer packaging material from the outside of the outer packaging material It is possible to reduce the intrusion of gas such as water vapor and air, and to maintain the thermal conductivity of the central portion of the vacuum heat insulating material low over a long period of time.
- Patent Document 1 when a gas barrier layer composed of a metal foil, a metal vapor-deposited layer, or a metal oxide vapor-deposited layer is provided throughout the outer packaging material, the thermal conductivity of the sealing portion of the outer packaging material Therefore, there is a problem that the effective thermal conductivity increases and the heat insulation performance decreases.
- the present invention has been made to solve the above-described problems, and reduces the invasion of gas such as water vapor and air into the outer packaging material from the outside of the outer packaging material, and is a vacuum heat insulating material over a long period of time. It is a first object of the present invention to provide a vacuum heat insulating material capable of maintaining a low effective thermal conductivity while maintaining a low thermal conductivity at the center of the glass, that is, maintaining a high thermal insulation performance over a long period of time. To do. A second object is to provide a heat insulating box provided with the vacuum heat insulating material.
- the vacuum heat insulating material according to the present invention is a vacuum heat insulating material that includes a core material and an outer packaging material that covers the core material, and the inside of the outer packaging material is in a reduced pressure state.
- the laminated film having a gas barrier layer, the outer packaging material has two surfaces facing the thickness direction of the vacuum heat insulating material in a range facing the core material, and constitutes the two surfaces
- the gas barrier layer is present only in the core material covering portion.
- the vacuum heat insulating material according to the present invention has a gas barrier layer in the core covering portion of the outer packaging material. For this reason, the vacuum heat insulating material according to the present invention can reduce the intrusion of gas such as water vapor and air from the outside of the outer packaging material into the outer packaging material, and the thermal conductivity of the central portion of the vacuum heat insulating material over a long period of time. Can be kept low. Moreover, the vacuum heat insulating material which concerns on this invention does not have a gas barrier layer in ranges other than a core material coating
- the vacuum heat insulating material which concerns on this invention can make small the thermal conductivity of the outer packaging material of the range other than a core material coating
- FIG. 1 is a cross-sectional view showing a schematic configuration of a vacuum heat insulating material according to Embodiment 1 of the present invention.
- the vertical direction of the paper surface is the thickness direction, that is, the heat insulating direction.
- hatching of the base material layer 42 of the outer packaging material 4 is omitted so that the drawing can be easily seen.
- the vacuum heat insulating material 1 which concerns on this Embodiment 1 is demonstrated.
- the dimensional relationship and shape of each component may differ from the actual one. Specific dimensions and the like of each component should be determined in consideration of the following description.
- the vacuum heat insulating material 1 is a heat insulating material that realizes a low thermal conductivity by maintaining the inside in a vacuum.
- the vacuum heat insulating material 1 includes a core material 2 and an outer packaging material 4 that covers the core material 2.
- the vacuum space defined by the outer packaging material 4 is formed by heat-sealing the opening by heat sealing or the like in a state where the inside of the bag-shaped outer packaging material 4 partially opened is decompressed. Is done. That is, the inside of the outer packaging material 4 is in a reduced pressure state.
- the vacuum heat insulating material 1 has a substantially rectangular flat plate shape as a whole when observed in the direction of arrow Z in FIG.
- the vacuum heat insulating material 1 also includes an adsorbent 3 that adsorbs moisture inside the outer packaging material 4. That is, in the vacuum heat insulating material 1 according to the first embodiment, the core material 2 and the adsorbent 3 are covered with the outer packaging material 4.
- Core material 2 is used for the purpose of maintaining a vacuum space.
- the core material 2 it is common to use a fiber assembly such as glass wool.
- the fiber aggregate constituting the core material 2 may be one formed by heat and pressure molding, hermetically sealed using an inner packaging material, or one bound with a binder. There may be.
- the adsorbent 3 is used for the purpose of suppressing the increase in thermal conductivity by adsorbing water vapor inside the vacuum heat insulating material 1 and maintaining the degree of vacuum.
- the adsorbent 3 it is common to use calcium oxide (CaO).
- the adsorbent 3 may be silica gel or zeolite.
- the adsorbent 3 may be a combination of at least two of calcium oxide, silica gel, and zeolite.
- the adsorbent 3 may be packaged by a packaging material having air permeability.
- the breathable packaging material is made of a breathable member selected from paper, non-woven fabric, plastic film, or mesh cloth.
- the outer packaging material 4 is a laminated film having a multilayer structure in which a plurality of layers are laminated.
- the outer packaging material 4 according to the first embodiment is configured by sequentially laminating a surface protective layer 41, a base material layer 42, a gas barrier layer 44, and a heat sealing layer 43. Cover the core material 2 and the adsorbent 3 with the two outer packaging materials 4 so that the heat seal layers 43 face each other, and heat the heat seal layers 43 on the outer peripheral side of the core material 2 and the adsorbent 3.
- the outer packaging material 4 covers the core material 2 and the adsorbent 3 by heat sealing with a seal or the like to form the sealing portion 43a.
- the space inside the outer packaging material 4, that is, the space between the two outer packaging materials 4 is in a state where the pressure is reduced to a vacuum degree of about 1 Pa (Pascal) to 3 Pa.
- the thickness direction of the vacuum heat insulating material 1 which is a heat insulation direction in the range in which the outer packaging material 4 has opposed the core material 2 is shown.
- the two surfaces are surfaces that are an upper surface and a lower surface in FIG. These two surfaces are arranged substantially in parallel.
- the portion of the outer packaging material 4 constituting these two surfaces is defined as the core material covering portion 5.
- One of these two surfaces (for example, the upper surface in FIG. 1) is a surface facing the heat source or space on the high temperature side.
- the other of these two surfaces for example, the lower surface in FIG.
- the range constituting the surface perpendicular to the thickness direction of the vacuum heat insulating material 1, which is the heat insulating direction, of the portion facing the core material 2 in the outer packaging material 4 is the core material covering portion 5.
- a range other than the core material covering portion 5 in the outer packaging material 4 is defined as a core material non-covering portion 6. That is, the range which comprises the surface (side surface of FIG. 1) which connects two surfaces used as the core material coating
- the sealing portion 43 a of the outer packaging material 4 becomes the core material non-covering portion 6.
- the gas barrier layer 44 exists only in the core material covering portion 5.
- the two surfaces serving as the core covering portion 5 are arranged in parallel, but the term “parallel” here is not parallel in a strict sense. Even when these two surfaces are slightly inclined and face each other due to a manufacturing error of the vacuum heat insulating material 1, they are referred to as parallel in the first embodiment.
- the gas barrier layer 44 is provided between the base material layer 42 and the thermal fusion layer 43.
- the arrangement position of the gas barrier layer 44 is not limited to the position.
- the gas barrier layer 44 may be provided between the surface protective layer 41 and the base material layer 42 or between the heat sealing layer 43 and the core material 2.
- a plurality of gas barrier layers 44 may be provided. In this case, at least two of the surface protective layer 41 and the base material layer 42, the base material layer 42 and the heat sealing layer 43, and the heat sealing layer 43 and the core material 2 are used.
- a gas barrier layer 44 may be provided therebetween.
- the vacuum heat insulating material 1 according to Embodiment 1 includes the surface protective layer 41 and the base material layer 42, the base material layer 42 and the heat sealing layer 43, and the heat sealing layer 43.
- a gas barrier layer 44 may be provided between at least one of the core members 2.
- the surface protective layer 41 protects the surface of the vacuum heat insulating material 1 and is provided on the outer surface side of the base material layer 42.
- the film thickness of the surface protective layer 41 is 25 ⁇ m or the like.
- the material of the surface protective layer 41 is preferably a thermoplastic resin having a melting point of 150 ° C. or higher and excellent scratch resistance.
- stretched polyamide such as stretched nylon, polyethylene terephthalate, stretched polypropylene, or the like can be used as stretched nylon, polyethylene terephthalate, stretched polypropylene, or the like can be used. Stretched nylon is abbreviated as ONY, polyethylene terephthalate is abbreviated as PET, and stretched polypropylene is sometimes abbreviated as OPP.
- the base material layer 42 may be made of a thermoplastic resin having excellent puncture resistance.
- the base material layer 42 is a single layer of such a thermoplastic resin, or is formed by laminating a plurality of such thermoplastic resins.
- the base material layer 42 is formed as a single layer having a thickness of, for example, 24 ⁇ m.
- the base material layer 42 is formed by laminating two layers having a film thickness of, for example, 12 ⁇ m.
- polyethylene terephthalate, ethylene vinyl alcohol, or a combination thereof may be used as a material for the base material layer 42.
- Ethylene vinyl alcohol is sometimes abbreviated as EVOH.
- the heat sealing layer 43 is provided on the inner surface side of the base material layer 42.
- the film thickness of the heat sealing layer 43 is 30 ⁇ m or the like, and the film thickness of the sealing portion 43a formed by fusing the heat sealing layers 43 to each other is 60 ⁇ m or the like.
- the heat sealing layer 43 for example, low density polyethylene, linear low density polyethylene, or the like is used. It is even better if it is a high-density polyethylene or non-stretched polypropylene having a high elastic modulus and excellent water vapor barrier properties.
- Low density polyethylene may be abbreviated as LDPE
- linear low density polyethylene may be abbreviated as LLDPE
- high density polyethylene may be abbreviated as HDPE
- unstretched polypropylene may be abbreviated as CPP.
- the gas barrier layer 44 reduces the entry of gas such as water vapor and air from the outside of the outer packaging material 4 into the outer packaging material 4 (that is, the space between the two outer packaging materials 4).
- the material of the gas barrier layer 44 is at least one of a metal foil layer, a metal vapor-deposited layer, and a metal oxide vapor-deposited layer excellent in water and air barrier properties.
- the metal used for the gas barrier layer 44 is, for example, aluminum.
- the film thickness is 6 ⁇ m or the like for an aluminum foil layer, and the film thickness is 40 nm or the like for an aluminum vapor deposition layer.
- Aluminum oxide, silicon dioxide, or the like may be used for the vapor deposition layer.
- the manufacturing process of the vacuum heat insulating material 1 which concerns on this Embodiment 1 is demonstrated.
- the two outer packaging materials 4 are overlapped so that the heat sealing layer 43 faces each other.
- the heat sealing layers 43 of the outer peripheral part except a part are melt
- the outer packaging material 4 becomes a bag shape which a part of outer peripheral part opened.
- the core material 2 is inserted into the outer packaging material 4 formed in a bag shape, and these are heat-treated at 100 ° C. for 2 hours. Thereby, moisture is removed from the core material 2 and the outer packaging material 4.
- the adsorbent 3 is disposed between the core material 2 and the outer packaging material 4.
- the inside of the outer packaging material 4 is depressurized to a degree of vacuum of about 1 Pa to 3 Pa, and the opening portion is fused by heat sealing or the like in the depressurized state to form a sealing portion 43 a, and the inside of the outer packaging material 4 is sealed under reduced pressure To do.
- outer packaging material 4 as a bag shape by bend
- the number of outer packaging materials 4 is not limited as long as the core material 2 and the adsorbent 3 can be sealed under reduced pressure.
- FIG. 2 is a cross-sectional view showing a state where the core non-covering portion is bent in the vacuum heat insulating material according to Embodiment 1 of the present invention.
- the vertical direction of the paper surface is the thickness direction of the vacuum heat insulating material 1, that is, the heat insulating direction.
- hatching of the base material layer 42 of the outer packaging material 4 is omitted so that the drawing can be easily seen.
- the opening is fused by heat sealing or the like to form the sealing portion 43 a, and the inside of the outer packaging material 4 is sealed under reduced pressure, and then the core material non-covering portion 6 of the outer packaging material 4 is bent along the shape of the core material 2. .
- the core material non-covering portion 6 can be prevented from blocking the filling flow path of the urethane foam heat insulating material, and the filling flow of the urethane foam heat insulating material can be prevented.
- a road can be secured.
- the vacuum heat insulating material 1 obtained through the above steps has a gas barrier layer 44 in the core material covering portion 5 of the outer packaging material 4, so that gas such as water vapor and air enters the outer packaging material 4 from the outside of the outer packaging material 4. Can be reduced, and the thermal conductivity of the central portion of the vacuum heat insulating material 1 can be kept low for a long time. Further, the vacuum heat insulating material 1 does not have the gas barrier layer 44 in the core material non-covering portion 6. More specifically, only the resin having a lower thermal conductivity than the gas barrier layer 44 is present in the core material non-covering portion 6. For this reason, the vacuum heat insulating material 1 can make the thermal conductivity of the core material non-coating part 6 small, and can maintain the effective thermal conductivity low. Therefore, the vacuum heat insulating material 1 can maintain high heat insulating performance over a long period of time.
- Example 1 In Example 1, the relationship between the amount of increase in the thermal conductivity of the vacuum heat insulating material 1 and the gas barrier layer 44 was examined.
- the vacuum heat insulating material 1 which concerns on Example 1 was set as the following structures.
- the core material 2 was composed of glass wool.
- Adsorbent 3 was composed of 50 g of calcium oxide (CaO).
- the surface protective layer 41 of the outer packaging material 4 was made of stretched nylon (ONY) having a film thickness of 25 ⁇ m.
- the base material layer 42 of the outer packaging material 4 was composed of 12 ⁇ m thick polyethylene terephthalate (PET) and 12 ⁇ m thick ethylene vinyl alcohol (EVOH).
- the heat-sealing layer 43 of the outer packaging material 4 was composed of linear low density polyethylene (LLDPE) having a film thickness of 30 ⁇ m.
- the gas barrier layer 44 of the outer packaging material 4 existing only in the core material covering portion 5 was configured as an aluminum foil layer having a film thickness of 6 ⁇ m.
- the core material 2 and the adsorbent 3 were coat
- the dimensions of the vacuum heat insulating material 1 were 20 mm thick, 500 mm wide, and 1500 mm long.
- the thickness 20 mm of the vacuum heat insulating material 1 is the thickness of the vacuum heat insulating material 1 including the core material non-covered portion 6 in a state where the core material non-covered portion 6 of the outer packaging material 4 is bent along the shape of the core material 2. That is the dimension indicated by T in FIG.
- the width 500 mm of the vacuum heat insulating material 1 is the width of the vacuum heat insulating material 1 including the core material non-covered portion 6 in a state where the core material non-covered portion 6 of the outer packaging material 4 is bent along the shape of the core material 2. Yes, it is the dimension indicated by W in FIG.
- the length of the vacuum heat insulating material 1 is 1500 mm in the length of the vacuum heat insulating material 1 including the core material non-covered portion 6 in a state where the core material non-covered portion 6 of the outer packaging material 4 is bent along the shape of the core material 2. This is the dimension of the vacuum heat insulating material 1 including the core material non-covering portion 6 in the direction orthogonal to the plane of FIG.
- the thermal conductivity of the center part of the vacuum heat insulating material 1 is the thermal conductivity of the position which becomes the center part of the vacuum heat insulating material 1 when the vacuum heat insulating material 1 is observed in the thickness direction that is the heat insulating direction.
- the vacuum heat insulating material used in Comparative Example 1 does not have the gas barrier layer 44 provided in the vacuum heat insulating material 1 according to Example 1.
- Other configurations of the vacuum heat insulating material according to Comparative Example 1 are the same as those of the vacuum heat insulating material 1 according to Example 1. Similar to the vacuum heat insulating material 1 according to Example 1, also in the vacuum heat insulating material according to Comparative Example 1, the thermal conductivity of the central portion of the vacuum heat insulating material one day after the production, the atmosphere at 25 ° C. and the relative humidity 60%. The thermal conductivity of the central part of the vacuum heat insulating material after storage for 30 days was measured, and the difference was calculated as the increase in thermal conductivity.
- Table 1 shows a result of comparing the thermal conductivity of the central portion of the vacuum heat insulating material 1 according to Example 1 with the thermal conductivity of the central portion of the vacuum heat insulating material according to Comparative Example 1.
- the thermal conductivity of the central part 1 day after production is 1.8 mW / (m ⁇ K), and the thermal conductivity of the central part 30 days after production.
- the increase in rate was 0.3 mW / (m ⁇ K).
- the vacuum heat insulating material according to Comparative Example 1 has a thermal conductivity of 2.0 mW / (m ⁇ K) at the central part after 1 day of production, and an increase in the thermal conductivity of the central part after 30 days of production.
- the vacuum heat insulating material 1 according to Example 1 has a lower thermal conductivity of 0.2 mW / (m ⁇ K) in the central part one day after the production than the vacuum heat insulating material according to Comparative Example 1, and the production 30
- the amount of increase in thermal conductivity in the central part after the day was 2.1 mW / (m ⁇ K) low.
- the thermal conductivity of the central portion of the vacuum heat insulating material 1 could be kept low for a long time.
- Example 2 In Example 2, the relationship between the thermal conductivity and the effective thermal conductivity of the core uncoated portion 6 was investigated.
- the vacuum heat insulating material 1 which concerns on Example 2 comprised the gas barrier layer 44 of the outer packaging material 4 which exists only in the core material coating
- Other configurations of the vacuum heat insulating material 1 according to the second embodiment are the same as those of the vacuum heat insulating material 1 according to the first embodiment.
- the thermal conductivity of the center part and the thermal conductivity of the core material non-coating part 6 of the outer packaging material 4 were measured, and the effective thermal conductivity was calculated.
- the thermal conductivity of the core material non-covering portion 6 was measured at the sealing portion 43a of the outer packaging material 4.
- a gas barrier layer was provided also in the core material non-covering portion. That is, in the vacuum heat insulating material according to Comparative Example 2, the gas barrier layer is provided over the entire outer packaging material.
- Other configurations of the vacuum heat insulating material according to Comparative Example 2 are the same as those of the vacuum heat insulating material 1 according to Example 2.
- Two types of vacuum heat insulating materials according to Comparative Example 2 were prepared.
- the vacuum heat insulating material which concerns on the 1st comparative example 2 comprised the gas barrier layer provided over the whole outer packaging material as an aluminum foil layer with a film thickness of 6 micrometers.
- the vacuum heat insulating material which concerns on the 2nd comparative example 2 comprised the gas barrier layer provided over the whole outer packaging material as an aluminum vapor deposition layer with a film thickness of 40 nm. And in each of the vacuum heat insulating materials which concern on the comparative example 2, the heat conductivity of the center part and the heat conductivity of the core material non-coating part of an outer packaging material were measured, and the effective heat conductivity was computed. In addition, the thermal conductivity of the core material non-covering part was measured at the sealing part of the outer packaging material.
- Table 2 shows the result of comparing the effective thermal conductivity of the vacuum heat insulating material 1 according to Example 2 and the effective thermal conductivity of each of the vacuum heat insulating materials according to Comparative Example 2.
- the circumference of the vacuum heat insulating material shown in Table 2 was calculated
- Perimeter of vacuum insulation material (width of vacuum insulation material + length of vacuum insulation material) ⁇ 2 (2)
- the area of the vacuum heat insulating material shown in Table 2 was calculated
- Area of vacuum heat insulating material width of vacuum heat insulating material ⁇ length of vacuum heat insulating material (3)
- the effective thermal conductivity of the vacuum heat insulating material shown in Table 2 was calculated
- each of the vacuum heat insulating material 1 according to Example 2 and the vacuum heat insulating material according to Comparative Example 2 has a thermal conductivity of 1.8 mW / (m ⁇ K) at the center after one day of production. Yes, equivalent.
- the vacuum heat insulating material 1 which concerns on Example 2 is 1.0 mW / (m * K) in the thermal conductivity of the core material non-coating part 6 of the outer packaging material 4, and an effective thermal conductivity is 1.9 mW / (. m ⁇ K).
- the thermal conductivity of the core material non-covering portion of the outer packaging material is 17.0 mW / (m ⁇ K), and the effective heat The conductivity was 3.6 mW / (m ⁇ K).
- the vacuum heat insulating material which concerns on the comparative example 2 which has the gas barrier layer of an aluminum vapor deposition layer has the thermal conductivity of 7.0 mW / (m * K) of the core material non-coating part of an outer packaging material, and effective thermal conductivity is It was 2.5 mW / (m ⁇ K).
- the vacuum heat insulating material 1 according to Example 2 in which the gas barrier layer 44 exists only in the core material covering portion 5 is compared with the vacuum heat insulating material according to Comparative Example 2 in which the gas barrier layer is provided over the entire outer packaging material.
- the effective thermal conductivity could be lowered by 0.6 mW / (m ⁇ K) to 1.7 mW / (m ⁇ K).
- Example 3 The vacuum heat insulating material 1 according to Example 3 is obtained by storing the vacuum heat insulating material 1 according to Example 2 for 30 days in an atmosphere having a temperature of 25 ° C. and a relative humidity of 60%.
- the vacuum heat insulating material 1 which concerns on Example 3 the thermal conductivity of the center part and the thermal conductivity of the core material non-coating part 6 of the outer packaging material 4 were measured, and the effective thermal conductivity was calculated.
- the vacuum heat insulating material which concerns on the comparative example 3 each stores the vacuum heat insulating material which concerns on the comparative example 2 for 30 days in the atmosphere of 25 degreeC of air temperature, and 60% of relative humidity.
- the thermal conductivity of the central portion and the thermal conductivity of the core material non-covering portion of the outer packaging material were measured, and the effective thermal conductivity was calculated.
- Table 3 shows a result of comparing the effective thermal conductivity of the vacuum heat insulating material 1 according to Example 3 and the effective thermal conductivity of each of the vacuum heat insulating materials according to Comparative Example 3.
- Table 3 compares the effective thermal conductivity of the vacuum heat insulating material 1 according to Example 2 after 30 days of production with the effective thermal conductivity of each of the vacuum heat insulating materials according to Comparative Example 2 after 30 days of production. It is the result.
- the vacuum heat insulating material 1 according to Example 3 has a thermal conductivity of 0.2 mW / (m ⁇ K) at the center 30 days after the preparation, compared with the vacuum heat insulating material according to Comparative Example 3. ) To 0.3 mW / (m ⁇ K) higher. However, the vacuum heat insulating material 1 according to Example 3 has an effective thermal conductivity of 0.4 mW / (m ⁇ K) to 1.4 mW / (30 days after production compared with the vacuum heat insulating material according to Comparative Example 3. m ⁇ K) was able to be lowered.
- the vacuum heat insulating material 1 according to Embodiment 1 includes the core material 2 and the outer packaging material 4 covering the core material 2, and the inside of the outer packaging material 4 is in a decompressed state.
- the outer packaging material 4 is a laminated film having a gas barrier layer 44, and the gas barrier layer 44 exists only in the core material covering portion 5. Since the vacuum heat insulating material 1 according to the first exemplary embodiment includes the gas barrier layer 44 in the core material covering portion 5, gas such as water vapor and air is reduced from entering the outer packaging material 4 from the outside of the outer packaging material 4.
- the thermal conductivity of the central part of the vacuum heat insulating material 1 can be kept low over a long period of time.
- the vacuum heat insulating material 1 according to the first embodiment does not have the gas barrier layer 44 in a range other than the core material covering portion 5. For this reason, the vacuum heat insulating material 1 which concerns on this Embodiment 1 can make small the heat conductivity of the core material non-coating part 6, and can also maintain low effective heat conductivity. Therefore, the vacuum heat insulating material 1 which concerns on this Embodiment 1 can maintain high heat insulation performance over a long period of time.
- the vacuum heat insulating material 1 which concerns on this invention is not limited to the structure shown in this Embodiment 1, A various deformation
- the structure and modification shown in this Embodiment 1 are as follows. It is possible to implement in combination with each other.
- the core material 2 and the outer packaging material 4 are dried by heat treatment at 100 ° C. for 2 hours in the manufacturing process.
- the temperature is not limited to this as long as the temperature and time allow removal of moisture from the core material 2 and the outer packaging material 4.
- the core material 2 and the outer packaging material 4 are dried in a state where the core material 2 is covered with the outer packaging material 4, after the core material 2 and the outer packaging material 4 are separately dried, the core material 2 is encapsulated. You may coat
- the adsorbent 3 is disposed between the core material 2 and the outer packaging material 4 after the core material 2 and the outer packaging material 4 are dried.
- the adsorbent 3 may be disposed before the core material 2 and the outer packaging material 4 are dried.
- Embodiment 2 an example of the heat insulation box provided with the vacuum heat insulating material 1 which concerns on Embodiment 1 is demonstrated.
- items that are not particularly described are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.
- FIG. 3 is a cross-sectional view showing a schematic configuration of the heat insulation box according to Embodiment 2 of the present invention.
- the heat insulation box 100 is used, for example, in a refrigerator or the like that requires high heat insulation performance.
- the heat insulating box 100 includes an outer box 120 and an inner box 110 disposed inside the outer box 120.
- the vacuum heat insulating material 1 demonstrated in Embodiment 1 is arrange
- the position where the vacuum heat insulating material 1 is disposed is not particularly limited as long as it can be insulated between the inner box 110 and the outer box 120.
- position the vacuum heat insulating material 1 so that the surface facing the outer box 120 in the inner box 110 may be contact
- the vacuum heat insulating material 1 may be disposed so as to contact the surface of the outer box 120 facing the inner box 110.
- a spacer or the like is provided between the inner box 110 or the outer box 120 and the vacuum heat insulating material 1 so that the inner box 110 and the outer box 120 do not contact the vacuum heat insulating material 1. You may arrange
- the vacuum heat insulating material 1 has a higher heat insulating performance than the urethane foam heat insulating material 130 or the like. For this reason, the heat insulation box 100 provided with the vacuum heat insulating material 1 can obtain heat insulation performance higher than the heat insulation box using only a urethane foam heat insulating material. However, in the space between the inner box 110 and the outer box 120, a portion other than the vacuum heat insulating material 1 may be filled with the urethane foam heat insulating material 130.
- the heat insulating box 100 is provided with the vacuum heat insulating material 1 having a low effective thermal conductivity. Thereby, since the heat conductivity between the inner box 110 and the outer box 120 is maintained in a low state, the heat insulating performance of the heat insulating box 100 can be maintained high. For example, in a refrigerator or the like provided with the heat insulation box 100, power consumption can be reduced.
- the vacuum heat insulating material 1 can also be used for the heat insulation box of a heat retention box provided with a heat source.
- the vacuum heat insulating material 1 can also be used for a heat insulation box that does not include a cold heat source and a heat heat source, such as a cooler box.
- the vacuum heat insulating material 1 for a heat insulation container etc.
- the shape of the vacuum heat insulating material 1 is not limited to said flat plate shape.
- the vacuum heat insulating material 1 may be formed in a curved shape that protrudes upward or downward in FIG.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Thermal Insulation (AREA)
Abstract
本発明に係る真空断熱材は、芯材と、前記芯材を被覆している外包材とを備え、前記外包材の内部が減圧状態となっている真空断熱材であって、前記外包材は、ガスバリア層を有する積層フィルムであり、前記外包材が前記芯材と対向している範囲に、当該真空断熱材の厚み方向に対向する2つの面を有し、当該2つの面を構成する前記外包材部分を芯材被覆部と定義した場合、前記ガスバリア層は、前記芯材被覆部のみに存在しているものである。
Description
本発明は、断熱性能の維持を図った真空断熱材、及び該真空断熱材を備えた断熱箱に関するものである。
冷蔵庫等の断熱材として用いられている従来の真空断熱材は、真空空間を保持する芯材と、該芯材を被覆している外包材とを備え、外包材の内部が減圧状態となっている。そして、外包材により内部を真空に維持することで、真空断熱材を低い熱伝導率に維持する。このため、従来の真空断熱材の外包材は、外包材の外部から外包材の内部に水蒸気及び空気等のガスが侵入することを低減し、長期間にわたって熱伝導率を低く維持するため、全体にわたってガスバリア層が設けられている。このガスバリア層は、金属箔、金属の蒸着層、又は金属酸化物の蒸着層で構成されている(例えば、特許文献1参照)。
真空断熱材を製造する際、まず、外包材を、外周部の一部が開口した袋形状に形成する。詳しくは、真空断熱材の外包材は、一方の面に熱融着層を備えている。そして、熱融着層が内側に配置されるように一枚の外包材を折り曲げて、あるいは、熱融着層が対向するように二枚の外包材を重ね合わせて、外周部の熱融着層をヒートシール等で融着して封止部を形成することにより、外包材を外周部の一部が開口した袋形状に形成する。その後、この外包材に芯材を挿入し、外包材の内部を減圧した後に開口部をヒートシール等で融着して封止部を形成することで、真空断熱材が完成する。
このため、真空断熱材には、芯材の外周側に、芯材を覆っていない封止部が形成される。この外包材の封止部は断熱に寄与しないため、真空断熱材はこの封止部が芯材の形状に沿って折り曲げられて使用される場合がある。
例えば、冷蔵庫等の断熱箱に用いられる真空断熱材は、発泡ウレタン断熱材と併用される場合がある。このとき、発泡ウレタン断熱材の充填流路を確保するために、外包材の封止部を芯材の形状に沿って折り曲げて、真空断熱材を使用する場合がある。外包材の封止部が折り曲げられた真空断熱材の端部では、外包材による熱の周り込み、つまり熱橋(ヒートブリッジ)が発生する。このため、真空断熱材全体としての断熱性能を示す実効熱伝導率が増加する。
一般に、真空断熱材の端部における熱橋(ヒートブリッジ)を考慮した実効熱伝導率λeffは、次の式(1)で求めることができる。
λeff=λcop+ψ(d)×d×p÷A …(1)
なお、λcopは、真空断熱材を断熱方向である厚み方向に観察した際に、真空断熱材の中央部となる位置の熱伝導率である。換言すると、λcopは、真空断熱材を断熱方向である厚み方向に観察した際に、芯材の中央部となる位置の熱伝導率である。ψ(d)は、封止部等、芯材を覆っていない外包材部分の熱伝導率である。dは、真空断熱材の厚さである。pは、真空断熱材を断熱方向である厚み方向に観察した際の、真空断熱材の周長である。Aは、真空断熱材を断熱方向である厚み方向に観察した際の、真空断熱材の面積である。
λeff=λcop+ψ(d)×d×p÷A …(1)
なお、λcopは、真空断熱材を断熱方向である厚み方向に観察した際に、真空断熱材の中央部となる位置の熱伝導率である。換言すると、λcopは、真空断熱材を断熱方向である厚み方向に観察した際に、芯材の中央部となる位置の熱伝導率である。ψ(d)は、封止部等、芯材を覆っていない外包材部分の熱伝導率である。dは、真空断熱材の厚さである。pは、真空断熱材を断熱方向である厚み方向に観察した際の、真空断熱材の周長である。Aは、真空断熱材を断熱方向である厚み方向に観察した際の、真空断熱材の面積である。
ここで、特許文献1のように、外包材の全域に金属箔、金属の蒸着層、又は金属酸化物の蒸着層で構成されたガスバリア層を設けた場合、外包材の外部から外包材の内部に水蒸気及び空気等のガスが侵入することを低減でき、真空断熱材の中央部の熱伝導率を長期間にわたって低く維持することができる。しかしながら、特許文献1のように、外包材の全域に金属箔、金属の蒸着層、又は金属酸化物の蒸着層で構成されたガスバリア層を設けた場合、外包材の封止部の熱伝導率が大きくなるため、実効熱伝導率が増加してしまい、断熱性能が低下してしまうという課題があった。
本発明は、上述のような課題を解決するためになされたものであり、外包材の外部から外包材の内部に水蒸気及び空気等のガスが侵入することを低減し、長期間にわたって真空断熱材の中央部の熱伝導率を低く維持しつつ、実効熱伝導率も低く維持すること、つまり、高い断熱性能を長期間にわたって維持することができる真空断熱材を提供することを第1の目的とする。また、当該真空断熱材を備えた断熱箱を提供することを第2の目的とする。
本発明に係る真空断熱材は、芯材と、前記芯材を被覆している外包材とを備え、前記外包材の内部が減圧状態となっている真空断熱材であって、前記外包材は、ガスバリア層を有する積層フィルムであり、前記外包材が前記芯材と対向している範囲に、当該真空断熱材の厚み方向に対向する2つの面を有し、当該2つの面を構成する前記外包材部分を芯材被覆部と定義した場合、前記ガスバリア層は、前記芯材被覆部のみに存在しているものである。
本発明に係る真空断熱材は、外包材の芯材被覆部に、ガスバリア層を有する。このため、本発明に係る真空断熱材は、外包材の外部から外包材の内部に水蒸気及び空気等のガスが侵入することを低減でき、長期間にわたって真空断熱材の中央部の熱伝導率を低く維持することができる。また、本発明に係る真空断熱材は、芯材被覆部以外の範囲にガスバリア層を有していない。このため、本発明に係る真空断熱材は、芯材被覆部以外の範囲の外包材の熱伝導率を小さくでき、実効熱伝導率も低く維持できる。したがって、本発明に係る真空断熱材は、高い断熱性能を長期間にわたって維持することができる。
実施の形態1.
図1は、本発明の実施の形態1に係る真空断熱材の概略構成を示す断面図である。この図1に示す真空断熱材1は、紙面の上下方向が、厚み方向すなわち断熱方向となっている。また、図1では、図面が見やすくなるように、外包材4の基材層42のハッチングを省略している。
以下、図1に基づいて、本実施の形態1に係る真空断熱材1について説明する。なお、図1を含む以下の図面では、各構成部材の寸法の関係及び形状等が実際のものとは異なる場合がある。各構成部材の具体的な寸法等は、以下の説明を参酌した上で判断すべきものである。
図1は、本発明の実施の形態1に係る真空断熱材の概略構成を示す断面図である。この図1に示す真空断熱材1は、紙面の上下方向が、厚み方向すなわち断熱方向となっている。また、図1では、図面が見やすくなるように、外包材4の基材層42のハッチングを省略している。
以下、図1に基づいて、本実施の形態1に係る真空断熱材1について説明する。なお、図1を含む以下の図面では、各構成部材の寸法の関係及び形状等が実際のものとは異なる場合がある。各構成部材の具体的な寸法等は、以下の説明を参酌した上で判断すべきものである。
図1に示すように、真空断熱材1は、内部を真空に維持することで低い熱伝導率を実現する断熱材である。この真空断熱材1は、芯材2と、この芯材2を被覆している外包材4とを備えている。後述のように、外包材4で規定される真空空間は、一部が開口した袋形状の外包材4の内部を減圧した状態で、開口部をヒートシール等により熱融着することにより、形成される。つまり、外包材4の内部が減圧状態となっている。真空断熱材1は、該真空断熱材1の厚み方向である図1の矢印Z方向に観察した際、全体として概略長方形平板状の形状を有している。なお、本実施の形態1においては、真空断熱材1は、外包材4の内部の水分を吸着する吸着剤3も備えている。つまり、本実施の形態1に係る真空断熱材1は、芯材2及び吸着剤3が、外包材4によって被覆されている。
芯材2は、真空空間を保持する目的で使用される。芯材2としては、グラスウール等の繊維集合体を用いることが一般的である。また、芯材2を構成する繊維集合体は、加熱加圧成形をしたものであってもよく、内包材を用いて密封封止したものであってもよく、結合剤により結着したものであってもよい。
吸着剤3は、真空断熱材1の内部の水蒸気を吸着し、真空度を保つことで熱伝導率の上昇を抑制する目的で使用される。吸着剤3としては、酸化カルシウム(CaO)を用いることが一般的である。また、吸着剤3は、シリカゲル又はゼオライトであってもよい。また、吸着剤3は、酸化カルシウム、シリカゲル及びゼオライトのうちの少なくとも2つを組合せたものであってもよい。
また、吸着剤3は、通気性を有する包材により包装されていてもよい。通気性を有する包材は、紙、不織布、プラスチックフィルム、又は網目状の布から選択した通気性を有する部材からなるものである。吸着剤3を包材で包装することにより、外包材4の内部に吸着剤3を配置する際の作業性の向上が期待できる。包材は、これら通気性を有する部材から選択された2種類以上の部材が積層されたものであってもよい。
外包材4は、複数の層が積層された多層構造をなす積層フィルムである。本実施の形態1に係る外包材4は、表面保護層41、基材層42、ガスバリア層44及び熱融着層43が順次積層されて構成されている。熱融着層43同士が対向するように2枚の外包材4で芯材2及び吸着剤3を挟み込むように覆い、芯材2及び吸着剤3の外周側において熱融着層43同士をヒートシール等で熱融着して封止部43aを形成することにより、外包材4は芯材2及び吸着剤3を被覆している。この際、外包材4の内部つまり2枚の外包材4の間の空間が1Pa(パスカル)~3Pa程度の真空度に減圧された状態となっている。
ここで、本実施の形態1に係る真空断熱材1においては、図1に示すように、外包材4が芯材2と対向している範囲に、断熱方向である真空断熱材1の厚み方向に対向する2つの面を有している。2つの面とは、図1において、上面及び下面となる面である。これら2つの面は、実質的に平行に配置されている。本実施の形態1では、これら2つの面を構成する外包材4部分を芯材被覆部5と定義する。これら2つの面の一方(例えば、図1の上面)は、高温側の熱源又は空間と対向する面となる。また、これら2つの面の他方(例えば、図1の下面)は、低温側の熱源又は空間と対向する面となる。換言すると、外包材4における芯材2と対向する部分のうち、断熱方向である真空断熱材1の厚み方向と直交する面を構成する範囲が、芯材被覆部5となる。また、外包材4のうち、芯材被覆部5以外の範囲を、芯材非被覆部6と定義する。つまり、外包材4における芯材2と対向する部分のうち、芯材被覆部5となる2つの面を接続する面(図1の側面)を構成する範囲が、芯材非被覆部6となる。また、外包材4の封止部43aが、芯材非被覆部6となる。このように定義した場合、本実施の形態1に係る真空断熱材1は、芯材被覆部5にのみ、ガスバリア層44が存在している。ここで、芯材被覆部5となる2つの面が平行に配置されていると上述したが、ここでいう平行とは、厳密な意味での平行ではない。真空断熱材1の作製誤差によって、これら2つの面が若干傾いて対向している場合でも、本実施の形態1では平行と称するものとする。
なお、本実施の形態1では、ガスバリア層44は、基材層42と熱融着層43との間に設けられている。しかしながら、ガスバリア層44の配置位置は、当該位置に限定されるものではない。例えば、表面保護層41と基材層42との間、あるいは、熱融着層43と芯材2との間に、ガスバリア層44を設けてもよい。また、ガスバリア層44を複数層設けてもよい。この場合、表面保護層41と基材層42との間、基材層42と熱融着層43との間、及び、熱融着層43と芯材2との間のうちの少なくとも2つの間に、ガスバリア層44を設けるとよい。すなわち、本実施の形態1に係る真空断熱材1は、表面保護層41と基材層42との間、基材層42と熱融着層43との間、及び、熱融着層43と芯材2との間のうちの少なくとも1つの間に、ガスバリア層44を設けるとよい。
表面保護層41は、真空断熱材1の表面を保護するものであり、基材層42の外面側に設けられている。表面保護層41の膜厚は25μm等である。また、表面保護層41の材料は、融点が150℃以上で耐傷付性に優れた熱可塑性樹脂等であるとよい。例えば、表面保護層41の材料として、延伸ナイロン等の延伸ポリアミド、ポリエチレンテレフタレート、及び延伸ポリプロピレン等を用いることができる。延伸ナイロンはONYと略称され、ポリエチレンテレフタレートはPETと略称され、延伸ポリプロピレンはOPPと略称されることもある。
基材層42は、材料に耐突刺し性に優れた熱可塑性樹脂を用いるとよい。基材層42は、このような熱可塑性樹脂の単層で、あるいは、このような熱可塑性樹脂を複数層積層して形成される。例えば、基材層42は、膜厚が例えば24μmの単層で形成される。また例えば、基材層42は、膜厚が例えば12μmの層が2層積層されて形成される。基材層42の材料には、ポリエチレンテレフタレート、エチレンビニルアルコール、又はこれらの組合せ等を用いればよい。エチレンビニルアルコールはEVOHと略称されることもある。
熱融着層43は、基材層42の内面側に設けられている。熱融着層43の膜厚は30μm等であり、熱融着層43同士が融着して形成される封止部43aの膜厚は、60μm等である。熱融着層43として、例えば、低密度ポリエチレン、直鎖状低密度ポリエチレン等が用いられる。弾性率が高く、水蒸気の遮断性に優れた高密度ポリエチレン、又は無延伸ポリプロピレンであれば更によい。低密度ポリエチレンはLDPEと略称され、直鎖状低密度ポリエチレンはLLDPEと略称され、高密度ポリエチレンはHDPEと略称され、無延伸ポリプロピレンはCPPと略称されることもある。なお、以下の説明においては、上記の略称は括弧内に記載することとする。
ガスバリア層44は、外包材4の外部から外包材4の内部(つまり2枚の外包材4の間の空間)に水蒸気及び空気等のガスが侵入することを低減するものである。ガスバリア層44の材料は、水蒸気及び空気の遮断性に優れた金属箔層、金属の蒸着層、及び金属酸化物の蒸着層のうちの少なくとも1つである。このガスバリア層44に用いられる金属は、例えばアルミニウム等である。例えば、アルミニウム箔層であれば膜厚は6μm等であり、アルミニウム蒸着層であれば膜厚は40nm等である。蒸着層には、酸化アルミニウム、又は二酸化ケイ素等が用いられてもよい。
次に、本実施の形態1に係る真空断熱材1の製造工程について説明する。
本実施の形態1に係る真空断熱材1の製造工程においては、まず、熱融着層43が対向するように二枚の外包材4を重ね合わせる。そして、一部を除く外周部の熱融着層43同士をヒートシール等で融着し、当該位置に封止部43aを形成する。これにより、外包材4は、外周部の一部が開口した袋形状となる。
本実施の形態1に係る真空断熱材1の製造工程においては、まず、熱融着層43が対向するように二枚の外包材4を重ね合わせる。そして、一部を除く外周部の熱融着層43同士をヒートシール等で融着し、当該位置に封止部43aを形成する。これにより、外包材4は、外周部の一部が開口した袋形状となる。
その後、袋形状に形成された外包材4の内部に、芯材2を挿入し、これらを100℃で2時間加熱処理する。これにより、芯材2及び外包材4から水分が除去される。次に、吸着剤3が芯材2及び外包材4の間に配置される。そして、外包材4の内部を1Pa~3Pa程度の真空度に減圧し、その減圧状態で開口部をヒートシール等で融着して封止部43aを形成し、外包材4の内部を減圧密封する。
なお、熱融着層43が内側に配置されるように一枚の外包材4を折り曲げて、外包材4を袋形状としてもよい。芯材2及び吸着剤3を減圧密封することができれば、外包材4の枚数は限定されない。
なお、熱融着層43が内側に配置されるように一枚の外包材4を折り曲げて、外包材4を袋形状としてもよい。芯材2及び吸着剤3を減圧密封することができれば、外包材4の枚数は限定されない。
図2は、本発明の実施の形態1に係る真空断熱材において、芯材非被覆部を折り曲げた状態を示す断面図である。この図2は、図1と同様に、紙面の上下方向が真空断熱材1の厚み方向すなわち断熱方向となっている。また、図2では、図面が見やすくなるように、外包材4の基材層42のハッチングを省略している。
開口部をヒートシール等で融着して封止部43aを形成し、外包材4の内部を減圧密封した後、外包材4の芯材非被覆部6を芯材2の形状に沿って折り曲げる。これにより、真空断熱材1が発泡ウレタン断熱材と併用される場合でも、芯材非被覆部6が発泡ウレタン断熱材の充填流路を塞いでしまうことを防止でき、発泡ウレタン断熱材の充填流路を確保できる。
開口部をヒートシール等で融着して封止部43aを形成し、外包材4の内部を減圧密封した後、外包材4の芯材非被覆部6を芯材2の形状に沿って折り曲げる。これにより、真空断熱材1が発泡ウレタン断熱材と併用される場合でも、芯材非被覆部6が発泡ウレタン断熱材の充填流路を塞いでしまうことを防止でき、発泡ウレタン断熱材の充填流路を確保できる。
以上の工程を経て得られた真空断熱材1は、外包材4の芯材被覆部5にガスバリア層44が存在することにより、外包材4の外部から外包材4の内部に水蒸気及び空気等ガスが侵入することを低減でき、長時間にわたって真空断熱材1の中央部の熱伝導率を低く維持することができる。また、真空断熱材1は、芯材非被覆部6に、ガスバリア層44を有していない。より詳しくは、芯材非被覆部6には、ガスバリア層44よりも熱伝導率が小さな樹脂のみが存在している。このため、真空断熱材1は、芯材非被覆部6の熱伝導率を小さくでき、実効熱伝導率も低く維持できる。したがって、真空断熱材1は、高い断熱性能を長期間にわたって維持することができる。
次に、本実施の形態1の真空断熱材1を実施例1~実施例3として作製し、比較例1~比較例3との比較を行った。以下にその比較結果について説明する。
[実施例1]
実施例1では、真空断熱材1の熱伝導率の増加量とガスバリア層44との関係について調べた。実施例1に係る真空断熱材1は、以下のような構成とした。芯材2は、グラスウールで構成した。吸着剤3は、50gの酸化カルシウム(CaO)で構成した。外包材4の表面保護層41は、膜厚25μmの延伸ナイロン(ONY)で構成した。外包材4の基材層42は、膜厚12μmのポリエチレンテレフタレート(PET)と膜厚12μmのエチレンビニルアルコール(EVOH)とで構成した。外包材4の熱融着層43は、膜厚30μmの直鎖状低密度ポリエチレン(LLDPE)で構成した。芯材被覆部5のみに存在する外包材4のガスバリア層44は、膜厚6μmのアルミニウム箔層として構成した。そして、外包材4により芯材2及び吸着剤3を被覆して、実施例1に係る真空断熱材1を作製した。
実施例1では、真空断熱材1の熱伝導率の増加量とガスバリア層44との関係について調べた。実施例1に係る真空断熱材1は、以下のような構成とした。芯材2は、グラスウールで構成した。吸着剤3は、50gの酸化カルシウム(CaO)で構成した。外包材4の表面保護層41は、膜厚25μmの延伸ナイロン(ONY)で構成した。外包材4の基材層42は、膜厚12μmのポリエチレンテレフタレート(PET)と膜厚12μmのエチレンビニルアルコール(EVOH)とで構成した。外包材4の熱融着層43は、膜厚30μmの直鎖状低密度ポリエチレン(LLDPE)で構成した。芯材被覆部5のみに存在する外包材4のガスバリア層44は、膜厚6μmのアルミニウム箔層として構成した。そして、外包材4により芯材2及び吸着剤3を被覆して、実施例1に係る真空断熱材1を作製した。
真空断熱材1の寸法は、厚さ20mm、幅500mm、長さ1500mmとした。なお、真空断熱材1の厚さ20mmは、外包材4の芯材非被覆部6を芯材2の形状に沿って折り曲げた状態において、芯材非被覆部6を含む真空断熱材1の厚さであり、図2にTで示す寸法である。また、真空断熱材1の幅500mmは、外包材4の芯材非被覆部6を芯材2の形状に沿って折り曲げた状態において、芯材非被覆部6を含む真空断熱材1の幅であり、図2にWで示す寸法である。また、真空断熱材1の長さ1500mmは、外包材4の芯材非被覆部6を芯材2の形状に沿って折り曲げた状態において、芯材非被覆部6を含む真空断熱材1の長さであり、図2の紙面直交方向における芯材非被覆部6を含む真空断熱材1の寸法である。
そして、作製1日後の実施例1に係る真空断熱材1の中央部の熱伝導率と、気温25℃、相対湿度60%の雰囲気下で30日間保管した後の実施例1に係る真空断熱材1の中央部の熱伝導率とを測定し、その差を熱伝導率の増加量として算出した。
なお、真空断熱材1の中央部の熱伝導率とは、真空断熱材1を断熱方向である厚み方向に観察した際に、真空断熱材1の中央部となる位置の熱伝導率である。以下の説明においても、真空断熱材の中央部の熱伝導率という場合、真空断熱材を断熱方向である厚み方向に観察した際に、真空断熱材の中央部となる位置の熱伝導率を表すものとする。
なお、真空断熱材1の中央部の熱伝導率とは、真空断熱材1を断熱方向である厚み方向に観察した際に、真空断熱材1の中央部となる位置の熱伝導率である。以下の説明においても、真空断熱材の中央部の熱伝導率という場合、真空断熱材を断熱方向である厚み方向に観察した際に、真空断熱材の中央部となる位置の熱伝導率を表すものとする。
比較例1に用いた真空断熱材は、実施例1に係る真空断熱材1に設けられていたガスバリア層44を有していない。比較例1に係る真空断熱材のその他の構成は、実施例1に係る真空断熱材1と同じである。実施例1に係る真空断熱材1と同様、比較例1に係る真空断熱材においても、作製1日後の真空断熱材の中央部の熱伝導率と、気温25℃、相対湿度60%の雰囲気下で30日間保管した後の真空断熱材の中央部の熱伝導率とを測定し、その差を熱伝導率の増加量として算出した。
表1は、実施例1に係る真空断熱材1における中央部の熱伝導率と、比較例1に係る真空断熱材における中央部の熱伝導率と、を比較した結果である。
表1に示すように、実施例1に係る真空断熱材1は、作製1日後の中央部の熱伝導率が1.8mW/(m・K)であり、作製30日後の中央部の熱伝導率の増加量が0.3mW/(m・K)であった。
これに対し、比較例1に係る真空断熱材は、作製1日後の中央部の熱伝導率が2.0mW/(m・K)であり、作製30日後の中央部の熱伝導率の増加量が2.4mW/(m・K)であった。
つまり、実施例1に係る真空断熱材1は、比較例1に係る真空断熱材と比較して、作製1日後の中央部の熱伝導率が0.2mW/(m・K)低く、作製30日後の中央部の熱伝導率の増加量が2.1mW/(m・K)低かった。
これに対し、比較例1に係る真空断熱材は、作製1日後の中央部の熱伝導率が2.0mW/(m・K)であり、作製30日後の中央部の熱伝導率の増加量が2.4mW/(m・K)であった。
つまり、実施例1に係る真空断熱材1は、比較例1に係る真空断熱材と比較して、作製1日後の中央部の熱伝導率が0.2mW/(m・K)低く、作製30日後の中央部の熱伝導率の増加量が2.1mW/(m・K)低かった。
このように、外包材4の芯材被覆部5にガスバリア層44を有することで、長時間にわたって真空断熱材1の中央部の熱伝導率を低く維持することができた。
[実施例2]
実施例2では、芯材非被覆部6の熱伝導率と実効熱伝導率との関係について調査した。実施例2に係る真空断熱材1は、芯材被覆部5のみに存在する外包材4のガスバリア層44を、膜厚40nmのアルミニウム蒸着層として構成した。実施例2に係る真空断熱材1のその他の構成は、実施例1に係る真空断熱材1と同じである。
そして、実施例2に係る真空断熱材1において、中央部の熱伝導率と、外包材4の芯材非被覆部6の熱伝導率とを測定し、実効熱伝導率を算出した。なお、芯材非被覆部6の熱伝導率は、外包材4の封止部43aで測定した。
実施例2では、芯材非被覆部6の熱伝導率と実効熱伝導率との関係について調査した。実施例2に係る真空断熱材1は、芯材被覆部5のみに存在する外包材4のガスバリア層44を、膜厚40nmのアルミニウム蒸着層として構成した。実施例2に係る真空断熱材1のその他の構成は、実施例1に係る真空断熱材1と同じである。
そして、実施例2に係る真空断熱材1において、中央部の熱伝導率と、外包材4の芯材非被覆部6の熱伝導率とを測定し、実効熱伝導率を算出した。なお、芯材非被覆部6の熱伝導率は、外包材4の封止部43aで測定した。
比較例2に係る真空断熱材は、芯材非被覆部にもガスバリア層を設けた。つまり、比較例2に係る真空断熱材は、外包材の全体にわたってガスバリア層が設けられている。比較例2に係る真空断熱材のその他の構成は、実施例2に係る真空断熱材1と同じである。なお、比較例2に係る真空断熱材は、2種類用意した。1つ目の比較例2に係る真空断熱材は、外包材の全体にわたって設けられたガスバリア層を、膜厚6μmのアルミニウム箔層として構成した。2つ目の比較例2に係る真空断熱材は、外包材の全体にわたって設けられたガスバリア層を、膜厚40nmのアルミニウム蒸着層として構成した。
そして、比較例2に係る真空断熱材のそれぞれにおいて、中央部の熱伝導率と、外包材の芯材非被覆部の熱伝導率とを測定し、実効熱伝導率を算出した。なお、芯材非被覆部の熱伝導率は、外包材の封止部で測定した。
そして、比較例2に係る真空断熱材のそれぞれにおいて、中央部の熱伝導率と、外包材の芯材非被覆部の熱伝導率とを測定し、実効熱伝導率を算出した。なお、芯材非被覆部の熱伝導率は、外包材の封止部で測定した。
表2は、実施例2に係る真空断熱材1の実効熱伝導率と、比較例2に係る真空断熱材のそれぞれの実効熱伝導率と、を比較した結果である。
なお、表2に示す真空断熱材の周長は、次式(2)で求めた。
真空断熱材の周長=(真空断熱材の幅+真空断熱材の長さ)×2 …(2)
また、表2に示す真空断熱材の面積は、次式(3)で求めた。
真空断熱材の面積=真空断熱材の幅×真空断熱材の長さ …(3)
また、表2に示す真空断熱材の実効熱伝導率は、上述の式(1)で求めた。
なお、表2に示す真空断熱材の周長は、次式(2)で求めた。
真空断熱材の周長=(真空断熱材の幅+真空断熱材の長さ)×2 …(2)
また、表2に示す真空断熱材の面積は、次式(3)で求めた。
真空断熱材の面積=真空断熱材の幅×真空断熱材の長さ …(3)
また、表2に示す真空断熱材の実効熱伝導率は、上述の式(1)で求めた。
表2に示すように、実施例2に係る真空断熱材1及び比較例2に係る真空断熱材のそれぞれは、作製1日後の中央部の熱伝導率が1.8mW/(m・K)であり、同値であった。
また、実施例2に係る真空断熱材1は、外包材4の芯材非被覆部6の熱伝導率が1.0mW/(m・K)であり、実効熱伝導率が1.9mW/(m・K)であった。
これに対して、アルミニウム箔層のガスバリア層を有する比較例2に係る真空断熱材は、外包材の芯材非被覆部の熱伝導率が17.0mW/(m・K)であり、実効熱伝導率が3.6mW/(m・K)であった。また、アルミニウム蒸着層のガスバリア層を有する比較例2に係る真空断熱材は、外包材の芯材非被覆部の熱伝導率が7.0mW/(m・K)であり、実効熱伝導率が2.5mW/(m・K)であった。
また、実施例2に係る真空断熱材1は、外包材4の芯材非被覆部6の熱伝導率が1.0mW/(m・K)であり、実効熱伝導率が1.9mW/(m・K)であった。
これに対して、アルミニウム箔層のガスバリア層を有する比較例2に係る真空断熱材は、外包材の芯材非被覆部の熱伝導率が17.0mW/(m・K)であり、実効熱伝導率が3.6mW/(m・K)であった。また、アルミニウム蒸着層のガスバリア層を有する比較例2に係る真空断熱材は、外包材の芯材非被覆部の熱伝導率が7.0mW/(m・K)であり、実効熱伝導率が2.5mW/(m・K)であった。
つまり、芯材被覆部5のみにガスバリア層44が存在する実施例2に係る真空断熱材1は、外包材の全体にわたってガスバリア層が設けられた比較例2に係る真空断熱材と比較して、実効熱伝導率を0.6mW/(m・K)~1.7mW/(m・K)低くすることができた。
[実施例3]
実施例3に係る真空断熱材1は、実施例2に係る真空断熱材1を、気温25℃、相対湿度60%の雰囲気下で30日間保管したものである。実施例3に係る真空断熱材1において、中央部の熱伝導率と、外包材4の芯材非被覆部6の熱伝導率とを測定し、実効熱伝導率を算出した。
また、比較例3に係る真空断熱材は、比較例2に係る真空断熱材のそれぞれを、気温25℃、相対湿度60%の雰囲気下で30日間保管したものである。比較例3に係る真空断熱材のそれぞれにおいて、中央部の熱伝導率と、外包材の芯材非被覆部の熱伝導率とを測定し、実効熱伝導率を算出した。
実施例3に係る真空断熱材1は、実施例2に係る真空断熱材1を、気温25℃、相対湿度60%の雰囲気下で30日間保管したものである。実施例3に係る真空断熱材1において、中央部の熱伝導率と、外包材4の芯材非被覆部6の熱伝導率とを測定し、実効熱伝導率を算出した。
また、比較例3に係る真空断熱材は、比較例2に係る真空断熱材のそれぞれを、気温25℃、相対湿度60%の雰囲気下で30日間保管したものである。比較例3に係る真空断熱材のそれぞれにおいて、中央部の熱伝導率と、外包材の芯材非被覆部の熱伝導率とを測定し、実効熱伝導率を算出した。
表3は、実施例3に係る真空断熱材1の実効熱伝導率と、比較例3に係る真空断熱材のそれぞれの実効熱伝導率と、を比較した結果である。換言すると、表3は、作製30日後の実施例2に係る真空断熱材1の実効熱伝導率と、作製30日後の比較例2に係る真空断熱材のそれぞれの実効熱伝導率と、を比較した結果である。
表3に示すように、実施例3に係る真空断熱材1は、比較例3に係る真空断熱材と比較して、作製30日後の中央部の熱伝導率が0.2mW/(m・K)~0.3mW/(m・K)高かった。しかし、実施例3に係る真空断熱材1は、比較例3に係る真空断熱材と比較して、作製30日後の実効熱伝導率を0.4mW/(m・K)~1.4mW/(m・K)低くすることができた。
以上、本実施の形態1に係る真空断熱材1は、芯材2と、芯材2を被覆している外包材4とを備え、外包材4の内部が減圧状態となっている。そして、外包材4はガスバリア層44を有する積層フィルムであり、ガスバリア層44は芯材被覆部5のみに存在している。本実施の形態1に係る真空断熱材1は、芯材被覆部5にガスバリア層44を有するため、外包材4の外部から外包材4の内部に水蒸気及び空気等のガスが侵入することを低減でき、長期間にわたって真空断熱材1の中央部の熱伝導率を低く維持することができる。また、本実施の形態1に係る真空断熱材1は、芯材被覆部5以外の範囲にガスバリア層44を有していない。このため、本実施の形態1に係る真空断熱材1は、芯材非被覆部6の熱伝導率を小さくでき、実効熱伝導率も低く維持できる。したがって、本実施の形態1に係る真空断熱材1は、高い断熱性能を長期間にわたって維持することができる。
なお、本発明に係る真空断熱材1は、本実施の形態1で示した構成に限定されるものではなく種々の変形が可能であり、本実施の形態1で示した構成及び変形例は、互いに組み合わせて実施することが可能である。
例えば、本実施の形態1では、製造工程において芯材2及び外包材4の乾燥は100℃で2時間の加熱処理により行われていることを例示しているが、加熱処理の温度及び時間は、芯材2及び外包材4の水分が除去できる温度及び時間であればこれに限定されない。また、芯材2及び外包材4の乾燥は芯材2を外包材4で被覆した状態で行っているが、芯材2と外包材4の乾燥を別々に行った後に、芯材2を外包材4で被覆してもよい。また、本実施の形態1に係る真空断熱材1の製造工程においては、芯材2及び外包材4を乾燥した後に吸着剤3を芯材2と外包材4との間に配置しているが、芯材2及び外包材4を乾燥する前に吸着剤3を配置してもよい。
実施の形態2.
本実施の形態2では、実施の形態1に係る真空断熱材1を備えた断熱箱の一例について説明する。なお、本実施の形態2において、特に記述しない項目については実施の形態1と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
本実施の形態2では、実施の形態1に係る真空断熱材1を備えた断熱箱の一例について説明する。なお、本実施の形態2において、特に記述しない項目については実施の形態1と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
図3は、本発明の実施の形態2に係る断熱箱の概略構成を示す断面図である。断熱箱100は、例えば、高い断熱性能が求められる冷蔵庫等に用いられる。
図3に示すように、断熱箱100は、外箱120と、該外箱120の内部に配置された内箱110とを備える。そして、内箱110と外箱120との間には、実施の形態1において説明した真空断熱材1が配置されており、内箱110と外箱120の間で断熱を行う。
図3に示すように、断熱箱100は、外箱120と、該外箱120の内部に配置された内箱110とを備える。そして、内箱110と外箱120との間には、実施の形態1において説明した真空断熱材1が配置されており、内箱110と外箱120の間で断熱を行う。
真空断熱材1が配置される位置は、内箱110と外箱120との間で断熱できる位置であれば、特に限定されない。例えば、内箱110における外箱120と対向する面に接するように、真空断熱材1を配置してもよい。また例えば、外箱120における内箱110と対向する面に接するように、真空断熱材1を配置してもよい。また例えば、内箱110又は外箱120と真空断熱材1との間にスペーサ等を設け、内箱110及び外箱120と真空断熱材1とが接触しないように、内箱110と外箱120との間の空間に真空断熱材を配置してもよい。
ここで、真空断熱材1は、発泡ウレタン断熱材130等と比較して高い断熱性能を有する。このため、真空断熱材1を備えた断熱箱100は、発泡ウレタン断熱材のみを用いた断熱箱よりも高い断熱性能を得られる。しかし、内箱110と外箱120との間の空間のうち、真空断熱材1以外の部分には発泡ウレタン断熱材130が充填されていてもよい。
なお、上記の説明において、一般的な冷蔵庫等に用いられている断熱箱と同等である部分については、図示及び説明を省略している。
以上、本実施の形態2に係る断熱箱100は、実効熱伝導率の低い真空断熱材1が設けられている。これにより、内箱110と外箱120との間の熱伝導率が低い状態に維持されるため、断熱箱100の断熱性能を高く維持することができる。例えば、断熱箱100を備えた冷蔵庫等においては、消費電力を削減することができる。
なお、本実施の形態2では、冷熱源を備える冷蔵庫の断熱箱100に真空断熱材1が用いられた構成を例に挙げたが、本発明はこれに限られない。例えば、真空断熱材1は、温熱源を備える保温庫の断熱箱に用いることもできる。また例えば、真空断熱材1は、冷熱源及び温熱源を備えない断熱箱、例えば、クーラーボックス等に用いることもできる。また、真空断熱材1は、断熱箱だけでなく、空調機、車両用空調機及び給湯機等の冷熱機器又は温熱機器の断熱部材として用いてもよい。また、断熱容器等に真空断熱材1を用いてもよい。また、真空断熱材1の形状も上記の平板形状に限定されるものではない。例えば、図1において上側又は下側に凸となるような曲面形状に、真空断熱材1を形成してもよい。また例えば、変形自在な外袋及び内袋を備えた断熱袋に真空断熱材1を用いてもよい。
1 真空断熱材、2 芯材、3 吸着剤、4 外包材、41 表面保護層、42 基材層、43 熱融着層、43a 封止部、44 ガスバリア層、5 芯材被覆部、6 芯材非被覆部、100 断熱箱、110 内箱、120 外箱、130 発泡ウレタン断熱材。
Claims (10)
- 芯材と、前記芯材を被覆している外包材とを備え、前記外包材の内部が減圧状態となっている真空断熱材であって、
前記外包材は、ガスバリア層を有する積層フィルムであり、
前記外包材が前記芯材と対向している範囲に、当該真空断熱材の厚み方向に対向する2つの面を有し、
当該2つの面を構成する前記外包材部分を芯材被覆部と定義した場合、
前記ガスバリア層は、前記芯材被覆部のみに存在している真空断熱材。 - 前記外包材は、
前記ガスバリア層と、基材層と、該基材層の外面側に設けられた表面保護層と、前記基材層の内面側に設けられた熱融着層と、を有する請求項1に記載の真空断熱材。 - 前記ガスバリア層は、前記表面保護層と前記基材層との間、前記基材層と前記熱融着層との間、及び、前記熱融着層と前記芯材との間のうちの、少なくとも1つの間に設けられている請求項2に記載の真空断熱材。
- 前記ガスバリア層は、
金属箔層、金属の蒸着層、及び金属酸化物の蒸着層のうちの少なくとも1つである請求項1~請求項3のいずれか一項に記載の真空断熱材。 - 前記ガスバリア層に用いられる金属は、アルミニウムである請求項4に記載の真空断熱材。
- 前記外包材における前記芯材被覆部以外の範囲を芯材非被覆部と定義した場合、
前記芯材非被覆部が、前記芯材の形状に沿って折り曲げられている請求項1~請求項5のいずれか一項に記載の真空断熱材。 - 前記芯材は、繊維集合体である請求項1~請求項6のいずれか一項に記載の真空断熱材。
- 前記芯材は、グラスウールである請求項7に記載の真空断熱材。
- 水分を吸着する吸着剤を備え、
前記芯材及び前記吸着剤が、前記外包材によって被覆されている請求項1~請求項8のいずれか一項に記載の真空断熱材。 - 外箱と、
前記外箱の内部に配置された内箱と、
前記外箱と前記内箱との間に配置された請求項1~請求項9のいずれか一項に記載の真空断熱材と、
を備えた断熱箱。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201690000817.1U CN208727515U (zh) | 2016-09-02 | 2016-09-02 | 真空隔热件以及隔热箱 |
JP2018536632A JPWO2018042612A1 (ja) | 2016-09-02 | 2016-09-02 | 真空断熱材及び断熱箱 |
PCT/JP2016/075755 WO2018042612A1 (ja) | 2016-09-02 | 2016-09-02 | 真空断熱材及び断熱箱 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/075755 WO2018042612A1 (ja) | 2016-09-02 | 2016-09-02 | 真空断熱材及び断熱箱 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018042612A1 true WO2018042612A1 (ja) | 2018-03-08 |
Family
ID=61300434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/075755 WO2018042612A1 (ja) | 2016-09-02 | 2016-09-02 | 真空断熱材及び断熱箱 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2018042612A1 (ja) |
CN (1) | CN208727515U (ja) |
WO (1) | WO2018042612A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58111498U (ja) * | 1982-01-25 | 1983-07-29 | 松下冷機株式会社 | 真空断熱材パツク |
JPS60142928U (ja) * | 1984-03-06 | 1985-09-21 | 藤森工業株式会社 | 断熱材用包装材 |
JPH0462379A (ja) * | 1990-06-29 | 1992-02-27 | Hitachi Ltd | 断熱箱体 |
JPH05272864A (ja) * | 1992-03-27 | 1993-10-22 | Sharp Corp | 真空断熱パネル |
JP2010031958A (ja) * | 2008-07-29 | 2010-02-12 | Panasonic Corp | 真空断熱材 |
JP2011106653A (ja) * | 2009-11-20 | 2011-06-02 | Toyo Aluminium Kk | 真空断熱パネル用包装材及び真空断熱パネル |
JP2015104704A (ja) * | 2013-11-29 | 2015-06-08 | 三星電子株式会社Samsung Electronics Co.,Ltd. | 粒子状吸着材 |
JP2016008694A (ja) * | 2014-06-26 | 2016-01-18 | 三菱電機株式会社 | 繊維集合体の成形方法、繊維集合体、真空断熱材、及び断熱箱 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101808897B1 (ko) * | 2014-01-27 | 2017-12-13 | (주)엘지하우시스 | 진공 단열재 및 이의 제조방법 |
KR20150106306A (ko) * | 2014-03-11 | 2015-09-21 | 삼성전자주식회사 | 진공단열재 및 이를 포함하는 냉장고 |
CN204477606U (zh) * | 2015-01-26 | 2015-07-15 | 黄国平 | 一种新型真空绝热板 |
-
2016
- 2016-09-02 WO PCT/JP2016/075755 patent/WO2018042612A1/ja active Application Filing
- 2016-09-02 CN CN201690000817.1U patent/CN208727515U/zh not_active Expired - Fee Related
- 2016-09-02 JP JP2018536632A patent/JPWO2018042612A1/ja active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58111498U (ja) * | 1982-01-25 | 1983-07-29 | 松下冷機株式会社 | 真空断熱材パツク |
JPS60142928U (ja) * | 1984-03-06 | 1985-09-21 | 藤森工業株式会社 | 断熱材用包装材 |
JPH0462379A (ja) * | 1990-06-29 | 1992-02-27 | Hitachi Ltd | 断熱箱体 |
JPH05272864A (ja) * | 1992-03-27 | 1993-10-22 | Sharp Corp | 真空断熱パネル |
JP2010031958A (ja) * | 2008-07-29 | 2010-02-12 | Panasonic Corp | 真空断熱材 |
JP2011106653A (ja) * | 2009-11-20 | 2011-06-02 | Toyo Aluminium Kk | 真空断熱パネル用包装材及び真空断熱パネル |
JP2015104704A (ja) * | 2013-11-29 | 2015-06-08 | 三星電子株式会社Samsung Electronics Co.,Ltd. | 粒子状吸着材 |
JP2016008694A (ja) * | 2014-06-26 | 2016-01-18 | 三菱電機株式会社 | 繊維集合体の成形方法、繊維集合体、真空断熱材、及び断熱箱 |
Also Published As
Publication number | Publication date |
---|---|
CN208727515U (zh) | 2019-04-12 |
JPWO2018042612A1 (ja) | 2019-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101301504B1 (ko) | 진공단열재 및 그 제조방법 | |
TWI647106B (zh) | 真空隔熱材料及其製備方法 | |
KR101560442B1 (ko) | 진공단열재용 외피재, 진공단열재 및 단열 벽체 | |
KR101260306B1 (ko) | 가스 차단성이 우수한 진공단열재용 다층형 슈퍼 배리어 봉지 부재 | |
JP6132826B2 (ja) | 真空断熱材及び断熱箱 | |
JP2015169372A (ja) | 断熱容器および断熱容器の製造方法 | |
TWI604150B (zh) | Vacuum heat insulation material and heat insulation box | |
WO2018042612A1 (ja) | 真空断熱材及び断熱箱 | |
JP2010138956A (ja) | 真空断熱材 | |
JP7077642B2 (ja) | 真空断熱材用積層体および真空断熱材 | |
CN111801525B (zh) | 真空隔热件和隔热箱 | |
JP6775585B2 (ja) | 真空断熱材及び断熱箱 | |
JP5377451B2 (ja) | 真空断熱材およびこの真空断熱材を用いた断熱箱 | |
JP6094088B2 (ja) | 真空断熱材用積層体 | |
KR101749397B1 (ko) | 진공 단열재 | |
JP6095598B2 (ja) | 真空断熱材、断熱箱、及び真空断熱材の製造方法 | |
WO2021124555A1 (ja) | 真空断熱材及び断熱箱 | |
WO2021132457A1 (ja) | 断熱袋、保温袋、および断熱袋の製造方法 | |
JP2017100799A (ja) | 折り畳み式保冷保温箱およびその折り畳み方法、ならびにかご車 | |
JPH0325510Y2 (ja) | ||
CN114867599A (zh) | 阻气膜、膜叠层体和真空隔热件 | |
JP2015117799A (ja) | 断熱材モジュール、及び物品と断熱材モジュールの組合体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16915172 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018536632 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16915172 Country of ref document: EP Kind code of ref document: A1 |