WO2023188428A1 - 空気調和システムおよび冷凍サイクル装置 - Google Patents
空気調和システムおよび冷凍サイクル装置 Download PDFInfo
- Publication number
- WO2023188428A1 WO2023188428A1 PCT/JP2022/016994 JP2022016994W WO2023188428A1 WO 2023188428 A1 WO2023188428 A1 WO 2023188428A1 JP 2022016994 W JP2022016994 W JP 2022016994W WO 2023188428 A1 WO2023188428 A1 WO 2023188428A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat source
- heat
- compressor
- source operation
- air conditioning
- Prior art date
Links
- 238000004378 air conditioning Methods 0.000 title claims abstract description 105
- 238000005057 refrigeration Methods 0.000 title claims description 54
- 239000003507 refrigerant Substances 0.000 claims abstract description 84
- 239000010721 machine oil Substances 0.000 claims description 49
- 239000007788 liquid Substances 0.000 claims description 47
- 230000001603 reducing effect Effects 0.000 claims description 20
- 230000009467 reduction Effects 0.000 claims description 8
- 239000007789 gas Substances 0.000 description 54
- 238000002360 preparation method Methods 0.000 description 19
- 238000010438 heat treatment Methods 0.000 description 16
- 230000006870 function Effects 0.000 description 14
- 238000010586 diagram Methods 0.000 description 13
- 230000001143 conditioned effect Effects 0.000 description 11
- 238000009423 ventilation Methods 0.000 description 8
- 230000003247 decreasing effect Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000001514 detection method Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 238000002309 gasification Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/009—Indoor units, e.g. fan coil units characterised by heating arrangements
Definitions
- the present disclosure relates to an air conditioning system and a refrigeration cycle device.
- Patent Document 1 describes an air conditioning system that, when switching from heating operation using a gas furnace device to heating operation using a refrigeration cycle device, starts heating operation using a refrigeration cycle device while continuing heating operation using the gas furnace device. is listed.
- An object of the present disclosure is to adversely affect the operation of a compressor when switching the air conditioning operation mode from a second heat source operation mode using a heat source device different from the refrigeration cycle device to a first heat source operation mode using the refrigeration cycle device. The goal is to ensure that this is not the case.
- the present disclosure relating to a first aspect is an air conditioning system, which includes a compressor, a first heat exchanger, a second heat exchanger, a pressure reduction device, and a refrigerant that is connected to the compressor, the first heat exchanger, and the first heat exchanger. , a refrigerant circuit circulating in the order of a pressure reducing device, a second heat exchanger, and a compressor, a heat source device, and an air conditioning operation mode, a first mode for executing a first heat source operation and a second mode for executing a second heat source operation.
- the control device is arranged in a space where the heat generated by the heat source device is transferred, and when switching the air conditioning operation mode from the second mode to the first mode, the control device determines whether the specified conditions are satisfied after the second heat source operation is stopped. Afterwards, the first heat source operation is started.
- the present disclosure related to a second aspect is a refrigeration cycle device that air-conditions an air-conditioned space, which includes a compressor, a first heat exchanger, a second heat exchanger, a pressure reduction device, a refrigerant, a compressor,
- the refrigerant circuit circulates in the order of the first heat exchanger, pressure reduction device, second heat exchanger, and compressor, and the mode of air conditioning operation is changed from the second mode in which the second heat source operation is executed to the first heat source operation.
- a control device that receives a control signal for switching to a first mode in which the first heat source operation is performed by driving the compressor to connect the air-conditioned space, the first heat exchanger, and the second heat exchanger.
- the first heat pump operation exchanges heat between the refrigerant flowing through one of the heat exchangers
- the second heat source operation exchanges heat between the refrigerant and the refrigerant flowing through one of the heat exchangers.
- the second heat source operation exchanges heat between the refrigerant and the refrigerant flowing through one of the heat exchangers.
- One heat exchanger is placed in a space where the heat generated by the heat source device is transferred, and when the control device receives a control signal, the control device stops the second heat source operation and then adjusts the specified conditions. After this is established, the first heat source operation is started.
- the operation of the compressor when switching the air conditioning operation mode from the second mode in which the second heat source operation is performed to the first mode in which the first heat source operation is performed, the operation of the compressor is prevented from being adversely affected. be able to.
- FIG. 1 is a diagram showing the configuration of an air conditioning system according to Embodiment 1.
- FIG. FIG. 3 is a diagram showing the configuration of a control device. It is a figure showing operation of the 1st heat source operation by a refrigeration cycle device. It is a figure which shows the operation
- 2 is a timing chart showing the timing of switching the mode of air conditioning operation (Embodiment 1). It is a flowchart which shows the content of control which switches an air conditioning operation from a 2nd heat source operation to a 1st heat source operation (Embodiment 1).
- FIG. 3 is a diagram showing the configuration of an air conditioning system according to a second embodiment.
- FIG. 7 is a timing chart showing the timing of switching the air conditioning operation mode (Embodiment 2). It is a flowchart which shows the content of control which switches an air conditioning operation from a 2nd heat source operation to a 1st heat source operation (Embodiment 2). It is a flowchart which shows the content of control which switches an air conditioning operation from a 2nd heat source operation to a 1st heat source operation (Embodiment 3). It is a flowchart which shows the content of control which switches an air conditioning operation from a 2nd heat source operation to a 1st heat source operation (Embodiment 4).
- FIG. 7 is a diagram showing the configuration of an air conditioning system according to a fifth embodiment.
- FIG. 7 is a diagram showing the configuration of an air conditioning system according to a seventh embodiment.
- FIG. 1 is a diagram showing the configuration of an air conditioning system 100 according to the first embodiment.
- the refrigeration cycle device 200 includes a refrigeration cycle device 200 and a gas furnace device 300.
- the gas furnace device 300 is an example of a heat source device different from the refrigeration cycle device 200.
- the refrigeration cycle device 200 executes a first heat source operation for air conditioning the air conditioned space 50.
- the gas furnace device 300 executes a second heat source operation for air conditioning the air conditioned space 50.
- the refrigeration cycle device 200 includes an indoor unit 201 and an outdoor unit 202.
- the air-conditioned space 50 is, for example, a room in a building such as a building.
- the gas furnace device 300 and the indoor unit 201 of the refrigeration cycle device 200 are arranged in an air conditioning equipment room connected to the air conditioned space 50 through a ventilation space 60 such as a duct, for example.
- the outdoor unit 202 of the refrigeration cycle device 200 is placed outside a building such as a building.
- the indoor unit 201 of the refrigeration cycle device 200 and the gas furnace device 300 are stacked vertically or arranged side by side adjacently.
- the conditioned air prepared by the refrigeration cycle device 200 and the conditioned air prepared by the gas furnace device 300 are sent from the air conditioning equipment room to the air conditioned space 50 through the ventilation space 60.
- the air conditioning system 100 can control the mode of air conditioning operation to be switched between a first mode in which the first heat source operation is executed and a second mode in which the second heat source operation is executed. Furthermore, the air conditioning system 100 can also use the first heat source operation and the second heat source operation together.
- switching the air conditioning operation mode from the first mode (the first heat source operation mode) to the second mode (the second heat source operation mode) will be simply referred to as "the air conditioning operation is changed from the first heat source operation to the second heat source operation.”
- ⁇ Switch to driving ⁇ Switch to driving.''
- switching the air conditioning operation mode from the second mode (the mode of the second heat source operation) to the first mode (the mode of the first heat source operation) can be simply described as ⁇ change the air conditioning operation from the second heat source operation to the first mode.'' "Switch to heat source operation.”
- the refrigeration cycle device 200 includes a refrigerant circuit 29.
- the refrigerant circuit 29 is arranged across the indoor unit 201 and the outdoor unit 202.
- Two first heat exchangers 22 and 23 are arranged in the refrigerant circuit 29 located on the indoor unit 201 side.
- a compressor 21, a pressure reducing device 24, and a second heat exchanger 25 are arranged in the refrigerant circuit 29 located on the outdoor unit 202 side.
- the outdoor unit 202 further includes a control device 20 and a fan 28 that blows air to the second heat exchanger 25.
- control device 20 may be disposed in the indoor unit 201.
- the compressor 21 circulates the refrigerant within the refrigerant circuit 29 by increasing the pressure of the refrigerant it sucks in and then discharging the refrigerant.
- the operating frequency of the compressor 21 is controlled by the control device 20.
- the compressor 21 is filled with refrigerating machine oil.
- the refrigerating machine oil plays the roles of lubricating, sealing, and rust-preventing the compressor 21.
- the first heat exchangers 22 and 23 exchange heat between the refrigerant flowing inside the first heat exchangers 22 and 23 and the outside air.
- a high-temperature, high-pressure gas refrigerant flows from the compressor 21 into the first heat exchangers 22 and 23 . Therefore, the first heat exchangers 22 and 23 function as condensers.
- the number of first heat exchangers provided in the refrigerant circuit 29 may be one or three or more.
- the pressure reducing device 24 includes a pressure reducing valve (not shown) that adjusts the degree of pressure reduction, and has a function of adjusting the opening degree of the pressure reducing valve in accordance with the control of the control device 20.
- the pressure reducing device 24 adjusts the flow rate and pressure of the refrigerant by adjusting the opening degree of the pressure reducing valve. As the opening degree of the pressure reducing valve of the pressure reducing device 24 becomes smaller, the pressure reducing effect becomes higher.
- the second heat exchanger 25 performs heat exchange between the refrigerant flowing inside the second heat exchanger 25 and the outside air.
- a low-temperature, low-pressure liquid refrigerant flows into the second heat exchanger 25 from the pressure reducing device 24 . Therefore, the second heat exchanger 25 functions as an evaporator.
- the refrigeration cycle device 200 shown in FIG. 1 functions as a heater that warms the air-conditioned space 50.
- the first heat exchangers 22 and 23 functioning as a condenser may be arranged in the outdoor unit 202
- the second heat exchanger 25 functioning as an evaporator may be arranged in the indoor unit 201.
- the refrigeration cycle device 200 functions as an air conditioner that cools the indoor space.
- the gas furnace device 300 is a gas combustion type heating device.
- the gas furnace device 300 includes a control unit 30, a furnace heat exchanger 31, and a fan 38.
- the control unit 30 includes a combustion mechanism that burns gas, a blower mechanism that sends heated gas to the furnace heat exchanger 31, and a control board that controls the entire gas furnace apparatus 300 including the fan 38. In FIG. 1, illustration of each of these mechanisms and a control board is omitted.
- FIG. 2 is a diagram showing the configuration of the control device 20. As shown in FIG. Here, the configuration of the control device 20 disposed in the refrigeration cycle device 200 will be explained with reference to FIG. 2.
- the control device 20 includes a processor 211, a memory 212, and a communication interface 213.
- the memory 212 includes, for example, a ROM (Read Only Memory), a RAM (Random Access Memory), a flash memory, and a hard disk drive.
- Processor 211 executes an operating system and application programs stored in memory 212. Processor 211 executes application programs and references various data stored in memory 212.
- the processor 211 communicates with the control unit 30 of the gas furnace apparatus 300 via the communication interface 213.
- Processor 211 communicates with a remote controller carried by a user via communication interface 213 .
- the processor 211 controls the compressor 21, the pressure reducing device 24, the fan 28, etc. of the refrigeration cycle device 200 in accordance with the control signal received from the remote controller.
- the control signal includes a command to switch the air conditioning operation from the second heat source operation by the gas furnace device 300 to the first heat source operation by the refrigeration cycle device 200.
- the processor 211 receives a control signal including such a command, the processor 211 transmits a signal instructing the control unit 30 of the gas furnace device 300 to stop the second heat source operation, and then starts the freezing operation after the specified conditions are satisfied.
- the first heat source operation by the cycle device 200 is started.
- FIG. 3 is a diagram showing the operation of the first heat source operation by the refrigeration cycle device 200.
- the furnace heat exchanger 31 is shown by a broken line. This indicates that heating gas is not being sent to the furnace heat exchanger 31 and the second heat source operation is not being performed.
- the fan 38 of the gas furnace device 300 functions as a blower.
- the refrigerant circulates through the refrigerant circuit 29 in the order indicated by the arrows in FIG. That is, the refrigerant circulates through the compressor 21 , the first heat exchangers 22 and 23 , the pressure reducing device 24 , the second heat exchanger 25 , and the compressor 21 in the first order. Thereby, heat exchange is performed between the refrigerant flowing through the first heat exchangers 22 and 23 and the air around the first heat exchangers 22 and 23.
- the air heated by the first heat exchangers 22 and 23 is sent to the air-conditioned space 50 as hot air through the ventilation space 60 by the fan 38 of the gas furnace device 300. Thereby, the air-conditioned space 50 is warmed.
- the first heat source operation is a heat pump operation in which heat is exchanged between the refrigerant flowing through the first heat exchangers 22 and 23 and the air-conditioned space 50 by driving the compressor 21.
- FIG. 4 is a diagram showing the operation of the second heat source operation by the gas furnace device 300.
- various devices arranged in the refrigerant circuit 29 are shown by broken lines. This indicates that heat exchange by the refrigeration cycle is not being performed and the first heat source operation is not being performed.
- high temperature combustion gas generated by the control unit 30 is supplied to the furnace heat exchanger 31. Thereby, heat exchange is performed between the high temperature gas in the furnace heat exchanger 31 and the air around the furnace heat exchanger 31.
- the air heated by the furnace heat exchanger 31 is sent to the air-conditioned space 50 as hot air through the ventilation space 60 by the fan 38. Thereby, the air-conditioned space 50 is warmed.
- the ventilation space 60 is shared by the gas furnace device 300 and the indoor unit 201 of the refrigeration cycle device 200. Therefore, the heat generated in the gas furnace device 300 by the second heat source operation is provided to the air-conditioned space 50 via the space inside the indoor unit 201 where the first heat exchangers 22 and 23 are arranged. Therefore, the heat generated in the gas furnace device 300 by the second heat source operation heats the first heat exchangers 22 and 23. In particular, since the first heat exchangers 22 and 23 are arranged downwind of the hot air generated by the fan 38 of the gas furnace device 300, a larger amount of heat is given to the first heat exchangers 22 and 23. As a result, the first heat exchangers 22 and 23 become high in temperature depending on the duration of the second heat source operation and the operating load.
- the compressor 21 If the compressor 21 is immediately started at an operating frequency suitable for air conditioning while the temperature of the first heat exchangers 22 and 23 is extremely high, the liquid refrigerant before gasification that is vigorously discharged from the compressor 21 will be heated to a high temperature. It flows into the first heat exchangers 22 and 23. The liquid refrigerant that has flowed into the first heat exchangers 22, 23 immediately evaporates, and the first heat exchangers 22, 23 are temporarily filled with single-phase gas refrigerant. At this time, refrigeration oil contained in the liquid refrigerant discharged from the compressor 21 remains in the first heat exchangers 22 and 23. As a result, the amount of refrigerating machine oil that returns to the compressor 21 through the refrigerant circuit 29 is reduced. This may affect the reliability of compressor 21.
- the control device 20 when switching the air conditioning operation from the second heat source operation to the first heat source operation, the control device 20 starts the first heat source operation after the second heat source operation is stopped and the specified conditions are satisfied.
- the details of the control performed by the control device 20 when switching the air conditioning operation from the second heat source operation to the first heat source operation will be explained in more detail.
- FIG. 5 is a timing chart showing the timing of switching the air conditioning operation mode.
- a broken line graph gh1 shows the relationship between the temperature of the first heat exchangers 22 and 23 and the operating time
- a solid line graph gh2 shows the relationship between the operating frequency of the compressor 21 and the operating time.
- a switching command to switch the first heat source operation to the second heat source operation is input.
- This switching command is inputted as a control signal from a user's remote controller to the control device 20, for example.
- the control device 20 switches the air conditioning operation from the first heat source operation to the second heat source operation at time t1 based on the control signal.
- This causes the gas furnace device 300 to operate.
- the second heat source operation by the gas furnace device 300 continues from time t1 to time t2. From time t1 to time t2, the first heat exchangers 22 and 23 of the refrigeration cycle device 200 are heated by the hot air blown out from the gas furnace device 300.
- a switching command to switch the second heat source operation to the first heat source operation is input.
- This switching command is inputted as a control signal from a user's remote controller to the control device 20, for example.
- the control device 20 stops the second heat source operation at time t2 based on the control signal. After that, the control device 20 does not immediately start the first heat source operation, but starts counting the specified time Th. While the control device 20 counts the specified time Th, the heat accumulated in the first heat exchangers 22 and 23 is radiated.
- the control device 20 starts the first heat source operation at time t3. That is, the control device 20 starts the compressor 21 at an appropriate operating frequency and discharges the refrigerant to the first heat exchangers 22 and 23. At this time, since the temperatures of the first heat exchangers 22 and 23 have decreased, the insides of the first heat exchangers 22 and 23 are not filled with single-phase gas refrigerant. Note that the designer can set an appropriate value as the specified time Th, taking into consideration the installation environment of the gas furnace device 300 and the refrigeration cycle device 200. The longer the prescribed time Th is set, the more reliably the above-mentioned problem can be solved.
- FIG. 6 is a flowchart showing the details of control for switching the air conditioning operation from the second heat source operation to the first heat source operation. The details of the control by the control device 20 will be explained below based on the flowchart shown in FIG.
- control device 20 determines whether a control signal for switching from the second heat source operation to the first heat source operation has been received (step S11). If the control device 20 has not received such a control signal, it ends the processing based on this flowchart. In this case, the second heat source operation by the gas furnace device 300 is continued.
- control device 20 When the control device 20 receives a control signal to switch from the second heat source operation to the first heat source operation, it stops the second heat source operation (step S12). For example, the control device 20 outputs a stop command signal to the control unit 30 of the gas furnace device 300. As a result, the second heat source operation by the gas furnace device 300 is stopped.
- control device 20 counts time using a timer (step S13).
- control device 20 determines whether the timer value exceeds the specified time Th (step S14).
- the control device 20 repeats the processing of step S13 and step S14 until the timer value exceeds the specified time Th.
- the control device 20 determines that the timer value exceeds the specified time Th, it starts the first heat source operation (step S15). As a result, the compressor 21 is started in a state where the temperatures of the first heat exchangers 22 and 23 are sufficiently lowered.
- the second heat source operation is stopped and then the specified After time Th has elapsed, the first heat source operation is started. For this reason, the compressor 21 is not started in a state where the first heat exchangers 22 and 23 have become high in temperature due to the second heat source operation. As a result, the refrigerant supplied from the compressor 21 is gasified in the first heat exchangers 22, 23, and refrigerating machine oil can be prevented from staying in the first heat exchangers 22, 23.
- Embodiment 2 will be described using FIGS. 7 to 9.
- an example was described in which the second heat source operation is switched to the first heat source operation after the specified time Th has elapsed.
- an example will be described in which the temperature of the first heat exchangers 22 and 23 is detected, and when the temperature becomes less than a threshold value, the second heat source operation is switched to the first heat source operation.
- FIG. 7 is a diagram showing the configuration of the air conditioning system 102 according to the second embodiment.
- a temperature sensor 11 is provided in the first heat exchanger 23 of the air conditioning system 102 according to the second embodiment.
- the configuration of the air conditioning system 102 according to the second embodiment is the same as the air conditioning system 100 according to the first embodiment, except that the first heat exchanger 23 is provided with the temperature sensor 11.
- the detected value of the temperature sensor 11 is acquired by the control device 20.
- the control device 20 regards the detected value of the temperature sensor 11 as the temperature of the first heat exchangers 22 and 23.
- FIG. 8 is a timing chart showing the timing of switching the air conditioning operation mode (Embodiment 2).
- FIG. 8 corresponds to FIG. 5 used to explain the first embodiment. Since the flow from the start of the first heat source operation to time t2 is the same in FIG. 5 and FIG. 8, the description thereof will not be repeated here.
- temperature Tth indicates the threshold temperature of the first heat exchangers 22 and 23 for determining whether to start the first heat source operation.
- the designer can set an appropriate Tth so that the first heat exchangers 22 and 23 are not filled with single-phase gas refrigerant.
- the control device 20 stops the second heat source operation based on the control signal input at time t2. After that, the control device 20 does not immediately start the first heat source operation, but determines the temperatures of the first heat exchangers 22 and 23 based on the detected value of the temperature sensor 11.
- the control device 20 starts the first heat source operation. That is, the control device 20 starts the compressor 21 at an appropriate operating frequency and discharges the refrigerant to the first heat exchangers 22 and 23. Since the temperatures of the first heat exchangers 22 and 23 have fallen below the threshold temperature Tth, the insides of the first heat exchangers 22 and 23 are not filled with single-phase gas refrigerant.
- FIG. 9 is a flowchart showing the details of control for switching the air conditioning operation from the second heat source operation to the first heat source operation (Embodiment 2).
- the details of the control by the control device 20 will be explained below based on the flowchart shown in FIG. Note that steps S21, S22, and S25 in the flowchart shown in FIG. 9 and steps S11, S12, and S15 in the flowchart shown in FIG. 6 have the same content. Therefore, a detailed explanation of those steps will not be repeated here.
- the control device 20 After stopping the second heat source operation in step S22, the control device 20 acquires the detected value of the temperature sensor 11 (step S23). Next, the control device 20 determines whether the detected value of the temperature sensor 11 is less than the threshold value Tth (step S24). The control device 20 repeats the processes of step S23 and step S24 until the detected value of the temperature sensor 11 becomes less than the threshold value Tth. When the control device 20 determines that the detected value of the temperature sensor 11 is less than the threshold value Tth, it starts the first heat source operation (step S25). As a result, the compressor 21 is started in a state where the temperatures of the first heat exchangers 22 and 23 are sufficiently lowered.
- the control device 20 measures the temperatures of the first heat exchangers 22 and 23, and directly confirms that the temperatures of the first heat exchangers 22 and 23 have decreased sufficiently. After that, the air conditioning operation is switched from the second heat source operation to the first heat source operation. Therefore, it is possible to more reliably prevent refrigerant from evaporating within the first heat exchangers 22 and 23 and refrigerating machine oil from remaining in the first heat exchangers 22 and 23 when switching between air conditioning operations.
- FIG. 10 is a flowchart showing the details of control for switching the air conditioning operation from the second heat source operation to the first heat source operation (Embodiment 3).
- the third embodiment adds the process of step S36 to the flowchart (see FIG. 9) described as the process of the control device 20 of the air conditioning system 102 according to the second embodiment.
- Steps S31 to S35 in the flowchart shown in FIG. 10 have the same contents as steps S21 to S25 in the flowchart shown in FIG. 9, respectively. Therefore, the description of those steps will not be repeated here.
- control device 20 waits without starting the first heat source operation until the detected value of the temperature sensor 11 becomes less than the threshold value Tth.
- control device 20 performs control to actively cool the first heat exchangers 22 and 23 during the standby period. That is, when the control device 20 determines that the detected value of the temperature sensor 11 is not less than the threshold Tth in step S34 of the flowchart shown in FIG. S36).
- the control device 20 utilizes the fan 38 of the gas furnace device 300 to perform control to actively cool the first heat exchangers 22 and 23.
- the fan 38 has a function of sending the conditioned air prepared in the second heat source operation by the gas furnace device 300 and the conditioned air prepared in the first heat source operation by the refrigeration cycle device 200 into the air conditioned space 50. Therefore, it is also conceivable to stop driving the fan 38 while neither the second heat source operation nor the first heat source operation is being performed.
- the fan 38 which is originally intended to send conditioned air into the conditioned space 50, is used to lower the temperature of the first heat exchangers 22 and 23, which have risen in temperature.
- the waiting time from stopping the second heat source operation in step S32 to starting the first heat source operation in step S35 can be shortened.
- the comfort of the air-conditioned space 50 can be improved.
- the waiting time from when the second heat source operation stops until the first heat source operation starts can be shortened without increasing the number of parts. I can do it.
- the fan 38 is driven at the maximum rotational speed during the waiting time from when the second heat source operation stops until when the first heat source operation starts. It's okay.
- a fan for lowering the temperature of the first heat exchangers 22 and 23 may be provided in the refrigeration cycle device 200 separately from the fan 38.
- FIG. 11 is a flowchart showing the details of control for switching the air conditioning operation from the second heat source operation to the first heat source operation (Embodiment 4).
- the fourth embodiment adds the process of step S46 to the flowchart (see FIG. 9) described as the process of the control device 20 of the air conditioning system 102 according to the second embodiment.
- Steps S41 to S44 in the flowchart shown in FIG. 11 have the same contents as steps S21 to S24 in the flowchart shown in FIG. 9, respectively.
- the process of step S45 shown in FIG. 11 is substantially the same as step S25 shown in FIG. Therefore, their detailed description will not be repeated here.
- the first heat source operation is performed in the preparation mode (step S46).
- the preparation mode is a mode for suppressing a decrease in refrigerating machine oil in the compressor 21.
- the control device 20 drives the compressor 21 at a frequency lower than the operating frequency required to air-condition the air-conditioned space 50, for example.
- a mode in which the compressor 21 is driven at the operating frequency required to air-condition the air-conditioned space 50 is referred to as a normal mode.
- the heat pump operation in the normal mode is referred to as a first heat pump operation. Therefore, the first heat source operation in step S15 in FIG. 6 described as the first embodiment means operation in the normal mode (first heat pump operation). The same applies to step S25 in FIG. 9 and step S35 in FIG.
- the operation in the preparation mode is a second heat pump operation in which the compressor 21 is driven at a lower frequency than the first heat pump operation.
- control device 20 determines in step S44 that the detected value of the temperature sensor 11 is less than the threshold Tth, it executes the first heat source operation in the normal mode (step S45).
- the compressor 21, which has been stopped is started at a high frequency necessary for operation of the refrigeration cycle, a large amount of liquid refrigerant that has not been gasified will flow into the first heat exchangers 22 and 23 with the force of the start-up. There is a risk of it being ejected.
- the refrigerating machine oil in the compressor 21 is discharged to the outside of the compressor 21 together with the liquid refrigerant, and there is a possibility that the amount of refrigerating machine oil in the compressor 21 becomes insufficient.
- the first heat source operation is performed in the preparation mode while waiting for the temperature of the first heat exchangers 22 and 23 to decrease.
- the compressor 21 continues to be driven at a frequency lower than the operating frequency required to air-condition the air-conditioned space 50. Therefore, when the operation mode is switched from the preparation mode to the normal mode, sufficiently gasified refrigerant can be sent to the first heat exchangers 22 and 23. Therefore, when the operation mode is switched from the preparation mode to the normal mode, a large amount of ungasified liquid refrigerant is prevented from being discharged together with the refrigerating machine oil toward the first heat exchangers 22 and 23 due to the force generated during startup. can. As a result, it is possible to prevent the amount of refrigerating machine oil in the compressor 21 from running out. Thereby, the reliability of the compressor 21 can be further improved.
- FIG. 12 is a diagram showing the configuration of an air conditioning system 105 according to the fifth embodiment.
- FIG. 13 is a flowchart showing the details of control for switching the air conditioning operation from the second heat source operation to the first heat source operation (Embodiment 5).
- the air conditioning system 105 has a liquid level sensor 12 added to the compressor 21 of the air conditioning system 102 according to the second embodiment (see FIG. 7). It is something.
- the liquid level sensor 12 detects the height of the liquid level within the compressor 21.
- the detected value of the liquid level sensor 12 is transmitted to the control device 20.
- the control device 20 determines the height of the liquid level in the compressor 21 based on the detected value obtained from the liquid level sensor 12.
- the control device 20 confirms that there is no shortage of refrigerating machine oil in the compressor 21 based on the height of the liquid level in the compressor 21.
- step S531, step S541) Processing using the liquid level sensor 12 (step S531, step S541) is added.
- Steps S51 to S56 in the flowchart shown in FIG. 13 have the same content and correspond to steps S41 to S46 in the flowchart shown in FIG. 11, respectively. Therefore, their description will not be repeated here.
- the control device 20 After acquiring the detection value of the temperature sensor 11 in step S53, the control device 20 acquires the detection value of the liquid level sensor 12 (step S531). If the control device 20 determines in step S54 that the detected value of the temperature sensor 11 is not less than the threshold value Tth, that is, if the temperatures of the first heat exchangers 22 and 23 are not sufficiently lowered, the liquid level sensor It is determined whether the detected value of No. 12 exceeds the threshold Lth (step S541). The control device 20 confirms that there is no shortage of refrigerating machine oil in the compressor 21 by determining step S541.
- Step S56 This prevents a portion of the remaining refrigerating machine oil from being discharged from the compressor 21 when switching from the preparation mode to the normal mode, thereby preventing the reliability of the compressor 21 from decreasing.
- step S55 Even if the temperature of the first heat exchangers 22 and 23 exceeds the threshold value Tth, if the height of the liquid level detected by the liquid level sensor 12 exceeds the threshold value Lth, the control device 20 controls the first heat exchanger in the normal mode. 1 heat source operation is executed (step S55). In other words, if a sufficient amount of refrigeration oil is secured in the compressor 21, the control device 20 controls the refrigeration cycle device 200 to 1 Start heat source operation. By immediately starting the first heat source operation, even if refrigerating machine oil accumulates in the first heat exchangers 22 and 23, a sufficient amount of refrigerating machine oil is secured in the compressor 21, so that the operation of the compressor 21 can be stopped. No problems arise.
- the first heat source operation is started immediately after the second heat source operation is stopped. Thereby, the period during which both the second heat source operation and the first heat source operation are stopped can be minimized. As a result, the comfort of the air-conditioned space 50 can be maintained.
- FIG. 14 is a diagram showing the configuration of an air conditioning system 106 according to the sixth embodiment.
- FIG. 15 is a flowchart showing the details of control for switching the air conditioning operation from the second heat source operation to the first heat source operation (Embodiment 6).
- an air conditioning system 106 according to the sixth embodiment has a concentration sensor 13 added to the compressor 21 of the air conditioning system 102 (see FIG. 7) according to the second embodiment. It is. Alternatively, it can be said that the air conditioning system 106 according to the sixth embodiment employs the concentration sensor 13 in place of the liquid level sensor 12 of the air conditioning system 105 (see FIG. 12) according to the fifth embodiment.
- the concentration sensor 13 detects the component ratio of refrigerating machine oil and liquid refrigerant present in the compressor 21.
- the concentration sensor 13 is constituted by, for example, a capacitance type sensor that detects the dielectric constant of refrigerating machine oil to obtain the component ratio.
- the detected value of the concentration sensor 13 is transmitted to the control device 20 .
- the control device 20 determines the concentration of refrigerating machine oil in the compressor 21 based on the detected value obtained from the concentration sensor 13.
- the control device 20 confirms that there is no shortage of refrigerating machine oil in the compressor 21 based on the concentration of the refrigerating machine oil.
- step S631, step S641 Processing using the concentration sensor 13 (step S631, step S641) is adopted instead of processing using the liquid level sensor 12 (step S531, step S541).
- Steps S61 to S66 in the flowchart shown in FIG. 15 have the same contents as steps S51 to S56 in the flowchart shown in FIG. 13, respectively. Therefore, their description will not be repeated here.
- the control device 20 After acquiring the detection value of the temperature sensor 11 in step S63, the control device 20 acquires the detection value of the concentration sensor 13 (step S631). If the control device 20 determines in step S64 that the detected value of the temperature sensor 11 is not less than the threshold value Tth, that is, if the temperatures of the first heat exchangers 22 and 23 are not sufficiently lowered, the concentration sensor 13 It is determined whether the detected value exceeds the threshold value Cth (step S641). The control device 20 confirms that there is no shortage of refrigerating machine oil in the compressor 21 by determining step S641.
- step S66 This can prevent refrigerating machine oil from being discharged from the compressor 21 and reducing the reliability of the compressor 21 when switching from the preparation mode to the normal mode.
- step S65 the control device 20 controls the first heat exchanger in the normal mode.
- Heat source operation is executed (step S65).
- the control device 20 controls the air conditioning by the refrigeration cycle device 200 even if the temperatures of the first heat exchangers 22 and 23 have not decreased sufficiently. Start driving. By immediately starting the first heat source operation, even if refrigerating machine oil accumulates in the first heat exchangers 22 and 23, a sufficient amount of refrigerating machine oil is secured in the compressor 21, so that the operation of the compressor 21 can be stopped. No problems arise.
- the air conditioning system 106 performs compression even when the temperatures of the first heat exchangers 22 and 23 have not decreased sufficiently. If a sufficient amount of refrigerating machine oil is secured in the machine 21, the first heat source operation is started immediately after the second heat source operation is stopped.
- the air conditioning system 105 according to the fifth embodiment uses the liquid level sensor 12 to determine whether a sufficient amount of refrigerating machine oil is secured in the compressor 21. In contrast, the air conditioning system 105 according to the fifth embodiment uses the concentration sensor 13 to determine whether a sufficient amount of refrigerating machine oil is secured in the compressor 21.
- the refrigerant present in the compressor 21 may cool and liquefy.
- the liquid level within the compressor 21 rises not only due to the refrigerating machine oil but also due to the liquid refrigerant. Therefore, the liquid level sensor 12 may not be able to accurately determine the amount of refrigerating machine oil in the compressor 21. Therefore, in the sixth embodiment, a concentration sensor 13 is used instead of the liquid level sensor 12 to determine whether or not a sufficient amount of refrigerating machine oil is secured in the compressor 21.
- a concentration sensor 13 is used instead of the liquid level sensor 12 to determine whether or not a sufficient amount of refrigerating machine oil is secured in the compressor 21.
- the period during which both the second heat source operation and the first heat source operation are stopped can be minimized. As a result, the comfort of the air-conditioned space 50 can be maintained.
- FIG. 16 is a diagram showing the configuration of an air conditioning system 107 according to the seventh embodiment.
- an air conditioning system 107 according to the seventh embodiment differs from the air conditioning system 100 according to the first embodiment in that it includes a four-way valve 27.
- the four-way valve 27 is controlled by the control device 20.
- the control device 20 switches the state of the four-way valve 27 between the first state and the second state, so that the refrigerant of the compressor 21 is discharged to the first heat exchangers 22, 23 and the second heat exchanger 25.
- the air conditioning system 107 according to the seventh embodiment includes a heating function that warms the air-conditioned space 50 and a cooling function that cools the air-conditioned space 50.
- FIG. 16 shows a state in which the refrigerant discharge destination of the compressor 21 is set to the second heat exchanger 25.
- the refrigerant discharge destination of the compressor 21 When the refrigerant discharge destination of the compressor 21 is set to the second heat exchanger 25, the refrigerant circulates in the refrigerant circuit 29 in the order shown by the arrows in FIG. That is, the refrigerant circulates through the compressor 21 , the second heat exchanger 25 , the pressure reducing device 24 , the first heat exchangers 22 and 23 , and the compressor 21 in the second order.
- the first heat exchangers 22 and 23 function as evaporators
- the second heat exchanger 25 functions as a condenser.
- the switching pattern from the second heat source operation to the first heat source operation in the air conditioning system 107 is a first pattern in which heating is switched from heating by the second heat source operation to heating by the first heat source operation, and a first pattern is switching from heating by the second heat source operation to heating by the first heat source operation. There is a second pattern of switching to cooling by operation.
- the control of the present disclosure regarding switching from the second heat source operation to the first heat source operation has been described assuming the first pattern.
- the first heat exchangers 22 and 23 function as evaporators. Therefore, if the air conditioning operation mode is immediately switched from the second heat source operation to the first heat source operation, in the second pattern, a large amount of liquid refrigerant will be sent to the high temperature first heat exchangers 22 and 23. . Therefore, in the case of switching according to the second pattern, the refrigerating machine oil contained in the liquid refrigerant discharged from the compressor 21 remains in the first heat exchangers 22 and 23, as in the case of switching according to the first pattern. There is a risk. In that case, a problem arises in that the refrigerating machine oil in the compressor 21 is insufficient.
- the gas furnace device 300 is just an example of a heat source device different from the refrigeration cycle device 200.
- the heat source device may be any device as long as it can perform an operation that supplies the generated heat to the air-conditioned space 50.
- a refrigeration cycle device different from the refrigeration cycle device 200 may be employed as the heat source device.
- the first heat exchangers 22 and 23 in the indoor unit 201 are arranged in a space to which heat generated by the gas furnace device 300 is transmitted. Therefore, when the gas furnace device 300 performs the second heat source operation, the first heat exchangers 22 and 23 are heated.
- FIG. 1 shows an example in which the first heat exchangers 22 and 23 are arranged downwind of the fan 38 and the furnace heat exchanger 31 of the gas furnace device 300.
- the example in which the first heat exchangers 22 and 23 are arranged in a space to which the heat generated by the gas furnace device 300 is transferred is not limited to this.
- the furnace heat exchanger 31 and the first heat exchangers 22 and 23 may be arranged side by side in a direction perpendicular to the direction in which air flows by the fan 38. Furthermore, even when the first heat exchangers 22 and 23 are arranged on the windward side of the furnace heat exchanger 31, the heat of the furnace heat exchanger 31 is transferred to the first heat exchangers 22 and 23 depending on the driving condition of the fan 38. There is also a possibility that it will be transmitted.
- any control content may be adopted as the preparation mode as long as the decrease in refrigerating machine oil in the compressor 21 can be suppressed.
- control may be executed to heat the inside of the compressor 21 using a heater such as a heating winding provided in the compressor 21. By heating the inside of the compressor 21, gasification of the liquid refrigerant can be promoted and the height of the liquid level inside the compressor 21 can be lowered. This makes it possible to reduce the amount of liquid refrigerant discharged by the force generated when the compressor 21 is started.
- the refrigerating machine oil may be controlled to be returned to the compressor 21 using an oil separator provided in the refrigerant circuit 29.
- the control device 20 may control the gas furnace device 300 by providing the control device 20 with the function of the control unit 30.
- the control device 20 may be arranged separately from the indoor unit 201 and the outdoor unit 202.
- the control unit 30 may also function as the control device 20.
- the control device 20 may be provided separately from the gas furnace device 300 and the refrigeration cycle device 200.
- the temperature sensor 11 may also be provided in the first heat exchanger 22.
- the control device 20 may use the average value of the detection values of the temperature sensors 11 of both the first heat exchangers 22 and 23 in the process of step S24 in FIG. 9.
- a timer is used to count time, and when the timer value exceeds a specified time Th, it is determined whether the detected value of the temperature sensor 11 is less than the threshold Tth. may be determined.
- Step S56 may be deleted from the flowchart of FIG. 13 described as the fifth embodiment. That is, the present disclosure includes an example in which the control device 20 is caused to execute control in which the preparation mode is deleted from the fifth embodiment.
- Step S66 may be deleted from the flowchart of FIG. 15 described as the sixth embodiment. That is, the present disclosure includes an example in which the control device 20 is caused to execute control from which the preparation mode is deleted from the sixth embodiment.
- the present disclosure is an air conditioning system (100), which includes a compressor (21), a first heat exchanger (22, 23), a second heat exchanger (25), a pressure reducing device (24), A refrigerant circuit (29) in which refrigerant circulates in the order of a compressor, a first heat exchanger, a pressure reduction device, a second heat exchanger, and a compressor, a heat source device (300), and an air conditioning operation mode.
- the first heat pump operation is a heat pump operation in which heat is exchanged between the refrigerant flowing through one of the heat exchangers and the second heat exchanger and the air-conditioned space
- the second heat source operation is a heat pump operation in which heat is exchanged between the refrigerant flowing through one of the heat exchangers and the second heat exchanger
- the second heat source operation is a heat pump operation in which heat is exchanged between the refrigerant flowing through one of the heat exchangers and the second heat exchanger.
- One heat exchanger is placed in the space to which the heat generated by the heat source device is transferred, and the control device changes the air conditioning operation mode from the second mode to the first mode.
- the first heat source operation is started after the second heat source operation is stopped and the specified conditions are established (FIGS. 6, 9, 10, 11, 13, and 15).
- the specified condition includes that a specified time has elapsed since the second heat source operation stopped (step S14).
- the present disclosure further includes a temperature sensor (11) that detects the temperature of one heat exchanger, and the prescribed conditions include that the temperature detected by the temperature sensor is less than a threshold temperature (step S44).
- the present disclosure further includes a liquid level sensor (12) that detects the height of the liquid level in the compressor, and the specified condition is that the height of the liquid level detected by the liquid level sensor exceeds a threshold height (step S541).
- the present disclosure further includes a concentration sensor (13) that detects the concentration of refrigerating machine oil in the compressor, and the prescribed conditions include that the concentration detected by the concentration sensor exceeds a threshold concentration (step S641).
- the present disclosure further includes a fan (38) that sends hot air containing heat generated by the heat source device to the air-conditioned space, one of the heat exchangers is disposed downwind of the hot air, and the control device controls the mode of air-conditioning operation.
- the fan is controlled to be rotated after the second heat source operation is stopped until a specified condition is satisfied (step S36).
- control device executes a preparatory operation for suppressing a decrease in refrigerating machine oil in the compressor from the time the second heat source operation stops until the specified condition is satisfied (step S46).
- the preparatory operation is a second heat pump operation in which the compressor is driven at a lower frequency than the first heat pump operation (step S46).
- the present disclosure is a refrigeration cycle device (100) that air-conditions an air-conditioned space, which includes a compressor (21), a first heat exchanger (22, 23), a second heat exchanger (25), and a pressure reducing device. (24), a refrigerant circuit (29) in which refrigerant circulates in the order of the compressor, the first heat exchanger, the pressure reduction device, the second heat exchanger, and the compressor, and the air conditioning operation mode is set to the second heat source operation.
- a control device (20) that receives a control signal for switching from a second mode in which the compressor is executed to a first mode in which the first heat source operation is executed;
- the first heat pump operation is for exchanging heat between the refrigerant flowing through one of the first heat exchanger and the second heat exchanger and the air-conditioned space
- the second heat source operation is for exchanging heat between the refrigerant and the air-conditioned space.
- the first heat source operation is started after the second heat source operation is stopped and the specified conditions are satisfied (FIGS. 6, 9, 10, 11, 13, and 15).
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
Abstract
空調空間(50)を空調する空気調和システム(100)であって、圧縮機(21)と、第1熱交換器(22,23)と、第2熱交換器(25)と、減圧装置(24)と、冷媒が、圧縮機、第1熱交換器、減圧装置、第2熱交換器、および圧縮機の順序で循環する冷媒回路(29)と、熱源装置(300)と、空調運転のモードを、第1熱源運転を実行する第1モードと第2熱源運転を実行する第2モードとの間で切り替える制御装置(20)とを備え、制御装置は、空調運転のモードを第2モードから第1モードに切り替えるときに、第2熱源運転が停止してから規定条件の成立後に第1熱源運転を開始する。
Description
本開示は、空気調和システムおよび冷凍サイクル装置に関する。
従来、冷凍サイクル装置と、冷凍サイクル装置とは別の熱源装置とによって、室内を空調する空気調和システムが知られている。たとえば、特許文献1には、ガスファーネス装置による暖房運転を冷凍サイクル装置による暖房運転に切り換える際に、ガスファーネス装置による暖房運転を継続させた状態で冷凍サイクル装置による暖房運転を開始させる空気調和システムが記載されている。
従来の空気調和システムにおいて、冷凍サイクル装置とは別の熱源装置による暖房運転が行われているとき、冷凍サイクル装置の負荷側の熱交換器は、熱源装置による暖房運転の影響を受けて加熱され続ける。このため、熱源装置による運転を冷凍サイクル装置による運転に切り換えた直後に圧縮機から吐出された液冷媒は、負荷側の高温の熱交換器内で蒸発する。このとき、液冷媒に含まれていた冷凍機油が熱交換器内に滞留する。その結果、冷媒回路を通じて圧縮機に戻る冷凍機油の量が減ってしまう。このことは、圧縮機の信頼性に影響を与える。
本開示の目的は、空調運転のモードを、冷凍サイクル装置とは別の熱源装置による第2熱源運転のモードから冷凍サイクル装置による第1熱源運転のモードに切り替えるときに、圧縮機の作動に悪影響を及ぼさないようにすることである。
第1の局面に関わる本開示は、空気調和システムであって、圧縮機と、第1熱交換器と、第2熱交換器と、減圧装置と、冷媒が、圧縮機、第1熱交換器、減圧装置、第2熱交換器、および圧縮機の順序で循環する冷媒回路と、熱源装置と、空調運転のモードを、第1熱源運転を実行する第1モードと第2熱源運転を実行する第2モードとの間で切り替える制御装置とを備え、第1熱源運転は、圧縮機を駆動することにより、空調空間と、第1熱交換器と第2熱交換器とのうちの一方の熱交換器を流れる冷媒と、の間で熱を交換させる第1ヒートポンプ運転であり、第2熱源運転は、熱源装置で発生される熱を空調空間に与える運転であり、一方の熱交換器は、熱源装置で発生される熱が伝達される空間に配置され、制御装置は、空調運転のモードを第2モードから第1モードに切り替えるときに、第2熱源運転が停止してから規定条件の成立後に第1熱源運転を開始する。
第2の局面に関わる本開示は、空調空間を空調する冷凍サイクル装置であって、圧縮機と、第1熱交換器と、第2熱交換器と、減圧装置と、冷媒が、圧縮機、第1熱交換器、減圧装置、第2熱交換器、および圧縮機の順序で循環する冷媒回路と、空調運転のモードを、第2熱源運転を実行する第2モードから第1熱源運転を実行する第1モードに切り替えるための制御信号を受信する制御装置とを備え、第1熱源運転は、圧縮機を駆動することにより、空調空間と、第1熱交換器と第2熱交換器とのうちの一方の熱交換器を流れる冷媒と、の間で熱を交換させる第1ヒートポンプ運転であり、第2熱源運転は、冷凍サイクル装置とは別の熱源装置で発生される熱を空調空間に与える運転であり、一方の熱交換器は、熱源装置で発生される熱が伝達される空間に配置され、制御装置は、制御信号を受信した場合、第2熱源運転が停止してから規定条件の成立後に第1熱源運転を開始する。
本開示によれば、空調運転のモードを、第2熱源運転を実行する第2モードから第1熱源運転を実行する第1モードに切り替えるときに、圧縮機の作動に悪影響を及ぼさないようにすることができる。
以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
実施の形態1.
図1は、実施の形態1に関わる空気調和システム100の構成を示す図である。
図1は、実施の形態1に関わる空気調和システム100の構成を示す図である。
図1に基づいて、空気調和システム100の回路構成を説明する。冷凍サイクル装置200は、冷凍サイクル装置200と、ガスファーネス装置300とを備える。ガスファーネス装置300は、冷凍サイクル装置200とは別の熱源装置の一例である。冷凍サイクル装置200は、空調空間50を空調するための第1熱源運転を実行する。ガスファーネス装置300は、空調空間50を空調するための第2熱源運転を実行する。冷凍サイクル装置200は、室内機201と室外機202とを備える。
空調空間50は、たとえば、ビルなどの建物内の部屋である。ガスファーネス装置300と、冷凍サイクル装置200の室内機201とは、たとえば、ダクトなどの通風空間60によって空調空間50と接続された空調設備室に配置される。冷凍サイクル装置200の室外機202は、ビルなどの建物の外に配置される。空調設備室において、冷凍サイクル装置200の室内機201とガスファーネス装置300とは、鉛直方向に積み重ねて配置され、あるいは、横並びに隣接して配置される。冷凍サイクル装置200で調製された空調空気およびガスファーネス装置300で調製された空調空気は、通風空間60を通って空調設備室から空調空間50に送り込まれる。
空気調和システム100は、空調運転のモードを、第1熱源運転を実行する第1モードと、第2熱源運転を実行する第2モードとの間で切り替える制御が可能である。さらに、空気調和システム100は、第1熱源運転と第2熱源運転とを併用することも可能である。以下、空調運転のモードを、第1モード(第1熱源運転のモード)から第2モード(第2熱源運転のモード)に切り替えることを、単に、「空調運転を第1熱源運転から第2熱源運転に切り替える」と称する。同様に、空調運転のモードを、第2モード(第2熱源運転のモード)から第1モード(第1熱源運転のモード)に切り替えることを、単に、「空調運転を第2熱源運転から第1熱源運転に切り替える」と称する。
<冷凍サイクル装置200の構成>
冷凍サイクル装置200は、冷媒回路29を備える。冷媒回路29は、室内機201と室外機202とに跨がって配置されている。室内機201側に位置する冷媒回路29には、2つの第1熱交換器22,23が配置される。室外機202側に位置する冷媒回路29には、圧縮機21と、減圧装置24と、第2熱交換器25とが配置される。室外機202には、さらに、制御装置20と、第2熱交換器25に送風するファン28とが配置される。
冷凍サイクル装置200は、冷媒回路29を備える。冷媒回路29は、室内機201と室外機202とに跨がって配置されている。室内機201側に位置する冷媒回路29には、2つの第1熱交換器22,23が配置される。室外機202側に位置する冷媒回路29には、圧縮機21と、減圧装置24と、第2熱交換器25とが配置される。室外機202には、さらに、制御装置20と、第2熱交換器25に送風するファン28とが配置される。
なお、室外機202に制御装置20を配置することに代えて、室内機201に制御装置20を配置してもよい。
圧縮機21は、吸入した冷媒の圧力を高めてからその冷媒を吐出することで、冷媒回路29内で冷媒を循環させる。圧縮機21の運転周波数は、制御装置20により制御される。圧縮機21には冷凍機油が封入されている。冷凍機油は、圧縮機21に対して、潤滑作用、密封作用、および防錆作用などの役割を果たす。
第1熱交換器22,23は、第1熱交換器22,23の内部を流れる冷媒と外気との間での熱交換を行う。圧縮機21から第1熱交換器22,23には、高温、高圧のガス冷媒が流入する。したがって、第1熱交換器22,23は凝縮器として機能する。なお、ここでは、第1熱交換器を冷媒回路29に2台設ける構成を開示するが、冷媒回路29に設ける第1熱交換器の数は、1台であっても3台以上でもよい。
減圧装置24は、減圧の程度を調整する減圧弁(図示省略)を備え、制御装置20の制御に応じて減圧弁の開度を調整する機能を有する。減圧装置24は、減圧弁の開度を調節することによって、冷媒の流量および圧力を調節する。減圧装置24の減圧弁の開度が小さくなるにつれて、減圧効果が高くなる。
第2熱交換器25は、第2熱交換器25の内部を流れる冷媒と外気との間での熱交換を行う。減圧装置24から第2熱交換器25には、低温、低圧の液冷媒が流入する。したがって、第2熱交換器25は、蒸発器として機能する。
図1に示される構成においては、凝縮器として機能する第1熱交換器22,23を室内機201に配置し、蒸発器として機能する第2熱交換器25を室外機202に配置している。したがって、図1に示される冷凍サイクル装置200は、空調空間50を暖める暖房機として機能する。冷凍サイクル装置200において、凝縮器として機能する第1熱交換器22,23を室外機202に配置し、蒸発器として機能する第2熱交換器25を室内機201に配置してもよい。この場合には、冷凍サイクル装置200は、屋内の空間を冷やす冷房機として機能する。
<ガスファーネス装置300の構成>
ガスファーネス装置300は、ガス燃焼式の暖房装置である。ガスファーネス装置300は、コントロールユニット30と、ファーネス熱交換器31と、ファン38とを備える。コントロールユニット30は、ガスを燃焼させる燃焼機構、加熱されたガスをファーネス熱交換器31に送り込む送風機構、およびファン38を含めてガスファーネス装置300の全体を制御する制御基板などを備える。図1において、これらの各機構および制御基板の図示を省略している。
ガスファーネス装置300は、ガス燃焼式の暖房装置である。ガスファーネス装置300は、コントロールユニット30と、ファーネス熱交換器31と、ファン38とを備える。コントロールユニット30は、ガスを燃焼させる燃焼機構、加熱されたガスをファーネス熱交換器31に送り込む送風機構、およびファン38を含めてガスファーネス装置300の全体を制御する制御基板などを備える。図1において、これらの各機構および制御基板の図示を省略している。
<制御装置20の構成>
図2は、制御装置20の構成を示す図である。ここでは、図2を参照して、冷凍サイクル装置200に配置される制御装置20の構成を説明する。
図2は、制御装置20の構成を示す図である。ここでは、図2を参照して、冷凍サイクル装置200に配置される制御装置20の構成を説明する。
制御装置20は、プロセッサ211と、メモリ212と、通信インターフェイス213とを備える。メモリ212は、たとえば、ROM(Read Only Memory)と、RAM(Random Access Memory)と、フラッシュメモリと、ハードディスクドライブとを含んで構成される。
プロセッサ211は、メモリ212に格納されたオペレーティングシステムおよびアプリケーションプログラムを実行する。プロセッサ211は、アプリケーションプログラムを実行すると共に、メモリ212に格納されている各種のデータを参照する。
プロセッサ211は、通信インターフェイス213を介して、ガスファーネス装置300のコントロールユニット30と通信する。プロセッサ211は、通信インターフェイス213を介して、ユーザが所持するリモートコントローラと通信する。プロセッサ211は、リモートコントローラから受信した制御信号に応じて、冷凍サイクル装置200の圧縮機21、減圧装置24、およびファン28などを制御する。
制御信号は、空調運転をガスファーネス装置300による第2熱源運転から冷凍サイクル装置200による第1熱源運転に切り替えることを示す指令を含む。プロセッサ211は、このような指令を含む制御信号を受信した場合、ガスファーネス装置300のコントロールユニット30に対して第2熱源運転の停止を指令する信号を送信してから規定条件の成立後、冷凍サイクル装置200による第1熱源運転を開始する。
<第1熱源運転>
図3は、冷凍サイクル装置200による第1熱源運転の動作を示す図である。図3においてファーネス熱交換器31を破線で示している。これは、ファーネス熱交換器31に加熱ガスが送り込まれておらず、第2熱源運転が行われていないことを表している。ただし、第1熱源運転が行われる間、ガスファーネス装置300のファン38は、送風機として機能する。
図3は、冷凍サイクル装置200による第1熱源運転の動作を示す図である。図3においてファーネス熱交換器31を破線で示している。これは、ファーネス熱交換器31に加熱ガスが送り込まれておらず、第2熱源運転が行われていないことを表している。ただし、第1熱源運転が行われる間、ガスファーネス装置300のファン38は、送風機として機能する。
圧縮機21を適切な周波数で駆動することにより、冷媒が図3の矢印に示される順序で冷媒回路29を循環する。すなわち、冷媒は、圧縮機21、第1熱交換器22,23、減圧装置24、第2熱交換器25、および圧縮機21の第1順序で循環する。これにより、第1熱交換器22,23を流れる冷媒と第1熱交換器22,23の周囲の空気との間で熱交換が行われる。第1熱交換器22,23によって加熱された空気は、ガスファーネス装置300のファン38によって通風空間60を通って熱風として空調空間50に送られる。これにより、空調空間50が暖められる。
空調空間50は、通風空間60とつながっているため、空調空間50は、通風空間60を含めて1つの空間を形成する。したがって、第1熱源運転は、圧縮機21を駆動することにより、第1熱交換器22,23を流れる冷媒と空調空間50との間で熱を交換させるヒートポンプ運転である。
<第2熱源運転>
図4は、ガスファーネス装置300による第2熱源運転の動作を示す図である。図4において冷媒回路29に配置される各種の機器を破線で示している。これは、冷凍サイクルによる熱交換が行われておらず、第1熱源運転が行われていないことを表している。
図4は、ガスファーネス装置300による第2熱源運転の動作を示す図である。図4において冷媒回路29に配置される各種の機器を破線で示している。これは、冷凍サイクルによる熱交換が行われておらず、第1熱源運転が行われていないことを表している。
第2熱源運転が実行されることにより、コントロールユニット30で生成された高温の燃焼ガスがファーネス熱交換器31に供給される。これにより、ファーネス熱交換器31内の高温のガスとファーネス熱交換器31の周囲の空気との間で熱交換が行われる。ファーネス熱交換器31によって加熱された空気は、ファン38によって通風空間60を通って熱風として空調空間50に送られる。これにより、空調空間50が暖められる。
図4に示されるように、通風空間60は、ガスファーネス装置300と冷凍サイクル装置200の室内機201とで共有されている。このため、第2熱源運転によってガスファーネス装置300で発生される熱は、第1熱交換器22,23が配置される室内機201内の空間を介して空調空間50に与えられる。したがって、第2熱源運転によってガスファーネス装置300で発生される熱は、第1熱交換器22,23を加熱する。特に、第1熱交換器22,23は、ガスファーネス装置300のファン38によって生成される熱風の風下に配置されているため、より多くの熱量が第1熱交換器22,23に与えられる。その結果、第2熱源運転の継続時間および運転負荷に応じて、第1熱交換器22,23が高温になる。
<第2熱源運転から第1熱源運転への切り替え>
次に、空調運転を第2熱源運転から第1熱源運転に切り替える際に生じる問題を説明する。図4を用いて既に説明したとおり、ガスファーネス装置300を用いた第2熱源運転中、ガスファーネス装置300から吹き出す熱風によって冷凍サイクル装置200の第1熱交換器22,23が加熱され続ける。したがって、第2熱源運転から第1熱源運転に切り替えるために第2熱源運転を停止した際、第1熱交換器22,23の温度が極めて高い状態にある。
次に、空調運転を第2熱源運転から第1熱源運転に切り替える際に生じる問題を説明する。図4を用いて既に説明したとおり、ガスファーネス装置300を用いた第2熱源運転中、ガスファーネス装置300から吹き出す熱風によって冷凍サイクル装置200の第1熱交換器22,23が加熱され続ける。したがって、第2熱源運転から第1熱源運転に切り替えるために第2熱源運転を停止した際、第1熱交換器22,23の温度が極めて高い状態にある。
第1熱交換器22,23の温度が極めて高い状態において、圧縮機21を空調に適した運転周波数で直ちに起動した場合、圧縮機21から勢いよく吐出されたガス化前の液冷媒が高温の第1熱交換器22,23内に流入する。流入した液冷媒は、高温の第1熱交換器22,23内で直ちに蒸発し、一時的に第1熱交換器22,23内が単相のガス冷媒で満たされる。このとき、圧縮機21から吐出された液冷媒に含まれる冷凍機油が第1熱交換器22,23内に滞留する。その結果、冷媒回路29を通じて圧縮機21に戻る冷凍機油の量が減ってしまう。このことは、圧縮機21の信頼性に影響を与える可能性がある。
そこで、制御装置20は、空調運転を第2熱源運転から第1熱源運転に切り替えるときに、第2熱源運転が停止してから規定条件の成立後に第1熱源運転を開始させる。以下、空調運転を第2熱源運転から第1熱源運転に切り替えるときの制御装置20の制御の内容をより詳細に説明する。
図5は、空調運転のモードを切り替えるタイミングを示すタイミングチャートである。図5において、破線のグラフgh1は、第1熱交換器22,23の温度と運転時間との関係を示し、実線のグラフgh2は、圧縮機21の運転周波数と運転時間との関係を示す。図5に基づいて、第1熱源運転と第2熱源運転との切り替えを説明する。
図5に示されるように、時刻t1において、第1熱源運転を第2熱源運転に切り替える切り替え指令が入力される。この切り替え指令は、たとえば、ユーザのリモートコントローラから制御装置20に対して、制御信号として入力される。制御装置20は、制御信号に基づいて、時刻t1において空調運転を第1熱源運転から第2熱源運転に切り替える。これにより、ガスファーネス装置300が作動する。時刻t1から時刻t2までの間、ガスファーネス装置300による第2熱源運転が継続する。時刻t1から時刻t2までの間、冷凍サイクル装置200の第1熱交換器22,23がガスファーネス装置300から吹き出される熱風により加熱される。
時刻t2において、第2熱源運転を第1熱源運転に切り替える切り替え指令が入力される。この切り替え指令は、たとえば、ユーザのリモートコントローラから制御装置20に対して、制御信号として入力される。制御装置20は、制御信号に基づいて、時刻t2において第2熱源運転を停止させる。その後、制御装置20は、直ちに、第1熱源運転を開始するのではなく、規定時間Thをカウントし始める。制御装置20によって規定時間Thがカウントされる間、第1熱交換器22,23に蓄積された熱は放熱される。
やがて、時刻t3において、規定時間Thのカウントが終了される。このとき、第1熱交換器22,23の温度が十分に下がる。制御装置20は、時刻t3の時点において、第1熱源運転を開始する。すなわち、制御装置20は、圧縮機21を適切な運転周波数で起動し、第1熱交換器22,23へ冷媒を吐出する。このとき、第1熱交換器22,23の温度は下がっているため、第1熱交換器22,23内が単相のガス冷媒で満たされることがない。なお、ガスファーネス装置300と冷凍サイクル装置200との設置環境などを考慮して、設計者は、規定時間Thとして適切な値を設定することができる。規定時間Thをより長い時間に設定するほど、上述の問題を確実に解消することができる。
図6は、空調運転を第2熱源運転から第1熱源運転に切り替える制御の内容を示すフローチャートである。以下、図6に示されるフローチャートに基づいて制御装置20の制御の内容を説明する。
はじめに、制御装置20は、第2熱源運転から第1熱源運転へ切り替える制御信号を受信したか否かを判定する(ステップS11)。制御装置20は、そのような制御信号を受信していない場合、本フローチャートに基づく処理を終了する。この場合、ガスファーネス装置300による第2熱源運転が継続される。
制御装置20は、第2熱源運転から第1熱源運転へ切り替える制御信号を受信した場合、第2熱源運転を停止させる(ステップS12)。たとえば、制御装置20は、ガスファーネス装置300のコントロールユニット30へ、停止指令信号を出力する。これにより、ガスファーネス装置300による第2熱源運転が停止する。
次に、制御装置20は、タイマを用いて時間をカウントする(ステップS13)。次に、制御装置20は、タイマ値が規定時間Thを超えている否かを判定する(ステップS14)。制御装置20は、タイマ値が規定時間Thを超えるまで、ステップS13およびステップS14の処理を繰り返す。制御装置20は、タイマ値が規定時間Thを超えていると判定したとき、第1熱源運転を開始する(ステップS15)。これにより、第1熱交換器22,23の温度が十分に下がった状態で、圧縮機21が起動される。
以上、説明したとおり、本実施の形態1においては、ガスファーネス装置300による第2熱源運転から冷凍サイクル装置200による第1熱源運転に空調運転を切り替える場合、第2熱源運転を停止させてから規定時間Thの経過後に第1熱源運転を開始する。このため、第2熱源運転により第1熱交換器22,23が高温化した状態で圧縮機21が起動することがない。その結果、圧縮機21から供給された冷媒が第1熱交換器22,23内でガス化し、冷凍機油が第1熱交換器22,23に滞留することを防止できる。第1熱交換器22,23に冷凍機油が滞留すると、圧縮機21に戻る冷凍機油の量が不足し、圧縮機21の信頼性が損なわれてしまう。しかし、実施の形態1によれば、冷凍機油が第1熱交換器22,23に滞留することを防止できるため、圧縮機21に戻る冷凍機油の量が不足することを防止できる。
実施の形態2.
図7~図9を用いて、実施の形態2を説明する。先に説明した実施の形態1においては、規定時間Thの経過を待って、第2熱源運転から第1熱源運転に切り替える例を説明した。実施の形態2においては、第1熱交換器22,23の温度を検出し、その温度が閾値未満になる場合に、第2熱源運転から第1熱源運転に切り替える例を説明する。
図7~図9を用いて、実施の形態2を説明する。先に説明した実施の形態1においては、規定時間Thの経過を待って、第2熱源運転から第1熱源運転に切り替える例を説明した。実施の形態2においては、第1熱交換器22,23の温度を検出し、その温度が閾値未満になる場合に、第2熱源運転から第1熱源運転に切り替える例を説明する。
図7は、実施の形態2に関わる空気調和システム102の構成を示す図である。実施の形態2に関わる空気調和システム102の第1熱交換器23には、温度センサ11が設けられている。第1熱交換器23に温度センサ11が設けられている点を除くと、実施の形態2に関わる空気調和システム102の構成は、実施の形態1に関わる空気調和システム100と同じである。
温度センサ11の検出値は、制御装置20によって取得される。制御装置20は、温度センサ11の検出値を第1熱交換器22,23の温度と見なす。
図8は、空調運転のモードを切り替えるタイミングを示すタイミングチャートである(実施の形態2)。図8は、実施の形態1の説明に用いた図5と対応している。第1熱源運転の開始から時刻t2までの流れは、図5と図8とで同じであるため、ここでは、その説明を繰り返さない。
図8において、温度Tthは、第1熱源運転を開始するか否かを判定するための第1熱交換器22,23の閾値の温度を示す。設計者は、第1熱交換器22,23内が単相のガス冷媒で満たされることのない適切なTthを設定することができる。制御装置20は、時刻t2に入力された制御信号に基づいて、第2熱源運転を停止させる。その後、制御装置20は、直ちに、第1熱源運転を開始するのではなく、温度センサ11の検出値に基づいて第1熱交換器22,23の温度を判定する。
図8に示されるタイミングチャートでは、時刻t3において、温度センサ11の検出値が閾値の温度Tth未満に下がっている。このとき、制御装置20は、第1熱源運転を開始する。すなわち、制御装置20は、圧縮機21を適切な運転周波数で起動し、第1熱交換器22,23へ冷媒を吐出する。第1熱交換器22,23の温度は閾値の温度Tth未満に下がっているため、第1熱交換器22,23内が単相のガス冷媒で満たされることがない。
図9は、空調運転を第2熱源運転から第1熱源運転に切り替える制御の内容を示すフローチャートである(実施の形態2)。以下、図9に示されるフローチャートに基づいて制御装置20の制御の内容を説明する。なお、図9に示されるフローチャートのステップS21、ステップS22、およびステップS25と、図6に示されるフローチャートのステップS11、ステップS12、およびステップS15とは、それぞれ同じ内容のステップである。そこで、ここでは、それらのステップの詳細な説明を繰り返さない。
制御装置20は、ステップS22において第2熱源運転を停止させた後、温度センサ11の検出値を取得する(ステップS23)。次に、制御装置20は、温度センサ11の検出値が閾値Tth未満であるか否かを判定する(ステップS24)。制御装置20は、温度センサ11の検出値が閾値Tth未満に至るまで、ステップS23およびステップS24の処理を繰り返す。制御装置20は、温度センサ11の検出値が閾値Tth未満であると判定したとき、第1熱源運転を開始する(ステップS25)。これにより、第1熱交換器22,23の温度が十分に下がった状態で、圧縮機21が起動される。
以上、説明した実施の形態2によれば、制御装置20は、第1熱交換器22,23の温度を測定し、第1熱交換器22,23の温度が十分に下がったことを直接確認した上で、空調運転を第2熱源運転から第1熱源運転に切り替える。このため、空調運転の切り替えの際に第1熱交換器22,23内で冷媒が蒸発し、冷凍機油が第1熱交換器22,23に残留してしまうことをより確実に防止できる。
実施の形態3.
図10を用いて、実施の形態3を説明する。図10は、空調運転を第2熱源運転から第1熱源運転に切り替える制御の内容を示すフローチャートである(実施の形態3)。実施の形態3は、実施の形態2に係る空気調和システム102の制御装置20の処理として説明したフローチャート(図9参照)に対して、ステップS36の処理を追加したものである。
図10を用いて、実施の形態3を説明する。図10は、空調運転を第2熱源運転から第1熱源運転に切り替える制御の内容を示すフローチャートである(実施の形態3)。実施の形態3は、実施の形態2に係る空気調和システム102の制御装置20の処理として説明したフローチャート(図9参照)に対して、ステップS36の処理を追加したものである。
図10に示されるフローチャートのステップS31~ステップS35は、図9に示されるフローチャートのステップS21~ステップS25にそれぞれ対応する同じ内容のステップである。したがって、ここでは、それらのステップの説明を繰り返さない。
先に説明した実施の形態2において、制御装置20は、温度センサ11の検出値が閾値Tth未満になるまで、第1熱源運転を開始しないで待機する。実施の形態3において、制御装置20は、待機期間において、第1熱交換器22,23を積極的に冷却する制御を実行する。すなわち、制御装置20は、図10に示されるフローチャートのステップS34において、温度センサ11の検出値が閾値Tth未満でないと判定したとき、ガスファーネス装置300のファン38を回転させた状態とする(ステップS36)。
このように、制御装置20は、ガスファーネス装置300のファン38を活用し、第1熱交換器22,23を積極的に冷却する制御を実行する。ファン38は、ガスファーネス装置300による第2熱源運転において調製された空調空気と、冷凍サイクル装置200による第1熱源運転において調製された空調空気とを空調空間50に送り込む機能を備える。したがって、第2熱源運転および第1熱源運転のいずれも実行されていない間、ファン38の駆動を停止することも考えられる。実施の形態3では、本来、空調空気を空調空間50に送り込むためのファン38を、昇温した第1熱交換器22,23の温度を下げるために活用している。
実施の形態3によれば、ステップS32において第2熱源運転を停止してからステップS35において第1熱源運転を開始させるまでの待機時間を短くすることができる。これにより、空調空間50の快適性を向上させることができる。さらに、実施の形態3によれば、ファン38を有効活用することにより、部品数を増やすことなく、第2熱源運転が停止してから第1熱源運転を開始させるまでの待機時間を短くすることができる。なお、第1熱交換器22,23の温度を早期に下げるため、第2熱源運転が停止してから第1熱源運転を開始させるまでの待機時間において、ファン38を最大の回転速度で駆動してもよい。また、第1熱交換器22,23の温度を下げるためのファンをファン38とは別に冷凍サイクル装置200に設けてもよい。
実施の形態4.
図11を用いて、実施の形態4を説明する。図11は、空調運転を第2熱源運転から第1熱源運転に切り替える制御の内容を示すフローチャートである(実施の形態4)。実施の形態4は、実施の形態2に係る空気調和システム102の制御装置20の処理として説明したフローチャート(図9参照)に対して、ステップS46の処理を追加したものである。
図11を用いて、実施の形態4を説明する。図11は、空調運転を第2熱源運転から第1熱源運転に切り替える制御の内容を示すフローチャートである(実施の形態4)。実施の形態4は、実施の形態2に係る空気調和システム102の制御装置20の処理として説明したフローチャート(図9参照)に対して、ステップS46の処理を追加したものである。
図11に示されるフローチャートのステップS41~ステップS44は、図9に示されるフローチャートのステップS21~ステップS24にそれぞれ対応する同じ内容のステップである。図11に示されるステップS45の処理は、図9に示されるステップS25と実質的に同一である。したがって、ここでは、それらの詳細な説明を繰り返さない。
制御装置20は、ステップS44において、温度センサ11の検出値が閾値Tth未満でないと判定したとき、すなわち、第1熱交換器22,23の温度が十分に下がった状態にないと判定したとき、準備モードで第1熱源運転を実行する(ステップS46)。準備モードとは、圧縮機21内の冷凍機油の減少を抑制するためのモードである。制御装置20は、準備モードにおいて、たとえば、空調空間50を空調するために必要とされる運転周波数よりも低い周波数で圧縮機21を駆動する。
準備モードに対して、空調空間50を空調するために必要とされる運転周波数で圧縮機21を駆動するモードを通常モードと称する。また、通常モードによるヒートポンプ運転を第1ヒートポンプ運転と称する。したがって、実施の形態1として説明した図6のステップS15の第1熱源運転は、通常モードによる運転(第1ヒートポンプ運転)を意味する。図9のステップS25および図10のステップS35も同様である。これに対して、準備モードによる運転は、第1ヒートポンプ運転よりも圧縮機21を低い周波数で駆動する第2ヒートポンプ運転である。
制御装置20は、ステップS44において、温度センサ11の検出値が閾値Tth未満であると判定したとき、通常モードで第1熱源運転を実行する(ステップS45)。
仮に、駆動を停止している圧縮機21を、冷凍サイクルの運転に必要な高い周波数で起動した場合、ガス化していない多量の液冷媒が起動時の勢いで第1熱交換器22,23に向けて吐出されるおそれがある。この場合、圧縮機21内の冷凍機油が液冷媒と共に圧縮機21の外に吐出され、圧縮機21内の冷凍機油の量が不足するおそれがある。
実施の形態4では、第1熱交換器22,23の温度が低下することを待つ間、準備モードで第1熱源運転が実行される。準備モードでは、空調空間50を空調するために必要とされる運転周波数よりも低い周波数で圧縮機21が駆動し続ける。したがって、準備モードから通常モードに運転モードを切り替えたときに、十分にガス化した冷媒を第1熱交換器22,23へ送り込むことができる。そのため、準備モードから通常モードに運転モードが切り替えられたとき、ガス化していない多量の液冷媒が冷凍機油と共に起動時の勢いで第1熱交換器22,23に向けて吐出されることを防止できる。その結果、圧縮機21内の冷凍機油の量が不足することを防止できる。これにより、圧縮機21の信頼性をより一層、向上させることができる。
実施の形態5.
図12および図13を用いて、実施の形態5を説明する。図12は、実施の形態5に関わる空気調和システム105の構成を示す図である。図13は、空調運転を第2熱源運転から第1熱源運転に切り替える制御の内容を示すフローチャートである(実施の形態5)。
図12および図13を用いて、実施の形態5を説明する。図12は、実施の形態5に関わる空気調和システム105の構成を示す図である。図13は、空調運転を第2熱源運転から第1熱源運転に切り替える制御の内容を示すフローチャートである(実施の形態5)。
図12に示されるように、実施の形態5に関わる空気調和システム105は、実施の形態2に関わる空気調和システム102(図7参照)の圧縮機21に対して、液面センサ12を追加したものである。液面センサ12は、圧縮機21内の液面の高さを検出する。液面センサ12の検出値は、制御装置20に送信される。制御装置20は、液面センサ12から取得した検知値に基づいて、圧縮機21内の液面の高さを判定する。制御装置20は、圧縮機21内の液面の高さに基づいて、圧縮機21内で冷凍機油が不足していないことを確認する。
図13と図11とを対比することにより理解されるとおり、実施の形態5に関わるフローチャート(図13参照)は、先に説明した実施の形態4に関わるフローチャート(図11参照)に対して、液面センサ12を用いた処理(ステップS531、ステップS541)を追加したものである。
図13に示されるフローチャートのステップS51~ステップS56は、図11に示されるフローチャートのステップS41~ステップS46にそれぞれ対応する同じ内容のステップである。したがって、ここでは、それらの説明を繰り返さない。
制御装置20は、ステップS53において、温度センサ11の検出値を取得した後、液面センサ12の検出値を取得する(ステップS531)。制御装置20は、ステップS54において、温度センサ11の検出値が閾値Tth未満でないと判定した場合、すなわち、第1熱交換器22,23の温度が十分に下がった状態にない場合、液面センサ12の検出値が閾値Lthを超えるか否かを判定する(ステップS541)。制御装置20は、ステップS541を判定することにより、圧縮機21内の冷凍機油が不足していないことを確認する。
制御装置20は、液面センサ12の検出値が閾値Lthを超えないと判定した場合、つまり、圧縮機21内に十分な量の冷凍機油が確保されていない場合、準備モードで第1熱源運転を実行する(ステップS56)。これにより、準備モードから通常モードに切り替わったときに、圧縮機21から残り少ない冷凍機油の一部が吐出されてしまい、圧縮機21の信頼性が低下することを防止できる。
制御装置20は、第1熱交換器22,23の温度が閾値Tthを超える場合であっても、液面センサ12で検出された液面の高さが閾値Lthを超える場合、通常モードで第1熱源運転を実行する(ステップS55)。つまり、制御装置20は、圧縮機21に十分な量の冷凍機油が確保されている場合、第1熱交換器22,23の温度が十分に低下してなくても、冷凍サイクル装置200による第1熱源運転を開始する。直ちに第1熱源運転を開始することで冷凍機油が第1熱交換器22,23に滞留したとしても、圧縮機21に十分な量の冷凍機油が確保されているため、圧縮機21の運転に問題は生じない。
このように、実施の形態5においては、第1熱交換器22,23の温度が十分に低下してない場合であっても、圧縮機21内に十分な量の冷凍機油が確保されている場合には、第2熱源運転が停止してから速やかに第1熱源運転が開始される。これにより、第2熱源運転および第1熱源運転が共に停止している期間を最小限にすることができる。その結果、空調空間50の快適性を維持することができる。
実施の形態6.
図14および図15を用いて、実施の形態6を説明する。図14は、実施の形態6に関わる空気調和システム106の構成を示す図である。図15は、空調運転を第2熱源運転から第1熱源運転に切り替える制御の内容を示すフローチャートである(実施の形態6)。
図14および図15を用いて、実施の形態6を説明する。図14は、実施の形態6に関わる空気調和システム106の構成を示す図である。図15は、空調運転を第2熱源運転から第1熱源運転に切り替える制御の内容を示すフローチャートである(実施の形態6)。
図14に示されるように、実施の形態6に関わる空気調和システム106は、実施の形態2に関わる空気調和システム102(図7参照)の圧縮機21に対して、濃度センサ13を追加したものである。あるいは、実施の形態6に関わる空気調和システム106は、実施の形態5に関わる空気調和システム105(図12参照)の液面センサ12に替えて、濃度センサ13を採用したものともいえる。
濃度センサ13は、圧縮機21内に存在する冷凍機油と液状態の冷媒との成分比率を検出する。濃度センサ13は、たとえば、冷凍機油の比誘電率を検出して成分比率を得る静電容量型センサなどにより構成される。濃度センサ13の検出値は、制御装置20に送信される。制御装置20は、濃度センサ13から取得した検知値に基づいて、圧縮機21内の冷凍機油の濃度を判定する。制御装置20は、冷凍機油の濃度に基づいて、圧縮機21内で冷凍機油が不足していないことを確認する。
図15と図13とを対比することにより理解されるとおり、実施の形態6に関わるフローチャート(図15参照)は、先に説明した実施の形態5に関わるフローチャート(図13参照)と比べて、液面センサ12を用いた処理(ステップS531、ステップS541)に替えて、濃度センサ13を用いた処理(ステップS631、ステップS641)を採用したものである。
図15に示されるフローチャートのステップS61~ステップS66は、図13に示されるフローチャートのステップS51~ステップS56にそれぞれ対応する同じ内容のステップである。したがって、ここでは、それらの説明を繰り返さない。
制御装置20は、ステップS63において、温度センサ11の検出値を取得した後、濃度センサ13の検出値を取得する(ステップS631)。制御装置20は、ステップS64において、温度センサ11の検出値が閾値Tth未満でないと判定した場合、すなわち、第1熱交換器22,23の温度が十分に下がった状態にない場合、濃度センサ13の検出値が閾値Cthを超えるか否かを判定する(ステップS641)。制御装置20は、ステップS641を判定することにより、圧縮機21内の冷凍機油が不足していないことを確認する。
制御装置20は、濃度センサ13の検出値が閾値Cthを超えないと判定した場合、つまり、圧縮機21内に十分な量の冷凍機油が確保されていない場合、準備モードで第1熱源運転を実行する(ステップS66)。これにより、準備モードから通常モードに切り替わったときに、圧縮機21から冷凍機油が吐出されてしまい、圧縮機21の信頼性が低下することを防止できる。
制御装置20は、第1熱交換器22,23の温度が閾値Tthを超える場合であっても、濃度センサ13で検出された液面の高さが閾値Cthを超える場合、通常モードで第1熱源運転を実行する(ステップS65)。つまり、制御装置20は、圧縮機21に十分な量の冷凍機油が確保されている場合、第1熱交換器22,23の温度が十分に低下してなくても、冷凍サイクル装置200による空調運転を開始する。直ちに第1熱源運転を開始することで冷凍機油が第1熱交換器22,23に滞留したとしても、圧縮機21に十分な量の冷凍機油が確保されているため、圧縮機21の運転に問題は生じない。
実施の形態6に関わる空気調和システム106は、実施の形態5に関わる空気調和システム105と同様に、第1熱交換器22,23の温度が十分に低下してない場合であっても、圧縮機21内に十分な量の冷凍機油が確保されている場合には、第2熱源運転が停止してから速やかに第1熱源運転を開始する。実施の形態5に関わる空気調和システム105は、液面センサ12を利用して、圧縮機21内に十分な量の冷凍機油が確保されているか否かを判定する。これに対して、実施の形態5に関わる空気調和システム105は、濃度センサ13を利用して、圧縮機21内に十分な量の冷凍機油が確保されているか否かを判定する。
圧縮機21の駆動が停止している間、圧縮機21内に存在する冷媒は、冷えて液化している可能性がある。この場合、圧縮機21内の液面は、冷凍機油のみでなく液冷媒によっても上昇する。したがって、液面センサ12では、圧縮機21内の冷凍機油の量を精度良く判定できないおそれがある。そこで、実施の形態6では、液面センサ12に替えて、濃度センサ13を利用して、圧縮機21内に十分な量の冷凍機油が確保されているか否かを判定する。実施の形態6によれば、圧縮機21内に十分な量の冷凍機油が確保されているか否かを実施の形態5よりも精度良く判定できる。また、実施の形態6によれば、実施の形態5と同様に、第2熱源運転および第1熱源運転が共に停止している期間を最小限にすることができる。その結果、空調空間50の快適性を維持することができる。
実施の形態7.
図16を用いて、実施の形態7を説明する。図16は、実施の形態7に関わる空気調和システム107の構成を示す図である。
図16を用いて、実施の形態7を説明する。図16は、実施の形態7に関わる空気調和システム107の構成を示す図である。
図16に示されるように、実施の形態7に関わる空気調和システム107は、四方弁27を備える点において、実施の形態1に関わる空気調和システム100と異なる。四方弁27は、制御装置20によって制御される。制御装置20は、四方弁27の状態を第1状態と第2状態とに切り替えることによって、圧縮機21の冷媒の吐出先を第1熱交換器22,23と第2熱交換器25とに設定する。したがって、実施の形態7に関わる空気調和システム107は、空調空間50を暖める暖房機能と、空調空間50を冷やす冷房機能とを備える。図16には、圧縮機21の冷媒の吐出先が第2熱交換器25に設定されている状態が示されている。
圧縮機21の冷媒の吐出先が第2熱交換器25に設定されているとき、冷媒回路29において冷媒が図16の矢印に示される順序で循環する。すなわち、冷媒は、圧縮機21、第2熱交換器25、減圧装置24、第1熱交換器22,23、および圧縮機21の第2順序で循環する。このとき、第1熱交換器22,23は、蒸発器として機能し、第2熱交換器25は凝縮器として機能する。
空気調和システム107における第2熱源運転から第1熱源運転への切り替えパターンは、第2熱源運転による暖房から第1熱源運転による暖房に切り替える第1パターンと、第2熱源運転による暖房から第1熱源運転による冷房に切り替える第2パターンとが存在する。実施の形態1~実施の形態6では、第1パターンを想定して、第2熱源運転から第1熱源運転への切り替えに関する本開示の制御を説明した。
第2パターンでは、第1熱交換器22,23が蒸発器として機能する。このため、第2熱源運転から第1熱源運転に即座に空調運転のモードを切り替えた場合、第2パターンでは、高温の第1熱交換器22,23に多量の液冷媒が送り込まれることになる。したがって、第2パターンによる切り替えの場合にも、第1パターンによる切り替えの場合と同様に、圧縮機21から吐出された液冷媒に含まれる冷凍機油が第1熱交換器22,23内に滞留するおそれがある。その場合、圧縮機21内の冷凍機油が不足するという問題が生じる。特に、第2パターンによる切り替えの場合、第1パターンによる切り替えの場合よりも多量の液冷媒が第1熱交換器22,23に流入し、液冷媒のガス化によって、より多くの冷凍機油が第1熱交換器22,23に滞留する可能性がある。
そこで、実施の形態7に係る構成においても、実施の形態1~実施の形態6として説明した各種の制御を適用することにより、その問題を解消することができる。ここでは、実施の形態1~実施の形態6として説明した各種の制御の説明を繰り返さない。なお、実施の形態7においては、上述した第1パターンと第2パターンとで、第2熱源運転を停止してから第1熱源運転を開始するまでに制御装置20が判定すべき諸条件の閾値を異ならせてもよい。
<変形例>
以下、変形例を列挙する。
以下、変形例を列挙する。
ガスファーネス装置300は、冷凍サイクル装置200と別の熱源装置の一例に過ぎない。発生した熱を空調空間50に与える運転を実行可能であれば、熱源装置は、どのような装置であってもよい。たとえば、熱源装置として、ガスファーネス装置300に替えて、冷凍サイクル装置200とは別の冷凍サイクル装置を採用してもよい。
図1などに示されるように、室内機201内の第1熱交換器22,23は、ガスファーネス装置300で発生される熱が伝達される空間に配置されている。このため、ガスファーネス装置300による第2熱源運転が実行された場合、第1熱交換器22,23が加熱される。ここで、図1においては、第1熱交換器22,23をガスファーネス装置300のファン38およびファーネス熱交換器31の風下に配置する例を示した。しかし、第1熱交換器22,23を、ガスファーネス装置300で発生される熱が伝達される空間に配置する例は、これに限られない。たとえば、ファン38によって空気が流れる方向に対して直交する方向にファーネス熱交換器31と第1熱交換器22,23とを並べて配置してもよい。さらに、第1熱交換器22,23をファーネス熱交換器31の風上側に配置する場合にも、ファン38の駆動状況次第でファーネス熱交換器31の熱が第1熱交換器22,23に伝達される可能性もある。
準備モードの一例として、圧縮機21を低い周波数で運転することを挙げた。しかし、圧縮機21内の冷凍機油の減少を抑制することができれば、準備モードとして、どのような制御内容を採用してもよい。たとえば、準備モードの他の例として、圧縮機21に設けた加熱用巻線などの加熱器で圧縮機21内を加熱する制御を実行することが考えられる。圧縮機21内を加熱することにより、液冷媒のガス化を促し、圧縮機21内の液面の高さを低くすることができる。これにより、圧縮機21を起動した際の勢いで吐出する液冷媒の量を減らすことができる。あるいは、準備モードとして、冷媒回路29に設けた油分離器を用いて、冷凍機油を圧縮機21に戻す制御をしてもよい。
空気調和システム100において、制御装置20にコントロールユニット30の機能を設けることにより、制御装置20がガスファーネス装置300を制御してもよい。空気調和システム100において、室内機201および室外機202とは別に制御装置20を配置してもよい。たとえば、コントロールユニット30で制御装置20の機能を兼用してもよい。また、ガスファーネス装置300および冷凍サイクル装置200とは別に、制御装置20を設けてもよい。
実施の形態2において、第1熱交換器22にも温度センサ11を設けてもよい。この場合、制御装置20は、第1熱交換器22,23の双方の温度センサ11の検知値の平均値を図9のステップS24の処理に用いてもよい。
実施の形態2において、実施の形態1と同様に、タイマを用いて時間をカウントし、タイマ値が規定時間Thを超えたときに、温度センサ11の検出値が閾値Tth未満であるか否かを判定してもよい。
実施の形態5として説明した図13のフローチャートからステップS56を削除してもよい。すなわち、本開示は、実施の形態5から準備モードが削除された制御を制御装置20に実行させる例を包含する。
実施の形態6として説明した図15のフローチャートからステップS66を削除してもよい。すなわち、本開示は、実施の形態6から準備モードが削除された制御を制御装置20に実行させる例を包含する。
(まとめ)
以下に、本実施の形態を総括する。
以下に、本実施の形態を総括する。
本開示は、空気調和システム(100)であって、圧縮機(21)と、第1熱交換器(22,23)と、第2熱交換器(25)と、減圧装置(24)と、冷媒が、圧縮機、第1熱交換器、減圧装置、第2熱交換器、および圧縮機の順序で循環する冷媒回路(29)と、熱源装置(300)と、空調運転のモードを、第1熱源運転を実行する第1モードと第2熱源運転を実行する第2モードとの間で切り替える制御装置(20)とを備え、第1熱源運転は、圧縮機を駆動することにより、第1熱交換器と第2熱交換器とのうちの一方の熱交換器を流れる冷媒と空調空間との間で熱を交換させる第1ヒートポンプ運転であり、第2熱源運転は、熱源装置で発生される熱を空調空間に与える運転であり、一方の熱交換器は、熱源装置で発生される熱が伝達される空間に配置され、制御装置は、空調運転のモードを第2モードから第1モードに切り替えるときに、第2熱源運転が停止してから規定条件の成立後(図6,図9,図10、図11,図13,図15)に第1熱源運転を開始する。
好ましくは、規定条件は、第2熱源運転が停止してから規定時間が経過したこと(ステップS14)を含む。
本開示は、一方の熱交換器の温度を検出する温度センサ(11)をさらに備え、規定条件は、温度センサにより検出される温度が閾値温度未満であること(ステップS44)を含む。
本開示は、圧縮機内の液面の高さを検知する液面センサ(12)をさらに備え、規定条件は、液面センサにより検出される液面の高さが閾値高さを超えること(ステップS541)を含む。
本開示は、圧縮機内の冷凍機油の濃度を検知する濃度センサ(13)をさらに備え、規定条件は、濃度センサにより検出される濃度が閾値濃度を超える(ステップS641)ことを含む。
本開示は、熱源装置で発生した熱を含む熱風を空調空間へ送るファン(38)をさらに備え、一方の熱交換器は、熱風の風下に配置され、制御装置は、空調運転のモードを第2モードから第1モードに切り替えるときに、第2熱源運転が停止してから規定条件が成立するまでファンを回転させた状態に制御する(ステップS36)。
好ましくは、制御装置は、第2熱源運転が停止してから規定条件が成立するまで、圧縮機内の冷凍機油の減少を抑制するための準備運転を実行する(ステップS46)。
好ましくは、準備運転は、第1ヒートポンプ運転よりも圧縮機を低い周波数で駆動する第2ヒートポンプ運転である(ステップS46)。
本開示は、空調空間を空調する冷凍サイクル装置(100)であって、圧縮機(21)と、第1熱交換器(22,23)と、第2熱交換器(25)と、減圧装置(24)と、冷媒が、圧縮機、第1熱交換器、減圧装置、第2熱交換器、および圧縮機の順序で循環する冷媒回路(29)と、空調運転のモードを第2熱源運転を実行する第2モードから第1熱源運転を実行する第1モードに切り替えるための制御信号を受信する制御装置(20)とを備え、第1熱源運転は、圧縮機を駆動することにより、第1熱交換器と第2熱交換器とのうちの一方の熱交換器を流れる冷媒と空調空間との間で熱を交換させる第1ヒートポンプ運転であり、第2熱源運転は、冷凍サイクル装置とは別の熱源装置で発生される熱を空調空間に与える運転であり、一方の熱交換器は、熱源装置で発生される熱が伝達される空間に配置され、制御装置は、制御信号を受信した場合、第2熱源運転が停止してから規定条件の成立後(図6,図9,図10、図11,図13,図15)に第1熱源運転を開始する。
今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
11 温度センサ、12 液面センサ、13 濃度センサ、 20制御装置、21 圧縮機、22,23 第1熱交換器、24 減圧装置、25 第2熱交換器、27 四方弁、28 ファン、29 冷媒回路、30 コントロールユニット、31 ファーネス熱交換器、38 ファン、60 通風空間、100,102,105,106,107 空気調和システム、200 冷凍サイクル装置、211 プロセッサ、212 メモリ、213 通信インターフェイス、300 ガスファーネス装置(熱源装置)、gh1,gh2 グラフ。
Claims (9)
- 空気調和システムであって、
圧縮機と、
第1熱交換器と、
第2熱交換器と、
減圧装置と、
冷媒が、前記圧縮機、前記第1熱交換器、前記減圧装置、前記第2熱交換器、および前記圧縮機の順序で循環する冷媒回路と、
熱源装置と、
空調運転のモードを、第1熱源運転を実行する第1モードと第2熱源運転を実行する第2モードとの間で切り替える制御装置とを備え、
前記第1熱源運転は、前記圧縮機を駆動することにより、空調空間と、前記第1熱交換器と前記第2熱交換器とのうちの一方の熱交換器を流れる前記冷媒と、の間で熱を交換させる第1ヒートポンプ運転であり、
前記第2熱源運転は、前記熱源装置で発生される熱を前記空調空間に与える運転であり、
前記一方の熱交換器は、前記熱源装置で発生される熱が伝達される空間に配置され、
前記制御装置は、前記空調運転のモードを前記第2モードから前記第1モードに切り替えるときに、前記第2熱源運転が停止してから規定条件の成立後に前記第1熱源運転を開始する、空気調和システム。 - 前記規定条件は、前記第2熱源運転が停止してから規定時間が経過したことを含む、請求項1に記載の空気調和システム。
- 前記一方の熱交換器の温度を検出する温度センサをさらに備え、
前記規定条件は、前記温度センサにより検出される前記温度が閾値温度未満であることを含む、請求項1または請求項2に記載の空気調和システム。 - 前記圧縮機内の液面の高さを検知する液面センサをさらに備え、
前記規定条件は、前記液面センサにより検出される前記液面の高さが閾値高さを超えることを含む、請求項1に記載の空気調和システム。 - 前記圧縮機内の冷凍機油の濃度を検知する濃度センサをさらに備え、
前記規定条件は、前記濃度センサにより検出される前記濃度が閾値濃度を超えることを含む、請求項1に記載の空気調和システム。 - 前記熱源装置で発生した熱を含む熱風を前記空調空間へ送るファンをさらに備え、
前記一方の熱交換器は、前記熱風の風下に配置され、
前記制御装置は、前記空調運転のモードを前記第2モードから前記第1モードに切り替えるときに、前記第2熱源運転が停止してから規定条件が成立するまで前記ファンを回転させた状態に制御する、請求項1~請求項5のいずれか1項に記載の空気調和システム。 - 前記制御装置は、前記第2熱源運転が停止してから前記規定条件が成立するまで、前記圧縮機内の冷凍機油の減少を抑制するための準備運転を実行する、請求項1~請求項6のいずれか1項に記載の空気調和システム。
- 前記準備運転は、前記第1ヒートポンプ運転よりも前記圧縮機を低い周波数で駆動する第2ヒートポンプ運転である、請求項7に記載の空気調和システム。
- 空調空間を空調する冷凍サイクル装置であって、
圧縮機と、
第1熱交換器と、
第2熱交換器と、
減圧装置と、
冷媒が、前記圧縮機、前記第1熱交換器、前記減圧装置、前記第2熱交換器、および前記圧縮機の順序で循環する冷媒回路と、
空調運転のモードを第2熱源運転を実行する第2モードから第1熱源運転を実行する第1モードに切り替えるための制御信号を受信する制御装置とを備え、
前記第1熱源運転は、前記圧縮機を駆動することにより、空調空間と、前記第1熱交換器と前記第2熱交換器とのうちの一方の熱交換器を流れる前記冷媒と、の間で熱を交換させる第1ヒートポンプ運転であり、
前記第2熱源運転は、前記冷凍サイクル装置とは別の熱源装置で発生される熱を前記空調空間に与える運転であり、
前記一方の熱交換器は、前記熱源装置で発生される熱が伝達される空間に配置され、
前記制御装置は、前記制御信号を受信した場合、前記第2熱源運転が停止してから規定条件の成立後に前記第1熱源運転を開始する、冷凍サイクル装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/016994 WO2023188428A1 (ja) | 2022-04-01 | 2022-04-01 | 空気調和システムおよび冷凍サイクル装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/016994 WO2023188428A1 (ja) | 2022-04-01 | 2022-04-01 | 空気調和システムおよび冷凍サイクル装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023188428A1 true WO2023188428A1 (ja) | 2023-10-05 |
Family
ID=88200552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/016994 WO2023188428A1 (ja) | 2022-04-01 | 2022-04-01 | 空気調和システムおよび冷凍サイクル装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023188428A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015145763A (ja) * | 2014-02-03 | 2015-08-13 | ダイキン工業株式会社 | 空調システム |
JP2020533554A (ja) * | 2017-10-20 | 2020-11-19 | 三菱電機株式会社 | 空気調和装置 |
KR20210035989A (ko) * | 2019-09-25 | 2021-04-02 | 엘지전자 주식회사 | 유니터리 공기조화기의 온도센서 |
US20210180818A1 (en) * | 2018-01-21 | 2021-06-17 | Daikin Industries, Ltd. | System and Method for Heating and Cooling |
-
2022
- 2022-04-01 WO PCT/JP2022/016994 patent/WO2023188428A1/ja unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015145763A (ja) * | 2014-02-03 | 2015-08-13 | ダイキン工業株式会社 | 空調システム |
JP2020533554A (ja) * | 2017-10-20 | 2020-11-19 | 三菱電機株式会社 | 空気調和装置 |
US20210180818A1 (en) * | 2018-01-21 | 2021-06-17 | Daikin Industries, Ltd. | System and Method for Heating and Cooling |
KR20210035989A (ko) * | 2019-09-25 | 2021-04-02 | 엘지전자 주식회사 | 유니터리 공기조화기의 온도센서 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100465723B1 (ko) | 공기조화기의 냉방 운전 방법 | |
JP4899549B2 (ja) | 冷凍装置の圧縮機運転方法、および冷凍装置 | |
WO2009119023A1 (ja) | 冷凍装置 | |
JP5053430B2 (ja) | 空気調和機 | |
CN109716035B (zh) | 用于空气调节和热水供给的系统 | |
CN109716033B (zh) | 用于空气调节和热水供给的系统 | |
CN100381771C (zh) | 冷冻机 | |
JP2010164219A (ja) | 空気調和装置 | |
JP4562650B2 (ja) | 空気調和装置 | |
WO2017138167A1 (ja) | 冷房機、及び、空気調和機 | |
JP3334601B2 (ja) | 自然循環併用式空気調和機 | |
WO2023188428A1 (ja) | 空気調和システムおよび冷凍サイクル装置 | |
EP3978832B1 (en) | Multi-air conditioner for heating and cooling operations | |
JP4105413B2 (ja) | マルチ式空気調和機 | |
JP4546067B2 (ja) | 空気調和装置 | |
JP4063041B2 (ja) | 多室形空気調和機の制御方法 | |
JPH08178438A (ja) | エンジンヒートポンプ | |
JP2008232564A (ja) | 冷凍装置及び冷凍装置の制御方法 | |
WO2024034021A1 (ja) | 空気調和システムおよび冷凍サイクル装置 | |
CN109790984B (zh) | 用于空气调节和热水供给的系统 | |
JP2021001718A (ja) | ヒートポンプ式温水暖房システム | |
JPH11101495A (ja) | 多室型空気調和装置のファン制御方法及びその装置 | |
JP2000097479A (ja) | 空気調和機 | |
JP2020153600A (ja) | 冷凍サイクル装置 | |
JP2003302111A (ja) | 空気調和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22935563 Country of ref document: EP Kind code of ref document: A1 |