WO2023184508A1 - 碳/类普鲁士蓝复合材料及制备方法和应用 - Google Patents

碳/类普鲁士蓝复合材料及制备方法和应用 Download PDF

Info

Publication number
WO2023184508A1
WO2023184508A1 PCT/CN2022/084896 CN2022084896W WO2023184508A1 WO 2023184508 A1 WO2023184508 A1 WO 2023184508A1 CN 2022084896 W CN2022084896 W CN 2022084896W WO 2023184508 A1 WO2023184508 A1 WO 2023184508A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
prussian blue
composite material
ferrocyanide
transition metal
Prior art date
Application number
PCT/CN2022/084896
Other languages
English (en)
French (fr)
Inventor
唐永炳
赵振宇
章罗江
张晓明
Original Assignee
深圳先进技术研究院
中国科学院深圳理工大学(筹)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院, 中国科学院深圳理工大学(筹) filed Critical 深圳先进技术研究院
Priority to PCT/CN2022/084896 priority Critical patent/WO2023184508A1/zh
Publication of WO2023184508A1 publication Critical patent/WO2023184508A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/08Simple or complex cyanides of metals
    • C01C3/12Simple or complex iron cyanides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers

Definitions

  • the present application belongs to the field of battery technology, and in particular relates to a carbon/Prussian blue-like composite material and its preparation method and application.
  • Renewable energy including wind energy, solar energy, hydro energy, biomass energy, geothermal energy and other new energy sources are increasingly becoming an important part of the driving energy supply system.
  • chemical power sources are closely related to the development and utilization of new energy sources.
  • Many chemical power sources can make a significant contribution when paired with these renewable energy generation sources.
  • solar and wind power generation must have chemical power sources as energy storage equipment, and fuel cells can promote the large-scale utilization of hydrogen energy. Therefore, the application of chemical energy sources is becoming more and more widespread.
  • lithium-ion batteries are widely used in portable electronic devices and electric vehicles due to their long life and high specific energy. However, the limited and uneven distribution of lithium resources hinders the further application of lithium-ion batteries in large-scale energy storage systems.
  • sodium, potassium and lithium have similar physical and chemical properties, low cost, and more abundant reserves. Therefore, sodium-ion batteries/potassium-ion batteries are considered to be one of the most attractive large-scale energy storage technologies. At present, sodium-ion batteries/potassium-ion batteries are still in the preliminary research stage.
  • the development of key materials with excellent performance, especially cathode materials, is an important research topic in the field of sodium-ion batteries/potassium-ion batteries.
  • cathode materials for sodium-ion batteries/potassium-ion batteries Prussian blue-like cathode materials have been widely studied because of their unique three-dimensional open framework structure that facilitates the rapid and reversible deintercalation of sodium ions/potassium ions.
  • the purpose of this application is to provide a carbon/Prussian blue-like composite material and its preparation method and application, aiming to solve the problem of the formation of positive electrode materials due to structural defects or poor conductivity of the Prussian blue material obtained by the preparation method used in the prior art.
  • the prepared battery has problems such as low specific capacity, poor cycle stability and rate performance.
  • this application provides a method for preparing a carbon/Prussian blue-like composite material, which includes the following steps:
  • the alkali metal-ferrocyanide and carbon-transition metal composite precursors are prepared into a second mixture dispersion, and the second hydrothermal reaction is performed, and then post-processed to obtain a carbon/Prussian blue-like composite material.
  • this application provides a carbon/Prussian blue-like composite material.
  • the carbon/Prussian blue-like composite material is prepared by a preparation method of a carbon/Prussian blue-like composite material.
  • the present application provides a cathode material for a secondary battery.
  • the cathode material includes a carbon/Prussian blue-like composite material or a carbon/Prussian blue-like composite material prepared by a preparation method of a carbon/Prussian blue-like composite material.
  • the present application provides a secondary battery, including a negative electrode current collector, a negative electrode material, an electrolyte, a separator, a positive electrode material, and a positive electrode current collector, wherein the positive electrode material is a positive electrode material of the secondary battery.
  • the first aspect of the application provides a method for preparing a carbon/Prussian blue-like composite material.
  • the preparation method first synthesizes a solid phase precursor carbon-transition metal composite precursor through a hydrothermal method, and then mixes it with an alkali metal-ferrocyanide. Then hydrothermal treatment is performed to slowly convert the carbon-transition metal composite precursor into a carbon/Prussian blue-like composite material.
  • the carbon-transition metal composite precursor is a solid phase material
  • the conversion process is slow, which is beneficial to slow It forms a Prussian blue-like lattice, and effectively reduces the structural defects of ferrocyanide vacancies and crystal water that are prone to occur during the Prussian blue-like synthesis process, ensuring that the crystal form of the obtained composite material is complete; at the same time, carbon materials and Prussian blue-like materials are provided for uniform Composite not only effectively improves the conductivity of Prussian blue-like materials, but also improves the problems of poor bonding force and uneven composition between composite materials that lead to low cycle performance after being assembled into a battery as a cathode material.
  • the preparation method is simple and can control, suitable for large-scale production.
  • the carbon/Prussian blue-like composite material provided in the second aspect of this application has a complete Prussian blue-like crystal structure in the composite material, effectively reducing the number of ferrocyanide vacancies and crystal water in the composite material, reducing structural defects, and the carbon material Uniformly compounded with Prussian blue-like materials, the stability and conductivity of the material are improved.
  • Prussian blue-like materials When used as a cathode material, it is beneficial to improve the specific capacity, cycle performance and stability of the cathode material, and has good application prospects.
  • the cathode material of the secondary battery provided in the third aspect of this application uses the carbon/Prussian blue-like composite material as the cathode material of the secondary battery.
  • the composite carbon material is beneficial to the conductive transmission between cathode materials and improves its conductivity. performance, thereby improving its rate performance; and the formed carbon/Prussian blue-like composite material has a complete crystal structure, ensuring high cycle stability and specific capacity, resulting in a cathode material with good comprehensive performance, which is conducive to wide application in secondary applications in the secondary battery.
  • the secondary battery provided in the fourth aspect of this application uses a cathode material containing a carbon/Prussian blue-like composite material. Since the cathode material has high specific capacity, cycle stability, and rate performance, it is obtained The secondary battery has good stability, excellent Coulombic efficiency and cycle performance, and can meet commercial needs.
  • this application provides a method for preparing a carbon/Prussian blue-like composite material, which includes the following steps:
  • the alkali metal-ferrocyanide and carbon-transition metal composite precursors are prepared into a second mixture dispersion, and the second hydrothermal reaction is performed, and then post-processed to obtain a carbon/Prussian blue-like composite material.
  • this application provides a carbon/Prussian blue-like composite material.
  • the carbon/Prussian blue-like composite material is prepared by a preparation method of a carbon/Prussian blue-like composite material.
  • the present application provides a cathode material for a secondary battery.
  • the cathode material includes a carbon/Prussian blue-like composite material or a carbon/Prussian blue-like composite material prepared by a preparation method of a carbon/Prussian blue-like composite material.
  • the present application provides a secondary battery, including a negative electrode current collector, a negative electrode material, an electrolyte, a separator, a positive electrode material, and a positive electrode current collector, wherein the positive electrode material is a positive electrode material of the secondary battery.
  • the first aspect of the application provides a method for preparing a carbon/Prussian blue-like composite material.
  • the preparation method first synthesizes a solid phase precursor carbon-transition metal composite precursor through a hydrothermal method, and then mixes it with an alkali metal-ferrocyanide. Then hydrothermal treatment is performed to slowly convert the carbon-transition metal composite precursor into a carbon/Prussian blue-like composite material.
  • the carbon-transition metal composite precursor is a solid phase material
  • the conversion process is slow, which is beneficial to slow It forms a Prussian blue-like lattice, and effectively reduces the structural defects of ferrocyanide vacancies and crystal water that are prone to occur during the Prussian blue-like synthesis process, ensuring that the crystal form of the obtained composite material is complete; it also provides carbon materials and Prussian blue-like materials for uniform Composite not only effectively improves the conductivity of Prussian blue-like materials, but also improves the problems of poor bonding force and uneven composition between composite materials that lead to low cycle performance after being assembled into a battery as a cathode material.
  • the preparation method is simple and can control, suitable for large-scale production.
  • the carbon/Prussian blue-like composite material provided in the second aspect of this application has a complete Prussian blue-like crystal structure in the composite material, effectively reducing the number of ferrocyanide vacancies and crystal water in the composite material, reducing structural defects, and the carbon material Uniformly compounded with Prussian blue-like materials, the stability and conductivity of the material are improved.
  • Prussian blue-like materials When used as a cathode material, it is beneficial to improve the specific capacity, cycle performance and stability of the cathode material, and has good application prospects.
  • the cathode material of the secondary battery provided in the third aspect of this application uses the carbon/Prussian blue-like composite material as the cathode material of the secondary battery.
  • the composite carbon material is beneficial to the conductive transmission between cathode materials and improves its conductivity. performance, thereby improving its rate performance; and the formed carbon/Prussian blue-like composite material has a complete crystal structure, ensuring high cycle stability and specific capacity, resulting in a cathode material with good comprehensive performance, which is conducive to wide application in secondary applications in the secondary battery.
  • the secondary battery provided in the fourth aspect of this application uses a cathode material containing a carbon/Prussian blue-like composite material. Since the cathode material has high specific capacity, cycle stability, and rate performance, it is obtained The secondary battery has good stability, excellent Coulombic efficiency and cycle performance, and can meet commercial needs.
  • Figure 1 is a scanning electron microscope picture of the reduced graphene oxide/ Nax Ni y Fe(CN) 6 composite material provided in Example B1 of the present application.
  • Figure 2 is the long cycle performance of the reduced graphene oxide/ Nax Ni y Fe(CN) 6 composite material provided in Example B1 of the present application at a current density of 200 mA g -1 .
  • Figure 3 is the rate performance of the half-cell provided by Embodiment B1 of the present application at different current densities.
  • a and/or B can mean: A exists alone, A and B exist simultaneously, and B exists alone. Condition. Where A and B can be singular or plural.
  • the character "/" generally indicates that the related objects are in an "or" relationship.
  • At least one refers to one or more
  • plural refers to two or more.
  • At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b, or c or “at least one of a, b, and c” can mean: a, b, c, a-b ( That is, a and b), a-c, b-c, or a-b-c, where a, b, and c can be single or multiple respectively.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution. Some or all steps can be executed in parallel or one after another. The execution order of each process should be based on its function and order. The internal logic is determined and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • weights of relevant components mentioned in the description of the embodiments of the present application may not only refer to the specific content of each component, but also represent the proportional relationship of weight between the components. Therefore, as long as the relevant components are combined according to the description of the embodiments of the present application, Any scaling up or down of the content is within the scope disclosed in the examples of this application.
  • the mass in the description of the embodiments of this application may be mass units well known in the chemical industry such as ⁇ g, mg, g, kg, etc.
  • first and second are only used for descriptive purposes to distinguish objects such as substances from each other, and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features.
  • first XX may also be called the second XX
  • second XX may also be called the first XX. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • the first aspect of the embodiments of the present application provides a method for preparing a carbon/Prussian blue-like composite material, which includes the following steps:
  • the first aspect of the embodiment of the present application provides a method for preparing a carbon/Prussian blue-like composite material.
  • the preparation method first synthesizes a solid phase precursor carbon-transition metal composite precursor through a hydrothermal method, and then mixes it with an alkali metal-ferrocyanide. Mix and then perform hydrothermal treatment.
  • the solid phase precursor carbon-transition metal composite precursor is prepared by hydrothermal method, so that in the subsequent second hydrothermal treatment process, the conversion rate is slow, which is beneficial to slow It is transformed into a Prussian blue-like lattice, and effectively reduces the structural defects of ferrocyanide vacancies and crystal water that are prone to occur during the Prussian blue-like synthesis process, ensuring the integrity of the crystal form of the composite material obtained, and improving the recycling performance of the material; on the other hand , which provides a uniform composite of carbon materials and Prussian blue-like materials, which not only effectively improves the conductivity of Prussian blue-like materials, but also improves the poor bonding force and uneven composition of composite materials that lead to poor cycle performance after being assembled into a battery as a cathode material. low question.
  • step S01 carbon material, chelating agent and transition metal salt are prepared into a first mixture dispersion liquid.
  • the molar ratio of the carbon material, the chelating agent and the transition metal salt is 0.1 ⁇ 0.4:1:1.
  • the ratio of chelating agent and transition metal salt is 1:1, which can ensure that the chelating agent and transition metal form a metal complex to form a precursor material, which can be slowly converted into the final product in the subsequent reaction, improving the Prussian blue-like Structural defects caused by excessive reaction rates during the precipitation process.
  • the amount of carbon material added is limited, because the carbon content in the final carbon/Prussian blue-like composite material has certain requirements. If the amount of carbon material added is too much or too little, it will affect the Prussian blue-like quality of the resulting composite material. Therefore, controlling the molar ratio of the three materials can ensure that the conductivity of the carbon/Prussian blue-like composite material is improved while ensuring that it has high stability and cycle performance.
  • the carbon material includes single-walled carbon nanotubes, multi-walled carbon nanotubes, carbon nanofibers, carbon nanospheres, multilayer graphene, graphene microsheets, graphene oxide, activated carbon, mesoporous carbon, microporous carbon, etc. At least one of porous carbon, mesoporous carbon, Ketjen black, acetylene black, conductive carbon black, and coke.
  • chelating agents include ethylenediaminetetraacetic acid, disodium ethylenediaminetetraacetate, citric acid, sodium citrate, nitrilotriacetic acid, diethylenetriaminepentacetic acid, tartaric acid, potassium sodium tartrate, glucose Sodium phosphate, hydroxyethylethylenediaminetriacetic acid, hydroxyethylidene-1,1-diphosphonic acid, aminotrimethylenephosphonic acid, diethylenetriaminepentamethylenephosphonic acid, bis(1,6-methylenephosphonic acid At least one of hexyltriaminepentamethylenephosphonic acid, ammonium polyacrylate, and hydrolyzed polymaleic anhydride.
  • the transition metal salt in the transition metal salt solution, includes at least one of ferrous salt, iron salt, cobalt salt, nickel salt, manganese salt, copper salt, and zinc salt.
  • the transition metal salt can be ferrous chloride (FeCl 2 ), ferrous nitrate (Fe(NO 3 ) 2 ), ferrous sulfate (FeSO 4 ), ferric acetate (CH 3 COO) 2 Fe) , cobalt chloride (CoCl 2 ), cobalt nitrate (Co(NO 3 ) 2 ), cobalt sulfate (CoSO 4 ), nickel chloride (NiCl 2 ), nickel nitrate (Ni(NO 3 ) 2 ), nickel sulfate (NiSO 4 ), manganese chloride (MnCl 2 ), manganese nitrate (Mn(NO 3 ) 2 ), manganese sulfate (MnSO 4 ), manganese acetate ((
  • the step of preparing the first mixture dispersion includes: separately preparing a carbon material dispersion, a chelating agent aqueous solution, and a transition metal aqueous solution; and mixing the carbon material dispersion, the chelating agent aqueous solution, and the transition metal aqueous solution. , to obtain the first mixture dispersion.
  • the step of preparing the first mixture dispersion includes: separately preparing a carbon material dispersion, a chelating agent aqueous solution, and a transition metal aqueous solution; and mixing the carbon material dispersion, the chelating agent aqueous solution, and the transition metal aqueous solution. , to obtain the first mixture dispersion.
  • the preparation method of the carbon material dispersion includes the following steps: dispersing the carbon material and the reducing agent in water, and then performing a water bath heat treatment to obtain the carbon dispersion; wherein the mass ratio of the carbon material and the reducing agent is 500: 1 ⁇ 1.5; the temperature of water bath heat treatment is 85 ⁇ 87°C, and the time is 12 ⁇ 14 hours.
  • ultrasonic treatment is used for dispersion processing to ensure that the carbon material and the reducing agent are evenly dispersed.
  • the ultrasonic treatment time is 20 to 30 minutes to ensure that each component is evenly dispersed in the water.
  • the reducing agent includes at least one of hydrazine hydrate, sodium borohydride, and ascorbic acid. In some embodiments, the reducing agent is hydrazine hydrate.
  • the molar ratio of the carbon material to water is 1 to 1.5:1, specifically 1:1; controlling the molar ratio of the carbon material to water can help control the concentration of the carbon dispersion to 1.0 to 1.5 mg/ mL, control the concentration of the carbon dispersion to ensure that the mass percentage of carbon material in the obtained carbon/Prussian blue-like composite material is moderate, which is beneficial to improving the conductivity of the material.
  • the mass ratio of the carbon material to the reducing agent is 500:1 to 1.5; if the selected carbon material is an oxidized carbon material, during the dispersion process, the reducing agent is provided to convert the selected oxidized carbon material into During the dispersion process, the material is reduced to a stable carbon material, so that the carbon-transition metal composite precursor formed in the subsequent reaction process has stable properties.
  • the reducing agent provided requires only trace amounts for reduction.
  • the mass ratio of carbon material and reducing agent is 500:1.
  • a water bath heat treatment is performed, and an inert gas is used for protection during the water bath heat treatment to obtain a carbon dispersion.
  • the inert gas includes, but is not limited to, at least one of nitrogen, helium, neon, argon, krypton, xenon, and radon.
  • the water bath heat treatment temperature is 85-90°C and the time is 12-14 hours. In some specific embodiments, the reaction was carried out for 12 hours in an 85°C water bath under nitrogen protection to obtain a carbon dispersion with a concentration of 1.0 mg mL -1 .
  • the preparation method of the carbon material dispersion includes the following steps: providing 50 mg of carbon material and 0.1 mg of reducing agent dispersed in 50 mL of deionized water; after ultrasonic treatment for 20 minutes, place it in an 85°C water bath and react under nitrogen protection After 12 hours, a carbon dispersion with a concentration of 1.0 mg mL -1 was obtained; the mass ratio of carbon material to reducing agent was approximately 500:1.
  • the concentration of the prepared chelating agent aqueous solution is 0.2-0.8 mol/L
  • the concentration of the transition metal aqueous salt solution is 0.2-0.8 mol/L
  • the concentration of the chelating agent aqueous solution and the transition metal salt solution is limited to be moderate, such as It is conducive to the uniform dispersion of various substances and is conducive to reaction and interaction with the carbon dispersion liquid.
  • the step of preparing the first mixture dispersion includes: respectively preparing 50 mL of a carbon material dispersion with a concentration of 1.0 mg mL -1 , 4 mL of a chelating agent aqueous solution with a concentration of 0.2 to 0.8 mol/L, and 4 mL of a chelating agent aqueous solution with a concentration of 0.2 to 0.8 mol/L. 0.2-0.8 mol/L transition metal aqueous solution; mix the carbon material dispersion, the chelating agent aqueous solution and the transition metal aqueous solution to obtain a first mixture dispersion.
  • the first mixture dispersion is subjected to a first hydrothermal reaction to obtain a carbon-transition metal composite precursor.
  • the pressure of the first hydrothermal reaction is 0.1-2.8MPa, the temperature is 180-190°C, and the reaction time is 2-4 hours; under the action of the hydrothermal reaction, the first mixture dispersion can react to obtain crystals Powder, a powder material that generates a solid-phase material carbon-transition metal composite precursor, avoids the formation of particle agglomeration and ensures uniform reaction.
  • the pressure of the first hydrothermal reaction is 0.5MPa, the temperature is 180°C, and the reaction time is 2 hours.
  • step S02 the alkali metal-ferrocyanide and carbon-transition metal composite precursors are prepared into a second mixture dispersion liquid.
  • the alkali metal-ferrocyanide includes any one of sodium ferrocyanide and potassium ferrocyanide.
  • the carbon/Prussian blue-like composite material prepared by sodium ferrocyanide is provided as a sodium-containing carbon/Prussian blue-like composite material, which can be used as a positive electrode material in sodium secondary batteries;
  • the carbon prepared by potassium ferrocyanide is provided /Prussian blue-like composite material is a potassium-containing carbon/Prussian blue-like composite material, which can be used as a positive electrode material in potassium secondary batteries.
  • the step of preparing the alkali metal-ferrocyanide and carbon-transition metal composite precursor into the second mixture dispersion includes: preparing an alkali metal-ferrocyanide reaction liquid, and adding the alkali metal-ferrocyanide reaction liquid.
  • the ferrocyanide reaction liquid is mixed with the carbon-transition metal composite precursor to obtain a second mixture dispersion liquid.
  • a method for preparing an alkali metal-ferrocyanide reaction solution includes the following steps: dissolving alkali metal-hydrated ferrocyanide, a dispersant, an alkali metal salt and an inorganic acid in water, and mixing to obtain the alkali metal-ferrocyanide reaction solution.
  • Sodium ferricyanide reaction solution wherein, the molar ratio of alkali metal-hydrated ferrocyanide and inorganic acid is 1-1.2:1-1.2; the mass ratio of dispersant and alkali metal salt is 1:2-2.2.
  • the alkali metal-hydrated ferrocyanide mainly provides the coordination compound of ferrocyanide to react with the carbon-transition metal composite precursor to convert the carbon-transition metal composite precursor; adding a dispersant in order to make each The components are uniformly dispersed to ensure complete reaction; the alkali metal salts and inorganic acids provided are mainly to promote the conversion of carbon-transition metal composite precursors, improve the conversion rate, and produce target carbon/Prussian blue-like composite materials.
  • the alkali metal-hydrated ferrocyanide includes any one of sodium ferrocyanide decahydrate and potassium ferrocyanide trihydrate; and the alkali metal salt includes any one of sodium salt and potassium salt. kind.
  • the alkali metal-hydrated ferrocyanide provided is sodium ferrocyanide decahydrate
  • the alkali metal correspondingly selects sodium salt
  • the alkali metal-hydrated ferrocyanide provided is potassium ferrocyanide trihydrate
  • the alkali For metals potassium salts are selected.
  • sodium salts include, but are not limited to, sodium chloride; potassium salts include, but are not limited to, potassium chloride.
  • dispersants include, but are not limited to, polyvinylpyrrolidone; mineral acids include, but are not limited to, hydrochloric acid.
  • the molar ratio of alkali metal-hydrated ferrocyanide and inorganic acid is 1-1.2:1-1.2. In some specific embodiments, in order to ensure that the obtained solution reacts with the carbon-transition metal composite precursor The rate is fast, and the molar ratio of alkali metal-hydrated ferrocyanide and inorganic acid is controlled to 1:1.
  • the molar ratio of ferrocyanide ions in the alkali metal-ferrocyanide to the transition metal in the carbon-transition metal composite precursor is 1:0.8 ⁇ 1 .
  • the molar ratio of alkali metal-hydrated ferrocyanide to inorganic acid and transition metal salt is 1:1:1, so that the resulting alkali metal-ferrocyanide reaction liquid and carbon-transition metal composite precursor During the bulk reaction, the carbon-transition metal composite precursor can be slowly transformed into a carbon/Prussian blue-like composite material.
  • the mass ratio of the dispersant and the alkali metal salt is 1:2 to 2.2. In some specific embodiments, the mass ratio of the dispersant and the alkali metal salt is 1:2, which is beneficial to promoting the transformation of the carbon/Prussian blue-like composite material.
  • the preparation method includes: adding 2.25g of polyvinylpyrrolidone, 0.8 to 3.2 mmol of sodium ferrocyanide decahydrate , 67 ⁇ L ⁇ 250 ⁇ L 12mol L -1 hydrochloric acid and 5g sodium chloride were dissolved in 30mL deionized water, and stirred continuously with a magnetic stirrer to obtain a uniform reaction solution of sodium ferrocyanide; among which, sodium ferrocyanide decahydrate, The mass ratio of hydrochloric acid to transition metal salt is 1:1:1.
  • the preparation method includes: adding 2.25g of polyvinylpyrrolidone and 0.8 to 3.2 mmol of potassium ferrocyanide trihydrate. , 67 ⁇ L ⁇ 250 ⁇ L 12mol L-1 hydrochloric acid and 5g potassium chloride were dissolved in 30mL deionized water, and stirred continuously with a magnetic stirrer to obtain a uniform reaction solution of sodium ferrocyanide; among which, potassium ferrocyanide trihydrate, The mass ratio of hydrochloric acid to transition metal salt is 1:1:1.
  • the carbon-transition metal composite precursor and the sodium ferrocyanide reaction solution after mixing the carbon-transition metal composite precursor and the sodium ferrocyanide reaction solution, they are stirred and mixed at room temperature for 1 to 2 hours to ensure that the carbon-transition metal composite precursor and the ferrocyanide reaction solution are The sodium reaction solution is thoroughly mixed.
  • the second mixture dispersion is subjected to a second hydrothermal reaction.
  • the hydrothermal reaction the activity of the reactants can be further improved and the crystal form transformation of the material is completed, which is beneficial to the growth of carbon/type carbonaceous materials with few crystal defects and good orientation. Prussian blue composite.
  • the pressure of the second hydrothermal reaction is 0.1-2.8MPa, the temperature is 120-130°C, and the reaction time is 6-7 hours.
  • the carbon-transition metal composite precursor slowly generates carbon/Prussian blue-like composite materials under the action of sodium ferrocyanide reaction solution, effectively reducing the easy occurrence of ferrocyanide in the synthesis process of Prussian blue-like
  • the structural defects of vacancies and crystal water ensure the integrity of the crystal form of the composite material obtained.
  • the pressure of the second hydrothermal reaction is 0.5MPa, the temperature is 120°C, and the reaction time is 6 hours.
  • post-processing is performed; the post-processing steps include solid-liquid separation processing, washing processing, and drying processing; wherein, centrifugal processing is used for solid-liquid separation processing, and deionized water is used for multiple processes.
  • the temperature of washing process and drying process is 80 ⁇ 90°C, and the time is 12 ⁇ 14 hours.
  • the second aspect of the embodiments of the present application provides a carbon/Prussian blue-like composite material.
  • the carbon/Prussian blue-like composite material is prepared by a preparation method of a carbon/Prussian blue-like composite material.
  • the carbon/Prussian blue-like composite material provided in the second aspect of this application; the Prussian blue-like crystal structure in the formed composite material is complete, effectively reducing the number of ferrocyanide vacancies and crystal water in the composite material, reducing structural defects, and the carbon material Uniformly compounded with Prussian blue-like materials, the stability and conductivity of the material are improved.
  • Prussian blue-like materials When used as a cathode material, it is beneficial to improve the specific capacity, cycle performance and stability of the cathode material, and has good application prospects.
  • the mass percentage of carbon in the carbon/Prussian blue-like composite material ranges from 4.5 wt% to 16.5 wt%. Controlling the mass percentage of carbon to a moderate level is conducive to uniform compounding with Prussian blue-like materials. It can not only increase the conductivity and improve its rate performance, but also ensure that the obtained carbon/Prussian blue-like composite material has certain stability and cycleability. , ensuring excellent overall performance.
  • the general structural formula of the carbon/Prussian blue-like composite material is C/Am x My Fe(CN) 6 , Am is one of Na and K, and M is Fe, Co, Ni, Mn, One of Cu and Zn, and, 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1.
  • the Prussian blue-like includes ferrocyanides corresponding to various transition metals
  • the transition metal ferrocyanides include but are not limited to ferrous ferrocyanide (Na x Fe y Fe(CN) 6 ), cobalt ferrocyanide (Na x Co y Fe(CN) 6 ), nickel ferrocyanide (Na x Ni y Fe(CN) 6 ), manganese ferrocyanide (Na x One of Mn y Fe(CN) 6 ), copper ferrocyanide (Na x Cu y Fe(CN) 6 ), zinc ferrocyanide (Na x Zn y Fe(CN) 6 ); 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1.
  • the third aspect of the embodiments of the present application provides a cathode material for a secondary battery.
  • the cathode material includes a carbon/Prussian blue-like composite material or a carbon/Prussian blue-like composite material prepared by a preparation method of a carbon/Prussian blue-like composite material.
  • the cathode material of the secondary battery provided in the third aspect of the embodiment of the present application uses the carbon/Prussian blue-like composite material as the cathode material of the secondary battery.
  • the composite carbon material is conducive to conductive transmission between cathode materials and improves Its electrical conductivity improves its rate performance; and the carbon/Prussian blue-like composite material formed has a complete crystal structure, ensuring high cycle stability and specific capacity, resulting in a cathode material with good comprehensive performance, which is conducive to wide application in secondary batteries.
  • the secondary battery provided in the fourth aspect of the embodiment of the present application includes a negative electrode current collector, a negative electrode material, an electrolyte, a separator, a positive electrode material, and a positive electrode current collector, wherein the positive electrode material is a positive electrode material of the secondary battery.
  • the secondary battery provided in the fourth aspect of the embodiment of the present application uses a cathode material containing a carbon/Prussian blue-like composite material. Since the cathode material has high specific capacity, cycle stability, and rate performance, The resulting secondary battery has good stability, excellent Coulombic efficiency and cycle performance, and can meet commercial needs.
  • the negative electrode current collector includes, but is not limited to, at least one of aluminum, copper, titanium, stainless steel, and nickel foil. In some specific embodiments, the negative electrode current collector is copper foil.
  • the anode material includes, but is not limited to, one or more of NASICON-type materials, transformation and alloying-type materials, organic materials, and carbon-based materials.
  • a sodium secondary battery is prepared, and the selected negative electrode material is sodium titanium phosphate; a potassium secondary battery is prepared, and the selected negative electrode material is hard carbon.
  • the electrolyte includes an organic solvent and a sodium salt electrolyte or a potassium salt electrolyte.
  • sodium salt electrolytes include but are not limited to sodium trifluoromethanesulfonate (NaCF 3 SO 3 ), sodium bis(trifluoromethanesulfonyl)imide [NaN(CF 3 SO 2 ) 2 ] and their derivatives, Sodium perfluoroalkylphosphate [NaPF 3 (C 2 F 5 ) 3 ], sodium tetrafluoroalkyl phosphate [NaPF 4 (C 2 O 4 )], sodium bisoxaloborate [NaB(C 2 O 4 ) 2 ], trifluoroalkyl phosphate Sodium (catechol)phosphate (NTBP), sulfonated polysulfonamide sodium salt, sodium hexafluorophosphate (NaPF 6 ), sodium perchlorate (NaClO 4 ), sodium tetrafluoroborate (NaBF 4 ), hexafluoroarsenic acid
  • NaCF 3 SO 3 sodium trifluoromethanes
  • Potassium salt electrolytes include, but are not limited to, potassium trifluoromethanesulfonate (KCF 3 SO 3 ), potassium bis(trifluoromethanesulfonyl)imide [KN(CF 3 SO 2 ) 2 ] and their derivatives, perfluorinated Potassium alkyl phosphate [KPF 3 (C 2 F 5 ) 3 ], potassium tetrafluoroxalate phosphate [KPF 4 (C 2 O 4 )], potassium bisoxaloborate [KB(C 2 O 4 ) 2 ], tri(ortho)phosphate Potassium quinone) phosphate, potassium sulfonated polysulfonamide, potassium hexafluorophosphate (KPF 6 ), potassium perchlorate (KClO 4 ), potassium tetrafluoroborate (KBF 4 ), potassium hexafluoroarsenate (KAsF 6 ), nitric acid
  • KCF 3 SO 3 potassium trifluo
  • a sodium secondary battery is prepared, and the sodium salt electrolyte selected is sodium perchlorate (NaClO 4 ), and the concentration range is 0.1 to 10 mol L -1 ; further, the concentration is 1 mol L -1 .
  • a potassium secondary battery is prepared, and the selected potassium salt electrolyte is potassium perchlorate (KClO 4 ), and the concentration range is 0.1 to 10 mol L -1 ; further, the concentration is 1 mol L -1 .
  • the organic solvent of the electrolyte includes, but is not limited to, propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate ( EMC), methyl formate (MF), methyl acetate (MA), N,N-dimethylacetamide (DMA), fluoroethylene carbonate (FEC), methyl propionate (MP), ethyl propionate Ester (EP), ethyl acetate (EA), ⁇ -butyrolactone (GBL), tetrahydrofuran (THF), 2-methyltetrahydrofuran (2MeTHF), 1,3-dioxolane (DOL), 4- Methyl-1,3-dioxopentane (4MeDOL), dimethoxymethane (DMM), 1,2-dimethoxypropane (DMP), triethylene glycol dimethyl ether (TEGDME), dimethyl S
  • the electrolyte solvent is a mixed solvent of equal volumes of ethylene carbonate (EC) and diethyl carbonate (DEC).
  • the separator includes, but is not limited to, at least one of an insulating porous polymer film and an inorganic porous film. Further, the separator includes but is not limited to one or more of porous polypropylene film, porous polyethylene film, porous composite polymer film, glass fiber paper, and porous ceramic separator.
  • the separator is fiberglass paper.
  • the positive current collector includes, but is not limited to, at least one of aluminum foil, carbon-coated aluminum foil, iron foil, tin foil, zinc foil, nickel foil, titanium foil, and manganese foil.
  • the positive current collector is carbon-coated aluminum foil.
  • a method for preparing a secondary battery including the following steps:
  • Preparation of battery negative electrode Weigh the negative electrode material, conductive agent and binder according to a certain proportion, add appropriate solvent and mix thoroughly to form a uniform slurry to form a negative electrode material layer; clean the negative electrode current collector, and then make the negative electrode material layer uniform Coat it on the surface of the negative electrode current collector, and cut it after the negative electrode material layer is completely dry to obtain the battery negative electrode of the required size;
  • the conductive agent includes but is not limited to carbon black;
  • the binder includes but is not limited to carboxymethylcellulose;
  • the conductive agent includes but is not limited to one or more of carbon black, graphene, carbon nanotubes, and carbon fibers;
  • the binder includes but is not limited to polyvinylidene fluoride;
  • the preparation method of the secondary battery is simple and convenient, and the obtained secondary battery not only has good electrochemical properties, but can also be widely used.
  • This embodiment provides a reduced graphene oxide/ Nax Ni y Fe(CN) 6 composite material and a preparation method thereof; wherein, 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ in Na x Ni y Fe(CN) 6 1.
  • the preparation method of reduced graphene oxide/Na Sodium is a chelating agent. The specific steps of the preparation method are as follows:
  • the steps for preparing the reduced graphene oxide/ Nax Ni y Fe(CN) 6 composite material in Examples A2-A16 are the same as those in Example A1. The difference lies in the chelating agent selected.
  • the reduced graphene oxide obtained in Examples A2-A16 The chelating agents used in the ene/Na x Ni y Fe(CN) 6 composite materials are shown in Table 1.
  • Example A17-A19 The steps in the preparation process of the reduced graphene oxide/ Nax Ni y Fe(CN) 6 composite material in Examples A17-A19 are the same as those in Example A1. The difference is that the concentration of nickel nitrate added is different. The reduction obtained in Examples A17-A19 The specific selection of nickel nitrate concentration for graphene oxide/Na x Ni y Fe(CN) 6 composite materials is shown in Table 2.
  • Example A20-A33 The preparation process steps of the reduced graphene oxide/ Nax Ni y Fe(CN) 6 composite material in Examples A20-A33 are the same as those in Example A1. The difference is that the added carbon materials are different. The reduction and oxidation obtained in Examples A20-A33 The specific selection of carbon materials for graphene/Na x Ni y Fe(CN) 6 composites is shown in Table 3.
  • Example A34-A113 The preparation process steps of the reduced graphene oxide/ Nax Ni y Fe(CN) 6 composite material in Examples A34-A113 are the same as those in Example A1. The difference lies in the added transition metal salt and chelating agent. Examples A34-A113 The specific selection of transition metal salts and chelating agents for the obtained reduced graphene oxide/ Nax Ni y Fe(CN) 6 composite material is shown in Table 4.
  • Nickel nitrate hexahydrate is used as the transition metal salt, and disodium ethylenediaminetetraacetate is used as the chelating agent.
  • the specific preparation process is as follows:
  • Embodiment B1 to Embodiment B113 and Comparative Example B1 provide a sodium ion half-battery respectively.
  • Each sodium-ion half-battery is assembled according to the following conditions:
  • Positive electrode The reduced graphene oxide/ Nax Ni y Fe(CN) 6 composite material prepared in Examples A1 to A113 and the comparative example A1 are respectively used as the positive electrode active material of the sodium ion battery and formed with carbon black and polyvinylidene fluoride respectively.
  • the positive electrode of the sodium ion battery in Examples B1 to B113 and Comparative Example B1 is prepared from the reduced graphene oxide/ Nax Ni y Fe(CN) 6 composite material in Example A1 to form the positive electrode of the sodium ion battery in Example B1, And so on;
  • Electrolyte 1mol L -1 NaClO 4 /EC-DEC (1:1, v/v);
  • Example C1 to Example C113 and Comparative Example C1 respectively provide a sodium ion full battery.
  • Each sodium ion full battery is assembled according to the following conditions:
  • Positive electrode The reduced graphene oxide/ Nax Ni y Fe(CN) 6 composite material prepared in Examples A1 to A113 and the comparative example A1 are respectively used as the positive electrode active material of the sodium ion battery and formed with carbon black and polyvinylidene fluoride respectively.
  • Example A1 After the positive electrode active material layer is completely dry Cut to obtain the battery positive electrode of the required size, such as the reduced graphene oxide/ Nax Ni y Fe(CN) 6 composite material in Example A1 is prepared to form the positive electrode of the sodium ion battery in Example C1, and so on;
  • the electrolyte is 1mol L -1 NaClO 4 /EC-DEC (1:1, v/v);
  • the diaphragm is fiberglass paper; cut the diaphragm to the required size and clean it;
  • the negative electrode material is sodium titanium phosphate.
  • the negative electrode is prepared as follows: mix the negative electrode material, conductive carbon black and polyvinylidene fluoride (PVDF) in a mass ratio of 8:1:1, and then add N-methylpyrrolidone (NMP) solvent. Stir thoroughly to obtain the slurry, then apply the slurry evenly on the surface of the copper foil, and then place it in a vacuum oven for drying.
  • the baking temperature is 80°C and the baking time is 48 hours;
  • Electrochemical performance test of the half-cell assembled with reduced graphene oxide/ Nax Ni y Fe(CN) 6 composite material Examples B1 to B113 and Comparative Example B1 were assembled into reduced graphene oxide/ Nax Ni y Fe(CN) 6 composite half-cells were tested for performance, including: specific capacity (mAh g -1 ), capacity retention rate and Coulombic efficiency at 1000 cycles at 200mA g -1 .
  • the performance results of the half-cell assembled from the reduced graphene oxide/ Nax Ni y Fe(CN) 6 composite material in Examples B1 to B113 and Comparative Example B1 are shown in Table 5.
  • the half cell has a maximum specific capacity of 112mAh g -1 at 200mA g -1 for 1000 cycles; the maximum capacity retention rate is 86.3%, and the maximum Coulomb efficiency is 99.8%; while the half cell assembled in the comparative example has a maximum specific capacity of 112mAh g -1 at 200mA g -1
  • the specific capacity at 1000 cycles is 38mAh g -1 ; the capacity retention rate is 47.5%, and the Coulombic efficiency is 84.2%; it can be analyzed that the specific capacity, capacity retention rate and Coulombic efficiency of the battery assembled in the comparative example are all lower than those of the battery provided in the embodiment .
  • Example A1 the scanning electron microscope picture of the reduced graphene oxide/ Nax Ni y Fe(CN) 6 composite material in Example A1 is shown in Figure 1.
  • the specific capacity can still be maintained at about 54mAh g -1 , and the Coulombic efficiency is greater than 99.6%, showing good cycle performance;
  • the rate performance of the half-cell obtained in Example B1 at different current densities As shown in Figure 3, the specific capacity still remains around 45mAh g -1 at a large rate of 1A g -1 , showing good rate performance.
  • the sodium ion battery provided in this application uses the reduced graphene oxide/ Nax Ni y Fe(CN) 6 composite material of Example A1 to Example A113 as the positive electrode. Since the positive electrode material is first prepared by high-temperature hydrothermal method The solid-phase material carbon-transition metal composite precursor is synthesized, and then slowly converted to prepare a carbon/Prussian blue-like sodium ion battery composite material; based on the obtained cathode material, the Prussian blue-like crystal structure is complete and evenly composited with the carbon material, thus improving the cathode The specific capacity, cycle stability, rate performance and conductivity of the material; therefore, the sodium-ion battery has good electrochemical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请涉及电池技术领域,尤其涉及一种碳/类普鲁士蓝复合材料及制备方法和应用,其制备方法包括如下步骤:将碳材料、螯合剂和过渡金属盐配制成第一混合物分散液,进行第一水热反应,得到碳-过渡金属复合前驱体;将碱金属-亚铁氰化物与碳-过渡金属复合前驱体配制成第二混合物分散液,进行第二水热反应,再进行后处理,得到碳/类普鲁士蓝复合材料。该制备方法通过水热法先合成固相前驱体,碳-过渡金属复合前驱体在转化过程中速率较慢,有利于缓慢形成类普鲁士蓝晶格,并减少类普鲁士蓝合成过程中易出现亚铁氰根空位及结晶水的结构缺陷;同时提供碳材料进行均匀复合,不仅提高导电性,且提高了循环性和稳定性,适用于规模化生产。

Description

碳/类普鲁士蓝复合材料及制备方法和应用 技术领域
本申请属于电池技术领域,尤其涉及一种碳/类普鲁士蓝复合材料及制备方法和应用。
背景技术
可再生能源包括风能、太阳能、水能、生物质能、地热能等新能源越来越成为驱动能源供应体系的重要组成部分,其中,化学电源与新能源的开发和利用有很密切的关系,许多化学电源可与这些可再生能源发电配套使用而做出很大贡献。例如,太阳能和风能发电必须要有化学电源作为储能的设备,燃料电池能促进氢能的大规模利用等。因此,化学能源的应用越来越广泛,其中,锂离子电池由于其长寿命和高比能量,广泛应用于便携式电子设备和电动汽车。然而,锂资源有限和分布不均阻碍了锂离子电池在规模储能系统的进一步应用。
钠、钾与锂物化性能相似,且成本低廉、储量更为丰富,因此钠离子电池/钾离子电池被认为是最具吸引力的规模储能技术之一。目前钠离子电池/钾离子电池还处于初步研究阶段,研发具有优异性能的关键材料特别是正极材料是钠离子电池/钾离子电池领域的重要研究课题。在众多的钠离子电池/钾离子电池正极材料中,类普鲁士蓝正极材料因其独特的三维开框架结构利于钠离子/钾离子的快速可逆脱嵌而得到了广泛研究。
研究发现,使用螯合剂虽然能够有效较低类普鲁士蓝材料的合成速率,使其空间结构较为完善,从而表现出较高比容量及循环稳定性,也即是螯合剂的使用虽然可改善类普鲁士蓝沉淀过程由于反应速率过快引起的结构缺陷,但不能提升材料的导电性。并且,现有技术中通常采用共沉淀法得到的类普鲁士蓝材料,该制备方法导致形成的材料存在空间结构缺陷较多以及导电性能较差等问题,导致材料的比容量、倍率性能和循环稳定性不足,不利于广泛使用。
技术问题
本申请的目的在于提供一种碳/类普鲁士蓝复合材料及制备方法和应用, 旨在解决现有技术采用的制备方法得到的普鲁士蓝材料由于结构缺陷或导电性能较差导致形成的正极材料而制备得到的电池比容量低、循环稳定性和倍率性能差的问题。
技术解决方案
为实现上述申请目的,本申请采用的技术方案如下:
第一方面,本申请提供一种碳/类普鲁士蓝复合材料的制备方法,包括如下步骤:
将碳材料、螯合剂和过渡金属盐配制成第一混合物分散液,进行第一水热反应,得到碳-过渡金属复合前驱体;
将碱金属-亚铁氰化物与碳-过渡金属复合前驱体配制成第二混合物分散液,进行第二水热反应,再进行后处理,得到碳/类普鲁士蓝复合材料。
第二方面,本申请提供一种碳/类普鲁士蓝复合材料,碳/类普鲁士蓝复合材料由碳/类普鲁士蓝复合材料的制备方法制备得到。
第三方面,本申请提供一种二次电池的正极材料,正极材料包括碳/类普鲁士蓝复合材料或由碳/类普鲁士蓝复合材料的制备方法制备得到的碳/类普鲁士蓝复合材料。
第四方面,本申请提供一种二次电池,包括负极集流体、负极材料、电解液、隔膜、正极材料、正极集流体,其中,正极材料为二次电池的正极材料。
本申请第一方面提供的碳/类普鲁士蓝复合材料的制备方法,该制备方法通过水热法先合成固相前驱体碳-过渡金属复合前驱体,再和碱金属-亚铁氰化物进行混合再进行水热法处理,使碳-过渡金属复合前驱体缓慢转化为碳/类普鲁士蓝复合材料,由于碳-过渡金属复合前驱体为固相材料,在转化过程中速率较慢,有利于缓慢形成类普鲁士蓝晶格,并且有效减少类普鲁士蓝合成过程中易出现亚铁氰根空位及结晶水的结构缺陷,确保得到的复合材料晶型完整; 同时提供碳材料与类普鲁士蓝材料进行均匀复合,不仅有效提高类普鲁士蓝材料的导电性,而且改善了复合材料之间结合力差、成分不均导致其作为正极材料组装成电池后循环性能较低的问题,此外,该制备方法简单可控,适用于规模化生产。
本申请第二方面提供的碳/类普鲁士蓝复合材料,形成的复合材料中类普鲁士蓝晶体结构完整,有效降低了复合材料中亚铁氰根空位及结晶水数目,减少结构缺陷,并且碳材料与类普鲁士蓝均匀复合,提高了材料的稳定性和导电性,作为正极材料进行使用的时候有利于提高正极材料的比容量、循环性能以及稳定性,具有较好的应用前景。
本申请第三方面提供的二次电池的正极材料,采用该碳/类普鲁士蓝复合材料作为二次电池的正极材料,一方面复合的碳材料有利于正极材料之间的导电传输,提高其导电性能,从而提高其倍率性能;并且形成的碳/类普鲁士蓝复合材料中晶体结构完整,确保具有较高的循环稳定性和比容量,使得到了综合性能良好的正极材料,有利于广泛应用于二次电池中。
本申请第四方面提供的二次电池,由于该二次电池采用了含有碳/类普鲁士蓝复合材料的正极材料,由于该正极材料具有较高的比容量、循环稳定性、倍率性能,因此得到的二次电池稳定性好,库伦效率和循环性能极好,可以满足商用需求。
有益效果
为实现上述申请目的,本申请采用的技术方案如下:
第一方面,本申请提供一种碳/类普鲁士蓝复合材料的制备方法,包括如下步骤:
将碳材料、螯合剂和过渡金属盐配制成第一混合物分散液,进行第一水热反应,得到碳-过渡金属复合前驱体;
将碱金属-亚铁氰化物与碳-过渡金属复合前驱体配制成第二混合物分散液,进行第二水热反应,再进行后处理,得到碳/类普鲁士蓝复合材料。
第二方面,本申请提供一种碳/类普鲁士蓝复合材料,碳/类普鲁士蓝复合材料由碳/类普鲁士蓝复合材料的制备方法制备得到。
第三方面,本申请提供一种二次电池的正极材料,正极材料包括碳/类普鲁士蓝复合材料或由碳/类普鲁士蓝复合材料的制备方法制备得到的碳/类普鲁士蓝复合材料。
第四方面,本申请提供一种二次电池,包括负极集流体、负极材料、电解液、隔膜、正极材料、正极集流体,其中,正极材料为二次电池的正极材料。
本申请第一方面提供的碳/类普鲁士蓝复合材料的制备方法,该制备方法通过水热法先合成固相前驱体碳-过渡金属复合前驱体,再和碱金属-亚铁氰化物进行混合再进行水热法处理,使碳-过渡金属复合前驱体缓慢转化为碳/类普鲁士蓝复合材料,由于碳-过渡金属复合前驱体为固相材料,在转化过程中速率较慢,有利于缓慢形成类普鲁士蓝晶格,并且有效减少类普鲁士蓝合成过程中易出现亚铁氰根空位及结晶水的结构缺陷,确保得到的复合材料晶型完整;同时提供碳材料与类普鲁士蓝材料进行均匀复合,不仅有效提高类普鲁士蓝材料的导电性,而且改善了复合材料之间结合力差、成分不均导致其作为正极材料组装成电池后循环性能较低的问题,此外,该制备方法简单可控,适用于规模化生产。
本申请第二方面提供的碳/类普鲁士蓝复合材料,形成的复合材料中类普鲁士蓝晶体结构完整,有效降低了复合材料中亚铁氰根空位及结晶水数目,减少结构缺陷,并且碳材料与类普鲁士蓝均匀复合,提高了材料的稳定性和导电性,作为正极材料进行使用的时候有利于提高正极材料的比容量、循环性能以 及稳定性,具有较好的应用前景。
本申请第三方面提供的二次电池的正极材料,采用该碳/类普鲁士蓝复合材料作为二次电池的正极材料,一方面复合的碳材料有利于正极材料之间的导电传输,提高其导电性能,从而提高其倍率性能;并且形成的碳/类普鲁士蓝复合材料中晶体结构完整,确保具有较高的循环稳定性和比容量,使得到了综合性能良好的正极材料,有利于广泛应用于二次电池中。
本申请第四方面提供的二次电池,由于该二次电池采用了含有碳/类普鲁士蓝复合材料的正极材料,由于该正极材料具有较高的比容量、循环稳定性、倍率性能,因此得到的二次电池稳定性好,库伦效率和循环性能极好,可以满足商用需求。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例B1中提供还原氧化石墨烯/Na xNi yFe(CN) 6复合材料的扫描电子显微镜图片。
图2是本申请实施例B1提供的还原氧化石墨烯/Na xNi yFe(CN) 6复合材料在200mA g -1电流密度下长循环性能。
图3是本申请实施例B1提供的的半电池在不同电流密度下的倍率性能。
本发明的实施方式
为了使本申请要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请中,术语“和/或”,描述关联对象的关联关系,表示可以存在三种 关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,“a,b,或c中的至少一项(个)”,或,“a,b,和c中的至少一项(个)”,均可以表示:a,b,c,a-b(即a和b),a-c,b-c,或a-b-c,其中a,b,c分别可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,部分或全部步骤可以并行执行或先后执行,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
本申请实施例说明书中所提到的相关成分的重量不仅仅可以指代各组分的具体含量,也可以表示各组分间重量的比例关系,因此,只要是按照本申请实施例说明书相关组分的含量按比例放大或缩小均在本申请实施例说明书公开的范围之内。具体地,本申请实施例说明书中的质量可以是μg、mg、g、kg等化工领域公知的质量单位。
术语“第一”、“第二”仅用于描述目的,用来将目的如物质彼此区分开,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。例如,在不脱离本申请实施例范围的情况下,第一XX也可以被称为第二XX, 类似地,第二XX也可以被称为第一XX。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
本申请实施例第一方面提供一种碳/类普鲁士蓝复合材料的制备方法,包括如下步骤:
S01.将碳材料、螯合剂和过渡金属盐配制成第一混合物分散液,进行第一水热反应,得到碳-过渡金属复合前驱体;
S02.将碱金属-亚铁氰化物与碳-过渡金属复合前驱体配制成第二混合物分散液,进行第二水热反应,再进行后处理,得到碳/类普鲁士蓝复合材料。
本申请实施例第一方面提供的碳/类普鲁士蓝复合材料的制备方法,该制备方法通过水热法先合成固相前驱体碳-过渡金属复合前驱体,再和碱金属-亚铁氰化物进行混合再进行水热法处理,一方面通过水热法制备得到固相前驱体碳-过渡金属复合前驱体,使得后续进行第二水热法处理的过程中,转化速率较慢,有利于缓慢转化形成类普鲁士蓝晶格,并且有效减少类普鲁士蓝合成过程中易出现亚铁氰根空位及结晶水的结构缺陷,确保得到的复合材料晶型完整,提高了材料的循环性能;另一方面,提供了碳材料与类普鲁士蓝材料进行均匀复合,不仅有效提高类普鲁士蓝材料的导电性,改善了复合材料之间结合力差、成分不均导致其作为正极材料组装成电池后循环性能较低的问题。
步骤S01中,将碳材料、螯合剂和过渡金属盐配制成第一混合物分散液。
在一些实施例中,第一混合物分散液中,碳材料、螯合剂和过渡金属盐的摩尔比为0.1~0.4:1:1。其中,确保螯合剂和过渡金属盐的比例为1:1,可以保证螯合剂与过渡金属形成金属络合物,以形成前驱体材料,在后续反应中以缓慢转化为最终产物,改善类普鲁士蓝沉淀过程由于反应速率过快引起的结构缺陷。此外,限定碳材料的添加量,由于最终得到的碳/类普鲁士蓝复合材 料中碳含量有一定的要求,若碳材料添加量过多或过少,则会影响得到的复合材料中类普鲁士蓝材料的含量,因此,控制三者的摩尔比,能够保证提高碳/类普鲁士蓝复合材料导电性的同时需要保证其具有较高的稳定及循环性能。
在一些实施例中,碳材料包括单壁碳纳米管、多壁碳纳米管、碳纳米纤维、纳米碳球、多层石墨烯、石墨烯微片、氧化石墨烯、活性炭、介孔碳、微孔碳、中孔碳、科琴黑、乙炔黑、导电炭黑、焦炭中的至少一种。
在一些实施例中,螯合剂包括乙二胺四乙酸、乙二胺四乙酸二钠、柠檬酸、柠檬酸钠、氨基三乙酸、二亚乙基三胺五乙酸、酒石酸、酒石酸钾钠、葡萄糖酸钠、羟乙基乙二胺三乙酸、羟基亚乙基-1,1-二膦酸、氨基三亚甲基膦酸、二乙烯三胺五亚甲基膦酸、双(1,6-亚已基)三胺五亚甲基膦酸、聚丙烯酸铵、水解聚马来酸酐中的至少一种。
在一些实施例中,过渡金属盐溶液中,过渡金属盐包括亚铁盐、铁盐、钴盐、镍盐、锰盐、铜盐、锌盐中的至少一种。在一些实施例中,过渡金属盐可以为氯化亚铁(FeCl 2)、硝酸亚铁(Fe(NO 3) 2)、硫酸亚铁(FeSO 4)、乙酸铁(CH 3COO) 2Fe)、氯化钴(CoCl 2)、硝酸钴(Co(NO 3) 2)、硫酸钴(CoSO 4)、氯化镍(NiCl 2)、硝酸镍(Ni(NO 3) 2)、硫酸镍(NiSO 4)、氯化锰(MnCl 2)、硝酸锰(Mn(NO 3) 2)、硫酸锰(MnSO 4)、乙酸锰((CH 3COO) 2Mn)、氯化铜(CuCl 2)、硝酸铜(Cu(NO 3) 2)、硫酸铜(CuSO 4)、氯化锌(ZnCl 2)、硝酸锌(Zn(NO 3) 2)、硫酸锌(ZnSO 4)、乙酸锌((CH 3COO) 2Zn)及它们可能存在的水合物中的一种。
在一些实施例中,配制成第一混合物分散液的步骤包括:分别配制碳材料分散液、螯合剂水溶液和过渡金属盐水溶液;将碳材料分散液、螯合剂水溶液和过渡金属盐水溶液进行混合处理,得到第一混合物分散液。通过分别配制相 应的水溶液再进行混合处理,能够保证各组分分散均匀且确保各组分进行混合处理过程中充分接触,能够提高反应效率。
在一些实施例中,碳材料分散液的制备方法包括如下步骤:将碳材料、还原剂分散于水中,再进行水浴热处理,得到碳分散液;其中,碳材料和还原剂的质量比为500:1~1.5;水浴热处理的温度为85~87℃,时间为12~14小时。
由于碳材料不溶于水,将碳材料、还原剂分散于水中的步骤中,采用超声处理的方法进行分散处理,确保碳材料和还原剂分散均匀。超声处理的时间为20~30分钟,目的是保证各组分均匀分散于水中。
在一些实施例中,还原剂包括水合肼、硼氢化钠、抗坏血酸中的至少一种。在一些具体实施例中,还原剂为水合肼。
在一些实施例中,碳材料和水的摩尔比为1~1.5:1,具体为1:1;控制碳材料和水的摩尔比,可以有利于控制碳分散液的浓度为1.0~1.5mg/mL,控制碳分散液的浓度,确保得到的碳/类普鲁士蓝复合材料中碳材料的质量百分含量适中,有利于提高材料的导电性。
在一些实施例中,碳材料和还原剂的质量比为500:1~1.5;若选择的碳材料为氧化型碳材料,在分散处理过程中,提供还原剂是为了将选择的氧化型的碳材料在分散处理的过程中进行还原处理成性质稳定的碳材料,使后续反应过程形成的碳-过渡金属复合前驱体性质稳定。提供的还原剂只需要微量即可进行还原作用。在一些具体实施例中,碳材料和还原剂的质量比为500:1。
在一些实施例中,进行水浴热处理,且,进行水浴热处理的过程中采用惰性气体进行保护,获得碳分散液。在一些实施例中,惰性气体包括但不限于氮气、氦气、氖气、氩气、氪气、氙气、氡气中的至少一种。
在一些实施例中,水浴热处理的温度为85~90℃,时间为12~14小时。在 一些具体实施例中,于85℃水浴中,氮气保护下反应12h,获得浓度为1.0mg mL -1的碳分散液。
在一些具体实施例中,碳材料分散液的制备方法包括如下步骤:提供50mg碳材料、0.1mg还原剂分散于50mL去离子水中;超声处理20min后,置于85℃水浴中,氮气保护下反应12h,获得浓度为1.0mg mL -1的碳分散液;其中碳材料与还原剂的质量比约为500:1。
在一些实施例中,配制得到的螯合剂水溶液的浓度为0.2~0.8mol/L,过渡金属盐水溶液的浓度为0.2~0.8mol/L;限定螯合剂水溶液和过度金属盐溶液的浓度适中,有利于各物质分散均匀,且有利于与碳分散液进行反应相互作用。
在一些具体实施例中,配制成第一混合物分散液的步骤包括:分别配制50mL浓度为1.0mg mL -1碳材料分散液、4mL浓度为0.2~0.8mol/L的螯合剂水溶液和4mL浓度为0.2~0.8mol/L的过渡金属盐水溶液;将碳材料分散液、螯合剂水溶液和过渡金属盐水溶液进行混合处理,得到第一混合物分散液。
进一步,将第一混合物分散液进行第一水热反应,得到碳-过渡金属复合前驱体。
在一些实施例中,第一水热反应的压力为0.1~2.8MPa,温度为180~190℃,反应时间为2~4小时;在水热反应作用下,第一混合物分散液可反应得到结晶粉末,生成固相材料碳-过渡金属复合前驱体的粉体材料,避免了形成微粒团聚,并且保证反应均匀。在一些具体实施例中,第一水热反应的压力为0.5MPa,温度为180℃,反应时间为2小时。
步骤S02中,将碱金属-亚铁氰化物与碳-过渡金属复合前驱体配制成第二混合物分散液。
在一些实施例中,碱金属-亚铁氰化物包括亚铁氰化钠、亚铁氰化钾中的 任意一种。提供亚铁氰化钠制备得到的碳/类普鲁士蓝复合材料为含钠的碳/类普鲁士蓝复合材料,可作为正极材料用于钠二次电池中;提供亚铁氰化钾制备得到的碳/类普鲁士蓝复合材料为含钾的碳/类普鲁士蓝复合材料,可作为正极材料用于钾二次电池中。
在一些实施例中,将碱金属-亚铁氰化物与碳-过渡金属复合前驱体配制成第二混合物分散液的步骤中,包括:配制碱金属-亚铁氰化物反应液,将碱金属-亚铁氰化物反应液与碳-过渡金属复合前驱体混合处理,得到第二混合物分散液。
在一些实施例中,碱金属-亚铁氰化物反应液的制备方法包括如下步骤:将碱金属-水合亚铁氰化物、分散剂、碱金属盐和无机酸溶于水中,混合处理,得到亚铁氰化钠反应液;其中,碱金属-水合亚铁氰化物和无机酸的摩尔比为1~1.2:1~1.2;分散剂和碱金属盐的质量比为1:2~2.2。其中,碱金属-水合亚铁氰化物主要是提供亚铁氰化物的配位化合物,以与碳-过渡金属复合前驱体反应,将碳-过渡金属复合前驱体进行转化;添加分散剂为了使各组分分散均匀,确保反应完全;提供的碱金属盐和无机酸主要为了促进碳-过渡金属复合前驱体的转化,提高转化率,生产目标碳/类普鲁士蓝复合材料。
在一些实施例中,碱金属-水合亚铁氰化物包括十水合亚铁氰化钠、三水合亚铁氰化钾中的任意一种;且碱金属盐包括钠盐、钾盐中的任意一种。当提供的碱金属-水合亚铁氰化物选择十水合亚铁氰化钠,则碱金属对应选择钠盐;当提供的碱金属-水合亚铁氰化物选择三水合亚铁氰化钾,则碱金属对应选择钾盐。
在一些实施例中,钠盐包括但不限于氯化钠;钾盐包括但不限于氯化钾。
在一些实施例中,分散剂包括但不限于聚乙烯吡咯烷酮;无机酸包括但不 限于盐酸。
在一些实施例中,碱金属-水合亚铁氰化物和无机酸的摩尔比为1~1.2:1~1.2,在一些具体实施例中,为了保证得到的溶液与碳-过渡金属复合前驱体反应速率较快,控制碱金属-水合亚铁氰化物和无机酸的摩尔比为1:1。
在一些实施例中,第二混合物分散液中,所述碱金属-亚铁氰化物中亚铁氰化离子与所述碳-过渡金属复合前驱体中过渡金属的摩尔比为1:0.8~1。在一些实施例中,碱金属-水合亚铁氰化物和无机酸和过渡金属盐的摩尔比为1:1:1,使得到的碱金属-亚铁氰化物反应液与碳-过渡金属复合前驱体反应过程中,碳-过渡金属复合前驱体能够缓慢转化形成碳/类普鲁士蓝复合材料。
在一些实施例中,分散剂和碱金属盐的质量比为1:2~2.2。在一些具体实施例中,分散剂和碱金属盐的质量比为1:2,有利于促进碳/类普鲁士蓝复合材料的转化。
在一些具体实施例中,碱金属-亚铁氰化物反应液为亚铁氰化钠反应液时,其制备方法包括:将2.25g的聚乙烯吡咯烷酮、0.8~3.2mmol十水合亚铁氰化钠、67μL~250μL 12mol L -1盐酸以及5g氯化钠溶解于30mL去离子水中,以磁力搅拌器施以持续的搅拌,得到亚铁氰化钠均匀反应液;其中十水合亚铁氰化钠、盐酸与过渡金属盐的物质的量比为1:1:1。
在一些具体实施例中,碱金属-亚铁氰化物反应液为亚铁氰化钠反应液时,其制备方法包括:将2.25g的聚乙烯吡咯烷酮、0.8~3.2mmol三水合亚铁氰化钾、67μL~250μL 12mol L-1盐酸以及5g氯化钾溶解于30mL去离子水中,以磁力搅拌器施以持续的搅拌,得到亚铁氰化钠均匀反应液;其中三水合亚铁氰化钾、盐酸与过渡金属盐的物质的量比为1:1:1。
在一些实施例中,将碳-过渡金属复合前驱体和亚铁氰化钠反应液混合后, 于室温条件下进行搅拌混合1~2小时,确保碳-过渡金属复合前驱体与亚铁氰化钠反应液充分混合均匀。
进一步,将第二混合物分散液进行第二水热反应,通过水热反应,可以进一步提高反应物的活性,并且完成材料的晶型转变,有利于生长晶体缺陷极少、取向好的碳/类普鲁士蓝复合材料。
在一些实施例中,第二水热反应的压力为0.1~2.8MPa,温度为120~130℃,反应时间为6~7小时。在水热反应作用下,碳-过渡金属复合前驱体在亚铁氰化钠反应液的作用下,缓慢生成碳/类普鲁士蓝复合材料,有效减少类普鲁士蓝合成过程中易出现亚铁氰根空位及结晶水的结构缺陷,确保得到的复合材料晶型完整。在一些具体实施例中,第二水热反应的压力为0.5MPa,温度为120℃,反应时间为6小时。
在一些实施例中,再进行后处理;后处理的步骤中,依次包括进行固液分离处理、洗涤处理、干燥处理;其中,采用离心处理方式进行固液分离处理,再用去离子水进行多次洗涤处理,干燥处理的温度为80~90℃,时间为12~14小时。
本申请实施例第二方面提供一种碳/类普鲁士蓝复合材料,碳/类普鲁士蓝复合材料由碳/类普鲁士蓝复合材料的制备方法制备得到。
本申请第二方面提供的碳/类普鲁士蓝复合材料;形成的复合材料中类普鲁士蓝晶体结构完整,有效降低了复合材料中亚铁氰根空位及结晶水数目,减少结构缺陷,并且碳材料与类普鲁士蓝均匀复合,提高了材料的稳定性和导电性,作为正极材料进行使用的时候有利于提高正极材料的比容量、循环性能以及稳定性,具有较好的应用前景。
在一些实施例中,碳/类普鲁士蓝复合材料中,碳的质量百分含量为4.5 wt%~16.5wt%。控制碳的质量百分含量适中,有利于与类普鲁士蓝材料复合均匀,不仅可以提高导电性,改善其倍率性能,而且能够保证得到的碳/类普鲁士蓝复合材料具有一定的稳定性、循环性,确保整体性能优异。
在一些实施例中,碳/类普鲁士蓝复合材料的结构通式为C/Am xM yFe(CN) 6,Am为Na、K中的一种,M为Fe、Co、Ni、Mn、Cu、Zn中的一种,且,0<x<2,0<y<1。
在一些实施例中,碳/类普鲁士蓝复合材料中,类普鲁士蓝包括多种过渡金属对应的亚铁氰化物,过渡金属亚铁氰化物包括但不限于亚铁氰化亚铁(Na xFe yFe(CN) 6)、亚铁氰化钴(Na xCo yFe(CN) 6)、亚铁氰化镍(Na xNi yFe(CN) 6)、亚铁氰化锰(Na xMn yFe(CN) 6)、亚铁氰化铜(Na xCu yFe(CN) 6)、亚铁氰化锌(Na xZn yFe(CN) 6)中的一种;0<x<2,0<y<1。
本申请实施例第三方面提供一种二次电池的正极材料,正极材料包括碳/类普鲁士蓝复合材料或由碳/类普鲁士蓝复合材料的制备方法制备得到的碳/类普鲁士蓝复合材料。
本申请实施例第三方面提供的二次电池的正极材料,采用该碳/类普鲁士蓝复合材料作为二次电池的正极材料,一方面复合的碳材料有利于正极材料之间的导电传输,提高其导电性能,从而提高其倍率性能;并且形成的碳/类普鲁士蓝复合材料中晶体结构完整,确保具有较高的循环稳定性和比容量,使得到了综合性能良好的正极材料,有利于广泛应用于二次电池中。
本申请实施例第四方面提供的二次电池,包括负极集流体、负极材料、电解液、隔膜、正极材料、正极集流体,其中,正极材料为二次电池的正极材料。
本申请实施例第四方面提供的二次电池,由于该二次电池采用了含有碳/类普鲁士蓝复合材料的正极材料,由于该正极材料具有较高的比容量、循环稳 定性、倍率性能,因此得到的二次电池稳定性好,库伦效率和循环性能极好,可以满足商用需求。
在一些实施例中,负极集流体包括但不限于铝、铜,钛,不锈钢,镍箔片中的至少一种。在一些具体实施例中,负极集流体为铜箔。
在一些实施例中,负极材料包括但不限于NASICON型材料、转化型及合金化型材料、有机材料、碳基材料中的一种或多种。在一些具体实施例中,制备得到钠二次电池,选用的负极材料为磷酸钛钠;制备得到钾二次电池,选用的负极材料为硬碳。
在一些实施例中,电解液包括有机溶剂和钠盐电解质或钾盐电解质。
其中,钠盐电解质包括但不限于三氟甲基磺酸钠(NaCF 3SO 3)、双(三氟甲基磺酰基)亚胺钠[NaN(CF 3SO 2) 2]及其衍生物、全氟烷基磷酸钠[NaPF 3(C 2F 5) 3]、四氟草酸磷酸钠[NaPF 4(C 2O 4)]、双草酸硼酸钠[NaB(C 2O 4) 2]、三(邻苯二酚)磷酸钠(NTBP)、磺化聚磺胺钠盐、六氟磷酸钠(NaPF 6)、高氯酸钠(NaClO 4)、四氟硼酸钠(NaBF 4)、六氟砷酸钠(NaAsF 6)、硝酸钠(NaNO 3)、碳酸钠(NaCO 3)、氯化钠(NaCl)中的一种或几种。钾盐电解质包括但不限于三氟甲基磺酸钾(KCF 3SO 3)、双(三氟甲基磺酰基)亚胺钾[KN(CF 3SO 2) 2]及其衍生物、全氟烷基磷酸钾[KPF 3(C 2F 5) 3]、四氟草酸磷酸钾[KPF 4(C 2O 4)]、双草酸硼酸钾[KB(C 2O 4) 2]、三(邻苯二酚)磷酸钾、磺化聚磺胺钾盐、六氟磷酸钾(KPF 6)、高氯酸钾(KClO 4)、四氟硼酸钾(KBF 4)、六氟砷酸钾(KAsF 6)、硝酸钾(KNO 3)、碳酸钾(KCO 3)、氯化钾(KCl)中的一种或几种。
在一些具体实施例中,制备得到钠二次电池,选用的钠盐电解质为高氯酸钠(NaClO 4),且浓度范围为0.1~10mol L -1;进一步,浓度为1mol L -1
在一些具体实施例中,制备得到钾二次电池,选用的钾盐电解质为高氯酸钾(KClO 4),且浓度范围为0.1~10mol L -1;进一步,浓度为1mol L -1
在一些实施例中,电解液的有机溶剂包括但不限于碳酸丙烯酯(PC)、碳酸乙烯酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸甲乙酯(EMC)、甲酸甲酯(MF)、乙酸甲酯(MA)、N,N-二甲基乙酰胺(DMA)、氟代碳酸乙烯酯(FEC)、丙酸甲酯(MP)、丙酸乙酯(EP)、乙酸乙酯(EA)、γ-丁内酯(GBL)、四氢呋喃(THF)、2-甲基四氢呋喃(2MeTHF)、1,3-二氧环戊烷(DOL)、4-甲基-1,3-二氧环戊烷(4MeDOL)、二甲氧甲烷(DMM)、1,2-二甲氧丙烷(DMP)、三乙二醇二甲醚(TEGDME)、二甲基砜(MSM)、二乙二醇二甲醚(DME)、亚硫酸乙烯酯(ES)、亚硫酸丙烯脂(PS)、亚硫酸二甲脂(DMS)、亚硫酸二乙脂(DES)、冠醚(12-冠-4)、1-乙基-3-甲基咪唑-六氟磷酸盐、1-乙基-3-甲基咪唑-四氟硼酸盐、1-乙基-3-甲基咪唑-双三氟甲基磺酰亚胺盐、1-丙基-3-甲基咪唑-六氟磷酸盐、1-丙基-3-甲基咪唑-四氟硼酸盐、1-丙基-3-甲基咪唑-双三氟甲基磺酰亚胺盐、1-丁基-1-甲基咪唑-六氟磷酸盐、1-丁基-1-甲基咪唑-四氟硼酸盐、1-丁基-1-甲基咪唑-双三氟甲基磺酰亚胺盐、N-丁基-N-甲基吡咯烷-双三氟甲基磺酰亚胺盐、1-丁基-1-甲基吡咯烷-双三氟甲基磺酰亚胺盐、N-甲基-N-丙基吡咯烷-双三氟甲基磺酰亚胺盐、N-甲,丙基哌啶-双三氟甲基磺酰亚胺盐、N-甲,丁基哌啶-双三氟甲基磺酰亚胺盐中等酯类、砜类、醚类、腈类或离子液体有机溶剂的一种或几种。
在一些具体实施例中,电解液溶剂为碳酸乙烯酯(EC)与碳酸二乙酯(DEC)等体积混合溶剂。
在一些实施例中,隔膜包括但不限于绝缘多孔聚合物薄膜、无机多孔薄膜中的至少一种。进一步,隔膜包括但不限于多孔聚丙烯薄膜、多孔聚乙烯薄膜、多孔复合聚合物薄膜、玻璃纤维纸、多孔陶瓷隔膜中的一种或多种。
在一些具体实施例中,隔膜为玻璃纤维纸。
在一些实施例中,正极集流体包括但不限于铝箔、涂炭铝箔、铁箔、锡箔、锌箔、镍箔、钛箔、锰箔中的至少一种。
在一些具体实施例中,正极集流体为涂炭铝箔。
相应的,提供一种二次电池的制备方法,包括如下步骤:
G01.制备电池负极:按一定比例称取负极材料、导电剂以及粘结剂,加入适当溶剂中充分混合成均匀浆料制成负极材料层;将负极集流体清洗干净,然后将负极材料层均匀涂覆于负极集流体表面,待负极材料层完全干燥后进行裁切,得所需尺寸的电池负极;
其中,导电剂包括但不限于炭黑;粘结剂包括但不限于羧甲基纤维素;
G02.配制电解液:称取一定量电解质加入到相应溶剂中,充分搅拌溶解;
G03.制备隔膜:将隔膜裁切成所需尺寸,清洗干净;
G04.制备电池正极,按一定比例称取正极材料、导电剂以及粘结剂,加入适当溶剂中充分混合成均匀浆料制成正极材料层;将正极集流体清洗干净,然后将正极材料层均匀涂覆于正极集流体表面,待正极材料层完全干燥后进行裁切,得所需尺寸的电池正极;
其中,导电剂包括但不限于炭黑、石墨烯、碳纳米管、碳纤维中一种或多种;粘结剂包括但不限于聚偏氟乙烯;
G05.利用电池负极、电解液、隔膜以及电池正极进行组装,得到二次电池。
该二次电池的制备方法简单方便,不仅得到的二次电池具有很好的电化学 性能,且可以广泛应用。
下面结合具体实施例进行说明。
1.碳/类普鲁士蓝复合材料及其制备方法实施例
实施例A1
本实施例提供一种还原氧化石墨烯/Na xNi yFe(CN) 6复合材料及其制备方法;其中,Na xNi yFe(CN) 6中的0<x<2,0<y<1。其中,还原氧化石墨烯/Na xNi yFe(CN) 6复合材料的制备方法采用水合肼为还原剂,氧化石墨烯为碳材料,六水合硝酸镍为过渡金属盐,乙二胺四乙酸二钠为螯合剂。具体的制备方法的步骤如下:
S1:在烧瓶中依次加入50mL去离子水、50mg氧化石墨烯和82μL 85wt%水合肼溶液,超声处理20min后,将烧瓶置于85℃水浴中,氮气保护下反应12h,获得浓度为1.0mg mL -1的还原氧化石墨烯分散液;
S2:将4mL 0.4mol L -1乙二胺四乙酸二钠水溶液和4mL 0.4mol L -1硝酸镍溶液依次加入到S1的还原氧化石墨烯分散液中,超声处理以形成均匀分散体,转移至高压反应釜中,在0.5MPa、180℃温度下水热反应2h后得到还原氧化石墨烯复合前驱体;
S3:将2.25g的聚乙烯吡咯烷酮、1.6mmol十水合亚铁氰化钠、125μL 12mol L -1盐酸以及5g氯化钠溶解于30mL去离子水中,以磁力搅拌器施以持续的搅拌,得到亚铁氰化钠均匀反应液;
S4:将还原氧化石墨烯复合前驱体和亚铁氰化钠均匀反应液混合,在室温下持续搅拌1h后,转移至高压反应釜中,在0.5MPa、120℃温度下水热反应6h;待反应结束后,冷却至室温,将反应釜中反应物离心,再用去离子水洗涤,重复多次以后放入80℃真空烘箱干燥12h,即得到还原氧化石墨烯/Na xNi yFe(CN) 6复合材料。
实施例A2~A16
还原氧化石墨烯/Na xNi yFe(CN) 6复合材料及其制备
实施例A2-A16与实施例A1中的还原氧化石墨烯/Na xNi yFe(CN) 6复合材料制备过程步骤相同,区别在于选用的螯合剂不同,实施例A2-A16得到的还原氧化石墨烯/Na xNi yFe(CN) 6复合材料的所采用的螯合剂如表1所示。
表1
Figure PCTCN2022084896-appb-000001
实施例A17~A19
还原氧化石墨烯/Na xNi yFe(CN) 6复合材料及其制备
实施例A17-A19与实施例A1中的还原氧化石墨烯/Na xNi yFe(CN) 6复合材 料制备过程步骤相同,区别在于所加入的硝酸镍浓度不同,实施例A17-A19得到的还原氧化石墨烯/Na xNi yFe(CN) 6复合材料的硝酸镍浓度的具体选择如表2所示。
表2
Figure PCTCN2022084896-appb-000002
实施例A20-A33
还原氧化石墨烯/Na xNi yFe(CN) 6复合材料及其制备
实施例A20-A33与实施例A1中的还原氧化石墨烯/Na xNi yFe(CN) 6复合材料制备过程步骤相同,区别在于所加入的碳材料不同,实施例A20-A33得到的还原氧化石墨烯/Na xNi yFe(CN) 6复合材料的碳材料的具体选择如表3所示。
表3
Figure PCTCN2022084896-appb-000003
Figure PCTCN2022084896-appb-000004
实施例A34-A113
还原氧化石墨烯/Na xNi yFe(CN) 6复合材料及其制备
实施例A34-A113与实施例A1中的还原氧化石墨烯/Na xNi yFe(CN) 6复合材料制备过程步骤相同,区别在于所加入的过渡金属盐及螯合剂不同,实施例A34-A113得到的还原氧化石墨烯/Na xNi yFe(CN) 6复合材料的过渡金属盐及螯合剂的具体选择如表4所示。
表4
Figure PCTCN2022084896-appb-000005
Figure PCTCN2022084896-appb-000006
Figure PCTCN2022084896-appb-000007
Figure PCTCN2022084896-appb-000008
对比例A1
类普鲁士蓝复合材料Na xNi yFe(CN) 6的制备方法
采用六水合硝酸镍为过渡金属盐,乙二胺四乙酸二钠为螯合剂。具体的制备过程如下:
将4mL 0.4mol L -1乙二胺四乙酸二钠水溶液和4mL 0.4mol L -1硝酸镍溶液依次加入到50mL去离子水中,搅拌使之完全溶解,获得镍的络合剂溶液。
将2.25g的聚乙烯吡咯烷酮、1.6mmol十水合亚铁氰化钠以及5g氯化钠溶解于30mL去离子水中,以磁力搅拌器施以持续的搅拌,得到亚铁氰化钠均匀反应液。
将镍的络合剂溶液,加入亚铁氰化钠均匀反应液中,在室温下持续搅拌1h后,转移至高压反应釜中,在0.5MPa、120℃温度下水热反应6h;待反应结束后,冷却至室温,将反应釜中反应物离心,再用去离子水洗涤,重复多次以后放入80℃真空烘箱干燥12h,即得到Na xNi yFe(CN) 6正极材料。
2.钠离子电池实施例
实施例B1~实施例B113和对比例B1
本实施例B1~实施例B113和对比例B1分别提供一种钠离子半电池,各 钠离子半电池按照如下条件组装:
正极:提供实施例A1~A113所制备的还原氧化石墨烯/Na xNi yFe(CN) 6复合材料和对比例A1分别作为钠离子电池正极活性材料分别与炭黑、聚偏氟乙烯形成实施例B1~实施例B113和对比例B1钠离子电池的正极,如实施例A1中的还原氧化石墨烯/Na xNi yFe(CN) 6复合材料制备形成实施例B1中钠离子电池的正极,以此类推;
对电极:钠金属片,
电解液:1mol L -1NaClO 4/EC-DEC(1:1,v/v);
组装:按照钠离子电池组装半电池。
实施例C1~实施例C113和对比例C1
本实施例C1~实施例C113和对比例C1分别提供一种钠离子全电池,各钠离子全电池按照如下条件组装:
正极:提供实施例A1~A113所制备的还原氧化石墨烯/Na xNi yFe(CN) 6复合材料和对比例A1分别作为钠离子电池正极活性材料分别与炭黑、聚偏氟乙烯形成实施例C1~实施例C113和对比例C1钠离子电池的正极活性材料层,将正极集流体铝箔清洗干净,然后将正极活性材料层均匀涂覆于正极集流体表面,待正极活性材料层完全干燥后进行裁切,得所需尺寸的电池正极,如实施例A1中的还原氧化石墨烯/Na xNi yFe(CN) 6复合材料制备形成实施例C1中钠离子电池的正极,以此类推;
电解液为1mol L -1NaClO 4/EC-DEC(1:1,v/v);
隔膜为玻璃纤维纸;将隔膜裁切成所需尺寸,清洗干净;
负极材料为磷酸钛钠,负极制备为:将负极材料、导电炭黑和聚偏氟乙烯(PVDF)按照8:1:1的质量配比混合均匀,然后加入N-甲基吡咯烷酮(NMP) 溶剂进行充分搅拌获得浆料,然后将浆料均匀涂覆在铜箔表面,之后放入真空烘箱进行干燥处理,烘烤温度为80℃,烘烤时间为48h;
利用电池负极、电解液、隔膜以及电池正极进行组装。
3.钠离子电池性能测试
(一)组装还原氧化石墨烯/Na xNi yFe(CN) 6复合材料的半电池的电化学性能测试:将实施例B1~实施例B113、对比例B1组装还原氧化石墨烯/Na xNi yFe(CN) 6复合材料的半电池进行性能测试,包括:200mA g -1下1000圈时比容量(mAh g -1)、容量保持率以及库伦效率。
(二)组装还原氧化石墨烯/Na xNi yFe(CN) 6复合材料的全电池的电化学性能测试:将实施例C1~实施例C113、对比例C1组装还原氧化石墨烯/Na xNi yFe(CN) 6复合材料的全电池进行性能测试,包括:循环性能和容量保持率。
钠离子电池性能结果及分析
(一)组装还原氧化石墨烯/Na xNi yFe(CN) 6复合材料的半电池的电化学性能结果分析。
实施例B1~实施例B113、对比例B1组装还原氧化石墨烯/Na xNi yFe(CN) 6复合材料的半电池的性能结果分析如表5所示,实施例B1~实施例B113组装得到的半电池,在200mA g -11000圈时比容量最大达到112mAh g -1;容量保持率最大为86.3%,库伦效率最大为99.8%;而对比例组装得到的半电池,在200mA g -11000圈时比容量为38mAh g -1;容量保持率为47.5%,库伦效率为84.2%;可以分析得到,对比例组装的电池比容量、容量保持率和库伦效率均比实施例提供的电池低。
其中,实施例A1中还原氧化石墨烯/Na xNi yFe(CN) 6复合材料的扫描电子 显微镜图片如图1所示,实施例B1得到的半电池在200mA g -1的电流密度下性能如图2所示,循环1000圈,比容量仍可保持在54mAh g -1左右,库伦效率大于99.6%,表现出良好的循环性能;实施例B1得到的半电池在不同电流密度下的倍率性能如图3所示,在大倍率1A g -1下比容量仍保持在45mAh g -1左右,表现出良好的倍率性能。
表5
Figure PCTCN2022084896-appb-000009
Figure PCTCN2022084896-appb-000010
Figure PCTCN2022084896-appb-000011
Figure PCTCN2022084896-appb-000012
(二)组装还原氧化石墨烯/Na xNi yFe(CN) 6复合材料的全电池的电化学性能测试:将实施例C1~实施例C113、对比例C1组装还原氧化石墨烯/Na xNi yFe(CN) 6复合材料的全电池进行性能测试,结果如表6所示,实施例C1~实施例C113组装得到的全电池中,循环性能最大达到151(1C),容量保持率最大为88.5%;对比例C1组装得到的全电池中,循环性能达到84(1C), 容量保持率为54.7%,可以看出,本申请组装得到的全电池循环性能和容量保持率远远超过对比例组装得到的电池。
可以看出,本申请提供的钠离子电池,其正极使用了实施例A1~实施例A113还原氧化石墨烯/Na xNi yFe(CN) 6复合材料,由于该正极材料通过高温水热法先合成固相材料碳-过渡金属复合前驱体,再缓慢转化制备碳/类普鲁士蓝钠离子电池复合材料;基于得到的正极材料中类普鲁士蓝晶体结构完整,且与碳材料均匀复合,从而提升正极材料的比容量、循环稳定性、倍率性能以及导电性;因此,该钠离子电池具有很好的电化学性能。
表6
Figure PCTCN2022084896-appb-000013
Figure PCTCN2022084896-appb-000014
Figure PCTCN2022084896-appb-000015
Figure PCTCN2022084896-appb-000016
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (17)

  1. 一种碳/类普鲁士蓝复合材料的制备方法,其特征在于,包括如下步骤:
    将碳材料、螯合剂和过渡金属盐配制成第一混合物分散液,进行第一水热反应,得到碳-过渡金属复合前驱体;
    将碱金属-亚铁氰化物与所述碳-过渡金属复合前驱体配制成第二混合物分散液,进行第二水热反应,再进行后处理,得到碳/类普鲁士蓝复合材料。
  2. 根据权利要求1所述的碳/类普鲁士蓝复合材料的制备方法,其特征在于,所述第一水热反应的压力为0.1~2.8MPa,温度为180~190℃,反应时间为2~4小时;和/或
    所述第二水热反应的压力为0.1~2.8MPa,温度为120~130℃,反应时间为6~7小时。
  3. 根据权利要求1所述的碳/类普鲁士蓝复合材料的制备方法,其特征在于,所述第一混合物分散液中,所述碳材料、所述螯合剂和所述过渡金属盐的摩尔比为0.1~0.4:1:1;和/或
    所述第二混合物分散液中,所述碱金属-亚铁氰化物中亚铁氰化离子与所述碳-过渡金属复合前驱体中过渡金属的摩尔比为1:0.8~1。
  4. 根据权利要求1-3任一项所述的碳/类普鲁士蓝复合材料的制备方法,其特征在于,所述碳材料包括单壁碳纳米管、多壁碳纳米管、碳纳米纤维、纳米碳球、多层石墨烯、石墨烯微片、氧化石墨烯、活性炭、介孔碳、微孔碳、中孔碳、科琴黑、乙炔黑、导电炭黑、焦炭中的至少一种;和/或
    所述螯合剂包括乙二胺四乙酸、乙二胺四乙酸二钠、柠檬酸、柠檬酸钠、氨基三乙酸、二亚乙基三胺五乙酸、酒石酸、酒石酸钾钠、葡萄糖酸钠、羟乙基乙二胺三乙酸、羟基亚乙基-1,1-二膦酸、氨基三亚甲基膦酸、二乙烯三胺五 亚甲基膦酸、双(1,6-亚已基)三胺五亚甲基膦酸、聚丙烯酸铵、水解聚马来酸酐中的至少一种;和/或
    所述过渡金属盐包括亚铁盐、铁盐、钴盐、镍盐、锰盐、铜盐、锌盐中的至少一种;和/或
    所述碱金属-亚铁氰化物包括亚铁氰化钠、亚铁氰化钾中的任意一种。
  5. 根据权利要求1-3任一项所述的碳/类普鲁士蓝复合材料的制备方法,其特征在于,将碳材料、螯合剂和过渡金属盐配制成第一混合物分散液的步骤中,包括:分别配制碳材料分散液、螯合剂水溶液和过渡金属盐水溶液;将所述碳材料分散液、所述螯合剂水溶液和所述过渡金属盐水溶液进行所述第一混合处理,得到所述第一混合物分散液;和/或
    将碱金属-亚铁氰化物与所述碳-过渡金属复合前驱体配制成第二混合物分散液的步骤中,包括:配制碱金属-亚铁氰化物反应液,将所述碱金属-亚铁氰化物反应液与所述碳-过渡金属复合前驱体进行所述第二混合处理,得到所述第二混合物分散液。
  6. 根据权利要求5所述的碳/类普鲁士蓝复合材料的制备方法,其特征在于,所述碳材料分散液的制备方法包括如下步骤:
    将碳材料、还原剂分散于水中,再进行热处理,得到碳分散液;其中,所述碳材料和所述还原剂的质量比为500:1~1.5;和/或
    所述热处理的温度为85~90℃,时间为12~14小时。
  7. 根据权利要求6所述的碳/类普鲁士蓝复合材料的制备方法,其特征在于,所述还原剂包括水合肼、硼氢化钠、抗坏血酸中的至少一种。
  8. 根据权利要求5所述的碳/类普鲁士蓝复合材料的制备方法,其特征在于,所述碱金属-亚铁氰化物反应液的制备方法包括如下步骤:
    将碱金属-水合亚铁氰化物、分散剂、碱金属盐和无机酸溶于水中,混合处理,得到亚铁氰化钠反应液;其中,所述碱金属-水合亚铁氰化物和所述无机酸的摩尔比为1~1.2:1~1.2;和/或
    所述分散剂和所述碱金属盐的质量比为1:2~2.2。
  9. 根据权利要求8所述的碳/类普鲁士蓝复合材料的制备方法,其特征在于,所述碱金属-水合亚铁氰化物包括十水合亚铁氰化钠、三水合亚铁氰化钾中的任意一种;和/或
    所述碱金属盐包括钠盐、钾盐中的任意一种。
  10. 根据权利要求1所述的碳/类普鲁士蓝复合材料的制备方法,其特征在于,所述后处理的步骤中,依次包括进行固液分离处理、洗涤处理、干燥处理;其中,所述干燥处理的温度为80~90℃,时间为12~14小时。
  11. 一种碳/类普鲁士蓝复合材料,其特征在于,所述碳/类普鲁士蓝复合材料由权利要求1~10任一所述的碳/类普鲁士蓝复合材料的制备方法制备得到。
  12. 根据权利要求11所述的碳/类普鲁士蓝复合材料,其特征在于,所述碳/类普鲁士蓝复合材料的结构通式为C/Am xM yFe(CN) 6,Am为Na、K中的一种,M为Fe、Co、Ni、Mn、Cu、Zn中的一种,且,0<x<2,0<y<1。
  13. 根据权利要求11所述的碳/类普鲁士蓝复合材料,其特征在于,所述碳/类普鲁士蓝复合材料中,碳的质量百分含量为4.5wt%~16.5wt%。
  14. 一种二次电池的正极材料,其特征在于,所述正极材料包括权利要求11~13任一所述的碳/类普鲁士蓝复合材料。
  15. 一种二次电池,其特征在于,包括负极集流体、负极材料、电解液、隔膜、正极材料、正极集流体,其中,所述正极材料为权利要求14所述的二次电池的正极材料。
  16. 根据权利要求15所述的二次电池,其特征在于,所述负极集流体包括铝、铜,钛,不锈钢,镍箔片中的至少一种;和/或
    所述负极材料包括NASICON型材料、转化型及合金化型材料、有机材料、碳基材料中的至少一种;和/或
    所述电解液包括有机溶剂和钠盐电解质或钾盐电解质;和/或
    所述隔膜包括绝缘多孔聚合物薄膜、无机多孔薄膜中的至少一种;和/或
    所述正极集流体包括铝箔、涂炭铝箔、铁箔、锡箔、锌箔、镍箔、钛箔、锰箔中的至少一种。
  17. 根据权利要求15或16所述的二次电池,其特征在于,所述二次电池包括钠二次电池或钾二次电池。
PCT/CN2022/084896 2022-04-01 2022-04-01 碳/类普鲁士蓝复合材料及制备方法和应用 WO2023184508A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/084896 WO2023184508A1 (zh) 2022-04-01 2022-04-01 碳/类普鲁士蓝复合材料及制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/084896 WO2023184508A1 (zh) 2022-04-01 2022-04-01 碳/类普鲁士蓝复合材料及制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023184508A1 true WO2023184508A1 (zh) 2023-10-05

Family

ID=88198861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084896 WO2023184508A1 (zh) 2022-04-01 2022-04-01 碳/类普鲁士蓝复合材料及制备方法和应用

Country Status (1)

Country Link
WO (1) WO2023184508A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117448935A (zh) * 2023-11-21 2024-01-26 哈尔滨工业大学 一种单晶普鲁士蓝类钠电正极材料的固相合成方法
CN117497852A (zh) * 2023-11-15 2024-02-02 安徽理士新能源发展有限公司 一种具有负极成膜添加剂的电解液以及钠离子电池
CN117534089A (zh) * 2024-01-09 2024-02-09 太原理工大学 一种无添加剂制备高结晶Fe[Fe(CN)6]电极材料的方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106469828A (zh) * 2016-12-12 2017-03-01 华中科技大学 一种石墨/普鲁士蓝复合材料制备方法及其应用
CN106784718A (zh) * 2016-12-30 2017-05-31 东莞市佳乾新材料科技有限公司 一种高导电钠离子电池正极材料的制备方法
CN108346792A (zh) * 2018-03-21 2018-07-31 张五星 一种碳包覆铁基普鲁士蓝及其制备方法和钠离子电池
CN109244396A (zh) * 2018-08-29 2019-01-18 天津大学 多壁碳纳米管与普鲁士蓝类似物的复合材料
CN111943228A (zh) * 2020-08-24 2020-11-17 全球能源互联网研究院有限公司 一种普鲁士蓝类钠离子电池正极材料及其制备方法
CN111943225A (zh) * 2020-08-24 2020-11-17 全球能源互联网研究院有限公司 一种普鲁士蓝类钠离子电池正极材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106469828A (zh) * 2016-12-12 2017-03-01 华中科技大学 一种石墨/普鲁士蓝复合材料制备方法及其应用
CN106784718A (zh) * 2016-12-30 2017-05-31 东莞市佳乾新材料科技有限公司 一种高导电钠离子电池正极材料的制备方法
CN108346792A (zh) * 2018-03-21 2018-07-31 张五星 一种碳包覆铁基普鲁士蓝及其制备方法和钠离子电池
CN109244396A (zh) * 2018-08-29 2019-01-18 天津大学 多壁碳纳米管与普鲁士蓝类似物的复合材料
CN111943228A (zh) * 2020-08-24 2020-11-17 全球能源互联网研究院有限公司 一种普鲁士蓝类钠离子电池正极材料及其制备方法
CN111943225A (zh) * 2020-08-24 2020-11-17 全球能源互联网研究院有限公司 一种普鲁士蓝类钠离子电池正极材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG HUI, WANG LI, CHEN SHUANGMING, LI GUOPENG, QUAN JUNJIE, XU ENZE, SONG LI, JIANG YANG: "Crystallographic-plane tuned Prussian-blue wrapped with RGO: a high-capacity, long-life cathode for sodium-ion batteries", JOURNAL OF MATERIALS CHEMISTRY A, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 5, no. 7, 1 January 2017 (2017-01-01), GB , pages 3569 - 3577, XP093093943, ISSN: 2050-7488, DOI: 10.1039/C6TA10592K *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117497852A (zh) * 2023-11-15 2024-02-02 安徽理士新能源发展有限公司 一种具有负极成膜添加剂的电解液以及钠离子电池
CN117448935A (zh) * 2023-11-21 2024-01-26 哈尔滨工业大学 一种单晶普鲁士蓝类钠电正极材料的固相合成方法
CN117534089A (zh) * 2024-01-09 2024-02-09 太原理工大学 一种无添加剂制备高结晶Fe[Fe(CN)6]电极材料的方法及其应用
CN117534089B (zh) * 2024-01-09 2024-04-05 太原理工大学 一种无添加剂制备高结晶Fe[Fe(CN)6]电极材料的方法及其应用

Similar Documents

Publication Publication Date Title
WO2023184508A1 (zh) 碳/类普鲁士蓝复合材料及制备方法和应用
CN114873609B (zh) 碳/类普鲁士蓝复合材料及制备方法和应用
CN108767260B (zh) 一种碳包覆FeP中空纳米电极材料及其制备方法和应用
CN109244427B (zh) 碳包覆硫化锌负载石墨烯作为钾离子电池负极的制备方法
CN102311109B (zh) 连续反应制备LiFePO4/C复合正极材料的方法
CN101826617B (zh) 磷酸铁锂的制备方法
CN102593446A (zh) 一种锂离子电池活性电极材料的制备方法
CN114188536B (zh) 一种mof均匀包覆的锂离子电池正极材料及其制备方法
CN115566184B (zh) 一种钠离子电池正极材料及其制备方法
CN107464938B (zh) 一种具有核壳结构的碳化钼/碳复合材料及其制备方法和在锂空气电池中的应用
CN114188502B (zh) 一种普鲁士白复合材料及其制备方法和应用
CN113903884B (zh) 正极活性材料及其制备方法、正极、锂离子电池
CN114864896A (zh) 一种原位碳包覆纳米磷酸铁锂正极材料及其制备方法
CN113451570A (zh) 一种mof衍生核壳结构锂离子电池负极材料及制备方法
CN115732674A (zh) 钠正极前驱体材料及其制备方法和应用
Yi et al. Advanced aqueous batteries: Status and challenges
CN112018355B (zh) 一种三维棒状钛酸钾材料的制备方法
CN106450228A (zh) 一种锂离子电池用复合纳米材料及其制备方法
CN114094078A (zh) 一种氮掺杂碳包覆的金属硫化物异质结材料、制备方法及电池应用
WO2020124648A1 (zh) 氟化草酸盐材料的应用以及包含氟化草酸盐材料的产品、制备方法及其用途
CN109987607B (zh) 介孔硅/二硅化钴复合微球材料及其制备方法和应用
CN114005986A (zh) 一种改性三元正极材料及其制备方法和应用
CN108172774B (zh) 一种亚稳态锡基合金材料及其制备方法
CN107394177B (zh) 一种钠离子电池负极用碳酸氢镍/石墨烯复合材料及其制备方法与应用
WO2024168546A1 (zh) 一种类普鲁士蓝纳米正极材料及其制备方法和钠离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934339

Country of ref document: EP

Kind code of ref document: A1