WO2023184384A1 - 大外径直拉单晶用石英坩埚的制备方法 - Google Patents

大外径直拉单晶用石英坩埚的制备方法 Download PDF

Info

Publication number
WO2023184384A1
WO2023184384A1 PCT/CN2022/084523 CN2022084523W WO2023184384A1 WO 2023184384 A1 WO2023184384 A1 WO 2023184384A1 CN 2022084523 W CN2022084523 W CN 2022084523W WO 2023184384 A1 WO2023184384 A1 WO 2023184384A1
Authority
WO
WIPO (PCT)
Prior art keywords
auxiliary electrodes
main electrode
central main
crucible
electrodes
Prior art date
Application number
PCT/CN2022/084523
Other languages
English (en)
French (fr)
Inventor
李宗辉
陈曼
王也
王震
张志强
孙兴旺
马力
Original Assignee
锦州佑鑫石英科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 锦州佑鑫石英科技有限公司 filed Critical 锦州佑鑫石英科技有限公司
Priority to JP2023566539A priority Critical patent/JP2024515229A/ja
Priority to US18/575,887 priority patent/US12060294B1/en
Publication of WO2023184384A1 publication Critical patent/WO2023184384A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/06Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction
    • C03B19/066Other methods of shaping glass by sintering, e.g. by cold isostatic pressing of powders and subsequent sintering, by hot pressing of powders, by sintering slurries or dispersions not undergoing a liquid phase reaction for the production of quartz or fused silica articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • C03B19/095Other methods of shaping glass by fusing powdered glass in a shaping mould by centrifuging, e.g. arc discharge in rotating mould
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/002Crucibles or containers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz

Definitions

  • the present invention relates to the technical field of preparation of quartz crucibles for Czochralski single crystals, and in particular to a preparation method of quartz crucibles for large outer diameter Czochralski single crystals.
  • Silicon single crystal is one of the most important raw materials for making silicon-based semiconductor materials and solar cells. Silicon single crystal is mainly produced by CZ Czochralski method. In the CZ Czochralski method, the polycrystalline silicon raw material is placed in a quartz crucible to heat the molten silicon melt. The pull rod drives the seed crystal down to contact the silicon melt, and then slowly pulls the seed crystal upward to form a silicon single crystal rod. Quartz crucibles generally have a double-layer structure. The inner wall is a transparent layer without bubbles, and the outer wall is an opaque layer with more bubbles. Because the inner wall is in contact with the silicon melt, if there are bubbles on the inner wall at high temperatures, the bubbles will burst due to erosion by the silicon melt.
  • the quality of quartz crucible has a great influence on the quality of silicon single crystal. For example, the content of bubbles on the inner wall of the quartz crucible, the purity of the quartz crucible, the high temperature deformation resistance of the quartz crucible, etc.
  • Quartz crucibles are generally manufactured using the vacuum arc method.
  • the high-purity quartz sand raw material is poured into a graphite mold or a metal mold, and the quartz sand raw material is evenly formed on the inner surface of the mold through a forming device, and then passed through a high-temperature arc (usually three-phase electric arc furnaces)
  • Graphite electrode sometimes copper electrode melts quartz sand at high temperature above 3000°C, and finally forms a quartz (glass) crucible by rapid cooling.
  • the temperature of the arc has a great influence on the quality of the quartz crucible.
  • the main influences include the bubble content of the inner wall of the crucible, purity (impurity content), high temperature deformation resistance, vitrification degree, etc., so how to Optimizing arc control is very important.
  • the size of silicon single crystals has rapidly transitioned from 4 inches, 6 inches, and 8 inches in the past to the current 8 inches and 12 inches, and the size of the quartz crucible used has also changed from 16 inches in the past. , 18 inches, and 24 inches have transitioned to the current 24 inches, 28 inches, 32 inches, and 36 inches (all refer to the outer diameter of the crucible).
  • crucibles of 28 inches and above are usually considered large-sized crucibles, and the depth of large crucibles is generally between 500-750mm.
  • the obvious difference between large-sized quartz crucibles and small-sized quartz crucibles lies in the large outer diameter and thick wall thickness of the crucible.
  • CN104926086A proposes to use six graphite electrodes, which are arranged at equal intervals on the circumference with the axis line of the crucible mold as the center. The six electrodes are connected to form exactly hexagon.
  • US6853673B2 and US7905112B2 propose using two-phase four electrodes or three-phase six or nine graphite electrodes, which are also equally spaced on the circumference with the axis line of the crucible mold as the center to form a regular hexagon or regular nonagon.
  • the production temperature can indeed be increased by increasing the number of electrodes, in the above electrode configuration, although the arc range is increased, due to the discharge between adjacent electrodes, the arc center temperature decreases, resulting in quartz crucible
  • the middle bottom position is of poor quality (such as pores and high impurity content). This is mainly because the depth of large-sized crucibles is larger. If the electrodes are increased to 6 or 9, although the surrounding walls of the crucible can be taken into account, it is difficult to take into account the bottom of the crucible. The bottom of the crucible is not warm enough and the degree of polishing is insufficient. Some of the vaporized impurities and dust will fall to the temperature. Slightly lower bottom and cannot be removed.
  • Japanese JP2015147688A proposes 6 graphite electrodes, distributed on concentric circles with the axis line of the crucible mold as the center, forming two equilateral triangles inside and outside.
  • the inside and outside are composed of two three-phase electricity, thereby improving the protection of the bottom of the crucible blank. Heating temperature.
  • this method still has the following problems: 1 There is a vacancy in the center of the graphite electrode, and the center temperature is still not enough; 2 The device is extremely complex, the production and design are troublesome, and it is difficult to operate and control in a high-temperature arc environment; 3 When used, the system faces many problems problem, so it has not been actually put into use; 4 There may also be discharge between the inner circle and the outer circle, and the two-way three-phase electricity will have a greater impact on the production system and the power grid.
  • the present invention provides a method for preparing a quartz crucible for large outer diameter Czochralski single crystals, which improves the central stability of the electrode when it releases an arc by setting a more reasonable number of electrodes and electrode distribution positions.
  • temperature increase the melting temperature of the bottom of the quartz crucible blank, increase the degree of polishing of the bottom of the crucible, and improve the quality of the bottom of the crucible, thereby meeting the production needs of large-sized quartz crucibles.
  • the main technical solutions adopted by the present invention include:
  • the invention provides a method for preparing a quartz crucible for large outer diameter Czochralski single crystals.
  • the preparation method is a vacuum arc method, which includes: pouring high-purity quartz sand raw material into a crucible mold, and uniformly molding the quartz sand raw material through a forming device.
  • the crucible blank is formed on the inner surface of the mold, and an electrode beam composed of 2N+1 electrodes is used to release a high-temperature arc to melt the crucible blank. Finally, it is rapidly cooled to form a preliminary quartz crucible product; where N is an integer ⁇ 2;
  • the 2N+1 electrodes include a central main electrode and 2N auxiliary electrodes.
  • the 2N auxiliary electrodes are equally spaced on the circumference with the central main electrode as a circle.
  • the central main electrode is aligned with the axis of the crucible mold. Wire;
  • the 2N auxiliary electrodes are connected to two phases of industrial three-phase electricity, and the two phases of electricity are alternately arranged on the auxiliary electrodes; the central main electrode is connected to the remaining one phase of industrial three-phase electricity; in the opposite crucible During the billet melting process, a high-temperature arc is generated by discharge between two adjacent auxiliary electrodes of the 2N auxiliary electrodes. At the same time, a high-temperature arc is also generated by discharge between the 2N auxiliary electrodes and the central main electrode.
  • N 2-4, that is, the number of electrodes in the electrode bundle is 5, 7 or 9.
  • the cross-sectional area of the central main electrode is larger than the cross-sectional area of a single auxiliary electrode.
  • the cross-sectional area of the central main electrode is S1
  • the cross-sectional area of a single auxiliary electrode is S2, where S1 and S2 satisfy: 1.5S2 ⁇ S1 ⁇ 3.8S2.
  • the central main electrode is thicker than the surrounding single auxiliary electrodes, but it is best to meet the above requirements, otherwise there may be an imbalance between the three-phase electricity and impact the power supply system.
  • S1 2S2.
  • the diameter of the auxiliary electrode is 55-65mm, and the diameter of the central main electrode is 68mm-125mm.
  • the circumferential radius where the 2N auxiliary electrodes are located is 1/4-3/4 of the outer radius of the crucible to be melted.
  • the lower end surfaces of the central main electrode and the 2N auxiliary electrodes are on the same plane, and the central main electrode and the 2N auxiliary electrodes can move downward with the loss of the electrodes.
  • the central main electrode is fixed in the radial direction; the 2N auxiliary electrodes can be adjusted to achieve opening and closing movement relative to the central main electrode.
  • the amplitude of the opening and closing movement of the 2N auxiliary electrodes is: so that the radius of the circle where the 2N auxiliary electrodes are located is 1/4-2/4 of the outer radius of the melting crucible.
  • the central main electrode and the 2N auxiliary electrodes are also connected to a copper rod respectively;
  • the copper rod connected to the central main electrode is fixed at the middle position of a fixed frame;
  • the 2N auxiliary electrodes The top ends of the copper rods connected to the auxiliary electrodes are respectively fixed by a clamping mechanism, and the number of the clamping mechanisms corresponds to the number of the auxiliary electrodes, which is 2N;
  • the clamping structures are respectively connected to the fixed frame in a rotational manner by their pivot points in the middle. ;
  • One end of the clamping mechanism is connected to a nut through a connecting rod, and the nut is sleeved on a screw.
  • the bottom end of the screw is combined with the fixed frame and the screw is a rotating part; by rotating the screw, the nut is When the screw moves up and down, the nut pulls the 2N clamping mechanisms to open and close, thereby driving the 2N auxiliary electrodes to open and close relative to the central main electrode.
  • the vacuum degree is controlled at -0.093Mpa ⁇ -0.1Mpa, and the vacuum system is connected to promptly extract the gas and other impurities generated by the melting to ensure the purity of the crucible product; the electrode
  • the power is 1000-2000KW.
  • the electrode power when melting a quartz crucible with an outer diameter of 28 inches, the electrode power is 1000-1100KW; when melting a quartz crucible with an outer diameter of 32 inches, the electrode power is 1300-1400KW; when melting an outer diameter of 36 inches When using a quartz crucible, the electrode power is 1500-1600KW.
  • the finished quartz crucible is cut, inspected, cleaned, dried, packaged and stored in order.
  • the center of the arc The temperature is also very high; the circumferential upper auxiliary electrode is mainly used to melt the peripheral wall of the crucible blank and perform high-temperature polishing (increasing the degree of vitrification, vaporizing impurities and improving purity), while the arc center is mainly used to polish the bottom of the large-size crucible. High-temperature polishing to prepare quartz crucible products with fewer pores, higher degree of vitrification, and lower impurity content, thereby improving the crucible production yield. Furthermore, since the central main electrode is thicker than the surrounding auxiliary electrodes, the burning and oxidation rates of the central main electrode and the auxiliary electrodes are basically the same, further increasing the arc heating effect.
  • the preparation method of the present invention since a central main electrode is provided and connected to a phase of electricity, the surrounding 2N auxiliary electrodes can be relatively opened wider, thus increasing the distance between adjacent auxiliary electrodes on the circumference. , thereby increasing the heating range, which not only takes into account the problem of difficulty in heating the surrounding wall of a large crucible with a large inner diameter, but also solves the problem of insufficient temperature at the bottom of the crucible and insufficient polishing.
  • the preparation method of the present invention is particularly suitable for producing large-sized crucibles and improving the quality of the crucible bottom.
  • Figure 1 is a schematic structural diagram of a quartz crucible.
  • Figure 2 is a schematic diagram of electrode melting to produce quartz crucible.
  • Figure 3 is a schematic diagram of the prior art using three three-phase graphite electrodes to melt and produce a quartz crucible.
  • Figure 4 is a schematic diagram of the prior art using six three-phase graphite electrodes to melt and produce quartz crucibles.
  • Figure 5 is a schematic diagram of the configuration of five three-phase electrodes in Embodiment 1 of the present invention.
  • Figure 6 is a schematic diagram of the configuration of seven three-phase electrodes in Embodiment 2 of the present invention.
  • Figure 7 is a schematic diagram of the configuration of nine three-phase electrodes in Embodiment 3 of the present invention.
  • Figure 8 is a structure of the present invention that realizes the opening and closing movement of the surrounding auxiliary electrodes relative to the central main electrode.
  • Figure 1 shows a schematic diagram of a quartz crucible, which includes an inner transparent layer 1 and an outer non-transparent layer 2.
  • the transparent layer 1 is in direct contact with the silicon melt.
  • the transparent layer 1 includes a straight wall H, an arc transition surface L and a bottom W.
  • FIG. 2-3 it is a schematic diagram of quartz crucible produced by high-temperature arc melting of three three-phase graphite electrodes in traditional technology.
  • three three-phase graphite electrodes 3 are equally spaced on the circumference with the axis line of the crucible mold as the center, forming an equilateral triangle.
  • Three three-phase graphite electrodes 3 are connected to U phase, W phase and V phase respectively.
  • the arc is generated by discharge between U phase and W phase, W phase and V phase, and V phase and U phase.
  • the heat source area formed is small and is not suitable for the production of large-sized quartz crucibles.
  • FIG 4 it is a schematic diagram of quartz crucible produced by high-temperature arc melting using six three-phase graphite electrodes in the prior art.
  • six three-phase graphite electrodes 3 are distributed at equal intervals on the circumference with the axis line of the crucible mold as the center, forming a regular hexagon.
  • the six graphite electrodes 3 are connected to U phase, W phase, V phase, U phase, W phase and V phase respectively in order.
  • the arc is generated by discharge between U phase and W phase, W phase and V phase, V phase and U phase, U phase and W phase, W phase and V phase, V phase and U phase, and the heat source area formed is larger than
  • the temperature at the center of the arc is still low, and the melting degree of the bottom of the crucible is not enough, especially not suitable for the production of large-sized quartz crucibles.
  • the preparation method includes: pouring the high-purity quartz sand raw material into the crucible mold 10, and using the molding device to The quartz sand raw material is uniformly formed on the inner surface of the crucible mold 10 to form the crucible blank 20.
  • An electrode bundle 30 composed of five graphite electrodes is used to release a high-temperature arc to melt the crucible blank, and finally it is rapidly cooled to form a preliminary quartz crucible; throughout the process During the melting process, the vacuum degree is controlled at -0.093Mpa ⁇ -0.1Mpa (the vacuum system is connected to extract the gas and other impurities generated by the melting), and the power of the electrode is 1000KW. After production, the initial quartz crucibles are cut, inspected, cleaned, dried, packaged and stored in order.
  • the electrode bundle 30 includes a thick central main electrode 300 and four thin auxiliary electrodes 301, 302, 303 and 304.
  • the diameter of the central main electrode 300 is 100 mm, and the diameters of the auxiliary electrodes 301, 302, 303 and 304 are approximately 60 ⁇ 0.5 mm respectively.
  • the central main electrode 300 is aligned with the axis of the crucible mold, and the four auxiliary electrodes 301, 302, 303 and 304 are equally spaced on the circumference with the central electrode as the center and can be connected to form a square.
  • the circumferential radius of the four auxiliary electrodes 301, 302, 303 and 304 is 1/4 of the outer radius of the crucible to be melted.
  • the central main electrode 300 is connected to the U phase of the industrial three-phase AC power, and the four auxiliary electrodes 301, 302, 303 and 304 are connected to the W phase, V phase, W phase and V phase of the industrial three-phase AC power in sequence.
  • the lower end surfaces of the central main electrode 300 and the four auxiliary electrodes 301, 302, 303 and 304 are on the same plane, and the central main electrode 300 and the four auxiliary electrodes 301, 302, 303 and 304 can move downward with the loss of the electrodes. move.
  • high-temperature arcs are generated by discharge between two adjacent auxiliary electrodes of the four auxiliary electrodes 301, 302, 303 and 304.
  • these auxiliary electrodes 301, 302, 303 and 304 are in contact with the central main electrode respectively. There is also discharge between 300 and high temperature arc.
  • the preparation method includes: pouring high-purity quartz sand raw material (high-purity quartz sand ⁇ 99.99%) into the crucible mold 10, and the quartz sand raw material is evenly formed on the inner surface of the crucible mold 10 through the forming device to form the crucible blank 20.
  • An electrode bundle 40 composed of seven graphite electrodes is used to release a high-temperature arc to melt the crucible blank. The position is 550mm from the lower end of the electrode bundle to the bottom of the crucible. Finally, it is rapidly cooled to form the initial quartz crucible.
  • the vacuum degree is controlled at -0.093Mpa ⁇ -0.1Mpa, and the power of the electrode is 1400KW.
  • the initial quartz crucibles are cut, inspected, cleaned, dried, packaged and stored in order.
  • the electrode bundle 40 includes a thick central main electrode 400 and six thin auxiliary electrodes 401, 402, 403, 404, 405 and 406.
  • the diameter of the central main electrode 400 is 110 mm, and the diameters of the six auxiliary electrodes 401, 402, 403, 404, 405 and 406 are about 60 ⁇ 0.5 mm respectively.
  • the central main electrode 400 is aligned with the axis of the crucible mold, and six auxiliary electrodes 401, 402, 403, 404, 405 and 406 are equally spaced on the circumference with the central electrode as the center and can be connected to form a regular hexagon.
  • the circumferential radius of the six auxiliary electrodes 401, 402, 403, 404, 405 and 406 is 3/4 of the outer radius of the crucible to be melted.
  • the central main electrode 400 is connected to the U phase of the industrial three-phase AC power, and the six auxiliary electrodes 401, 402, 403, 404, 405 and 406 are connected in sequence to the W phase, V phase, W phase, V phase, and W phase, V phase.
  • the lower end surfaces of the central main electrode 400 and the six auxiliary electrodes 401, 402, 403, 404, 405 and 406 are on the same plane, and the central main electrode 400 and the six auxiliary electrodes 401, 402, 403, 404, 405 and 406 can Downward movement occurs as the electrode wears off.
  • high-temperature arcs are generated by discharge between two adjacent auxiliary electrodes of the six auxiliary electrodes 401, 402, 403, 404, 405 and 406.
  • these auxiliary electrodes 401, 402, 403, 404 and 405 and 406 are respectively discharged with the central main electrode 400 to generate high-temperature arcs.
  • the preparation method includes: pouring high-purity quartz sand raw material (high-purity quartz sand ⁇ 99.99%) into the crucible mold 10, and the quartz sand raw material is evenly formed on the inner surface of the crucible mold 10 through the forming device to form the crucible blank 20.
  • An electrode bundle 50 composed of 9 graphite electrodes is used to release a high-temperature arc to melt the crucible blank. The position is 550mm from the lower end of the electrode bundle to the bottom of the crucible. Finally, it is rapidly cooled to form the initial quartz crucible.
  • the vacuum degree is controlled at -0.093Mpa ⁇ -0.1Mpa, and the power of the electrode is 1600KW.
  • the initial quartz crucibles are cut, inspected, cleaned, dried, packaged and stored in order.
  • the electrode bundle 50 includes a thick central main electrode 500 and eight thin auxiliary electrodes 501, 502, 503, 504, 505, 506, 507 and 508.
  • the diameter of the central main electrode 500 is 110 mm, and the diameters of the eight auxiliary electrodes 501, 502, 503, 504, 505, 506, 507 and 508 are about 58 mm respectively.
  • the central main electrode 500 is aligned with the axis of the crucible mold, and eight auxiliary electrodes 501, 502, 503, 504, 505, 506, 507 and 508 are equally spaced on the circumference with the central electrode as the center and can be connected to form a regular eight. polygon.
  • the circumferential radius of the eight auxiliary electrodes 501, 502, 503, 504, 505, 506, 507 and 508 is 2/4 of the outer radius of the crucible to be melted.
  • the central main electrode 500 is connected to the U phase of the industrial three-phase AC power
  • the eight auxiliary electrodes 501, 502, 503, 504, 505, 506, 507 and 508 are connected in sequence to the W phase, V phase and W phase of the industrial three-phase AC power. , V phase, W phase, V phase, W phase, V phase.
  • the lower end surfaces of the central main electrode 500 and the eight auxiliary electrodes 501, 502, 503, 504, 505, 506, 507 and 508 are on the same plane, and the central main electrode 500 and the eight auxiliary electrodes 501, 502, 503, 504, 505, 506, 507 and 508 are capable of downward movement as the electrodes wear out.
  • high-temperature arcs are generated by discharge between two adjacent auxiliary electrodes of the eight auxiliary electrodes 501, 502, 503, 504, 505, 506, 507 and 508.
  • these auxiliary electrodes 501, 502 and 503 , 504, 505, 506, 507 and 508 also discharge with the central main electrode 500 to generate high-temperature arcs.
  • the central main electrode 300, 400 or 500 is fixed in the radial direction, and the remaining auxiliary electrodes are also fixed in the radial direction.
  • the radius of the circle where all auxiliary electrodes are located is 1/4-3/4 of the outer radius of the crucible to be melted.
  • an electrode bundle with an adjustable circumferential radius where the auxiliary electrode is located may be provided.
  • the central main electrode 300, 400 or 500 is fixed in the radial direction, and the remaining auxiliary electrodes can be adjusted to achieve opening and closing movements relative to the central main electrode 300, 400 or 500, that is, the remaining auxiliary electrodes (with each auxiliary electrode)
  • the radius of the circle where the center point of the lower end face of the electrode is located (calculated as the center point of the lower end face of the electrode) is variable, and the variable range is preferably 1/4-2/4 of the outer radius of the crucible to be melted (excessive adjustment range may cause significant height differences in the lower end faces of all electrodes) , not conducive to arc generation).
  • the lower end surfaces of the central main electrode and other auxiliary electrodes should also be kept on the same plane as much as possible, and the central main electrode and auxiliary electrodes can move downward as the electrodes are worn out.
  • the above embodiment can be implemented by the structure shown in Figure 8.
  • the central main electrode 300 and the four auxiliary electrodes 301, 302, 303 and 304 are also connected to a copper rod respectively.
  • the copper rod connected to the central main electrode 300 is fixed in the middle of a fixed frame 60, and the top ends of the copper rods connected to the remaining four auxiliary electrodes 301, 302, 303 and 304 are respectively fixed by a clamping mechanism 601.
  • the clamping mechanism 601 The number is also 4.
  • the clamping structure 601 is a seesaw structure, and its middle part is rotatably connected to the fixed frame. One end of the clamping mechanism 601 is connected to a nut 603 through a connecting rod 602, and the nut 603 is sleeved on a screw rod 604.
  • the bottom end of the screw rod 604 is combined with the fixed frame but can rotate relative to the fixed frame 60 .
  • the screw rod 604 By rotating the screw rod 604, since the screw rod 604 cannot move in the height direction, the nut 603 will move up and down along the screw rod 604, thereby pulling the connecting rod 602.
  • the connecting rod 602 pulls one end of the clamping structure 601 to change the angle of the clamping structure 601. This drives the four auxiliary electrodes 301, 302, 303 and 304 to open and close relative to the central main electrode 300 to adjust the area of the heat source surface and adapt to the melting of quartz crucibles of different sizes.
  • the atomic absorption method was used to detect the average impurity content on the peripheral wall and bottom of the crucible produced in Example 1 and Prior Art 1-2 as shown in Table 1 (take 2 test values at each position to average, the test depth is 20 ⁇ m inner surface) Unit: wt .ppb.
  • Example 2-3 the average impurity content of the peripheral wall and bottom of the 32-inch and 36-inch quartz crucibles produced in Example 2-3 is tested as follows in Table 2 (2 test values are taken at each position to average, the test depth is 20 ⁇ m inner surface) Unit: wt .ppb.
  • the inner surface impurity content of the quartz crucible produced in Examples 1-3 of the present invention is lower and purer, which reduces the introduction of impurities in the process of pulling crystals to produce silicon single crystals and ensures the production quality of silicon single crystals.
  • the quartz glass crucibles produced in Examples 1-3 were tested and found to have no cracks or pits on the surface, and no bubbles or protruding spots by naked eye observation. The solution of the present invention has been trial-produced within the company, and the system operation is stable and the product quality is reliable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

一种大外径直拉单晶用石英坩埚的制备方法,所述方法为真空电弧法,具体是采用由2N+1个电极组成的电极束释放高温电弧对坩埚坯进行熔制;其中N为≥2的整数;2N+1个电极包括一个中心主电极和2N个辅电极,2N个辅电极在以该中心主电极为圆心的圆周上等间距分布,中心主电极对齐于坩埚模具轴心线。2N个辅电极连接工业三相电中的其中两相电,且两相电在辅电极上交替排列,中心主电极连接工业三相电中的其余一相。

Description

大外径直拉单晶用石英坩埚的制备方法 技术领域
本发明涉及直拉单晶用石英坩埚的制备技术领域,尤其是一种大外径直拉单晶用石英坩埚的制备方法。
背景技术
硅单晶是制作硅基半导体材料、太阳能电池片最主要的原材料之一。硅单晶主要由CZ直拉法制得。在CZ直拉法中,将多晶硅原料放置于石英坩埚内加热熔融状硅熔体,拉杆带动籽晶下降使其接触硅熔体,然后缓慢的向上提拉籽晶从而形成硅单晶棒。石英坩埚一般为双层结构,内壁为不含气泡的透明层,外壁为气泡含量较多的非透明层。内壁因为与硅熔体接触,在高温状态下,若内壁存在气泡,气泡会由于硅熔体侵蚀而破裂,破裂的碎片如果溶于硅熔体中,会影响硅单晶的成品率和品质。外壁需要把来自加热器的热量均匀散射,所以需要规定数量和大小的气泡,从而对硅熔体均匀加热。作为唯一与硅溶液接触的材料,石英坩埚的质量对硅单晶的品质有很大影响。譬如石英坩埚内壁气泡的含量、石英坩埚的纯度、石英坩埚的耐高温变形性能等。
石英坩埚的制作一般采用真空电弧法制作。采用该方法时,将高纯的石英砂原料倒入石墨模具或金属模具内,通过成型装置将石英砂原料均匀的成型在模具的内表面,然后通过高温电弧(一般是用三相电弧炉三根石墨电极,有时是铜电极)将石英砂在3000℃以上的高温下熔化,最后通过快速冷却形成石英(玻璃)坩埚。在真空电弧法制作石英坩埚的过程中,电弧的温度对石英坩埚的质量影响甚大,主要影响包括坩埚的内壁气泡含量、纯度(杂质含量)、抗高温变形性能、玻璃化程度等等,因此如何优化电弧的控制,十分重要。
随着半导体和太阳能行业的发展,硅单晶尺寸已经从过去的4寸、6寸、8寸快速过渡到现在的8寸、12寸,而所使用的石英坩埚尺寸也已经从过去的16寸、18寸、24寸过渡到现在的24寸、28寸、32寸、36寸(均指坩埚外径)。业内通常将28寸及以上的坩埚为大尺寸坩埚,大坩埚的深度一般500-750mm之间。大尺寸石英坩埚与小尺寸石英坩埚的明显区别在于坩埚的外径大、壁厚厚,正常工艺熔制时,利用三根电极通电放弧即可满足22寸-24寸坩埚的生产温度要求,但在生产大尺寸石英坩埚时三根电极产生的温度在大尺寸模具内不能充分将模具内表面的原料融化,温度流失大,延长熔制时间能源消耗大效果不明显,导致石英坩埚外形尺寸很难形成,内表面的玻璃化程度也会相应的降低,导致坩埚品质下降,在拉制单晶过程中石英坩埚容易出现很多问题,如下塌、析晶等。
为了适应大尺寸坩埚的制作需求,业内研究人员提出了增加电极根数的方法,例如CN104926086A提出采用六根石墨电极,等间距设置在以坩埚模具轴心线为圆心的圆周上,六根电极连接恰好组成正六边形。US6853673B2和US7905112B2提出采用两相四根电极或三相6根或9根石墨电极,同样在以坩埚模具轴心线为圆心的圆周上等间距分布组成正六边形或正九边形。虽然通过增加电极的根数确实可以提高生产温度,但是在以上的电极配置中,电弧弧光范围虽然得到增加,但由于均是相邻电极之间放电,同时导致弧光中心温度降低,从而导致石英坩埚中间底部位置质量不佳(如有气孔和杂质含量高)。这主要是大尺寸坩埚的深度较大,增加到6根或9根电极虽然可顾及坩埚周壁但是难以顾及坩埚底部,坩埚底部温度不够,抛光程度不足,气化的杂质灰尘会有部分落到温度稍低的底部而无法去除。针对此,日本JP2015147688A则提出6根石墨电极,在以坩埚模具轴心线为圆心的同心圆周上分布,组成内外两个正三角形,内外由两路三相电组成,从而提高对坩埚坯底部的加热温度。但这种方法仍然存在如下问题:①石墨电极中心为空位,中心温 度还是不够;②装置极为复杂、制作设计麻烦,在高温电弧环境下,很难操作且控制困难;③使用时,系统面临很多问题,因此并未实际投入使用;④内圆和外圆之间也可能放电,两路三相电对生产系统和电网冲击较大。
发明内容
(一)要解决的技术问题
鉴于现有技术的上述缺点、不足,本发明提供一种大外径直拉单晶用石英坩埚的制备方法,其通过设置更加合理的电极根数和电极分布位置,以提高电极释放电弧时中心的温度,增加对石英坩埚坯底部的熔融温度,提高对坩埚底部的抛光程度,改善坩埚底部的质量,从而满足大尺寸石英坩埚的制作需求。
(二)技术方案
为了达到上述目的,本发明采用的主要技术方案包括:
本发明提供一种大外径直拉单晶用石英坩埚的制备方法,所述制备方法为真空电弧法,包括:将高纯石英砂原料倒入坩埚模具内,通过成型装置将石英砂原料均匀的成型在模具的内表面以成型坩埚坯,使用由2N+1个电极组成的电极束释放高温电弧对坩埚坯进行熔制,最后快速冷却形成石英坩埚初品;其中,N为≥2的整数;所述2N+1个电极包括一个中心主电极和2N个辅电极,所述2N个辅电极在以该中心主电极为圆的圆周上等间距分布,所述中心主电极对齐于坩埚模具轴心线;
其中,所述2N个辅电极连接工业三相电中的其中两相电,且两相电在辅电极上交替排列;所述中心主电极连接工业三相电中的其余一相;在对坩埚坯熔制过程中,所述2N个辅电极的相邻两个辅电极之间放电产生高温电弧,同时所述2N个辅电极与所述中心主电极之间也放电产生高温电弧。
根据本发明的较佳实施例,其中,N=2-4,即所述电极束中电极根数为5、7或9根。
根据本发明的较佳实施例,所述中心主电极的横截面积大于单个所述辅电极的横截面积。
根据本发明的较佳实施例,所述中心主电极的横截面积为S1,单个所述辅电极的横截面积为S2,其中S1和S2满足:1.5S2≤S1≤3.8S2。中心主电极要比周围的单个辅电极更粗一些,但最好是满足前述要求,否则三相电之间可能会存在不平衡而冲击供电系统的问题。优选地,S1=2S2。
根据本发明的较佳实施例,所述辅电极的直径为55-65mm,所述中心主电极的直径为68mm~125mm。
根据本发明的较佳实施例,以所述2N个辅电极下端面的中心点计算,所述2N个辅电极所在的圆周半径是被熔制坩埚外半径的1/4-3/4。
根据本发明的较佳实施例,所述中心主电极和2N个辅电极的下端面在同一平面上,且所述中心主电极和2N个辅电极能够随着电极的损耗而进行下行移动。
根据本发明的较佳实施例,所述中心主电极在径向上为固定不动;所述2N个辅电极可通过调整而相对该中心主电极实现开合运动。
根据本发明的较佳实施例,以所述2N个辅电极下端面的中心点计算,所述2N个辅电极的开合运动的幅度为:使所述2N个辅电极所在的圆周半径是被熔制坩埚外半径的1/4-2/4。
根据本发明的较佳实施例,所述中心主电极和2N个辅电极也分别连接一根铜棒;所述中心主电极所连接的铜棒固定在一个固定架的中间位置;所述2N个辅电极所连接的铜棒顶端分别通过一个夹持机构固定,夹持机构的数量对应所述辅电极的数量为2N个;所述夹持结构分别以其中间部位的枢接点与固定架转动连接;所述夹持机构的一端通过连杆与一个螺母连接,螺母套设于一个螺杆上,该螺杆的底端与所述固定架组合且所述螺杆为转动件;通过转动所述螺杆使螺母在螺杆上升降移动,螺母拉动所述2N个夹持机构开合运动,进而带动所述2N个辅电极相对 该中心主电极开合运动。
根据本发明的较佳实施例,在整个熔制过程中,真空度控制在-0.093Mpa~-0.1Mpa,连接真空系统将熔制产生的气体等杂质及时抽出,保证坩埚产品的纯净度;电极的功率是1000-2000KW。
根据本发明的较佳实施例,熔制外径28寸的石英坩埚时,电极功率为1000-1100KW;熔制外径32寸的石英坩埚时,电极功率为1300-1400KW;熔制外径36寸的石英坩埚时,电极功率为1500-1600KW。
根据本发明的较佳实施例,制作后的石英坩埚初品依次进行切割、检查、清洗、烘干、包装入库。
(三)有益效果
由现有技术不难看出,由于制作石英坩埚使用工业三相电,因此目前现有技术中电极的根数均为3的倍数,业内制造者和设计人员很难想到采用2N+1个电极、且将一个中心主电极放置在中心位置并连接一相电,其余2N个辅电极等间距地放在圆周上并交替连接两相电的电极配置方式。通过上述配置方法,在圆周上的2N个辅电极的每两个相邻电极之间产生高温电弧,同时圆周上的2N个辅电极均与位于中心位置的主电极放电产生高温电弧,因而电弧中心的温度也非常高;圆周的上辅电极主要用于熔制坩埚坯的周壁并进行高温抛光(提高玻璃化程度,使杂质气化挥发提高纯净度),而电弧中心主要对大尺寸坩埚底部进行高温抛光,从而制备气孔更少、玻璃化程度更高、杂质含量更低的石英坩埚产品,提高坩埚生产良率。更进一步的,由于中心主电极比周围辅电极更粗一些,因为中心主电极和辅电极的烧损氧化速度基本一致,更进一步的增加了电弧加热效果。
综上所述,本发明的制备方法,由于设置了一根中心主电极并连接一相电,因此周围的2N个辅电极可相对张开度大一些,如此增加了圆周相邻辅电极之间的距离,进而增加了加热范围,不仅顾及了大尺寸坩埚内径大其周壁受热困难的问题,同时还解决了坩埚底部温度不够,抛光 程度不足的问题。本发明的制备方法尤其适于生产大尺寸坩埚并提高坩埚底部的质量。
附图说明
图1为石英坩埚的结构示意图。
图2为电极熔制生产石英坩埚的示意图。
图3为现有技术采用3根三相石墨电极熔制生产石英坩埚的示意图。
图4为现有技术采用6根三相石墨电极熔制生产石英坩埚的示意图。
图5为本发明实施例1的三相5根电极的配置示意图。
图6为本发明实施例2的三相7根电极的配置示意图。
图7为本发明实施例3的三相9根电极的配置示意图。
图8为本发明实现周围的辅电极相对中心主电极开合运动的结构。
具体实施方式
为了更好的解释本发明,以便于理解,下面结合附图,通过具体实施方式,对本发明作详细描述。
如图1所示为石英坩埚示意图,其包括内侧的透明层1和外侧的非透明层2。其中透明层1与硅熔液直接接触。透明层1包括直壁面H、弧形过度面L和底部W。
如图2-3所示,为传统技术中采用三根三相石墨电极高温电弧熔制生产石英坩埚的示意图。其中,三根三相石墨电极3在以坩埚模具轴心线为圆心的圆周上等间距分布,可构成等边三角形。三根三相石墨电极3分别连接U相、W相和V相。其中电弧在U相和W相,W相和V相,V相和U相之间放电产生,所形成的热源面积较小,不适合大尺寸石英坩埚的生产。
如图4所示,为现有技术中采用6根三相石墨电极高温电弧熔制生产石英坩埚的示意图。其中,6根三相石墨电极3在以坩埚模具轴心线为圆心的圆周上等间距分布,可构成正六边形。6根石墨电极3分别依次连 接U相、W相、V相、U相、W相、V相。其中,电弧在U相和W相,W相和V相、V相和U相、U相和W相,W相和V相、V相和U相之间放电产生,所形成的热源面积大于图3的三根三相电极,但电弧中心位置的温度仍较低,对坩埚底部的熔制程度不够,尤其是不适合大尺寸石英坩埚的生产。
以下本发明的具体实施例1-3,对应图5-7。
实施例1
如图5所示,为本发明的较佳实施例1,本实施例用于制作外径28寸石英坩埚,制备方法包括:将高纯石英砂原料倒入坩埚模具10内,通过成型装置将石英砂原料均匀的成型在坩埚模具10内表面以成型坩埚坯20,使用由5个石墨电极组成的电极束30释放高温电弧对坩埚坯进行熔制,最后快速冷却形成石英坩埚初品;在整个熔制过程中,真空度控制在-0.093Mpa~-0.1Mpa(连接真空系统将熔制产生的气体等杂质抽出),电极的功率是1000KW。制作后,石英坩埚初品依次进行切割、检查、清洗、烘干、包装入库。
其中,电极束30包括一个较粗的中心主电极300和4根较细的辅电极301、302、303和304。中心主电极300的直径为100mm,辅电极301、302、303和304的直径约分别为60±0.5mm。中心主电极300对齐于坩埚模具轴心线,四个辅电极301、302、303和304等间距地分布在该以该中心电极为圆心的圆周上可连接成正方形。以各个辅电极的中心点计,四个辅电极301、302、303和304所在的圆周半径是被熔制坩埚外半径的1/4。其中,中心主电极300连接工业三相交流电的U相,而四个辅电极301、302、303和304依次连接工业三相交流电的W相、V相、W相、V相。中心主电极300和四个辅电极301、302、303和304的下端面在同一平面上,且中心主电极300和四个辅电极301、302、303和304能够随着电极的损耗而进行下行移动。在熔制坩埚坯过程中,4根辅电极301、302、303和304的相邻两个辅电极之间放电产生高温电弧,同时这 些辅电极301、302、303和304又分别与中心主电极300之间也放电产生高温电弧。
实施例2
如图6所示,为本发明的较佳实施例2,本实施例用于制作外径32寸的石英坩埚,制备方法包括:将高纯石英砂原料(高纯石英砂≥99.99%)倒入坩埚模具10内,通过成型装置将石英砂原料均匀的成型在坩埚模具10内表面以成型坩埚坯20,使用由7个石墨电极组成的电极束40释放高温电弧对坩埚坯进行熔制,电极位置为电极束下端距离坩埚底部550mm,最后快速冷却形成石英坩埚初品;在整个熔制过程中,真空度控制在-0.093Mpa~-0.1Mpa,电极的功率是1400KW。制作后,石英坩埚初品依次进行切割、检查、清洗、烘干、包装入库。
其中,电极束40包括一个较粗的中心主电极400和6根较细的辅电极401、402、403、404、405和406。中心主电极400的直径为110mm,6根辅电极401、402、403、404、405和406的直径分别约60±0.5mm。中心主电极400对齐于坩埚模具轴心线,6根辅电极401、402、403、404、405和406等间距地分布在该以该中心电极为圆心的圆周上可连接成正六边形。以各个辅电极的中心点计,6根辅电极401、402、403、404、405和406所在的圆周半径是被熔制坩埚外半径的3/4。其中,中心主电极400连接工业三相交流电的U相,而6根辅电极401、402、403、404、405和406依次连接工业三相交流电的W相、V相、W相、V相、W相、V相。中心主电极400和6根辅电极401、402、403、404、405和406的下端面在同一平面上,且中心主电极400和6根辅电极401、402、403、404、405和406能够随着电极的损耗而进行下行移动。在熔制坩埚坯过程中,6根辅电极401、402、403、404、405和406的相邻两个辅电极之间放电产生高温电弧,同时这些辅电极401、402、403、404、405和406又分别与中心主电极400之间也放电产生高温电弧。
实施例3
如图7所示,为本发明的较佳实施例3,本实施例用于制作外径36寸的石英坩埚,制备方法包括:将高纯石英砂原料(高纯石英砂≥99.99%)倒入坩埚模具10内,通过成型装置将石英砂原料均匀的成型在坩埚模具10内表面以成型坩埚坯20,使用由9个石墨电极组成的电极束50释放高温电弧对坩埚坯进行熔制,电极位置为电极束下端距离坩埚底部550mm,最后快速冷却形成石英坩埚初品;在整个熔制过程中,真空度控制在-0.093Mpa~-0.1Mpa,电极的功率是1600KW。制作后,石英坩埚初品依次进行切割、检查、清洗、烘干、包装入库。
其中,电极束50包括一个较粗的中心主电极500和8根较细的辅电极501、502、503、504、505、506、507和508。中心主电极500的直径为110mm,8根辅电极501、502、503、504、505、506、507和508的直径分别约58mm。中心主电极500对齐于坩埚模具轴心线,8根辅电极501、502、503、504、505、506、507和508等间距地分布在该以该中心电极为圆心的圆周上可连接成正八边形。以各个辅电极的中心点计,8根辅电极501、502、503、504、505、506、507和508所在的圆周半径是被熔制坩埚外半径的2/4。其中,中心主电极500连接工业三相交流电的U相,而8根辅电极501、502、503、504、505、506、507和508依次连接工业三相交流电的W相、V相、W相、V相、W相、V相、W相、V相。中心主电500和8根辅电极501、502、503、504、505、506、507和508的下端面在同一平面上,且中心主电极500和8根辅电极501、502、503、504、505、506、507和508能够随着电极的损耗而进行下行移动。在熔制坩埚坯过程中,8根辅电极501、502、503、504、505、506、507和508的相邻两个辅电极之间放电产生高温电弧,同时这些辅电极501、502、503、504、505、506、507和508又分别与中心主电极500之间也放电产生高温电弧。
以上实施例1-3中,中心主电极300、400或500在径向上为固定不动,其余的辅电极在径向上也固定不动。优选地,以辅电极的中心点计 算,所有辅电极所在的圆周半径是被熔制坩埚外半径的1/4-3/4。
此外,在其他实施例中,可设置辅电极所在圆周半径可调的电极束。例如,中心主电极300、400或500在径向上为固定不动,而其余的辅电极可通过调整而相对该中心主电极300、400或500实现开合运动,即其余辅电极(以各辅电极下端面中心点计算)所在圆周半径可变的,且可变动幅度优选是被熔制坩埚外半径的1/4-2/4(调整幅度过大可能会导致所有电极下端面有明显高度差,不利于电弧产生)。此时,中心主电极和其余辅电极的下端面也应尽量保持在同一平面上,且中心主电极和辅电极能够随着电极的损耗而进行下行移动。
上述实施方式可由图8所示结构实现。中心主电极300和4根辅电极301、302、303和304也分别连接一根铜棒。中心主电极300所连接的铜棒固定在一个固定架60的中间位置,其余4根辅电极301、302、303和304所连接的铜棒顶端分别通过一个夹持机构601固定,夹持机构601的数量也是4个。夹持结构601为跷跷板结构,其中间部位与固定架呈可转动连接。夹持机构601的一端通过连杆602与一个螺母603连接,螺母603套设于一根螺杆604上。该螺杆604的底端与固定架组合但能够相对固定架60转动。通过转动螺杆604,由于螺杆604在高度方向上不能移动,因此螺母603会沿着螺杆604上下移动,进而拉动连杆602,连杆602拉动夹持结构601的一端使夹持结构601改变角度,从而带动4根辅电极301、302、303和304相对中心主电极300开合运动,以调整其热源面的面积大小,适应于不同尺寸的石英坩埚熔制。
将实施例1制备的坩埚和采用图3(现有技术1)及图4(现有技术2)所示的6根电极生产的28寸坩埚进行对比,在石墨电极功率为1000KW、真空度-0.093Mpa~-0.1Mpa、(辅)电极所在的圆周半径是被熔制坩埚外半径的1/4的情况下,采用相同的电极位置(电极下端距离坩埚底部380mm)对坩埚进行熔制。坩埚的原料都为同一批石英原料,高纯石英砂的纯度≥99.99%。
采用原子吸收法检测实施例1和现有技术1-2生产的坩埚周壁和底部杂质含量平均值如下表1(每个位置取2个测试值取平均,测试深度为20μm内表面)单位:wt.ppb。
表1:
组别 Zr Zn V Ti Ni Na Al Mg Li K Fe Cu Cr Ca
实施例1 0.9 1 0.9 20 3 275 610 8 29 18 8 1 0.8 60
技术1 1 1 1.1 14 6 460 600 10 38 62 60 1 2.1 216
技术2 1 1 1 36 4 320 660 9 36 29 12 1 1.1 80
由上表可看到,现有技术2制备的坩埚内层纯净度优于现有技术1,但本发明实施例1制备的坩埚内层纯净度优于现有技术2。虽然部分元素含量与现有技术相当或略高于现有技术,但总体来说,本发明实施例1制备的石英坩埚,其内层周壁和底部各种杂质元素总含量平均值显著低于现有技术1和现有技术2。这说明本发明确实用于制作高品质的石英坩埚。
同样地,检测实施例2-3生产的32寸和36寸石英坩埚周壁和底部杂质含量平均值如下表2(每个位置取2个测试值取平均,测试深度为20μm内表面)单位:wt.ppb。
表2:
组别 Zn Zr Li Mg Na Ni Ti V Al Ca Cr Cu Fe K
实施例2 0.9 1 29 7 220 1 23 1 620 68 1 1 8 17
实施例3 1 1 31 8 210 1 25 1 590 62 1 1 10 18
经上述比较可知,制备32寸和36寸石英坩埚的品质与实施例1中28寸石英坩埚品质相当。这说明本发明的制备方法非常适合生产32寸以上大尺寸坩埚,可保障坩埚内层纯净度。
综上所述,本发明实施例1-3制作的石英坩埚的内层表面杂质含量更低,更纯净,减少在拉晶生产硅单晶过程中引入杂质,保证硅单晶的生产品质。此外,实施例1-3所生产的石英玻璃坩埚经检测,表面不裂纹、无凹坑,肉眼观察无气泡和凸出的点。本发明的方案已在本企业内部进 行了试生产,系统运行稳定、产品质量可靠。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种大外径直拉单晶用石英坩埚的制备方法,其特征在于,所述制备方法为真空电弧法,包括:将高纯石英砂原料倒入坩埚模具内,通过成型装置将石英砂原料均匀的成型在模具的内表面以成型坩埚坯,使用由2N+1个电极组成的电极束释放高温电弧对坩埚坯进行熔制,最后快速冷却形成石英坩埚初品;其中,N为≥2的整数;所述2N+1个电极包括一个中心主电极和2N个辅电极,所述2N个辅电极在以该中心主电极为圆的圆周上等间距分布,所述中心主电极对齐于坩埚模具轴心线;
    其中,所述2N个辅电极连接工业三相电中的其中两相电,且两相电在辅电极上交替排列;所述中心主电极连接工业三相电中的其余一相;在对坩埚坯熔制过程中,所述2N个辅电极的相邻两个辅电极之间放电产生高温电弧,同时所述2N个辅电极与所述中心主电极之间也放电产生高温电弧。
  2. 根据权利要求1所述的制备方法,其特征在于,N=2-4,即所述电极束中电极根数为5、7或9根。
  3. 根据权利要求1所述的制备方法,其特征在于,所述中心主电极的横截面积大于单个所述辅电极的横截面积。
  4. 根据权利要求1或2或3所述的制备方法,其特征在于,所述中心主电极的横截面积为S1,单个所述辅电极的横截面积为S2,其中S1和S2满足:1.5S2≤S1≤3.8S2。
  5. 根据权利要求4所述的制备方法,其特征在于,所述辅电极的直径为55-65mm,所述中心主电极的直径为68mm~125mm。
  6. 根据权利要求1所述的制备方法,其特征在于,所述中心主电极和2N个辅电极的下端面在同一平面上,且所述中心主电极和2N个辅电极能够随着电极的损耗而进行下行移动。
  7. 根据权利要求1所述的制备方法,其特征在于,以所述2N个辅电极下端面的中心点计算,所述2N个辅电极所在的圆周半径是被熔制坩埚外半径的1/4-3/4。
  8. 根据权利要求1所述的制备方法,其特征在于,所述中心主电极在径向上为固定不动;所述2N个辅电极可通过调整而相对该中心主电极实现开合运动。
  9. 根据权利要求8所述的制备方法,其特征在于,以所述2N个辅电极下端面的中心点计算,所述2N个辅电极的开合运动的幅度为:使所述2N个辅电极所在的圆周半径是被熔制坩埚外半径的1/4-2/4。
  10. 根据权利要求8所述的制备方法,其特征在于,所述中心主电极和2N个辅电极也分别连接一根铜棒;所述中心主电极所连接的铜棒固定在一个固定架的中间位置;所述2N个辅电极所连接的铜棒顶端分别通过一个夹持机构固定,夹持机构的数量对应所述辅电极的数量为2N个;所述夹持结构分别以其中间部位的枢接点与固定架转动连接;所述夹持机构的一端通过连杆与一个螺母连接,螺母套设于一个螺杆上,该螺杆的底端与所述固定架组合且所述螺杆为转动件;通过转动所述螺杆使螺母在螺杆上升降移动,螺母拉动所述2N个夹持机构开合运动,进而带动所述2N个辅电极相对该中心主电极开合运动。
PCT/CN2022/084523 2022-03-29 2022-03-31 大外径直拉单晶用石英坩埚的制备方法 WO2023184384A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023566539A JP2024515229A (ja) 2022-03-29 2022-03-31 大外径チョクラルスキー単結晶用石英ルツボの製造方法
US18/575,887 US12060294B1 (en) 2022-03-29 2022-03-31 Manufacturing method of large-outer-diameter quartz crucible for Czochralski (CZ) single crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210324084.9A CN114671599B (zh) 2022-03-29 2022-03-29 大外径直拉单晶用石英坩埚的制备方法
CN202210324084.9 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023184384A1 true WO2023184384A1 (zh) 2023-10-05

Family

ID=82077059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/084523 WO2023184384A1 (zh) 2022-03-29 2022-03-31 大外径直拉单晶用石英坩埚的制备方法

Country Status (4)

Country Link
US (1) US12060294B1 (zh)
JP (1) JP2024515229A (zh)
CN (1) CN114671599B (zh)
WO (1) WO2023184384A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030210731A1 (en) * 2002-03-14 2003-11-13 Japan Super Quartz Process and device for producing a quartz glass crucible by ring-like arc, and its quartz glass crucible
US20100071613A1 (en) * 2008-09-24 2010-03-25 Japan Super Quartz Corporation Method and apparatus for manufacturing fused silica crucible, and the fused silica crucible
JP2015147688A (ja) * 2014-02-04 2015-08-20 コバレントマテリアル株式会社 石英ガラスルツボの製造方法、及び石英ガラスルツボ
CN104926086A (zh) * 2015-06-29 2015-09-23 江苏华尔石英材料股份有限公司 一种大直径石英坩埚熔制电极装置
CN108585450A (zh) * 2018-04-09 2018-09-28 江阴龙源石英制品有限公司 一种6轴联动石英坩埚熔制机及其熔制方法
CN111620553A (zh) * 2020-05-29 2020-09-04 锦州万得机械装备有限公司 石英坩埚熔制设备电极控制机构

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2089690A (en) * 1934-12-24 1937-08-10 Yngve R Cornelius Electric furnace
US2993079A (en) * 1957-04-15 1961-07-18 Owens Illinois Glass Co Electric heating method and apparatus for uniformly heating glass
US3264095A (en) * 1962-10-29 1966-08-02 Magnetic Metals Company Method and apparatus for melting of metals to obtain utmost purity
DE2111047C3 (de) * 1971-03-09 1980-01-17 Leybold-Heraeus Gmbh, 5000 Koeln Vorrichtung zum Elektroschlacke-Umschmelzen von mehreren Abschmelzelektroden in die gleiche Kokille
US4581745A (en) * 1985-01-16 1986-04-08 Timet Electric arc melting apparatus and associated method
JP4217844B2 (ja) * 1998-06-18 2009-02-04 ジャパンスーパークォーツ株式会社 複合ルツボとその製造方法および再生方法
EP1094039B1 (en) * 1999-04-06 2015-04-29 Wacom Manufacturing Co., Ltd. Method for manufacturing quartz glass crucible
JP4300334B2 (ja) 2002-08-15 2009-07-22 ジャパンスーパークォーツ株式会社 石英ガラスルツボの再生方法
JP5398074B2 (ja) * 2007-07-28 2014-01-29 株式会社Sumco 石英ガラスルツボの製造方法および製造装置
JP5441106B2 (ja) * 2008-06-28 2014-03-12 株式会社Sumco 水冷モールド
EP2143692A1 (en) * 2008-07-10 2010-01-13 Japan Super Quartz Corporation Method for producing quartz glass crucible
JP5131170B2 (ja) * 2008-12-05 2013-01-30 信越半導体株式会社 単結晶製造用上部ヒーターおよび単結晶製造装置ならびに単結晶製造方法
JP5415297B2 (ja) * 2009-01-08 2014-02-12 株式会社Sumco 石英ガラスルツボ製造装置
EP2474997A4 (en) * 2009-09-01 2014-01-15 Ihi Corp PLASMA LIGHT SOURCE SYSTEM
JP5397857B2 (ja) * 2009-10-20 2014-01-22 株式会社Sumco 石英ガラスルツボの製造方法および製造装置
FR2963341B1 (fr) * 2010-07-27 2013-02-22 Saint Gobain Quartz Sas Creuset a ouverture polygonale
JP5605902B2 (ja) * 2010-12-01 2014-10-15 株式会社Sumco シリカガラスルツボの製造方法、シリカガラスルツボ
JP5605903B2 (ja) * 2010-12-02 2014-10-15 株式会社Sumco シリカガラスルツボ製造装置
JP5777880B2 (ja) * 2010-12-31 2015-09-09 株式会社Sumco シリカガラスルツボの製造方法
US9221709B2 (en) * 2011-03-31 2015-12-29 Raytheon Company Apparatus for producing a vitreous inner layer on a fused silica body, and method of operating same
CN202164227U (zh) * 2011-06-01 2012-03-14 沈阳市第一电焊机厂 石英坩锅电弧熔制机
CN103395787B (zh) * 2013-08-08 2015-01-07 厦门大学 一种由硅矿石制备高纯硅的装置及其制备方法
CN103951170A (zh) * 2014-04-24 2014-07-30 宁波宝斯达坩埚保温制品有限公司 一种制作石英坩埚的节电方法及其节电设备
CN204897712U (zh) * 2015-06-29 2015-12-23 江苏华尔石英材料股份有限公司 一种大直径石英坩埚熔制电极装置
CN108059325B (zh) * 2017-06-22 2024-05-10 内蒙古欧晶科技股份有限公司 复合石英砂制备石英坩埚的方法及石英坩埚
WO2019051247A1 (en) * 2017-09-08 2019-03-14 Corner Star Limited HYBRID CUTTER ASSEMBLY FOR CZOCHRALSKI CRYSTAL GROWTH
JP2019151494A (ja) * 2018-02-28 2019-09-12 株式会社Sumco シリカガラスルツボ
CN108677042B (zh) * 2018-05-26 2019-08-16 辽宁宏基电力设备制造有限公司 高温合金的熔炼与成型装置
CN111592211A (zh) * 2020-05-29 2020-08-28 锦州万得机械装备有限公司 大尺寸石英坩埚熔制设备
CN114230139B (zh) * 2021-12-28 2024-03-29 宁夏盾源聚芯半导体科技股份有限公司 提高石英坩埚品质的制备装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030210731A1 (en) * 2002-03-14 2003-11-13 Japan Super Quartz Process and device for producing a quartz glass crucible by ring-like arc, and its quartz glass crucible
US20100071613A1 (en) * 2008-09-24 2010-03-25 Japan Super Quartz Corporation Method and apparatus for manufacturing fused silica crucible, and the fused silica crucible
JP2015147688A (ja) * 2014-02-04 2015-08-20 コバレントマテリアル株式会社 石英ガラスルツボの製造方法、及び石英ガラスルツボ
CN104926086A (zh) * 2015-06-29 2015-09-23 江苏华尔石英材料股份有限公司 一种大直径石英坩埚熔制电极装置
CN108585450A (zh) * 2018-04-09 2018-09-28 江阴龙源石英制品有限公司 一种6轴联动石英坩埚熔制机及其熔制方法
CN111620553A (zh) * 2020-05-29 2020-09-04 锦州万得机械装备有限公司 石英坩埚熔制设备电极控制机构

Also Published As

Publication number Publication date
CN114671599B (zh) 2022-11-22
US12060294B1 (en) 2024-08-13
JP2024515229A (ja) 2024-04-05
CN114671599A (zh) 2022-06-28
US20240262734A1 (en) 2024-08-08

Similar Documents

Publication Publication Date Title
JP5397857B2 (ja) 石英ガラスルツボの製造方法および製造装置
WO2016082525A1 (zh) 一种多晶硅铸锭炉底部小保温板活动装置及多晶硅铸锭炉
TWI399463B (zh) 二氧化矽玻璃坩堝的製造裝置及其製造方法
CN103469293A (zh) 一种多晶硅的制备方法
CN112341232B (zh) 一种炭/炭坩埚及其制造方法
WO2023178955A1 (zh) 一种高品质石英坩埚的制作方法
TWI480239B (zh) 氧化矽玻璃坩堝的製造方法及製造裝置
JP4781020B2 (ja) シリコン単結晶引き上げ用石英ガラスルツボおよびシリコン単結晶引き上げ用石英ガラスルツボの製造方法
CN103556223A (zh) 一种生长大尺寸和方形蓝宝石单晶的方法
WO2023184384A1 (zh) 大外径直拉单晶用石英坩埚的制备方法
CN102758244A (zh) 复合加热式直拉多晶硅或单晶硅制备工艺
CN102758245A (zh) 除氧型单晶炉
CN201634795U (zh) 直拉单晶炉石墨坩埚
CN209144025U (zh) 一种半导体级石英坩埚
CN114737253B (zh) 生长大尺寸蓝宝石单晶板材的单晶炉热场结构及方法
CN217005322U (zh) 真空电弧炉结构
CN114941171B (zh) 一种用直拉法生长准矩形柱体单晶硅的装置和工艺方法
CN102817071A (zh) 防热辐射直拉多或单晶硅制备工艺
CN204608210U (zh) 一种改善直拉法生长单晶硅品质的加热器
CN102817069A (zh) 复合加热防辐射式直拉多或单晶硅制备工艺
CN112391676A (zh) 单晶炉热场及其控制方法和单晶炉
CN204588712U (zh) 一种生产多晶硅的加热炉
CN102758246A (zh) 单晶炉用热屏蔽器
CN202064030U (zh) 一种单晶炉
CN217351609U (zh) 一种复合电极及单晶炉

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023566539

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934224

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18575887

Country of ref document: US