WO2023182123A1 - 樹脂組成物、プリプレグ、樹脂シート、積層板、金属箔張積層板、及びプリント配線板 - Google Patents

樹脂組成物、プリプレグ、樹脂シート、積層板、金属箔張積層板、及びプリント配線板 Download PDF

Info

Publication number
WO2023182123A1
WO2023182123A1 PCT/JP2023/010222 JP2023010222W WO2023182123A1 WO 2023182123 A1 WO2023182123 A1 WO 2023182123A1 JP 2023010222 W JP2023010222 W JP 2023010222W WO 2023182123 A1 WO2023182123 A1 WO 2023182123A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
compound
titanium oxide
group
resin
Prior art date
Application number
PCT/JP2023/010222
Other languages
English (en)
French (fr)
Inventor
達郎 高村
沙耶花 伊藤
直樹 鹿島
哲郎 宮平
尊明 小柏
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Publication of WO2023182123A1 publication Critical patent/WO2023182123A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a resin composition, a prepreg, a resin sheet, a laminate, a metal foil-clad laminate, and a printed wiring board.
  • the signal bands of information communication devices such as PHS and mobile phones, as well as the CPU clock time of computers, have reached the GHz band, and higher frequencies are progressing.
  • the dielectric loss of an electrical signal is proportional to the product of the square root of the dielectric constant of the insulating layer forming the circuit, the dielectric loss tangent, and the frequency of the electrical signal. Therefore, the higher the frequency of the signal used, the greater the dielectric loss.
  • An increase in dielectric loss attenuates the electrical signal and impairs the reliability of the signal, so in order to suppress this, it is necessary to select a material with a small dielectric constant and dielectric loss tangent for the insulating layer.
  • the dielectric loss tangent also increases, leading to the problem of increased transmission loss for high-frequency signals.
  • the filler and resin are highly hygroscopic, there is a problem in that the dielectric properties and manufacturability of the printed wiring board deteriorate.
  • the insulating layer has low moisture absorption and heat resistance, the moisture contained in the insulating layer will evaporate during reflow, resulting in voids, which will cause delamination during the production of the laminate.
  • an insulating layer having excellent moisture absorption and heat resistance is required. If the insulating layer has a low glass transition temperature (Tg) and a high coefficient of thermal expansion, warping or interfacial peeling may occur during the production of a laminate. Therefore, in resin compositions used for printed wiring boards and the like, it is important that the resulting insulating layer has a high glass transition temperature and a low coefficient of thermal expansion.
  • Tg glass transition temperature
  • a low coefficient of thermal expansion warping or interfacial peeling may occur during the production of a laminate. Therefore, in resin compositions used for printed wiring boards and the like, it is important that the resulting insulating layer has a high glass transition temperature and a low coefficient of thermal expansion.
  • the present invention has been made to solve the above-mentioned problems, and provides a printed wiring board having a high dielectric constant and low dielectric loss tangent, excellent moisture absorption heat resistance, high glass transition temperature, and low coefficient of thermal expansion. It is an object of the present invention to provide a resin composition suitably used for manufacturing an insulating layer, a prepreg, a resin sheet, a laminate, a metal foil-clad laminate, and a printed wiring board obtained using the resin composition.
  • the present invention is as follows.
  • Water absorption rate (%) [(M2-M1)/M1] x 100...(i) (In formula (i), M1 is a 0.1 mm thick film obtained by impregnating and coating the resin composition on an E glass cloth with a thickness of 0.094 mm, and then heating and drying it at 130°C for 3 minutes.
  • Dry laminate (a) obtained by laminating two sheets of prepreg and vacuum pressing at a surface pressure of 30 kgf/cm 2 and a temperature of 220°C for 120 minutes to form a laminate and drying the laminate at 150°C for 1 hour.
  • M2 represents the mass (g) of the dried laminate (a) subjected to moisture absorption treatment for 168 hours at 85° C. and 85% RH.
  • the total amount of the organic layer and the inorganic oxide layer is 0.1 to 10% by mass based on 100% by mass of the surface-coated titanium oxide (A).
  • the inorganic oxide layer according to any one of [2] to [4] is one or more selected from the group consisting of a layer containing silica, a layer containing zirconia, and a layer containing alumina. Resin composition.
  • the content of the titanium oxide in the surface-coated titanium oxide (A) is 90 to 99.9% by mass with respect to 100% by mass of the surface-coated titanium oxide (A), [2] The resin composition according to any one of [7].
  • thermosetting compound (B) is a maleimide compound, an epoxy compound, a modified polyphenylene ether compound, a cyanate ester compound, a phenol compound, an alkenyl-substituted nadimide compound, an oxetane resin, a benzoxazine compound, and a polymerizable unsaturated compound.
  • the resin composition according to any one of [1] to [9], which contains one or more selected from the group consisting of compounds having groups.
  • the maleimide compound is bis(4-maleimidophenyl)methane, 2,2-bis(4-(4-maleimidophenoxy)-phenyl)propane, bis(3-ethyl-5-methyl-4-maleimidophenyl) )
  • the resin composition according to [10] comprising one or more selected from the group consisting of methane, a maleimide compound represented by the following formula (1), and a maleimide compound represented by the following formula (2).
  • R 1 each independently represents a hydrogen atom or a methyl group, and n1 is an integer of 1 to 10.
  • R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a phenyl group, and n2 is an average value, and represents 1 ⁇ n2 ⁇ 5. ).
  • X represents an aromatic group
  • -(Y- O )m- represents a polyphenylene ether moiety.
  • m represents an integer of 1 to 100
  • n represents an integer of 1 to 6
  • q represents an integer of 1 to 4).
  • the cyanate ester compound is a phenol novolac type cyanate ester compound, a naphthol aralkyl type cyanate ester compound, a naphthylene ether type cyanate ester compound, a xylene resin type cyanate ester compound, a bisphenol M type cyanate ester compound , bisphenol A-type cyanate ester compounds, diallylbisphenol A-type cyanate ester compounds, bisphenol E-type cyanate ester compounds, bisphenol F-type cyanate ester compounds, biphenylaralkyl-type cyanate ester compounds, and these cyanate ester compounds
  • the resin composition according to any one of [10] to [13], comprising one or more selected from the group consisting of a prepolymer or a polymer.
  • the filler (C) is silica, alumina, barium titanate, strontium titanate, calcium titanate, aluminum nitride, boron nitride, boehmite, aluminum hydroxide, zinc molybdate, silicone rubber powder, and silicone composite.
  • a prepreg comprising a base material and the resin composition according to any one of [1] to [18], which is impregnated or applied to the base material.
  • a resin sheet comprising the resin composition according to any one of [1] to [18].
  • a laminate comprising one or more selected from the group consisting of the prepreg described in [19] and the resin sheet described in [20].
  • a metal foil-clad laminate comprising the laminate according to [21] and metal foil arranged on one or both sides of the laminate.
  • the resin composition of the present invention has a high dielectric constant and a low dielectric loss tangent, and can be suitably used for manufacturing an insulating layer of a printed wiring board, which has excellent moisture absorption and heat resistance, a high glass transition temperature, and a low coefficient of thermal expansion. It is possible to provide a resin composition, a prepreg, a resin sheet, a laminate, a metal foil-clad laminate, and a printed wiring board obtained using the resin composition.
  • this embodiment a mode for carrying out the present invention (hereinafter referred to as "this embodiment") will be described in detail.
  • the present embodiment below is an illustration for explaining the present invention, and is not intended to limit the present invention to the following content.
  • the present invention can be implemented with appropriate modifications within the scope of its gist.
  • resin solid content or “resin solid content in the resin composition” refers to surface coating titanium oxide (A), filler (C), additives, etc. in the resin composition, unless otherwise specified.
  • resin components excluding agents silane coupling agents, wetting and dispersing agents, curing accelerators, and other components
  • solvents solvents
  • Total 100 parts by mass of resin solids or “total 100 parts by mass of resin solids in the resin composition” refers to the surface coating titanium oxide (A), filler (C), and additives in the resin composition. (silane coupling agent, wetting and dispersing agent, curing accelerator, and other components) and the total amount of resin components excluding the solvent (solvent) is 100 parts by mass.
  • the resin composition of the present embodiment contains surface-coated titanium oxide (A) and a thermosetting compound (B), and has a water absorption rate of 0.40% or less calculated by the following formula (i).
  • M1 is a prepreg with a thickness of 0.1 mm obtained by impregnating and coating an E glass cloth with a thickness of 0.094 mm with the resin composition and then heating and drying it at 130° C. for 3 minutes.
  • the laminate (a) after drying is obtained by laminating two laminates and vacuum pressing them at a surface pressure of 30 kgf/cm 2 and a temperature of 220°C for 120 minutes to form a laminate and drying the laminate at 150°C for 1 hour.
  • Mass (unit: g) is shown.
  • M2 represents the mass (unit: g) of the dried laminate (a) subjected to moisture absorption treatment at 85° C. and 85% RH for 168 hours.
  • the resin composition of the present embodiment it is possible to provide a cured product having a high dielectric constant and a low dielectric loss tangent, excellent moisture absorption heat resistance, a high glass transition temperature, and a low coefficient of thermal expansion. That is, by using the resin composition of this embodiment, prepregs and resin sheets that have a high dielectric constant and a low dielectric loss tangent, excellent moisture absorption heat resistance, a high glass transition temperature, and a low coefficient of thermal expansion upon curing can be produced. , a laminate, a metal foil-clad laminate, and a printed wiring board can be suitably produced. Therefore, the resin composition of this embodiment is more suitably used for manufacturing insulating layers of printed wiring boards.
  • the present inventors found a method containing surface-coated titanium oxide (A) and a thermosetting compound (B), and having a water absorption rate calculated by a specific formula (i) of 0.40% or less.
  • a resin composition for the insulating layer of a printed wiring board the amount of water contained in the insulating layer is suitably suppressed during reflow, so voids are less likely to occur, and delamination is less likely to occur during the production of laminates. I discovered that. Therefore, according to the present embodiment, it is possible to obtain a printed wiring board, etc., which has excellent moisture absorption heat resistance, low coefficient of thermal expansion, high glass transition temperature, and excellent dielectric properties (high dielectric constant and low dielectric loss tangent). .
  • the inventors of the present invention estimate it as follows.
  • the water absorbency of a laminate is affected not only by the internal structure of the cured resin composition but also by the amount of functional groups remaining without contributing to crosslink formation during the curing reaction. Therefore, if there are many unreacted functional groups or functional groups derived from hydrolyzed resin components in the insulating layer, the insulating layer tends to have relatively high water absorption.
  • the crosslinking density is increased by considering only the reduction of these functional groups, stress relaxation of the insulating layer is inhibited, and desired physical properties cannot be obtained.
  • the amount of these functional groups is appropriately controlled, so voids are unlikely to occur during reflow and hardening is difficult. Defects are unlikely to occur. Therefore, it is estimated that the obtained insulating layer can obtain desired characteristics. However, the reason is not limited to this.
  • the above formula (i ) is preferably 0.39% or less, more preferably 0.38% or less.
  • the lower limit of the water absorption rate is not particularly limited, but is, for example, 0.01% or more.
  • the resin composition of this embodiment includes surface-coated titanium oxide (A).
  • the surface-coated titanium oxide (A) has an organic layer and/or an inorganic layer on the surface of the titanium oxide particles (hereinafter simply referred to as "titanium oxide particles” or “core particles") that serve as the core of the surface-coated titanium oxide (A).
  • titanium oxide particles hereinafter simply referred to as "titanium oxide particles” or “core particles”
  • core particles an oxide layer.
  • the surface-coated titanium oxide (A) may be used alone or in combination of two or more surface-coated titanium oxides having different particle sizes and surface conditions.
  • the average particle diameter (D50) of the surface-coated titanium oxide (A) is preferably 0.1 to 5 ⁇ m, more preferably 0.15 to 1 ⁇ m, from the viewpoint of dispersibility.
  • the average particle diameter (D50) is determined by measuring the particle size distribution of a predetermined amount of powder added to a dispersion medium using a laser diffraction/scattering type particle size distribution measuring device, and calculating the volume integration from small particles. It means the value when it reaches 50% of the total volume.
  • the average particle diameter (D50) can be calculated by measuring particle size distribution using a laser diffraction/scattering method, but examples can be referred to for a specific measurement method.
  • the shape of the surface-coated titanium oxide (A) is not particularly limited, but examples include scale-like, spherical, plate-like, and amorphous shapes. It has better dispersibility with the thermosetting compound (B) described below, and when cured, it has better moisture absorption heat resistance, lower coefficient of thermal expansion, and higher glass transition temperature, as well as better dielectric properties (high dielectric constant and The shape is preferably spherical because a resin composition having a low dielectric loss tangent) can be obtained, and an insulating layer having more suitable surface hardness can be obtained.
  • the dielectric constant of the surface-coated titanium oxide (A) is preferably 20 or more, more preferably 25 or more. When the dielectric constant is 20 or more, an insulating layer having a high dielectric constant tends to be obtained.
  • the dielectric constant of the surface-coated titanium oxide (A) is a value at 10 GHz measured by a cavity resonator method.
  • the dielectric constant of the surface-coated titanium oxide (A) can be calculated using the Bruggeman equation (compound rule).
  • the dielectric loss tangent of the surface-coated titanium oxide (A) is preferably 0.01 or less, more preferably 0.008 or less. When the dielectric loss tangent is 0.01 or less, an insulating layer having a low dielectric loss tangent tends to be obtained.
  • the dielectric loss tangent of the surface-coated titanium oxide (A) is a value at 10 GHz measured by a cavity resonator method.
  • the dielectric loss tangent of the surface-coated titanium oxide (A) can be calculated using the Bruggeman equation (compound rule).
  • the water absorption of the resin composition can be further suppressed, the adhesion with the resin component can be further improved, the aggregation of the surface-coated titanium oxide (A) in the resin composition can be further reduced, and the dispersibility can be further improved.
  • the total amount of the organic layer and inorganic oxide layer in the surface-coated titanium oxide (A) is preferably 0.1 to 10% by mass, more preferably 1 to 8% by mass, and 1 to 4% by mass based on 100% by mass of surface-coated titanium oxide (A). It is even more preferable that there be.
  • the water absorption of the resin composition can be further suppressed, the adhesion with the resin component can be further improved, the aggregation of the surface-coated titanium oxide (A) in the resin composition can be further reduced, and the dispersibility can be further improved.
  • the content of titanium oxide in the surface-coated titanium oxide (A) is determined from the viewpoint that a cured product having excellent dielectric properties (high dielectric constant and low dielectric loss tangent) and excellent moisture absorption and heat resistance can be obtained. It is preferably 90 to 99.9% by mass, more preferably 92 to 99% by mass, and even more preferably 96 to 99% by mass, based on 100% by mass of (A).
  • the core particles include titanium monoxide (TiO), dititanium trioxide (Ti 2 O 3 ), and titanium dioxide (TiO 2 ).
  • titanium dioxide is preferred. Titanium dioxide preferably has a rutile or anatase crystal structure, more preferably a rutile crystal structure.
  • the average particle diameter (D50) of the core particles is preferably 0.10 to 0.45 ⁇ m, more preferably 0.15 to 0.25 ⁇ m.
  • the average particle diameter (D50) of the core particles is determined from the average value of the particle diameters of primary particles of single particles.
  • Surface-coated titanium oxide (A) is usually obtained by coating the surface of core particles with an organic layer or an inorganic oxide layer using a surface treatment agent. Further, the surface of the organic layer or inorganic oxide layer coated on the surface of the core particle may be further coated with an organic layer and/or an inorganic oxide layer using a surface treatment agent.
  • the water absorption of the resin composition can be further suppressed, the adhesion with the resin component can be further improved, the aggregation of the surface-coated titanium oxide (A) in the resin composition can be further reduced, and the dispersibility can be further improved.
  • the surface-coated titanium oxide (A) is an inorganic oxide coated on the surface of the core particle because a cured product having excellent dielectric properties (high dielectric constant and low dielectric loss tangent) and excellent moisture absorption and heat resistance can be obtained. It is preferable to further have an organic layer on the surface of the layer. Coating methods include inorganic and organic treatments. One type of surface treatment agent may be used alone, or two or more types may be used in combination.
  • Examples of surface treatment agents used in inorganic treatment include oxoacids (for example, silicic acid and aluminic acid), oxoacids of metals such as aluminum, silicon, zirconium, tin, titanium, antimony, zinc, cobalt, and manganese. Examples include metal salts (eg, sodium silicate and sodium aluminate), oxides, hydroxides, and hydrated oxides.
  • the surface-coated titanium oxide (A) obtained by inorganic treatment has an inorganic oxide layer on the surface of the titanium oxide particles, the surface of the inorganic oxide layer, or the surface of the organic layer described below.
  • Examples of surface treatment agents used in organic treatment include organosilicon compounds such as organosilanes, silane coupling agents, and organopolysiloxanes; organotitanium compounds such as titanium coupling agents; organic acids, polyols, and alkanolamines. Examples include organic substances.
  • the surface-coated titanium oxide (A) obtained by organic treatment has an organic layer on the surface of the titanium oxide particles, the surface of the organic layer, or the surface of the inorganic oxide layer.
  • organosilane examples include n-propyltrimethoxysilane, n-propyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, octyltrimethoxysilane, decyltrimethoxysilane, 3-chloropropyltriethoxysilane, and phenyltrimethoxysilane.
  • alkoxysilanes such as triethoxysilane and trifluoropropyltrimethoxysilane.
  • silane coupling agent examples include aminosilanes such as 3-aminopropyltriethoxysilane, N-2-(aminoethyl)-3-aminopropyltriethoxysilane, and N-phenyl-3-aminopropyltrimethoxysilane.
  • Epoxysilanes such as 3-glycidoxypropyltrimethoxysilane and 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane
  • Methacrylsilanes such as 3-(methacryloyloxypropyl)trimethoxysilane
  • Vinylsilanes such as methoxysilane, vinyltriethoxysilane, and vinyltrichlorosilane
  • mercaptosilanes such as 3-mercaptopropyltrimethoxysilane; and the like.
  • silicone oil is preferred because it can form a more uniform organic layer.
  • examples of the silicone oil include alkyl silicones, alkyl hydrogen silicones, alkoxy silicones, and modified silicones.
  • examples of alkyl silicones include dimethyl silicone.
  • examples of the alkyl hydrogen silicone include methyl hydrogen silicone and ethyl hydrogen silicone.
  • alkoxy silicone a silicone compound containing an alkoxysilyl group in which an alkoxy group is bonded directly or via a divalent hydrocarbon group to a silicon atom is preferred. Examples of such silicone compounds include linear, cyclic, network, and partially branched linear organopolysiloxanes.
  • linear organopolysiloxanes are preferred, and organopolysiloxanes having a molecular structure in which an alkoxy group is directly bonded to a silicone main chain are more preferred.
  • alkoxy silicones include methoxy silicone and ethoxy silicone.
  • modified silicones include amino-modified silicones, epoxy-modified silicones, and mercapto-modified silicones.
  • titanium coupling agent examples include isopropyl triisostearoyl titanate, isopropyl dimethacrylylisostearoyl titanate, and isopropyl tridodecylbenzenesulfonyl titanate.
  • organic acids examples include adipic acid, terephthalic acid, lauric acid, myristic acid, palmitic acid, stearic acid, polyhydroxystearic acid, oleic acid, salicylic acid, malic acid, maleic acid, and metal salts thereof. Can be mentioned.
  • polyol examples include trimethylolethane, trimethylolpropane, ditrimethylolpropane, trimethylolpropane ethoxylate, and pentaerythritol.
  • alkanolamines include monoethanolamine, monopropanolamine, diethanolamine, dipropanolamine, triethanolamine, and tripropanolamine.
  • the surface-coated titanium oxide (A) a resin composition having an inorganic oxide layer on the surface of titanium oxide particles is used.
  • the inorganic oxide layer is preferably one or more selected from the group consisting of a layer containing silica, a layer containing zirconia, and a layer containing alumina, and the inorganic oxide layer is preferably a layer containing silica and a layer containing alumina. It is more preferable that the layer is one or more selected from the group consisting of layers.
  • the surface-coated titanium oxide (A) may have two or more inorganic oxide layers.
  • the inorganic oxide layer located on the side closer to the titanium oxide particles can further suppress the water absorption by the titanium oxide particles, which are mainly core particles, and the inorganic oxide layer located on the side farther from the titanium oxide particles
  • the located inorganic oxide layer preferably has a structure that can mainly improve adhesion with the resin component, relaxation of aggregation of the surface-coated titanium oxide (A) in the resin composition, and dispersibility.
  • the inorganic oxide layer located on the side closer to the core particle is a group consisting of a layer containing silica and a layer containing zirconia.
  • the inorganic oxide layer located on the side far from the core particle is preferably a layer containing alumina, and the inorganic oxide layer located on the side close to the core particle is a layer containing silica. It is more preferable that the inorganic oxide layer located on the side far from the core particle is a layer containing alumina.
  • the inorganic oxide layer has a total content of 0.1 to 10% based on 100% by mass of the surface-coated titanium oxide (A). It is preferably % by mass, more preferably 0.3 to 7.5% by mass, even more preferably 0.4 to 5.0% by mass, even more preferably 0.5 to 4.0% by mass. %.
  • the inorganic oxide layer has the effect of suppressing water absorption by titanium oxide, which is the core particle.
  • inorganic oxides such as silica, zirconia, and alumina are hydratable inorganic substances, they have a relatively high water absorption rate among inorganic oxides, and water tends to evaporate easily during reflow. The evaporated moisture causes voids to occur in the insulating layer.
  • the surface-coated titanium oxide (A) preferably has an organic layer on the surface of the inorganic oxide layer.
  • the organic layer can further reduce the water absorption of the titanium oxide core particles and the inorganic oxide layer, and can further suppress the water absorption of the resin composition. Therefore, evaporation of moisture from the insulating layer can be suppressed during reflow. Further, the organic layer has the effect of further reducing aggregation of the surface-coated titanium oxide (A) in the resin composition and further improving dispersibility.
  • the agglomeration of the surface-coated titanium oxide (A) in the resin composition can be further alleviated, the dispersibility is further improved, and the water absorption rate of the laminate can be reduced due to better water repellency.
  • the layer be surface-treated with an organosilicon compound.
  • the organosilicon compound preferably contains one or more selected from the group consisting of silane coupling agents, organosilanes, and organopolysiloxanes.
  • the organic layer obtained by surface treatment using these surface treatment agents becomes a layer having a siloxane structure.
  • the layer having a siloxane structure can further reduce the agglomeration of the surface-coated titanium oxide (A) in the resin composition, further improve the dispersibility, and further reduce the water absorption rate of the laminate due to its excellent water repellency. tends to be possible.
  • silicone oil is preferable because it can form a layer having a more uniform siloxane structure and exhibits the above-mentioned effects, and among silicone oils, dimethyl silicone is more preferable.
  • surface treating agents other than those mentioned above may be used as long as the organic layer has a siloxane structure.
  • the organic layer has a total content of 100% by mass of the surface-coated titanium oxide (A). , is preferably 0.1 to 10% by mass, more preferably 0.5 to 7.5% by mass, even more preferably 0.6 to 6.0% by mass, and even more preferably 0. It is 7 to 5.0% by mass.
  • the coating layer of the surface-coated titanium oxide (A) may have a two-layer structure of an inorganic oxide layer and an organic layer.
  • Such a layered structure has the effect of suppressing the catalytic activity (for example, photocatalytic activity and metal catalytic activity) of titanium oxide and improving water repellency.
  • the inorganic oxide layer is preferably one or more selected from the group consisting of a silica-containing layer, a zirconia-containing layer, and an alumina-containing layer, and while further increasing the affinity with the resin, A layer containing alumina is more preferable because the catalytic activity of titanium oxide can be further suppressed.
  • the organic layer preferably has a siloxane structure because it has excellent heat resistance and chemical stability.
  • surface-coated titanium oxide (A) the water absorption of the resin composition can be further suppressed, the adhesion with the resin component is further improved, and the surface-coated oxidation in the resin composition is further improved. It can further reduce the agglomeration of titanium (A), has better dispersibility with the thermosetting compound (B), and has even better moisture absorption heat resistance, lower coefficient of thermal expansion, and higher glass transition temperature during curing. , and a resin composition having even more excellent dielectric properties (high dielectric constant and low dielectric loss tangent) can be obtained, and furthermore, an insulating layer having even more suitable surface hardness can be obtained.
  • surface-coated titanium oxide (A) commercially available products can be used. Commercially available products include, for example, R-22L, R-11P, and R-39 (trade names, manufactured by Sakai Chemical Industry Co., Ltd.).
  • the surface-coated titanium oxide (A) has an inorganic oxide layer and an organic layer
  • the inorganic oxide layer located on the side closer to the core particle is a layer containing silica, and then the inorganic oxide layer contains alumina.
  • the organic layer located on the farthest side from the core particle is preferably a layer having a siloxane structure.
  • titanium (A) has better dispersibility with the thermosetting compound (B), and has even better moisture absorption heat resistance, lower coefficient of thermal expansion, and higher glass transition temperature during curing. , and a resin composition having even more excellent dielectric properties (high dielectric constant and low dielectric loss tangent) can be obtained, and furthermore, an insulating layer having even more suitable surface hardness can be obtained.
  • surface-coated titanium oxide (A) commercially available products can be used. Examples of commercially available products include CR-63 (trade name, Ishihara Sangyo Co., Ltd.).
  • the content of the surface coating titanium oxide (A) is preferably 50 to 500 parts by mass, preferably 60 to 450 parts by mass, based on 100 parts by mass of the total resin solid content in the resin composition. More preferably, it is 70 to 400 parts by mass.
  • the content of the surface coating titanium oxide (A) within the above range, it has even better dispersibility with the thermosetting compound (B), and even better moisture absorption and heat resistance during curing, and a low coefficient of thermal expansion. , and a high glass transition temperature, and a resin composition having even more excellent dielectric properties (high dielectric constant and low dielectric loss tangent), and furthermore, an insulating layer having even more suitable surface hardness tends to be obtained. .
  • thermosetting compound (B) The resin composition of this embodiment contains a thermosetting compound (B).
  • the thermosetting compound (B) is not particularly limited as long as it is a thermosetting compound or resin.
  • the thermosetting compound or resin may be used alone or in combination of two or more.
  • thermosetting compound (B) a maleimide compound, an epoxy compound, a modified polyphenylene ether compound, a cyanate ester compound, a phenol compound, an alkenyl-substituted nadimide compound, an oxetane resin can be obtained.
  • a benzoxazine compound, and a compound having a polymerizable unsaturated group.It is preferable to include one or more thermosetting compounds or resins (hereinafter also simply referred to as "thermosetting resins"). . These thermosetting resins may be used alone or in combination of two or more.
  • thermosetting compound (B) examples include maleimide compounds, epoxy compounds, modified polyphenylene ether compounds, cyanate ester compounds, phenol compounds, and polymerizable unsaturated compounds. It is more preferable that the compound contains one or more selected from the group consisting of compounds having groups, and more preferably one or more selected from the group consisting of maleimide compounds, epoxy compounds, modified polyphenylene ether compounds, and cyanate ester compounds. preferable.
  • the surface-coated titanium oxide (A) can suitably suppress electrophilicity due to Lewis acidity that titanium oxide has. Therefore, even if the surface-coated titanium oxide (A) and the thermosetting compound (B) come close to each other in the resin composition, the polymerization of the thermosetting compound (B) does not proceed as intended, resulting in poor curing. It becomes possible to prevent this. Furthermore, since the surface-coated titanium oxide (A) can suitably suppress hydrolysis of the thermosetting compound (B), the amount of unreacted functional groups in the insulating layer can be reduced. I can do it.
  • thermosetting compound (B) since it is possible to further suppress the progress of polymerization and hydrolysis, it has even more excellent moisture absorption heat resistance, low coefficient of thermal expansion, and high glass transition temperature during curing, and also It is even more preferable to contain one or more selected from the group consisting of a maleimide compound and a cyanate ester compound, since a resin composition with even better dielectric properties (high dielectric constant and low dielectric loss tangent) can be obtained.
  • a resin composition is obtained in which the surface-coated titanium oxide (A) is even better dispersed and has even better moisture absorption and heat resistance, a low coefficient of thermal expansion, a high glass transition temperature, and dielectric properties (low dielectric loss tangent) upon curing. Therefore, the surface coating titanium oxide (A) and the thermosetting compound (B) are expressed in mass ratio (surface coating titanium oxide (A):thermosetting compound (B)) of 30:70 to 90. :10, more preferably 35:65 to 85:15, even more preferably 40:60 to 80:20.
  • the surface-coated titanium oxide (A) is even better dispersed, resulting in better moisture absorption and heat resistance, lower coefficient of thermal expansion, and higher glass transition temperature during curing, and even better dielectric properties (high dielectric constant and low dielectric loss tangent).
  • the resin composition of this embodiment preferably contains a maleimide compound.
  • maleimide compounds are preferable because the effect of suppressing the progress of polymerization and hydrolysis by the surface-coated titanium oxide (A) can be obtained more markedly.
  • the resin composition contains a maleimide compound, the water absorption of the resin composition can be further suppressed, and the adhesion with the surface coating titanium oxide (A) is further improved, and the surface coating oxidation in the resin composition is improved.
  • any known maleimide compound can be used as long as it has one or more maleimide groups in one molecule, and its type is not particularly limited.
  • the number of maleimide groups in one molecule of the maleimide compound is 1 or more, preferably 2 or more.
  • the maleimide compounds may be used alone or in combination of two or more.
  • maleimide compounds include N-phenylmaleimide, N-hydroxyphenylmaleimide, bis(4-maleimidophenyl)methane, 2,2-bis(4-(4-maleimidophenoxy)-phenyl)propane, bis(3, 5-dimethyl-4-maleimidophenyl)methane, bis(3-ethyl-5-methyl-4-maleimidophenyl)methane, bis(3,5-diethyl-4-maleimidophenyl)methane, represented by formula (1)
  • Examples include a maleimide compound represented by formula (2), a prepolymer of these maleimide compounds, and a prepolymer of the above maleimide compound and an amine compound.
  • the maleimide compound can be used in combination with bis(4-maleimidophenyl)methane, 2,2-bis(bis(4-maleimidophenyl)methane) and (4-(4-maleimidophenoxy)-phenyl)propane, bis(3-ethyl-5-methyl-4-maleimidophenyl)methane, a maleimide compound represented by formula (1), and a maleimide compound represented by formula (2).
  • maleimide compounds represented by formula (2) It is preferable to include one or more selected from the group consisting of maleimide compounds represented by formula (2), and the group consisting of 2,2-bis(4-(4-maleimidophenoxy)-phenyl)propane and a maleimide compound represented by formula (2). It is more preferable to include one or more selected from among the above.
  • the resin composition contains these maleimide compounds
  • the water absorption of the resin composition can be further suppressed, and the adhesion with the surface coating titanium oxide (A) is further improved, and the surface in the resin composition is Agglomeration of the coated titanium oxide (A) can be further reduced, dispersibility is further improved, and a cured product having excellent dielectric properties (high dielectric constant and low dielectric loss tangent) and excellent moisture absorption and heat resistance tends to be obtained.
  • R 1 each independently represents a hydrogen atom or a methyl group, and n1 is an integer of 1 to 10.
  • R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a phenyl group, and n2 is an average value, and represents 1 ⁇ n2 ⁇ 5.
  • the content of the maleimide compound is preferably 10 to 85 parts by weight, more preferably 15 to 80 parts by weight, even more preferably 20 to 80 parts by weight, based on 100 parts by weight of the total resin solid content in the resin composition.
  • the amount is 75 parts by weight, even more preferably 25 to 70 parts by weight, even more preferably 20 to 60 parts by weight.
  • the content of the maleimide compound is within the above range, the water absorption of the resin composition can be further suppressed, the adhesion with the surface coating titanium oxide (A) is further improved, and the surface of the resin composition is Agglomeration of the coated titanium oxide (A) can be further reduced, dispersibility is further improved, and a cured product having excellent dielectric properties (high dielectric constant and low dielectric loss tangent) and excellent moisture absorption and heat resistance tends to be obtained.
  • maleimide compound a commercially available product may be used, or a product manufactured by a known method may be used.
  • Commercially available maleimide compounds include, for example, BMI-70, BMI-80, and BMI-1000P (trade names, K.I.
  • BMI-3000, BMI-4000, BMI-5100, BMI -7000, and BMI-2300 maleimide compound represented by the above formula (1), in formula (1), all R 1 are hydrogen atoms, and n1 is an integer from 1 to 5)
  • MIR-3000-70MT trademark, maleimide compound represented by the above formula (2), in formula (2), all R 2 are hydrogen atoms, n2 is the average value and 1 ⁇ n2 ⁇ 5. Examples include Nippon Kayaku Co., Ltd.).
  • the surface-coated titanium oxide (A) is even better dispersed, resulting in better moisture absorption and heat resistance, lower coefficient of thermal expansion, and higher glass transition temperature during curing, and even better dielectric properties (high dielectric constant and low dielectric loss tangent).
  • the resin composition of this embodiment preferably contains an epoxy compound. Furthermore, when the resin composition contains an epoxy compound, the water absorption of the resin composition can be further suppressed, and the adhesion with the surface coating titanium oxide (A) is further improved, and the surface coating oxidation in the resin composition is improved.
  • Any known epoxy compound can be used as long as it has one or more epoxy groups in one molecule, and its type is not particularly limited.
  • the number of epoxy groups per molecule of the epoxy compound is 1 or more, preferably 2 or more.
  • the epoxy compounds may be used alone or in combination of two or more.
  • epoxy compound conventionally known epoxy compounds and epoxy resins can be used.
  • the surface-coated titanium oxide (A) can be dispersed even better, and has even better moisture absorption and heat resistance, a low coefficient of thermal expansion, and a high glass transition temperature during curing, as well as even better dielectric properties (high dielectric constant). and low dielectric loss tangent),
  • the epoxy compound should contain one or more selected from the group consisting of biphenylaralkyl epoxy resins, naphthalene epoxy resins, and naphthylene ether epoxy resins. is preferable, and it is more preferable that a naphthalene type epoxy resin is included.
  • the resin composition contains these epoxy compounds, the water absorption of the resin composition can be further suppressed, and the adhesion with the surface coating titanium oxide (A) is further improved, and the surface in the resin composition is Agglomeration of the coated titanium oxide (A) can be further reduced, dispersibility is further improved, and a cured product having excellent dielectric properties (high dielectric constant and low dielectric loss tangent) and excellent moisture absorption and heat resistance tends to be obtained.
  • naphthalene type epoxy resin commercially available products may be used, such as EPICLON (registered trademark) EXA-4032-70M and EPICLON (registered trademark) HP-4710 (trade name, DIC Corporation). It will be done.
  • the content of the epoxy compound is preferably 1 to 50 parts by weight, more preferably 5 to 40 parts by weight, even more preferably 10 to 40 parts by weight, based on 100 parts by weight of the total resin solid content in the resin composition. It is 30 parts by mass. When the content of the epoxy compound is within the above range, adhesiveness, flexibility, etc. tend to be better.
  • the content of the epoxy compound is within the above range, the water absorption of the resin composition can be further suppressed, the adhesion with the surface coating titanium oxide (A) is further improved, and the surface of the resin composition is Agglomeration of the coated titanium oxide (A) can be further reduced, dispersibility is further improved, and a cured product having excellent dielectric properties (high dielectric constant and low dielectric loss tangent) and excellent moisture absorption and heat resistance tends to be obtained.
  • the resin composition of this embodiment preferably contains a modified polyphenylene ether compound.
  • the resin composition contains a modified polyphenylene ether compound
  • the water absorption of the resin composition can be further suppressed, and the adhesion with the surface coating titanium oxide (A) is further improved, and the surface in the resin composition is Agglomeration of the coated titanium oxide (A) can be further reduced, dispersibility is further improved, and a cured product having excellent dielectric properties (high dielectric constant and low dielectric loss tangent) and excellent moisture absorption and heat resistance tends to be obtained.
  • modified of a modified polyphenylene ether compound means that a part or all of the terminal end of the polyphenylene ether compound is substituted with a reactive functional group such as a carbon-carbon unsaturated double bond. .
  • the modified polyphenylene ether compound is not particularly limited, and any known one can be used as long as part or all of the terminal end of the polyphenylene ether compound is modified.
  • the modified polyphenylene ether compounds may be used alone or in combination of two or more.
  • the polyphenylene ether compound related to the modified polyphenylene ether compound is selected from, for example, a structural unit represented by formula (4), a structural unit represented by formula (5), and a structural unit represented by formula (6). Polymers containing at least one structural unit are mentioned.
  • R 8 , R 9 , R 10 and R 11 each independently represent an alkyl group having 6 or less carbon atoms, an aryl group, a halogen atom, or a hydrogen atom.
  • R 12 , R 13 , R 14 , R 18 and R 19 each independently represent an alkyl group having 6 or less carbon atoms or a phenyl group.
  • R 15 , R 16 and R 17 each independently represent a hydrogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group.
  • R 20 , R 21 , R 22 , R 23 , R 24 , R 25 , R 26 , and R 27 each independently represent a hydrogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group.
  • -A- represents a linear, branched, or cyclic divalent hydrocarbon group having 20 or less carbon atoms.
  • -A- in formula (6) is, for example, a methylene group, an ethylidene group, a 1-methylethylidene group, a 1,1-propylidene group, a 1,4-phenylenebis(1-methylethylidene) group, a 1,3- Examples include, but are not limited to, divalent organic groups such as phenylenebis(1-methylethylidene) group, cyclohexylidene group, phenylmethylene group, naphthylmethylene group, and 1-phenylethylidene group.
  • modified polyphenylene ether compound examples include, for example, a polyphenylene ether compound whose terminal part or all has an ethylenically unsaturated group such as a vinylbenzyl group, an epoxy group, an amino group, a hydroxyl group, a mercapto group, a carboxy group, a methacrylic group, and A modified polyphenylene ether compound modified with a functional group such as a silyl group is preferred.
  • modified polyphenylene ether compound having a hydroxyl group at the end examples include SA90 (trade name, SABIC Innovative Plastics Co., Ltd.).
  • modified polyphenylene ether compound having a methacrylic group at the end examples include SA9000 (trade name, SABIC Innovative Plastics Co., Ltd.).
  • the method for producing the modified polyphenylene ether compound is not particularly limited as long as the effects of the present invention can be obtained.
  • it can be manufactured by the method described in Japanese Patent No. 4,591,665.
  • the modified polyphenylene ether compound includes a modified polyphenylene ether compound having an ethylenically unsaturated group at the terminal.
  • Ethylenically unsaturated groups include alkenyl groups such as ethenyl group, allyl group, acrylic group, methacrylic group, propenyl group, butenyl group, hexenyl group, and octenyl group; cycloalkenyl groups such as cyclopentenyl group and cyclohexenyl group; Examples include alkenylaryl groups such as vinylbenzyl group and vinylnaphthyl group. Among them, vinylbenzyl group is preferred.
  • the terminal ethylenically unsaturated groups may be single or multiple, and may be the same functional group or different functional groups.
  • the surface-coated titanium oxide (A) is even better dispersed, and when cured has even better moisture absorption and heat resistance, a lower coefficient of thermal expansion, and a higher glass transition temperature, as well as even better dielectric properties (high dielectric constant and low dielectric loss tangent).
  • a compound represented by formula (3) is preferred.
  • the resin composition contains the compound represented by formula (3)
  • the water absorption of the resin composition can be further suppressed
  • the adhesion with the surface coating titanium oxide (A) is further improved
  • the resin The agglomeration of the surface-coated titanium oxide (A) in the composition can be further alleviated, and a cured product can be obtained that has improved dispersibility, excellent dielectric properties (high dielectric constant and low dielectric loss tangent), and excellent moisture absorption and heat resistance.
  • X represents an aromatic group
  • -(Y-O) m - represents a polyphenylene ether moiety
  • R 1 , R 2 , and R 3 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, or an alkynyl group.
  • m represents an integer of 1 to 100
  • n represents an integer of 1 to 6
  • q represents an integer of 1 to 4.
  • m is preferably an integer of 1 or more and 50 or less, more preferably an integer of 1 or more and 30 or less.
  • n is preferably an integer of 1 or more and 4 or less, more preferably 1 or 2, and ideally 1.
  • q is preferably an integer of 1 or more and 3 or less, more preferably 1 or 2, and ideally 2.
  • the aromatic group represented by Examples include phenylene group, biphenylene group, indenylene group, and naphthylene group). Among these, biphenylene group is preferred.
  • the aromatic group represented by May include.
  • the aromatic group may be substituted with a general substituent such as an alkyl group (preferably an alkyl group having 1 to 6 carbon atoms, particularly a methyl group), an alkenyl group, an alkynyl group, or a halogen atom.
  • a general substituent such as an alkyl group (preferably an alkyl group having 1 to 6 carbon atoms, particularly a methyl group), an alkenyl group, an alkynyl group, or a halogen atom.
  • the aromatic group is substituted on the polyphenylene ether moiety via an oxygen atom, the limit on the number of general substituents depends on the number of polyphenylene ether moieties.
  • the structural unit represented by formula (4) As the polyphenylene ether moiety in formula (3), the structural unit represented by formula (4), the structural unit represented by formula (5), and the structural unit represented by formula (6) can be used. . Among these, it is more preferable that the structural unit represented by formula (4) is included.
  • the modified polyphenylene ether compound represented by formula (3) preferably has a number average molecular weight of 500 or more and 7000 or less. Further, in formula (3), a material having a minimum melt viscosity of 50,000 Pa ⁇ s or less can be used.
  • the surface-coated titanium oxide (A) is even better dispersed, and when cured has even better moisture absorption and heat resistance, a lower coefficient of thermal expansion, and a higher glass transition temperature, as well as even better dielectric properties (high dielectric constant and low dielectric loss tangent). )
  • the number average molecular weight is 1000 or more and 7000 or less and the minimum melt viscosity is 50000 Pa ⁇ s or less.
  • Number average molecular weight is measured using gel permeation chromatography according to standard methods.
  • the number average molecular weight is more preferably 1000 or more and 3000 or less.
  • the minimum melt viscosity is measured using a dynamic viscoelasticity measuring device according to a standard method.
  • the minimum melt viscosity is more preferably 500 Pa ⁇ s or more and 50,000 Pa ⁇ s or less.
  • the modified polyphenylene ether compound is preferably a compound represented by formula (7) below.
  • X is an aromatic group
  • -(Y-O) m - each represents a polyphenylene ether moiety
  • m represents an integer of 1 to 100.
  • m is preferably an integer of 1 or more and 50 or less, more preferably an integer of 1 or more and 30 or less.
  • X, -(YO) m -, and m have the same meanings as in formula (3).
  • X in formula (3) and formula (7) is formula (8), formula (9), or formula (10), and in formula (3) and formula (7), -(YO) m - and -(O-Y) m - is a structure in which formula (11) or formula (12) is arranged, or a structure in which formula (11) and formula (12) are arranged in a block or randomly. is preferred.
  • R 28 , R 29 , R 30 and R 31 each independently represent a hydrogen atom or a methyl group.
  • -B- is a linear, branched or cyclic divalent hydrocarbon group having 20 or less carbon atoms. Specific examples of -B- include the same examples as -A- in formula (6).
  • -B- is a linear, branched or cyclic divalent hydrocarbon group having 20 or less carbon atoms. Specific examples of -B- include the same examples as -A- in formula (6).
  • the method for producing the modified polyphenylene ether compound having the structure represented by formula (7) is not particularly limited, and for example, bifunctional phenylene obtained by oxidative coupling of a bifunctional phenol compound and a monofunctional phenol compound It can be produced by converting the terminal phenolic hydroxyl group of an ether oligomer into vinylbenzyl ether.
  • a modified polyphenylene ether compound can be a commercially available product, for example, OPE-2St1200 (in formula (7), X in -(O-X-O)- is represented by formula (8)).
  • OPE-2st2200 in formula (7), -(O-- X in X-O)- is a structure represented by formula (8), and -(O-Y)- and -(Y-O)- are a polymerization of the structure of formula (11)) (Above, trade name, Mitsubishi Gas Chemical Co., Ltd.) can be suitably used.
  • the content of the modified polyphenylene ether compound is preferably 1 to 50 parts by mass, more preferably 5 to 40 parts by mass, and even more preferably The amount is 10 to 30 parts by mass.
  • the content of the modified polyphenylene ether compound is within the above range, the low dielectric loss tangent and reactivity tend to be further improved.
  • the content of the modified polyphenylene ether compound is within the above range, the water absorption of the resin composition can be further suppressed, the adhesion with the surface coating titanium oxide (A) is further improved, and the content of the modified polyphenylene ether compound is within the above range.
  • the agglomeration of the surface-coated titanium oxide (A) can be further alleviated, the dispersibility is further improved, and a cured product with excellent dielectric properties (high dielectric constant and low dielectric loss tangent) and excellent moisture absorption and heat resistance tends to be obtained. be.
  • the resin composition of this embodiment preferably contains a cyanate ester compound. Furthermore, cyanate ester compounds are preferable because they can significantly inhibit the progress of polymerization and hydrolysis due to the titanium oxide (A) coated on the surface.
  • the resin composition contains a cyanate ester compound
  • the water absorption of the resin composition can be further suppressed, and the adhesion with the surface coating titanium oxide (A) is further improved, and the surface in the resin composition is Agglomeration of the coated titanium oxide (A) can be further reduced, dispersibility is further improved, and a cured product having excellent dielectric properties (high dielectric constant and low dielectric loss tangent) and excellent moisture absorption and heat resistance tends to be obtained.
  • the cyanate ester compound may be any known compound as long as it has a cyanato group (also referred to as a "cyanate ester group” or "cyanate group”) directly bonded to two or more aromatic rings in one molecule. Can be used.
  • the cyanate ester compounds may be used alone or in combination of two or more.
  • cyanate ester compounds include phenol novolac cyanate ester compounds, cresol novolac cyanate ester compounds, naphthalene ring-containing novolac cyanate ester compounds, allyl group-containing novolac cyanate ester compounds, naphthol aralkyl type cyanate ester compound, naphthylene ether type cyanate ester compound, xylene resin type cyanate ester compound, bisphenol M type cyanate ester compound, bisphenol A type cyanate ester compound, diallylbisphenol A type cyanate ester compound, bisphenol E type cyanate ester compound, bisphenol F type cyanate ester compound, biphenylaralkyl type cyanate ester compound, bis(3,3-dimethyl-4-cyanatophenyl)methane, 1,3-dicyanatobenzene, 1,4- Dicyanatobenzene, 1,3,5-tricyanatobenzene, 1,3-dicyanatonaphthalene, 1,4
  • the surface-coated titanium oxide (A) has better dispersion, better moisture absorption and heat resistance, lower coefficient of thermal expansion, and higher glass transition temperature during curing, as well as better dielectric properties (high dielectric constant and low dielectric
  • a cyanate ester compound can be used as a phenol novolac type cyanate ester compound, a naphthol aralkyl type cyanate ester compound, or a naphthyl aralkyl type cyanate ester compound.
  • Ren ether type cyanate ester compound xylene resin type cyanate ester compound, bisphenol M type cyanate ester compound, bisphenol A type cyanate ester compound, diallyl bisphenol A type cyanate ester compound, bisphenol E type cyanate ester compound, bisphenol It is preferable to contain one or more selected from the group consisting of F-type cyanate ester compounds, biphenylaralkyl-type cyanate ester compounds, and prepolymers or polymers of these cyanate ester compounds, and naphthol aralkyl-type cyanate esters. Compounds are more preferred.
  • the resin composition contains these cyanate ester compounds
  • the water absorption of the resin composition can be further suppressed, and the adhesion with the surface-coated titanium oxide (A) is further improved.
  • the agglomeration of the surface-coated titanium oxide (A) can be further alleviated, the dispersibility is further improved, and a cured product with excellent dielectric properties (high dielectric constant and low dielectric loss tangent) and excellent moisture absorption and heat resistance tends to be obtained. be.
  • a compound represented by formula (13) is more preferable.
  • R 3 each independently represents a hydrogen atom or a methyl group, and among these, a hydrogen atom is preferred.
  • n3 is an integer of 1 or more, preferably an integer of 1 to 20, more preferably an integer of 1 to 10.
  • the bisphenol A type cyanate ester compound one or more selected from the group consisting of 2,2-bis(4-cyanatophenyl)propane and 2,2-bis(4-cyanatophenyl)propane prepolymers are used. May be used.
  • commercially available products may be used, such as Primaset (registered trademark) BADCy (trade name, Lonza Co., Ltd., 2,2-bis(4-cyanatophenyl)).
  • cyanate ester compounds may be produced according to known methods. Specific manufacturing methods include, for example, the method described in JP-A-2017-195334 (particularly paragraphs 0052 to 0057).
  • the content of the cyanate ester compound is preferably 1 to 65 parts by mass, more preferably 2 to 60 parts by mass, and even more preferably The amount is from 3 to 55 parts by weight, even more preferably from 4 to 50 parts by weight, even more preferably from 5 to 45 parts by weight, and particularly preferably from 6 to 40 parts by weight.
  • the surface-coated titanium oxide (A) is even better dispersed, resulting in even better moisture absorption and heat resistance, a low coefficient of thermal expansion, and a high glass transition temperature during curing.
  • the resin composition of this embodiment may also contain a phenol compound.
  • a phenol compound any known compound can be used as long as it has two or more phenolic hydroxyl groups in one molecule, and its type is not particularly limited.
  • the phenol compounds may be used alone or in combination of two or more.
  • phenol compound examples include cresol novolac type phenol resin, biphenylaralkyl type phenol resin represented by formula (14), naphthol aralkyl type phenol resin represented by formula (15), aminotriazine novolak type phenol resin, and naphthalene type phenol resin.
  • examples include phenol resin, phenol novolak resin, alkylphenol novolak resin, bisphenol A type novolak resin, dicyclopentadiene type phenol resin, Zylock type phenol resin, terpene-modified phenol resin, and polyvinylphenols.
  • phenolic compounds include cresol novolak type phenol resin, biphenylaralkyl type phenol resin represented by formula (14), and naphthol represented by formula (15) because they provide excellent moldability and surface hardness. It is preferable to include one or more selected from the group consisting of aralkyl type phenol resin, aminotriazine novolac type phenol resin, and naphthalene type phenol resin, and biphenylaralkyl type phenol resin represented by formula (14) and formula (15) It is more preferable to include one or more selected from the group consisting of naphthol aralkyl type phenol resins represented by:
  • R 4 each independently represents a hydrogen atom or a methyl group, and n 4 is an integer of 1 to 10.
  • R 5 each independently represents a hydrogen atom or a methyl group, and n 5 is an integer of 1 to 10.
  • the content of the phenol compound is preferably 1 to 50 parts by mass, more preferably 5 to 40 parts by mass, and still more preferably 10 to 30 parts by mass, based on 100 parts by mass of the total resin solid content of the resin composition. Part by mass.
  • the content of the phenol compound is within the above range, adhesiveness, flexibility, etc. tend to be better.
  • the resin composition of this embodiment may include an alkenyl-substituted nadimide compound.
  • the alkenyl-substituted nadimide compound is not particularly limited as long as it is a compound having one or more alkenyl-substituted nadimide groups in one molecule.
  • the alkenyl-substituted nadimide compounds may be used alone or in combination of two or more.
  • alkenyl-substituted nadimide compound examples include a compound represented by the following formula (2d).
  • R 1 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms (for example, a methyl group or an ethyl group), and R 2 represents an alkylene group having 1 to 6 carbon atoms. group, a phenylene group, a biphenylene group, a naphthylene group, or a group represented by formula (16) or formula (17).
  • R 3 represents a methylene group, an isopropylidene group, CO, O, S or SO 2 .
  • R 4 each independently represents an alkylene group having 1 to 4 carbon atoms or a cycloalkylene group having 5 to 8 carbon atoms.
  • alkenyl-substituted nadimide compound represented by formula (2d) a commercially available product may be used, or a manufactured product manufactured according to a known method may be used.
  • Commercially available products include BANI-M and BANI-X (trade names, Maruzen Petrochemical Co., Ltd.).
  • the content of the alkenyl-substituted nadimide compound is preferably 1 to 50 parts by mass, more preferably 5 to 40 parts by mass, and even more preferably 10 parts by mass, based on 100 parts by mass of the total resin solid content of the resin composition. ⁇ 30 parts by mass.
  • content of the alkenyl-substituted nadimide compound is within the above range, adhesiveness, heat resistance, etc. tend to be better.
  • the resin composition of this embodiment may also contain an oxetane resin.
  • the oxetane resin is not particularly limited, and generally known ones can be used. One type of oxetane resin may be used alone, or two or more types may be used in combination.
  • oxetane resin examples include oxetane, 2-methyloxetane, 2,2-dimethyloxetane, 3-methyloxetane, alkyloxetane such as 3,3-dimethyloxetane, 3-methyl-3-methoxymethyloxetane, 3,3 -di(trifluoromethyl)perfluorooxetane, 2-chloromethyloxetane, 3,3-bis(chloromethyl)oxetane, biphenyl-type oxetane, OXT-101 (trade name, Toagosei Co., Ltd.), and OXT-121 (trade name, Toagosei Co., Ltd.), etc.
  • OXT-101 trade name, Toagosei Co., Ltd.
  • OXT-121 trade name, Toagosei Co., Ltd.
  • the content of the oxetane resin is preferably 1 to 50 parts by weight, more preferably 5 to 40 parts by weight, even more preferably 10 to 30 parts by weight, based on 100 parts by weight of the total resin solid content of the resin composition. Part by mass. When the content of the oxetane resin is within the above range, adhesiveness, flexibility, etc. tend to be better.
  • the resin composition of this embodiment may also contain a benzoxazine compound.
  • the benzoxazine compound is not particularly limited as long as it has two or more dihydrobenzoxazine rings in one molecule, and generally known compounds can be used.
  • One type of benzoxazine compound may be used alone or two or more types may be used in combination.
  • benzoxazine compounds include bisphenol A-type benzoxazine BA-BXZ, bisphenol F-type benzoxazine BF-BXZ, and bisphenol S-type benzoxazine BS-BXZ (all trade names, manufactured by Konishi Chemical Industry Co., Ltd.). Can be mentioned.
  • the content of the benzoxazine compound is preferably 1 to 50 parts by mass, more preferably 5 to 40 parts by mass, and even more preferably 10 to 40 parts by mass, based on the total 100 parts by mass of the resin solid content of the resin composition. It is 30 parts by mass. When the content of the benzoxazine compound is within the above range, adhesiveness, flexibility, etc. tend to be better.
  • the resin composition of this embodiment may include a compound having a polymerizable unsaturated group.
  • the compound having a polymerizable unsaturated group is not particularly limited, and generally known compounds can be used.
  • the compounds having a polymerizable unsaturated group may be used alone or in combination of two or more.
  • Examples of compounds having a polymerizable unsaturated group include vinyl compounds such as ethylene, propylene, styrene, divinylbenzene, and divinylbiphenyl; methyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, polypropylene glycol di(meth)acrylate, trimethylolpropane di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, etc.
  • Examples include (meth)acrylates of monohydric or polyhydric alcohols; epoxy (meth)acrylates such as bisphenol A type epoxy (meth)acrylate and bisphenol F type epoxy (meth)acrylate; benzocyclobutene resins.
  • the content of the compound having a polymerizable unsaturated group is preferably 1 to 50 parts by mass, more preferably 5 to 40 parts by mass, based on 100 parts by mass of the total resin solid content of the resin composition. , more preferably 10 to 30 parts by mass.
  • adhesiveness, flexibility, etc. tend to be better.
  • the resin composition of the present embodiment has better dispersibility with the surface-coated titanium oxide (A) in a resin composition containing the surface-coated titanium oxide (A) and the thermosetting compound (B).
  • surface-coated titanium oxide provides a resin composition that has better moisture absorption and heat resistance, lower coefficient of thermal expansion, and higher glass transition temperature, as well as better dielectric properties (high dielectric constant and lower dielectric loss tangent) when cured.
  • the filler (C) is not particularly limited as long as it is different from the surface-coated titanium oxide (A).
  • the filler (C) may be used alone or in combination of two or more.
  • the average particle diameter (D50) of the filler (C) is preferably 0.10 to 10.0 ⁇ m, more preferably 0.30 to 5.0 ⁇ m.
  • the average particle diameter (D50) is within the above range, in the resin composition containing the surface-coated titanium oxide (A) and the thermosetting compound (B), the surface-coated titanium oxide (A) and the resin composition have even better properties.
  • a resin composition can be obtained that has dispersibility and has even better moisture absorption and heat resistance, a low coefficient of thermal expansion, and a high glass transition temperature, as well as even better dielectric properties (high dielectric constant and low dielectric loss tangent) when cured. There is a tendency.
  • the average particle diameter (D50) of the filler (C) is calculated in the same manner as the average particle diameter (D50) of the surface-coated titanium oxide (A) described above.
  • Examples of the filler (C) include silica, silicon compounds (e.g., white carbon, etc.), metal oxides (e.g., alumina, titanium white, strontium titanate (SrTiO 3 ), calcium titanate (CaTiO 3 ), surface Titanium oxide (TiO 2 ) different from coating titanium oxide (A), MgSiO 4 , MgTiO 3 , ZnTiO 3 , ZnTiO 4 , CaTiO 3 , SrTiO 3 , SrZrO 3 , BaTi 2 O 5 , BaTi 4 O 9 , Ba 2 Ti 9 O 20 , Ba(Ti,Sn) 9 O 20 , ZrTiO 4 , (Zr, Sn)TiO 4 , BaNd 2 Ti 5 O 14 , BaSmTiO 14 , Bi 2 O 3 -BaO-Nd 2 O 3 -TiO 2 , La 2 Ti 2 O 7 , barium titan
  • Zinc molybdate ammonium molybdate, sodium molybdate, potassium molybdate, calcium molybdate, molybdenum disulfide, molybdenum trioxide, molybdate hydrate, (NH 4 )Zn 2 Mo 2 O 9.
  • metal nitrides e.g., boron nitride, silicon nitride, and aluminum nitride, etc.
  • metal sulfides e.g., barium sulfate, etc.
  • metal hydroxides e.g., aluminum hydroxide, aluminum hydroxide heat-treated products (e.g., aluminum hydroxide heat-treated to reduce some of the crystal water), boehmite, magnesium hydroxide, etc.
  • Zinc compounds e.g., zinc borate, zinc stannate, etc.
  • filler (C) has even better dispersibility with surface-coated titanium oxide (A) in a resin composition containing surface-coated titanium oxide (A) and thermosetting compound (B).
  • silica examples include natural silica, fused silica, synthetic silica, fumed silica, and hollow silica. When the resin composition contains silica, it tends to have better processability. These silicas may be used alone or in combination of two or more. Among these, one or more selected from the group consisting of fused silica and hollow silica is preferred because it has a low coefficient of thermal expansion and excellent dispersibility in the resin composition.
  • silica commercially available products may be used, such as SC2050-MB, SC5050-MOB, SC2500-SQ, SC4500-SQ, SC4053-SQ, and SC5050-MOB (trade name: Admatex Co., Ltd.) ; SFP-130MC (trade name, Denka Co., Ltd.).
  • the filler (C) may be a surface-treated filler in which an inorganic oxide is formed on at least a portion of the surface of filler core particles.
  • examples of such fillers include surface-treated molybdenum compound particles (supported type) in which an inorganic oxide is formed on at least a portion of the surface of core particles made of a molybdenum compound.
  • the inorganic oxide may be applied to at least a portion of the surface of the filler core particles.
  • the inorganic oxide may be applied partially to the surface of the filler core particles, or may be applied so as to cover the entire surface of the filler core particles.
  • the inorganic oxide is uniformly applied so as to cover the entire surface of the filler core particles. It is preferable that the coating is uniformly formed.
  • the inorganic oxide preferably has excellent heat resistance, and its type is not particularly limited, but metal oxides are more preferred.
  • the metal oxide include SiO 2 , Al 2 O 3 , TiO 2 , ZnO, In 2 O 3 , SnO 2 , NiO, CoO, V 2 O 5 , CuO, MgO, and ZrO 2 . These can be used alone or in an appropriate combination of two or more. Among these, one selected from the group consisting of silica (SiO 2 ), titania (TiO 2 ), alumina (Al 2 O 3 ), and zirconia (ZrO 2 ) in terms of heat resistance, insulation properties, cost, etc. It is preferable to use silica or more, and silica is more preferable.
  • the thickness of the inorganic oxide on the surface can be appropriately set depending on the desired performance and is not particularly limited.
  • the thickness is preferably from 3 to 500 nm, and more preferably from 3 to 500 nm, since a uniform inorganic oxide film can be formed, the adhesion with the filler core particles is better, and the water absorption of the resin composition can be further suppressed. It is preferably 5 to 200 nm, more preferably 10 to 100 nm.
  • Surface-treated molybdenum compound particles include those obtained by surface-treating molybdenum compound particles using a silane coupling agent, or those obtained by surface-treating molybdenum compound particles by a method such as a sol-gel method or a liquid phase precipitation method. Examples include those obtained by treating with an inorganic oxide.
  • an inorganic oxide may be added to at least a part or all of the surface of a core particle made of a molybdenum compound, that is, at least a part of the outer periphery or the entire outer periphery of the core particle.
  • silica is added as an inorganic oxide to at least a part or all of the surface of the core particle made of a molybdenum compound, that is, at least a part of the outer periphery or the entire outer periphery of the core particle.
  • the core particles made of a molybdenum compound are preferably at least one selected from the group consisting of molybdic acid, zinc molybdate, and ammonium zinc molybdate hydrate, and zinc molybdate is even more preferable.
  • the average particle diameter (D50) of the surface-treated molybdenum compound particles is preferably 0.1 to 10 ⁇ m, more preferably 0.5 to 8 ⁇ m, and even more preferably It is 1 to 4 ⁇ m, and even more preferably 1 to 3 ⁇ m.
  • the average particle diameter (D50) of the surface-treated molybdenum compound particles is calculated in the same manner as the average particle diameter (D50) of the surface-coated titanium oxide (A) described above.
  • Core particles made of a molybdenum compound can be produced by various known methods such as a pulverization method and a granulation method, and the production method is not particularly limited. Moreover, you may use the commercial item.
  • the method for producing surface-treated molybdenum compound particles is not particularly limited, and includes, for example, a sol-gel method, a liquid phase precipitation method, a dip coating method, a spray coating method, a printing method, an electroless plating method, a sputtering method, a vapor deposition method, and an ion plating method.
  • Surface-treated molybdenum compound particles can be obtained by applying an inorganic oxide or its precursor to the surface of a core particle made of a molybdenum compound by appropriately employing various known methods such as a method and a CVD method.
  • the method for applying the inorganic oxide or its precursor to the surface of the core particles made of a molybdenum compound may be either a wet method or a dry method.
  • a suitable method for producing surface-treated molybdenum compound particles includes, for example, dispersing a molybdenum compound (core particle) in an alcohol solution in which a metal alkoxide such as silicon alkoxide (alkoxysilane) or aluminum alkoxide is dissolved, and dispersing the molybdenum compound (core particles) with water while stirring.
  • a metal alkoxide such as silicon alkoxide (alkoxysilane) or aluminum alkoxide
  • a film of silicon oxide or aluminum oxide is formed as a low refractive index film on the surface of the compound, and then the obtained powder is separated into solid and liquid.
  • a molybdenum compound (core particle) is dispersed in an alcohol solution in which a metal alkoxide such as silicon alkoxide or aluminum alkoxide is dissolved, and the mixture is mixed under high temperature and low pressure to form a surface of the compound.
  • a metal alkoxide such as silicon alkoxide or aluminum alkoxide
  • examples include a method in which a film of silicon oxide, aluminum oxide, or the like is formed, and then the obtained powder is vacuum-dried and pulverized.
  • the content of the filler (C) is such that the resin composition containing the surface-coated titanium oxide (A) and the thermosetting compound (B) has even better dispersibility with the surface-coated titanium oxide (A).
  • the solid content of the resin in the resin composition can be obtained by obtaining a resin composition that has even better moisture absorption and heat resistance, a low coefficient of thermal expansion, a high glass transition temperature, and dielectric properties (low dielectric loss tangent) when cured.
  • the amount is preferably 50 to 300 parts by weight, more preferably 70 to 200 parts by weight, and even more preferably 100 to 150 parts by weight. When two or more types of filler (C) are included, the total amount may be within the above range.
  • the surface-coated titanium oxide (A) and the filler (C) should be contained in a volume ratio of 15:85 to 85:15, expressed as a volume ratio (surface-coated titanium oxide (A): filler (C)). is preferable, the range of 20:80 to 80:20 is more preferable, and the range of 25:75 to 75:25 is even more preferable. When the volume ratio is within the above range, the surface-coated titanium oxide (A) and the filler (C) tend to be better dispersed in the thermosetting compound (B).
  • the surface coating titanium oxide (A) and the filler (C) are not unevenly distributed, so the water absorption by titanium oxide is further suppressed, and the insulation has even better moisture absorption and heat resistance. You get layers. Moreover, it is also possible to obtain a molded product having excellent coating properties and a good appearance. Furthermore, since the surface coating titanium oxide (A) and the filler (C) are well dispersed in the resin composition, the thermal expansion coefficient of the insulating layer can be suitably controlled, and a dielectric path can be efficiently formed. Therefore, it tends to be possible to suitably obtain an insulating layer having excellent moisture absorption and heat resistance, low coefficient of thermal expansion, high dielectric constant, and low dielectric loss tangent.
  • Fillers may also be used.
  • Such fillers include, for example, titanium oxide (TiO 2 ) different from the surface-coated titanium oxide (A), MgSiO 4 , MgTiO 3 , ZnTiO 3 , ZnTiO 4 , CaTiO 3 , SrTiO 3 , SrZrO 3 , BaTi 2 O 5 , Ba2Ti9O20 , Ba(Ti,Sn) 9O20 , ZrTiO4 , ( Zr , Sn) TiO4 , BaNd2Ti5O14 , BaSmTiO14 , Bi2O3 - BaO - Nd2O 3 -TiO 2 , La 2 Ti 2 O 7 , BaTiO 3 , Ba(Ti,Zr)O 3 and
  • the resin composition of this embodiment may further contain a silane coupling agent.
  • the resin composition further improves the dispersibility of the surface-coated titanium oxide (A) and the filler (C) blended as necessary in the resin composition.
  • the silane coupling agents may be used alone or in combination of two or more.
  • the silane coupling agent is not particularly limited, and silane coupling agents generally used for surface treatment of inorganic materials can be used.
  • silane coupling agents generally used for surface treatment of inorganic materials
  • aminosilane compounds e.g., 3-aminopropyltriethoxysilane, N- ⁇ -(aminoethyl)- ⁇ -aminopropyltrimethoxysilane, etc.
  • epoxysilane compounds e.g., 3-glycidoxypropyltrimethoxysilane, etc.) silane, etc.
  • acrylic silane compounds e.g., ⁇ -acryloxypropyltrimethoxysilane, etc.
  • cationic silane compounds e.g., N- ⁇ -(N-vinylbenzylaminoethyl)- ⁇ -aminopropyltrimethoxysilane) (hydrochloride, etc.
  • styrylsilane compounds e.g., pheny
  • the silane coupling agents may be used alone or in combination of two or more.
  • the silane coupling agent is preferably one or more selected from the group consisting of epoxysilane compounds and styrylsilane compounds.
  • the epoxysilane compounds include KBM-403, KBM-303, KBM-402, and KBE-403 (trade names, Shin-Etsu Chemical Co., Ltd.).
  • styrylsilane compounds include KBM-1403 (trade name, Shin-Etsu Chemical Co., Ltd.).
  • the content of the silane coupling agent is not particularly limited, but may be 0.1 to 5.0 parts by mass based on 100 parts by mass of the total resin solid content in the resin composition.
  • the resin composition of this embodiment may further contain a wetting and dispersing agent.
  • a wetting and dispersing agent When the resin composition contains a wetting and dispersing agent, the dispersibility of the filler (C) tends to be further improved.
  • the wetting and dispersing agents may be used alone or in combination of two or more.
  • the wetting and dispersing agent may be any known dispersing agent (dispersion stabilizer) used for dispersing the filler (C), such as DISPER BYK (registered trademark) -110, 111, 118, 180, 161. , 2009, 2152, 2155, W996, W9010, and W903 (trade names, Bic-Chemie Japan Co., Ltd.).
  • the content of the wetting and dispersing agent is not particularly limited, but is preferably 0.5 parts by mass or more and 10 parts by mass or less based on 100 parts by mass of the total resin solid content in the resin composition.
  • the resin composition of this embodiment may further contain a curing accelerator.
  • the curing accelerator may be used alone or in combination of two or more.
  • the curing accelerator examples include imidazoles such as triphenylimidazole (for example, 2,4,5-triphenylimidazole); benzoyl peroxide, lauroyl peroxide, acetyl peroxide, parachlorobenzoyl peroxide, di-tert - Organic peroxides such as butyl-di-perphthalate; azo compounds such as azobisnitrile; N,N-dimethylbenzylamine, N,N-dimethylaniline, N,N-dimethyltoluidine, 2-N-ethylani Tertiary amines such as linoethanol, tri-n-butylamine, pyridine, quinoline, N-methylmorpholine, triethanolamine, triethylenediamine, tetramethylbutanediamine, N-methylpiperidine; phenol, xylenol, cresol, resorcinol, Phenols such as catechol; organometallic salts
  • the content of the curing accelerator is not particularly limited, but may be 0.001 parts by mass or more and 1.0 parts by mass or less with respect to 100 parts by mass of the total resin solid content in the resin composition.
  • the resin composition of this embodiment may further contain a solvent.
  • the viscosity at the time of preparation of the resin composition is lowered, the handling property (handling property) is further improved, and the impregnating property into the base material tends to be further improved.
  • the solvents may be used alone or in combination of two or more.
  • the solvent is not particularly limited as long as it can dissolve some or all of the components in the resin composition.
  • examples include ketones (acetone, methyl ethyl ketone, etc.), aromatic hydrocarbons (eg, toluene, xylene, etc.), amides (eg, dimethyl formaldehyde, etc.), propylene glycol monomethyl ether, and its acetate.
  • the resin composition of the present embodiment may contain components other than those mentioned above as long as the desired properties are not impaired.
  • flame retardant compounds include bromine compounds such as 4,4'-dibromobiphenyl, phosphoric acid esters, melamine phosphates, nitrogen-containing compounds such as melamine and benzoguanamine, and silicon-based compounds.
  • various additives include ultraviolet absorbers, antioxidants, photopolymerization initiators, optical brighteners, photosensitizers, dyes, pigments, thickeners, lubricants, antifoaming agents, dispersants, and leveling agents. (surface conditioner), brightener, polymerization inhibitor, etc.
  • the content of the other components is not particularly limited, but is usually 0.01 parts by mass or more and 10 parts by mass or less, respectively, based on 100 parts by mass of the total resin solid content in the resin composition.
  • the method for producing the resin composition of the present embodiment is not particularly limited, but may include, for example, the surface-coated titanium oxide (A), the thermosetting compound (B), and optionally any of the above-mentioned compounds, if necessary.
  • An example is a method of mixing good ingredients and stirring thoroughly.
  • known treatments such as stirring, mixing, and kneading treatments can be performed.
  • stirring and dispersion treatment using a stirring tank equipped with a stirrer with appropriate stirring capacity, the surface-coated titanium oxide (A) in the resin composition and the filler added as necessary
  • the dispersibility of material (C) can be improved.
  • stirring, mixing, and kneading treatments can be carried out as appropriate using, for example, a device for the purpose of mixing such as a ball mill or a bead mill, or a known device such as a revolution or rotation type mixing device.
  • a device for the purpose of mixing such as a ball mill or a bead mill
  • a known device such as a revolution or rotation type mixing device.
  • a solvent can be used as necessary to prepare a resin varnish.
  • the type of solvent is not particularly limited as long as it can dissolve the resin in the resin composition. Specific examples thereof are as described above.
  • resin varnish usually 10 to 900 parts by mass of a solvent is added to 100 parts by mass of the components excluding the solvent in the resin composition, and the above-mentioned known treatments (stirring, mixing, kneading, etc.) are performed. You can get it at
  • the type of solvent is not particularly limited as long as it can dissolve the resin in the resin composition. Specific examples thereof are as described above.
  • the resin composition of the present embodiment has a water absorption rate of 0.40% or less as calculated by the above formula (i).
  • a resin composition can be obtained, for example, by controlling the functional group density of the thermosetting compound (B). That is, by controlling the functional group density of the thermosetting compound (B) to be low, it becomes possible to reduce the number of crosslinking points in the resin composition. Thereby, it becomes possible to lower the hygroscopicity caused by the hydrophilic groups at the crosslinking points, and it becomes possible to control the water absorption rate of the resin composition to 0.40% or less.
  • the resin composition of this embodiment can be used, for example, in cured products, prepregs, film-like underfill materials, resin sheets, laminates, build-up materials, non-conductive films, metal foil-clad laminates, printed wiring boards, and fiber-reinforced It can be suitably used as a raw material for composite materials or in the manufacture of semiconductor devices. These will be explained below.
  • the cured product is obtained by curing the resin composition of this embodiment.
  • the resin composition of this embodiment is melted or dissolved in a solvent, poured into a mold, and cured under normal conditions using heat, light, etc. Obtainable.
  • the curing temperature is preferably within the range of 120 to 300°C from the viewpoint of efficient curing and prevention of deterioration of the obtained cured product.
  • the prepreg of this embodiment includes a base material and the resin composition of this embodiment impregnated or applied to the base material.
  • the prepreg of this embodiment is produced by, for example, impregnating or applying the resin composition of this embodiment (for example, in an uncured state (A stage)) onto a base material, and then drying it at 120 to 220°C for about 2 to 15 minutes. It is obtained by semi-curing (B-stage) using a method or the like.
  • the amount of the resin composition (including the cured product of the resin composition) adhered to the base material that is, the amount of the resin composition (surface-coated titanium oxide (A)) and the amount of compounding as necessary, relative to the total amount of prepreg after semi-curing.
  • the amount of the filler (C) contained in the filler (including filler (C)) is preferably in the range of 20 to 99% by mass.
  • the semi-cured state (B stage) means that the components contained in the resin composition have not started actively reacting (curing), but the resin composition is in a dry state, that is, to the extent that it is not sticky. , refers to a state in which the solvent is volatilized by heating, and also includes a state in which the solvent only volatilizes without curing even without heating.
  • the minimum melt viscosity in a semi-cured state (B stage) is usually 20,000 Pa ⁇ s or less. The lower limit of the minimum melt viscosity is, for example, 10 Pa ⁇ s or more.
  • the minimum melt viscosity is measured by the following method. That is, using 1 g of resin powder taken from the resin composition as a sample, the minimum melt viscosity is measured using a rheometer (ARES-G2 (trade name), TA Instruments). Here, a disposable plate with a plate diameter of 25 mm was used, and the resin was Measure the minimum melt viscosity of the powder.
  • the base material is not particularly limited as long as it is a base material used for various printed wiring board materials.
  • the material of the base material include glass fiber (e.g., E-glass, D-glass, L-glass, S-glass, T-glass, Q-glass, UN-glass, NE-glass, etc.), glass Inorganic fibers other than fibers (eg, quartz, etc.) and organic fibers (eg, polyimide, polyamide, polyester, liquid crystal polyester, polytetrafluoroethylene, etc.) can be mentioned.
  • the form of the base material is not particularly limited, and examples include woven fabric, nonwoven fabric, roving, chopped strand mat, and surfacing mat. These base materials may be used alone or in combination of two or more.
  • woven fabrics subjected to ultra-opening treatment and packing treatment are preferable, and from the viewpoint of moisture absorption and heat resistance, silane coupling such as epoxy silane treatment and amino silane treatment are preferable.
  • silane coupling such as epoxy silane treatment and amino silane treatment are preferable.
  • a glass woven fabric whose surface has been treated with an agent or the like is preferable. Glass fibers such as E-glass, L-glass, NE-glass, and Q-glass are preferred because they have excellent dielectric properties.
  • the resin sheet of this embodiment contains the resin composition of this embodiment.
  • the resin sheet may be a support-attached resin sheet including a support and a layer formed from the resin composition of the present embodiment disposed on the surface of the support.
  • the resin sheet can be used as a build-up film or a dry film solder resist.
  • the method for producing the resin sheet is not particularly limited, but for example, a method of obtaining a resin sheet by applying (coating) a solution of the resin composition of the present embodiment in a solvent to a support and drying the same may be mentioned. It will be done.
  • the support examples include polyethylene film, polypropylene film, polycarbonate film, polyethylene terephthalate film, ethylenetetrafluoroethylene copolymer film, and release films prepared by coating the surface of these films with a release agent, polyimide films, etc.
  • examples include organic film base materials, conductor foils such as copper foil and aluminum foil, and plate-shaped materials such as glass plates, SUS plates, and FRP, but are not particularly limited.
  • Examples of the coating method include a method in which a solution of the resin composition of the present embodiment dissolved in a solvent is coated onto the support using a bar coater, die coater, doctor blade, Baker applicator, etc. It will be done. Further, after drying, a single layer sheet (resin sheet) can be obtained by peeling or etching the support from the support-attached resin sheet in which the support and the resin composition are laminated. Note that by supplying a solution in which the resin composition of this embodiment is dissolved in a solvent into a mold having a sheet-like cavity and drying it to form it into a sheet, it can be easily formed without using a support. A layered sheet (resin sheet) can also be obtained.
  • the drying conditions for removing the solvent are not particularly limited, but the solvent in the resin composition is easily removed, and the drying conditions during drying are not particularly limited. From the viewpoint of suppressing the progress of curing, the temperature is preferably 20 to 200°C for 1 to 90 minutes.
  • the resin composition in a single-layer sheet or a resin sheet with a support, the resin composition can be used in an uncured state by simply drying the solvent, or if necessary, it can be used in a semi-cured (B-staged) state.
  • the thickness of the resin layer of the single-layer sheet or the resin sheet with a support according to the present embodiment can be adjusted by the concentration of the solution of the resin composition of the present embodiment and the coating thickness, and is not particularly limited.
  • the thickness is preferably 0.1 to 500 ⁇ m from the viewpoint of facilitating removal of the solvent.
  • the laminate of this embodiment includes one or more types selected from the group consisting of the prepreg and resin sheet of this embodiment.
  • the resin compositions used for each prepreg and resin sheet may be the same or different.
  • the resin compositions used therein may be the same or different.
  • one or more selected from the group consisting of prepreg and resin sheet may be in a semi-cured state (B stage) or in a completely cured state (C stage). .
  • the metal foil-clad laminate of this embodiment includes the laminate of this embodiment and metal foil disposed on one or both sides of the laminate. Further, the metal foil-clad laminate may include at least one prepreg of the present embodiment and metal foil laminated on one or both sides of the prepreg. Furthermore, the metal foil-clad laminate may include at least one resin sheet of the present embodiment and metal foil laminated on one or both sides of the resin sheet.
  • the resin compositions used for each prepreg and resin sheet may be the same or different, and when both the prepreg and resin sheet are used, the resin used for them The compositions may be the same or different.
  • one or more selected from the group consisting of prepreg and resin sheet may be in a semi-cured state or in a completely cured state.
  • metal foil is laminated on one or more types selected from the group consisting of the prepreg of this embodiment and the resin sheet of this embodiment. It is preferable that metal foil is laminated so as to be in contact with one or more surfaces selected from the group consisting of the resin sheet of this embodiment.
  • Metal foil is laminated so as to be in contact with one or more surfaces selected from the group consisting of prepreg and resin sheet” includes a layer such as an adhesive layer between the prepreg or resin sheet and the metal foil. First, it means that the prepreg or resin sheet and the metal foil are in direct contact. This tends to increase the metal foil peel strength of the metal foil-clad laminate and improve the insulation reliability of the printed wiring board.
  • the metal foil-clad laminate of this embodiment includes one or more stacked prepregs and/or resin sheets according to this embodiment, and metal foils arranged on one or both sides of the prepregs and/or resin sheets. It's okay.
  • a method for manufacturing the metal foil-clad laminate of this embodiment for example, there is a method in which one or more prepreg and/or resin sheets of this embodiment are stacked, metal foil is placed on one or both sides, and lamination molding is performed. It will be done.
  • the molding method include methods normally used when molding laminates and multilayer boards for printed wiring boards, and more specifically, a multistage press machine, a multistage vacuum press machine, a continuous molding machine, an autoclave molding machine, etc. are used. Then, there is a method of lamination molding at a temperature of about 180 to 350° C., a heating time of about 100 to 300 minutes, and a surface pressure of about 20 to 100 kgf/cm 2 .
  • a multilayer board can be obtained by laminating and molding a combination of the prepreg and/or resin sheet of this embodiment and a separately produced wiring board for an inner layer.
  • a method for manufacturing a multilayer board for example, copper foil with a thickness of about 35 ⁇ m is placed on both sides of one or more stacked prepreg and/or resin sheets of this embodiment, and the copper foil is laminated using the above-described molding method. After forming a foil-clad laminate, an inner layer circuit is formed, this circuit is subjected to blackening treatment to form an inner layer circuit board, and then this inner layer circuit board is combined with the prepreg and/or resin sheet of this embodiment.
  • a multilayer board can be produced by alternately arranging one sheet at a time, further arranging a copper foil as the outermost layer, and performing lamination molding under the above conditions, preferably under vacuum.
  • the metal foil-clad laminate of this embodiment can be suitably used as a printed wiring board.
  • the metal foil is not particularly limited, and examples include gold foil, silver foil, copper foil, tin foil, nickel foil, and aluminum foil. Among them, copper foil is preferred.
  • the copper foil is not particularly limited as long as it is generally used as a material for printed wiring boards, and examples thereof include copper foils such as rolled copper foil and electrolytic copper foil. Among these, electrolytic copper foil is preferred from the viewpoint of copper foil peel strength and formability of fine wiring.
  • the thickness of the copper foil is not particularly limited, and may be about 1.5 to 70 ⁇ m.
  • the printed wiring board of this embodiment has an insulating layer and a conductor layer disposed on one or both sides of the insulating layer, and the insulating layer contains a cured product of the resin composition of this embodiment.
  • the insulating layer preferably includes at least one of a layer formed from the resin composition of the present embodiment (a layer containing a cured product) and a layer formed from a prepreg (a layer containing a cured product).
  • a printed wiring board can be manufactured according to a conventional method, and the manufacturing method is not particularly limited, but for example, it can be manufactured using the metal foil-clad laminate described above. An example of a method for manufacturing a printed wiring board will be shown below.
  • the surface of the metal foil-clad laminate is etched to form an inner layer circuit, thereby producing an inner layer substrate.
  • the surface of the inner layer circuit of this inner layer board is subjected to surface treatment to increase adhesive strength as necessary, and then the required number of sheets of prepreg described above are layered on the surface of the inner layer circuit, and then metal foil for the outer layer circuit is laminated on the outside. Then, heat and press to form an integral mold. In this way, a multilayer laminate is manufactured in which an insulating layer made of the base material and the cured product of the resin composition of this embodiment is formed between the inner layer circuit and the metal foil for the outer layer circuit.
  • a plating metal film is formed on the wall of the hole to conduct the inner layer circuit and the metal foil for the outer layer circuit, and then the outer layer circuit is formed.
  • a printed wiring board is manufactured by performing an etching process on metal foil to form an outer layer circuit.
  • the printed wiring board obtained in the above manufacturing example has an insulating layer and a conductor layer formed on the surface of the insulating layer, and the insulating layer includes a cured product of the resin composition according to the present embodiment.
  • the prepreg according to this embodiment including the base material and the cured product of the resin composition of this embodiment impregnated or applied thereto
  • the layer of the resin composition of the metal foil-clad laminate of this embodiment including the base material and the cured product of the resin composition of this embodiment impregnated or applied thereto
  • the layer containing the cured product of the resin composition of the embodiment is composed of an insulating layer containing the cured product of the resin composition of the present embodiment.
  • the semiconductor device can be manufactured by mounting a semiconductor chip on the conductive portion of the printed wiring board of this embodiment.
  • the conductive location refers to a location on the multilayer printed wiring board that transmits electrical signals, and the location may be on the surface or embedded.
  • the semiconductor chip is not particularly limited as long as it is an electric circuit element made of a semiconductor.
  • the mounting method for semiconductor chips when manufacturing semiconductor devices is not particularly limited as long as the semiconductor chip functions effectively, but specifically, wire bonding mounting method, flip chip mounting method, bumpless buildup layer, etc.
  • Examples include a mounting method using (BBUL), a mounting method using an anisotropic conductive film (ACF), and a mounting method using a non-conductive film (NCF).
  • the average particle diameter (D50) of the surface-coated titanium oxide and the filler (fused spherical silica) were measured using a laser diffraction/scattering particle size distribution measuring device (Microtrac MT3300EXII (trade name), Microtrac Bell Co., Ltd.).
  • the particle size distribution was calculated by measuring the particle size distribution using a laser diffraction/scattering method using the following measurement conditions.
  • the resulting resin varnish was impregnated and coated on E-glass cloth (1031NT S640 (trade name), Arisawa Seisakusho Co., Ltd.) with a thickness of 0.094 mm, and dried by heating at 130°C for 3 minutes to a thickness of 0.094 mm.
  • a 1 mm prepreg was obtained.
  • 12 ⁇ m thick electrolytic copper foil (3EC-M3-VLP (product name), Mitsui Kinzoku Mining Co., Ltd.) was placed on the upper and lower surfaces of the obtained prepreg, and the surface pressure was 30 kgf/cm 2 and the temperature was 220°C.
  • a metal foil-clad laminate (double-sided copper-clad laminate) with a thickness of 0.124 mm was produced by vacuum pressing for 120 minutes and lamination molding.
  • the physical properties of the obtained prepreg and metal foil-clad laminate were measured according to the evaluation method, and the measurement results are shown in Table 1.
  • Example 2 8 parts by mass of the naphthol aralkyl cyanate ester compound obtained in Synthesis Example 1 (SN495V-CN, cyanate ester group equivalent: 261 g/eq.), 2,2-bis(4-(4-maleimidophenoxy)-phenyl) ) Propane (BMI-80 (trade name), K-I Kasei Co., Ltd.) 28 parts by mass, biphenylaralkyl maleimide compound (MIR-3000-70MT (trade name), Nippon Kayaku Co., Ltd.) 28 parts by mass, Naphthalene type epoxy resin (EPICLON EXA-4032-70M (trade name), epoxy equivalent: 150 g/eq., DIC Corporation) 12 parts by mass, modified polyphenylene ether compound (OPE-2St1200 (trade name), Mitsubishi Gas Chemical (trade name) Ltd.), a compound represented by formula (7) (in formula (7), X is formula (8), and -(Y-O)- and
  • the resulting resin varnish was impregnated and coated on E-glass cloth (1031NT S640 (trade name), Arisawa Seisakusho Co., Ltd.) with a thickness of 0.094 mm, and dried by heating at 130°C for 3 minutes to a thickness of 0.094 mm.
  • a 1 mm prepreg was obtained.
  • 12 ⁇ m thick electrolytic copper foil (3EC-M3-VLP (product name), Mitsui Kinzoku Mining Co., Ltd.) was placed on the upper and lower surfaces of the obtained prepreg, and the surface pressure was 30 kgf/cm 2 and the temperature was 220°C.
  • a metal foil-clad laminate (double-sided copper-clad laminate) with a thickness of 0.124 mm was produced by vacuum pressing for 120 minutes and lamination molding.
  • the physical properties of the obtained prepreg and metal foil-clad laminate were measured according to the evaluation method, and the measurement results are shown in Table 1.
  • Example 3 8 parts by mass of the naphthol aralkyl cyanate ester compound obtained in Synthesis Example 1 (SN495V-CN, cyanate ester group equivalent: 261 g/eq.), 2,2-bis(4-(4-maleimidophenoxy)-phenyl) ) Propane (BMI-80 (trade name), K-I Kasei Co., Ltd.) 28 parts by mass, biphenylaralkyl maleimide compound (MIR-3000-70MT (trade name), Nippon Kayaku Co., Ltd.) 28 parts by mass, Naphthalene type epoxy resin (EPICLON EXA-4032-70M (trade name), epoxy equivalent: 150 g/eq., DIC Corporation) 12 parts by mass, modified polyphenylene ether compound (OPE-2St1200 (trade name), Mitsubishi Gas Chemical (trade name) Ltd.), a compound represented by formula (7) (in formula (7), X is formula (8), and -(Y-O)- and
  • the resulting resin varnish was impregnated and coated on E-glass cloth (1031NT S640 (trade name), Arisawa Seisakusho Co., Ltd.) with a thickness of 0.094 mm, and dried by heating at 130°C for 3 minutes to a thickness of 0.094 mm.
  • a 1 mm prepreg was obtained.
  • 12 ⁇ m thick electrolytic copper foil (3EC-M3-VLP (product name), Mitsui Kinzoku Mining Co., Ltd.) was placed on the upper and lower surfaces of the obtained prepreg, and the surface pressure was 30 kgf/cm 2 and the temperature was 220°C.
  • a metal foil-clad laminate (double-sided copper-clad laminate) with a thickness of 0.124 mm was produced by vacuum pressing for 120 minutes and lamination molding.
  • the physical properties of the obtained prepreg and metal foil-clad laminate were measured according to the evaluation method, and the measurement results are shown in Table 1.
  • Example 4 8 parts by mass of the naphthol aralkyl cyanate ester compound obtained in Synthesis Example 1 (SN495V-CN, cyanate ester group equivalent: 261 g/eq.), 2,2-bis(4-(4-maleimidophenoxy)-phenyl) ) Propane (BMI-80 (trade name), K-I Kasei Co., Ltd.) 28 parts by mass, biphenylaralkyl maleimide compound (MIR-3000-70MT (trade name), Nippon Kayaku Co., Ltd.) 28 parts by mass, Naphthalene type epoxy resin (EPICLON EXA-4032-70M (trade name), epoxy equivalent: 150 g/eq., DIC Corporation) 12 parts by mass, modified polyphenylene ether compound (OPE-2St1200 (trade name), Mitsubishi Gas Chemical (trade name) Ltd.), a compound represented by formula (7) (in formula (7), X is formula (8), and -(Y-O)- and
  • the resulting resin varnish was impregnated and coated on E-glass cloth (1031NT S640 (trade name), Arisawa Seisakusho Co., Ltd.) with a thickness of 0.094 mm, and dried by heating at 130°C for 3 minutes to a thickness of 0.094 mm.
  • a 1 mm prepreg was obtained.
  • 12 ⁇ m thick electrolytic copper foil (3EC-M3-VLP (product name), Mitsui Kinzoku Mining Co., Ltd.) was placed on the upper and lower surfaces of the obtained prepreg, and the surface pressure was 30 kgf/cm 2 and the temperature was 220°C.
  • a metal foil-clad laminate (double-sided copper-clad laminate) with a thickness of 0.124 mm was produced by vacuum pressing for 120 minutes and lamination molding.
  • the physical properties of the obtained prepreg and metal foil-clad laminate were measured according to the evaluation method, and the measurement results are shown in Table 1.
  • Example 5 8 parts by mass of the naphthol aralkyl cyanate ester compound obtained in Synthesis Example 1 (SN495V-CN, cyanate ester group equivalent: 261 g/eq.), 2,2-bis(4-(4-maleimidophenoxy)-phenyl) ) Propane (BMI-80 (trade name), K-I Kasei Co., Ltd.) 28 parts by mass, biphenylaralkyl maleimide compound (MIR-3000-70MT (trade name), Nippon Kayaku Co., Ltd.) 28 parts by mass, Naphthalene type epoxy resin (EPICLON EXA-4032-70M (trade name), epoxy equivalent: 150 g/eq., DIC Corporation) 12 parts by mass, modified polyphenylene ether compound (OPE-2St1200 (trade name), Mitsubishi Gas Chemical (trade name) Ltd.), a compound represented by formula (7) (in formula (7), X is formula (8), and -(Y-O)- and
  • the resulting resin varnish was impregnated and coated on E-glass cloth (1031NT S640 (trade name), Arisawa Seisakusho Co., Ltd.) with a thickness of 0.094 mm, and dried by heating at 130°C for 3 minutes to a thickness of 0.094 mm.
  • a 1 mm prepreg was obtained.
  • 12 ⁇ m thick electrolytic copper foil (3EC-M3-VLP (product name), Mitsui Kinzoku Mining Co., Ltd.) was placed on the upper and lower surfaces of the obtained prepreg, and the surface pressure was 30 kgf/cm 2 and the temperature was 220°C.
  • a metal foil-clad laminate (double-sided copper-clad laminate) with a thickness of 0.124 mm was produced by vacuum pressing for 120 minutes and lamination molding.
  • the physical properties of the obtained prepreg and metal foil-clad laminate were measured according to the evaluation method, and the measurement results are shown in Table 1.
  • the resulting resin varnish was impregnated and coated on E-glass cloth (1031NT S640 (trade name), Arisawa Seisakusho Co., Ltd.) with a thickness of 0.094 mm, and dried by heating at 130°C for 3 minutes to a thickness of 0.094 mm.
  • a 1 mm prepreg was obtained.
  • 12 ⁇ m thick electrolytic copper foil (3EC-M3-VLP (product name), Mitsui Kinzoku Mining Co., Ltd.) was placed on the upper and lower surfaces of the obtained prepreg, and the surface pressure was 30 kgf/cm 2 and the temperature was 220°C.
  • a metal foil-clad laminate (double-sided copper-clad laminate) with a thickness of 0.124 mm was produced by vacuum pressing for 120 minutes and lamination molding.
  • the physical properties of the obtained prepreg and metal foil-clad laminate were measured according to the evaluation method, and the measurement results are shown in Table 1.
  • the resulting resin varnish was impregnated and coated on E-glass cloth (1031NT S640 (trade name), Arisawa Seisakusho Co., Ltd.) with a thickness of 0.094 mm, and dried by heating at 130°C for 3 minutes to a thickness of 0.094 mm.
  • a 1 mm prepreg was obtained.
  • 12 ⁇ m thick electrolytic copper foil (3EC-M3-VLP (product name), Mitsui Kinzoku Mining Co., Ltd.) was placed on the upper and lower surfaces of the obtained prepreg, and the surface pressure was 30 kgf/cm 2 and the temperature was 220°C.
  • a metal foil-clad laminate (double-sided copper-clad laminate) with a thickness of 0.124 mm was produced by vacuum pressing for 120 minutes and lamination molding.
  • the physical properties of the obtained prepreg and metal foil-clad laminate were measured according to the evaluation method, and the measurement results are shown in Table 1.
  • a prepreg was produced in the same manner as in Example 1, except that.
  • the blending ratio (content ratio) of surface-coated titanium oxide and filler (SC4500-SQ (trade name)) in the resin varnish is 26:74 (surface-coated titanium oxide:filler) by volume. Met.
  • An attempt was made to produce a metal foil-clad laminate using the obtained prepreg, but voids occurred over the entire surface of the metal foil-clad laminate, making it impossible to produce a metal foil-clad laminate.
  • a prepreg was produced in the same manner as in Example 1.
  • the blending ratio (content ratio) of surface-coated titanium oxide and filler (SC4500-SQ (trade name)) in the resin varnish is 26:74 (surface-coated titanium oxide:filler) by volume. Met.
  • An attempt was made to produce a metal foil-clad laminate using the obtained prepreg, but voids occurred over the entire surface of the metal foil-clad laminate, making it impossible to produce a metal foil-clad laminate.
  • This unclad plate was cut (downsized) into a size of 50 mm x 50 mm to obtain a sample for measurement.
  • This measurement sample was dried in a dryer at 150° C. for 1 hour. Thereafter, the dry mass M1 (g) of the measurement sample was measured.
  • the dried measurement sample was subjected to moisture absorption treatment for 168 hours in a constant temperature and humidity chamber (FX-222P (trade name), Kusumoto Kasei Co., Ltd.) at 85° C. and 85% RH (relative humidity). After 168 hours of moisture absorption treatment, the sample for measurement was taken out from the constant temperature and humidity chamber and weighed, and the mass when the weighed value became constant was defined as M2 (g).
  • the measurements of the dielectric constant (Dk) and the dielectric loss tangent (Df) were performed under an environment of a temperature of 23° C. ⁇ 1° C. and a humidity of 50% RH (relative humidity) ⁇ 5% RH.
  • this measurement sample was dried in a dryer at 120° C. for 1 hour.
  • the dried measurement sample was subjected to moisture absorption treatment for 168 hours in a constant temperature and humidity chamber (FX-222P (trade name), Kusumoto Kasei Co., Ltd.) at a temperature of 85° C. ⁇ 1° C. and a humidity of 85% RH ⁇ 5% RH.
  • FX-222P trade name
  • the dielectric constant (Dk) and dielectric loss tangent (Df) at 10 GHz were each measured using a network analyzer (Agilent 8722ES (trade name), Agilent Technologies, Inc.).
  • Prepreg GHPL-970LF (LD) (product name), Mitsubishi Gas Chemical Co., Ltd.) with a thickness of 0.06 mm is placed on the top and bottom surfaces of this unclad plate, and electrolytic copper with a thickness of 12 ⁇ m is placed on the top and bottom surfaces of the prepreg.
  • Foil (3EC-M3-VLP (trade name), Mitsui Kinzoku Mining Co., Ltd.) was placed, vacuum pressed for 120 minutes at a surface pressure of 30 kgf/cm 2 and a temperature of 220°C, and laminated to a thickness of 0.22 mm.
  • a metal foil-clad laminate double-sided copper-clad laminate was produced.
  • a sample for measurement was prepared.
  • the obtained measurement sample was treated using a pressure cooker tester (Model PC-3 (product name), Hirayama Seisakusho Co., Ltd.) for 2 hours at 121°C and in the presence of saturated steam at 2 atm, and then further The samples were dipped in a solder bath at 260° C. or 280° C. for 60 seconds, and visually observed for any abnormalities in appearance.
  • the resin composition of this embodiment can be used in cured products, prepregs, film-like underfill materials, resin sheets, laminates, build-up materials, non-conductive films, metal foil-clad laminates, printed wiring boards, and fiber-reinforced composite materials. It can be suitably used as a raw material for or in the manufacture of semiconductor devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

高誘電率及び低誘電正接を有し、優れた吸湿耐熱性、高いガラス転移温度、及び低熱膨張係数を有するプリント配線板の絶縁層の製造に好適に用いられる樹脂組成物、該樹脂組成物を用いて得られる、プリプレグ、樹脂シート、積層板、金属箔張積層板、並びにプリント配線板の提供を目的とする。本発明の樹脂組成物は、表面被覆酸化チタン(A)と、熱硬化性化合物(B)とを含有し、式(i)で算出される吸水率が0.40%以下である。吸水率(%)=[(M2-M1)/M1]×100・・・(i)

Description

樹脂組成物、プリプレグ、樹脂シート、積層板、金属箔張積層板、及びプリント配線板
 本発明は、樹脂組成物、プリプレグ、樹脂シート、積層板、金属箔張積層板、及びプリント配線板に関する。
 近年、PHS及び携帯電話等の情報通信機器の信号帯域、並びにコンピューターのCPUクロックタイムは、GHz帯に達し、高周波化が進行している。電気信号の誘電損失は、回路を形成する絶縁層の比誘電率の平方根、誘電正接、及び電気信号の周波数の積に比例する。そのため使用される信号の周波数が高いほど、誘電損失が大きくなる。誘電損失の増大は電気信号を減衰させて信号の信頼性を損なうので、これを抑制するために、絶縁層には誘電率及び誘電正接の小さな材料を選定する必要がある。
 一方、高周波回路の絶縁層には、遅延回路の形成、低インピーダンス回路における配線板のインピーダンス整合、配線パターンの細密化、及び基板自身にコンデンサを内蔵した複合回路化等の要求があり、絶縁層の高誘電率化が要求される場合がある。そのため、高誘電率及び低誘電正接な絶縁層を用いた電子部品が提案されている(例えば、特許文献1)。高誘電率及び低誘電正接な絶縁層は、セラミック粉末及び絶縁処理を施した金属粉末等の充填材を樹脂に分散させることによって形成されている。
特開2000-91717号公報
 しかしながら、絶縁層の比誘電率を高めるには比誘電率が高い充填材を配合することが求められるが、同時に誘電正接も高くなるため、高周波化した信号の伝送損失が大きくなるという問題がある。
 また、充填材及び樹脂が高吸湿性であると、プリント配線板の誘電特性及び製造性が悪化するとの問題を有する。
 更に、吸湿耐熱性が低い絶縁層であると、リフロー時に絶縁層に含まれる水分が蒸発することでボイドが発生し、積層板の製造時において、層間剥離を引き起こす。そのため、高い信頼性が必要とされる電子材料分野では、優れた吸湿耐熱性を有する絶縁層であることが要求される。
 そして、ガラス転移温度(Tg)が低く、熱膨張係数が高い絶縁層であると、積層板の製造時において、反りや界面剥離を引き起こす。そのため、プリント配線板等に用いられる樹脂組成物においては、得られる絶縁層が、高いガラス転移温度及び低熱膨張係数を有することも重要である。
 本発明は、上述の課題を解決するためになされたものであり、高誘電率及び低誘電正接を有し、優れた吸湿耐熱性、高いガラス転移温度、及び低熱膨張係数を有するプリント配線板の絶縁層の製造に好適に用いられる樹脂組成物、該樹脂組成物を用いて得られる、プリプレグ、樹脂シート、積層板、金属箔張積層板、並びにプリント配線板を提供することを目的とする。
 本発明者らは、従来技術が有する上記課題を解決するために鋭意検討した結果、特定の樹脂組成物が、前記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下のとおりである。
 [1]表面被覆酸化チタン(A)と、熱硬化性化合物(B)とを含有し、下記式(i)で算出される吸水率が0.40%以下である、樹脂組成物。
 吸水率(%)=[(M2-M1)/M1]×100・・・(i)
 (式(i)中、M1は、前記樹脂組成物を、厚さ0.094mmのEガラスクロスに含浸塗工した後、130℃で3分間加熱乾燥して得られた厚さ0.1mmのプリプレグを2枚積層し、面圧30kgf/cm及び温度220℃で120分間の真空プレスを行って積層成形した積層板を150℃で1時間乾燥したときの、乾燥後の積層板(a)の質量(g)を示す。M2は、前記乾燥後の積層板(a)を、85℃及び85%RHにて、168時間吸湿処理した後の質量(g)を示す。)。
 [2]前記表面被覆酸化チタン(A)が、酸化チタン粒子の表面に、有機層及び/又は無機酸化物層を有する、[1]に記載の樹脂組成物。
 [3]前記表面被覆酸化チタン(A)が、前記無機酸化物層の表面に前記有機層を更に有する、[2]に記載の樹脂組成物。
 [4]前記有機層と前記無機酸化物層の合計量が、前記表面被覆酸化チタン(A)100質量%に対して、0.1~10質量%である、[2]又は[3]に記載の樹脂組成物。
 [5]前記無機酸化物層が、シリカを含む層、ジルコニアを含む層、及びアルミナを含む層からなる群より選ばれる1種以上である、[2]~[4]のいずれかに記載の樹脂組成物。
 [6]前記有機層が、有機ケイ素化合物で表面処理された層である、[2]~[5]のいずれかに記載の樹脂組成物。
 [7]前記有機ケイ素化合物が、シランカップリング剤、オルガノシラン、及びオルガノポリシロキサンからなる群より選ばれる1種以上を含む、[6]に記載の樹脂組成物。
 [8]前記表面被覆酸化チタン(A)中の前記酸化チタンの含有量が、前記表面被覆酸化チタン(A)100質量%に対して、90~99.9質量%である、[2]~[7]のいずれかに記載の樹脂組成物。
 [9]前記表面被覆酸化チタン(A)の含有量が、樹脂組成物中の樹脂固形分の合計100質量部に対して、50~500質量部である、[1]~[8]のいずれかに記載の樹脂組成物。
 [10]前記熱硬化性化合物(B)が、マレイミド化合物、エポキシ化合物、変性ポリフェニレンエーテル化合物、シアン酸エステル化合物、フェノール化合物、アルケニル置換ナジイミド化合物、オキセタン樹脂、ベンゾオキサジン化合物、及び重合可能な不飽和基を有する化合物からなる群より選ばれる1種以上を含む、[1]~[9]のいずれかに記載の樹脂組成物。
 [11]前記マレイミド化合物が、ビス(4-マレイミドフェニル)メタン、2,2-ビス(4-(4-マレイミドフェノキシ)-フェニル)プロパン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、下記式(1)で表されるマレイミド化合物、及び下記式(2)で表されるマレイミド化合物からなる群より選ばれる1種以上を含む、[10]に記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000004
 (式(1)中、Rは、各々独立して、水素原子又はメチル基を示し、n1は、1~10の整数である。)。
Figure JPOXMLDOC01-appb-C000005
 (式(2)中、Rは、各々独立して、水素原子、炭素数1~5のアルキル基、又はフェニル基を示し、n2は、平均値であり、1<n2≦5を示す。)。
 [12]前記エポキシ化合物が、ビフェニルアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂、及びナフチレンエーテル型エポキシ樹脂からなる群より選ばれる1種以上を含む、[10]又は[11]に記載の樹脂組成物。
 [13]前記変性ポリフェニレンエーテル化合物が、下記式(3)で表される化合物を含む、[10]~[12]のいずれかに記載の樹脂組成物。
Figure JPOXMLDOC01-appb-C000006
 (式(3)中、Xは芳香族基を示し、-(Y-O)m-はポリフェニレンエーテル部分を示す。R1、R2、及びR3は、各々独立に、水素原子、アルキル基、アルケニル基、又はアルキニル基を示す。mは1~100の整数を示し、nは1~6の整数を示し、qは1~4の整数を示す。)。
 [14]前記シアン酸エステル化合物が、フェノールノボラック型シアン酸エステル化合物、ナフトールアラルキル型シアン酸エステル化合物、ナフチレンエーテル型シアン酸エステル化合物、キシレン樹脂型シアン酸エステル化合物、ビスフェノールM型シアン酸エステル化合物、ビスフェノールA型シアン酸エステル化合物、ジアリルビスフェノールA型シアン酸エステル化合物、ビスフェノールE型シアン酸エステル化合物、ビスフェノールF型シアン酸エステル化合物、及びビフェニルアラルキル型シアン酸エステル化合物、並びにこれらのシアン酸エステル化合物のプレポリマー、又はポリマーからなる群より選ばれる1種以上を含む、[10]~[13]のいずれかに記載の樹脂組成物。
 [15]前記表面被覆酸化チタン(A)とは異なる充填材(C)を更に含有する、[1]~[14]のいずれかに記載の樹脂組成物。
 [16]前記充填材(C)が、シリカ、アルミナ、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、窒化アルミニウム、窒化ホウ素、ベーマイト、水酸化アルミニウム、モリブデン酸亜鉛、シリコーンゴムパウダー、及びシリコーン複合パウダーからなる群より選ばれる1種以上を含む、[15]に記載の樹脂組成物。
 [17]前記充填材(C)の含有量が、樹脂組成物中の樹脂固形分の合計100質量部に対して、50~300質量部である、[15]又は[16]に記載の樹脂組成物。
 [18]プリント配線板用である、[1]~[17]のいずれかに記載の樹脂組成物。
 [19]基材と、基材に含浸又は塗布された、[1]~[18]のいずれかに記載の樹脂組成物と、を含む、プリプレグ。
 [20][1]~[18]のいずれかに記載の樹脂組成物を含む、樹脂シート。
 [21][19]に記載のプリプレグ、及び[20]に記載の樹脂シートからなる群より選ばれる1種以上を含む、積層板。
 [22][21]に記載の積層板と、該積層板の片面又は両面に配された金属箔と、を含む、金属箔張積層板。
 [23]絶縁層と、該絶縁層の片面又は両面に配された導体層と、を有し、該絶縁層が、[1]~[18]のいずれかに記載の樹脂組成物の硬化物を含む、プリント配線板。
 本発明の樹脂組成物によれば、高誘電率及び低誘電正接を有し、優れた吸湿耐熱性、高いガラス転移温度、及び低熱膨張係数を有するプリント配線板の絶縁層の製造に好適に用いられる樹脂組成物、該樹脂組成物を用いて得られる、プリプレグ、樹脂シート、積層板、金属箔張積層板、並びにプリント配線板を提供できる。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明はその要旨の範囲内で、適宜に変形して実施できる。
 本実施形態において、「樹脂固形分」又は「樹脂組成物中の樹脂固形分」とは、特に断りのない限り、樹脂組成物における、表面被覆酸化チタン(A)、充填材(C)、添加剤(シランカップリング剤、湿潤分散剤、硬化促進剤、及びその他の成分)、並びに溶剤(溶媒)を除いた樹脂成分をいう。「樹脂固形分の合計100質量部」又は「樹脂組成物中の樹脂固形分の合計100質量部」とは、樹脂組成物における、表面被覆酸化チタン(A)、充填材(C)、添加剤(シランカップリング剤、湿潤分散剤、硬化促進剤、及びその他の成分)、並びに溶剤(溶媒)を除いた樹脂成分の合計が100質量部であることをいう。
〔樹脂組成物〕
 本実施形態の樹脂組成物は、表面被覆酸化チタン(A)と、熱硬化性化合物(B)とを含有し、下記式(i)で算出される吸水率が0.40%以下である、樹脂組成物。
 吸水率(%)=[(M2-M1)/M1]×100・・・(i)
 式(i)中、M1は、前記樹脂組成物を、厚さ0.094mmのEガラスクロスに含浸塗工した後、130℃で3分間加熱乾燥して得られた厚さ0.1mmのプリプレグを2枚積層し、面圧30kgf/cm及び温度220℃で120分間の真空プレスを行って積層成形した積層板を150℃で1時間乾燥したときの、乾燥後の積層板(a)の質量(単位:g)を示す。M2は、前記乾燥後の積層板(a)を、85℃及び85%RHにて、168時間吸湿処理した後の質量(単位:g)を示す。なお、吸水率の具体的な測定及び算出方法は、実施例を参照してもよい。
 本実施形態の樹脂組成物によれば、高誘電率及び低誘電正接を有し、優れた吸湿耐熱性、高いガラス転移温度、及び低熱膨張係数を有する硬化物を提供することができる。すなわち、本実施形態の樹脂組成物を用いることにより、硬化時に、高誘電率及び低誘電正接を有し、優れた吸湿耐熱性、高いガラス転移温度、及び低熱膨張係数を有する、プリプレグ、樹脂シート、積層板、金属箔張積層板、及びプリント配線板を好適に製造できる。このため、本実施形態の樹脂組成物は、プリント配線板の絶縁層の製造により好適に用いられる。
 特に、本発明者らは、表面被覆酸化チタン(A)と、熱硬化性化合物(B)とを含有し、特定の式(i)で算出される吸水率が0.40%以下である、樹脂組成物をプリント配線板の絶縁層に用いることで、リフロー時において絶縁層に含まれる水分量が好適に抑制されるためボイドが発生し難く、積層板の製造時において、層間剥離を引き起こし難いことを見出した。そのため、本実施形態によれば、優れた吸湿耐熱性、低熱膨張係数、及び高いガラス転移温度、並びに優れた誘電特性(高誘電率及び低誘電正接)を有するプリント配線板等を得ることができる。この理由について定かではないが、本発明者らは次のように推定している。通常、積層板の吸水性は、樹脂組成物の硬化物の内部構造だけでなく、硬化反応時の架橋形成に寄与せずに残存した官能基の量等にも影響される。そのため、絶縁層中に未反応の官能基や、加水分解した樹脂成分に由来する官能基が多く存在すると、絶縁層は比較的高吸水性となる傾向にある。一方、これらの官能基を少なくすることのみを考慮して架橋密度を高めると、絶縁層の応力緩和が阻害され、所望の物性が得られない。しかし、特定の式(i)で算出される吸水率が0.40%以下である絶縁層は、これらの官能基の量が適度に制御されるため、リフロー時においてボイドが発生し難く、硬化不良が起こり難い。そのため、得られる絶縁層は、所望の特性を得ることができると推定している。ただし、理由はこれに限定されない。
 より高い誘電率及びより低い誘電正接を有し、より優れた吸湿耐熱性、より高いガラス転移温度、及びより低い熱膨張係数を有する樹脂組成物の硬化物が得られることから、上記式(i)で算出される吸水率は、0.39%以下であることが好ましく、0.38%以下であることが好ましい。なお、前記吸水率の下限は特に限定されないが、例えば、0.01%以上である。
 上記吸水率の具体的な測定方法は、実施例に記載のとおりである。
 <表面被覆酸化チタン(A)>
 本実施形態の樹脂組成物は、表面被覆酸化チタン(A)を含む。
 表面被覆酸化チタン(A)は、表面被覆酸化チタン(A)のコアとなる酸化チタン粒子(以下、単に「酸化チタン粒子」又は「コア粒子」と称する)の表面に、有機層及び/又は無機酸化物層を有していることが好ましい。表面被覆酸化チタン(A)は、1種を単独で、又は粒径や表面状態の異なる表面被覆酸化チタンを2種以上組み合わせて用いてもよい。
 表面被覆酸化チタン(A)の平均粒子径(D50)は、分散性の点から、好ましくは0.1~5μmであり、より好ましくは0.15~1μmである。なお、本明細書において、平均粒子径(D50)は、レーザー回折・散乱式の粒度分布測定装置により、分散媒中に所定量投入された粉体の粒度分布を測定し、小さい粒子から体積積算して全体積の50%に達したときの値を意味する。平均粒子径(D50)は、レーザー回折・散乱法により粒度分布を測定することで算出することができるが、具体的な測定方法は、実施例を参照できる。
 表面被覆酸化チタン(A)の形状は、特に限定されないが、鱗片状、球状、板状、及び不定形等が挙げられる。後述の熱硬化性化合物(B)とより良好な分散性を有し、硬化時に、より優れた吸湿耐熱性、低熱膨張係数、及び高いガラス転移温度、並びにより優れた誘電特性(高誘電率及び低誘電正接)を有する樹脂組成物が得られ、更に、より好適な表面硬度を有する絶縁層が得られることから、形状は、球状であることが好ましい。
 表面被覆酸化チタン(A)の比誘電率は、20以上が好ましく、25以上がより好ましい。比誘電率が20以上であると、高い比誘電率を有する絶縁層が得られる傾向にある。なお、本実施形態において、表面被覆酸化チタン(A)の比誘電率は、空洞共振器法により測定した10GHzでの値である。本実施形態において、表面被覆酸化チタン(A)の比誘電率は、Bruggeman式(複合則)を用いて算出することができる。
 表面被覆酸化チタン(A)の誘電正接は、0.01以下が好ましく、0.008以下がより好ましい。誘電正接が0.01以下であると、低い誘電正接を有する絶縁層が得られる傾向にある。なお、本実施形態において、表面被覆酸化チタン(A)の誘電正接は、空洞共振器法により測定した10GHzでの値である。本実施形態において、表面被覆酸化チタン(A)の誘電正接は、Bruggeman式(複合則)を用いて算出することができる。
 樹脂組成物の吸水性をより抑制することができ、樹脂成分との密着性がより向上し、樹脂組成物中における表面被覆酸化チタン(A)の凝集をより緩和でき、分散性がより向上し、優れた誘電特性(高誘電率及び低誘電正接)並びに優れた吸湿耐熱性を有する硬化物が得られる点から、表面被覆酸化チタン(A)中の有機層と無機酸化物層の合計量(被覆量)は、表面被覆酸化チタン(A)100質量%に対して、合計で、0.1~10質量%であることが好ましく、1~8質量%がより好ましく、1~4質量%であることが更に好ましい。
 樹脂組成物の吸水性をより抑制することができ、樹脂成分との密着性がより向上し、樹脂組成物中における表面被覆酸化チタン(A)の凝集をより緩和でき、分散性がより向上し、優れた誘電特性(高誘電率及び低誘電正接)並びに優れた吸湿耐熱性を有する硬化物が得られる点から、表面被覆酸化チタン(A)中の酸化チタンの含有量は、表面被覆酸化チタン(A)100質量%に対して、90~99.9質量%であることが好ましく、92~99質量%であることがより好ましく、96~99質量%であることが更に好ましい。
 コア粒子としては、一酸化チタン(TiO)、三酸化二チタン(Ti)、及び二酸化チタン(TiO)等が挙げられる。これらの中でも、二酸化チタンが好ましい。二酸化チタンとしては、ルチル型又はアナターゼ型の結晶構造を有するものが好ましく、ルチル型の結晶構造を有するものがより好ましい。
 コア粒子の平均粒子径(D50)は、分散性の点から、好ましくは0.10~0.45μmであり、より好ましくは0.15~0.25μmである。本実施形態において、コア粒子の平均粒子径(D50)は、単一粒子による一次粒子の粒子径の平均値から求める。
 表面被覆酸化チタン(A)は、通常、表面処理剤を用いて、コア粒子の表面に、有機層又は無機酸化物層を被覆することで得られる。また、コア粒子の表面に被覆された有機層又は無機酸化物層の表面には、表面処理剤を用いて、有機層及び/又は無機酸化物層を更に被覆してもよい。樹脂組成物の吸水性をより抑制することができ、樹脂成分との密着性がより向上し、樹脂組成物中における表面被覆酸化チタン(A)の凝集をより緩和でき、分散性がより向上し、優れた誘電特性(高誘電率及び低誘電正接)並びに優れた吸湿耐熱性を有する硬化物が得られる点から、表面被覆酸化チタン(A)は、コア粒子の表面に被覆された無機酸化物層の表面に、有機層を更に有することが好ましい。被覆方法としては、無機処理及び有機処理が挙げられる。表面処理剤は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
 無機処理に用いる表面処理剤としては、例えば、アルミニウム、ケイ素、ジルコニウム、スズ、チタニウム、アンチモン、亜鉛、コバルト、及びマンガン等の金属の、オキソ酸(例えば、ケイ酸、及びアルミン酸)、オキソ酸の金属塩(例えば、ケイ酸ナトリウム、及びアルミン酸ナトリウム)、酸化物、水酸化物、並びに水和酸化物等が挙げられる。無機処理によって得られる表面被覆酸化チタン(A)は、酸化チタン粒子の表面、無機酸化物層の表面、又は後述の有機層の表面に無機酸化物層を有する。
 有機処理に用いる表面処理剤としては、例えば、オルガノシラン、シランカップリング剤、及びオルガノポリシロキサン等の有機ケイ素化合物;チタンカップリング剤等の有機チタン化合物;有機酸、ポリオール、及びアルカノールアミン等の有機物等が挙げられる。有機処理によって得られる表面被覆酸化チタン(A)は、酸化チタン粒子の表面、有機層の表面、又は無機酸化物層の表面に、有機層を有する。
 オルガノシランとしては、例えば、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリメトキシシラン、デシルトリメトキシシラン、3-クロロプロピルトリエトキシシラン、フェニルトリエトキシシラン、及びトリフルオロプロピルトリメトキシシラン等のアルコキシシラン類等が挙げられる。
 シランカップリング剤としては、例えば、3-アミノプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、及びN-フェニル-3-アミノプロピルトリメトキシシラン等のアミノシラン類;3-グリシドキシプロピルトリメトキシシラン、及び2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン類;3-(メタクリロイルオキシプロピル)トリメトキシシラン等のメタクリルシラン類;ビニルトリメトキシシラン、ビニルトリエトキシシラン、及びビニルトリクロロシラン等のビニルシラン類;3-メルカプトプロピルトリメトキシシラン等のメルカプトシラン類等が挙げられる。
 オルガノポリシロキサンとしては、より均一な有機層を形成できることから、シリコーンオイルが好ましい。シリコーンオイルとしては、例えば、アルキルシリコーン、アルキル水素シリコーン、アルコキシシリコーン、及び変性シリコーンが挙げられる。
 アルキルシリコーンとしては、例えば、ジメチルシリコーンが挙げられる。
 アルキル水素シリコーンとしては、例えば、メチル水素シリコーン、及びエチル水素シリコーンが挙げられる。
 アルコキシシリコーンとしては、アルコキシ基が直接又は二価炭化水素基を介してケイ素原子に結合したアルコキシシリル基を含むシリコーン化合物が好ましい。このようなシリコーン化合物としては、例えば、直鎖状、環状、網状、及び一部分岐を有する直鎖状のオルガノポリシロキサンが挙げられる。これらの中でも、直鎖状オルガノポリシロキサンが好ましく、シリコーン主鎖に対してアルコキシ基が直接結合する分子構造を有するオルガノポリシロキサンがより好ましい。アルコキシシリコーンとしては、例えば、メトキシシリコーン、及びエトキシシリコーンが挙げられる。
 変性シリコーンとしては、例えば、アミノ変性シリコーン、エポキシ変性シリコーン、及びメルカプト変性シリコーン等が挙げられる。
 チタンカップリング剤としては、例えば、イソプロピルトリイソステアロイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、及びイソプロピルトリドデシルベンゼンスルホニルチタネート等が挙げられる。
 有機酸としては、例えば、アジピン酸、テレフタル酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ポリヒドロキシステアリン酸、オレイン酸、サリチル酸、リンゴ酸、及びマレイン酸等、並びにこれらの金属塩等が挙げられる。
 ポリオールとしては、例えば、トリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、トリメチロールプロパンエトキシレート、及びペンタエリスリトール等が挙げられる。
 アルカノールアミンとしては、例えば、モノエタノールアミン、モノプロパノールアミン、ジエタノールアミン、ジプロパノールアミン、トリエタノールアミン、及びトリプロパノールアミン等が挙げられる。
 熱硬化性化合物(B)とより良好な分散性を有し、硬化時に一層優れた吸湿耐熱性、低熱膨張係数、及び高いガラス転移温度、並びに一層優れた誘電特性(高誘電率及び低誘電正接)を有する樹脂組成物が得られ、更に、一層好適な表面硬度を有する絶縁層が得られることから、表面被覆酸化チタン(A)としては、酸化チタン粒子の表面に無機酸化物層を有し、無機酸化物層が、シリカを含む層、ジルコニアを含む層、及びアルミナを含む層からなる群より選ばれる1種以上であることが好ましく、無機酸化物層が、シリカを含む層及びアルミナを含む層からなる群より選ばれる1種以上であることがより好ましい。
 表面被覆酸化チタン(A)は、無機酸化物層を2層以上有していてもよい。無機酸化物層を2層以上有する場合、酸化チタン粒子に近い側に位置する無機酸化物層は、主としてコア粒子である酸化チタン粒子による吸水性をより一層抑制でき、酸化チタン粒子から遠い側に位置する無機酸化物層は、主として樹脂成分との密着性、樹脂組成物中における表面被覆酸化チタン(A)の凝集緩和、及び分散性をより向上させることができる構成とすることが、好ましい。
 このような観点から、表面被覆酸化チタン(A)が無機酸化物層を2層以上有する場合、コア粒子に近い側に位置する無機酸化物層はシリカを含む層及びジルコニアを含む層からなる群より選ばれる1種以上であり、コア粒子から遠い側に位置する無機酸化物層はアルミナを含む層であることが好ましく、コア粒子に近い側に位置する無機酸化物層はシリカを含む層であり、コア粒子から遠い側に位置する無機酸化物層はアルミナを含む層であることがより好ましい。
 樹脂組成物の吸水性をより一層抑制でき、硬化物の耐熱性に優れる点から、無機酸化物層は、表面被覆酸化チタン(A)100質量%に対して、合計で、0.1~10質量%であることが好ましく、より好ましくは0.3~7.5質量%であり、更に好ましくは0.4~5.0質量%であり、更により好ましくは0.5~4.0質量%である。
 無機酸化物層は、コア粒子である酸化チタンによる吸水性を抑える作用がある。一方、無機酸化物であるシリカ、ジルコニア、及びアルミナは水和性無機物であるため、無機酸化物の中でも比較的吸水率が高く、リフロー中に水分が蒸発し易い傾向にある。蒸発した水分は、絶縁層におけるボイド発生の原因となる。このようなことから、表面被覆酸化チタン(A)は、無機酸化物層の表面に有機層を有することが好ましい。有機層は、コア粒子である酸化チタン及び無機酸化物層の吸水性を一層低下させ、樹脂組成物の吸水性を一層抑制させることができる。そのため、リフロー中において、絶縁層からの水分の蒸発を抑制することができる。また、有機層は、樹脂組成物中における表面被覆酸化チタン(A)の凝集をより緩和し、分散性を一層向上させるという効果も奏する。
 有機層としては、樹脂組成物中における表面被覆酸化チタン(A)の凝集をより一層緩和でき、分散性がより一層向上し、より優れた撥水性によって積層板の吸水率を低下させることができる点から、有機ケイ素化合物で表面処理された層であることが好ましい。
 有機ケイ素化合物としては、シランカップリング剤、オルガノシラン、及びオルガノポリシロキサンからなる群より選ばれる1種以上を含むことが好ましい。これらの表面処理剤を用いて表面処理することで、得られる有機層は、シロキサン構造を有する層となる。シロキサン構造を有する層は、樹脂組成物中における表面被覆酸化チタン(A)の凝集を更に一層緩和でき、分散性が更に一層向上し、更に優れた撥水性によって積層板の吸水率を低下させることができる傾向にある。また、オルガノポリシロキサンとしては、より均一なシロキサン構造を有する層を形成でき、上述の効果を一層奏すことから、シリコーンオイルが好ましく、シリコーンオイルの中でもジメチルシリコーンがより好ましい。なお、この場合、有機層がシロキサン構造を有する層となるのであれば、上記以外の表面処理剤を用いてもよい。
 樹脂組成物中における表面被覆酸化チタン(A)の凝集をより一層緩和でき、分散性がより一層向上することから、有機層は、表面被覆酸化チタン(A)100質量%に対して、合計で、0.1~10質量%であることが好ましく、より好ましくは0.5~7.5質量%であり、更に好ましくは0.6~6.0質量%であり、更により好ましくは0.7~5.0質量%である。
 表面被覆酸化チタン(A)が無機酸化物層と有機層とを有する場合、表面被覆酸化チタン(A)の被覆層は、無機酸化物層と、有機層との2層構造であってもよい。このような層構造とすることで、酸化チタンの触媒活性(例えば、光触媒活性及び金属触媒活性)の抑制及び撥水性の効果を奏する。この場合、無機酸化物層としては、シリカを含む層、ジルコニアを含む層、及びアルミナを含む層からなる群より選ばれる1種以上であることが好ましく、樹脂との親和性を一層高めつつ、酸化チタンの触媒活性を一層抑制できることから、アルミナを含む層であることがより好ましい。有機層は、耐熱性及び化学安定性に優れることから、シロキサン構造を有することが好ましい。このような表面被覆酸化チタン(A)を用いることで、樹脂組成物の吸水性をより一層抑制することができ、樹脂成分との密着性がより一層向上し、樹脂組成物中における表面被覆酸化チタン(A)の凝集をより一層緩和でき、熱硬化性化合物(B)とより一層良好な分散性を有し、硬化時に、より一層優れた吸湿耐熱性、低熱膨張係数、及び高いガラス転移温度、並びにより一層優れた誘電特性(高誘電率及び低誘電正接)を有する樹脂組成物が得られ、更に、より一層好適な表面硬度を有する絶縁層が得られる。
 このような表面被覆酸化チタン(A)としては、市販品を用いることができる。市販品としては、例えば、R-22L、R-11P、及びR-39(以上、商品名、堺化学工業(株))が挙げられる。
 表面被覆酸化チタン(A)が無機酸化物層と有機層とを有する場合、コア粒子に近い側に位置する無機酸化物層はシリカを含む層であり、次いで、無機酸化物層はアルミナを含む層であり、コア粒子から最も遠い側に位置する有機層はシロキサン構造を有する層であることが好ましい。このような表面被覆酸化チタン(A)を用いることで、樹脂組成物の吸水性をより一層抑制することができ、樹脂成分との密着性がより一層向上し、樹脂組成物中における表面被覆酸化チタン(A)の凝集をより一層緩和でき、熱硬化性化合物(B)とより一層良好な分散性を有し、硬化時に、より一層優れた吸湿耐熱性、低熱膨張係数、及び高いガラス転移温度、並びにより一層優れた誘電特性(高誘電率及び低誘電正接)を有する樹脂組成物が得られ、更に、より一層好適な表面硬度を有する絶縁層が得られる。
 このような表面被覆酸化チタン(A)としては、市販品を用いることができる。市販品としては、例えば、CR-63(商品名、石原産業(株))が挙げられる。
 表面被覆酸化チタン(A)の含有量は、樹脂組成物中の樹脂固形分の合計100質量部に対して、50~500質量部であることが好ましく、好ましくは60~450質量部であり、より好ましくは70~400質量部である。表面被覆酸化チタン(A)の含有量が上記範囲内であることにより、熱硬化性化合物(B)とより一層良好な分散性を有し、硬化時により一層優れた吸湿耐熱性、低熱膨張係数、及び高いガラス転移温度、並びにより一層優れた誘電特性(高誘電率及び低誘電正接)を有する樹脂組成物が得られ、更に、より一層好適な表面硬度を有する絶縁層が得られる傾向にある。
 <熱硬化性化合物(B)>
 本実施形態の樹脂組成物は、熱硬化性化合物(B)を含む。
 熱硬化性化合物(B)としては、熱硬化性の化合物又は樹脂であれば特に限定されない。熱硬化性の化合物又は樹脂は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
 表面被覆酸化チタン(A)とより一層良好な分散性を有し、硬化時により一層優れた吸湿耐熱性、低熱膨張係数、及び高いガラス転移温度、並びにより優れた誘電特性(高誘電率及び低誘電正接)を有する樹脂組成物が得られることから、熱硬化性化合物(B)としては、マレイミド化合物、エポキシ化合物、変性ポリフェニレンエーテル化合物、シアン酸エステル化合物、フェノール化合物、アルケニル置換ナジイミド化合物、オキセタン樹脂、ベンゾオキサジン化合物、及び重合可能な不飽和基を有する化合物からなる群より選ばれる1種以上の熱硬化性の化合物又は樹脂(以下、単に「熱硬化性樹脂」とも称する)を含むことが好ましい。これらの熱硬化性樹脂は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
 表面被覆酸化チタン(A)とより一層良好な分散性を有し、硬化時により一層優れた吸湿耐熱性、低熱膨張係数、及び高いガラス転移温度、並びにより一層優れた誘電特性(高誘電率及び低誘電正接)を有する樹脂組成物が得られることから、熱硬化性化合物(B)としては、マレイミド化合物、エポキシ化合物、変性ポリフェニレンエーテル化合物、シアン酸エステル化合物、フェノール化合物、及び重合可能な不飽和基を有する化合物からなる群より選ばれる1種以上を含むことがより好ましく、マレイミド化合物、エポキシ化合物、変性ポリフェニレンエーテル化合物、及びシアン酸エステル化合物からなる群より選ばれる1種以上であることが更に好ましい。
 表面被覆酸化チタン(A)は、表面被覆されていることにより、酸化チタンが有するLewis酸性による求電子性を好適に抑制することができる。そのため、樹脂組成物中において、表面被覆酸化チタン(A)と熱硬化性化合物(B)とが近接しても、熱硬化性化合物(B)の重合が意図して進行せず、硬化不良を防止することが可能となる。そのうえ、表面被覆酸化チタン(A)は、表面被覆されていることにより、熱硬化性化合物(B)に対する加水分解も好適に抑制できるため、絶縁層中において未反応の官能基量を減少させることができる。従って、本実施形態の樹脂組成物によれば、リフロー時において絶縁層に含まれる水分量が好適に抑制されるためボイドが発生し難く、積層板の製造時において、層間剥離を引き起こし難い。熱硬化性化合物(B)としては、重合の進行及び加水分解をより一層抑制することが可能となるため、硬化時に更に一層優れた吸湿耐熱性、低熱膨張係数、及び高いガラス転移温度、並びに更に一層優れた誘電特性(高誘電率及び低誘電正接)を有する樹脂組成物が得られることから、マレイミド化合物、及びシアン酸エステル化合物からなる群より選ばれる1種以上を含むことが更により好ましい。
 表面被覆酸化チタン(A)が更に一層良好に分散し、硬化時に更に一層優れた吸湿耐熱性、低熱膨張係数、及び高いガラス転移温度、並びに誘電特性(低誘電正接)を有する樹脂組成物が得られることから、表面被覆酸化チタン(A)と熱硬化性化合物(B)とは、質量比(表面被覆酸化チタン(A):熱硬化性化合物(B))で表して、30:70~90:10であることが好ましく、35:65~85:15であることがより好ましく、40:60~80:20であることが更に好ましい。
 (マレイミド化合物)
 表面被覆酸化チタン(A)がより一層良好に分散し、硬化時により一層優れた吸湿耐熱性、低熱膨張係数、及び高いガラス転移温度、並びにより一層優れた誘電特性(高誘電率及び低誘電正接)を有する樹脂組成物が得られることから、本実施形態の樹脂組成物は、マレイミド化合物を含むことが好ましい。また、マレイミド化合物は、表面被覆酸化チタン(A)による、重合の進行及び加水分解の抑制効果がより顕著に得られることからも好ましい。更に、樹脂組成物がマレイミド化合物を含むと、樹脂組成物の吸水性をより抑制することができ、表面被覆酸化チタン(A)との密着性がより向上し、樹脂組成物中における表面被覆酸化チタン(A)の凝集をより緩和でき、分散性がより向上し、優れた誘電特性(高誘電率及び低誘電正接)並びに優れた吸湿耐熱性を有する硬化物が得られる傾向にある。
 マレイミド化合物は、1分子中にマレイミド基を1個以上有する化合物であれば、公知のものを適宜用いることができ、その種類は特に限定されない。マレイミド化合物の1分子中のマレイミド基の数は、1以上であり、好ましくは2以上である。マレイミド化合物は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
 マレイミド化合物としては、例えば、N-フェニルマレイミド、N-ヒドロキシフェニルマレイミド、ビス(4-マレイミドフェニル)メタン、2,2-ビス(4-(4-マレイミドフェノキシ)-フェニル)プロパン、ビス(3,5-ジメチル-4-マレイミドフェニル)メタン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ビス(3,5-ジエチル-4-マレイミドフェニル)メタン、式(1)で表されるマレイミド化合物、及び式(2)で表されるマレイミド化合物、並びにこれらマレイミド化合物のプレポリマー、及び上記マレイミド化合物とアミン化合物のプレポリマー等が挙げられる。
 これらの中でも、表面被覆酸化チタン(A)がより一層良好に分散し、硬化時により一層優れた吸湿耐熱性、低熱膨張係数、及び高いガラス転移温度、並びにより一層優れた誘電特性(高誘電率及び低誘電正接)を有する樹脂組成物が得られ、更に、より一層好適な表面硬度を有する絶縁層が得られることから、マレイミド化合物は、ビス(4-マレイミドフェニル)メタン、2,2-ビス(4-(4-マレイミドフェノキシ)-フェニル)プロパン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、式(1)で表されるマレイミド化合物、及び式(2)で表されるマレイミド化合物からなる群より選ばれる1種以上を含むことが好ましく、2,2-ビス(4-(4-マレイミドフェノキシ)-フェニル)プロパン及び式(2)で表されるマレイミド化合物からなる群より選ばれる1種以上を含むことがより好ましい。更に、樹脂組成物がこれらのマレイミド化合物を含むと、樹脂組成物の吸水性をより抑制することができ、表面被覆酸化チタン(A)との密着性がより向上し、樹脂組成物中における表面被覆酸化チタン(A)の凝集をより緩和でき、分散性がより向上し、優れた誘電特性(高誘電率及び低誘電正接)並びに優れた吸湿耐熱性を有する硬化物が得られる傾向にある。
Figure JPOXMLDOC01-appb-C000007
 式(1)中、R1は、各々独立して、水素原子又はメチル基を示し、n1は1~10の整数である。
Figure JPOXMLDOC01-appb-C000008
 式(2)中、R2は、各々独立に、水素原子、炭素数1~5のアルキル基、又はフェニル基を示し、n2は、平均値であり、1<n2≦5を示す。
 マレイミド化合物の含有量は、樹脂組成物中の樹脂固形分の合計100質量部に対して、好ましくは10~85質量部であり、より好ましくは15~80質量部であり、更に好ましくは20~75質量部であり、更により好ましくは25~70質量部であり、一層好ましくは20~60質量部である。マレイミド化合物の含有量が上記範囲内であることにより、表面被覆酸化チタン(A)がより一層良好に分散し、硬化時により一層優れた吸湿耐熱性、低熱膨張係数、及び高いガラス転移温度、並びにより一層優れた誘電特性(高誘電率及び低誘電正接)を有する樹脂組成物が得られ、更に、より一層好適な表面硬度を有する絶縁層が得られる傾向にある。マレイミド化合物の含有量が上記範囲内であることにより、樹脂組成物の吸水性をより抑制することができ、表面被覆酸化チタン(A)との密着性がより向上し、樹脂組成物中における表面被覆酸化チタン(A)の凝集をより緩和でき、分散性がより向上し、優れた誘電特性(高誘電率及び低誘電正接)並びに優れた吸湿耐熱性を有する硬化物が得られる傾向にある。
 マレイミド化合物は、市販品を用いてもよく、公知の方法により製造された製品を用いてもよい。マレイミド化合物の市販品としては、例えば、BMI-70、BMI-80、及びBMI-1000P(以上、商品名、ケイ・アイ化成(株));BMI-3000、BMI-4000、BMI-5100、BMI-7000、及びBMI-2300(上記式(1)で表されるマレイミド化合物、式(1)中、R1は全て水素原子であり、n1は1~5の整数である)(以上、商品名、大和化成工業(株));MIR-3000-70MT(商品名、上記式(2)で表されるマレイミド化合物、式(2)中、Rは全て水素原子であり、n2は、平均値であり、1<n2≦5を示す。日本化薬(株))等が挙げられる。
 (エポキシ化合物)
 表面被覆酸化チタン(A)がより一層良好に分散し、硬化時により一層優れた吸湿耐熱性、低熱膨張係数、及び高いガラス転移温度、並びにより一層優れた誘電特性(高誘電率及び低誘電正接)を有する樹脂組成物が得られることから、本実施形態の樹脂組成物は、エポキシ化合物を含むことが好ましい。更に、樹脂組成物がエポキシ化合物を含むと、樹脂組成物の吸水性をより抑制することができ、表面被覆酸化チタン(A)との密着性がより向上し、樹脂組成物中における表面被覆酸化チタン(A)の凝集をより緩和でき、分散性がより向上し、優れた誘電特性(高誘電率及び低誘電正接)並びに優れた吸湿耐熱性を有する硬化物が得られる傾向にある。
 エポキシ化合物は、1分子中にエポキシ基を1個以上有する化合物であれば、公知のものを適宜用いることができ、その種類は特に限定されない。エポキシ化合物の1分子当たりのエポキシ基の数は、1以上であり、好ましくは2以上である。エポキシ化合物は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
 エポキシ化合物としては、従来公知のエポキシ化合物及びエポキシ樹脂を用いることができる。例えば、ビフェニルアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビスナフタレン型エポキシ樹脂、多官能フェノール型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、キシレンノボラック型エポキシ樹脂、ナフタレン骨格変性ノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、フェノールアラルキルノボラック型エポキシ樹脂、ナフトールアラルキルノボラック型エポキシ樹脂、アラルキルノボラック型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド型エポキシ化合物、アントラキノン型エポキシ化合物、アントラセン型エポキシ樹脂、ナフトールアラルキル型エポキシ化合物、ジシクロペンタジエン型エポキシ樹脂、ザイロック型エポキシ化合物、ビスフェノールA型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールF型エポキ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、フェノール型エポキシ化合物、ビフェニル型エポキシ樹脂、アラルキルノボラック型エポキシ樹脂、トリアジン骨格エポキシ化合物、トリグリシジルイソシアヌレート、脂環式エポキシ樹脂、ポリオール型エポキシ樹脂、グリシジルアミン、グリシジル型エステル樹脂、ブタジエン等の二重結合含有化合物の二重結合をエポキシ化した化合物、及び、水酸基含有シリコーン樹脂類とエピクロルヒドリンとの反応により得られる化合物等が挙げられる。
 これらの中でも、表面被覆酸化チタン(A)が更に一層良好に分散させ、硬化時により一層優れた吸湿耐熱性、低熱膨張係数、及び高いガラス転移温度、並びにより一層優れた誘電特性(高誘電率及び低誘電正接)を有する樹脂組成物が得られることから、エポキシ化合物は、ビフェニルアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂、及びナフチレンエーテル型エポキシ樹脂からなる群より選ばれる1種以上を含むことが好ましく、ナフタレン型エポキシ樹脂を含むことがより好ましい。更に、樹脂組成物がこれらのエポキシ化合物を含むと、樹脂組成物の吸水性をより抑制することができ、表面被覆酸化チタン(A)との密着性がより向上し、樹脂組成物中における表面被覆酸化チタン(A)の凝集をより緩和でき、分散性がより向上し、優れた誘電特性(高誘電率及び低誘電正接)並びに優れた吸湿耐熱性を有する硬化物が得られる傾向にある。
 ナフタレン型エポキシ樹脂としては、市販品を用いてもよく、例えば、EPICLON(登録商標)EXA-4032-70M、及びEPICLON(登録商標)HP-4710(以上、商品名、DIC(株))が挙げられる。
 エポキシ化合物の含有量は、樹脂組成物中の樹脂固形分の合計100質量部に対して、好ましくは1~50質量部であり、より好ましくは5~40質量部であり、更に好ましくは10~30質量部である。エポキシ化合物の含有量が上記範囲内であることにより、接着性及び可撓性等により優れる傾向にある。エポキシ化合物の含有量が上記範囲内であることにより、樹脂組成物の吸水性をより抑制することができ、表面被覆酸化チタン(A)との密着性がより向上し、樹脂組成物中における表面被覆酸化チタン(A)の凝集をより緩和でき、分散性がより向上し、優れた誘電特性(高誘電率及び低誘電正接)並びに優れた吸湿耐熱性を有する硬化物が得られる傾向にある。
 (変性ポリフェニレンエーテル化合物)
 表面被覆酸化チタン(A)がより一層良好に分散し、硬化時により一層優れた吸湿耐熱性、低熱膨張係数、及び高いガラス転移温度、並びにより一層優れた誘電特性(高誘電率及び低誘電正接)を有する樹脂組成物が得られることから、本実施形態の樹脂組成物は、変性ポリフェニレンエーテル化合物を含むことが好ましい。更に、樹脂組成物が変性ポリフェニレンエーテル化合物を含むと、樹脂組成物の吸水性をより抑制することができ、表面被覆酸化チタン(A)との密着性がより向上し、樹脂組成物中における表面被覆酸化チタン(A)の凝集をより緩和でき、分散性がより向上し、優れた誘電特性(高誘電率及び低誘電正接)並びに優れた吸湿耐熱性を有する硬化物が得られる傾向にある。
 本明細書において、変性ポリフェニレンエーテル化合物の「変性」とは、ポリフェニレンエーテル化合物の末端の一部又は全部が、炭素-炭素不飽和二重結合等の反応性官能基で置換されたことを意味する。変性ポリフェニレンエーテル化合物は、ポリフェニレンエーテル化合物の末端の一部又は全部が変性されていれば、公知のものを適宜用いることができ、特に限定されない。変性ポリフェニレンエーテル化合物は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
 変性ポリフェニレンエーテル化合物に係るポリフェニレンエーテル化合物としては、例えば、式(4)で表される構造単位、式(5)で表される構造単位、及び式(6)で表される構造単位から選ばれる少なくとも1つの構造単位を含む重合体が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 式(4)中、R8、R9、R10、及びR11は、各々独立に、炭素数6以下のアルキル基、アリール基、ハロゲン原子、又は水素原子を示す。
Figure JPOXMLDOC01-appb-C000010
 式(5)中、R12、R13、R14、R18、R19は、各々独立に、炭素数6以下のアルキル基又はフェニル基を示す。R15、R16、R17は、各々独立に、水素原子、炭素数6以下のアルキル基又はフェニル基を示す。
Figure JPOXMLDOC01-appb-C000011
 式(6)中、R20,R21、R22、R23、R24、R25、R26、R27は、各々独立に、水素原子、炭素数6以下のアルキル基、又はフェニル基を示す。-A-は、炭素数20以下の直鎖状、分岐状、又は環状の2価の炭化水素基を示す。
 式(6)における-A-としては、例えば、メチレン基、エチリデン基、1-メチルエチリデン基、1,1-プロピリデン基、1,4-フェニレンビス(1-メチルエチリデン)基、1,3-フェニレンビス(1-メチルエチリデン)基、シクロヘキシリデン基、フェニルメチレン基、ナフチルメチレン基、1-フェニルエチリデン基等の2価の有機基が挙げられるが、これらに限定されるものではない。
 変性ポリフェニレンエーテル化合物としては、例えば、ポリフェニレンエーテル化合物の末端の一部又は全部が、ビニルベンジル基等のエチレン性不飽和基、エポキシ基、アミノ基、水酸基、メルカプト基、カルボキシ基、メタクリル基、及びシリル基等の官能基で変性された変性ポリフェニレンエーテル化合物が好ましい。
 末端が水酸基である変性ポリフェニレンエーテル化合物としては、例えば、SA90(商品名、SABICイノベーティブプラスチックス社)等が挙げられる。
 末端がメタクリル基である変性ポリフェニレンエーテル化合物としては、例えば、SA9000(商品名、SABICイノベーティブプラスチックス社)等が挙げられる。
 変性ポリフェニレンエーテル化合物の製造方法は、本発明の効果が得られるものであれば特に限定されない。例えば、特許第4591665号に記載の方法によって製造することができる。
 変性ポリフェニレンエーテル化合物は、末端にエチレン性不飽和基を有する変性ポリフェニレンエーテル化合物を含むことがより好ましい。エチレン性不飽和基としては、エテニル基、アリル基、アクリル基、メタクリル基、プロペニル基、ブテニル基、ヘキセニル基、及びオクテニル基等のアルケニル基;シクロペンテニル基及びシクロヘキセニル基等のシクロアルケニル基;ビニルベンジル基及びビニルナフチル基等のアルケニルアリール基が挙げられる。中でも、ビニルベンジル基が好ましい。
 末端のエチレン性不飽和基は、単一又は複数でもよく、同一の官能基であってもよいし、異なる官能基であってもよい。
 表面被覆酸化チタン(A)が更に一層良好に分散し、硬化時に更に一層優れた吸湿耐熱性、低熱膨張係数、及び高いガラス転移温度、並びに更に一層優れた誘電特性(高誘電率及び低誘電正接)を有する樹脂組成物が得られることから、末端にエチレン性不飽和基を有する変性ポリフェニレンエーテル化合物としては、式(3)で表される化合物が好ましい。更に、樹脂組成物が式(3)で表される化合物を含むと、樹脂組成物の吸水性をより抑制することができ、表面被覆酸化チタン(A)との密着性がより向上し、樹脂組成物中における表面被覆酸化チタン(A)の凝集をより緩和でき、分散性がより向上し、優れた誘電特性(高誘電率及び低誘電正接)並びに優れた吸湿耐熱性を有する硬化物が得られる傾向にある。
Figure JPOXMLDOC01-appb-C000012
 式(3)中、Xは芳香族基を示し、-(Y-O)m-はポリフェニレンエーテル部分を示す。R1、R2、R3は、各々独立に、水素原子、アルキル基、アルケニル基、又はアルキニル基を示す。mは1~100の整数を示し、nは1~6の整数を示し、qは1~4の整数を示す。mは、好ましくは1以上50以下の整数であり、より好ましくは1以上30以下の整数である。また、nは、好ましくは1以上4以下の整数であり、より好ましくは1又は2であり、理想的には1である。また、qは、好ましくは1以上3以下の整数であり、より好ましくは1又は2であり、理想的には2である。
 式(3)におけるXが示す芳香族基としては、ベンゼン環構造、ビフェニル環構造、インデニル環構造、及びナフタレン環構造から選ばれる1種の環構造から、q個の水素原子を除いた基(例えば、フェニレン基、ビフェニレン基、インデニレン基、及びナフチレン基)が挙げられる。中でも、ビフェニレン基が好ましい。
 ここで、Xが示す芳香族基は、アリール基が酸素原子で結合されているジフェニルエーテル基等や、カルボニル基で結合されたベンゾフェノン基等、アルキレン基により結合された2,2-ジフェニルプロパン基等を含んでもよい。
 また、芳香族基は、アルキル基(好適には炭素数1~6のアルキル基、特にメチル基)、アルケニル基、アルキニル基やハロゲン原子等、一般的な置換基によって置換されていてもよい。但し、芳香族基は、酸素原子を介してポリフェニレンエーテル部分に置換されているので、一般的置換基の数の限界は、ポリフェニレンエーテル部分の数に依存する。
 式(3)におけるポリフェニレンエーテル部分としては、前記式(4)で表される構造単位、式(5)で表される構造単位、及び式(6)で表される構造単位を用いることができる。中でも、式(4)で表される構造単位を含むことがより好ましい。
 また、式(3)で表される変性ポリフェニレンエーテル化合物としては、数平均分子量が500以上7000以下であることが好ましい。また、式(3)において、最低溶融粘度が50000Pa・s以下のものを用いることができる。表面被覆酸化チタン(A)が更に一層良好に分散し、硬化時に更に一層優れた吸湿耐熱性、低熱膨張係数、及び高いガラス転移温度、並びに更に一層優れた誘電特性(高誘電率及び低誘電正接)を有する樹脂組成物が得られることから、式(3)において、数平均分子量が1000以上7000以下であり、最低溶融粘度が50000Pa・s以下のものがより好ましい。
 数平均分子量は、定法に従ってゲル浸透クロマトグラフィーを使用して測定される。数平均分子量は、1000以上3000以下であることがより好ましい。
 最低溶融粘度は、定法に従って動的粘弾性測定装置を使用して測定される。最低溶融粘度は、500Pa・s以上50000Pa・s以下がより好ましい。
 変性ポリフェニレンエーテル化合物としては、式(3)の中でも、下記式(7)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000013
 式(7)中、Xは芳香族基であり、-(Y-O)-は、それぞれ、ポリフェニレンエーテル部分を示し、mは1~100の整数を示す。mは、好ましくは1以上50以下の整数であり、より好ましくは1以上30以下の整数である。
 式(7)における、X、-(Y-O)-、及びmは、式(3)におけるものと同義である。
 式(3)及び式(7)におけるXは、式(8)、式(9)、又は式(10)であり、式(3)及び式(7)における、-(Y-O)-及び-(O-Y)-は、式(11)又は式(12)が配列した構造であるか、あるいは式(11)と式(12)が、ブロック又はランダムに配列した構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 式(9)中、R28、R29、R30及びR31は、各々独立に、水素原子又はメチル基を示す。-B-は、炭素数20以下の直鎖状、分岐状又は環状の2価の炭化水素基である。
 -B-としては、式(6)における-A-の具体例と同じものが具体例として挙げられる。
Figure JPOXMLDOC01-appb-C000016
 式(10)中、-B-は、炭素数20以下の直鎖状、分岐状又は環状の2価の炭化水素基である。
 -B-としては、式(6)における-A-の具体例と同じものが具体例として挙げられる。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 式(7)で表される構造を有する変性ポリフェニレンエーテル化合物の製造方法は、特に限定されるものではなく、例えば、2官能フェノール化合物と1官能フェノール化合物を酸化カップリングさせて得られる2官能フェニレンエーテルオリゴマーの末端フェノール性水酸基をビニルベンジルエーテル化することで製造することができる。
 また、このような変性ポリフェニレンエーテル化合物は市販品を用いることができ、例えば、OPE-2St1200(式(7)中、-(O-X-O)-中のXが式(8)で表される構造であり、-(O-Y)-及び-(Y-O)-が式(11)の構造が重合したものである)、及びOPE-2st2200(式(7)中、-(O-X-O)-中のXが式(8)で表される構造であり、-(O-Y)-及び-(Y-O)-が式(11)の構造が重合したものである)(以上、商品名、三菱ガス化学(株))を好適に使用することができる。
 変性ポリフェニレンエーテル化合物の含有量は、樹脂組成物中の樹脂固形分の合計100質量部に対して、好ましくは1~50質量部であり、より好ましくは5~40質量部であり、更に好ましくは10~30質量部である。変性ポリフェニレンエーテル化合物の含有量が上記範囲内であることにより、低誘電正接性及び反応性がより一層向上する傾向にある。変性ポリフェニレンエーテル化合物の含有量が上記範囲内であることにより、樹脂組成物の吸水性をより抑制することができ、表面被覆酸化チタン(A)との密着性がより向上し、樹脂組成物中における表面被覆酸化チタン(A)の凝集をより緩和でき、分散性がより向上し、優れた誘電特性(高誘電率及び低誘電正接)並びに優れた吸湿耐熱性を有する硬化物が得られる傾向にある。
 (シアン酸エステル化合物)
 表面被覆酸化チタン(A)がより一層良好に分散し、硬化時により一層優れた吸湿耐熱性、低熱膨張係数、及び高いガラス転移温度、並びにより一層優れた誘電特性(高誘電率及び低誘電正接)を有する樹脂組成物が得られることから、本実施形態の樹脂組成物は、シアン酸エステル化合物を含むことが好ましい。また、シアン酸エステル化合物は、表面被覆酸化チタン(A)による、重合の進行及び加水分解の抑制効果が顕著に得られることからも好ましい。更に、樹脂組成物がシアン酸エステル化合物を含むと、樹脂組成物の吸水性をより抑制することができ、表面被覆酸化チタン(A)との密着性がより向上し、樹脂組成物中における表面被覆酸化チタン(A)の凝集をより緩和でき、分散性がより向上し、優れた誘電特性(高誘電率及び低誘電正接)並びに優れた吸湿耐熱性を有する硬化物が得られる傾向にある。
 シアン酸エステル化合物は、1分子中に2つ以上の芳香環に直接結合したシアナト基(「シアン酸エステル基」、又は「シアネート基」とも称する)を有する化合物であれば、公知のものを適宜用いることができる。シアン酸エステル化合物は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
 このようなシアン酸エステル化合物としては、例えば、フェノールノボラック型シアン酸エステル化合物、クレゾールノボラック型シアン酸エステル化合物、ナフタレン環含有ノボラック型シアン酸エステル化合物、アリル基含有ノボラック型シアン酸エステル化合物、ナフトールアラルキル型シアン酸エステル化合物、ナフチレンエーテル型シアン酸エステル化合物、キシレン樹脂型シアン酸エステル化合物、ビスフェノールM型シアン酸エステル化合物、ビスフェノールA型シアン酸エステル化合物、ジアリルビスフェノールA型シアン酸エステル化合物、ビスフェノールE型シアン酸エステル化合物、ビスフェノールF型シアン酸エステル化合物、ビフェニルアラルキル型シアン酸エステル化合物、ビス(3,3-ジメチル-4-シアナトフェニル)メタン、1,3-ジシアナトベンゼン、1,4-ジシアナトベンゼン、1,3,5-トリシアナトベンゼン、1,3-ジシアナトナフタレン、1,4-ジシアナトナフタレン、1,6-ジシアナトナフタレン、1,8-ジシアナトナフタレン、2,6-ジシアナトナフタレン、2、7-ジシアナトナフタレン、1,3,6-トリシアナトナフタレン、4、4’-ジシアナトビフェニル、ビス(4-シアナトフェニル)エーテル、ビス(4-シアナトフェニル)チオエーテル、及びビス(4-シアナトフェニル)スルホンが挙げられる。また、これらのシアン酸エステル化合物は、シアン酸エステル化合物のプレポリマー、又はポリマーであってもよい。
 これらの中でも、表面被覆酸化チタン(A)がより良好に分散し、硬化時に更に優れた吸湿耐熱性、低熱膨張係数、及び高いガラス転移温度、並びに更に優れた誘電特性(高誘電率及び低誘電正接)を有する樹脂組成物が得られ、更に、好適な表面硬度を有する絶縁層が得られることから、シアン酸エステル化合物は、フェノールノボラック型シアン酸エステル化合物、ナフトールアラルキル型シアン酸エステル化合物、ナフチレンエーテル型シアン酸エステル化合物、キシレン樹脂型シアン酸エステル化合物、ビスフェノールM型シアン酸エステル化合物、ビスフェノールA型シアン酸エステル化合物、ジアリルビスフェノールA型シアン酸エステル化合物、ビスフェノールE型シアン酸エステル化合物、ビスフェノールF型シアン酸エステル化合物、及びビフェニルアラルキル型シアン酸エステル化合物、並びにこれらのシアン酸エステル化合物のプレポリマー、又はポリマーからなる群より選ばれる1種以上を含むことが好ましく、ナフトールアラルキル型シアン酸エステル化合物がより好ましい。更に、樹脂組成物がこれらのシアン酸エステル化合物を含むと、樹脂組成物の吸水性をより抑制することができ、表面被覆酸化チタン(A)との密着性がより向上し、樹脂組成物中における表面被覆酸化チタン(A)の凝集をより緩和でき、分散性がより向上し、優れた誘電特性(高誘電率及び低誘電正接)並びに優れた吸湿耐熱性を有する硬化物が得られる傾向にある。
 このようなナフトールアラルキル型シアン酸エステル化合物としては、式(13)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000019
 式(13)中、R3は、各々独立して、水素原子又はメチル基を示し、この中でも水素原子が好ましい。また、式(13)中、n3は、1以上の整数であり、1~20の整数であることが好ましく、1~10の整数であることがより好ましい。
 ビスフェノールA型シアン酸エステル化合物としては、2、2-ビス(4-シアナトフェニル)プロパン及び2、2-ビス(4-シアナトフェニル)プロパンのプレポリマーからなる群より選ばれる1種以上を用いてもよい。
 このようなビスフェノールA型シアン酸エステル化合物としては、市販品を用いてもよく、例えば、Primaset(登録商標)BADCy(商品名、ロンザ(株)、2、2-ビス(4-シアナトフェニル)プロパン、シアン酸エステル基当量:139g/eq.)及びCA210(商品名、三菱ガス化学(株)、2、2-ビス(4-シアナトフェニル)プロパンのプレポリマー、シアン酸エステル基当量:139g/eq.)が挙げられる。
 これらのシアン酸エステル化合物は、公知の方法に準じて製造してもよい。具体的な製造方法としては、例えば、特開2017-195334号公報(特に段落0052~0057)等に記載の方法が挙げられる。
 シアン酸エステル化合物の含有量は、樹脂組成物中の樹脂固形分の合計100質量部に対して、好ましくは1~65質量部であり、より好ましくは2~60質量部であり、更に好ましくは3~55質量部であり、更により好ましくは、4~50質量部であり、一層好ましくは5~45質量部であり、特に好ましくは6~40質量部である。シアン酸エステル化合物の含有量が上記範囲内であることにより、表面被覆酸化チタン(A)が更に一層良好に分散し、硬化時に更に一層優れた吸湿耐熱性、低熱膨張係数、及び高いガラス転移温度、並びに更に優れた誘電特性(高誘電率及び低誘電正接)を有する樹脂組成物が得られ、更に、一層好適な表面硬度を有する絶縁層が得られる傾向にある。更に、シアン酸エステル化合物の含有量が上記範囲内であることにより、樹脂組成物の吸水性をより抑制することができ、表面被覆酸化チタン(A)との密着性がより向上し、樹脂組成物中における表面被覆酸化チタン(A)の凝集をより緩和でき、分散性がより向上し、優れた誘電特性(高誘電率及び低誘電正接)並びに優れた吸湿耐熱性を有する硬化物が得られる傾向にある。
 (フェノール化合物)
 本実施形態の樹脂組成物は、フェノール化合物を含んでもよい。フェノール化合物は、1分子中にフェノール性水酸基を2個以上有する化合物であれば、公知のものを適宜用いることができ、その種類は特に限定されない。フェノール化合物は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
 フェノール化合物としては、例えば、クレゾールノボラック型フェノール樹脂、式(14)で表されるビフェニルアラルキル型フェノール樹脂、式(15)で表されるナフトールアラルキル型フェノール樹脂、アミノトリアジンノボラック型フェノール樹脂、ナフタレン型フェノール樹脂、フェノールノボラック樹脂、アルキルフェノールノボラック樹脂、ビスフェノールA型ノボラック樹脂、ジシクロペンタジエン型フェノール樹脂、ザイロック型フェノール樹脂、テルペン変性フェノール樹脂、及びポリビニルフェノール類等が挙げられる。
 これらの中でも、優れた成形性及び表面硬度が得られることから、フェノール化合物は、クレゾールノボラック型フェノール樹脂、式(14)で表されるビフェニルアラルキル型フェノール樹脂、式(15)で表されるナフトールアラルキル型フェノール樹脂、アミノトリアジンノボラック型フェノール樹脂、及びナフタレン型フェノール樹脂からなる群より選ばれる1種以上を含むことが好ましく、式(14)で表されるビフェニルアラルキル型フェノール樹脂及び式(15)で表されるナフトールアラルキル型フェノール樹脂からなる群より選ばれる1種以上を含むことがより好ましい。
Figure JPOXMLDOC01-appb-C000020
 式(14)中、R4は、各々独立して、水素原子又はメチル基を示し、nは1~10の整数である。
Figure JPOXMLDOC01-appb-C000021
 式(15)中、R5は、各々独立に、水素原子又はメチル基を示し、nは1~10の整数である。
 フェノール化合物の含有量は、樹脂組成物の樹脂固形分の合計100質量部に対して、好ましくは1~50質量部であり、より好ましくは5~40質量部であり、更に好ましくは10~30質量部である。フェノール化合物の含有量が上記範囲内であることにより、接着性や可撓性等により優れる傾向にある。
 (アルケニル置換ナジイミド化合物)
 本実施形態の樹脂組成物は、アルケニル置換ナジイミド化合物を含んでもよい。アルケニル置換ナジイミド化合物は、1分子中に1つ以上のアルケニル置換ナジイミド基を有する化合物であれば特に限定されない。アルケニル置換ナジイミド化合物は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
 アルケニル置換ナジイミド化合物としては、例えば、下記式(2d)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000022
 式(2d)中、R1は、各々独立して、水素原子、又は炭素数1~6のアルキル基(例えば、メチル基又はエチル基)を示し、R2は、炭素数1~6のアルキレン基、フェニレン基、ビフェニレン基、ナフチレン基、又は式(16)若しくは式(17)で表される基を示す。
Figure JPOXMLDOC01-appb-C000023
 式(16)中、R3は、メチレン基、イソプロピリデン基、CO、O、S又はSO2を示す。
Figure JPOXMLDOC01-appb-C000024
 式(17)中、R4は、各々独立して、炭素数1~4のアルキレン基、又は炭素数5~8のシクロアルキレン基を示す。
 式(2d)で表されるアルケニル置換ナジイミド化合物は、市販品を用いてもよく、公知の方法に準じて製造した製造品を用いてもよい。市販品としては、BANI-M、及びBANI-X(以上、商品名、丸善石油化学(株))が挙げられる。
 アルケニル置換ナジイミド化合物の含有量は、樹脂組成物の樹脂固形分の合計100質量部に対して、好ましくは1~50質量部であり、より好ましくは5~40質量部であり、更に好ましくは10~30質量部である。アルケニル置換ナジイミド化合物の含有量が上記範囲内であることにより、接着性や耐熱性等により優れる傾向にある。
 (オキセタン樹脂)
 本実施形態の樹脂組成物は、オキセタン樹脂を含んでもよい。オキセタン樹脂としては、特に限定されず、一般に公知のものを使用できる。オキセタン樹脂は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
 オキセタン樹脂としては、例えば、オキセタン、2-メチルオキセタン、2,2-ジメチルオキセタン、3-メチルオキセタン、3,3-ジメチルオキセタン等のアルキルオキセタン、3-メチル-3-メトキシメチルオキセタン、3,3-ジ(トリフルオロメチル)パーフルオロオキセタン、2-クロロメチルオキセタン、3,3-ビス(クロロメチル)オキセタン、ビフェニル型オキセタン、OXT-101(商品名、東亞合成(株))、及びOXT-121(商品名、東亞合成(株))等が挙げられる。
 オキセタン樹脂の含有量は、樹脂組成物の樹脂固形分の合計100質量部に対して、好ましくは1~50質量部であり、より好ましくは5~40質量部であり、更に好ましくは10~30質量部である。オキセタン樹脂の含有量が上記範囲内であることにより、接着性や可撓性等により優れる傾向にある。
 (ベンゾオキサジン化合物)
 本実施形態の樹脂組成物は、ベンゾオキサジン化合物を含んでもよい。ベンゾオキサジン化合物としては、1分子中に2個以上のジヒドロベンゾオキサジン環を有する化合物であれば特に限定されず、一般に公知のものを用いることができる。ベンゾオキサジン化合物は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
 ベンゾオキサジン化合物としては、例えば、ビスフェノールA型ベンゾオキサジンBA-BXZ、ビスフェノールF型ベンゾオキサジンBF-BXZ、及びビスフェノールS型ベンゾオキサジンBS-BXZ(以上、商品名、小西化学工業(株))等が挙げられる。
 ベンゾオキサジン化合物の含有量は、樹脂組成物の樹脂固形分の合計100質量部に対して、好ましくは1~50質量部であり、より好ましくは5~40質量部であり、更に好ましくは10~30質量部である。ベンゾオキサジン化合物の含有量が上記範囲内であることにより、接着性や可撓性等により優れる傾向にある。
 (重合可能な不飽和基を有する化合物)
 本実施形態の樹脂組成物は、重合可能な不飽和基を有する化合物を含んでもよい。重合可能な不飽和基を有する化合物としては、特に限定されず、一般に公知のものを使用できる。重合可能な不飽和基を有する化合物は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
 重合可能な不飽和基を有する化合物としては、例えば、エチレン、プロピレン、スチレン、ジビニルベンゼン、及びジビニルビフェニル等のビニル化合物;メチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、及びジペンタエリスリトールヘキサ(メタ)アクリレート等の1価又は多価アルコールの(メタ)アクリレート類;ビスフェノールA型エポキシ(メタ)アクリレート、及びビスフェノールF型エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート類;ベンゾシクロブテン樹脂が挙げられる。
 重合可能な不飽和基を有する化合物の含有量は、樹脂組成物の樹脂固形分の合計100質量部に対して、好ましくは1~50質量部であり、より好ましくは5~40質量部であり、更に好ましくは10~30質量部である。重合可能な不飽和基を有する化合物の含有量が上記範囲内であることにより、接着性や可撓性等により優れる傾向にある。
 <充填材(C)>
 本実施形態の樹脂組成物は、表面被覆酸化チタン(A)と、熱硬化性化合物(B)とを含有する樹脂組成物において、表面被覆酸化チタン(A)と一層良好な分散性を有し、硬化時に一層優れた吸湿耐熱性、低熱膨張係数、及び高いガラス転移温度、並びに一層優れた誘電特性(高誘電率及び低誘電正接)を有する樹脂組成物が得られることから、表面被覆酸化チタン(A)とは異なる充填材(C)を更に含有することが好ましい。充填材(C)としては、表面被覆酸化チタン(A)と異なれば、特に限定されない。充填材(C)は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
 充填材(C)の平均粒子径(D50)は、0.10~10.0μmが好ましく、0.30~5.0μmがより好ましい。平均粒子径(D50)が上記範囲にあると、表面被覆酸化チタン(A)と、熱硬化性化合物(B)とを含有する樹脂組成物において、表面被覆酸化チタン(A)とより一層良好な分散性を有し、硬化時により一層優れた吸湿耐熱性、低熱膨張係数、及び高いガラス転移温度、並びにより一層優れた誘電特性(高誘電率及び低誘電正接)を有する樹脂組成物が得られる傾向にある。充填材(C)の平均粒子径(D50)は、上記した表面被覆酸化チタン(A)の平均粒子径(D50)と同様にして算出される。
 充填材(C)としては、例えば、シリカ、ケイ素化合物(例えば、ホワイトカーボン等)、金属酸化物(例えば、アルミナ、チタンホワイト、チタン酸ストロンチウム(SrTiO3)、チタン酸カルシウム(CaTiO3)、表面被覆酸化チタン(A)と異なる酸化チタン(TiO2)、MgSiO4、MgTiO3、ZnTiO3、ZnTiO4、CaTiO3、SrTiO3、SrZrO3、BaTi25、BaTi49、Ba2Ti920、Ba(Ti,Sn)920、ZrTiO4、(Zr,Sn)TiO4、BaNd2Ti514、BaSmTiO14、Bi23-BaO-Nd23-TiO2、La2Ti27、チタン酸バリウム(BaTiO3)、Ba(Ti,Zr)O3、(Ba,Sr)TiO3、モリブデン化合物(例えば、モリブデン酸、ZnMoO及びZnMo等のモリブデン酸亜鉛、モリブデン酸アンモニウム、モリブデン酸ナトリウム、モリブデン酸カリウム、モリブデン酸カルシウム、二硫化モリブデン、三酸化モリブデン、モリブデン酸水和物、(NH)ZnMo・(HO)等のモリブデン酸亜鉛アンモニウム水和物)、酸化亜鉛、酸化マグネシウム、及び酸化ジルコニウム等)、金属窒化物(例えば、窒化ホウ素、窒化ケイ素、及び窒化アルミニウム等)、金属硫酸化物(例えば、硫酸バリウム等)、金属水酸化物(例えば、水酸化アルミニウム、水酸化アルミニウム加熱処理品(例えば、水酸化アルミニウムを加熱処理し、結晶水の一部を減じたもの)、ベーマイト、及び水酸化マグネシウム等)、亜鉛化合物(例えば、ホウ酸亜鉛、及び錫酸亜鉛等)、クレー、カオリン、タルク、焼成クレー、焼成カオリン、マイカ、E-ガラス、A-ガラス、NE-ガラス、C-ガラス、L-ガラス、D-ガラス、S-ガラス、M-ガラスG20、ガラス短繊維(Eガラス、Tガラス、Dガラス、Sガラス、及びQガラス等のガラス微粉末類を含む。)、中空ガラス、球状ガラス、並びに、金、銀、パラジウム、銅、ニッケル、鉄、コバルト、亜鉛、Mn-Mg-Zn系、Ni-Zn系、Mn-Zn系、カーボニル鉄、Fe-Si系、Fe-Al-Si系、及びFe-Ni系等の金属に対して、絶縁処理を施した金属微粒子等の無機充填材;スチレン型、ブタジエン型、及びアクリル型等のゴムパウダー;コアシェル型のゴムパウダー;シリコーンレジンパウダー;シリコーンゴムパウダー;シリコーン複合パウダー等の有機充填材が挙げられる。
 これらの中でも、充填材(C)は、表面被覆酸化チタン(A)と、熱硬化性化合物(B)とを含有する樹脂組成物において、表面被覆酸化チタン(A)と更に一層良好な分散性を有し、硬化時に更に一層優れた吸湿耐熱性、低熱膨張係数、及び高いガラス転移温度、並びにより一層優れた誘電特性(高誘電率及び低誘電正接)を有する樹脂組成物が得られることから、シリカ、アルミナ、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、窒化アルミニウム、窒化ホウ素、ベーマイト、水酸化アルミニウム、モリブデン酸亜鉛、シリコーンゴムパウダー、及びシリコーン複合パウダーからなる群より選ばれる1種以上を含むことが好ましく、シリカ、タルク、及びモリブデン酸亜鉛からなる群より選ばれる1種以上を含むことがより好ましく、シリカを含むことが更に好ましい。
 シリカとしては、例えば、天然シリカ、溶融シリカ、合成シリカ、ヒュームドシリカ、及び中空シリカ等が挙げられる。樹脂組成物がシリカを含むと、加工性により優れる傾向にある。これらのシリカは1種を単独で、又は2種以上を組み合わせて用いられる。これらの中でも、低熱膨張係数を有し、樹脂組成物中において分散性に優れることから、溶融シリカ及び中空シリカからなる群より選ばれる1種以上であることが好ましい。
 シリカとしては、市販品を用いてもよく、例えば、SC2050-MB、SC5050-MOB、SC2500-SQ、SC4500-SQ、SC4053-SQ、及びSC5050-MOB(以上、商品名、(株)アドマテックス);SFP-130MC(商品名、デンカ(株))が挙げられる。
 充填材(C)は、充填材コア粒子の表面の少なくとも一部に無機酸化物が形成された表面処理充填材であってもよい。このような充填材としては、例えば、モリブデン化合物からなるコア粒子の表面の少なくとも一部に無機酸化物が形成された表面処理モリブデン化合物粒子(担持型)が挙げられる。
 無機酸化物は、充填材コア粒子の表面の少なくとも一部に付与されていればよい。無機酸化物は、充填材コア粒子の表面に部分的に付与されていても、充填材コア粒子の表面のすべてを覆うように付与されていてもよい。樹脂組成物の吸水性を好適に抑制できる点から、無機酸化物は充填材コア粒子の表面のすべてを覆うように均一に付与されている、すなわち、充填材コア粒子の表面に無機酸化物の被膜が均一に形成されていることが好ましい。
 無機酸化物としては、耐熱性に優れるものが好ましく、その種類は特に限定されないが、金属酸化物がより好ましい。金属酸化物としては、例えば、SiO、Al、TiO、ZnO、In、SnO、NiO、CoO、V、CuO、MgO、及びZrO等が挙げられる。これらは、1種単独で又は2種以上を適宜組み合わせて使用することができる。これらの中でも、耐熱性、絶縁特性、及びコスト等の点から、シリカ(SiO)、チタニア(TiO)、アルミナ(Al)、及びジルコニア(ZrO)からなる群より選ばれる1種以上が好ましく、シリカがより好ましい。
 表面の無機酸化物の厚さは、所望の性能に応じて適宜設定することができ、特に限定されない。均一な無機酸化物の被膜が形成でき、充填材コア粒子との密着性がより優れ、樹脂組成物の吸水性がより抑制できることから、その厚さは、3~500nmであることが好ましく、より好ましくは5~200nmであり、更に好ましくは10~100nmである。
 表面処理モリブデン化合物粒子(担持型)としては、例えば、モリブデン化合物の粒子を、シランカップリング剤を用いて表面処理して得られるもの、あるいは、ゾルゲル法又は液相析出法等の手法でその表面を無機酸化物で処理して得られるものが挙げられる。
 表面処理モリブデン化合物粒子としては、モリブデン化合物からなるコア粒子の表面の少なくとも一部又は表面の全て、すなわちコア粒子の外周の少なくとも一部又は外周の全てに、無機酸化物が付与されていることが好ましい。このような表面処理モリブデン化合物粒子の中でも、モリブデン化合物からなるコア粒子の表面の少なくとも一部又は表面の全て、すなわちコア粒子の外周の少なくとも一部又は外周の全てに、無機酸化物としてシリカが付与されていることがより好ましい。モリブデン化合物からなるコア粒子としては、モリブデン酸、モリブデン酸亜鉛、及びモリブデン酸亜鉛アンモニウム水和物からなる群より選ばれる少なくとも1種であることがより好ましく、モリブデン酸亜鉛が更に好ましい。
 表面処理モリブデン化合物粒子の平均粒子径(D50)は、樹脂組成物への分散性の観点から、0.1~10μmであることが好ましく、より好ましくは0.5~8μmであり、更に好ましくは1~4μmであり、更により好ましくは1~3μmである。表面処理モリブデン化合物粒子の平均粒子径(D50)は、上記した表面被覆酸化チタン(A)の平均粒子径(D50)と同様にして算出される。
 モリブデン化合物からなるコア粒子は、粉砕法や造粒法等の各種公知の方法により製造することができ、その製法は特に限定されない。また、その市販品を用いてもよい。
 表面処理モリブデン化合物粒子の製造方法は、特に限定されず、例えば、ゾルゲル法、液相析出法、浸漬塗布法、スプレー塗布法、印刷法、無電解メッキ法、スパッタリング法、蒸着法、イオンプレーティング法、及びCVD法等の各種公知の手法を適宜採用して、無機酸化物又はその前駆体をモリブデン化合物からなるコア粒子の表面に付与することで、表面処理モリブデン化合物粒子を得ることができる。無機酸化物又はその前駆体をモリブデン化合物からなるコア粒子の表面に付与する方法は、湿式法、あるいは乾式法のいずれで構わない。
 表面処理モリブデン化合物粒子の好適な製造方法としては、例えば、ケイ素アルコキシド(アルコキシシラン)、アルミニウムアルコキシド等の金属アルコキシドを溶解したアルコール溶液に、モリブデン化合物(コア粒子)を分散し、撹拌させながら水とアルコール及び触媒の混合溶液を滴下し、アルコキシドを加水分解することにより、化合物表面に低屈折率被膜として酸化ケイ素あるいは酸化アルミニウム等の被膜を形成し、その後、得られた粉体を固液分離し、真空乾燥後、熱処理を施す方法が挙げられる。この他の好適な製造方法として、例えば、ケイ素アルコキシド、アルミニウムアルコキシド等の金属アルコキシドを溶解したアルコール溶液に、モリブデン化合物(コア粒子)を分散し、高温低圧下で混合処理をして、化合物表面に酸化ケイ素あるいは酸化アルミニウム等の被膜を形成し、その後、得られた粉体を真空乾燥し、粉砕処理する方法が挙げられる。これらの方法により、モリブデン化合物の表面にシリカやアルミナ等の金属酸化物の被膜を有する表面処理モリブデン化合物粒子が得られる。
 充填材(C)の含有量は、表面被覆酸化チタン(A)と、熱硬化性化合物(B)とを含有する樹脂組成物において、表面被覆酸化チタン(A)と更に一層良好な分散性を有し、硬化時に更に一層優れた吸湿耐熱性、低熱膨張係数、及び高いガラス転移温度、並びに誘電特性(低誘電正接)を有する樹脂組成物が得られることから、樹脂組成物中の樹脂固形分の合計100質量部に対して、50~300質量部が好ましく、70~200質量部がより好ましく、100~150質量部が更に好ましい。充填材(C)を2種類以上含む場合は、合計量が上記範囲にあればよい。
 表面被覆酸化チタン(A)と、充填材(C)とは、体積比(表面被覆酸化チタン(A):充填材(C))で表して、15:85~85:15の範囲で含むことが好ましく、20:80~80:20の範囲がより好ましく、25:75~75:25の範囲が更に好ましい。体積比が、上記範囲にあると、熱硬化性化合物(B)に、表面被覆酸化チタン(A)と、充填材(C)とがより良好に分散する傾向にある。そのため、樹脂ワニス等の樹脂組成物中において、表面被覆酸化チタン(A)と充填材(C)が偏在化しないため、酸化チタンによる吸水性がより抑制され、一層優れた吸湿耐熱性を有する絶縁層が得られる。また、優れた塗工性を有し、良好な外観を有する成型品を得ることもできる。また、樹脂組成物中において、表面被覆酸化チタン(A)と充填材(C)が良好に分散することから、絶縁層の熱膨張係数を好適に制御でき、誘電経路を効率的に形成できる。そのため、優れた吸湿耐熱性及び低熱膨張係数を有し、高誘電率及び低誘電正接を有する絶縁層を好適に得ることができる傾向にある。
 また、本実施形態の樹脂組成物において、回路の小型化、及びコンデンサの高容量化が可能となり高周波用電気部品の小型化等に寄与できることから、充填材(C)として、高誘電率を有する充填材を用いてもよい。このような充填材としては、例えば、表面被覆酸化チタン(A)と異なる酸化チタン(TiO2)、MgSiO4、MgTiO3、ZnTiO3、ZnTiO4、CaTiO3、SrTiO3、SrZrO3、BaTi25、Ba2Ti920、Ba(Ti,Sn)920、ZrTiO4、(Zr,Sn)TiO4、BaNd2Ti514、BaSmTiO14、Bi23-BaO-Nd23-TiO2、La2Ti27、BaTiO3、Ba(Ti,Zr)O3、及び(Ba,Sr)TiO3、並びに、金、銀、パラジウム、銅、ニッケル、鉄、コバルト、亜鉛、Mn-Mg-Zn系、Ni-Zn系、Mn-Zn系、カーボニル鉄、Fe-Si系、Fe-Al-Si系、及びFe-Ni系等の金属に対して、絶縁処理を施した金属微粒子が挙げられる。これらの充填材は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
 <シランカップリング剤>
 本実施形態の樹脂組成物は、シランカップリング剤を更に含んでもよい。樹脂組成物は、シランカップリング剤を含有することにより、樹脂組成物における表面被覆酸化チタン(A)及び必要に応じて配合される充填材(C)の分散性が一層向上し、樹脂組成物に含まれる各成分と、後述する基材との接着強度が一層向上する傾向にある。シランカップリング剤は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
 シランカップリング剤としては特に限定されず、一般に無機物の表面処理に使用されるシランカップリング剤を用いることができる。例えば、アミノシラン系化合物(例えば、3-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン等)、エポキシシラン系化合物(例えば、3-グリシドキシプロピルトリメトキシシラン等)、アクリルシラン系化合物(例えば、γ-アクリロキシプロピルトリメトキシシラン等)、カチオニックシラン系化合物(例えば、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン塩酸塩等)、スチリルシラン系化合物、フェニルシラン系化合物等が挙げられる。シランカップリング剤は、1種を単独で、又は2種以上を組み合わせて用いられる。これらの中でも、シランカップリング剤は、エポキシシラン系化合物及びスチリルシラン系化合物からなる群より選ばれる1種以上であることが好ましい。エポキシシラン系化合物としては、例えば、KBM-403、KBM-303、KBM-402、及びKBE-403(以上、商品名、信越化学工業(株))が挙げられる。スチリルシラン系化合物としては、例えば、KBM-1403(商品名、信越化学工業(株))等が挙げられる。
 シランカップリング剤の含有量は、特に限定されないが、樹脂組成物中の樹脂固形分の合計100質量部に対して、0.1~5.0質量部であってよい。
 <湿潤分散剤>
 本実施形態の樹脂組成物は、湿潤分散剤を更に含んでもよい。樹脂組成物は、湿潤分散剤を含有することにより、充填材(C)の分散性が一層向上する傾向にある。湿潤分散剤は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
 湿潤分散剤としては、充填材(C)を分散させるために用いられる公知の分散剤(分散安定剤)であればよく、例えば、DISPER BYK(登録商標)-110、111、118、180、161、2009、2152、2155、W996、W9010、及びW903(以上、商品名、ビックケミー・ジャパン(株))が挙げられる。
 湿潤分散剤の含有量は、特に限定されないが、樹脂組成物中の樹脂固形分の合計100質量部に対して、0.5質量部以上10質量部以下であることが好ましい。
 <硬化促進剤>
 本実施形態の樹脂組成物は、硬化促進剤を更に含んでもよい。硬化促進剤は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
 硬化促進剤としては、例えば、トリフェニルイミダゾール(例えば、2,4,5-トリフェニルイミダゾール)等のイミダゾール類;過酸化ベンゾイル、ラウロイルパーオキサイド、アセチルパーオキサイド、パラクロロベンゾイルパーオキサイド、ジ-tert-ブチル-ジ-パーフタレート等の有機過酸化物;アゾビスニトリル等のアゾ化合物;N,N-ジメチルベンジルアミン、N,N-ジメチルアニリン、N,N-ジメチルトルイジン、2-N-エチルアニリノエタノール、トリ-n-ブチルアミン、ピリジン、キノリン、N-メチルモルホリン、トリエタノールアミン、トリエチレンジアミン、テトラメチルブタンジアミン、N-メチルピペリジン等の第3級アミン類;フェノール、キシレノール、クレゾール、レゾルシン、カテコール等のフェノール類;ナフテン酸鉛、ステアリン酸鉛、ナフテン酸亜鉛、オクチル酸亜鉛、オクチル酸マンガン、オレイン酸錫、ジブチル錫マレート、ナフテン酸マンガン、ナフテン酸コバルト、アセチルアセトン鉄等の有機金属塩;これら有機金属塩をフェノール、ビスフェノール等の水酸基含有化合物に溶解してなるもの;塩化錫、塩化亜鉛、塩化アルミニウム等の無機金属塩;ジオクチル錫オキサイド、その他のアルキル錫、アルキル錫オキサイド等の有機錫化合物;トリフェニルホスフィン、ホスホニウムボレート化合物等のリン系化合物等が挙げられる。これらの中でも、2,4,5-トリフェニルイミダゾール等のトリフェニルイミダゾール及びオクチル酸マンガンが硬化反応を促進し、ガラス転移温度がより向上する傾向にあるため、好ましい。
 硬化促進剤の含有量は、特に限定されないが、樹脂組成物中の樹脂固形分の合計100質量部に対して、0.001質量部以上1.0質量部以下であってもよい。
 <溶剤>
 本実施形態の樹脂組成物は、溶剤を更に含有してもよい。樹脂組成物は、溶剤を含むことにより、樹脂組成物の調製時における粘度が下がり、ハンドリング性(取り扱い性)が一層向上し、基材への含浸性が一層向上する傾向にある。溶剤は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
 溶剤としては、樹脂組成物中の各成分の一部又は全部を溶解可能であれば、特に限定されない。例えば、ケトン類(アセトン、メチルエチルケトン等)、芳香族炭化水素類(例えば、トルエン、キシレン等)、アミド類(例えば、ジメチルホルムアルデヒド等)、プロピレングリコールモノメチルエーテル及びそのアセテート等が挙げられる。
 <その他の成分>
 本実施形態の樹脂組成物は、所期の特性が損なわれない範囲において、上記以外の成分を含んでもよい。例えば、難燃性化合物としては、4,4’-ジブロモビフェニル等の臭素化合物、リン酸エステル、リン酸メラミン、メラミンやベンゾグアナミン等の窒素含有化合物、及びシリコン系化合物等が挙げられる。また、各種添加剤としては、紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤、光増感剤、染料、顔料、増粘剤、滑剤、消泡剤、分散剤、レベリング剤(表面調整剤)、光沢剤、重合禁止剤等が挙げられる。
 その他の成分の含有量は、特に限定されないが、通常、樹脂組成物中の樹脂固形分の合計100質量部に対して、それぞれ0.01質量部以上10質量部以下である。
〔樹脂組成物の製造方法〕
 本実施形態の樹脂組成物の製造方法は、特に限定されないが、例えば、表面被覆酸化チタン(A)と、熱硬化性化合物(B)と、必要に応じて、上記した任意に含まれていてよい成分とを混合し、十分に撹拌する方法が挙げられる。この際、各成分を均一に溶解あるいは分散させるため、撹拌、混合、混練処理等の公知の処理を行うことができる。具体的には、適切な撹拌能力を有する撹拌機を付設した撹拌槽を用いて撹拌分散処理を行うことで、樹脂組成物における表面被覆酸化チタン(A)、及び必要に応じて配合される充填材(C)の分散性を向上させることができる。上記の撹拌、混合、混練処理は、例えば、ボールミル、ビーズミル等の混合を目的とした装置、又は、公転又は自転型の混合装置等の公知の装置を用いて適宜行うことができる。
 また、樹脂組成物の調製時においては、必要に応じて溶剤を使用し、樹脂ワニスとして調製することができる。溶剤の種類は、樹脂組成物中の樹脂を溶解可能なものであれば、特に限定されない。その具体例は、上記したとおりである。樹脂ワニスは、樹脂組成物中の溶剤を除く成分100質量部に対して、通常、溶剤を10~900質量部加えて、前記の公知の処理(撹拌、混合、及び混練処理等)を行うことで得ることができる。溶剤の種類は、樹脂組成物中の樹脂を溶解可能なものであれば、特に限定されない。その具体例は、上記したとおりである。
 また、本実施形態の樹脂組成物は、前記式(i)で算出される吸水率が0.40%以下である。このような樹脂組成物は、例えば、熱硬化性化合物(B)の官能基密度を制御することにより得ることができる。即ち、熱硬化性化合物(B)の官能基密度を低く制御することにより、樹脂組成物中の架橋点を減らすことが可能となる。それにより、架橋点の親水基に起因する吸湿性を下げることが可能となり、樹脂組成物の吸水率を0.40%以下に制御することが可能となる。
〔用途〕
 本実施形態の樹脂組成物は、例えば、硬化物、プリプレグ、フィルム状アンダーフィル材、樹脂シート、積層板、ビルドアップ材料、非伝導性フィルム、金属箔張積層板、プリント配線板、及び繊維強化複合材料の原料として、又は半導体装置の製造において好適に用いることができる。以下、これらについて説明する。
〔硬化物〕
 硬化物は、本実施形態の樹脂組成物を硬化させて得られる。硬化物の製造方法としては、例えば、本実施形態の樹脂組成物を溶融又は溶媒(溶剤)に溶解させた後、型内に流し込み、熱や光等を用いて通常の条件で硬化させることにより得ることができる。熱硬化の場合、硬化温度は、硬化が効率的に進み、得られる硬化物の劣化を防止する観点から、120~300℃の範囲内が好ましい。
〔プリプレグ〕
 本実施形態のプリプレグは、基材と、該基材に含浸又は塗布された、本実施形態の樹脂組成物とを含む。本実施形態のプリプレグは、例えば、本実施形態の樹脂組成物(例えば、未硬化状態(Aステージ))を基材に含浸又は塗布させた後、120~220℃で2~15分程度乾燥させる方法等によって半硬化(Bステージ化)させることにより得られる。この場合、基材に対する樹脂組成物(樹脂組成物の硬化物も含む)の付着量、すなわち半硬化後のプリプレグの総量に対する樹脂組成物量(表面被覆酸化チタン(A)、及び必要に応じて配合される充填材(C)を含む)は、20~99質量%の範囲であることが好ましい。なお、半硬化状態(Bステージ)とは、樹脂組成物に含まれる各成分が、積極的に反応(硬化)を始めてはいないが、樹脂組成物が乾燥状態、すなわち、粘着性がない程度まで、加熱して溶媒を揮発させている状態を称し、加熱しなくても硬化せずに溶媒が揮発したのみの状態も含まれる。本実施形態において、半硬化状態(Bステージ)の最低溶融粘度は、通常、20,000Pa・s以下である。最低溶融粘度の下限は、例えば、10Pa・s以上である。なお、本実施形態において、最低溶融粘度は、次の方法で測定される。すなわち、樹脂組成物から採取した樹脂粉1gをサンプルとして使用し、レオメータ(ARES-G2(商品名)、TAインスツルメンツ社)により、最低溶融粘度を測定する。ここでは、プレート径25mmのディスポーサブルプレートを使用し、40℃以上180℃以下の範囲において、昇温速度2℃/分、周波数10.0rad/秒、及び歪0.1%の条件下で、樹脂粉の最低溶融粘度を測定する。
 基材としては、各種プリント配線板材料に用いられている基材であれば特に限定されない。基材の材質としては、例えば、ガラス繊維(例えば、E-ガラス、D-ガラス、L-ガラス、S-ガラス、T-ガラス、Q-ガラス、UN-ガラス、及びNE-ガラス等)、ガラス繊維以外の無機繊維(例えば、クォーツ等)、有機繊維(例えば、ポリイミド、ポリアミド、ポリエステル、液晶ポリエステル、及びポリテトラフルオロエチレン等)が挙げられる。基材の形態としては、特に限定されず、織布、不織布、ロービング、チョップドストランドマット、及びサーフェシングマット等が挙げられる。これらの基材は、単独で用いても、2種以上を併用してもよい。これらの基材の中でも、寸法安定性の観点から、超開繊処理、及び目詰め処理を施した織布が好ましく、吸湿耐熱性の観点から、エポキシシラン処理、及びアミノシラン処理等のシランカップリング剤等により表面処理したガラス織布が好ましい。優れた誘電特性を有する点から、E-ガラス、L-ガラス、NE-ガラス、及びQ-ガラス等のガラス繊維が好ましい。
〔樹脂シート〕
 本実施形態の樹脂シートは、本実施形態の樹脂組成物を含む。樹脂シートは、支持体と、該支持体の表面に配置した本実施形態の樹脂組成物から形成された層とを含む支持体付き樹脂シートとしてもよい。樹脂シートは、ビルドアップ用フィルム又はドライフィルムソルダーレジストとして使用することができる。樹脂シートの製造方法としては、特に限定されないが、例えば、本実施形態の樹脂組成物を溶剤に溶解させた溶液を支持体に塗布(塗工)し乾燥することで樹脂シートを得る方法が挙げられる。
 支持体としては、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリカーボネートフィルム、ポリエチレンテレフタレートフィルム、エチレンテトラフルオロエチレン共重合体フィルム、並びにこれらのフィルムの表面に離型剤を塗布した離型フィルム、ポリイミドフィルム等の有機系のフィルム基材、銅箔、アルミニウム箔等の導体箔、ガラス板、SUS板、FRP等の板状のものが挙げられるが、特に限定されるものではない。
 塗布方法(塗工方法)としては、例えば、本実施形態の樹脂組成物を溶剤に溶解させた溶液を、バーコーター、ダイコーター、ドクターブレード、ベーカーアプリケーター等で支持体上に塗布する方法が挙げられる。また、乾燥後に、支持体と樹脂組成物が積層された支持体付き樹脂シートから支持体を剥離又はエッチングすることで、単層シート(樹脂シート)とすることもできる。なお、本実施形態の樹脂組成物を溶剤に溶解させた溶液を、シート状のキャビティを有する金型内に供給し乾燥する等してシート状に成形することで、支持体を用いることなく単層シート(樹脂シート)を得ることもできる。
 なお、本実施形態に係る単層シート又は支持体付き樹脂シートの作製において、溶剤を除去する際の乾燥条件は、特に限定されないが、樹脂組成物中の溶剤が除去されやすくなり、乾燥時における硬化の進行が抑制される観点から、20~200℃の温度で1~90分間が好ましい。また、単層シート又は支持体付き樹脂シートにおいて、樹脂組成物は溶剤を乾燥しただけの未硬化の状態で使用することもできるし、必要に応じて半硬化(Bステージ化)の状態にして使用することもできる。更に、本実施形態に係る単層シート又は支持体付き樹脂シートの樹脂層の厚みは、本実施形態の樹脂組成物の溶液の濃度と塗布厚みにより調整することができ、特に限定されないが、乾燥時に溶剤が除去されやすくなる観点からは、0.1~500μmが好ましい。
〔積層板〕
 本実施形態の積層板は、本実施形態のプリプレグ及び樹脂シートからなる群より選ばれる1種以上を含む。プリプレグ及び樹脂シートについて2種以上が積層されている場合、各プリプレグ及び樹脂シートに用いられる樹脂組成物については同一であっても異なっていてもよい。また、プリプレグ及び樹脂シートの両方を用いる場合、それらに用いられる樹脂組成物は同一であっても異なっていてもよい。本実施形態の積層板において、プリプレグ及び樹脂シートからなる群より選ばれる1種以上は、半硬化状態(Bステージ)であってもよく、完全に硬化した状態(Cステージ)であってもよい。
〔金属箔張積層板〕
 本実施形態の金属箔張積層板は、本実施形態の積層板と、該積層板の片面又は両面に配された金属箔とを含む。
 また、金属箔張積層板は、少なくとも1枚の本実施形態のプリプレグと、該プリプレグの片面又は両面に積層された金属箔と、を含んでいてもよい。
 更に、金属箔張積層板は、少なくとも1枚の本実施形態の樹脂シートと、該樹脂シートの片面又は両面に積層された金属箔と、を含んでいてもよい。
 本実施形態の金属箔張積層板において、各プリプレグ及び樹脂シートに用いられる樹脂組成物については同一であっても異なっていてもよく、プリプレグ及び樹脂シートの両方を用いる場合、それらに用いられる樹脂組成物は同一であっても異なっていてもよい。本実施形態の金属箔張積層板において、プリプレグ及び樹脂シートからなる群より選ばれる1種以上は、半硬化状態であってもよく、完全に硬化した状態であってもよい。
 本実施形態の金属箔張積層板においては、本実施形態のプリプレグ及び本実施形態の樹脂シートからなる群より選ばれる1種以上に金属箔が積層されているが、中でも、本実施形態のプリプレグ及び本実施形態の樹脂シートからなる群より選ばれる1種以上の表面に接するように金属箔が積層されていることが好ましい。「プリプレグ及び樹脂シートからなる群より選ばれる1種以上の表面に接するように金属箔が積層される」とは、プリプレグ又は樹脂シートと金属箔との間に、接着剤層等の層を含まず、プリプレグ又は樹脂シートと金属箔とが直接接触していることを意味する。これにより、金属箔張積層板の金属箔ピール強度が高くなり、プリント配線板の絶縁信頼性が向上する傾向にある。
 本実施形態の金属箔張積層板は、1枚以上重ねた本実施形態に係るプリプレグ及び/又は樹脂シートと、プリプレグ及び/又は樹脂シートの片面又は両面に配置された金属箔とを有していてもよい。本実施形態の金属箔張積層板の製造方法としては、例えば、本実施形態のプリプレグ及び/又は樹脂シートを1枚以上重ね、その片面又は両面に金属箔を配置して積層成形する方法が挙げられる。成形方法としては、プリント配線板用積層板及び多層板を成形する際に通常用いられる方法が挙げられ、より詳細には多段プレス機、多段真空プレス機、連続成形機、オートクレーブ成形機等を使用して、温度180~350℃程度、加熱時間100~300分程度、及び面圧20~100kgf/cm2程度で積層成形する方法が挙げられる。
 また、本実施形態のプリプレグ及び/又は樹脂シートと、別途作製した内層用の配線板とを組み合わせて積層成形することにより、多層板とすることもできる。多層板の製造方法としては、例えば、1枚以上重ねた本実施形態のプリプレグ及び/又は樹脂シート両面に厚さ35μm程度の銅箔を配置し、上記の成形方法にて積層形成して、銅箔張積層板とした後、内層回路を形成し、この回路に黒化処理を実施して内層回路板を形成し、この後、この内層回路板と本実施形態のプリプレグ及び/又は樹脂シートとを交互に1枚ずつ配置し、更に最外層に銅箔を配置して、上記条件にて好ましくは真空下で積層成形することにより、多層板を作製することができる。本実施形態の金属箔張積層板は、プリント配線板として好適に使用することができる。
 (金属箔)
 金属箔としては、特に限定されず、金箔、銀箔、銅箔、錫箔、ニッケル箔、及びアルミニウム箔等が挙げられる。中でも、銅箔が好ましい。銅箔としては、一般にプリント配線板用材料に用いられるものであれば特に限定されないが、例えば、圧延銅箔、及び電解銅箔等の銅箔が挙げられる。中でも、銅箔ピール強度、及び微細配線の形成性の観点から、電解銅箔が好ましい。銅箔の厚さは、特に限定されず、1.5~70μm程度であってもよい。
〔プリント配線板〕
 本実施形態のプリント配線板は、絶縁層と、該絶縁層の片面又は両面に配された導体層と、を有し、該絶縁層が、本実施形態の樹脂組成物の硬化物を含む。絶縁層は、本実施形態の樹脂組成物から形成された層(硬化物を含む層)及びプリプレグから形成された層(硬化物を含む層)の少なくとも一方を含むことが好ましい。このようなプリント配線板は、常法に従って製造でき、その製造方法は特に限定されないが、例えば、上記した金属箔張積層板を用いて製造できる。以下、プリント配線板の製造方法の一例を示す。
 まず上記した金属箔張積層板を用意する。次に、金属箔張積層板の表面にエッチング処理を施して内層回路の形成を行い、内層基板を作製する。この内層基板の内層回路表面に、必要に応じて接着強度を高めるための表面処理を行い、次いでその内層回路表面に上記したプリプレグを所要枚数重ね、更にその外側に外層回路用の金属箔を積層し、加熱加圧して一体成形する。このようにして、内層回路と外層回路用の金属箔との間に、基材及び本実施形態の樹脂組成物の硬化物からなる絶縁層が形成された多層の積層板が製造される。次いで、この多層の積層板にスルーホールやバイアホール用の穴あけ加工を施した後、この穴の壁面に内層回路と外層回路用の金属箔とを導通させるめっき金属皮膜を形成し、更に外層回路用の金属箔にエッチング処理を施して外層回路を形成することで、プリント配線板が製造される。
 上記の製造例で得られるプリント配線板は、絶縁層と、この絶縁層の表面に形成された導体層とを有し、絶縁層が本実施形態に係る樹脂組成物の硬化物を含む構成となる。すなわち、本実施形態に係るプリプレグ(基材及びこれに含浸又は塗布された本実施形態の樹脂組成物の硬化物を含む)、本実施形態の金属箔張積層板の樹脂組成物の層(本実施形態の樹脂組成物の硬化物を含む層)が、本実施形態の樹脂組成物の硬化物を含む絶縁層から構成されることになる。
〔半導体装置〕
 半導体装置は、本実施形態のプリント配線板の導通箇所に、半導体チップを実装することにより製造することができる。ここで、導通箇所とは、多層プリント配線板における電気信号を伝える箇所のことであって、その場所は表面であっても、埋め込まれた箇所であってもいずれでも構わない。また、半導体チップは半導体を材料とする電気回路素子であれば特に限定されない。
 半導体装置を製造する際の半導体チップの実装方法は、半導体チップが有効に機能しさえすれば、特に限定されないが、具体的には、ワイヤボンディング実装方法、フリップチップ実装方法、バンプなしビルドアップ層(BBUL)による実装方法、異方性導電フィルム(ACF)による実装方法、及び非導電性フィルム(NCF)による実装方法等が挙げられる。
 以下、本実施形態を実施例及び比較例を用いてより具体的に説明する。本実施形態は、以下の実施例によって何ら限定されるものではない。
〔平均粒子径の測定方法〕
 表面被覆酸化チタン及び充填材(溶融球状シリカ)の平均粒子径(D50)は、それぞれ、レーザー回折・散乱式粒子径分布測定装置(マイクロトラックMT3300EXII(商品名)、マイクロトラック・ベル(株))を用いて、下記の測定条件に基づいて、レーザー回折・散乱法により粒度分布を測定することで算出した。
(レーザー回折・散乱式粒子径分布測定装置の測定条件)
(表面被覆酸化チタン)
 溶媒:メチルエチルケトン、溶媒屈折率:1.33、粒子屈折率:2.72、透過率:85±5%。
(充填材)
 溶媒:メチルエチルケトン、溶媒屈折率:1.33、粒子屈折率:1.45(溶融球状シリカ)、透過率:85±5%。
〔合成例1〕ナフトールアラルキル型シアン酸エステル化合物(SN495V-CN)の合成
 ナフトールアラルキル型フェノール樹脂(SN495V(商品名)、OH基(ヒドロキシ基)当量:236g/eq.、新日鐵化学(株))300g(OH基換算1.28mol)及びトリエチルアミン194.6g(1.92mol)(ヒドロキシ基1molに対して1.5mol)をジクロロメタン1800gに溶解させ、これを溶液1とした。塩化シアン125.9g(2.05mol)(ヒドロキシ基1molに対して1.6mol)、ジクロロメタン293.8g、36%塩酸194.5g(1.92mol)(ヒドロキシ基1molに対して1.5mol)、及び水1205.9gを、撹拌下、液温-2~-0.5℃に保ちながら、溶液1を30分かけて注下した。溶液1注下終了後、同温度にて30分間撹拌した後、トリエチルアミン65g(0.64mol)(ヒドロキシ基1molに対して0.5mol)をジクロロメタン65gに溶解させた溶液(溶液2)を10分かけて注下した。溶液2注下終了後、同温度にて30分間撹拌して反応を完結させた。その後、反応液を静置して有機相と水相を分離し、得られた有機相を水1300gで5回洗浄した。水洗5回目の廃水の電気伝導度は5μS/cmであり、水による洗浄により除けるイオン性化合物は十分に除かれていることを確認した。水洗後の有機相を減圧下で濃縮し、最終的に90℃で1時間濃縮乾固させて目的とするナフトールアラルキル型シアン酸エステル化合物(SN495V-CN、シアン酸エステル基当量:261g/eq.、上記式(13)におけるR3が全て水素原子であり、n3が1~10の整数である)(橙色粘性物)331gを得た。得られたSN495V-CNの赤外吸収スペクトルは2250cm-1(シアン酸エステル基)の吸収を示し、且つ、ヒドロキシ基の吸収は示さなかった。
〔実施例1〕
 ビフェニルアラルキル型マレイミド化合物(MIR-3000-70MT(商品名)、日本化薬(株))80質量部、ナフタレン型エポキシ樹脂(EPICLON EXA-4032-70M(商品名)、エポキシ当量:150g/eq.、DIC(株))20質量部、表面被覆酸化チタン(結晶構造:ルチル型、二酸化チタンを、シリカ、アルミナ、及びジメチルシリコーン(シリカ、アルミナ、及びジメチルシリコーンの合計の含有量:3質量%)で表面処理したもの、酸化チタン含有量:97質量%、平均粒子径(D50):0.21μm、CR-63(商品名)、石原産業(株))80質量部、溶融球状シリカ(SC4500-SQ(商品名)、平均粒子径(D50):1.1μm、(株)アドマテックス)120質量部、シランカップリング剤(KBM-1403(商品名)、信越化学工業(株))4質量部、湿潤分散剤(DISPERBYK(登録商標)-161(商品名)、ビックケミー・ジャパン(株))2質量部、湿潤分散剤(BYK(登録商標)-W903(商品名)、ビックケミー・ジャパン(株))2質量部、2,4,5-トリフェニルイミダゾール(東京化成工業(株))0.1質量部、メチルエチルケトン100質量部を混合して、樹脂ワニスを得た。樹脂ワニス中の表面被覆酸化チタンと充填材(SC4500-SQ(商品名))との配合比(含有量比)は、体積比で、26:74(表面被覆酸化チタン:充填材)であった。
 得られた樹脂ワニスを厚さ0.094mmのEガラスクロス(1031NT S640(商品名)、(株)有沢製作所)に含浸塗工し、130℃で3分間加熱乾燥することにより、厚さ0.1mmのプリプレグを得た。次に、得られたプリプレグの上下面に厚さ12μmの電解銅箔(3EC-M3-VLP(商品名)、三井金属鉱業(株))を配置し、面圧30kgf/cm及び温度220℃で120分間の真空プレスを行って積層成形することで、厚さ0.124mmの金属箔張積層板(両面銅張積層板)を作製した。得られたプリプレグ及び金属箔張積層板の物性を評価方法に従って測定し、その測定結果を表1に示した。
〔実施例2〕
 合成例1で得られたナフトールアラルキル型シアン酸エステル化合物(SN495V-CN、シアン酸エステル基当量:261g/eq.)8質量部、2,2-ビス(4-(4-マレイミドフェノキシ)-フェニル)プロパン(BMI-80(商品名)、ケイ・アイ化成(株))28質量部、ビフェニルアラルキル型マレイミド化合物(MIR-3000-70MT(商品名)、日本化薬(株))28質量部、ナフタレン型エポキシ樹脂(EPICLON EXA-4032-70M(商品名)、エポキシ当量:150g/eq.、DIC(株))12質量部、変性ポリフェニレンエーテル化合物(OPE-2St1200(商品名)、三菱ガス化学(株)、式(7)で表される化合物(式(7)中、Xが式(8)であり、-(Y-O)-及び-(O-Y)-が、式(11)の構造単位が重合したものである)、数平均分子量1187、ビニル基当量:590g/eq.、最低溶融粘度:1000Pa・s)24質量部、表面被覆酸化チタン(結晶構造:ルチル型、二酸化チタンを、シリカ、アルミナ、及びジメチルシリコーン(シリカ、アルミナ、及びジメチルシリコーンの合計の含有量:3質量%)で表面処理したもの、酸化チタン含有量:97質量%、平均粒子径(D50):0.21μm、CR-63(商品名)、石原産業(株))80質量部、溶融球状シリカ(SC4500-SQ(商品名)、平均粒子径(D50):1.1μm、(株)アドマテックス)120質量部、シランカップリング剤(KBM-1403(商品名)、信越化学工業(株))4質量部、湿潤分散剤(DISPERBYK(登録商標)-161(商品名)、ビックケミー・ジャパン(株))2質量部、湿潤分散剤(BYK(登録商標)-W903(商品名)、ビックケミー・ジャパン(株))2質量部、2,4,5-トリフェニルイミダゾール(東京化成工業(株))0.1質量部、メチルエチルケトン100質量部を混合して、樹脂ワニスを得た。樹脂ワニス中の表面被覆酸化チタンと充填材(SC4500-SQ(商品名))との配合比(含有量比)は、体積比で、26:74(表面被覆酸化チタン:充填材)であった。
 得られた樹脂ワニスを厚さ0.094mmのEガラスクロス(1031NT S640(商品名)、(株)有沢製作所)に含浸塗工し、130℃で3分間加熱乾燥することにより、厚さ0.1mmのプリプレグを得た。次に、得られたプリプレグの上下面に厚さ12μmの電解銅箔(3EC-M3-VLP(商品名)、三井金属鉱業(株))を配置し、面圧30kgf/cm及び温度220℃で120分間の真空プレスを行って積層成形することで、厚さ0.124mmの金属箔張積層板(両面銅張積層板)を作製した。得られたプリプレグ及び金属箔張積層板の物性を評価方法に従って測定し、その測定結果を表1に示した。
〔実施例3〕
 合成例1で得られたナフトールアラルキル型シアン酸エステル化合物(SN495V-CN、シアン酸エステル基当量:261g/eq.)8質量部、2,2-ビス(4-(4-マレイミドフェノキシ)-フェニル)プロパン(BMI-80(商品名)、ケイ・アイ化成(株))28質量部、ビフェニルアラルキル型マレイミド化合物(MIR-3000-70MT(商品名)、日本化薬(株))28質量部、ナフタレン型エポキシ樹脂(EPICLON EXA-4032-70M(商品名)、エポキシ当量:150g/eq.、DIC(株))12質量部、変性ポリフェニレンエーテル化合物(OPE-2St1200(商品名)、三菱ガス化学(株)、式(7)で表される化合物(式(7)中、Xが式(8)であり、-(Y-O)-及び-(O-Y)-が、式(11)の構造単位が重合したものである)、数平均分子量1187、ビニル基当量:590g/eq.、最低溶融粘度:1000Pa・s)24質量部、表面被覆酸化チタン(結晶構造:ルチル型、二酸化チタンを、アルミナ及びオルガノシラン(アルミナ及びオルガノシランの合計の含有量:2質量%)で表面処理したもの、酸化チタン含有量:98質量%、平均粒子径(D50):0.40μm、R-22L(商品名)、堺化学工業(株))80質量部、溶融球状シリカ(SC4500-SQ(商品名)、平均粒子径(D50):1.1μm、(株)アドマテックス)120質量部、シランカップリング剤(KBM-1403(商品名)、信越化学工業(株))4質量部、湿潤分散剤(DISPERBYK(登録商標)-161(商品名)、ビックケミー・ジャパン(株))2質量部、湿潤分散剤(BYK(登録商標)-W903(商品名)、ビックケミー・ジャパン(株))2質量部、2,4,5-トリフェニルイミダゾール(東京化成工業(株))0.1質量部、メチルエチルケトン100質量部を混合して、樹脂ワニスを得た。樹脂ワニス中の表面被覆酸化チタンと充填材(SC4500-SQ(商品名))との配合比(含有量比)は、体積比で、26:74(表面被覆酸化チタン:充填材)であった。
 得られた樹脂ワニスを厚さ0.094mmのEガラスクロス(1031NT S640(商品名)、(株)有沢製作所)に含浸塗工し、130℃で3分間加熱乾燥することにより、厚さ0.1mmのプリプレグを得た。次に、得られたプリプレグの上下面に厚さ12μmの電解銅箔(3EC-M3-VLP(商品名)、三井金属鉱業(株))を配置し、面圧30kgf/cm及び温度220℃で120分間の真空プレスを行って積層成形することで、厚さ0.124mmの金属箔張積層板(両面銅張積層板)を作製した。得られたプリプレグ及び金属箔張積層板の物性を評価方法に従って測定し、その測定結果を表1に示した。
〔実施例4〕
 合成例1で得られたナフトールアラルキル型シアン酸エステル化合物(SN495V-CN、シアン酸エステル基当量:261g/eq.)8質量部、2,2-ビス(4-(4-マレイミドフェノキシ)-フェニル)プロパン(BMI-80(商品名)、ケイ・アイ化成(株))28質量部、ビフェニルアラルキル型マレイミド化合物(MIR-3000-70MT(商品名)、日本化薬(株))28質量部、ナフタレン型エポキシ樹脂(EPICLON EXA-4032-70M(商品名)、エポキシ当量:150g/eq.、DIC(株))12質量部、変性ポリフェニレンエーテル化合物(OPE-2St1200(商品名)、三菱ガス化学(株)、式(7)で表される化合物(式(7)中、Xが式(8)であり、-(Y-O)-及び-(O-Y)-が、式(11)の構造単位が重合したものである)、数平均分子量1187、ビニル基当量:590g/eq.、最低溶融粘度:1000Pa・s)24質量部、表面被覆酸化チタン(結晶構造:ルチル型、二酸化チタンを、アルミナ及びシリコーンオイル(アルミナ及びシリコーンオイルの合計の含有量:2質量%)で表面処理したもの、酸化チタン含有量:98質量%、平均粒子径(D50):0.20μm、R-11P(商品名)、堺化学工業(株))80質量部、溶融球状シリカ(SC4500-SQ(商品名)、平均粒子径(D50):1.1μm、(株)アドマテックス)120質量部、シランカップリング剤(KBM-1403(商品名)、信越化学工業(株))4質量部、湿潤分散剤(DISPERBYK(登録商標)-161(商品名)、ビックケミー・ジャパン(株))2質量部、湿潤分散剤(BYK(登録商標)-W903(商品名)、ビックケミー・ジャパン(株))2質量部、2,4,5-トリフェニルイミダゾール(東京化成工業(株))0.1質量部、メチルエチルケトン100質量部を混合して、樹脂ワニスを得た。樹脂ワニス中の表面被覆酸化チタンと充填材(SC4500-SQ(商品名))との配合比(含有量比)は、体積比で、26:74(表面被覆酸化チタン:充填材)であった。
 得られた樹脂ワニスを厚さ0.094mmのEガラスクロス(1031NT S640(商品名)、(株)有沢製作所)に含浸塗工し、130℃で3分間加熱乾燥することにより、厚さ0.1mmのプリプレグを得た。次に、得られたプリプレグの上下面に厚さ12μmの電解銅箔(3EC-M3-VLP(商品名)、三井金属鉱業(株))を配置し、面圧30kgf/cm及び温度220℃で120分間の真空プレスを行って積層成形することで、厚さ0.124mmの金属箔張積層板(両面銅張積層板)を作製した。得られたプリプレグ及び金属箔張積層板の物性を評価方法に従って測定し、その測定結果を表1に示した。
〔実施例5〕
 合成例1で得られたナフトールアラルキル型シアン酸エステル化合物(SN495V-CN、シアン酸エステル基当量:261g/eq.)8質量部、2,2-ビス(4-(4-マレイミドフェノキシ)-フェニル)プロパン(BMI-80(商品名)、ケイ・アイ化成(株))28質量部、ビフェニルアラルキル型マレイミド化合物(MIR-3000-70MT(商品名)、日本化薬(株))28質量部、ナフタレン型エポキシ樹脂(EPICLON EXA-4032-70M(商品名)、エポキシ当量:150g/eq.、DIC(株))12質量部、変性ポリフェニレンエーテル化合物(OPE-2St1200(商品名)、三菱ガス化学(株)、式(7)で表される化合物(式(7)中、Xが式(8)であり、-(Y-O)-及び-(O-Y)-が、式(11)の構造単位が重合したものである)、数平均分子量1187、ビニル基当量:590g/eq.、最低溶融粘度:1000Pa・s)24質量部、表面被覆酸化チタン(結晶構造:ルチル型、二酸化チタンを、アルミナ、オルガノシラン、及びシリコーンオイル(アルミナ、オルガノシラン、及びシリコーンオイルの合計の含有量:5質量%)で表面処理したもの、酸化チタン含有量:95質量%、平均粒子径(D50):0.23μm、R-39(商品名)、堺化学工業(株))80質量部、溶融球状シリカ(SC4500-SQ(商品名)、平均粒子径(D50):1.1μm、(株)アドマテックス)120質量部、シランカップリング剤(KBM-1403(商品名)、信越化学工業(株))4質量部、湿潤分散剤(DISPERBYK(登録商標)-161(商品名)、ビックケミー・ジャパン(株))2質量部、湿潤分散剤(BYK(登録商標)-W903(商品名)、ビックケミー・ジャパン(株))2質量部、2,4,5-トリフェニルイミダゾール(東京化成工業(株))0.1質量部、メチルエチルケトン100質量部を混合して、樹脂ワニスを得た。樹脂ワニス中の表面被覆酸化チタンと充填材(SC4500-SQ(商品名))との配合比(含有量比)は、体積比で、26:74(表面被覆酸化チタン:充填材)であった。
 得られた樹脂ワニスを厚さ0.094mmのEガラスクロス(1031NT S640(商品名)、(株)有沢製作所)に含浸塗工し、130℃で3分間加熱乾燥することにより、厚さ0.1mmのプリプレグを得た。次に、得られたプリプレグの上下面に厚さ12μmの電解銅箔(3EC-M3-VLP(商品名)、三井金属鉱業(株))を配置し、面圧30kgf/cm及び温度220℃で120分間の真空プレスを行って積層成形することで、厚さ0.124mmの金属箔張積層板(両面銅張積層板)を作製した。得られたプリプレグ及び金属箔張積層板の物性を評価方法に従って測定し、その測定結果を表1に示した。
〔比較例1〕
 ビフェニルアラルキル型マレイミド化合物(MIR-3000-70MT(商品名)、日本化薬(株))80質量部、ナフタレン型エポキシ樹脂(EPICLON EXA-4032-70M(商品名)、エポキシ当量:150g/eq.、DIC(株))20質量部、表面被覆酸化チタン(結晶構造:ルチル型、二酸化チタンを、シリカ及びアルミナ(シリカ及びアルミナの合計の含有量:15質量%)で表面処理したもの、酸化チタン含有量:85質量%、平均粒子径(D50):0.25μm、PFC-211(商品名)、石原産業(株))80質量部、溶融球状シリカ(SC4500-SQ(商品名)、平均粒子径(D50):1.1μm、(株)アドマテックス)120質量部、シランカップリング剤(KBM-1403(商品名)、信越化学工業(株))4質量部、湿潤分散剤(DISPERBYK(登録商標)-161(商品名)、ビックケミー・ジャパン(株))2質量部、湿潤分散剤(BYK(登録商標)-W903(商品名)、ビックケミー・ジャパン(株))2質量部、2,4,5-トリフェニルイミダゾール(東京化成工業(株))0.1質量部、メチルエチルケトン100質量部を混合して、樹脂ワニスを得た。樹脂ワニス中の表面被覆酸化チタンと充填材(SC4500-SQ(商品名))との配合比(含有量比)は、体積比で、26:74(表面被覆酸化チタン:充填材)であった。
 得られた樹脂ワニスを厚さ0.094mmのEガラスクロス(1031NT S640(商品名)、(株)有沢製作所)に含浸塗工し、130℃で3分間加熱乾燥することにより、厚さ0.1mmのプリプレグを得た。次に、得られたプリプレグの上下面に厚さ12μmの電解銅箔(3EC-M3-VLP(商品名)、三井金属鉱業(株))を配置し、面圧30kgf/cm及び温度220℃で120分間の真空プレスを行って積層成形することで、厚さ0.124mmの金属箔張積層板(両面銅張積層板)を作製した。得られたプリプレグ及び金属箔張積層板の物性を評価方法に従って測定し、その測定結果を表1に示した。
〔比較例2〕
 合成例1で得られたナフトールアラルキル型シアン酸エステル化合物(SN495V-CN、シアン酸エステル基当量:261g/eq.)8質量部、2,2-ビス(4-(4-マレイミドフェノキシ)-フェニル)プロパン(BMI-80(商品名)、ケイ・アイ化成(株))28質量部、ビフェニルアラルキル型マレイミド化合物(MIR-3000-70MT(商品名)、日本化薬(株))28質量部、ナフタレン型エポキシ樹脂(EPICLON EXA-4032-70M(商品名)、エポキシ当量:150g/eq.、DIC(株))12質量部、変性ポリフェニレンエーテル化合物(OPE-2St1200(商品名)、三菱ガス化学(株)、式(7)で表される化合物(式(7)中、Xが式(8)であり、-(Y-O)-及び-(O-Y)-が、式(11)の構造単位が重合したものである)、数平均分子量1187、ビニル基当量:590g/eq.、最低溶融粘度:1000Pa・s)24質量部、表面被覆酸化チタン(結晶構造:ルチル型、二酸化チタンを、シリカ及びアルミナ(シリカ及びアルミナの合計の含有量:15質量%)で表面処理したもの、酸化チタン含有量:85質量%、平均粒子径(D50):0.25μm、PFC-211(商品名)、石原産業(株))80質量部、溶融球状シリカ(SC4500-SQ(商品名)、平均粒子径(D50):1.1μm、(株)アドマテックス)120質量部、シランカップリング剤(KBM-1403(商品名)、信越化学工業(株))4質量部、湿潤分散剤(DISPERBYK(登録商標)-161(商品名)、ビックケミー・ジャパン(株))2質量部、湿潤分散剤(BYK(登録商標)-W903(商品名)、ビックケミー・ジャパン(株))2質量部、2,4,5-トリフェニルイミダゾール(東京化成工業(株))0.1質量部、メチルエチルケトン100質量部を混合して、樹脂ワニスを得た。樹脂ワニス中の表面被覆酸化チタンと充填材(SC4500-SQ(商品名))との配合比(含有量比)は、体積比で、26:74(表面被覆酸化チタン:充填材)であった。
 得られた樹脂ワニスを厚さ0.094mmのEガラスクロス(1031NT S640(商品名)、(株)有沢製作所)に含浸塗工し、130℃で3分間加熱乾燥することにより、厚さ0.1mmのプリプレグを得た。次に、得られたプリプレグの上下面に厚さ12μmの電解銅箔(3EC-M3-VLP(商品名)、三井金属鉱業(株))を配置し、面圧30kgf/cm及び温度220℃で120分間の真空プレスを行って積層成形することで、厚さ0.124mmの金属箔張積層板(両面銅張積層板)を作製した。得られたプリプレグ及び金属箔張積層板の物性を評価方法に従って測定し、その測定結果を表1に示した。
〔比較例3〕
 表面被覆酸化チタン(結晶構造:ルチル型、二酸化チタンを、シリカ、アルミナ、及びジメチルシリコーン(シリカ、アルミナ、及びジメチルシリコーンの合計の含有量:3質量%)で表面処理したもの、酸化チタン含有量:97質量%、平均粒子径(D50):0.21μm、CR-63(商品名)、石原産業(株))80質量部の代わりに、表面被覆酸化チタン(酸化チタン粒子41質量%、シリカ57質量%、アルキルシラン2質量%、複数の酸化チタン粒子を内包する無機物粒子、平均粒子径(D50):4.5μm、SUNSIL-Tin50AS(商品名)、(有)リンデン)80質量部を用いた以外は、実施例1と同様にして、プリプレグを作製した。なお、樹脂ワニス中の表面被覆酸化チタンと、充填材(SC4500-SQ(商品名))との配合比(含有量比)は、体積比で、26:74(表面被覆酸化チタン:充填材)であった。
 得られたプリプレグを用いて金属箔張積層板の作製を試みたが、金属箔張積層板の全面にボイドが発生し、金属箔張積層板を作成することができなかった。
〔比較例4〕
 表面被覆酸化チタン(結晶構造:ルチル型、二酸化チタンを、シリカ、アルミナ、及びジメチルシリコーン(シリカ、アルミナ、及びジメチルシリコーンの合計の含有量:3質量%)で表面処理したもの、酸化チタン含有量:97質量%、平均粒子径(D50):0.21μm、CR-63(商品名)、石原産業(株))80質量部の代わりに、表面被覆酸化チタン(二酸化チタンを、シリカ、及びアルミナで表面処理したもの、酸化チタン含有量:91質量%、平均粒子径(D50):0.20μm、R-21(商品名)、堺化学工業(株))80質量部を用いた以外は、実施例1と同様にして、プリプレグを作製した。なお、樹脂ワニス中の表面被覆酸化チタンと、充填材(SC4500-SQ(商品名))との配合比(含有量比)は、体積比で、26:74(表面被覆酸化チタン:充填材)であった。
 得られたプリプレグを用いて金属箔張積層板の作製を試みたが、金属箔張積層板の全面にボイドが発生し、金属箔張積層板を作成することができなかった。
〔評価方法〕
(1)吸水率
 実施例及び比較例で得られたプリプレグを2枚積層し、その上下面に厚さ12μmの電解銅箔(3EC-M3-VLP(商品名)、三井金属鉱業(株))を配置し、面圧30kgf/cm及び温度220℃で120分間の真空プレスを行って積層成形することで、厚さ0.2mmの金属箔張積層板(両面銅張積層板)を作製した。この金属箔張積層板の両面の銅箔を全てエッチングして、両面の銅箔が全て除去された厚さ0.2mmのアンクラッド板を得た。このアンクラッド板をサイズ50mm×50mmに切断(ダウンサイジング)し、測定用サンプルを得た。この測定用サンプルを150℃の乾燥機中で1時間乾燥させた。その後、測定用サンプルの乾燥質量M1(g)を測定した。次に、乾燥後の測定用サンプルを85℃及び85%RH(相対湿度)の恒温恒湿器(FX-222P(商品名)、楠本化成(株))にて168時間吸湿処理した。168時間の吸湿処理後、測定用サンプルを恒温恒湿器から取り出して秤量し、秤量値が一定になったときの質量をM2(g)とした。得られた質量M1及びM2を用いて、下記式(i)に基づいて、吸水率(%)を算出した。
 吸水率(%)=[(M2-M1)/M1]×100・・・(i)
(2)ガラス転移温度(Tg)
 実施例及び比較例で得られた金属箔張積層板の両面の銅箔を全てエッチングして、両面の銅箔が全て除去された厚さ0.1mmのアンクラッド板を得た。このアンクラッド板をサイズ40mm×4.5mmに切断(ダウンサイジング)し、測定用サンプルを得た。この測定用サンプルを用いて、JIS C6481に準拠して、動的粘弾性分析装置(Q800(商品名)、TAインスツルメント)でDMA法により、ガラス転移温度(Tg、℃)を測定した。
(3)熱膨張係数(CTE)
 実施例及び比較例で得られた金属箔張積層板の両面の銅箔を全てエッチングして、両面の銅箔が全て除去された厚さ0.1mmのアンクラッド板を得た。このアンクラッド板をサイズ40mm×4.5mmに切断(ダウンサイジング)し、測定用サンプルを得た。この測定用サンプルを用い、JIS C6481に準拠して、熱機械分析装置(Q400(商品名)、TAインスツルメント)で40℃から340℃まで毎分10℃で昇温し、60℃から120℃における面方向の熱膨張係数(CTE、ppm/℃)を測定した。測定方向は、積層板のガラスクロスの縦方向(Warp)を測定した。
(4)比誘電率(Dk)及び誘電正接(Df)
 実施例及び比較例で得られた金属箔張積層板の両面の銅箔を全てエッチングして、両面の銅箔が全て除去された厚さ0.1mmのアンクラッド板を得た。このアンクラッド板をサイズ1mm×65mmに切断(ダウンサイジング)し、測定用サンプルを得た。
 この測定用サンプルを用い、ネットワークアナライザー(Agilent8722ES(商品名)、アジレントテクノロジー(株))を用いて、10GHzにおける比誘電率(Dk)及び誘電正接(Df)をそれぞれ測定した。なお、比誘電率(Dk)及び誘電正接(Df)の測定は、温度23℃±1℃、湿度50%RH(相対湿度)±5%RHの環境下で行った。
 次いで、この測定用サンプルを120℃の乾燥機中で、1時間乾燥させた。乾燥後の測定用サンプルを温度85℃±1℃及び湿度85%RH±5%RHの恒温恒湿器(FX-222P(商品名)、楠本化成(株))にて168時間吸湿処理した。168時間吸湿処理後の測定用サンプルについても、ネットワークアナライザー(Agilent8722ES(商品名)、アジレントテクノロジー(株))を用いて、10GHzにおける比誘電率(Dk)及び誘電正接(Df)をそれぞれ測定した。
(5)吸湿耐熱性評価
 実施例及び比較例で得られたプリプレグの上下面に、キャリア付き極薄銅箔(MT18FL(商品名)、三井金属鉱業(株)、厚さ:1.5μm)を配置し、面圧30kgf/cm及び温度220℃で120分間の真空プレスを行って積層成形することで、厚さ0.1mmの金属箔張積層板(両面銅張積層板)を作製した。次いで、両面の銅箔を全てエッチングして、両面の銅箔が全て除去されたアンクラッド板を得た。このアンクラッド板の上下面に、厚さ0.06mmのプリプレグ(GHPL-970LF(LD)(商品名)、三菱ガス化学(株))を配置し、更にその上下面に厚さ12μmの電解銅箔(3EC-M3-VLP(商品名)、三井金属鉱業(株))を配置し、面圧30kgf/cm及び温度220℃で120分間の真空プレスを行い積層成形し、厚さ0.22mmの金属箔張積層板(両面銅張積層板)を作製した。得られた積層板をサイズ50mm×50mmに切断(ダウンサイジング)し、片面側の銅箔を全てエッチングにより除去し、もう一方の面側においては、面の半分の銅箔をエッチングにより除去することで、測定用サンプルを作製した。得られた測定用サンプルを、プレッシャークッカー試験機(PC-3型(商品名)、平山製作所(株))を用いて、121℃及び2気圧の飽和水蒸気存在下で2時間処理した後、更に260℃又は280℃の半田槽に60秒間浸漬(ディップ)させて、外観変化の異常の有無を目視にて観察した。各測定は、それぞれ、5枚ずつ試験を行い、その5枚の中から、外観異常が0~1枚であった場合には「AA」、外観異常が2~5枚認められた場合には「CC」と評価し、結果を表1に示した。なお、浸漬後のサンプルにおいて、例えば、金属箔と絶縁層との界面で膨れが観察される場合を外観異常と判断した。表中において、「PCT 2.0h」とは、プレッシャークッカー試験機による2時間処理した後の結果を示す。
Figure JPOXMLDOC01-appb-T000025
 本出願は、2022年3月23日出願の日本特許出願(特願2022-46305)に基づくものであり、その内容はここに参照として取り込まれる。

 本実施形態の樹脂組成物は、硬化物、プリプレグ、フィルム状アンダーフィル材、樹脂シート、積層板、ビルドアップ材料、非伝導性フィルム、金属箔張積層板、プリント配線板、及び繊維強化複合材料の原料として、又は半導体装置の製造において好適に用いることができる。 

Claims (25)

  1.  表面被覆酸化チタン(A)と、熱硬化性化合物(B)とを含有し、
     下記式(i)で算出される吸水率が0.40%以下である、樹脂組成物。
     吸水率(%)=[(M2-M1)/M1]×100・・・(i)
     (式(i)中、M1は、前記樹脂組成物を、厚さ0.094mmのEガラスクロスに含浸塗工した後、130℃で3分間加熱乾燥して得られた厚さ0.1mmのプリプレグを2枚積層し、面圧30kgf/cm及び温度220℃で120分間の真空プレスを行って積層成形した積層板を150℃で1時間乾燥したときの、乾燥後の積層板(a)の質量(g)を示す。M2は、前記乾燥後の積層板(a)を、85℃及び85%RHにて、168時間吸湿処理した後の質量(g)を示す。)。
  2.  前記表面被覆酸化チタン(A)が、酸化チタン粒子の表面に、有機層及び/又は無機酸化物層を有する、請求項1に記載の樹脂組成物。
  3.  前記表面被覆酸化チタン(A)が、前記無機酸化物層の表面に前記有機層を更に有する、請求項2に記載の樹脂組成物。
  4.  前記有機層と前記無機酸化物層の合計量が、前記表面被覆酸化チタン(A)100質量%に対して、0.1~10質量%である、請求項2に記載の樹脂組成物。
  5.  前記無機酸化物層が、シリカを含む層、ジルコニアを含む層、及びアルミナを含む層からなる群より選ばれる1種以上である、請求項2に記載の樹脂組成物。
  6.  前記有機層が、有機ケイ素化合物で表面処理された層である、請求項2に記載の樹脂組成物。
  7.  前記有機ケイ素化合物が、シランカップリング剤、オルガノシラン、及びオルガノポリシロキサンからなる群より選ばれる1種以上を含む、請求項6に記載の樹脂組成物。
  8.  前記表面被覆酸化チタン(A)中の前記酸化チタンの含有量が、前記表面被覆酸化チタン(A)100質量%に対して、90~99.9質量%である、請求項2に記載の樹脂組成物。
  9.  前記表面被覆酸化チタン(A)の含有量が、樹脂組成物中の樹脂固形分の合計100質量部に対して、50~500質量部である、請求項1に記載の樹脂組成物。
  10.  前記熱硬化性化合物(B)が、マレイミド化合物、エポキシ化合物、変性ポリフェニレンエーテル化合物、シアン酸エステル化合物、フェノール化合物、アルケニル置換ナジイミド化合物、オキセタン樹脂、ベンゾオキサジン化合物、及び重合可能な不飽和基を有する化合物からなる群より選ばれる1種以上を含む、請求項1に記載の樹脂組成物。
  11.  前記マレイミド化合物が、ビス(4-マレイミドフェニル)メタン、2,2-ビス(4-(4-マレイミドフェノキシ)-フェニル)プロパン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、下記式(1)で表されるマレイミド化合物、及び下記式(2)で表されるマレイミド化合物からなる群より選ばれる1種以上を含む、請求項10に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
     (式(1)中、Rは、各々独立して、水素原子又はメチル基を示し、n1は、1~10の整数である。)。
    Figure JPOXMLDOC01-appb-C000002
     (式(2)中、Rは、各々独立して、水素原子、炭素数1~5のアルキル基、又はフェニル基を示し、n2は、平均値であり、1<n2≦5を示す。)。
  12.  前記エポキシ化合物が、ビフェニルアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂、及びナフチレンエーテル型エポキシ樹脂からなる群より選ばれる1種以上を含む、請求項10に記載の樹脂組成物。
  13.  前記変性ポリフェニレンエーテル化合物が、下記式(3)で表される化合物を含む、請求項10に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
     (式(3)中、Xは芳香族基を示し、-(Y-O)m-はポリフェニレンエーテル部分を示す。R1、R2、及びR3は、各々独立に、水素原子、アルキル基、アルケニル基、又はアルキニル基を示す。mは1~100の整数を示し、nは1~6の整数を示し、qは1~4の整数を示す。)。
  14.  前記シアン酸エステル化合物が、フェノールノボラック型シアン酸エステル化合物、ナフトールアラルキル型シアン酸エステル化合物、ナフチレンエーテル型シアン酸エステル化合物、キシレン樹脂型シアン酸エステル化合物、ビスフェノールM型シアン酸エステル化合物、ビスフェノールA型シアン酸エステル化合物、ジアリルビスフェノールA型シアン酸エステル化合物、ビスフェノールE型シアン酸エステル化合物、ビスフェノールF型シアン酸エステル化合物、及びビフェニルアラルキル型シアン酸エステル化合物、並びにこれらのシアン酸エステル化合物のプレポリマー、又はポリマーからなる群より選ばれる1種以上を含む、請求項10に記載の樹脂組成物。
  15.  前記表面被覆酸化チタン(A)とは異なる充填材(C)を更に含有する、請求項1に記載の樹脂組成物。
  16.  前記充填材(C)が、シリカ、アルミナ、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、窒化アルミニウム、窒化ホウ素、ベーマイト、水酸化アルミニウム、モリブデン酸亜鉛、シリコーンゴムパウダー、及びシリコーン複合パウダーからなる群より選ばれる1種以上を含む、請求項15に記載の樹脂組成物。
  17.  前記充填材(C)の含有量が、樹脂組成物中の樹脂固形分の合計100質量部に対して、50~300質量部である、請求項15に記載の樹脂組成物。
  18.  プリント配線板用である、請求項1に記載の樹脂組成物。
  19.  基材と、
     該基材に含浸又は塗布された、請求項1~18のいずれか一項に記載の樹脂組成物と、を含む、プリプレグ。
  20.  請求項1~18のいずれか一項に記載の樹脂組成物を含む、樹脂シート。
  21.  請求項19に記載のプリプレグを含む、積層板。
  22.  請求項20に記載の樹脂シートを含む、積層板。
  23.  請求項21に記載の積層板と、
     該積層板の片面又は両面に配された金属箔と、を含む、金属箔張積層板。
  24.  請求項22に記載の積層板と、
     該積層板の片面又は両面に配された金属箔と、を含む、金属箔張積層板。
  25.  絶縁層と、
     該絶縁層の片面又は両面に配された導体層と、を有し、
     該絶縁層が、請求項1~18のいずれか一項に記載の樹脂組成物の硬化物を含む、プリント配線板。
PCT/JP2023/010222 2022-03-23 2023-03-16 樹脂組成物、プリプレグ、樹脂シート、積層板、金属箔張積層板、及びプリント配線板 WO2023182123A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-046305 2022-03-23
JP2022046305 2022-03-23

Publications (1)

Publication Number Publication Date
WO2023182123A1 true WO2023182123A1 (ja) 2023-09-28

Family

ID=88101505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010222 WO2023182123A1 (ja) 2022-03-23 2023-03-16 樹脂組成物、プリプレグ、樹脂シート、積層板、金属箔張積層板、及びプリント配線板

Country Status (2)

Country Link
TW (1) TW202346403A (ja)
WO (1) WO2023182123A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211225A (ja) * 2011-03-30 2012-11-01 Hitachi Chemical Co Ltd 樹脂組成物、樹脂シート、プリプレグ、積層板、金属基板、及びプリント配線板
JP2013155344A (ja) * 2012-01-31 2013-08-15 Hitachi Chemical Co Ltd 光反射用熱硬化性樹脂組成物、これを用いた光半導体素子搭載用基板及びその製造方法、並びに光半導体装置
JP2018145374A (ja) * 2017-03-09 2018-09-20 日立化成株式会社 熱硬化性樹脂組成物の製造方法、光半導体素子搭載用基板の製造方法、光半導体装置の製造方法及び熱硬化性樹脂組成物
JP2020122034A (ja) * 2019-01-29 2020-08-13 日鉄ケミカル&マテリアル株式会社 エポキシ樹脂組成物及びその硬化物
WO2021246231A1 (ja) * 2020-06-01 2021-12-09 三菱瓦斯化学株式会社 電子材料用モリブデン酸亜鉛アンモニウム水和物、電子材料用樹脂組成物、プリプレグ、樹脂シート、積層板、金属箔張積層板、及びプリント配線板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211225A (ja) * 2011-03-30 2012-11-01 Hitachi Chemical Co Ltd 樹脂組成物、樹脂シート、プリプレグ、積層板、金属基板、及びプリント配線板
JP2013155344A (ja) * 2012-01-31 2013-08-15 Hitachi Chemical Co Ltd 光反射用熱硬化性樹脂組成物、これを用いた光半導体素子搭載用基板及びその製造方法、並びに光半導体装置
JP2018145374A (ja) * 2017-03-09 2018-09-20 日立化成株式会社 熱硬化性樹脂組成物の製造方法、光半導体素子搭載用基板の製造方法、光半導体装置の製造方法及び熱硬化性樹脂組成物
JP2020122034A (ja) * 2019-01-29 2020-08-13 日鉄ケミカル&マテリアル株式会社 エポキシ樹脂組成物及びその硬化物
WO2021246231A1 (ja) * 2020-06-01 2021-12-09 三菱瓦斯化学株式会社 電子材料用モリブデン酸亜鉛アンモニウム水和物、電子材料用樹脂組成物、プリプレグ、樹脂シート、積層板、金属箔張積層板、及びプリント配線板

Also Published As

Publication number Publication date
TW202346403A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
TWI814832B (zh) 樹脂組成物、預浸體、覆金屬箔疊層板、樹脂片及印刷配線板
US9832870B2 (en) Resin composition, prepreg, metal foil-clad laminate and printed wiring board
KR102382655B1 (ko) 수지 조성물, 프리프레그, 금속박 피복 적층판, 및 프린트 배선판
KR101921366B1 (ko) 몰리브덴 화합물 분체, 프리프레그 및 적층판
JP7363781B2 (ja) 樹脂組成物およびその応用
KR102431012B1 (ko) 프린트 배선판용 수지 조성물, 프리프레그, 레진 시트, 적층판, 금속박 피복 적층판, 프린트 배선판, 및 다층 프린트 배선판
WO2019230661A1 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂複合シート、および、プリント配線板
WO2017191771A1 (ja) 樹脂組成物、プリプレグ、樹脂シート、積層樹脂シート、積層板、金属箔張積層板、及びプリント配線板
JP6910590B2 (ja) プリント配線板用樹脂組成物、プリプレグ、金属箔張積層板、積層樹脂シート、樹脂シート、及びプリント配線板
JP6981634B2 (ja) 樹脂組成物、これを含むプリプレグ、これを含む積層板、およびこれを含む樹脂付着金属箔
JP6156075B2 (ja) 樹脂組成物、プリプレグ、樹脂シート、金属箔張積層板及びプリント配線板
WO2023190118A1 (ja) 樹脂組成物、プリプレグ、樹脂シート、積層板、金属箔張積層板、及びプリント配線板
WO2022249999A1 (ja) 樹脂組成物、プリプレグ、樹脂シート、積層板、金属箔張積層板、及びプリント配線板
WO2021246231A1 (ja) 電子材料用モリブデン酸亜鉛アンモニウム水和物、電子材料用樹脂組成物、プリプレグ、樹脂シート、積層板、金属箔張積層板、及びプリント配線板
WO2023182123A1 (ja) 樹脂組成物、プリプレグ、樹脂シート、積層板、金属箔張積層板、及びプリント配線板
WO2023182122A1 (ja) 樹脂組成物、プリプレグ、樹脂シート、積層板、金属箔張積層板、及びプリント配線板
JP7223357B2 (ja) 樹脂組成物、プリプレグ、樹脂シート、積層板、金属箔張積層板、及びプリント配線板
WO2023074484A1 (ja) 樹脂組成物、プリプレグ、樹脂シート、積層板、金属箔張積層板、及びプリント配線板
KR20240088640A (ko) 수지 조성물, 프리프레그, 수지 시트, 적층판, 금속박 피복 적층판, 및 프린트 배선판
CN117397372A (zh) 树脂组合物、预浸料、树脂片、层叠板、覆金属箔层叠板和印刷电路板
JP6575699B2 (ja) プリント配線板用樹脂組成物、プリプレグ、樹脂シート、積層板、金属箔張積層板、プリント配線板、及び多層プリント配線板
KR20240040058A (ko) 수지 조성물, 수지 시트, 프리프레그, 금속박 피복 적층판 및 프린트 배선판

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774719

Country of ref document: EP

Kind code of ref document: A1