WO2023182122A1 - 樹脂組成物、プリプレグ、樹脂シート、積層板、金属箔張積層板、及びプリント配線板 - Google Patents
樹脂組成物、プリプレグ、樹脂シート、積層板、金属箔張積層板、及びプリント配線板 Download PDFInfo
- Publication number
- WO2023182122A1 WO2023182122A1 PCT/JP2023/010221 JP2023010221W WO2023182122A1 WO 2023182122 A1 WO2023182122 A1 WO 2023182122A1 JP 2023010221 W JP2023010221 W JP 2023010221W WO 2023182122 A1 WO2023182122 A1 WO 2023182122A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin composition
- compound
- titanium oxide
- mass
- resin
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/04—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B15/08—Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/4007—Curing agents not provided for by the groups C08G59/42 - C08G59/66
- C08G59/4014—Nitrogen containing compounds
- C08G59/4028—Isocyanates; Thioisocyanates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/4007—Curing agents not provided for by the groups C08G59/42 - C08G59/66
- C08G59/4014—Nitrogen containing compounds
- C08G59/4042—Imines; Imides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/12—Unsaturated polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/02—Ingredients treated with inorganic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
- C08K9/06—Ingredients treated with organic substances with silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/08—Polyethers derived from hydroxy compounds or from their metallic derivatives
- C08L71/10—Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
- C08L71/12—Polyphenylene oxides
- C08L71/126—Polyphenylene oxides modified by chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08L79/085—Unsaturated polyimide precursors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/0353—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
- H05K1/0373—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2237—Oxides; Hydroxides of metals of titanium
- C08K2003/2241—Titanium dioxide
Definitions
- the present invention relates to a resin composition, a prepreg, a resin sheet, a laminate, a metal foil-clad laminate, and a printed wiring board.
- the signal bands of information communication devices such as PHS and mobile phones, as well as the CPU clock time of computers, have reached the GHz band, and higher frequencies are progressing.
- the dielectric loss of an electrical signal is proportional to the product of the square root of the dielectric constant of the insulating layer forming the circuit, the dielectric loss tangent, and the frequency of the electrical signal. Therefore, the higher the frequency of the signal used, the greater the dielectric loss.
- An increase in dielectric loss attenuates electrical signals and impairs signal reliability, so in order to suppress this, it is necessary to select a material with a small dielectric constant and dielectric loss tangent for the insulating layer.
- the insulating layer has low moisture absorption and heat resistance, the moisture contained in the insulating layer will evaporate during reflow, resulting in voids, which will cause delamination during the production of the laminate. Therefore, in the field of electronic materials where high reliability is required, an insulating layer having excellent moisture absorption and heat resistance is required.
- the present invention has been made to solve the above-mentioned problems, and is suitable for manufacturing an insulating layer of a printed wiring board that has a high dielectric constant and a low dielectric loss tangent, and has excellent heat resistance and moisture absorption heat resistance.
- the object of the present invention is to provide a resin composition used, a prepreg, a resin sheet, a laminate, a metal foil-clad laminate, and a printed wiring board obtained using the resin composition.
- the present invention is as follows. [1] Surface-coated titanium oxide (A) whose mass reduction rate is 0.5% by mass or less when heated from 30°C to 300°C at a temperature increase rate of 10°C/min, and a thermosetting compound (B). A resin composition containing.
- the total amount of the organic layer and the inorganic oxide layer is 0.1 to 10% by mass based on 100% by mass of the surface-coated titanium oxide (A).
- the inorganic oxide layer according to any one of [2] to [4] is one or more selected from the group consisting of a layer containing silica, a layer containing zirconia, and a layer containing alumina. Resin composition.
- the content of the titanium oxide in the surface-coated titanium oxide (A) is 90 to 99.9% by mass with respect to 100% by mass of the surface-coated titanium oxide (A), [2] The resin composition according to any one of [7].
- the first thermosetting compound (B) is a maleimide compound, an epoxy compound, a modified polyphenylene ether compound, a cyanate ester compound, a phenol compound, an alkenyl-substituted nadimide compound, an oxetane resin, a benzoxazine compound, and a polymerizable unsaturated compound.
- the resin composition according to any one of [1] to [9], which contains one or more selected from the group consisting of compounds having groups.
- the maleimide compound is bis(4-maleimidophenyl)methane, 2,2-bis(4-(4-maleimidophenoxy)-phenyl)propane, bis(3-ethyl-5-methyl-4-maleimidophenyl) )
- the resin composition according to [10] comprising one or more selected from the group consisting of methane, a maleimide compound represented by the following formula (1), and a maleimide compound represented by the following formula (2).
- R 1 each independently represents a hydrogen atom or a methyl group, and n1 is an integer of 1 to 10.
- R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a phenyl group, and n2 is an average value, and represents 1 ⁇ n2 ⁇ 5. ).
- X represents an aromatic group
- -(Y- O )m- represents a polyphenylene ether moiety.
- m represents an integer of 1 to 100
- n represents an integer of 1 to 6
- q represents an integer of 1 to 4).
- the cyanate ester compound is a phenol novolac type cyanate ester compound, a naphthol aralkyl type cyanate ester compound, a naphthylene ether type cyanate ester compound, a xylene resin type cyanate ester compound, a bisphenol M type cyanate ester compound , bisphenol A-type cyanate ester compounds, diallylbisphenol A-type cyanate ester compounds, bisphenol E-type cyanate ester compounds, bisphenol F-type cyanate ester compounds, biphenylaralkyl-type cyanate ester compounds, and these cyanate ester compounds
- the resin composition according to any one of [10] to [13], comprising one or more selected from the group consisting of a prepolymer or a polymer.
- the filler (C) is silica, alumina, barium titanate, strontium titanate, calcium titanate, aluminum nitride, boron nitride, boehmite, aluminum hydroxide, zinc molybdate, silicone rubber powder, and silicone composite.
- a prepreg comprising a base material and the resin composition according to any one of [1] to [18], which is impregnated or applied to the base material.
- a resin sheet comprising the resin composition according to any one of [1] to [18].
- a laminate comprising one or more selected from the group consisting of the prepreg described in [19] and the resin sheet described in [20].
- a metal foil-clad laminate comprising the laminate according to [21] and metal foil arranged on one or both sides of the laminate.
- the resin composition of the present invention has a high dielectric constant and a low dielectric loss tangent, and is suitably used for manufacturing an insulating layer of a printed wiring board having excellent heat resistance and moisture absorption heat resistance.
- Prepregs, resin sheets, laminates, metal foil-clad laminates, and printed wiring boards obtained using the composition can be provided.
- this embodiment a mode for carrying out the present invention (hereinafter referred to as "this embodiment") will be described in detail.
- the present embodiment below is an illustration for explaining the present invention, and is not intended to limit the present invention to the following content.
- the present invention can be implemented with appropriate modifications within the scope of its gist.
- resin solid content or “resin solid content in the resin composition” refers to surface coating titanium oxide (A), filler (C), additives, etc. in the resin composition, unless otherwise specified.
- resin components excluding agents silane coupling agents, wetting and dispersing agents, curing accelerators, and other components
- solvents solvents
- Total 100 parts by mass of resin solids or “total 100 parts by mass of resin solids in the resin composition” refers to the surface coating titanium oxide (A), filler (C), and additives in the resin composition. (silane coupling agent, wetting and dispersing agent, curing accelerator, and other components) and the total amount of resin components excluding the solvent (solvent) is 100 parts by mass.
- the resin composition of this embodiment includes a surface-coated titanium oxide (A) whose mass reduction rate is 0.5% by mass or less when heated from 30°C to 300°C at a temperature increase rate of 10°C/min, and a thermosetting titanium oxide (A). contains a chemical compound (B).
- the resin composition of this embodiment it is possible to provide a cured product that has a high dielectric constant and a low dielectric loss tangent, and has excellent heat resistance (soldering heat resistance) and moisture absorption heat resistance. That is, by using the resin composition of this embodiment, prepregs, resin sheets, laminates, metal foil cladding, etc., which have a high dielectric constant and a low dielectric loss tangent, and have excellent heat resistance and moisture absorption heat resistance upon curing, can be produced. Laminated boards and printed wiring boards can be suitably manufactured, and insulating layers of printed wiring boards can be manufactured more suitably. Therefore, the resin composition of this embodiment is more suitably used for manufacturing insulating layers of printed wiring boards.
- the present inventors have developed a surface-coated titanium oxide (A) that has a mass reduction rate of 0.5% by mass or less when heated from 30°C to 300°C at a temperature increase rate of 10°C/min, and a thermosetting titanium oxide
- A a surface-coated titanium oxide
- B thermosetting titanium oxide
- the inventors of the present invention estimate it as follows. That is, since surface-coated titanium oxide usually has a surface coating layer, it is relatively easy to absorb moisture in the atmosphere. Then, in the cured product obtained using the surface-coated titanium oxide, the absorbed moisture evaporates during reflow, and voids occur in the insulating layer. This phenomenon occurs significantly when the surface-coated titanium oxide has an inorganic oxide layer as a surface coating layer. In addition, when the surface-coated titanium oxide has an organic layer as a surface coating layer, the organic components are decomposed by heat during reflow, so the organic components are volatilized and voids are more likely to occur.
- the surface-coated titanium oxide When the surface-coated titanium oxide has an inorganic oxide layer and an organic layer, both moisture evaporation and organic content volatilization occur. However, if the surface-coated titanium oxide (A) has a mass reduction rate of 0.5% by mass or less when heated from 30°C to 300°C at a temperature increase rate of 10°C/min, the evaporation of water and the organic content volatilization can be suitably suppressed. By using such a surface-coated titanium oxide (A) together with a thermosetting resin (B), it has a high dielectric constant and a low dielectric loss tangent, and has excellent heat resistance and moisture absorption heat resistance.
- the evaporation of moisture in the case of having a layer and the volatilization of organic components in the case of having an organic layer can be suitably suppressed. Therefore, the present inventors estimate that according to this embodiment, voids are less likely to occur during reflow, and delamination is less likely to occur during the production of a laminate. However, the reason is not limited to this.
- the resin composition of the present embodiment includes surface-coated titanium oxide (A) whose mass reduction rate is 0.5% by mass or less when heated from 30°C to 300°C at a temperature increase rate of 10°C/min.
- the mass reduction rate is preferably 0.48% by mass or less, more preferably 0.45% by mass or less, and even more preferably 0.43% by mass. Note that the lower limit is not particularly limited, but is, for example, 0% or more.
- the mass reduction rate can be measured using, for example, thermogravimetry (TG), and the specific measurement method is as described in Examples.
- the surface-coated titanium oxide (A) has an organic layer and/or an inorganic layer on the surface of the titanium oxide particles (hereinafter simply referred to as "titanium oxide particles” or “core particles") that serve as the core of the surface-coated titanium oxide (A). Preferably, it has an oxide layer.
- titanium oxide particles hereinafter simply referred to as "titanium oxide particles” or “core particles”
- core particles preferably, it has an oxide layer.
- the surface-coated titanium oxide (A) may be used alone or in combination of two or more surface-coated titanium oxides having different particle sizes and surface conditions.
- the average particle diameter (D50) of the surface-coated titanium oxide (A) is preferably 0.1 to 5 ⁇ m, more preferably 0.15 to 1 ⁇ m, from the viewpoint of dispersibility.
- the average particle diameter (D50) is determined by measuring the particle size distribution of a predetermined amount of powder added to a dispersion medium using a laser diffraction/scattering type particle size distribution measuring device, and calculating the volume integration from small particles. It means the value when it reaches 50% of the total volume.
- the average particle diameter (D50) can be calculated by measuring particle size distribution using a laser diffraction/scattering method, but examples can be referred to for a specific measurement method.
- the shape of the surface-coated titanium oxide (A) is not particularly limited, but examples include scale-like, spherical, plate-like, and amorphous shapes.
- a resin composition that has good dispersibility with the thermosetting compound (B) described below, has excellent heat resistance and moisture absorption heat resistance during curing, and excellent dielectric properties (high dielectric constant and low dielectric loss tangent).
- the shape is preferably spherical in order to obtain an insulating layer having a more suitable surface hardness.
- the dielectric constant of the surface-coated titanium oxide (A) is preferably 20 or more, more preferably 25 or more. When the dielectric constant is 20 or more, an insulating layer having a high dielectric constant tends to be obtained.
- the dielectric constant of the surface-coated titanium oxide (A) is a value at 10 GHz measured by a cavity resonator method.
- the dielectric constant of the surface-coated titanium oxide (A) can be calculated using the Bruggeman equation (compound rule).
- the dielectric loss tangent of the surface-coated titanium oxide (A) is preferably 0.01 or less, more preferably 0.008 or less. When the dielectric loss tangent is 0.01 or less, an insulating layer having a low dielectric loss tangent tends to be obtained.
- the dielectric loss tangent of the surface-coated titanium oxide (A) is a value at 10 GHz measured by a cavity resonator method.
- the dielectric loss tangent of the surface-coated titanium oxide (A) can be calculated using the Bruggeman equation (compound rule).
- the total amount of the organic layer and the inorganic oxide layer (coating amount) is preferably 0.1 to 10% by mass, and 1 to 10% by mass, based on 100% by mass of the surface-coated titanium oxide (A). It is more preferably 8% by mass, and even more preferably 1 to 4% by mass.
- Printed wiring boards etc. with better heat resistance and moisture absorption heat resistance as well as good dielectric properties (high dielectric constant and low dielectric loss tangent) can be obtained, and the adhesion with the resin component is further improved, and the Surface-coated titanium oxide (A) can further reduce aggregation of surface-coated titanium oxide (A), improve dispersibility, and provide excellent dielectric properties (high dielectric constant and low dielectric loss tangent) and heat resistance.
- the content of titanium oxide in the titanium oxide is preferably 90 to 99.9% by mass, more preferably 92 to 99% by mass, and more preferably 96 to 99.9% by mass, based on 100% by mass of surface-coated titanium oxide (A). More preferably, it is 99% by mass.
- the core particles include titanium monoxide (TiO), dititanium trioxide (Ti 2 O 3 ), and titanium dioxide (TiO 2 ).
- titanium dioxide is preferred. Titanium dioxide preferably has a rutile or anatase crystal structure, more preferably a rutile crystal structure.
- the average particle diameter (D50) of the core particles is preferably 0.10 to 0.45 ⁇ m, more preferably 0.15 to 0.25 ⁇ m.
- the average particle diameter (D50) of the core particles is determined from the average value of the particle diameters of primary particles of single particles.
- Surface-coated titanium oxide (A) is usually obtained by coating the surface of core particles with an organic layer or an inorganic oxide layer using a surface treatment agent. Further, the surface of the organic layer or inorganic oxide layer coated on the surface of the core particle may be further coated with an organic layer and/or an inorganic oxide layer using a surface treatment agent. Printed wiring boards etc.
- the surface-coated titanium oxide (A) further has an organic layer on the surface of the inorganic oxide layer coated on the surface of the core particle. Coating methods include inorganic and organic treatments. One type of surface treatment agent may be used alone, or two or more types may be used in combination.
- Examples of surface treatment agents used in inorganic treatment include oxoacids (for example, silicic acid and aluminic acid), oxoacids of metals such as aluminum, silicon, zirconium, tin, titanium, antimony, zinc, cobalt, and manganese. Examples include metal salts (eg, sodium silicate and sodium aluminate), oxides, hydroxides, and hydrated oxides.
- the surface-coated titanium oxide (A) obtained by inorganic treatment has an inorganic oxide layer on the surface of the titanium oxide particles, the surface of the inorganic oxide layer, or the surface of the organic layer described below.
- Examples of surface treatment agents used in organic treatment include organosilicon compounds such as organosilanes, silane coupling agents, and organopolysiloxanes; organotitanium compounds such as titanium coupling agents; organic acids, polyols, and alkanolamines. Examples include organic substances.
- the surface-coated titanium oxide (A) obtained by organic treatment has an organic layer on the surface of the titanium oxide particles, the surface of the organic layer, or the surface of the inorganic oxide layer.
- organosilane examples include n-propyltrimethoxysilane, n-propyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, octyltrimethoxysilane, decyltrimethoxysilane, 3-chloropropyltriethoxysilane, and phenyltrimethoxysilane.
- alkoxysilanes such as triethoxysilane and trifluoropropyltrimethoxysilane.
- silane coupling agent examples include aminosilanes such as 3-aminopropyltriethoxysilane, N-2-(aminoethyl)-3-aminopropyltriethoxysilane, and N-phenyl-3-aminopropyltrimethoxysilane.
- Epoxysilanes such as 3-glycidoxypropyltrimethoxysilane and 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane
- Methacrylsilanes such as 3-(methacryloyloxypropyl)trimethoxysilane
- Vinylsilanes such as methoxysilane, vinyltriethoxysilane, and vinyltrichlorosilane
- mercaptosilanes such as 3-mercaptopropyltrimethoxysilane; and the like.
- silicone oil is preferred because it can form a more uniform organic layer.
- examples of the silicone oil include alkyl silicones, alkyl hydrogen silicones, alkoxy silicones, and modified silicones.
- examples of alkyl silicones include dimethyl silicone.
- examples of the alkyl hydrogen silicone include methyl hydrogen silicone and ethyl hydrogen silicone.
- alkoxy silicone a silicone compound containing an alkoxysilyl group in which an alkoxy group is bonded directly or via a divalent hydrocarbon group to a silicon atom is preferred. Examples of such silicone compounds include linear, cyclic, network, and partially branched linear organopolysiloxanes.
- linear organopolysiloxanes are preferred, and organopolysiloxanes having a molecular structure in which an alkoxy group is directly bonded to a silicone main chain are more preferred.
- alkoxy silicones include methoxy silicone and ethoxy silicone.
- modified silicones include amino-modified silicones, epoxy-modified silicones, and mercapto-modified silicones.
- titanium coupling agent examples include isopropyl triisostearoyl titanate, isopropyl dimethacrylylisostearoyl titanate, and isopropyl tridodecylbenzenesulfonyl titanate.
- organic acids examples include adipic acid, terephthalic acid, lauric acid, myristic acid, palmitic acid, stearic acid, polyhydroxystearic acid, oleic acid, salicylic acid, malic acid, maleic acid, and metal salts thereof. Can be mentioned.
- polyol examples include trimethylolethane, trimethylolpropane, ditrimethylolpropane, trimethylolpropane ethoxylate, and pentaerythritol.
- alkanolamines include monoethanolamine, monopropanolamine, diethanolamine, dipropanolamine, triethanolamine, and tripropanolamine.
- thermosetting compound (B) thermosetting compound
- dielectric properties high dielectric constant and low dielectric loss tangent.
- the surface-coated titanium oxide (A) has an inorganic oxide layer on the surface of the titanium oxide particles, and the inorganic oxide layer is made of silica.
- the inorganic oxide layer is preferably one or more selected from the group consisting of a layer containing silica, a layer containing zirconia, and a layer containing alumina, and the inorganic oxide layer is selected from the group consisting of a layer containing silica and a layer containing alumina. More preferably, it is one or more types.
- the surface-coated titanium oxide (A) may have two or more inorganic oxide layers.
- the inorganic oxide layer located on the side closer to the titanium oxide particles can further suppress the water absorption by the titanium oxide particles, which are mainly core particles, and the inorganic oxide layer located on the side farther from the titanium oxide particles
- the located inorganic oxide layer preferably has a structure that can mainly improve adhesion with the resin component, relaxation of aggregation of the surface-coated titanium oxide (A) in the resin composition, and dispersibility.
- the inorganic oxide layer located on the side closer to the core particle is a group consisting of a layer containing silica and a layer containing zirconia.
- the inorganic oxide layer located on the side far from the core particle is preferably a layer containing alumina, and the inorganic oxide layer located on the side close to the core particle is a layer containing silica. It is more preferable that the inorganic oxide layer located on the side far from the core particle is a layer containing alumina.
- the inorganic oxide layer can be used to obtain printed wiring boards with better heat resistance, moisture absorption heat resistance, and better dielectric properties (high dielectric constant and low dielectric loss tangent), and the cured product has excellent heat resistance.
- the total amount is preferably 0.1 to 10% by mass, more preferably 0.3 to 7.5% by mass, and even more preferably 0. It is even more preferred that the amount is 0.4 to 5.0% by weight, even more preferably 0.5 to 4.0% by weight, even more preferably 0.5 to 3.3% by weight.
- the inorganic oxide layer has the effect of suppressing water absorption by titanium oxide, which is the core particle.
- the inorganic oxides that make up the inorganic oxide layer such as silica, zirconia, and alumina, are hydratable inorganic substances, they have a relatively high water absorption rate among inorganic oxides, and water tends to evaporate easily during reflow. It is in. The evaporated moisture causes voids to occur in the insulating layer.
- the surface-coated titanium oxide (A) preferably has an organic layer on the surface of the inorganic oxide layer.
- the organic layer can further reduce the water absorption of the titanium oxide core particles and the inorganic oxide layer, and can further suppress the water absorption of the resin composition. Therefore, evaporation of moisture from the insulating layer can be suppressed during reflow. Further, the organic layer has the effect of further reducing aggregation of the surface-coated titanium oxide (A) in the resin composition and further improving dispersibility.
- the agglomeration of the surface-coated titanium oxide (A) in the resin composition can be further alleviated, the dispersibility is further improved, and the water absorption rate of the laminate can be reduced due to better water repellency.
- the layer be surface-treated with an organosilicon compound.
- the organosilicon compound preferably contains one or more selected from the group consisting of silane coupling agents, organosilanes, and organopolysiloxanes.
- the organic layer obtained by surface treatment using these surface treatment agents becomes a layer having a siloxane structure.
- the layer having a siloxane structure can further reduce the agglomeration of the surface-coated titanium oxide (A) in the resin composition, further improve the dispersibility, and further reduce the water absorption rate of the laminate due to its excellent water repellency. tends to be possible.
- silicone oil is preferable because it can form a layer having a more uniform siloxane structure and exhibits the above-mentioned effects, and among silicone oils, dimethyl silicone is more preferable.
- surface treating agents other than those mentioned above may be used as long as the organic layer has a siloxane structure.
- the organic layer has a total content of 100% by mass of the surface-coated titanium oxide (A). , is preferably 0.1 to 10% by mass, more preferably 0.5 to 7.5% by mass, even more preferably 0.6 to 6.0% by mass, and even more preferably 0. It is still more preferably 7 to 5.0% by weight, even more preferably 0.7 to 3.5% by weight.
- the coating layer of the surface-coated titanium oxide (A) may have a two-layer structure of an inorganic oxide layer and an organic layer.
- Such a layered structure has the effect of suppressing the catalytic activity (for example, photocatalytic activity and metal catalytic activity) of titanium oxide and improving water repellency.
- the inorganic oxide layer is preferably one or more selected from the group consisting of a silica-containing layer, a zirconia-containing layer, and an alumina-containing layer, and while further increasing the affinity with the resin, A layer containing alumina is more preferable because the catalytic activity of titanium oxide can be further suppressed.
- the organic layer preferably has a siloxane structure because it has excellent heat resistance and chemical stability.
- surface-coated titanium oxide (A) the water absorption of titanium oxide can be further suppressed, the adhesion with the resin component is further improved, and the surface-coated titanium oxide in the resin composition is It can further reduce the agglomeration of (A), has better dispersibility with the thermosetting compound (B), has better heat resistance and moisture absorption heat resistance during curing, and has even better dielectric properties ( A resin composition having a high dielectric constant and a low dielectric loss tangent is obtained, and an insulating layer having an even more suitable surface hardness is obtained.
- commercially available products include, for example, R-22L and R-11P (trade names, Sakai Chemical Industries, Ltd.).
- the inorganic oxide layer located on the side closer to the core particle is a layer containing silica, and then the inorganic oxide layer contains alumina.
- the organic layer located on the farthest side from the core particle is preferably a layer having a siloxane structure.
- the surface-coated titanium oxide (A) By using such surface-coated titanium oxide (A), the water absorption of titanium oxide can be further suppressed, the adhesion with the resin component is further improved, and the surface-coated titanium oxide in the resin composition is It can further reduce the agglomeration of (A), has better dispersibility with the thermosetting compound (B), has better heat resistance and moisture absorption heat resistance during curing, and has even better dielectric properties ( A resin composition having a high dielectric constant and a low dielectric loss tangent is obtained, and an insulating layer having an even more suitable surface hardness is obtained.
- surface-coated titanium oxide (A) commercially available products can be used. Examples of commercially available products include CR-63 (trade name, Ishihara Sangyo Co., Ltd.).
- the content of the surface coating titanium oxide (A) is preferably 50 to 500 parts by mass, preferably 60 to 450 parts by mass, based on 100 parts by mass of the total resin solid content in the resin composition. More preferably, it is 70 to 400 parts by mass.
- the content of the surface coating titanium oxide (A) within the above range, it has even better dispersibility with the thermosetting compound (B), and has even better heat resistance and moisture absorption heat resistance, as well as better heat resistance and moisture absorption heat resistance.
- a resin composition having even better dielectric properties high dielectric constant and low dielectric loss tangent
- an insulating layer having even more suitable surface hardness tends to be obtained.
- thermosetting compound (B) The resin composition of this embodiment contains a thermosetting compound (B).
- the thermosetting compound (B) is not particularly limited as long as it is a thermosetting compound or resin.
- the thermosetting compound (B) may be used alone or in combination of two or more.
- thermosetting compound (B) examples include maleimide compounds, epoxy compounds, modified polyphenylene ether compounds, cyanate ester compounds, phenol compounds, alkenyl-substituted nadimide compounds, oxetane resins, benzoxazine compounds, and polymerizable inorganic compounds. It is preferable to include one or more thermosetting compounds or resins (hereinafter also simply referred to as "thermosetting resins”) selected from the group consisting of compounds having saturated groups. These thermosetting resins may be used alone or in combination of two or more.
- thermosetting compound (B) is selected from the group consisting of maleimide compounds, epoxy compounds, modified polyphenylene ether compounds, cyanate ester compounds, phenol compounds, and compounds having a polymerizable unsaturated group. It is more preferable that it is one or more types, and even more preferable that it is one or more types selected from the group consisting of maleimide compounds, epoxy compounds, modified polyphenylene ether compounds, and cyanate ester compounds.
- the surface-coated titanium oxide (A) can suitably suppress electrophilicity due to Lewis acidity that titanium oxide has. Therefore, even if the surface-coated titanium oxide (A) and the thermosetting compound (B) come close to each other in the resin composition, the polymerization of the thermosetting compound (B) does not proceed as intended, resulting in poor curing and , viscosity increase, etc. can be prevented. Furthermore, since the surface-coated titanium oxide (A) can suitably suppress hydrolysis of the thermosetting compound (B), the amount of unreacted functional groups in the insulating layer can be reduced. I can do it.
- thermosetting compound (B) can further suppress the progress of polymerization and hydrolysis, it has even better heat resistance and moisture absorption heat resistance during curing, as well as even better dielectric properties (high It is even more preferable to contain one or more selected from the group consisting of maleimide compounds and cyanate ester compounds, since a resin composition having a low dielectric constant and low dielectric loss tangent can be obtained.
- the resin composition of this embodiment preferably contains a maleimide compound.
- maleimide compounds are preferable because the surface-coated titanium oxide (A) can significantly inhibit the progress of polymerization and hydrolysis.
- the resin composition contains a maleimide compound, the adhesion with the surface-coated titanium oxide (A) is further improved, the aggregation of the surface-coated titanium oxide (A) in the resin composition is further reduced, and the dispersibility is improved.
- any known maleimide compound can be used as long as it has one or more maleimide groups in one molecule, and its type is not particularly limited.
- the number of maleimide groups in one molecule of the maleimide compound is 1 or more, preferably 2 or more.
- the maleimide compounds may be used alone or in combination of two or more.
- maleimide compounds include N-phenylmaleimide, N-hydroxyphenylmaleimide, bis(4-maleimidophenyl)methane, 2,2-bis(4-(4-maleimidophenoxy)-phenyl)propane, bis(3, 5-dimethyl-4-maleimidophenyl)methane, bis(3-ethyl-5-methyl-4-maleimidophenyl)methane, bis(3,5-diethyl-4-maleimidophenyl)methane, represented by formula (1)
- Examples thereof include a maleimide compound represented by formula (2), a prepolymer of these maleimide compounds, and a prepolymer of the above maleimide compound and an amine compound.
- the surface-coated titanium oxide (A) is even better dispersed, has better heat resistance and moisture absorption heat resistance during curing, and has even better dielectric properties (high dielectric constant and low dielectric loss tangent). Since a resin composition can be obtained and an insulating layer having suitable surface hardness can be obtained, the maleimide compound is preferably bis(4-maleimidophenyl)methane, 2,2-bis(4-(4-maleimidophenoxy)), etc.
- the resin composition contains these maleimide compounds, the adhesion with the surface-coated titanium oxide (A) is further improved, the aggregation of the surface-coated titanium oxide (A) in the resin composition can be further reduced, and the dispersion is improved. There is a tendency for the properties to be further improved, and excellent dielectric properties (high dielectric constant and low dielectric loss tangent) and heat resistance to be obtained.
- R 1 each independently represents a hydrogen atom or a methyl group, and n1 is an integer of 1 to 10.
- R 2 each independently represents a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a phenyl group, and n2 is an average value, and represents 1 ⁇ n2 ⁇ 5.
- the content of the maleimide compound is preferably 10 to 85 parts by weight, more preferably 15 to 80 parts by weight, even more preferably 20 to 80 parts by weight, based on 100 parts by weight of the total resin solid content in the resin composition.
- the amount is 75 parts by weight, even more preferably 25 to 70 parts by weight, even more preferably 20 to 60 parts by weight.
- the surface-coated titanium oxide (A) is dispersed even better, resulting in even better heat resistance and moisture absorption heat resistance during curing, and even better dielectric properties (high A resin composition having a low dielectric constant and a low dielectric loss tangent is obtained, and an insulating layer having a more suitable surface hardness tends to be obtained.
- the content of the maleimide compound is within the above range, the adhesion with the surface-coated titanium oxide (A) is further improved, and the aggregation of the surface-coated titanium oxide (A) in the resin composition can be further alleviated. , the dispersibility is further improved, and excellent dielectric properties (high dielectric constant and low dielectric loss tangent) and heat resistance tend to be obtained.
- maleimide compound a commercially available product may be used, or a product manufactured by a known method may be used.
- Commercially available maleimide compounds include, for example, BMI-70, BMI-80, and BMI-1000P (trade names, K.I.
- BMI-3000, BMI-4000, BMI-5100, BMI -7000, and BMI-2300 maleimide compound represented by the above formula (1), in formula (1), all R 1 are hydrogen atoms, and n1 is an integer from 1 to 5)
- MIR-3000-70MT trademark, maleimide compound represented by the above formula (2), in formula (2), all R 2 are hydrogen atoms, n2 is the average value and 1 ⁇ n2 ⁇ 5. Examples include Nippon Kayaku Co., Ltd.).
- the resin composition of this embodiment preferably contains an epoxy compound. Furthermore, when the resin composition contains an epoxy compound, the adhesion with the surface-coated titanium oxide (A) is further improved, the aggregation of the surface-coated titanium oxide (A) in the resin composition is further reduced, and the dispersibility is improved. There is a tendency for excellent dielectric properties (high dielectric constant and low dielectric loss tangent) and heat resistance to be obtained.
- Any known epoxy compound can be used as long as it has one or more epoxy groups in one molecule, and its type is not particularly limited.
- the number of epoxy groups per molecule of the epoxy compound is 1 or more, preferably 2 or more.
- the epoxy compounds may be used alone or in combination of two or more.
- epoxy compound conventionally known epoxy compounds and epoxy resins can be used.
- the epoxy compound preferably contains one or more selected from the group consisting of biphenylaralkyl epoxy resin, naphthalene epoxy resin, and naphthylene ether epoxy resin, and naphthalene epoxy resin is more preferable.
- the resin composition contains these epoxy resins, the adhesion with the surface-coated titanium oxide (A) is further improved, the aggregation of the surface-coated titanium oxide (A) in the resin composition can be further reduced, and the dispersion is improved. There is a tendency for the properties to be further improved, and excellent dielectric properties (high dielectric constant and low dielectric loss tangent) and heat resistance to be obtained.
- naphthalene type epoxy resin commercially available products may be used, such as EPICLON (registered trademark) EXA-4032-70M and EPICLON (registered trademark) HP-4710 (trade name, DIC Corporation). It will be done.
- the content of the epoxy compound is preferably 1 to 50 parts by weight, more preferably 5 to 40 parts by weight, even more preferably 10 to 40 parts by weight, based on 100 parts by weight of the total resin solid content in the resin composition. It is 30 parts by mass.
- adhesiveness, flexibility, etc. tend to be better.
- the surface-coated titanium oxide (A) is even better dispersed, resulting in even better heat resistance and moisture absorption heat resistance during curing, and even better dielectric properties (high A resin composition having a low dielectric constant and a low dielectric loss tangent is obtained, and an insulating layer having a more suitable surface hardness tends to be obtained.
- the adhesion with the surface-coated titanium oxide (A) is further improved, the aggregation of the surface-coated titanium oxide (A) in the resin composition is further improved, the dispersibility is further improved, and excellent dielectric properties (high They tend to have good dielectric constant and low dielectric loss tangent) and heat resistance.
- Modified polyphenylene ether compound A resin composition in which the surface-coated titanium oxide (A) is even better dispersed, and has even better heat resistance and moisture absorption heat resistance during curing, and even better dielectric properties (high dielectric constant and low dielectric loss tangent).
- the resin composition of this embodiment preferably contains a modified polyphenylene ether compound. Furthermore, when the resin composition contains a modified polyphenylene ether compound, the adhesion to the surface-coated titanium oxide (A) is further improved, and the aggregation of the surface-coated titanium oxide (A) in the resin composition can be further alleviated, resulting in better dispersion.
- modified polyphenylene ether compound means that a part or all of the terminal end of the polyphenylene ether compound is substituted with a reactive functional group such as a carbon-carbon unsaturated double bond.
- the modified polyphenylene ether compound is not particularly limited, and any known one can be used as long as part or all of the terminal end of the polyphenylene ether compound is modified.
- the modified polyphenylene ether compounds may be used alone or in combination of two or more.
- the polyphenylene ether compound related to the modified polyphenylene ether compound is selected from, for example, a structural unit represented by formula (4), a structural unit represented by formula (5), and a structural unit represented by formula (6). Polymers containing at least one structural unit are mentioned.
- R 8 , R 9 , R 10 and R 11 each independently represent an alkyl group having 6 or less carbon atoms, an aryl group, a halogen atom, or a hydrogen atom.
- R 12 , R 13 , R 14 , R 18 and R 19 each independently represent an alkyl group having 6 or less carbon atoms or a phenyl group.
- R 15 , R 16 and R 17 each independently represent a hydrogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group.
- R 20 , R 21 , R 22 , R 23 , R 24 , R 25 , R 26 , and R 27 each independently represent a hydrogen atom, an alkyl group having 6 or less carbon atoms, or a phenyl group.
- -A- is a linear, branched, or cyclic divalent hydrocarbon group having 20 or less carbon atoms.
- -A- in formula (6) is, for example, a methylene group, an ethylidene group, a 1-methylethylidene group, a 1,1-propylidene group, a 1,4-phenylenebis(1-methylethylidene) group, a 1,3- Examples include, but are not limited to, divalent organic groups such as phenylenebis(1-methylethylidene) group, cyclohexylidene group, phenylmethylene group, naphthylmethylene group, and 1-phenylethylidene group.
- modified polyphenylene ether compound examples include, for example, a part or all of the terminal end of the polyphenylene ether compound, such as an ethylenically unsaturated group such as a vinylbenzyl group, an epoxy group, an amino group, a hydroxyl group, a mercapto group, a carboxy group, a methacrylic group, and Modified polyphenylene ether compounds having a functional group such as a silyl group are preferred.
- Examples of the modified polyphenylene ether compound having a hydroxyl group at the end include SA90 (trade name, SABIC Innovative Plastics Co., Ltd.). Examples of the polyphenylene ether having a methacrylic group at the end include SA9000 (trade name, SABIC Innovative Plastics Co., Ltd.).
- the method for producing the modified polyphenylene ether compound is not particularly limited as long as the effects of the present invention can be obtained.
- it can be manufactured by the method described in Japanese Patent No. 4,591,665.
- the modified polyphenylene ether compound includes a modified polyphenylene ether compound having an ethylenically unsaturated group at the terminal.
- Ethylenically unsaturated groups include alkenyl groups such as ethenyl group, allyl group, acrylic group, methacrylic group, propenyl group, butenyl group, hexenyl group, and octenyl group; cycloalkenyl groups such as cyclopentenyl group and cyclohexenyl group; Examples include alkenylaryl groups such as vinylbenzyl group and vinylnaphthyl group. Among them, vinylbenzyl group is preferred.
- the terminal ethylenically unsaturated groups may be single or multiple, and may be the same functional group or different functional groups.
- X represents an aromatic group
- -(Y-O) m - represents a polyphenylene ether moiety
- R 1 , R 2 , and R 3 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, or an alkynyl group
- m represents an integer of 1 to 100
- n represents an integer of 1 to 6
- q represents an integer from 1 to 4.
- m is preferably an integer of 1 or more and 50 or less, more preferably an integer of 1 or more and 30 or less.
- n is preferably an integer of 1 or more and 4 or less, more preferably 1 or 2, and ideally 1.
- q is preferably an integer of 1 or more and 3 or less, more preferably 1 or 2, and ideally 2.
- the aromatic group represented by Examples include phenylene group, biphenylene group, indenylene group, and naphthylene group). Among these, biphenylene group is preferred.
- the aromatic group represented by May include.
- the aromatic group may be substituted with a general substituent such as an alkyl group (preferably an alkyl group having 1 to 6 carbon atoms, particularly a methyl group), an alkenyl group, an alkynyl group, or a halogen atom.
- a general substituent such as an alkyl group (preferably an alkyl group having 1 to 6 carbon atoms, particularly a methyl group), an alkenyl group, an alkynyl group, or a halogen atom.
- the aromatic group is substituted on the polyphenylene ether moiety via an oxygen atom, the limit on the number of general substituents depends on the number of polyphenylene ether moieties.
- the structural unit represented by formula (4) As the polyphenylene ether moiety in formula (3), the structural unit represented by formula (4), the structural unit represented by formula (5), and the structural unit represented by formula (6) can be used. . Among these, it is more preferable that the structural unit represented by formula (4) is included.
- the modified polyphenylene ether compound represented by formula (3) preferably has a number average molecular weight of 500 or more and 7000 or less. Further, in formula (3), a material having a minimum melt viscosity of 50,000 Pa ⁇ s or less can be used. A resin composition in which the surface-coated titanium oxide (A) is even better dispersed, and has even better heat resistance and moisture absorption heat resistance during curing, and even better dielectric properties (high dielectric constant and low dielectric loss tangent). Therefore, in formula (3), it is preferable that the number average molecular weight is 1000 or more and 7000 or less and the minimum melt viscosity is 50000 Pa ⁇ s or less. Number average molecular weight is measured using gel permeation chromatography according to standard methods.
- the number average molecular weight is more preferably 1000 or more and 3000 or less.
- the minimum melt viscosity is measured using a dynamic viscoelasticity measuring device according to a standard method.
- the minimum melt viscosity is more preferably 500 Pa ⁇ s or more and 50,000 Pa ⁇ s or less.
- the modified polyphenylene ether compound is preferably a compound represented by formula (7) below.
- X is an aromatic group
- -(Y-O) m - each represents a polyphenylene ether moiety
- m represents an integer of 1 to 100.
- m is preferably an integer of 1 or more and 50 or less, more preferably an integer of 1 or more and 30 or less.
- X, -(Y-O) m -, and m have the same meanings as in formula (3).
- X in formula (3) and formula (7) is formula (8), formula (9), or formula (10), and -(Y-O) m - in formula (3) and formula (7) and -(O-Y) m - is a structure in which formula (11) or formula (12) is arranged, or a structure in which formula (11) and formula (12) are arranged in a block or randomly. is preferred.
- R 28 , R 29 , R 30 and R 31 each independently represent a hydrogen atom or a methyl group.
- -B- is a linear, branched or cyclic divalent hydrocarbon group having 20 or less carbon atoms. Examples of -B- include the same examples as -A- in formula (6).
- -B- is a linear, branched or cyclic divalent hydrocarbon group having 20 or less carbon atoms.
- Examples of -B- include the same examples as -A- in formula (6).
- the method for producing the modified polyphenylene ether compound having the structure represented by formula (7) is not particularly limited, and for example, bifunctional phenylene obtained by oxidative coupling of a bifunctional phenol compound and a monofunctional phenol compound It can be produced by converting the terminal phenolic hydroxyl group of an ether oligomer into vinylbenzyl ether.
- a modified polyphenylene ether compound can be a commercially available product, for example, OPE-2St1200 (in formula (7), X in -(O-X-O)- is represented by formula (8)).
- OPE-2st2200 in formula (7), -(O-- X in X-O)- is a structure represented by formula (8), and -(O-Y)- and -(Y-O)- are a polymerization of the structure of formula (11)) (Above, trade name, Mitsubishi Gas Chemical Co., Ltd.) can be suitably used.
- the content of the modified polyphenylene ether compound is preferably 1 to 50 parts by mass, more preferably 5 to 40 parts by mass, and even more preferably The amount is 10 to 30 parts by mass.
- the content of the modified polyphenylene ether compound is within the above range, the low dielectric loss tangent and reactivity tend to be further improved.
- the surface-coated titanium oxide (A) is even better dispersed, resulting in even better heat resistance and moisture absorption heat resistance during curing, and even better dielectric properties. (High dielectric constant and low dielectric loss tangent) can be obtained, and there is a tendency that an insulating layer having even more suitable surface hardness can be obtained.
- the adhesion with the surface-coated titanium oxide (A) is further improved, the aggregation of the surface-coated titanium oxide (A) in the resin composition is further improved, the dispersibility is further improved, and excellent dielectric properties (high They tend to have good dielectric constant and low dielectric loss tangent) and heat resistance.
- the resin composition of this embodiment contains a cyanate ester compound. Furthermore, cyanate ester compounds are preferable because they can significantly inhibit the progress of polymerization and hydrolysis due to the titanium oxide (A) coated on the surface.
- the adhesion with the surface-coated titanium oxide (A) is further improved, and the aggregation of the surface-coated titanium oxide (A) in the resin composition can be further alleviated, resulting in better dispersion.
- the cyanate ester compound may be any known compound as long as it has a cyanato group (also referred to as a "cyanate ester group” or "cyanate group”) directly bonded to two or more aromatic rings in one molecule. Can be used.
- the cyanate ester compounds may be used alone or in combination of two or more.
- cyanate ester compounds include phenol novolac cyanate ester compounds, cresol novolac cyanate ester compounds, naphthalene ring-containing novolac cyanate ester compounds, allyl group-containing novolac cyanate ester compounds, naphthol aralkyl type cyanate ester compound, naphthylene ether type cyanate ester compound, xylene resin type cyanate ester compound, bisphenol M type cyanate ester compound, bisphenol A type cyanate ester compound, diallylbisphenol A type cyanate ester compound, bisphenol E type cyanate ester compound, bisphenol F type cyanate ester compound, biphenylaralkyl type cyanate ester compound, bis(3,3-dimethyl-4-cyanatophenyl)methane, 1,3-dicyanatobenzene, 1,4- Dicyanatobenzene, 1,3,5-tricyanatobenzene, 1,3-dicyanatonaphthalene, 1,4
- cyanate ester compounds include phenol novolak type cyanate ester compounds, naphthol aralkyl type cyanate ester compounds, and naphthylene ether type cyanate ester compounds.
- xylene resin type cyanate ester compound bisphenol M type cyanate ester compound, bisphenol A type cyanate ester compound, diallyl bisphenol A type cyanate ester compound, bisphenol E type cyanate ester compound, bisphenol F type cyanate ester compound, and biphenylaralkyl cyanate ester compounds, and prepolymers or polymers of these cyanate ester compounds.
- Naphthol aralkyl cyanate ester compounds are more preferable.
- the adhesion with the surface-coated titanium oxide (A) is further improved, and the aggregation of the surface-coated titanium oxide (A) in the resin composition can be further alleviated. , the dispersibility is further improved, and excellent dielectric properties (high dielectric constant and low dielectric loss tangent) and heat resistance tend to be obtained.
- a compound represented by formula (13) is more preferable.
- R 3 each independently represents a hydrogen atom or a methyl group, and among these, a hydrogen atom is preferred.
- n3 is an integer of 1 or more, preferably an integer of 1 to 20, more preferably an integer of 1 to 10.
- the bisphenol A type cyanate ester compound one or more selected from the group consisting of 2,2-bis(4-cyanatophenyl)propane and 2,2-bis(4-cyanatophenyl)propane prepolymers are used. May be used.
- commercially available products may be used, such as Primaset (registered trademark) BADCy (trade name, Lonza Co., Ltd., 2,2-bis(4-cyanatophenyl)).
- cyanate ester compounds may be produced according to known methods. Specific manufacturing methods include, for example, the method described in JP-A-2017-195334 (particularly paragraphs 0052 to 0057).
- the content of the cyanate ester compound is preferably 1 to 65 parts by mass, more preferably 2 to 60 parts by mass, and even more preferably The amount is from 3 to 55 parts by weight, even more preferably from 4 to 50 parts by weight, even more preferably from 5 to 45 parts by weight, and particularly preferably from 6 to 40 parts by weight.
- the surface-coated titanium oxide (A) is even better dispersed, resulting in even better heat resistance and moisture absorption heat resistance during curing, and even better dielectric properties.
- a resin composition having a high dielectric constant and a low dielectric loss tangent is obtained, and an insulating layer having an even more suitable surface hardness tends to be obtained.
- the surface-coated titanium oxide (A) is even better dispersed, resulting in even better heat resistance and moisture absorption heat resistance during curing, and even better dielectric properties. (High dielectric constant and low dielectric loss tangent) can be obtained, and there is a tendency that an insulating layer having even more suitable surface hardness can be obtained.
- the adhesion with the surface-coated titanium oxide (A) is further improved, the aggregation of the surface-coated titanium oxide (A) in the resin composition is further improved, the dispersibility is further improved, and excellent dielectric properties (high They tend to have good dielectric constant and low dielectric loss tangent) and heat resistance.
- the resin composition of this embodiment may also contain a phenol compound.
- a phenol compound any known compound can be used as long as it has two or more phenolic hydroxyl groups in one molecule, and its type is not particularly limited.
- the phenol compounds may be used alone or in combination of two or more.
- phenol compound examples include cresol novolac type phenol resin, biphenylaralkyl type phenol resin represented by formula (14), naphthol aralkyl type phenol resin represented by formula (15), aminotriazine novolak type phenol resin, and naphthalene type phenol resin.
- examples include phenol resin, phenol novolak resin, alkylphenol novolak resin, bisphenol A type novolak resin, dicyclopentadiene type phenol resin, Zylock type phenol resin, terpene-modified phenol resin, and polyvinylphenols.
- phenolic compounds include cresol novolak type phenol resin, biphenylaralkyl type phenol resin represented by formula (14), and naphthol represented by formula (15) because they provide excellent moldability and surface hardness. It is preferable to include one or more selected from the group consisting of aralkyl type phenol resin, aminotriazine novolac type phenol resin, and naphthalene type phenol resin, and biphenylaralkyl type phenol resin represented by formula (14) and formula (15) It is more preferable to include one or more selected from the group consisting of naphthol aralkyl type phenol resins represented by:
- R 4 each independently represents a hydrogen atom or a methyl group, and n 4 is an integer of 1 to 10.
- R 5 each independently represents a hydrogen atom or a methyl group, and n 5 is an integer of 1 to 10.
- the content of the phenol compound is preferably 1 to 50 parts by mass, more preferably 5 to 40 parts by mass, and still more preferably 10 to 30 parts by mass, based on 100 parts by mass of the total resin solid content of the resin composition. Part by mass.
- the content of the phenol compound is within the above range, adhesiveness, flexibility, etc. tend to be better.
- the resin composition of this embodiment may include an alkenyl-substituted nadimide compound.
- the alkenyl-substituted nadimide compound is not particularly limited as long as it is a compound having one or more alkenyl-substituted nadimide groups in one molecule.
- the alkenyl-substituted nadimide compounds may be used alone or in combination of two or more.
- alkenyl-substituted nadimide compound examples include a compound represented by the following formula (2d).
- R 1 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms (for example, a methyl group or an ethyl group), and R 2 represents an alkylene group having 1 to 6 carbon atoms. group, a phenylene group, a biphenylene group, a naphthylene group, or a group represented by formula (16) or formula (17).
- R 3 represents a methylene group, an isopropylidene group, CO, O, S or SO 2 .
- R 4 each independently represents an alkylene group having 1 to 4 carbon atoms or a cycloalkylene group having 5 to 8 carbon atoms.
- alkenyl-substituted nadimide compound represented by formula (2d) a commercially available product may be used, or a manufactured product manufactured according to a known method may be used.
- Commercially available products include BANI-M and BANI-X (trade names, Maruzen Petrochemical Co., Ltd.).
- the content of the alkenyl-substituted nadimide compound is preferably 1 to 50 parts by mass, more preferably 5 to 40 parts by mass, and even more preferably 10 parts by mass, based on 100 parts by mass of the total resin solid content of the resin composition. ⁇ 30 parts by mass.
- content of the alkenyl-substituted nadimide compound is within the above range, adhesiveness, heat resistance, etc. tend to be better.
- the resin composition of this embodiment may also contain an oxetane resin.
- the oxetane resin is not particularly limited, and generally known ones can be used. One type of oxetane resin may be used alone, or two or more types may be used in combination.
- oxetane resin examples include oxetane, 2-methyloxetane, 2,2-dimethyloxetane, 3-methyloxetane, alkyloxetane such as 3,3-dimethyloxetane, 3-methyl-3-methoxymethyloxetane, 3,3 -di(trifluoromethyl)perfluorooxetane, 2-chloromethyloxetane, 3,3-bis(chloromethyl)oxetane, biphenyl-type oxetane, OXT-101 (trade name, Toagosei Co., Ltd.), and OXT-121 (trade name, Toagosei Co., Ltd.), etc.
- OXT-101 trade name, Toagosei Co., Ltd.
- OXT-121 trade name, Toagosei Co., Ltd.
- the content of the oxetane resin is preferably 1 to 50 parts by weight, more preferably 5 to 40 parts by weight, even more preferably 10 to 30 parts by weight, based on 100 parts by weight of the total resin solid content of the resin composition. Part by mass. When the content of the oxetane resin is within the above range, adhesiveness, flexibility, etc. tend to be better.
- the resin composition of this embodiment may also contain a benzoxazine compound.
- the benzoxazine compound is not particularly limited as long as it has two or more dihydrobenzoxazine rings in one molecule, and generally known compounds can be used.
- One type of benzoxazine compound may be used alone or two or more types may be used in combination.
- benzoxazine compounds include bisphenol A-type benzoxazine BA-BXZ, bisphenol F-type benzoxazine BF-BXZ, and bisphenol S-type benzoxazine BS-BXZ (all trade names, manufactured by Konishi Chemical Industry Co., Ltd.). Can be mentioned.
- the content of the benzoxazine compound is preferably 1 to 50 parts by mass, more preferably 5 to 40 parts by mass, and even more preferably 10 to 40 parts by mass, based on the total 100 parts by mass of the resin solid content of the resin composition. It is 30 parts by mass. When the content of the benzoxazine compound is within the above range, adhesiveness, flexibility, etc. tend to be better.
- the resin composition of this embodiment may include a compound having a polymerizable unsaturated group.
- the compound having a polymerizable unsaturated group is not particularly limited, and generally known compounds can be used.
- the compounds having a polymerizable unsaturated group may be used alone or in combination of two or more.
- Examples of compounds having a polymerizable unsaturated group include vinyl compounds such as ethylene, propylene, styrene, divinylbenzene, and divinylbiphenyl; methyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, polypropylene glycol di(meth)acrylate, trimethylolpropane di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, etc.
- Examples include (meth)acrylates of monohydric or polyhydric alcohols; epoxy (meth)acrylates such as bisphenol A type epoxy (meth)acrylate and bisphenol F type epoxy (meth)acrylate; benzocyclobutene resins.
- the content of the compound having a polymerizable unsaturated group is preferably 1 to 50 parts by mass, more preferably 5 to 40 parts by mass, based on 100 parts by mass of the total resin solid content of the resin composition. , more preferably 10 to 30 parts by mass.
- adhesiveness, flexibility, etc. tend to be better.
- the resin composition of the present embodiment has better dispersibility with the surface-coated titanium oxide (A) in a resin composition containing the surface-coated titanium oxide (A) and the thermosetting compound (B). , a resin composition having better heat resistance and moisture absorption heat resistance as well as better dielectric properties (high dielectric constant and low dielectric loss tangent) upon curing can be obtained. It is preferable to further contain material (C).
- the filler (C) is not particularly limited as long as it is different from the surface-coated titanium oxide (A).
- the filler (C) may be used alone or in combination of two or more.
- the average particle diameter (D50) of the filler (C) is preferably 0.10 to 10.0 ⁇ m, more preferably 0.30 to 5.0 ⁇ m.
- the average particle diameter (D50) is within the above range, in the resin composition containing the surface-coated titanium oxide (A) and the thermosetting compound (B), the surface-coated titanium oxide (A) and the resin composition have even better properties. There is a tendency to obtain a resin composition that has dispersibility and has even better heat resistance and moisture absorption heat resistance upon curing, and even better dielectric properties (high dielectric constant and low dielectric loss tangent).
- the average particle diameter (D50) of the filler (C) is calculated in the same manner as the average particle diameter (D50) of the surface-coated titanium oxide (A) described above.
- Examples of the filler (C) include silica, silicon compounds (e.g., white carbon, etc.), metal oxides (e.g., alumina, titanium white, strontium titanate (SrTiO 3 ), calcium titanate (CaTiO 3 ), surface Titanium oxide (TiO 2 ) different from coating titanium oxide (A), MgSiO 4 , MgTiO 3 , ZnTiO 3 , ZnTiO 4 , CaTiO 3 , SrTiO 3 , SrZrO 3 , BaTi 2 O 5 , BaTi 4 O 9 , Ba 2 Ti 9 O 20 , Ba(Ti,Sn) 9 O 20 , ZrTiO 4 , (Zr, Sn)TiO 4 , BaNd 2 Ti 5 O 14 , BaSmTiO 14 , Bi 2 O 3 -BaO-Nd 2 O 3 -TiO 2 , La 2 Ti 2 O 7 , barium titan
- Zinc molybdate ammonium molybdate, sodium molybdate, potassium molybdate, calcium molybdate, molybdenum disulfide, molybdenum trioxide, molybdate hydrate, (NH 4 )Zn 2 Mo 2 O 9.
- metal nitrides e.g., boron nitride, silicon nitride, and aluminum nitride, etc.
- metal sulfides e.g., barium sulfate, etc.
- metal hydroxides e.g., aluminum hydroxide, aluminum hydroxide heat-treated products (e.g., aluminum hydroxide heat-treated to reduce some of the crystal water), boehmite, magnesium hydroxide, etc.
- Zinc compounds e.g., zinc borate, zinc stannate, etc.
- filler (C) has even better dispersibility with surface-coated titanium oxide (A) in a resin composition containing surface-coated titanium oxide (A) and thermosetting compound (B).
- silica, alumina, and titanic acid It preferably contains one or more selected from the group consisting of barium, strontium titanate, calcium titanate, aluminum nitride, boron nitride, boehmite, aluminum hydroxide, zinc molybdate, silicone rubber powder, and silicone composite powder. , talc, and zinc molybdate are more preferable, and it is even more preferable that silica is included.
- silica examples include natural silica, fused silica, synthetic silica, fumed silica, and hollow silica. When the resin composition contains silica, it tends to have better processability. These silicas may be used alone or in combination of two or more. Among these, one or more selected from the group consisting of fused silica and hollow silica is preferred because it has a low coefficient of thermal expansion and excellent dispersibility in the resin composition.
- silica commercially available products may be used, such as SC2050-MB, SC5050-MOB, SC2500-SQ, SC4500-SQ, SC4053-SQ, and SC5050-MOB (trade name: Admatex Co., Ltd.) ; SFP-130MC (trade name, Denka Co., Ltd.).
- the filler (C) may be a surface-treated filler in which an inorganic oxide is formed on at least a portion of the surface of filler core particles.
- examples of such fillers include surface-treated molybdenum compound particles (supported type) in which an inorganic oxide is formed on at least a portion of the surface of core particles made of a molybdenum compound.
- the inorganic oxide may be applied to at least a portion of the surface of the filler core particles.
- the inorganic oxide may be applied partially to the surface of the filler core particles, or may be applied so as to cover the entire surface of the filler core particles.
- Inorganic oxides cover the entire surface of filler core particles because printed wiring boards, etc., with better heat resistance, moisture absorption heat resistance, and better dielectric properties (high dielectric constant and low dielectric loss tangent) can be obtained. It is preferable that the inorganic oxide film is uniformly applied so as to cover the filler core particles, that is, the inorganic oxide film is uniformly formed on the surface of the filler core particles.
- the inorganic oxide preferably has excellent heat resistance, and its type is not particularly limited, but metal oxides are more preferred.
- the metal oxide include SiO 2 , Al 2 O 3 , TiO 2 , ZnO, In 2 O 3 , SnO 2 , NiO, CoO, V 2 O 5 , CuO, MgO, and ZrO 2 . These can be used alone or in an appropriate combination of two or more. Among these, one selected from the group consisting of silica (SiO 2 ), titania (TiO 2 ), alumina (Al 2 O 3 ), and zirconia (ZrO 2 ) in terms of heat resistance, insulation properties, cost, etc. It is preferable to use silica or more, and silica is more preferable.
- the thickness of the inorganic oxide on the surface can be appropriately set depending on the desired performance and is not particularly limited. It can form a uniform inorganic oxide film, has better adhesion with filler core particles, better heat resistance and moisture absorption heat resistance, and better dielectric properties (high dielectric constant and low dielectric loss tangent). Since printed wiring boards and the like can be obtained, the thickness thereof is preferably 3 to 500 nm, more preferably 5 to 200 nm, and still more preferably 10 to 100 nm.
- Examples of surface-treated molybdenum particles include those obtained by surface-treating molybdenum compound particles using a silane coupling agent, or those obtained by surface-treating particles of a molybdenum compound using a method such as a sol-gel method or a liquid phase precipitation method. Examples include those obtained by treatment with inorganic oxides.
- an inorganic oxide may be added to at least a part or all of the surface of a core particle made of a molybdenum compound, that is, at least a part of the outer periphery or the entire outer periphery of the core particle.
- silica is added as an inorganic oxide to at least a part or all of the surface of the core particle made of a molybdenum compound, that is, at least a part of the outer periphery or the entire outer periphery of the core particle.
- the core particles made of a molybdenum compound are preferably at least one selected from the group consisting of molybdic acid, zinc molybdate, and ammonium zinc molybdate hydrate, and zinc molybdate is even more preferable.
- the average particle diameter (D50) of the surface-treated molybdenum compound particles is preferably 0.1 to 10 ⁇ m, more preferably 0.5 to 8 ⁇ m, and even more preferably It is 1 to 4 ⁇ m, and even more preferably 1 to 3 ⁇ m.
- the average particle diameter (D50) of the surface-treated molybdenum compound particles is calculated in the same manner as the average particle diameter (D50) of the surface-coated titanium oxide (A) described above.
- Core particles made of a molybdenum compound can be produced by various known methods such as a pulverization method and a granulation method, and the production method is not particularly limited. Moreover, you may use the commercial item.
- the method for producing the surface-treated molybdenum compound particles is not particularly limited, and includes, for example, a sol-gel method, a liquid phase precipitation method, a dip coating method, a spray coating method, a printing method, an electroless plating method, a sputtering method, a vapor deposition method, and an ion plating method.
- Surface-treated molybdenum compound particles can be obtained by applying an inorganic oxide or its precursor to the surface of a core particle made of a molybdenum compound by appropriately employing various known methods such as a method and a CVD method.
- the method for applying the inorganic oxide or its precursor to the surface of the core particles made of a molybdenum compound may be either a wet method or a dry method.
- a suitable method for producing surface-treated molybdenum compound particles includes, for example, dispersing a molybdenum compound (core particle) in an alcohol solution in which a metal alkoxide such as silicon alkoxide (alkoxysilane) or aluminum alkoxide is dissolved, and dispersing the molybdenum compound (core particles) with water while stirring.
- a metal alkoxide such as silicon alkoxide (alkoxysilane) or aluminum alkoxide
- a film of silicon oxide or aluminum oxide is formed as a low refractive index film on the surface of the compound, and then the obtained powder is separated into solid and liquid.
- a molybdenum compound (core particle) is dispersed in an alcohol solution in which a metal alkoxide such as silicon alkoxide or aluminum alkoxide is dissolved, and the mixture is mixed under high temperature and low pressure to form a surface of the compound.
- a metal alkoxide such as silicon alkoxide or aluminum alkoxide
- examples include a method in which a film of silicon oxide, aluminum oxide, or the like is formed, and then the obtained powder is vacuum-dried and pulverized.
- the content of the filler (C) is such that the resin composition containing the surface-coated titanium oxide (A) and the thermosetting compound (B) has even better dispersibility with the surface-coated titanium oxide (A).
- the resin solid in the resin composition can be obtained from a resin composition having even more excellent heat resistance and moisture absorption heat resistance as well as even more excellent dielectric properties (high dielectric constant and low dielectric loss tangent) upon curing.
- the amount is preferably 50 to 300 parts by weight, more preferably 70 to 200 parts by weight, and even more preferably 100 to 150 parts by weight. When two or more types of filler (C) are included, the total amount may be within the above range.
- the surface-coated titanium oxide (A) and the filler (C) should be contained in a volume ratio of 15:85 to 85:15, expressed as a volume ratio (surface-coated titanium oxide (A): filler (C)). is preferable, the range of 20:80 to 80:20 is more preferable, and the range of 25:75 to 75:25 is even more preferable. When the volume ratio is within the above range, the surface-coated titanium oxide (A) and the filler (C) tend to be better dispersed in the thermosetting compound (B).
- the surface coating titanium oxide (A) and the filler (C) are not unevenly distributed, so water absorption by titanium oxide is further suppressed, and better heat resistance and moisture absorption are achieved during curing.
- a printed wiring board or the like having heat resistance and better dielectric properties (high dielectric constant and low dielectric loss tangent) can be obtained, and an insulating layer having even better moisture absorption and heat resistance can be obtained.
- the thermal expansion coefficient of the insulating layer can be suitably controlled, and a dielectric path can be efficiently formed. Therefore, it tends to be possible to suitably obtain an insulating layer having excellent moisture absorption and heat resistance, low coefficient of thermal expansion, high dielectric constant, and low dielectric loss tangent.
- Fillers may also be used.
- Such fillers include, for example, titanium oxide (TiO 2 ) different from the surface-coated titanium oxide (A), MgSiO 4 , MgTiO 3 , ZnTiO 3 , ZnTiO 4 , CaTiO 3 , SrTiO 3 , SrZrO 3 , BaTi 2 O 5 , Ba2Ti9O20 , Ba(Ti,Sn) 9O20 , ZrTiO4 , ( Zr , Sn) TiO4 , BaNd2Ti5O14 , BaSmTiO14 , Bi2O3 - BaO - Nd2O 3 -TiO 2 , La 2 Ti 2 O 7 , BaTiO 3 , Ba(Ti,Zr)O 3 and
- the resin composition of this embodiment may further contain a silane coupling agent.
- the resin composition further improves the dispersibility of the surface-coated titanium oxide (A) and the filler (C) blended as necessary in the resin composition.
- the silane coupling agents may be used alone or in combination of two or more.
- the silane coupling agent is not particularly limited, and silane coupling agents generally used for surface treatment of inorganic materials can be used.
- silane coupling agents generally used for surface treatment of inorganic materials
- aminosilane compounds e.g., 3-aminopropyltriethoxysilane, N- ⁇ -(aminoethyl)- ⁇ -aminopropyltrimethoxysilane, etc.
- epoxysilane compounds e.g., 3-glycidoxypropyltrimethoxysilane, etc.) silane, etc.
- acrylic silane compounds e.g., ⁇ -acryloxypropyltrimethoxysilane, etc.
- cationic silane compounds e.g., N- ⁇ -(N-vinylbenzylaminoethyl)- ⁇ -aminopropyltrimethoxysilane) (hydrochloride, etc.
- styrylsilane compounds e.g., pheny
- the silane coupling agents may be used alone or in combination of two or more.
- the silane coupling agent is preferably one or more selected from the group consisting of epoxysilane compounds and styrylsilane compounds.
- the epoxysilane compounds include KBM-403, KBM-303, KBM-402, and KBE-403 (trade names, Shin-Etsu Chemical Co., Ltd.).
- styrylsilane compounds include KBM-1403 (trade name, Shin-Etsu Chemical Co., Ltd.).
- the content of the silane coupling agent is not particularly limited, but may be 0.1 to 5.0 parts by mass based on 100 parts by mass of the total resin solid content in the resin composition.
- the resin composition of this embodiment may further contain a wetting and dispersing agent.
- a wetting and dispersing agent When the resin composition contains a wetting and dispersing agent, the dispersibility of the filler (C) tends to be further improved.
- the wetting and dispersing agents may be used alone or in combination of two or more.
- the wetting and dispersing agent may be any known dispersing agent (dispersion stabilizer) used for dispersing the filler (C), such as DISPER BYK (registered trademark) -110, 111, 118, 180, 161. , 2009, 2152, 2155, W996, W9010, and W903 (trade names, Bic-Chemie Japan Co., Ltd.).
- the content of the wetting and dispersing agent is not particularly limited, but is preferably 0.5 parts by mass or more and 10 parts by mass or less based on 100 parts by mass of the total resin solid content in the resin composition.
- the resin composition of this embodiment may further contain a curing accelerator.
- the curing accelerator may be used alone or in combination of two or more.
- the curing accelerator examples include imidazoles such as triphenylimidazole (for example, 2,4,5-triphenylimidazole); benzoyl peroxide, lauroyl peroxide, acetyl peroxide, parachlorobenzoyl peroxide, di-tert - Organic peroxides such as butyl-di-perphthalate; azo compounds such as azobisnitrile; N,N-dimethylbenzylamine, N,N-dimethylaniline, N,N-dimethyltoluidine, 2-N-ethylani Tertiary amines such as linoethanol, tri-n-butylamine, pyridine, quinoline, N-methylmorpholine, triethanolamine, triethylenediamine, tetramethylbutanediamine, N-methylpiperidine; phenol, xylenol, cresol, resorcinol, Phenols such as catechol; organometallic salts
- the content of the curing accelerator is not particularly limited, but may be 0.001 parts by mass or more and 1.0 parts by mass or less with respect to 100 parts by mass of the total resin solid content in the resin composition.
- the resin composition of this embodiment may further contain a solvent.
- the viscosity at the time of preparation of the resin composition is lowered, the handling property (handling property) is further improved, and the impregnating property into the base material tends to be further improved.
- the solvents may be used alone or in combination of two or more.
- the solvent is not particularly limited as long as it can dissolve some or all of the components in the resin composition.
- examples include ketones (acetone, methyl ethyl ketone, etc.), aromatic hydrocarbons (eg, toluene, xylene, etc.), amides (eg, dimethyl formaldehyde, etc.), propylene glycol monomethyl ether, and its acetate.
- the resin composition of the present embodiment may contain components other than those mentioned above as long as the desired properties are not impaired.
- flame retardant compounds include bromine compounds such as 4,4'-dibromobiphenyl, phosphoric acid esters, melamine phosphates, nitrogen-containing compounds such as melamine and benzoguanamine, and silicon-based compounds.
- various additives include ultraviolet absorbers, antioxidants, photopolymerization initiators, optical brighteners, photosensitizers, dyes, pigments, thickeners, lubricants, antifoaming agents, dispersants, and leveling agents. (surface conditioner), brightener, polymerization inhibitor, etc.
- the content of the other components is not particularly limited, but is usually 0.01 parts by mass or more and 10 parts by mass or less, respectively, based on 100 parts by mass of the total resin solid content in the resin composition.
- the method for producing the resin composition of the present embodiment is not particularly limited, but may include, for example, the surface-coated titanium oxide (A), the thermosetting compound (B), and optionally any of the above-mentioned compounds, if necessary.
- An example is a method of mixing good ingredients and stirring thoroughly.
- known treatments such as stirring, mixing, and kneading treatments can be performed.
- stirring and dispersion treatment using a stirring tank equipped with a stirrer with appropriate stirring capacity, the surface-coated titanium oxide (A) in the resin composition and the filler added as necessary
- the dispersibility of material (C) can be improved.
- stirring, mixing, and kneading treatments can be carried out as appropriate using, for example, a device for the purpose of mixing such as a ball mill or a bead mill, or a known device such as a revolution or rotation type mixing device.
- a device for the purpose of mixing such as a ball mill or a bead mill
- a known device such as a revolution or rotation type mixing device.
- a solvent can be used as necessary to prepare a resin varnish.
- the type of solvent is not particularly limited as long as it can dissolve the resin in the resin composition. Specific examples thereof are as described above.
- resin varnish usually 10 to 900 parts by mass of a solvent is added to 100 parts by mass of the components excluding the solvent in the resin composition, and the above-mentioned known treatments (stirring, mixing, kneading, etc.) are performed. You can get it at
- the type of solvent is not particularly limited as long as it can dissolve the resin in the resin composition. Specific examples thereof are as described above.
- the resin composition of this embodiment can be used, for example, in cured products, prepregs, film-like underfill materials, resin sheets, laminates, build-up materials, non-conductive films, metal foil-clad laminates, printed wiring boards, and fiber-reinforced It can be suitably used as a raw material for composite materials or in the manufacture of semiconductor devices. These will be explained below.
- the cured product is obtained by curing the resin composition of this embodiment.
- the resin composition of this embodiment is melted or dissolved in a solvent, poured into a mold, and cured under normal conditions using heat, light, etc. Obtainable.
- the curing temperature is preferably within the range of 120 to 300°C from the viewpoint of efficient curing and prevention of deterioration of the obtained cured product.
- the prepreg of this embodiment includes a base material and the resin composition of this embodiment impregnated or applied to the base material.
- the prepreg of this embodiment is produced by, for example, impregnating or applying the resin composition of this embodiment (for example, in an uncured state (A stage)) onto a base material, and then drying it at 120 to 220°C for about 2 to 15 minutes. It is obtained by semi-curing (B-stage) using a method or the like.
- the amount of the resin composition (including the cured product of the resin composition) adhered to the base material that is, the amount of the resin composition (surface-coated titanium oxide (A)) and the amount of compounding as necessary, relative to the total amount of prepreg after semi-curing.
- the amount of the filler (C) contained in the filler (including filler (C)) is preferably in the range of 20 to 99% by mass.
- the semi-cured state (B stage) means that the components contained in the resin composition have not started actively reacting (curing), but the resin composition is in a dry state, that is, to the extent that it is not sticky. , refers to a state in which the solvent is volatilized by heating, and also includes a state in which the solvent only volatilizes without curing even without heating.
- the minimum melt viscosity in a semi-cured state (B stage) is usually 20,000 Pa ⁇ s or less. The lower limit of the minimum melt viscosity is, for example, 10 Pa ⁇ s or more.
- the minimum melt viscosity is measured by the following method. That is, using 1 g of resin powder taken from the resin composition as a sample, the minimum melt viscosity is measured using a rheometer (ARES-G2 (trade name), TA Instruments). Here, a disposable plate with a plate diameter of 25 mm was used, and the resin was Measure the minimum melt viscosity of the powder.
- the base material is not particularly limited as long as it is a base material used for various printed wiring board materials.
- the material of the base material include glass fiber (e.g., E-glass, D-glass, L-glass, S-glass, T-glass, Q-glass, UN-glass, NE-glass, etc.), glass Inorganic fibers other than fibers (eg, quartz, etc.) and organic fibers (eg, polyimide, polyamide, polyester, liquid crystal polyester, polytetrafluoroethylene, etc.) can be mentioned.
- the form of the base material is not particularly limited, and examples include woven fabric, nonwoven fabric, roving, chopped strand mat, and surfacing mat. These base materials may be used alone or in combination of two or more.
- woven fabrics subjected to ultra-opening treatment and packing treatment are preferable, and from the viewpoint of moisture absorption and heat resistance, silane coupling such as epoxy silane treatment and amino silane treatment are preferable.
- silane coupling such as epoxy silane treatment and amino silane treatment are preferable.
- a glass woven fabric whose surface has been treated with an agent or the like is preferable. Glass fibers such as E-glass, L-glass, NE-glass, and Q-glass are preferred because they have excellent dielectric properties.
- the resin sheet of this embodiment contains the resin composition of this embodiment.
- the resin sheet may be a support-attached resin sheet including a support and a layer formed from the resin composition of the present embodiment disposed on the surface of the support.
- the resin sheet can be used as a build-up film or a dry film solder resist.
- the method for producing the resin sheet is not particularly limited, but for example, a method of obtaining a resin sheet by applying (coating) a solution of the resin composition of the present embodiment in a solvent to a support and drying the same may be mentioned. It will be done.
- the support examples include polyethylene film, polypropylene film, polycarbonate film, polyethylene terephthalate film, ethylenetetrafluoroethylene copolymer film, and release films prepared by coating the surface of these films with a release agent, polyimide films, etc.
- examples include organic film base materials, conductor foils such as copper foil and aluminum foil, and plate-shaped materials such as glass plates, SUS plates, and FRP, but are not particularly limited.
- Examples of the coating method include a method in which a solution of the resin composition of the present embodiment dissolved in a solvent is coated onto the support using a bar coater, die coater, doctor blade, Baker applicator, etc. It will be done. Further, after drying, a single layer sheet (resin sheet) can be obtained by peeling or etching the support from the support-attached resin sheet in which the support and the resin composition are laminated. Note that by supplying a solution in which the resin composition of this embodiment is dissolved in a solvent into a mold having a sheet-like cavity and drying it to form it into a sheet, it can be easily formed without using a support. A layered sheet (resin sheet) can also be obtained.
- the drying conditions for removing the solvent are not particularly limited, but the solvent in the resin composition is easily removed, and the drying conditions during drying are not particularly limited. From the viewpoint of suppressing the progress of curing, the temperature is preferably 20 to 200°C for 1 to 90 minutes.
- the resin composition in a single-layer sheet or a resin sheet with a support, the resin composition can be used in an uncured state by simply drying the solvent, or if necessary, it can be used in a semi-cured (B-staged) state.
- the thickness of the resin layer of the single-layer sheet or the resin sheet with a support according to the present embodiment can be adjusted by the concentration of the solution of the resin composition of the present embodiment and the coating thickness, and is not particularly limited.
- the thickness is preferably 0.1 to 500 ⁇ m from the viewpoint of facilitating removal of the solvent.
- the laminate of this embodiment includes one or more types selected from the group consisting of the prepreg and resin sheet of this embodiment.
- the resin compositions used for each prepreg and resin sheet may be the same or different.
- the resin compositions used therein may be the same or different.
- one or more selected from the group consisting of prepreg and resin sheet may be in a semi-cured state (B stage) or in a completely cured state (C stage). .
- the metal foil-clad laminate of this embodiment includes the laminate of this embodiment and metal foil disposed on one or both sides of the laminate. Further, the metal foil-clad laminate may include at least one prepreg of the present embodiment and metal foil laminated on one or both sides of the prepreg. Furthermore, the metal foil-clad laminate may include at least one resin sheet of the present embodiment and metal foil laminated on one or both sides of the resin sheet.
- the resin compositions used for each prepreg and resin sheet may be the same or different, and when both the prepreg and resin sheet are used, the resin used for them The compositions may be the same or different.
- one or more selected from the group consisting of prepreg and resin sheet may be in a semi-cured state or in a completely cured state.
- metal foil is laminated on one or more types selected from the group consisting of the prepreg of this embodiment and the resin sheet of this embodiment. It is preferable that metal foil is laminated so as to be in contact with one or more surfaces selected from the group consisting of the resin sheet of this embodiment.
- Metal foil is laminated so as to be in contact with one or more surfaces selected from the group consisting of prepreg and resin sheet” includes a layer such as an adhesive layer between the prepreg or resin sheet and the metal foil. First, it means that the prepreg or resin sheet and the metal foil are in direct contact. This tends to increase the metal foil peel strength of the metal foil-clad laminate and improve the insulation reliability of the printed wiring board.
- the metal foil-clad laminate of this embodiment includes one or more stacked prepregs and/or resin sheets according to this embodiment, and metal foils arranged on one or both sides of the prepregs and/or resin sheets. It's okay.
- a method for manufacturing the metal foil-clad laminate of this embodiment for example, there is a method in which one or more prepreg and/or resin sheets of this embodiment are stacked, metal foil is placed on one or both sides, and lamination molding is performed. It will be done.
- the molding method include methods normally used when molding laminates and multilayer boards for printed wiring boards, and more specifically, a multistage press machine, a multistage vacuum press machine, a continuous molding machine, an autoclave molding machine, etc. are used. Then, there is a method of lamination molding at a temperature of about 180 to 350° C., a heating time of about 100 to 300 minutes, and a surface pressure of about 20 to 100 kgf/cm 2 .
- a multilayer board can be obtained by laminating and molding a combination of the prepreg and/or resin sheet of this embodiment and a separately produced wiring board for an inner layer.
- a method for manufacturing a multilayer board for example, copper foil with a thickness of about 35 ⁇ m is placed on both sides of one or more stacked prepreg and/or resin sheets of this embodiment, and the copper foil is laminated using the above-described molding method. After forming a foil-clad laminate, an inner layer circuit is formed, this circuit is subjected to blackening treatment to form an inner layer circuit board, and then this inner layer circuit board is combined with the prepreg and/or resin sheet of this embodiment.
- a multilayer board can be produced by alternately arranging one sheet at a time, further arranging a copper foil as the outermost layer, and performing lamination molding under the above conditions, preferably under vacuum.
- the metal foil-clad laminate of this embodiment can be suitably used as a printed wiring board.
- the metal foil is not particularly limited, and examples include gold foil, silver foil, copper foil, tin foil, nickel foil, and aluminum foil. Among them, copper foil is preferred.
- the copper foil is not particularly limited as long as it is generally used as a material for printed wiring boards, and examples thereof include copper foils such as rolled copper foil and electrolytic copper foil. Among these, electrolytic copper foil is preferred from the viewpoint of copper foil peel strength and formability of fine wiring.
- the thickness of the copper foil is not particularly limited, and may be about 1.5 to 70 ⁇ m.
- the printed wiring board of this embodiment has an insulating layer and a conductor layer disposed on one or both sides of the insulating layer, and the insulating layer contains a cured product of the resin composition of this embodiment.
- the insulating layer preferably includes at least one of a layer formed from the resin composition of the present embodiment (a layer containing a cured product) and a layer formed from a prepreg (a layer containing a cured product).
- a printed wiring board can be manufactured according to a conventional method, and the manufacturing method is not particularly limited, but for example, it can be manufactured using the metal foil-clad laminate described above. An example of a method for manufacturing a printed wiring board will be shown below.
- the surface of the metal foil-clad laminate is etched to form an inner layer circuit, thereby producing an inner layer substrate.
- the surface of the inner layer circuit of this inner layer board is subjected to surface treatment to increase adhesive strength as necessary, and then the required number of sheets of prepreg described above are layered on the surface of the inner layer circuit, and then metal foil for the outer layer circuit is laminated on the outside. Then heat and press to form an integral mold.
- a multilayer laminate is manufactured in which an insulating layer made of the base material and the cured product of the resin composition of this embodiment is formed between the inner layer circuit and the metal foil for the outer layer circuit.
- a plating metal film is formed on the wall of the hole to conduct the inner layer circuit and the metal foil for the outer layer circuit, and then the outer layer circuit is formed.
- a printed wiring board is manufactured by performing an etching process on metal foil to form an outer layer circuit.
- the printed wiring board obtained in the above manufacturing example has an insulating layer and a conductor layer formed on the surface of the insulating layer, and the insulating layer includes a cured product of the resin composition according to the present embodiment.
- the prepreg according to this embodiment including the base material and the cured product of the resin composition of this embodiment impregnated or applied thereto
- the layer of the resin composition of the metal foil-clad laminate of this embodiment including the base material and the cured product of the resin composition of this embodiment impregnated or applied thereto
- the layer containing the cured product of the resin composition of the embodiment is composed of an insulating layer containing the cured product of the resin composition of the present embodiment.
- the semiconductor device can be manufactured by mounting a semiconductor chip on the conductive portion of the printed wiring board of this embodiment.
- the conductive location refers to a location on the multilayer printed wiring board that transmits electrical signals, and the location may be on the surface or embedded.
- the semiconductor chip is not particularly limited as long as it is an electric circuit element made of a semiconductor.
- the mounting method for semiconductor chips when manufacturing semiconductor devices is not particularly limited as long as the semiconductor chip functions effectively, but specifically, wire bonding mounting method, flip chip mounting method, bumpless buildup layer, etc.
- Examples include a mounting method using (BBUL), a mounting method using an anisotropic conductive film (ACF), and a mounting method using a non-conductive film (NCF).
- the average particle diameter (D50) of the surface-coated titanium oxide and the filler (fused spherical silica) were measured using a laser diffraction/scattering particle size distribution measuring device (Microtrac MT3300EXII (trade name), Microtrac Bell Co., Ltd.).
- the particle size distribution was calculated by measuring the particle size distribution using a laser diffraction/scattering method using the following measurement conditions.
- Example 1 8 parts by mass of the naphthol aralkyl cyanate ester compound obtained in Synthesis Example 1 (SN495V-CN, cyanate ester group equivalent: 261 g/eq.), 2,2-bis(4-(4-maleimidophenoxy)-phenyl) ) Propane (BMI-80 (trade name), K-I Kasei Co., Ltd.) 28 parts by mass, biphenylaralkyl maleimide compound (MIR-3000-70MT (trade name), Nippon Kayaku Co., Ltd.) 28 parts by mass, Naphthalene type epoxy resin (EPICLON EXA-4032-70M (trade name), epoxy equivalent: 150 g/eq., DIC Corporation) 12 parts by mass, modified polyphenylene ether compound (OPE-2St1200 (trade name), Mitsubishi Gas Chemical (trade name) Ltd.), a compound represented by formula (7) (in formula (7), X is formula (8), and -(Y-O)- and
- the resulting resin varnish was impregnated and coated on E-glass cloth (1031NT S640 (trade name), Arisawa Seisakusho Co., Ltd.) with a thickness of 0.094 mm, and dried by heating at 130°C for 3 minutes to a thickness of 0.094 mm.
- a 1 mm prepreg was obtained.
- 12 ⁇ m thick electrolytic copper foil (3EC-M3-VLP (product name), Mitsui Kinzoku Mining Co., Ltd.) was placed on the upper and lower surfaces of the obtained prepreg, and the surface pressure was 30 kgf/cm 2 and the temperature was 220°C.
- a metal foil-clad laminate (double-sided copper-clad laminate) with a thickness of 0.124 mm was produced by vacuum pressing for 120 minutes and lamination molding.
- the physical properties of the obtained prepreg and metal foil-clad laminate were measured according to the evaluation method, and the measurement results are shown in Table 1.
- Example 2 8 parts by mass of the naphthol aralkyl cyanate ester compound obtained in Synthesis Example 1 (SN495V-CN, cyanate ester group equivalent: 261 g/eq.), 2,2-bis(4-(4-maleimidophenoxy)-phenyl) ) Propane (BMI-80 (trade name), K-I Kasei Co., Ltd.) 28 parts by mass, biphenylaralkyl maleimide compound (MIR-3000-70MT (trade name), Nippon Kayaku Co., Ltd.) 28 parts by mass, Naphthalene type epoxy resin (EPICLON EXA-4032-70M (trade name), epoxy equivalent: 150 g/eq., DIC Corporation) 12 parts by mass, modified polyphenylene ether compound (OPE-2St1200 (trade name), Mitsubishi Gas Chemical (trade name) Ltd.), a compound represented by formula (7) (in formula (7), X is formula (8), and -(Y-O)- and
- the resulting resin varnish was impregnated and coated on E-glass cloth (1031NT S640 (trade name), Arisawa Seisakusho Co., Ltd.) with a thickness of 0.094 mm, and dried by heating at 130°C for 3 minutes to a thickness of 0.094 mm.
- a 1 mm prepreg was obtained.
- 12 ⁇ m thick electrolytic copper foil (3EC-M3-VLP (product name), Mitsui Kinzoku Mining Co., Ltd.) was placed on the upper and lower surfaces of the obtained prepreg, and the surface pressure was 30 kgf/cm 2 and the temperature was 220°C.
- a metal foil-clad laminate (double-sided copper-clad laminate) with a thickness of 0.124 mm was produced by vacuum pressing for 120 minutes and lamination molding.
- the physical properties of the obtained prepreg and metal foil clad laminate were measured according to the evaluation method, and the measurement results are shown in Table 1.
- Example 3 8 parts by mass of the naphthol aralkyl cyanate ester compound obtained in Synthesis Example 1 (SN495V-CN, cyanate ester group equivalent: 261 g/eq.), 2,2-bis(4-(4-maleimidophenoxy)-phenyl) ) Propane (BMI-80 (trade name), K-I Kasei Co., Ltd.) 28 parts by mass, biphenylaralkyl maleimide compound (MIR-3000-70MT (trade name), Nippon Kayaku Co., Ltd.) 28 parts by mass, Naphthalene type epoxy resin (EPICLON EXA-4032-70M (trade name), epoxy equivalent: 150 g/eq., DIC Corporation) 12 parts by mass, modified polyphenylene ether compound (OPE-2St1200 (trade name), Mitsubishi Gas Chemical (trade name) Ltd.), a compound represented by formula (7) (in formula (7), X is formula (8), and -(Y-O)- and
- the resulting resin varnish was impregnated and coated on E-glass cloth (1031NT S640 (trade name), Arisawa Seisakusho Co., Ltd.) with a thickness of 0.094 mm, and dried by heating at 130°C for 3 minutes to a thickness of 0.094 mm.
- a 1 mm prepreg was obtained.
- 12 ⁇ m thick electrolytic copper foil (3EC-M3-VLP (product name), Mitsui Kinzoku Mining Co., Ltd.) was placed on the upper and lower surfaces of the obtained prepreg, and the surface pressure was 30 kgf/cm 2 and the temperature was 220°C.
- a metal foil-clad laminate (double-sided copper-clad laminate) with a thickness of 0.124 mm was produced by vacuum pressing for 120 minutes and lamination molding.
- the physical properties of the obtained prepreg and metal foil clad laminate were measured according to the evaluation method, and the measurement results are shown in Table 1.
- the resulting resin varnish was impregnated and coated on E-glass cloth (1031NT S640 (trade name), Arisawa Seisakusho Co., Ltd.) with a thickness of 0.094 mm, and dried by heating at 130°C for 3 minutes to a thickness of 0.094 mm.
- a 1 mm prepreg was obtained.
- 12 ⁇ m thick electrolytic copper foil (3EC-M3-VLP (product name), Mitsui Kinzoku Mining Co., Ltd.) was placed on the upper and lower surfaces of the obtained prepreg, and the surface pressure was 30 kgf/cm 2 and the temperature was 220°C.
- a metal foil-clad laminate (double-sided copper-clad laminate) with a thickness of 0.124 mm was produced by vacuum pressing for 120 minutes and lamination molding.
- the physical properties of the obtained prepreg and metal foil clad laminate were measured according to the evaluation method, and the measurement results are shown in Table 1.
- the resulting resin varnish was impregnated and coated on E-glass cloth (1031NT S640 (trade name), Arisawa Seisakusho Co., Ltd.) with a thickness of 0.094 mm, and dried by heating at 130°C for 3 minutes to a thickness of 0.094 mm.
- a 1 mm prepreg was obtained.
- 12 ⁇ m thick electrolytic copper foil (3EC-M3-VLP (product name), Mitsui Kinzoku Mining Co., Ltd.) was placed on the upper and lower surfaces of the obtained prepreg, and the surface pressure was 30 kgf/cm 2 and the temperature was 220°C.
- a metal foil-clad laminate (double-sided copper-clad laminate) with a thickness of 0.124 mm was produced by vacuum pressing for 120 minutes and lamination molding.
- the physical properties of the obtained prepreg and metal foil clad laminate were measured according to the evaluation method, and the measurement results are shown in Table 1.
- the resulting resin varnish was impregnated and coated on E-glass cloth (1031NT S640 (trade name), Arisawa Seisakusho Co., Ltd.) with a thickness of 0.094 mm, and dried by heating at 130°C for 3 minutes to a thickness of 0.094 mm.
- a 124 mm prepreg was obtained.
- 12 ⁇ m thick electrolytic copper foil (3EC-M3-VLP (product name), Mitsui Kinzoku Mining Co., Ltd.) was placed on the upper and lower surfaces of the obtained prepreg, and the surface pressure was 30 kgf/cm 2 and the temperature was 220°C.
- a metal foil-clad laminate (double-sided copper-clad laminate) with a thickness of 0.1 mm was produced by vacuum pressing for 120 minutes and lamination molding.
- the physical properties of the obtained prepreg and metal foil clad laminate were measured according to the evaluation method, and the measurement results are shown in Table 1.
- the resulting resin varnish was impregnated and coated on E-glass cloth (1031NT S640 (trade name), Arisawa Seisakusho Co., Ltd.) with a thickness of 0.094 mm, and dried by heating at 130°C for 3 minutes to a thickness of 0.094 mm.
- a 1 mm prepreg was obtained.
- 12 ⁇ m thick electrolytic copper foil (3EC-M3-VLP (product name), Mitsui Kinzoku Mining Co., Ltd.) was placed on the upper and lower surfaces of the obtained prepreg, and the surface pressure was 30 kgf/cm 2 and the temperature was 220°C.
- a metal foil-clad laminate (double-sided copper-clad laminate) with a thickness of 0.124 mm was produced by vacuum pressing for 120 minutes and lamination molding.
- the physical properties of the obtained prepreg and metal foil clad laminate were measured according to the evaluation method, and the measurement results are shown in Table 1.
- the resulting resin varnish was impregnated and coated on E-glass cloth (1031NT S640 (trade name), Arisawa Seisakusho Co., Ltd.) with a thickness of 0.094 mm, and dried by heating at 130°C for 3 minutes to a thickness of 0.094 mm.
- a 1 mm prepreg was obtained.
- 12 ⁇ m thick electrolytic copper foil (3EC-M3-VLP (product name), Mitsui Kinzoku Mining Co., Ltd.) was placed on the upper and lower surfaces of the obtained prepreg, and the surface pressure was 30 kgf/cm 2 and the temperature was 220°C.
- a metal foil-clad laminate (double-sided copper-clad laminate) with a thickness of 0.124 mm was produced by vacuum pressing for 120 minutes and lamination molding.
- the physical properties of the obtained prepreg and metal foil clad laminate were measured according to the evaluation method, and the measurement results are shown in Table 1.
- a prepreg was produced in the same manner as in Example 1, except that.
- the blending ratio (content ratio) of surface-coated titanium oxide and filler (SC4500-SQ (trade name)) in the resin varnish is 26:74 (surface-coated titanium oxide:filler) by volume. Met.
- An attempt was made to produce a metal foil-clad laminate using the obtained prepreg, but voids occurred over the entire surface of the metal foil-clad laminate, making it impossible to produce a metal foil-clad laminate.
- a prepreg was produced in the same manner as in Example 1.
- the blending ratio (content ratio) of surface-coated titanium oxide and filler (SC4500-SQ (trade name)) in the resin varnish is 26:74 (surface-coated titanium oxide:filler) by volume. Met.
- An attempt was made to produce a metal foil-clad laminate using the obtained prepreg, but voids occurred over the entire surface of the metal foil-clad laminate, making it impossible to produce a metal foil-clad laminate.
- the measurements of the dielectric constant (Dk) and the dielectric loss tangent (Df) were performed under an environment of a temperature of 23° C. ⁇ 1° C. and a humidity of 50% RH (relative humidity) ⁇ 5% RH.
- this measurement sample was dried in a dryer at 120° C. for 1 hour.
- the dried measurement sample was subjected to moisture absorption treatment for 168 hours in a constant temperature and humidity chamber (FX-222P (trade name), Kusumoto Kasei Co., Ltd.) at a temperature of 85° C. ⁇ 1° C. and a humidity of 85% RH ⁇ 5% RH.
- FX-222P trade name
- the dielectric constant (Dk) and dielectric loss tangent (Df) at 10 GHz were each measured using a network analyzer (Agilent 8722ES (trade name), Agilent Technologies, Inc.).
- Prepreg GHPL-970LF (LD) (product name), Mitsubishi Gas Chemical Co., Ltd.) with a thickness of 0.06 mm is placed on the top and bottom surfaces of this unclad plate, and electrolytic copper with a thickness of 12 ⁇ m is placed on the top and bottom surfaces of the prepreg.
- Foil (3EC-M3-VLP (trade name), Mitsui Kinzoku Mining Co., Ltd.) was placed, vacuum pressed for 120 minutes at a surface pressure of 30 kgf/cm 2 and a temperature of 220°C, and laminated to a thickness of 0.22 mm.
- a metal foil-clad laminate double-sided copper-clad laminate was produced.
- a sample for measurement was prepared.
- the obtained measurement sample was treated using a pressure cooker tester (Model PC-3 (product name), Hirayama Seisakusho Co., Ltd.) for 2 hours at 121°C and in the presence of saturated steam at 2 atm, and then further The samples were dipped in a solder bath at 280° C. for 60 seconds, and visually observed for any abnormalities in appearance.
- Each measurement sample was floated in a solder bath at 300° C. for 30 minutes so that only one side of the sample was in contact with the solder. After 30 minutes, the samples were taken out from the solder bath, and the samples were visually observed for any change in appearance on the side in contact with the solder. As a result of observing each of the five samples, if 0 to 1 sample had an appearance abnormality, it was evaluated as "AA”, and if 2 to 5 samples were observed, it was evaluated as "CC”, and the results were displayed. Shown in 1. In addition, in the sample taken out from the solder bath, for example, a case where a bulge occurred on the surface or back surface of the copper foil was determined to be abnormal in appearance.
- the resin composition of this embodiment can be used in cured products, prepregs, film-like underfill materials, resin sheets, laminates, build-up materials, non-conductive films, metal foil-clad laminates, printed wiring boards, and fiber-reinforced composite materials. It can be suitably used as a raw material for or in the manufacture of semiconductor devices.
Landscapes
- Chemical & Material Sciences (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Chemical & Material Sciences (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Laminated Bodies (AREA)
- Reinforced Plastic Materials (AREA)
Abstract
Description
また、高誘電率及び低誘電正接な絶縁層を製造するために用いられる充填材では、配合する充填材によって、ボイドが発生し、積層板の製造時において、層間剥離を引き起こす。そのため、プリント配線板等における誘電特性(高誘電率及び低誘電正接)及び耐熱性が悪化するとの問題を有する。
更に、吸湿耐熱性が低い絶縁層であると、リフロー時に絶縁層に含まれる水分が蒸発することでボイドが発生し、積層板の製造時において、層間剥離を引き起こす。そのため、高い信頼性が必要とされる電子材料分野では、優れた吸湿耐熱性を有する絶縁層であることが要求される。
[1]30℃から300℃まで昇温速度10℃/分で加熱した際の質量減少率が0.5質量%以下である表面被覆酸化チタン(A)と、熱硬化性化合物(B)とを含有する、樹脂組成物。
本実施形態の樹脂組成物は、30℃から300℃まで昇温速度10℃/分で加熱した際の質量減少率が0.5質量%以下である表面被覆酸化チタン(A)と、熱硬化性化合物(B)とを含有する。
特に、本発明者らは、30℃から300℃まで昇温速度10℃/分で加熱した際の質量減少率が0.5質量%以下である表面被覆酸化チタン(A)と、熱硬化性樹脂(B)と、を含む樹脂組成物をプリント配線板の絶縁層に用いることで、リフロー時においてボイドが発生し難く、積層板の製造時において、層間剥離を引き起こし難いことを見出した。そのため、本実施形態によれば、絶縁層と導体層とにおいて優れた密着性を有するため、良好な耐熱性及び吸湿耐熱性、並びに良好な誘電特性(高誘電率及び低誘電正接)を有するプリント配線板等を得ることができる。この理由について定かではないが、本発明者らは次のように推定している。すなわち、通常、表面被覆酸化チタンは、表面被覆層を有するため、比較的、大気中の水分を吸収しやすい。そうすると、表面被覆酸化チタンを用いて得られる硬化物は、吸収した水分がリフロー時に蒸発し、絶縁層にボイドが発生する。このことは、表面被覆酸化チタンが、表面被覆層として無機酸化物層を有する場合に顕著に発生する。加えて、表面被覆酸化チタンが、表面被覆層として有機層を有する場合においては、リフロー時において、熱により有機分が分解されるため、有機分が揮発し、ボイドが更に発生しやすくなる。表面被覆酸化チタンが、無機酸化物層と有機層とを有する場合、水分の蒸発と、有機分の揮発との両方が発生する。しかし、30℃から300℃まで昇温速度10℃/分で加熱した際の質量減少率が0.5質量%以下である表面被覆酸化チタン(A)であれば、水分の蒸発と、有機分の揮発とを好適に抑制できる。このような表面被覆酸化チタン(A)を熱硬化性樹脂(B)と共に用いることで、高誘電率及び低誘電正接を有し、優れた耐熱性及び吸湿耐熱性を有しながら、無機酸化物層を有する場合の水分の蒸発と、有機層を有する場合の有機分の揮発を好適に抑制できる。そのため、本発明者らは、本実施形態によれば、リフロー時においてボイドが発生し難く、積層板の製造時において、層間剥離を引き起こし難いと推測している。ただし、理由はこれに限定されない。
本実施形態の樹脂組成物は、30℃から300℃まで昇温速度10℃/分で加熱した際の質量減少率が0.5質量%以下である表面被覆酸化チタン(A)を含む。
アルキルシリコーンとしては、例えば、ジメチルシリコーンが挙げられる。
アルキル水素シリコーンとしては、例えば、メチル水素シリコーン、及びエチル水素シリコーンが挙げられる。
アルコキシシリコーンとしては、アルコキシ基が直接又は二価炭化水素基を介してケイ素原子に結合したアルコキシシリル基を含むシリコーン化合物が好ましい。このようなシリコーン化合物としては、例えば、直鎖状、環状、網状、及び一部分岐を有する直鎖状のオルガノポリシロキサンが挙げられる。これらの中でも、直鎖状オルガノポリシロキサンが好ましく、シリコーン主鎖に対してアルコキシ基が直接結合する分子構造を有するオルガノポリシロキサンがより好ましい。アルコキシシリコーンとしては、例えば、メトキシシリコーン、及びエトキシシリコーンが挙げられる。
変性シリコーンとしては、例えば、アミノ変性シリコーン、エポキシ変性シリコーン、及びメルカプト変性シリコーン等が挙げられる。
このような観点から、表面被覆酸化チタン(A)が無機酸化物層を2層以上有する場合、コア粒子に近い側に位置する無機酸化物層はシリカを含む層及びジルコニアを含む層からなる群より選ばれる1種以上であり、コア粒子から遠い側に位置する無機酸化物層はアルミナを含む層であることが好ましく、コア粒子に近い側に位置する無機酸化物層はシリカを含む層であり、コア粒子から遠い側に位置する無機酸化物層はアルミナを含む層であることがより好ましい。
有機ケイ素化合物としては、シランカップリング剤、オルガノシラン、及びオルガノポリシロキサンからなる群より選ばれる1種以上を含むことが好ましい。これらの表面処理剤を用いて表面処理することで、得られる有機層は、シロキサン構造を有する層となる。シロキサン構造を有する層は、樹脂組成物中における表面被覆酸化チタン(A)の凝集を更に一層緩和でき、分散性が更に一層向上し、更に優れた撥水性によって積層板の吸水率を低下させることができる傾向にある。また、オルガノポリシロキサンとしては、より均一なシロキサン構造を有する層を形成でき、上述の効果を一層奏すことから、シリコーンオイルが好ましく、シリコーンオイルの中でもジメチルシリコーンがより好ましい。なお、この場合、有機層がシロキサン構造を有する層となるのであれば、上記以外の表面処理剤を用いてもよい。
このような表面被覆酸化チタン(A)としては、市販品を用いることができる。市販品としては、例えば、R-22L、及びR-11P(以上、商品名、堺化学工業(株))が挙げられる。
このような表面被覆酸化チタン(A)としては、市販品を用いることができる。市販品としては、例えば、CR-63(商品名、石原産業(株))が挙げられる。
本実施形態の樹脂組成物は、熱硬化性化合物(B)を含む。
熱硬化性化合物(B)としては、熱硬化性の化合物又は樹脂であれば特に限定されない。熱硬化性化合物(B)は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
表面被覆酸化チタン(A)がより一層良好に分散し、硬化時により一層優れた耐熱性及び吸湿耐熱性、並びにより一層優れた誘電特性(高誘電率及び低誘電正接)を有する樹脂組成物が得られることから、本実施形態の樹脂組成物は、マレイミド化合物を含むことが好ましい。また、マレイミド化合物は、表面被覆酸化チタン(A)による、重合の進行及び加水分解の抑制効果が顕著に得られることからも好ましい。更に、樹脂組成物がマレイミド化合物を含むと、表面被覆酸化チタン(A)との密着性がより向上し、樹脂組成物中における表面被覆酸化チタン(A)の凝集をより緩和でき、分散性がより向上し、優れた誘電特性(高誘電率及び低誘電正接)並びに耐熱性が得られる傾向にある。
マレイミド化合物は、1分子中にマレイミド基を1個以上有する化合物であれば、公知のものを適宜用いることができ、その種類は特に限定されない。マレイミド化合物の1分子中のマレイミド基の数は、1以上であり、好ましくは2以上である。マレイミド化合物は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
表面被覆酸化チタン(A)がより一層良好に分散し、硬化時により一層優れた耐熱性及び吸湿耐熱性、並びにより一層優れた誘電特性(高誘電率及び低誘電正接)を有する樹脂組成物が得られることから、本実施形態の樹脂組成物は、エポキシ化合物を含むことが好ましい。更に、樹脂組成物がエポキシ化合物を含むと、表面被覆酸化チタン(A)との密着性がより向上し、樹脂組成物中における表面被覆酸化チタン(A)の凝集をより緩和でき、分散性がより向上し、優れた誘電特性(高誘電率及び低誘電正接)並びに耐熱性が得られる傾向にある。
エポキシ化合物は、1分子中にエポキシ基を1個以上有する化合物であれば、公知のものを適宜用いることができ、その種類は特に限定されない。エポキシ化合物の1分子当たりのエポキシ基の数は、1以上であり、好ましくは2以上である。エポキシ化合物は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
表面被覆酸化チタン(A)がより一層良好に分散し、硬化時により一層優れた耐熱性及び吸湿耐熱性、並びにより一層優れた誘電特性(高誘電率及び低誘電正接)を有する樹脂組成物が得られることから、本実施形態の樹脂組成物は、変性ポリフェニレンエーテル化合物を含むことが好ましい。更に、樹脂組成物が変性ポリフェニレンエーテル化合物を含むと、表面被覆酸化チタン(A)との密着性がより向上し、樹脂組成物中における表面被覆酸化チタン(A)の凝集をより緩和でき、分散性がより向上し、優れた誘電特性(高誘電率及び低誘電正接)並びに耐熱性が得られる傾向にある。
本明細書において、変性ポリフェニレンエーテル化合物の「変性」とは、ポリフェニレンエーテル化合物の末端の一部又は全部が、炭素-炭素不飽和二重結合等の反応性官能基で置換されたことを意味する。変性ポリフェニレンエーテル化合物は、ポリフェニレンエーテル化合物の末端の一部又は全部が変性されていれば、公知のものを適宜用いることができ、特に限定されない。変性ポリフェニレンエーテル化合物は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
末端がメタクリル基であるポリフェニレンエーテルとしては、例えば、SA9000(商品名、SABICイノベーティブプラスチックス社)等が挙げられる。
末端のエチレン性不飽和基は、単一又は複数でもよく、同一の官能基であってもよいし、異なる官能基であってもよい。
ここで、Xが示す芳香族基は、アリール基が酸素原子で結合されているジフェニルエーテル基等や、カルボニル基で結合されたベンゾフェノン基等、アルキレン基により結合された2,2-ジフェニルプロパン基等を含んでもよい。
また、芳香族基は、アルキル基(好適には炭素数1~6のアルキル基、特にメチル基)、アルケニル基、アルキニル基やハロゲン原子等、一般的な置換基によって置換されていてもよい。但し、芳香族基は、酸素原子を介してポリフェニレンエーテル部分に置換されているので、一般的置換基の数の限界は、ポリフェニレンエーテル部分の数に依存する。
数平均分子量は、定法に従ってゲル浸透クロマトグラフィーを使用して測定される。数平均分子量は、1000以上3000以下であることがより好ましい。
最低溶融粘度は、定法に従って動的粘弾性測定装置を使用して測定される。最低溶融粘度は、500Pa・s以上50000Pa・s以下がより好ましい。
式(7)における、X、-(Y-O)m-、及びmは、式(3)におけるものと同義である。
-B-は、式(6)における-A-の具体例と同じものが具体例として挙げられる。
-B-は、式(6)における-A-の具体例と同じものが具体例として挙げられる。
また、このような変性ポリフェニレンエーテル化合物は市販品を用いることができ、例えば、OPE-2St1200(式(7)中、-(O-X-O)-中のXが式(8)で表される構造であり、-(O-Y)-及び-(Y-O)-が式(11)の構造が重合したものである)、及びOPE-2st2200(式(7)中、-(O-X-O)-中のXが式(8)で表される構造であり、-(O-Y)-及び-(Y-O)-が式(11)の構造が重合したものである)(以上、商品名、三菱ガス化学(株))を好適に使用することができる。
表面被覆酸化チタン(A)がより一層良好に分散し、硬化時により一層優れた耐熱性及び吸湿耐熱性、並びにより一層優れた誘電特性(高誘電率及び低誘電正接)を有する樹脂組成物が得られることから、本実施形態の樹脂組成物は、シアン酸エステル化合物を含むことが好ましい。また、シアン酸エステル化合物は、表面被覆酸化チタン(A)による、重合の進行及び加水分解の抑制効果が顕著に得られることからも好ましい。更に、樹脂組成物がシアン酸エステル化合物を含むと、表面被覆酸化チタン(A)との密着性がより向上し、樹脂組成物中における表面被覆酸化チタン(A)の凝集をより緩和でき、分散性がより向上し、優れた誘電特性(高誘電率及び低誘電正接)並びに耐熱性が得られる傾向にある。
シアン酸エステル化合物は、1分子中に2つ以上の芳香環に直接結合したシアナト基(「シアン酸エステル基」、又は「シアネート基」とも称する)を有する化合物であれば、公知のものを適宜用いることができる。シアン酸エステル化合物は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
このようなビスフェノールA型シアン酸エステル化合物としては、市販品を用いてもよく、例えば、Primaset(登録商標)BADCy(商品名、ロンザ(株)、2、2-ビス(4-シアナトフェニル)プロパン、シアン酸エステル基当量:139g/eq.)及びCA210(商品名、三菱ガス化学(株)、2、2-ビス(4-シアナトフェニル)プロパンのプレポリマー、シアン酸エステル基当量:139g/eq.)が挙げられる。
本実施形態の樹脂組成物は、フェノール化合物を含んでもよい。フェノール化合物は、1分子中にフェノール性水酸基を2個以上有する化合物であれば、公知のものを適宜用いることができ、その種類は特に限定されない。フェノール化合物は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
本実施形態の樹脂組成物は、アルケニル置換ナジイミド化合物を含んでもよい。アルケニル置換ナジイミド化合物は、1分子中に1つ以上のアルケニル置換ナジイミド基を有する化合物であれば特に限定されない。アルケニル置換ナジイミド化合物は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
本実施形態の樹脂組成物は、オキセタン樹脂を含んでもよい。オキセタン樹脂としては、特に限定されず、一般に公知のものを使用できる。オキセタン樹脂は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
本実施形態の樹脂組成物は、ベンゾオキサジン化合物を含んでもよい。ベンゾオキサジン化合物としては、1分子中に2個以上のジヒドロベンゾオキサジン環を有する化合物であれば特に限定されず、一般に公知のものを用いることができる。ベンゾオキサジン化合物は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
本実施形態の樹脂組成物は、重合可能な不飽和基を有する化合物を含んでもよい。重合可能な不飽和基を有する化合物としては、特に限定されず、一般に公知のものを使用できる。重合可能な不飽和基を有する化合物は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
本実施形態の樹脂組成物は、表面被覆酸化チタン(A)と、熱硬化性化合物(B)とを含有する樹脂組成物において、表面被覆酸化チタン(A)と一層良好な分散性を有し、硬化時に一層優れた耐熱性及び吸湿耐熱性、並びに一層優れた誘電特性(高誘電率及び低誘電正接)を有する樹脂組成物が得られることから、表面被覆酸化チタン(A)とは異なる充填材(C)を更に含有することが好ましい。充填材(C)としては、表面被覆酸化チタン(A)と異なれば、特に限定されない。充填材(C)は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
無機酸化物は、充填材コア粒子の表面の少なくとも一部に付与されていればよい。無機酸化物は、充填材コア粒子の表面に部分的に付与されていても、充填材コア粒子の表面のすべてを覆うように付与されていてもよい。より良好な耐熱性及び吸湿耐熱性、並びにより良好な誘電特性(高誘電率及び低誘電正接)を有するプリント配線板等が得られる点から、無機酸化物は充填材コア粒子の表面のすべてを覆うように均一に付与されている、すなわち、充填材コア粒子の表面に無機酸化物の被膜が均一に形成されていることが好ましい。
本実施形態の樹脂組成物は、シランカップリング剤を更に含んでもよい。樹脂組成物は、シランカップリング剤を含有することにより、樹脂組成物における表面被覆酸化チタン(A)及び必要に応じて配合される充填材(C)の分散性が一層向上し、樹脂組成物に含まれる各成分と、後述する基材との接着強度が一層向上する傾向にある。シランカップリング剤は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
本実施形態の樹脂組成物は、湿潤分散剤を更に含んでもよい。樹脂組成物は、湿潤分散剤を含有することにより、充填材(C)の分散性が一層向上する傾向にある。湿潤分散剤は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
本実施形態の樹脂組成物は、硬化促進剤を更に含んでもよい。硬化促進剤は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
本実施形態の樹脂組成物は、溶剤を更に含有してもよい。樹脂組成物は、溶剤を含むことにより、樹脂組成物の調製時における粘度が下がり、ハンドリング性(取り扱い性)が一層向上し、基材への含浸性が一層向上する傾向にある。溶剤は、1種を単独で、又は2種以上を組み合わせて用いてもよい。
本実施形態の樹脂組成物は、所期の特性が損なわれない範囲において、上記以外の成分を含んでもよい。例えば、難燃性化合物としては、4,4’-ジブロモビフェニル等の臭素化合物、リン酸エステル、リン酸メラミン、メラミンやベンゾグアナミン等の窒素含有化合物、及びシリコン系化合物等が挙げられる。また、各種添加剤としては、紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤、光増感剤、染料、顔料、増粘剤、滑剤、消泡剤、分散剤、レベリング剤(表面調整剤)、光沢剤、重合禁止剤等が挙げられる。
本実施形態の樹脂組成物の製造方法は、特に限定されないが、例えば、表面被覆酸化チタン(A)と、熱硬化性化合物(B)と、必要に応じて、上記した任意に含まれていてよい成分とを混合し、十分に撹拌する方法が挙げられる。この際、各成分を均一に溶解あるいは分散させるため、撹拌、混合、混練処理等の公知の処理を行うことができる。具体的には、適切な撹拌能力を有する撹拌機を付設した撹拌槽を用いて撹拌分散処理を行うことで、樹脂組成物における表面被覆酸化チタン(A)、及び必要に応じて配合される充填材(C)の分散性を向上させることができる。上記の撹拌、混合、混練処理は、例えば、ボールミル、ビーズミル等の混合を目的とした装置、又は、公転又は自転型の混合装置等の公知の装置を用いて適宜行うことができる。
本実施形態の樹脂組成物は、例えば、硬化物、プリプレグ、フィルム状アンダーフィル材、樹脂シート、積層板、ビルドアップ材料、非伝導性フィルム、金属箔張積層板、プリント配線板、及び繊維強化複合材料の原料として、又は半導体装置の製造において好適に用いることができる。以下、これらについて説明する。
硬化物は、本実施形態の樹脂組成物を硬化させて得られる。硬化物の製造方法としては、例えば、本実施形態の樹脂組成物を溶融又は溶媒(溶剤)に溶解させた後、型内に流し込み、熱や光等を用いて通常の条件で硬化させることにより得ることができる。熱硬化の場合、硬化温度は、硬化が効率的に進み、得られる硬化物の劣化を防止する観点から、120~300℃の範囲内が好ましい。
本実施形態のプリプレグは、基材と、該基材に含浸又は塗布された、本実施形態の樹脂組成物とを含む。本実施形態のプリプレグは、例えば、本実施形態の樹脂組成物(例えば、未硬化状態(Aステージ))を基材に含浸又は塗布させた後、120~220℃で2~15分程度乾燥させる方法等によって半硬化(Bステージ化)させることにより得られる。この場合、基材に対する樹脂組成物(樹脂組成物の硬化物も含む)の付着量、すなわち半硬化後のプリプレグの総量に対する樹脂組成物量(表面被覆酸化チタン(A)、及び必要に応じて配合される充填材(C)を含む)は、20~99質量%の範囲であることが好ましい。なお、半硬化状態(Bステージ)とは、樹脂組成物に含まれる各成分が、積極的に反応(硬化)を始めてはいないが、樹脂組成物が乾燥状態、すなわち、粘着性がない程度まで、加熱して溶媒を揮発させている状態を称し、加熱しなくても硬化せずに溶媒が揮発したのみの状態も含まれる。本実施形態において、半硬化状態(Bステージ)の最低溶融粘度は、通常、20,000Pa・s以下である。最低溶融粘度の下限は、例えば、10Pa・s以上である。なお、本実施形態において、最低溶融粘度は、次の方法で測定される。すなわち、樹脂組成物から採取した樹脂粉1gをサンプルとして使用し、レオメータ(ARES-G2(商品名)、TAインスツルメンツ社)により、最低溶融粘度を測定する。ここでは、プレート径25mmのディスポーサブルプレートを使用し、40℃以上180℃以下の範囲において、昇温速度2℃/分、周波数10.0rad/秒、及び歪0.1%の条件下で、樹脂粉の最低溶融粘度を測定する。
本実施形態の樹脂シートは、本実施形態の樹脂組成物を含む。樹脂シートは、支持体と、該支持体の表面に配置した本実施形態の樹脂組成物から形成された層とを含む支持体付き樹脂シートとしてもよい。樹脂シートは、ビルドアップ用フィルム又はドライフィルムソルダーレジストとして使用することができる。樹脂シートの製造方法としては、特に限定されないが、例えば、本実施形態の樹脂組成物を溶剤に溶解させた溶液を支持体に塗布(塗工)し乾燥することで樹脂シートを得る方法が挙げられる。
本実施形態の積層板は、本実施形態のプリプレグ及び樹脂シートからなる群より選ばれる1種以上を含む。プリプレグ及び樹脂シートについて2種以上が積層されている場合、各プリプレグ及び樹脂シートに用いられる樹脂組成物については同一であっても異なっていてもよい。また、プリプレグ及び樹脂シートの両方を用いる場合、それらに用いられる樹脂組成物は同一であっても異なっていてもよい。本実施形態の積層板において、プリプレグ及び樹脂シートからなる群より選ばれる1種以上は、半硬化状態(Bステージ)であってもよく、完全に硬化した状態(Cステージ)であってもよい。
本実施形態の金属箔張積層板は、本実施形態の積層板と、該積層板の片面又は両面に配された金属箔とを含む。
また、金属箔張積層板は、少なくとも1枚の本実施形態のプリプレグと、該プリプレグの片面又は両面に積層された金属箔と、を含んでいてもよい。
更に、金属箔張積層板は、少なくとも1枚の本実施形態の樹脂シートと、該樹脂シートの片面又は両面に積層された金属箔と、を含んでいてもよい。
金属箔としては、特に限定されず、金箔、銀箔、銅箔、錫箔、ニッケル箔、及びアルミニウム箔等が挙げられる。中でも、銅箔が好ましい。銅箔としては、一般にプリント配線板用材料に用いられるものであれば特に限定されないが、例えば、圧延銅箔、及び電解銅箔等の銅箔が挙げられる。中でも、銅箔ピール強度、及び微細配線の形成性の観点から、電解銅箔が好ましい。銅箔の厚さは、特に限定されず、1.5~70μm程度であってもよい。
本実施形態のプリント配線板は、絶縁層と、該絶縁層の片面又は両面に配された導体層と、を有し、該絶縁層が、本実施形態の樹脂組成物の硬化物を含む。絶縁層は、本実施形態の樹脂組成物から形成された層(硬化物を含む層)及びプリプレグから形成された層(硬化物を含む層)の少なくとも一方を含むことが好ましい。このようなプリント配線板は、常法に従って製造でき、その製造方法は特に限定されないが、例えば、上記した金属箔張積層板を用いて製造できる。以下、プリント配線板の製造方法の一例を示す。
半導体装置は、本実施形態のプリント配線板の導通箇所に、半導体チップを実装することにより製造することができる。ここで、導通箇所とは、多層プリント配線板における電気信号を伝える箇所のことであって、その場所は表面であっても、埋め込まれた箇所であってもいずれでも構わない。また、半導体チップは半導体を材料とする電気回路素子であれば特に限定されない。
表面被覆酸化チタン及び充填材(溶融球状シリカ)の平均粒子径(D50)は、それぞれ、レーザー回折・散乱式粒子径分布測定装置(マイクロトラックMT3300EXII(商品名)、マイクロトラック・ベル(株))を用いて、下記の測定条件に基づいて、レーザー回折・散乱法により粒度分布を測定することで算出した。
(レーザー回折・散乱式粒子径分布測定装置の測定条件)
(表面被覆酸化チタン)
溶媒:メチルエチルケトン、溶媒屈折率:1.33、粒子屈折率:2.72、透過率:85±5%。
(充填材)
溶媒:メチルエチルケトン、溶媒屈折率:1.33、粒子屈折率:1.45(溶融球状シリカ)、透過率:85±5%。
表面被覆酸化チタンを、30℃から300℃まで昇温速度10℃/分で加熱した際の質量減少率(%)は、次の方法により測定した。まず、示差熱熱重量同時測定装置(TG-DSC、NEXTA STA200(商品名)、(株)日立ハイテクサイエンス)を用いて、秤量した各表面被覆酸化チタンをアルミニウム製パンに入れ、30℃から300℃まで昇温速度10℃/分で加熱した際の質量減少率を測定した。それらの結果を表1に示す。
ナフトールアラルキル型フェノール樹脂(SN495V(商品名)、OH基(ヒドロキシ基)当量:236g/eq.、新日鐵化学(株))300g(OH基換算1.28mol)及びトリエチルアミン194.6g(1.92mol)(ヒドロキシ基1molに対して1.5mol)をジクロロメタン1800gに溶解させ、これを溶液1とした。塩化シアン125.9g(2.05mol)(ヒドロキシ基1molに対して1.6mol)、ジクロロメタン293.8g、36%塩酸194.5g(1.92mol)(ヒドロキシ基1molに対して1.5mol)、及び水1205.9gを、撹拌下、液温-2~-0.5℃に保ちながら、溶液1を30分かけて注下した。溶液1注下終了後、同温度にて30分間撹拌した後、トリエチルアミン65g(0.64mol)(ヒドロキシ基1molに対して0.5mol)をジクロロメタン65gに溶解させた溶液(溶液2)を10分かけて注下した。溶液2注下終了後、同温度にて30分間撹拌して反応を完結させた。その後、反応液を静置して有機相と水相を分離し、得られた有機相を水1300gで5回洗浄した。水洗5回目の廃水の電気伝導度は5μS/cmであり、水による洗浄により除けるイオン性化合物は十分に除かれていることを確認した。水洗後の有機相を減圧下で濃縮し、最終的に90℃で1時間濃縮乾固させて目的とするナフトールアラルキル型シアン酸エステル化合物(SN495V-CN、シアン酸エステル基当量:261g/eq.、上記式(13)におけるR3が全て水素原子であり、n3が1~10の整数である)(橙色粘性物)331gを得た。得られたSN495V-CNの赤外吸収スペクトルは2250cm-1(シアン酸エステル基)の吸収を示し、且つ、ヒドロキシ基の吸収は示さなかった。
合成例1で得られたナフトールアラルキル型シアン酸エステル化合物(SN495V-CN、シアン酸エステル基当量:261g/eq.)8質量部、2,2-ビス(4-(4-マレイミドフェノキシ)-フェニル)プロパン(BMI-80(商品名)、ケイ・アイ化成(株))28質量部、ビフェニルアラルキル型マレイミド化合物(MIR-3000-70MT(商品名)、日本化薬(株))28質量部、ナフタレン型エポキシ樹脂(EPICLON EXA-4032-70M(商品名)、エポキシ当量:150g/eq.、DIC(株))12質量部、変性ポリフェニレンエーテル化合物(OPE-2St1200(商品名)、三菱ガス化学(株)、式(7)で表される化合物(式(7)中、Xが式(8)であり、-(Y-O)-及び-(O-Y)-が、式(11)の構造単位が重合したものである)、数平均分子量1187、ビニル基当量:590g/eq.、最低溶融粘度:1000Pa・s)24質量部、表面被覆酸化チタン(結晶構造:ルチル型、二酸化チタンを、シリカ、アルミナ、及びジメチルシリコーン(シリカ、アルミナ、及びジメチルシリコーンの合計の含有量:3質量%)で表面処理したもの、酸化チタン含有量:97質量%、平均粒子径(D50):0.21μm、CR-63(商品名)、石原産業(株))80質量部、溶融球状シリカ(SC4500-SQ(商品名)、平均粒子径(D50):1.1μm、(株)アドマテックス)120質量部、シランカップリング剤(KBM-1403(商品名)、信越化学工業(株))4質量部、湿潤分散剤(DISPERBYK(登録商標)-161(商品名)、ビックケミー・ジャパン(株))2質量部、湿潤分散剤(BYK(登録商標)-W903(商品名)、ビックケミー・ジャパン(株))2質量部、2,4,5-トリフェニルイミダゾール(東京化成工業(株))0.1質量部、メチルエチルケトン100質量部を混合して、樹脂ワニスを得た。樹脂ワニス中の表面被覆酸化チタンと、充填材(SC4500-SQ(商品名))との配合比(含有量比)は、体積比で、26:74(表面被覆酸化チタン:充填材)であった。
合成例1で得られたナフトールアラルキル型シアン酸エステル化合物(SN495V-CN、シアン酸エステル基当量:261g/eq.)8質量部、2,2-ビス(4-(4-マレイミドフェノキシ)-フェニル)プロパン(BMI-80(商品名)、ケイ・アイ化成(株))28質量部、ビフェニルアラルキル型マレイミド化合物(MIR-3000-70MT(商品名)、日本化薬(株))28質量部、ナフタレン型エポキシ樹脂(EPICLON EXA-4032-70M(商品名)、エポキシ当量:150g/eq.、DIC(株))12質量部、変性ポリフェニレンエーテル化合物(OPE-2St1200(商品名)、三菱ガス化学(株)、式(7)で表される化合物(式(7)中、Xが式(8)であり、-(Y-O)-及び-(O-Y)-が、式(11)の構造単位が重合したものである)、数平均分子量1187、ビニル基当量:590g/eq.、最低溶融粘度:1000Pa・s)24質量部、表面被覆酸化チタン(結晶構造:ルチル型、二酸化チタンを、アルミナ及びオルガノシラン(アルミナ及びオルガノシランの合計の含有量:2質量%)で表面処理したもの、酸化チタン含有量:98質量%、平均粒子径(D50):0.40μm、R-22L(商品名)、堺化学工業(株))80質量部、溶融球状シリカ(SC4500-SQ(商品名)、平均粒子径(D50):1.1μm、(株)アドマテックス)120質量部、シランカップリング剤(KBM-1403(商品名)、信越化学工業(株))4質量部、湿潤分散剤(DISPERBYK(登録商標)-161(商品名)、ビックケミー・ジャパン(株))2質量部、湿潤分散剤(BYK(登録商標)-W903(商品名)、ビックケミー・ジャパン(株))2質量部、2,4,5-トリフェニルイミダゾール(東京化成工業(株))0.1質量部、メチルエチルケトン100質量部を混合して、樹脂ワニスを得た。樹脂ワニス中の表面被覆酸化チタンと、充填材(SC4500-SQ(商品名))との配合比(含有量比)は、体積比で、26:74(表面被覆酸化チタン:充填材)であった。
合成例1で得られたナフトールアラルキル型シアン酸エステル化合物(SN495V-CN、シアン酸エステル基当量:261g/eq.)8質量部、2,2-ビス(4-(4-マレイミドフェノキシ)-フェニル)プロパン(BMI-80(商品名)、ケイ・アイ化成(株))28質量部、ビフェニルアラルキル型マレイミド化合物(MIR-3000-70MT(商品名)、日本化薬(株))28質量部、ナフタレン型エポキシ樹脂(EPICLON EXA-4032-70M(商品名)、エポキシ当量:150g/eq.、DIC(株))12質量部、変性ポリフェニレンエーテル化合物(OPE-2St1200(商品名)、三菱ガス化学(株)、式(7)で表される化合物(式(7)中、Xが式(8)であり、-(Y-O)-及び-(O-Y)-が、式(11)の構造単位が重合したものである)、数平均分子量1187、ビニル基当量:590g/eq.、最低溶融粘度:1000Pa・s)24質量部、表面被覆酸化チタン(結晶構造:ルチル型、二酸化チタンを、アルミナ及びシリコーンオイル(アルミナ及びシリコーンオイルの合計の含有量:2質量%)で表面処理したもの、酸化チタン含有量:98質量%、平均粒子径(D50):0.20μm、R-11P(商品名)、堺化学工業(株))80質量部、溶融球状シリカ(SC4500-SQ(商品名)、平均粒子径(D50):1.1μm、(株)アドマテックス)120質量部、シランカップリング剤(KBM-1403(商品名)、信越化学工業(株))4質量部、湿潤分散剤(DISPERBYK(登録商標)-161(商品名)、ビックケミー・ジャパン(株))2質量部、湿潤分散剤(BYK(登録商標)-W903(商品名)、ビックケミー・ジャパン(株))2質量部、2,4,5-トリフェニルイミダゾール(東京化成工業(株))0.1質量部、メチルエチルケトン100質量部を混合して、樹脂ワニスを得た。樹脂ワニス中の表面被覆酸化チタンと、充填材(SC4500-SQ(商品名))との配合比(含有量比)は、体積比で、26:74(表面被覆酸化チタン:充填材)であった。
ビフェニルアラルキル型マレイミド化合物(MIR-3000-70MT(商品名)、日本化薬(株))76質量部、変性ポリフェニレンエーテル化合物(OPE-2St1200(商品名)、三菱ガス化学(株)、式(7)で表される化合物(式(7)中、Xが式(8)であり、-(Y-O)-及び-(O-Y)-が、式(11)の構造単位が重合したものである)、数平均分子量1187、ビニル基当量:590g/eq.、最低溶融粘度:1000Pa・s)24質量部、表面被覆酸化チタン(結晶構造:ルチル型、二酸化チタンを、シリカ、アルミナ、及びジメチルシリコーン(シリカ、アルミナ、及びジメチルシリコーンの合計の含有量:3質量%)で表面処理したもの、酸化チタン含有量:97質量%、平均粒子径(D50):0.21μm、CR-63(商品名)、石原産業(株))80質量部、溶融球状シリカ(SC4500-SQ(商品名)、平均粒子径(D50):1.1μm、(株)アドマテックス)120質量部、シランカップリング剤(KBM-1403(商品名)、信越化学工業(株))4質量部、湿潤分散剤(DISPERBYK(登録商標)-161(商品名)、ビックケミー・ジャパン(株))2質量部、湿潤分散剤(BYK(登録商標)-W903(商品名)、ビックケミー・ジャパン(株))2質量部、2,4,5-トリフェニルイミダゾール(東京化成工業(株))0.1質量部、メチルエチルケトン100質量部を混合して、樹脂ワニスを得た。樹脂ワニス中の表面被覆酸化チタンと、充填材(SC4500-SQ(商品名))との配合比(含有量比)は、体積比で、26:74(表面被覆酸化チタン:充填材)であった。
ビフェニルアラルキル型マレイミド化合物(MIR-3000-70MT(商品名)、日本化薬(株))80質量部、ナフタレン型エポキシ樹脂(EPICLON EXA-4032-70M(商品名)、エポキシ当量:150g/eq.、DIC(株))20質量部、表面被覆酸化チタン(結晶構造:ルチル型、二酸化チタンを、シリカ、アルミナ、及びジメチルシリコーン(シリカ、アルミナ、及びジメチルシリコーンの合計の含有量:3質量%)で表面処理したもの、酸化チタン含有量:97質量%、平均粒子径(D50):0.21μm、CR-63(商品名)、石原産業(株))80質量部、溶融球状シリカ(SC4500-SQ(商品名)、平均粒子径(D50):1.1μm、(株)アドマテックス)120質量部、シランカップリング剤(KBM-1403(商品名)、信越化学工業(株))4質量部、湿潤分散剤(DISPERBYK(登録商標)-161(商品名)、ビックケミー・ジャパン(株))2質量部、湿潤分散剤(BYK(登録商標)-W903(商品名)、ビックケミー・ジャパン(株))2質量部、2,4,5-トリフェニルイミダゾール(東京化成工業(株))0.1質量部、メチルエチルケトン100質量部を混合して、樹脂ワニスを得た。樹脂ワニス中の表面被覆酸化チタンと、充填材(SC4500-SQ(商品名))との配合比(含有量比)は、体積比で、26:74(表面被覆酸化チタン:充填材)であった。
合成例1で得られたナフトールアラルキル型シアン酸エステル化合物(SN495V-CN、シアン酸エステル基当量:261g/eq.)8質量部、2,2-ビス(4-(4-マレイミドフェノキシ)-フェニル)プロパン(BMI-80(商品名)、ケイ・アイ化成(株))28質量部、ビフェニルアラルキル型マレイミド化合物(MIR-3000-70MT(商品名)、日本化薬(株))28質量部、ナフタレン型エポキシ樹脂(EPICLON EXA-4032-70M(商品名)、エポキシ当量:150g/eq.、DIC(株))12質量部、変性ポリフェニレンエーテル化合物(OPE-2St1200(商品名)、三菱ガス化学(株)、式(7)で表される化合物(式(7)中、Xが式(8)であり、-(Y-O)-及び-(O-Y)-が、式(11)の構造単位が重合したものである)、数平均分子量1187、ビニル基当量:590g/eq.、最低溶融粘度:1000Pa・s)24質量部、表面被覆酸化チタン(結晶構造:ルチル型、二酸化チタンを、シリカ及びアルミナ(シリカ及びアルミナの合計の含有量:10質量%)で表面処理したもの、酸化チタン含有量:90質量%、平均粒子径(D50):0.28μm、CR-93(商品名)、石原産業(株))80質量部、溶融球状シリカ(SC4500-SQ(商品名)、平均粒子径(D50):1.1μm、(株)アドマテックス)120質量部、シランカップリング剤(KBM-1403(商品名)、信越化学工業(株))4質量部、湿潤分散剤(DISPERBYK(登録商標)-161(商品名)、ビックケミー・ジャパン(株))2質量部、湿潤分散剤(BYK(登録商標)-W903(商品名)、ビックケミー・ジャパン(株))2質量部、2,4,5-トリフェニルイミダゾール(東京化成工業(株))0.1質量部、メチルエチルケトン100質量部を混合して、樹脂ワニスを得た。樹脂ワニス中の表面被覆酸化チタンと、充填材(SC4500-SQ(商品名))との配合比(含有量比)は、体積比で、26:74(表面被覆酸化チタン:充填材)であった。
合成例1で得られたナフトールアラルキル型シアン酸エステル化合物(SN495V-CN、シアン酸エステル基当量:261g/eq.)8質量部、2,2-ビス(4-(4-マレイミドフェノキシ)-フェニル)プロパン(BMI-80(商品名)、ケイ・アイ化成(株))28質量部、ビフェニルアラルキル型マレイミド化合物(MIR-3000-70MT(商品名)、日本化薬(株))28質量部、ナフタレン型エポキシ樹脂(EPICLON EXA-4032-70M(商品名)、エポキシ当量:150g/eq.、DIC(株))12質量部、変性ポリフェニレンエーテル化合物(OPE-2St1200(商品名)、三菱ガス化学(株)、式(7)で表される化合物(式(7)中、Xが式(8)であり、-(Y-O)-及び-(O-Y)-が、式(11)の構造単位が重合したものである)、数平均分子量1187、ビニル基当量:590g/eq.、最低溶融粘度:1000Pa・s)24質量部、表面被覆酸化チタン(結晶構造:ルチル型、二酸化チタンを、シリカ及びアルミナ(シリカ及びアルミナの合計の含有量:15質量%)で表面処理したもの、酸化チタン含有量:85質量%、平均粒子径(D50):0.25μm、PFC-211(商品名)、石原産業(株))80質量部、溶融球状シリカ(SC4500-SQ(商品名)、平均粒子径(D50):1.1μm、(株)アドマテックス)120質量部、シランカップリング剤(KBM-1403(商品名)、信越化学工業(株))4質量部、湿潤分散剤(DISPERBYK(登録商標)-161(商品名)、ビックケミー・ジャパン(株))2質量部、湿潤分散剤(BYK(登録商標)-W903(商品名)、ビックケミー・ジャパン(株))2質量部、2,4,5-トリフェニルイミダゾール(東京化成工業(株))0.1質量部、メチルエチルケトン100質量部を混合して、樹脂ワニスを得た。樹脂ワニス中の表面被覆酸化チタンと、充填材(SC4500-SQ(商品名))との配合比(含有量比)は、体積比で、26:74(表面被覆酸化チタン:充填材)であった。
ビフェニルアラルキル型マレイミド化合物(MIR-3000-70MT(商品名)、日本化薬(株))76質量部、変性ポリフェニレンエーテル化合物(OPE-2St1200(商品名)、三菱ガス化学(株)、式(7)で表される化合物(式(7)中、Xが式(8)であり、-(Y-O)-及び-(O-Y)-が、式(11)の構造単位が重合したものである)、数平均分子量1187、ビニル基当量:590g/eq.、最低溶融粘度:1000Pa・s)24質量部、表面被覆酸化チタン(結晶構造:ルチル型、二酸化チタンを、シリカ及びアルミナ(シリカ及びアルミナの合計の含有量:15質量%)で表面処理したもの、酸化チタン含有量:85質量%、平均粒子径(D50):0.25μm、PFC-211(商品名)、石原産業(株))80質量部、溶融球状シリカ(SC4500-SQ(商品名)、平均粒子径(D50):1.1μm、(株)アドマテックス)120質量部、シランカップリング剤(KBM-1403(商品名)、信越化学工業(株))4質量部、湿潤分散剤(DISPERBYK(登録商標)-161(商品名)、ビックケミー・ジャパン(株))2質量部、湿潤分散剤(BYK(登録商標)-W903(商品名)、ビックケミー・ジャパン(株))2質量部、2,4,5-トリフェニルイミダゾール(東京化成工業(株))0.1質量部、メチルエチルケトン100質量部を混合して、樹脂ワニスを得た。樹脂ワニス中の表面被覆酸化チタンと、充填材(SC4500-SQ(商品名))との配合比(含有量比)は、体積比で、26:74(表面被覆酸化チタン:充填材)であった。
表面被覆酸化チタン(結晶構造:ルチル型、二酸化チタンを、シリカ、アルミナ、及びジメチルシリコーン(シリカ、アルミナ、及びジメチルシリコーンの合計の含有量:3質量%)で表面処理したもの、酸化チタン含有量:97質量%、平均粒子径(D50):0.21μm、CR-63(商品名)、石原産業(株))80質量部の代わりに、表面被覆酸化チタン(酸化チタン粒子41質量%、シリカ57質量%、アルキルシラン2質量%、複数の酸化チタン粒子を内包する無機物粒子、平均粒子径(D50):4.5μm、SUNSIL-Tin50AS(商品名)、(有)リンデン)80質量部を用いた以外は、実施例1と同様にして、プリプレグを作製した。なお、樹脂ワニス中の表面被覆酸化チタンと、充填材(SC4500-SQ(商品名))との配合比(含有量比)は、体積比で、26:74(表面被覆酸化チタン:充填材)であった。
得られたプリプレグを用いて金属箔張積層板の作製を試みたが、金属箔張積層板の全面にボイドが発生し、金属箔張積層板を作成することができなかった。
表面被覆酸化チタン(結晶構造:ルチル型、二酸化チタンを、シリカ、アルミナ、及びジメチルシリコーン(シリカ、アルミナ、及びジメチルシリコーンの合計の含有量:3質量%)で表面処理したもの、酸化チタン含有量:97質量%、平均粒子径(D50):0.21μm、CR-63(商品名)、石原産業(株))80質量部の代わりに、表面被覆酸化チタン(二酸化チタンを、シリカ、及びアルミナで表面処理したもの、酸化チタン含有量:91質量%、平均粒子径(D50):0.20μm、R-21(商品名)、堺化学工業(株))80質量部を用いた以外は、実施例1と同様にして、プリプレグを作製した。なお、樹脂ワニス中の表面被覆酸化チタンと、充填材(SC4500-SQ(商品名))との配合比(含有量比)は、体積比で、26:74(表面被覆酸化チタン:充填材)であった。
得られたプリプレグを用いて金属箔張積層板の作製を試みたが、金属箔張積層板の全面にボイドが発生し、金属箔張積層板を作成することができなかった。
(1)比誘電率(Dk)及び誘電正接(Df)
実施例及び比較例で得られた金属箔張積層板の両面の銅箔を全てエッチングして、両面の銅箔が全て除去された厚さ0.1mmのアンクラッド板を得た。このアンクラッド板をサイズ1mm×65mmに切断(ダウンサイジング)し、測定用サンプルを得た。
この測定用サンプルを用い、ネットワークアナライザー(Agilent8722ES(商品名)、アジレントテクノロジー(株))を用いて、10GHzにおける比誘電率(Dk)及び誘電正接(Df)をそれぞれ測定した。なお、比誘電率(Dk)及び誘電正接(Df)の測定は、温度23℃±1℃、湿度50%RH(相対湿度)±5%RHの環境下で行った。
次いで、この測定用サンプルを120℃の乾燥機中で、1時間乾燥させた。乾燥後の測定用サンプルを温度85℃±1℃及び湿度85%RH±5%RHの恒温恒湿器(FX-222P(商品名)、楠本化成(株))にて168時間吸湿処理した。168時間吸湿処理後の測定用サンプルについても、ネットワークアナライザー(Agilent8722ES(商品名)、アジレントテクノロジー(株))を用いて、10GHzにおける比誘電率(Dk)及び誘電正接(Df)をそれぞれ測定した。
実施例及び比較例で得られたプリプレグの上下面に、キャリア付き極薄銅箔(MT18FL(商品名)、三井金属鉱業(株)、厚さ:1.5μm)を配置し、面圧30kgf/cm2及び温度220℃で120分間の真空プレスを行って積層成形することで、厚さ0.1mmの金属箔張積層板(両面銅張積層板)を作製した。次いで、両面の銅箔を全てエッチングして、両面の銅箔が全て除去されたアンクラッド板を得た。このアンクラッド板の上下面に、厚さ0.06mmのプリプレグ(GHPL-970LF(LD)(商品名)、三菱ガス化学(株))を配置し、更にその上下面に厚さ12μmの電解銅箔(3EC-M3-VLP(商品名)、三井金属鉱業(株))を配置し、面圧30kgf/cm2及び温度220℃で120分間の真空プレスを行い積層成形し、厚さ0.22mmの金属箔張積層板(両面銅張積層板)を作製した。得られた積層板をサイズ50mm×50mmに切断(ダウンサイジング)し、片面側の銅箔を全てエッチングにより除去し、もう一方の面側においては、面の半分の銅箔をエッチングにより除去することで、測定用サンプルを作製した。得られた測定用サンプルを、プレッシャークッカー試験機(PC-3型(商品名)、平山製作所(株))を用いて、121℃及び2気圧の飽和水蒸気存在下で2時間処理した後、更に280℃の半田槽に60秒間浸漬(ディップ)させて、外観変化の異常の有無を目視にて観察した。各測定は、それぞれ、5枚ずつ試験を行い、その5枚の中から、外観異常が0~1枚であった場合には「AA」、外観異常が2~3枚認められた場合には「BB」、外観異常が4~5枚認められた場合には「CC」と評価し、結果を表1に示した。なお、浸漬後のサンプルにおいて、例えば、銅箔表面もしくは裏面に膨れが生じた場合を外観異常と判断した。表中において、「PCT 2.0h」とは、プレッシャークッカー試験機による2時間処理した後の結果を示す。
実施例及び比較例で得られたプリプレグを2枚積層し、その上下面に厚さ12μmの電解銅箔(3EC-M3-VLP(商品名)、三井金属鉱業(株))を配置し、面圧30kgf/cm2及び温度220℃で120分間の真空プレスを行い積層成形することで、厚さ0.2mmの金属箔張積層板(両面銅張積層板)を作製した。この金属箔張積層板をサイズ50mm×50mmに切断(ダウンサイジング)し、測定用サンプルを得た。同様にして、測定用サンプルを全部で5枚作製した。それぞれの測定用サンプルを300℃の半田槽に、30分間サンプルの片面のみが半田に接するようフロートした。30分後、半田槽からサンプルを取り出し、これらのサンプルにおける半田に接した側の外観変化の有無を目視にて観察した。5枚のサンプルをそれぞれ観察した結果、外観異常が0~1枚であった場合には「AA」、外観異常が2~5枚認められた場合には「CC」と評価し、結果を表1に示した。なお、半田槽から取り出したサンプルにおいて、例えば、銅箔表面もしくは裏面に膨れが生じた場合を外観異常と判断した。
本実施形態の樹脂組成物は、硬化物、プリプレグ、フィルム状アンダーフィル材、樹脂シート、積層板、ビルドアップ材料、非伝導性フィルム、金属箔張積層板、プリント配線板、及び繊維強化複合材料の原料として、又は半導体装置の製造において好適に用いることができる。
Claims (25)
- 30℃から300℃まで昇温速度10℃/分で加熱した際の質量減少率が0.5質量%以下である表面被覆酸化チタン(A)と、熱硬化性化合物(B)とを含有する樹脂組成物。
- 前記表面被覆酸化チタン(A)が、酸化チタン粒子の表面に、有機層及び/又は無機酸化物層を有する、請求項1に記載の樹脂組成物。
- 前記表面被覆酸化チタン(A)が、前記無機酸化物層の表面に前記有機層を更に有する、請求項2に記載の樹脂組成物。
- 前記有機層と前記無機酸化物層の合計量が、前記表面被覆酸化チタン(A)100質量%に対して、0.1~10質量%である、請求項2に記載の樹脂組成物。
- 前記無機酸化物層が、シリカを含む層、ジルコニアを含む層、及びアルミナを含む層からなる群より選ばれる1種以上である、請求項2に記載の樹脂組成物。
- 前記有機層が、有機ケイ素化合物で表面処理された層である、請求項2に記載の樹脂組成物。
- 前記有機ケイ素化合物が、シランカップリング剤、オルガノシラン、及びオルガノポリシロキサンからなる群より選ばれる1種以上を含む、請求項6に記載の樹脂組成物。
- 前記表面被覆酸化チタン(A)中の前記酸化チタンの含有量が、前記表面被覆酸化チタン(A)100質量%に対して、90~99.9質量%である、請求項2に記載の樹脂組成物。
- 前記表面被覆酸化チタン(A)の含有量が、樹脂組成物中の樹脂固形分の合計100質量部に対して、50~500質量部である、請求項1に記載の樹脂組成物。
- 前記熱硬化性化合物(B)が、マレイミド化合物、エポキシ化合物、変性ポリフェニレンエーテル化合物、シアン酸エステル化合物、フェノール化合物、アルケニル置換ナジイミド化合物、オキセタン樹脂、ベンゾオキサジン化合物、及び重合可能な不飽和基を有する化合物からなる群より選ばれる1種以上を含む、請求項1に記載の樹脂組成物。
- 前記エポキシ化合物が、ビフェニルアラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂、及びナフチレンエーテル型エポキシ樹脂からなる群より選ばれる1種以上を含む、請求項10に記載の樹脂組成物。
- 前記シアン酸エステル化合物が、フェノールノボラック型シアン酸エステル化合物、ナフトールアラルキル型シアン酸エステル化合物、ナフチレンエーテル型シアン酸エステル化合物、キシレン樹脂型シアン酸エステル化合物、ビスフェノールM型シアン酸エステル化合物、ビスフェノールA型シアン酸エステル化合物、ジアリルビスフェノールA型シアン酸エステル化合物、ビスフェノールE型シアン酸エステル化合物、ビスフェノールF型シアン酸エステル化合物、及びビフェニルアラルキル型シアン酸エステル化合物、並びにこれらのシアン酸エステル化合物のプレポリマー、又はポリマーからなる群より選ばれる1種以上を含む、請求項10に記載の樹脂組成物。
- 前記表面被覆酸化チタン(A)とは異なる充填材(C)を更に含有する、請求項1に記載の樹脂組成物。
- 前記充填材(C)が、シリカ、アルミナ、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、窒化アルミニウム、窒化ホウ素、ベーマイト、水酸化アルミニウム、モリブデン酸亜鉛、シリコーンゴムパウダー、及びシリコーン複合パウダーからなる群より選ばれる1種以上を含む、請求項15に記載の樹脂組成物。
- 前記充填材(C)の含有量が、樹脂組成物中の樹脂固形分の合計100質量部に対して、50~300質量部である、請求項15に記載の樹脂組成物。
- プリント配線板用である、請求項1に記載の樹脂組成物。
- 基材と、
該基材に含浸又は塗布された、請求項1~18のいずれか一項に記載の樹脂組成物と、を含む、プリプレグ。 - 請求項1~18のいずれか一項に記載の樹脂組成物を含む、樹脂シート。
- 請求項19に記載のプリプレグを含む、積層板。
- 請求項20に記載の樹脂シートを含む、積層板。
- 請求項21に記載の積層板と、
該積層板の片面又は両面に配された金属箔と、を含む、金属箔張積層板。 - 請求項22に記載の積層板と、
該積層板の片面又は両面に配された金属箔と、を含む、金属箔張積層板。 - 絶縁層と、
該絶縁層の片面又は両面に配された導体層と、を有し、
該絶縁層が、請求項1~18のいずれか一項に記載の樹脂組成物の硬化物を含む、プリント配線板。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380028913.1A CN118974173A (zh) | 2022-03-23 | 2023-03-16 | 树脂组合物、预浸料、树脂片、层叠板、覆金属箔层叠板和印刷电路板 |
JP2024510076A JPWO2023182122A1 (ja) | 2022-03-23 | 2023-03-16 | |
KR1020247020168A KR20240161791A (ko) | 2022-03-23 | 2023-03-16 | 수지 조성물, 프리프레그, 수지 시트, 적층판, 금속박 피복 적층판, 및 프린트 배선판 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022046294 | 2022-03-23 | ||
JP2022-046294 | 2022-03-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023182122A1 true WO2023182122A1 (ja) | 2023-09-28 |
Family
ID=88100840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/010221 WO2023182122A1 (ja) | 2022-03-23 | 2023-03-16 | 樹脂組成物、プリプレグ、樹脂シート、積層板、金属箔張積層板、及びプリント配線板 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JPWO2023182122A1 (ja) |
KR (1) | KR20240161791A (ja) |
CN (1) | CN118974173A (ja) |
TW (1) | TW202346402A (ja) |
WO (1) | WO2023182122A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2025070328A1 (ja) * | 2023-09-29 | 2025-04-03 | パナソニックIpマネジメント株式会社 | 樹脂付き金属箔、金属張積層板、及び配線板 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012211225A (ja) * | 2011-03-30 | 2012-11-01 | Hitachi Chemical Co Ltd | 樹脂組成物、樹脂シート、プリプレグ、積層板、金属基板、及びプリント配線板 |
JP2013155344A (ja) * | 2012-01-31 | 2013-08-15 | Hitachi Chemical Co Ltd | 光反射用熱硬化性樹脂組成物、これを用いた光半導体素子搭載用基板及びその製造方法、並びに光半導体装置 |
JP2018145374A (ja) * | 2017-03-09 | 2018-09-20 | 日立化成株式会社 | 熱硬化性樹脂組成物の製造方法、光半導体素子搭載用基板の製造方法、光半導体装置の製造方法及び熱硬化性樹脂組成物 |
JP2020122034A (ja) * | 2019-01-29 | 2020-08-13 | 日鉄ケミカル&マテリアル株式会社 | エポキシ樹脂組成物及びその硬化物 |
WO2021246231A1 (ja) * | 2020-06-01 | 2021-12-09 | 三菱瓦斯化学株式会社 | 電子材料用モリブデン酸亜鉛アンモニウム水和物、電子材料用樹脂組成物、プリプレグ、樹脂シート、積層板、金属箔張積層板、及びプリント配線板 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000091717A (ja) | 1998-09-10 | 2000-03-31 | Tdk Corp | ミリ波システム |
-
2023
- 2023-03-16 KR KR1020247020168A patent/KR20240161791A/ko active Pending
- 2023-03-16 JP JP2024510076A patent/JPWO2023182122A1/ja active Pending
- 2023-03-16 WO PCT/JP2023/010221 patent/WO2023182122A1/ja active Application Filing
- 2023-03-16 TW TW112109800A patent/TW202346402A/zh unknown
- 2023-03-16 CN CN202380028913.1A patent/CN118974173A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012211225A (ja) * | 2011-03-30 | 2012-11-01 | Hitachi Chemical Co Ltd | 樹脂組成物、樹脂シート、プリプレグ、積層板、金属基板、及びプリント配線板 |
JP2013155344A (ja) * | 2012-01-31 | 2013-08-15 | Hitachi Chemical Co Ltd | 光反射用熱硬化性樹脂組成物、これを用いた光半導体素子搭載用基板及びその製造方法、並びに光半導体装置 |
JP2018145374A (ja) * | 2017-03-09 | 2018-09-20 | 日立化成株式会社 | 熱硬化性樹脂組成物の製造方法、光半導体素子搭載用基板の製造方法、光半導体装置の製造方法及び熱硬化性樹脂組成物 |
JP2020122034A (ja) * | 2019-01-29 | 2020-08-13 | 日鉄ケミカル&マテリアル株式会社 | エポキシ樹脂組成物及びその硬化物 |
WO2021246231A1 (ja) * | 2020-06-01 | 2021-12-09 | 三菱瓦斯化学株式会社 | 電子材料用モリブデン酸亜鉛アンモニウム水和物、電子材料用樹脂組成物、プリプレグ、樹脂シート、積層板、金属箔張積層板、及びプリント配線板 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2025070328A1 (ja) * | 2023-09-29 | 2025-04-03 | パナソニックIpマネジメント株式会社 | 樹脂付き金属箔、金属張積層板、及び配線板 |
Also Published As
Publication number | Publication date |
---|---|
KR20240161791A (ko) | 2024-11-12 |
JPWO2023182122A1 (ja) | 2023-09-28 |
CN118974173A (zh) | 2024-11-15 |
TW202346402A (zh) | 2023-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI814832B (zh) | 樹脂組成物、預浸體、覆金屬箔疊層板、樹脂片及印刷配線板 | |
US9832870B2 (en) | Resin composition, prepreg, metal foil-clad laminate and printed wiring board | |
KR101921366B1 (ko) | 몰리브덴 화합물 분체, 프리프레그 및 적층판 | |
JP6981634B2 (ja) | 樹脂組成物、これを含むプリプレグ、これを含む積層板、およびこれを含む樹脂付着金属箔 | |
WO2019230661A1 (ja) | 樹脂組成物、プリプレグ、金属箔張積層板、樹脂複合シート、および、プリント配線板 | |
KR102431012B1 (ko) | 프린트 배선판용 수지 조성물, 프리프레그, 레진 시트, 적층판, 금속박 피복 적층판, 프린트 배선판, 및 다층 프린트 배선판 | |
WO2022249999A1 (ja) | 樹脂組成物、プリプレグ、樹脂シート、積層板、金属箔張積層板、及びプリント配線板 | |
JP2018062568A (ja) | プリント配線板用樹脂組成物、プリプレグ、金属箔張積層板、積層樹脂シート、樹脂シート、及びプリント配線板 | |
KR20240088640A (ko) | 수지 조성물, 프리프레그, 수지 시트, 적층판, 금속박 피복 적층판, 및 프린트 배선판 | |
JP7223357B2 (ja) | 樹脂組成物、プリプレグ、樹脂シート、積層板、金属箔張積層板、及びプリント配線板 | |
WO2023182122A1 (ja) | 樹脂組成物、プリプレグ、樹脂シート、積層板、金属箔張積層板、及びプリント配線板 | |
WO2023182123A1 (ja) | 樹脂組成物、プリプレグ、樹脂シート、積層板、金属箔張積層板、及びプリント配線板 | |
WO2023190118A1 (ja) | 樹脂組成物、プリプレグ、樹脂シート、積層板、金属箔張積層板、及びプリント配線板 | |
JP6575699B2 (ja) | プリント配線板用樹脂組成物、プリプレグ、樹脂シート、積層板、金属箔張積層板、プリント配線板、及び多層プリント配線板 | |
WO2025142301A1 (ja) | 樹脂組成物、硬化物、プリプレグ、樹脂シート、積層板、金属箔張積層板、及びプリント配線板 | |
CN117397372A (zh) | 树脂组合物、预浸料、树脂片、层叠板、覆金属箔层叠板和印刷电路板 | |
WO2024154716A1 (ja) | 樹脂組成物、プリプレグ、樹脂シート、積層板、金属箔張積層板、及びプリント配線板 | |
KR102831790B1 (ko) | 수지 조성물, 프리프레그, 금속박 피복 적층판, 수지 복합 시트, 및 프린트 배선판 | |
WO2024154715A1 (ja) | 樹脂組成物、プリプレグ、樹脂シート、積層板、金属箔張積層板、及びプリント配線板 | |
KR20240040058A (ko) | 수지 조성물, 수지 시트, 프리프레그, 금속박 피복 적층판 및 프린트 배선판 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23774718 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024510076 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18846740 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202380028913.1 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2401006213 Country of ref document: TH |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 23774718 Country of ref document: EP Kind code of ref document: A1 |