WO2023173889A1 - 一种上转换长余辉化学发光成像纳米探针及其制备方法和应用 - Google Patents

一种上转换长余辉化学发光成像纳米探针及其制备方法和应用 Download PDF

Info

Publication number
WO2023173889A1
WO2023173889A1 PCT/CN2022/142582 CN2022142582W WO2023173889A1 WO 2023173889 A1 WO2023173889 A1 WO 2023173889A1 CN 2022142582 W CN2022142582 W CN 2022142582W WO 2023173889 A1 WO2023173889 A1 WO 2023173889A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoprobe
compound
polyethylene glycol
chemiluminescence imaging
chemiluminescence
Prior art date
Application number
PCT/CN2022/142582
Other languages
English (en)
French (fr)
Inventor
龚萍
马功成
刘中轲
张鹏飞
蔡林涛
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2023173889A1 publication Critical patent/WO2023173889A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D279/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one sulfur atom as the only ring hetero atoms
    • C07D279/101,4-Thiazines; Hydrogenated 1,4-thiazines
    • C07D279/141,4-Thiazines; Hydrogenated 1,4-thiazines condensed with carbocyclic rings or ring systems
    • C07D279/18[b, e]-condensed with two six-membered rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur

Definitions

  • the present application relates to the field of biological imaging technology, and in particular to an upconversion long afterglow chemiluminescence imaging nanoprobe and its preparation method and application.
  • Bio-optical imaging refers to a method that uses optical detection methods combined with optical detection molecules to image cells, tissues or even organisms to obtain biological information. Bio-optical imaging is widely used due to its advantages of mature detection instruments, high sensitivity, high contrast, high resolution, intuitive imaging, fast imaging speed and non-destructive detection. It has important practical significance and application prospects in exploring the pathogenesis, clinical manifestations and genetic lesions of diseases, understanding corresponding physiological and pathological information, disease diagnosis and the development of new medical methods.
  • Up-conversion luminescence refers to a material that is excited by low-energy light and emits high-energy light. That is, when excited by light with a long wavelength and low frequency, the material emits waves. Long and short, high frequency light.
  • Long-afterglow nanomaterials have unique luminescent properties and can continue to emit light after the excitation light is turned off. By collecting the long afterglow luminescence signal after the excitation light is turned off, the interference of the background signal can be effectively eliminated.
  • long-afterglow materials do not require in-situ excitation during imaging, which can reduce tissue autofluorescence and light scattering interference in biological systems and improve the sensitivity of biological imaging and detection. Due to this unique optical property, long-afterglow nanomaterials are widely used in fields such as biosensing/bioimaging and disease treatment.
  • this application proposes an upconversion long afterglow chemiluminescence imaging nanoprobe and its preparation method and application.
  • this application provides a method for preparing an upconversion long persistence chemiluminescence imaging nanoprobe, which includes the following steps:
  • R is selected from oxygen-containing groups
  • the second compound includes a polyethylene glycol derivative
  • R' is selected from oxygen-containing groups.
  • the alkane chain includes a saturated perfluoro chain and its isomers
  • the saturated perfluoro chain and its isomers include C 4 F 8 , C 5 F 11 , C 8 F 17 , C One or more of 9 F 19 , C 10 F 21 , C 11 F 23 , C 12 F 25 , and C 15 F 31 .
  • the polyethylene glycol derivative includes one or more of distearoylphosphatidylethanolamine-polyethylene glycol, polyethylene glycol diacrylate, and polylactic acid-polyethylene glycol.
  • the oxygen-containing group includes one or more of -OH, -SO 3 , -NO 2 and -COOH.
  • the mass ratio of the first compound to SA is (7:3) to (3:7).
  • the mass ratio of the organic solvent to the first compound is (1000-30000):1.
  • the mass ratio of the second compound to the first compound is (10-100):1.
  • the filtration uses a 220nm filter membrane.
  • the reaction solution also includes cell-penetrating peptide.
  • the distearoylphosphatidylethanolamine-polyethylene glycol includes one of distearoylphosphatidylethanolamine-polyethylene glycol 2000, distearoylphosphatidylethanolamine-polyethylene glycol 6000 or Various.
  • the polylactic acid-polyethylene glycol includes polylactic acid-polyethylene glycol 2000.
  • the mixing method is: shaking several times and shaking.
  • the present application also provides an upconversion long afterglow chemiluminescence imaging nanoprobe, wherein the upconversion long afterglow chemiluminescence imaging nanoprobe is prepared by the above preparation method.
  • the upconversion long persistence chemiluminescence imaging nanoprobe includes a first compound, a second compound and SA, and the second compound encapsulates SA and the first compound.
  • the mass ratio of the second compound to the first compound is (10-100):1.
  • the mass ratio of the first compound to SA is (7:3) to (3:7).
  • the present application also provides an application of the upconversion long persistence chemiluminescence imaging nanoprobe in the field of biological imaging.
  • nanoprobes At present, many long-afterglow nanoprobes also need to be doped with rare earth elements such as lanthanum. As mentioned above, rare earths are very rare resources.
  • the nanoprobe of this application utilizes a special chemical structure to store and release light energy without the need for rare earth elements.
  • Figure 1 is a flow chart of the preparation method of the upconversion long persistence chemiluminescence imaging nanoprobe of the present application
  • Figure 2 shows the UV absorption spectra of NMBF, SA and nanoprobes
  • Figure 3 is a particle size diagram of the nanoprobe of the present application.
  • Figure 4 shows the ROS release test of the nanoprobe of this application
  • Figure 5 shows the in vitro chemiluminescence time test of the nanoprobe of this application
  • Figure 6 is the cell phagocyte imaging of the nanoprobe of the present application.
  • Figure 7 shows the chemiluminescence results of the nanoprobe of the present application in animals
  • Figure 8 shows the in vivo chemiluminescence lifetime of the nanoprobe of the present application.
  • a and/or B can mean: A exists alone, A and B exist simultaneously, and B exists alone. Condition. Where A and B can be singular or plural.
  • the character "/" generally indicates that the related objects are in an "or" relationship.
  • pluriality means two or more.
  • “One or more”, “at least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • “at least one of a, b, or c”, or “at least one of a, b, and c” can mean: a, b, c, a-b ( That is, a and b), a-c, b-c, or a-b-c, where a, b, and c can be single or multiple respectively.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution. Some or all steps can be executed in parallel or one after another. The execution order of each process should be based on its function and order. The internal logic is determined and should not constitute any limitation on the implementation process of the embodiments of the present application.
  • first and second are only used for descriptive purposes to distinguish objects such as substances from each other, and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features.
  • first XX may also be called the second XX
  • second XX may also be called the first XX. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • the upconversion long persistence chemiluminescence of the present application can be obtained by wrapping the first compound (such as the photosensitizer NMBF in the following examples) and the ROS response molecule SA molecules in a certain proportion with the second compound (such as DSPE-PEG2000).
  • the imaging nanoprobe can accept 660nm laser and release ROS.
  • the propagation distance of ROS is limited, so the second compound is used to wrap SA and the first compound together, and SA can react with ROS to continuously emit chemiluminescence.
  • This application provides a method for preparing an upconversion long persistence chemiluminescence imaging nanoprobe, which includes the following steps:
  • Step S11 Weigh the first compound and SA, dissolve them with an organic solvent, then add the second compound, then add pure water, and mix to obtain a reaction solution;
  • Step S12 Pour an inert gas into the reaction solution until all the organic solvent evaporates to remove the organic solvent and obtain the remaining liquid, which is filtered to obtain the upconversion long-persistence chemiluminescence imaging nanoprobe uniformly dispersed in water.
  • the mass ratio of the first compound to SA is (7:3) to (3:7).
  • the mass ratio of the organic solvent to the first compound is (1000-30000):1.
  • the mass ratio of the second compound to the first compound is (10-100):1.
  • cell-penetrating peptides can also be added to the reaction solution.
  • R is selected from an alkane chain.
  • the alkane chain includes a saturated perfluoro chain and isomers thereof.
  • the saturated perfluoro chain and its isomers include C 4 F 8 , C 5 F 11 , C 8 F 17 , C 9 F 19 , C 10 F 21 , C 11 F 23 , C 12 F 25 , C 15 F 31 one or more.
  • the second compound includes a polyethylene glycol derivative, and the polyethylene glycol derivative includes distearoylphosphatidylethanolamine-polyethylene glycol, polyethylene glycol diacrylate, polylactic acid-polyethylene glycol one or more of them.
  • the distearoylphosphatidylethanolamine-polyethylene glycol includes DSPE-PEG2000 (distearoylphosphatidylethanolamine-polyethylene glycol 2000), DSPE-PEG6000 (distearoylphosphatidylethanolamine-polyethylene glycol 2000) One or more of ethanolamine-polyethylene glycol 6000).
  • the polylactic acid-polyethylene glycol includes PLA-PEG2000 (polylactic acid-polyethylene glycol 2000).
  • DSPE-PEG2000 Polyethylene glycol diacrylate, DSPE-PEG6000, and PLA-PEG2000 all have similar physical and chemical properties. Therefore, those skilled in the art can know that polyethylene glycol diacrylate, DSPE- Both PEG6000 and PLA-PEG2000 can realize the technical solution of this application.
  • R' is selected from oxygen-containing groups.
  • the oxygen-containing group includes one or more of -OH, -SO 3 , -NO 2 , and -COOH.
  • -OH is used as an example, but SA molecules with other oxygen-containing groups can be synthesized using the preparation method of the present application to synthesize the chemiluminescence imaging nanoprobe.
  • the mixing method includes: gently shaking several times and shaking.
  • the inert gas is nitrogen, argon, carbon dioxide, etc.
  • nitrogen is used as an example.
  • Inert gases play a protective role in the reaction, so any inert gas with protective effects can achieve the technical effects of the present application.
  • the filtration method includes: filtering the remaining liquid using a 220 nm filter membrane.
  • the preparation method of the upconversion long persistence chemiluminescence imaging nanoprobe described in this application utilizes two different small molecule substances to achieve upconversion without the need for scarce rare earth resources.
  • many current long-afterglow nanoprobes also need to be doped with rare earth elements such as lanthanum.
  • rare earths are very rare resources.
  • the nanoprobe of this application uses a special chemical structure to achieve the storage and release of light energy. No rare earth elements required.
  • the existing long afterglow materials have a short luminescence time, generally only a few hours, while the long afterglow particles of the present application can continue to emit light for more than 10 days in vitro, and chemiluminescence can still be detected after two days in vivo.
  • the embodiments of the present application also provide an up-conversion long-persistence chemiluminescence imaging nanoprobe prepared by the above preparation method of the up-conversion long-persistence chemiluminescence imaging nanoprobe.
  • the upconversion long persistence chemiluminescence imaging nanoprobe includes a first compound, a second compound and SA, and the second compound encapsulates SA and the first compound.
  • the first compound, the second compound and SA are as described above.
  • the mass ratio of the second compound to the first compound is (10-100):1.
  • the mass ratio of the first compound to SA is (7:3) to (3:7).
  • Embodiments of the present application also relate to the application of the upconversion long persistence chemiluminescence imaging nanoprobe in the field of biological imaging.
  • the specific preparation method is as follows:
  • perfluoroalkyl iodide used in this embodiment is perfluorodecane iodide, and its chemical structural formula is as follows:
  • the reaction temperature may be 50-80°C.
  • the reaction temperature should be greater than 75°C, and as n increases, the reaction temperature should gradually increase.
  • NMBF prepared product photosensitizer
  • NMBF and 1-1.5 mg of SA prepared in Example 1 dissolve them with 1-1.5 mL of chloroform, then add 5-6 mg of DSPE-PEG2000, then add 5-6 mL of pure water, and shake slightly for 4- 5 times, use an ultrasonic machine to oscillate for 1 minute. Then insert the needle into the solution and vent nitrogen for 10-15 minutes until all chloroform evaporates. Filter the remaining liquid through a 220nm filter membrane to obtain NMBF@SA nanoprobes evenly dispersed in water.
  • Figure 2 shows the UV absorption spectra of NMBF, SA and nanoprobes, indicating their luminescent properties.
  • Example 4 Particle size detection of the nanoprobe of the present application
  • step (3) Repeat step (3) 3 times for a total of 5 UV curves.
  • step (2) Reconfigure the solution according to step (2), and add NMBF dissolved in DMSO to a final concentration of 100-200mM/L. Keep the final concentration of DPBF consistent, and put it into a 1mL cuvette to measure the UV curve.
  • Example 7 Cell phagocytosis to achieve cell imaging
  • the nanoprobe manufacturing process of the present application has been experimentally proven to be feasible, forming a nanoprobe with a size of about 150nm.
  • the nanoprobe can indeed release ROS using DPBF detection, and the nanoprobe can continuously emit light for more than 10 days in vitro detection. , it can continuously emit light for more than 2 days in vivo detection, and can also be engulfed by cells to achieve cell imaging.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Epidemiology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本申请公开了一种上转换长余辉化学发光成像纳米探针及其制备方法和应用,所述荧光探针无需使用稀土元素,可以接收660nm激光、发射出570nm的化学发光,在激光停止照射后仍可持续发光,持续十天后依旧能发出可以被观测到的化学发光,在生物成像领域有重要意义。

Description

一种上转换长余辉化学发光成像纳米探针及其制备方法和应用
本申请要求于2022年03月16日在中国专利局提交的、申请号为202210258562.0、申请名称为“一种上转换长余辉化学发光成像纳米探针及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及生物成像技术领域,特别涉及一种上转换长余辉化学发光成像纳米探针及其制备方法和应用。
背景技术
生物光学成像(Optical Imaging)是指利用光学的探测手段结合光学探测分子对细胞或者组织甚至生物体进行成像,来获得其中的生物学信息的方法。生物光学成像由于其检测仪器发展成熟、灵敏度高、对比度高、分辨率高、成像直观、成像速度快和无损探测等优点被广泛应用。其在探寻疾病的发病机理、临床表现、基因病变,了解相应的生理学和病理学信息,疾病诊断和新的医疗手段的开发等方面具有重要的实践意义和应用前景。
上转换发光即反-斯托克斯发光(Anti-Stokes),指的是材料受到低能量的光激发,发射出高能量的光,即经波长长、频率低的光激发,材料发射出波长短、频率高的光。
长余辉纳米材料具有独特的发光性质,能在激发光关闭后持续发光。通过收集激发光关闭后的长余辉发光信号可以有效消除背景信号的干扰。此外,长余辉材料在成像时无需原位激发,可以减少生物体系的组织自发荧光和光散射干扰,提高生物成像和检测的灵敏度。由于这种独特的光学特性,长余辉纳米材料在生物传感/生物成像以及疾病治疗等领域被广泛应用。
技术问题
目前上转换纳米探针几乎都需要掺杂稀土元素,现有的长余辉纳米探针很多也都需要掺杂镧等稀土元素,稀土是非常稀有的资源,因此成本高。且现有的长余辉材料发光时间短,一般只有几个小时。因此目前亟需一种成本低、发光时间长的上转换长余辉化学发光成像纳米探针。
技术解决方案
针对现有技术中的缺陷,本申请提出了一种上转换长余辉化学发光成像纳米探针及其制备 方法和应用。
第一方面,本申请提供一种上转换长余辉化学发光成像纳米探针的制备方法,其中,包括如下步骤:
称取第一化合物和SA,用有机溶剂溶解,随后加入第二化合物,再加入水,混合,得到反应液;
向所述反应液中通惰性气体,使所述有机溶剂挥发,得到剩余液体,过滤,得到上转换长余辉化学发光成像纳米探针;
其中,所述第一化合物的结构式如式(I)所示:
Figure PCTCN2022142582-appb-000001
其中,R选自含氧基团;
所述第二化合物包括聚乙二醇衍生物;
所述SA的结构式如式(II)所示:
Figure PCTCN2022142582-appb-000002
其中,R’选自含氧基团。
优选的,所述烷烃链包括饱和全氟链及其同分异构体,所述饱和全氟链及其同分异构体包括C 4F 8、C 5F 11、C 8F 17、C 9F 19、C 10F 21、C 11F 23、C 12F 25、C 15F 31中的一种或多种。
优选的,所述聚乙二醇衍生物包括二硬脂酰基磷脂酰乙醇胺-聚乙二醇、聚乙二醇二丙烯酸酯、聚乳酸-聚乙二醇中的一种或多种。
优选的,其中,所述含氧基团包括-OH、-SO 3、-NO 2、-COOH中的一种或多种。
优选的,所述第一化合物与SA的质量比为(7:3)~(3:7)。
优选的,所述有机溶剂与所述第一化合物的质量比为(1000~30000):1。
优选的,所述第二化合物与所述第一化合物的质量比为(10~100):1。
优选的,所述过滤采用220nm滤膜。
优选的,所述反应液中还包括细胞穿膜肽。
优选的,所述二硬脂酰基磷脂酰乙醇胺-聚乙二醇包括二硬脂酰基磷脂酰乙醇胺-聚乙二醇2000、二硬脂酰基磷脂酰乙醇胺-聚乙二醇6000中的一种或多种。
优选的,所述聚乳酸-聚乙二醇包括聚乳酸-聚乙二醇2000。
优选的,所述混合的方法为:摇晃数次,振荡。
第二方面,本申请还提供一种上转换长余辉化学发光成像纳米探针,其中,所述上转换长余辉化学发光成像纳米探针由上述制备方法制备得到。
优选的,所述上转换长余辉化学发光成像纳米探针包括第一化合物、第二化合物和SA,所述第二化合物将SA和所述第一化合物包裹。
优选的,所述上转换长余辉化学发光成像纳米探针中,所述第二化合物与所述第一化合物的质量比为(10~100):1。
优选的,所述上转换长余辉化学发光成像纳米探针中,所述第一化合物与SA的质量比为(7:3)~(3:7)。
第三方面,本申请还提供一种所述上转换长余辉化学发光成像纳米探针在生物成像领域的应用。
综上,与现有技术相比,本申请达到了以下技术效果:
(1)目前上转换纳米探针几乎都需要掺杂稀土元素,而稀土是非常稀有的资源。本申请的纳米探针利用两种不同的小分子物质便实现了上转换,无需稀缺的稀土资源。
(2)目前长余辉纳米探针很多也都需要掺杂镧等稀土元素,如上所说,稀土是非常稀有的资源。本申请的纳米探针利用特殊的化学结构实现光能的储存和释放,无需稀土元素。
(3)现有的长余辉材料发光时间短,一般只有几个小时。本申请的长余辉颗粒在体外可以持续发光10天以上,在体内经过两天依旧能检测到化学发光。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得 其他相关的附图。
图1为本申请的上转换长余辉化学发光成像纳米探针的制备方法流程图;
图2为NMBF、SA和纳米探针的紫外吸收图谱;
图3为本申请的纳米探针粒径图;
图4为本申请的纳米探针ROS释放测试;
图5为本申请的纳米探针体外化学发光时间测试;
图6为本申请的纳米探针的细胞吞噬细胞成像;
图7为本申请的纳米探针的动物体内化学发光结果;
图8为本申请的纳米探针的体内化学发光寿命。
本申请的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其它实施例,都属于本申请保护的范围。此外,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。
本申请中,术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
在本申请中“多个”是指两个或两个以上。“一种或多种”、“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,“a,b,或c中的至少一项(个)”,或,“a,b,和c中的至少一项(个)”,均可以表示:a,b,c,a-b(即a和b),a-c,b-c,或a-b-c,其中a,b,c分别可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,部分或全部步骤可以并行执行或先后执行,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
术语“第一”、“第二”仅用于描述目的,用来将目的如物质彼此区分开,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。例如,在不脱离本申请实施例范围的情况下,第一XX也可以被称为第二XX,类似地,第二XX也可以被称为第一XX。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
本申请的各种实施例可以以一个范围的形式存在;应当理解,以一范围形式的描述仅仅是因为方便及简洁,不应理解为对本申请范围的硬性限制;因此,应当认为所述的范围描述已经具体公开所有可能的子范围以及该范围内的单一数值。例如,应当认为从1到6的范围描述已经具体公开子范围,例如从1到3,从1到4,从1到5,从2到4,从2到6,从3到6等,以及所述范围内的单一数字,例如1、2、3、4、5及6,此不管范围为何皆适用。另外,每当在本文中指出数值范围,是指包括所指范围内的任何引用的数字(分数或整数)。
将第一化合物(如下述实施例中的光敏剂NMBF)与ROS响应分子SA分子按一定比例用第二化合物(如DSPE-PEG2000)包裹在一起,便可得到本申请的上转换长余辉化学发光成像纳米探针,它可以接受660nm激光,释放出ROS,ROS传播距离有限,所以利用第二化合物将SA与第一化合物包裹在一起,SA便可与ROS反应持续发出化学发光。
请参阅图1,本申请提供一种上转换长余辉化学发光成像纳米探针的制备方法,包括如下步骤:
步骤S11:称取第一化合物和SA,用有机溶剂溶解,随后加入第二化合物,再加入纯水,混合,得到反应液;
步骤S12:向所述反应液通入惰性气体直至有机溶剂全部挥发,以去除所述有机溶剂,得到剩余液体,过滤,得到在水中均匀分散的所述上转换长余辉化学发光成像纳米探针。
所述步骤S11中:
第一化合物与SA的质量比为(7:3)~(3:7)。
所述有机溶剂与所述第一化合物的质量比为(1000~30000):1。
所述第二化合物与所述第一化合物的质量比为(10~100):1。
在一些实施例中,所述反应液中还可加入细胞穿膜肽。
所述第一化合物的结构式如式(I)所示:
Figure PCTCN2022142582-appb-000003
其中,R选自烷烃链。
在一些实施例中,所述烷烃链包括饱和全氟链及其同分异构体。进一步的,所述饱和全氟链及其同分异构体包括C 4F 8、C 5F 11、C 8F 17、C 9F 19、C 10F 21、C 11F 23、C 12F 25、C 15F 31中的一种或多种。
所述第二化合物包括聚乙二醇衍生物,所述聚乙二醇衍生物包括二硬脂酰基磷脂酰乙醇胺-聚乙二醇、聚乙二醇二丙烯酸酯、聚乳酸-聚乙二醇中的一种或多种。
在一些实施例中,所述二硬脂酰基磷脂酰乙醇胺-聚乙二醇包括DSPE-PEG2000(二硬脂酰基磷脂酰乙醇胺-聚乙二醇2000)、DSPE-PEG6000(二硬脂酰基磷脂酰乙醇胺-聚乙二醇6000)中的一种或多种。
在一些实施例中,所述聚乳酸-聚乙二醇包括PLA-PEG2000(聚乳酸-聚乙二醇2000)。
以下实施例以DSPE-PEG2000为例,聚乙二醇二丙烯酸酯、DSPE-PEG6000、PLA-PEG2000均具有相似的理化性质,因此本领域技术人员可以知晓采用聚乙二醇二丙烯酸酯、DSPE-PEG6000、PLA-PEG2000均能实现本申请的技术方案。
所述SA的结构式如式(II)所示:
Figure PCTCN2022142582-appb-000004
其中,R’选自含氧基团。
在一些实施例中,所述含氧基团包括-OH、-SO 3、-NO 2、-COOH中的一种或多种。以下实施例中以-OH为例,但是具有其他含氧基团的SA分子均可以利用本申请的制备方法合成所述化学发光成像纳米探针。
在一实施例中,所述混合的方法为:轻微摇晃数次,振荡。
所述步骤S12中:
所述惰性气体为氮气、氩气、二氧化碳等。以下实施例中以氮气为例,惰性气体在反应中起保护作用,所以任何具有保护作用的惰性气体都能实现本申请的技术效果。
在一些实施例中,所述过滤的方法包括:采用220nm滤膜对剩余液体进行过滤。
本申请所述的上转换长余辉化学发光成像纳米探针的制备方法利用两种不同的小分子物质便实现了上转换,无需稀缺的稀土资源。此外,目前长余辉纳米探针很多也都需要掺杂镧等稀土元素,如上所说,稀土是非常稀有的资源,而本申请的纳米探针利用特殊的化学结构实现光能的储存和释放,无需稀土元素。进一步的,现有的长余辉材料发光时间短,一般只有几个小时,而本申请的长余辉颗粒在体外可以持续发光10天以上,在体内经过两天依旧能检测到化学发光。
本申请实施例还提供一种由上述上转换长余辉化学发光成像纳米探针的制备方法制得的上转换长余辉化学发光成像纳米探针。
所述上转换长余辉化学发光成像纳米探针包括第一化合物、第二化合物和SA,所述第二化合物将SA与第一化合物包裹。
所述第一化合物、第二化合物和SA参上文所述。
所述上转换长余辉化学发光成像纳米探针中,所述第二化合物与所述第一化合物的质量比为(10~100):1。
所述上转换长余辉化学发光成像纳米探针中,所述第一化合物与SA的质量比为(7:3)~(3:7)。
本申请实施例还涉及所述上转换长余辉化学发光成像纳米探针在生物成像领域的应用。
下面通过具体实施例来对本申请进行具体说明,以下实施例仅是本申请的部分实施例,不是对本申请的限定。
实施例1 光敏剂NMBF的制备
具体制备方法如下:
(1)将40-70mg新亚甲蓝与80mg全氟烷碘装入50mL圆底烧瓶,随后加入8-10mL DMF,1-2滴三乙胺。在圆底烧瓶口接三通阀,三通阀一端接充满氮气的气球。
新亚甲蓝的结构式为:
Figure PCTCN2022142582-appb-000005
本实施例使用的全氟烷碘是全氟癸烷碘,其化学结构式如下:
Figure PCTCN2022142582-appb-000006
当2<n<5时,反应温度可以为50-80℃。当n>5时,反应温度应大于75℃,且随着n的增加反应温度应该逐渐提高。
(2)在油浴锅加热至80-90℃,500rpm,避光反应24h。
(3)抽滤,除去多余固体。将抽滤得到的溶液旋蒸,旋干后的固体放真空干燥箱干燥24h。
(4)干燥后的固体用水完全溶解,随后用二氯甲烷萃取,并旋蒸旋干。
(5)旋干后的固体用水清洗去除水溶性杂志,收集剩下固体,真空干燥后得到产物。
制备得到的产物光敏剂(NMBF)的结构式如下:
Figure PCTCN2022142582-appb-000007
实施例2 光敏剂NMBF与SA制备NMBF@SA纳米探针
称取1-1.5mg实施例1制备的NMBF与1-1.5mg SA,用1-1.5mL三氯甲烷溶解,随后加入5-6mg DSPE-PEG2000,再加入5-6mL纯水,轻微摇晃4-5次,使用超声机振荡1min。随后将针管插入溶液,通氮气10-15min直至三氯甲烷全部挥发,将剩余液体滤过220nm滤膜便可得到在水中均匀分散的NMBF@SA纳米探针。
实施例3 NMBF、SA和纳米探针的紫外吸收图谱
具体步骤如下:
(1)将NMBF、SA和纳米探针溶于DMSO,浓度为100-200mM/L,加入1mL比色皿。
(2)用紫外光谱仪测试其在200-700nm范围内的紫外吸收曲线。
(3)取NMBF、SA和纳米探针的DMSO溶液,浓度100-1000μg/mL共1mL于1.5mL试管中。
(4)用580nm激光器照射下,用荧光成像相机拍摄的此时NMBF溶液的发光状态。
图2为NMBF、SA和纳米探针的紫外吸收图谱,表明其具有发光性质。
实施例4 本申请的纳米探针的粒径检测
具体步骤如下:
(1)将NMBF@SA水溶液用纯水稀释至30-50ng/mL,取1mL加入比色皿。
(2)用激光粒度仪利用动态光衍射的方法测试溶液中纳米探针从0-10000nm的粒径分布情况。
(3)将粒径分布数据制成柱状图,横坐标为粒径,纵坐标为该粒径探针占总数的百分比,总体平均粒径为139nm。
图3的结果表明本申请的NMBF@SA纳米探针平均粒径为139nm。
实施例5 利用DPBF(1,3-二苯基异苯并呋喃)检测ROS释放
具体步骤如下:
(1)将紫外分光光度计用超纯水校准基线。
(2)将1-2mg DPBF溶于DMSO,随后吸取8-10μL加入1mL超纯水,混匀后加入1mL比色皿,并测试其紫外曲线。
(3)将比色皿取出,用功率5W的660nm激光器照射4-5min,再次测试其紫外曲线。
(4)再重复第(3)步3次,共计5条紫外曲线。
(5)取每条紫外曲线在415nm处的数值,按时间顺序做折线图。
(6)按步骤(2)重新配置溶液,并加入DMSO溶解的NMBF使其终浓度100-200mM/L,并保持DPBF终浓度一致,装入1mL比色皿测紫外曲线。
(7)重复(3)(4)(5)步,比较加入NMBF前后曲线变化。
图4的结果说明NMBF@SA在激光照射下能够释放ROS,是一种优秀的光敏剂。
实施例6 体外化学发光时间测试
具体步骤如下:
(1)将NMBF@SA纳米探针制成5-6mg/mL的水溶液,分装到ep管,每管1-1.2mL,共三管。
(2)用功率为5W的660nm激光器照射ep管2-3min。
(3)用小动物成像仪ivis对ep管的化学发光进行检测,并记录数值。
(4)按10min,30min,1h,2h,4h,6h,8h,10h,12h,1d,2d,4d,6d,8d,10d的时间间隔对ep管检测化学发光,除检测时间外ep管放在黑暗条件下。
(5)将发光强度数值按照时间顺序做图。
结果如图5所示,用660nm激光激发,接收570nm的光信号,结果表明本申请的纳米探针体外发光可持续10天以上。
实施例7 细胞吞噬实现细胞成像
(1)25mL培养瓶培养巨噬细胞RAW246.3,并传代至8孔共聚焦培养板。
(2)将NMBF@SA溶于纯水,浓度1-2mg/mL。
(3)待共聚焦培养板中细胞数量长到300w时,将(2)中溶液用功率为5W的660nm激光器照射2-3min。再按体积比1:100加入共聚焦培养板,使其在培养基中浓度为10-20μg/mL,共同孵育20-30min。
(4)将巨噬细胞消化并收集至ep管。
(5)用小动物成像仪ivis对ep管的化学发光进行检测,并观察发光情况。
结果如图6所示,蓝色为细胞核染料荧光,红色为纳米探针的荧光,图中以灰度表示,证明纳米探针可以进入细胞。
为了验证本申请的纳米探针是否可以在体内发光,将RAW246.3细胞用纳米探针孵育后,注射进小鼠肌肉组织后,进行化学发光观察,结果如图7所示,图7为细胞孵育后纳米探针在小鼠体内的化学发光成像,图8为发光寿命的结果,证明了本申请的纳米探针的长余辉效应,激光照射后可以持续发光,上述结果说明本申请的荧光探针可以实现生物体内的发光检测。
综合以上实施例,本申请的纳米探针制作过程经实验证明可行,形成了约150nm大小的纳米探针,利用DPBF检测纳米探针确实可以释放ROS,纳米探针体外检测可持续发光10天以上,体内检测可以持续发光2天以上,也可以被细胞吞噬实现细胞成像。
以上对本申请实施例所提供的复合材料及其制备方法、发光二极管进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (16)

  1. 一种上转换长余辉化学发光成像纳米探针的制备方法,其中,包括如下步骤:
    称取第一化合物和SA,用有机溶剂溶解,随后加入第二化合物,再加入水,混合,得到反应液;
    向所述反应液中通惰性气体,使所述有机溶剂挥发,得到剩余液体,过滤,得到上转换长余辉化学发光成像纳米探针;
    其中,所述第一化合物的结构式如式(I)所示:
    Figure PCTCN2022142582-appb-100001
    其中,R选自烷烃链;
    所述第二化合物包括聚乙二醇衍生物;
    所述SA的结构式如式(II)所示:
    Figure PCTCN2022142582-appb-100002
    其中,R’选自含氧基团。
  2. 根据权利要求1所述的纳米探针的制备方法,其中,
    所述烷烃链包括饱和全氟链及其同分异构体,所述饱和全氟链及其同分异构体包括C 4F 8、C 5F 11、C 8F 17、C 9F 19、C 10F 21、C 11F 23、C 12F 25、C 15F 31中的一种或多种;和/或
    所述聚乙二醇衍生物包括二硬脂酰基磷脂酰乙醇胺-聚乙二醇、聚乙二醇二丙烯酸酯、聚乳酸-聚乙二醇中的一种或多种。
  3. 根据权利要求1所述的纳米探针的制备方法,其中,所述含氧基团包括-OH、-SO 3、-NO 2、-COOH中的一种或多种。
  4. 根据权利要求1所述的纳米探针的制备方法,其中,所述第一化合物与SA的质量比为 (7:3)~(3:7)。
  5. 根据权利要求1所述的纳米探针的制备方法,其中,所述有机溶剂与所述第一化合物的质量比为(1000~30000):1。
  6. 根据权利要求1所述的纳米探针的制备方法,其中,所述第二化合物与所述第一化合物的质量比为(10~100):1。
  7. 根据权利要求1所述的纳米探针的制备方法,其中,所述过滤采用220nm滤膜。
  8. 根据权利要求1所述的纳米探针的制备方法,其中,所述反应液中还包括细胞穿膜肽。
  9. 根据权利要求1所述的纳米探针的制备方法,其中,所述二硬脂酰基磷脂酰乙醇胺-聚乙二醇包括二硬脂酰基磷脂酰乙醇胺-聚乙二醇2000、二硬脂酰基磷脂酰乙醇胺-聚乙二醇6000中的一种或多种。
  10. 根据权利要求1所述的纳米探针的制备方法,其中,所述聚乳酸-聚乙二醇包括聚乳酸-聚乙二醇2000。
  11. 根据权利要求1所述的纳米探针的制备方法,其中,所述混合的方法为:摇晃数次,振荡。
  12. 一种上转换长余辉化学发光成像纳米探针,其中,所述上转换长余辉化学发光成像纳米探针由权利要求1~11任一项权利要求所述的制备方法制备得到。
  13. 根据权利要求12所述的上转换长余辉化学发光成像纳米探针,其中,所述上转换长余辉化学发光成像纳米探针包括第一化合物、第二化合物和SA,所述第二化合物将SA和所述第一化合物包裹。
  14. 根据权利要求13所述的上转换长余辉化学发光成像纳米探针,其中,所述上转换长余辉化学发光成像纳米探针中,所述第二化合物与所述第一化合物的质量比为(10~100):1。
  15. 根据权利要求13所述的上转换长余辉化学发光成像纳米探针,其中,所述上转换长余辉化学发光成像纳米探针中,所述第一化合物与SA的质量比为(7:3)~(3:7)。
  16. 权利要求12~15任意一项权利要求所述的上转换长余辉化学发光成像纳米探针在生物成像领域的应用。
PCT/CN2022/142582 2022-03-16 2022-12-28 一种上转换长余辉化学发光成像纳米探针及其制备方法和应用 WO2023173889A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210258562.0 2022-03-16
CN202210258562.0A CN114656424B (zh) 2022-03-16 2022-03-16 一种上转换长余辉化学发光成像纳米探针及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023173889A1 true WO2023173889A1 (zh) 2023-09-21

Family

ID=82029556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142582 WO2023173889A1 (zh) 2022-03-16 2022-12-28 一种上转换长余辉化学发光成像纳米探针及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN114656424B (zh)
WO (1) WO2023173889A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114656424B (zh) * 2022-03-16 2023-06-27 深圳先进技术研究院 一种上转换长余辉化学发光成像纳米探针及其制备方法和应用
CN114806211B (zh) * 2022-03-16 2023-04-07 深圳先进技术研究院 一种疏水性亚甲蓝荧光染料及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106883163A (zh) * 2017-02-23 2017-06-23 南京邮电大学 一种具有长余辉效应的有机化合物及其制备方法和应用
CN109517596A (zh) * 2018-10-11 2019-03-26 中国科学技术大学 一种颜色可调的长时间发光水凝胶组合物及其制备方法
CN110272378A (zh) * 2019-07-09 2019-09-24 南京工业大学 一种有机长余辉化合物及其制备方法和应用
CN111234809A (zh) * 2020-03-17 2020-06-05 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) 一种水溶性有机长余辉纳米水溶液的普适性制备方法
WO2020199191A1 (zh) * 2019-04-04 2020-10-08 复旦大学 长余辉发光材料
CN112358460A (zh) * 2020-11-20 2021-02-12 广东电网有限责任公司电力科学研究院 一种长余辉蓄光型有机发光材料及其制备方法
CN112469705A (zh) * 2018-05-25 2021-03-09 尼米斯技术公司 长波长发射化学发光探针
CN114656424A (zh) * 2022-03-16 2022-06-24 深圳先进技术研究院 一种上转换长余辉化学发光成像纳米探针及其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2057136T3 (da) * 2006-07-11 2013-08-26 Wista Lab Ltd Fremgangsmåde til syntese og/eller oprensning af diaminophenothiazinium forbindelser
CN102552939B (zh) * 2012-02-16 2013-04-10 刘�东 一种包裹亚甲蓝的靶向plga荧光探针及其制备方法
US10189862B2 (en) * 2016-06-14 2019-01-29 The Chinese University Of Hong Kong Phenothiazine-pyridine compounds and uses thereof
CN110856747A (zh) * 2018-08-17 2020-03-03 华南师范大学 一种过氧化氢激活的光敏剂及其制备方法与应用
CN113264904A (zh) * 2021-04-09 2021-08-17 上海大学 检测HOCl/ClO-的荧光探针、其制备方法及其应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106883163A (zh) * 2017-02-23 2017-06-23 南京邮电大学 一种具有长余辉效应的有机化合物及其制备方法和应用
CN112469705A (zh) * 2018-05-25 2021-03-09 尼米斯技术公司 长波长发射化学发光探针
CN109517596A (zh) * 2018-10-11 2019-03-26 中国科学技术大学 一种颜色可调的长时间发光水凝胶组合物及其制备方法
WO2020199191A1 (zh) * 2019-04-04 2020-10-08 复旦大学 长余辉发光材料
CN110272378A (zh) * 2019-07-09 2019-09-24 南京工业大学 一种有机长余辉化合物及其制备方法和应用
CN111234809A (zh) * 2020-03-17 2020-06-05 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) 一种水溶性有机长余辉纳米水溶液的普适性制备方法
CN112358460A (zh) * 2020-11-20 2021-02-12 广东电网有限责任公司电力科学研究院 一种长余辉蓄光型有机发光材料及其制备方法
CN114656424A (zh) * 2022-03-16 2022-06-24 深圳先进技术研究院 一种上转换长余辉化学发光成像纳米探针及其制备方法和应用

Also Published As

Publication number Publication date
CN114656424A (zh) 2022-06-24
CN114656424B (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
WO2023173889A1 (zh) 一种上转换长余辉化学发光成像纳米探针及其制备方法和应用
Yao et al. Upconversion luminescence nanomaterials: A versatile platform for imaging, sensing, and therapy
Geng et al. Silica shelled and block copolymer encapsulated red-emissive AIE nanoparticles with 50% quantum yield for two-photon excited vascular imaging
CN107916105B (zh) 一种用于检测细胞内pH的红色荧光碳量子点及其制备方法
CN107118765B (zh) 一种核仁靶向荧光碳点及其制备方法与应用
CN106085416A (zh) 一种聚集诱导发光纳米粒子及其制备方法和应用
CN106084873B (zh) 一种高效近红外荧光材料及其生物应用
Ke et al. Multiplexed intracellular detection based on dual-excitation/dual-emission upconversion nanoprobes
Liu et al. Autofluorescent micelles self-assembled from an AIE-active luminogen containing an intrinsic unconventional fluorophore
Lu et al. Pluronic F127–folic acid encapsulated nanoparticles with aggregation-induced emission characteristics for targeted cellular imaging
Wei et al. A single component self-assembled thermally activated delayed fluorescence nanoprobe
CN103865537A (zh) 一种稀土上转换纳米荧光探针及其制备和应用
CN106478458B (zh) 基于四苯基乙烯和马来腈的希夫碱化合物及其制备方法和应用
Xu et al. Novel material from natural resource, Agarose with clustering-triggered emission and its diverse applications
CN110591695B (zh) 基于fret机理的荧光碳点核酸探针及其制备方法
CN107739394B (zh) 一种用于铜离子荧光检测的超分子自组装体及其制备方法与应用
CN104830318B (zh) 一种高聚集态荧光发射的荧光标记分子及其制备方法
Song et al. pH-responsive copper-cluster-based dual-emission ratiometric fluorescent probe for imaging of bacterial metabolism
Wang et al. Fluorescein isothiocyanate-doped conjugated polymer nanoparticles for two-photon ratiometric fluorescent imaging of intracellular pH fluctuations
CN102925155A (zh) 一种稀土离子纳米碱金属稀土氟化物的近红外荧光探针基质材料及其制备方法
Zhou et al. Ultrabright AIEdots with tunable narrow emission for multiplexed fluorescence imaging
CN110117492A (zh) 一种荧光碳点及其制备方法与应用
CN103301460B (zh) 一种四氧化三铁负载的复合微粒及其应用
CN109265669B (zh) 一种双发射荧光纳米粒的制备方法
Xu et al. Lipid droplet formation and dynamics: tracking by time-resolved fluorescence imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931894

Country of ref document: EP

Kind code of ref document: A1