WO2023173815A1 - 燃料电池系统故障处理方法及装置 - Google Patents

燃料电池系统故障处理方法及装置 Download PDF

Info

Publication number
WO2023173815A1
WO2023173815A1 PCT/CN2022/136388 CN2022136388W WO2023173815A1 WO 2023173815 A1 WO2023173815 A1 WO 2023173815A1 CN 2022136388 W CN2022136388 W CN 2022136388W WO 2023173815 A1 WO2023173815 A1 WO 2023173815A1
Authority
WO
WIPO (PCT)
Prior art keywords
fault
cause
fuel cell
cell system
vehicle
Prior art date
Application number
PCT/CN2022/136388
Other languages
English (en)
French (fr)
Inventor
梁兆文
王超
魏长河
王慧
罗宝媛
孔维峰
张秀宾
周恩飞
王枫
曲迪
张文辉
黄金金
Original Assignee
北汽福田汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北汽福田汽车股份有限公司 filed Critical 北汽福田汽车股份有限公司
Publication of WO2023173815A1 publication Critical patent/WO2023173815A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence

Definitions

  • the present disclosure relates to the field of new energy vehicles, and specifically, to a fuel cell system fault handling method and device.
  • fuel cell vehicles as a type of new energy vehicles, are gradually entering people's lives.
  • each key component may be damaged for some reason, causing the fuel cell system to fail to operate normally and causing vehicle performance to decline.
  • the fuel cell system is automatically controlled to shut down.
  • the purpose of this disclosure is to provide a fuel cell system fault handling method and device to improve the stability of the fuel cell system during use and the safety of vehicle driving.
  • the present disclosure provides a fuel cell system fault handling method, which includes: obtaining the operating parameters of the fuel cell system and the current driving state of the vehicle; if the fuel cell system fails, based on the operating parameters , the fault and the predetermined fuzzy control rules, determine the cause of the fault; according to the cause of the fault and the current driving state, determine whether the fault is a delayable processing fault; if it is determined that the fault is the If the fault can be deferred, the fault will be deferred.
  • determining the cause of the fault based on the operating parameters, the fault and a predetermined fuzzy control rule includes: finding in the predetermined fuzzy rules corresponding to the operating parameters and the fault.
  • judging whether the fault is a delayable fault according to the cause of the fault and the current driving state includes: finding the cause of the fault, the fault and the fault in a predetermined correspondence relationship.
  • the judgment result corresponding to the current driving state is used as the judgment result of whether the fault is a fault that can be delayed, wherein the predetermined correspondence includes the correspondence between the driving status of the vehicle, the cause of the fault and the judgment result.
  • the judgment result corresponding to the driving state of the vehicle being parked and the fault cause being high-voltage power-on timeout is that the fault is a delayable processing fault; and the driving state of the vehicle being If the state is starting and the cause of the fault is controller overcurrent, the judgment result is that the fault is a delayable processing fault; if the driving state of the vehicle is low speed and the cause of the fault is abnormal air compressor speed, the judgment result is The fault is a deferrable processing fault; the judgment result corresponding to if the driving state of the vehicle is high-speed driving and the fault cause is a radiator communication failure is that the fault is a deferrable processing fault.
  • the delayed processing of the fault includes:
  • the shutdown of the fuel cell system is suspended until a predetermined period of time is reached.
  • the method before determining whether the fault is a delayable fault based on the cause of the fault and the current driving state, the method further includes: determining whether the cause of the fault is a transient fault; Eliminate the transient fault that is the cause of the fault.
  • the cause of the failure is determined based on the operating parameters, the failure and a predetermined fuzzy control rule, including: if the fuel cell system fails In case of stack over-temperature failure, obtain the rotation speed of the water pump of the fuel cell system, the rotation speed of the fan of the fuel cell system, and the coolant level of the fuel cell system; if the rotation speed of the water pump is higher than the preset third A rotational speed threshold, the rotational speed of the fan is higher than the preset second rotational speed threshold, and the coolant level is lower than the preset liquid level threshold, it is determined that the cause of the failure is low coolant level; if the The rotation speed of the water pump is higher than the first rotation speed threshold, the rotation speed of the fan is lower than the second rotation speed threshold, and the coolant level is higher than the liquid level threshold.
  • the cause of the fault is low fan rotation speed. ; If the rotation speed of the water pump is lower than the first rotation speed threshold, the rotation speed of the fan is higher than the second rotation speed threshold, and the coolant level is higher than the liquid level threshold, determine the cause of the fault Because the water pump speed is low.
  • judging whether the fault is a deferrable processing fault according to the cause of the fault and the current driving state includes: if the cause of the fault is that the coolant level is low, the current driving state If the status is starting, then it is judged that the fault is not a fault that can be delayed; if the cause of the fault is that the fan speed is low and the current driving status is starting, then it is judged that the fault is not a fault that can be delayed; if If the cause of the fault is that the water pump speed is low and the current driving state is loading, then the fault is determined to be a delayable processing fault.
  • the method before determining whether the fault is a delayable fault based on the cause of the fault and the current driving state, the method further includes: uploading the cause of the fault and the fault to Server; receiving a matching degree between the fault and the cause of the fault returned by the server.
  • Determining whether the fault is a delayable processing fault according to the cause of the fault and the current driving state includes: if the matching degree is greater than a predetermined matching degree threshold, judging whether the fault is a delayable processing fault according to the cause of the fault and the current driving state.
  • Driving status determine whether the fault is a fault that can be delayed.
  • the present disclosure also provides a fuel cell system fault handling device, including:
  • An acquisition module used to acquire the operating parameters of the fuel cell system and the current driving status of the vehicle
  • a determination module configured to determine the cause of the failure based on the operating parameters, the failure and predetermined fuzzy control rules if a failure occurs in the fuel cell system;
  • a first judgment module configured to judge whether the fault is a delayable fault according to the cause of the fault and the current driving state
  • a processing module configured to perform delayed processing on the fault if it is determined that the fault is the deferrable processing fault.
  • predetermined fuzzy control rules can be used to determine the cause of the failure. This eliminates the need for staff to restart the vehicle at the maintenance location and detect various operations one by one after the fuel cell system fails. Parameters are used to screen fault causes, saving manpower and achieving better real-time performance. In addition, it is determined whether the fault can be delayed based on the cause of the fault and the current driving status of the vehicle. If the fault can be delayed, the fault will be delayed. In this way, accidents caused by sudden shutdown of the fuel cell system due to malfunction while the vehicle is traveling can be avoided, thereby improving driving safety.
  • Figure 1 is a flow chart of a fuel cell system fault handling method according to an exemplary embodiment of the present disclosure.
  • FIG. 2 is a block diagram of a fuel cell system fault handling device according to an exemplary embodiment of the present disclosure.
  • FIG. 3 is a block diagram of an electronic device according to an exemplary embodiment of the present disclosure.
  • Figure 1 is a flow chart of a fuel cell system fault handling method according to an exemplary embodiment of the present disclosure. As shown in Figure 1, the method includes steps S101 to S103.
  • step S101 the operating parameters of the fuel cell system and the current driving state of the vehicle are obtained.
  • the operating parameters of the fuel cell system refer to the data obtained by each sensor during the operation of the fuel cell system and used to monitor the operating status of the fuel cell, such as the temperature of the fuel cell stack, the output voltage of the fuel cell system, and the output current of the fuel cell system. , water pump speed, etc.
  • the current driving state of the vehicle refers to the current state of the vehicle driving on the road, such as starting state, climbing state, high-speed driving state, etc.
  • the vehicle's driving status can be obtained by analyzing the vehicle's current speed and output power. For example, when traveling at the same driving speed, the output power of a vehicle climbing a hill is higher than that of a vehicle traveling on flat ground; when the vehicle's speed gradually increases from 0, it can be judged that the vehicle is in a starting state.
  • step S102 if a fault occurs in the fuel cell system, the cause of the fault is determined based on the operating parameters, the fault and the predetermined fuzzy control rules.
  • Fuzzy control rules are analysis rules preset by designers based on fault analysis experience. When a fuel cell system fails, there are sometimes multiple possible causes of the failure. For example, when a fuel cell stack temperature is too high, the cause may be a broken water pump, a broken fan, or a broken fan. There is a coolant leak, and we need to further determine which one it is.
  • step S103 it is determined whether the fault is a deferrable fault based on the cause of the fault and the current driving state.
  • Deferrable faults refer to faults that need to be deferred for safety reasons. For example, when the vehicle is climbing, a fuel cell stack over-temperature fault is reported. In step S102, according to the fuzzy control rules, it is analyzed that the cause of the fuel cell stack over-temperature fault is that the water pump speed is too low. When the vehicle is climbing, Under this driving condition, priority should be given to meeting the power requirements of vehicle driving to prevent the vehicle from stopping on a slope and causing safety hazards. In this driving state, the fault is determined to be a deferrable fault.
  • step S104 if it is determined that the fault is a fault capable of delayed processing, delayed processing is performed on the fault.
  • Delayed processing of faults means that when a vehicle fails during driving, in order to meet the needs of vehicle safety, the processing of the fault is postponed. For example, when the vehicle is traveling at a speed of 80 kilometers per hour, the fuel cell system encounters an overtemperature of the battery stack due to the low water pump speed. In step S103, the fault is determined to be a deferrable processing fault. When it drops (for example, to 30 kilometers per hour), the fault will be processed again, that is, the fault will be processed in a delayed manner.
  • predetermined fuzzy control rules can be used to determine the cause of the failure. This eliminates the need for staff to restart the vehicle at the maintenance location and detect various operations one by one after the fuel cell system fails. Parameters are used to screen fault causes, saving manpower and achieving better real-time performance. In addition, it is determined whether the fault can be delayed based on the cause of the fault and the current driving status of the vehicle. If the fault can be delayed, the fault will be delayed. In this way, accidents caused by sudden shutdown of the fuel cell system due to malfunction while the vehicle is traveling can be avoided, thereby improving driving safety.
  • the driving state includes one or more of the following: starting or stopping, loading or sudden braking, high-speed driving, and low-speed driving.
  • Starting is a state where the vehicle speed is gradually increasing from 0, parking is a state when the vehicle speed is decreasing from the vehicle's driving speed to 0; loading is a state when the vehicle is accelerating or the vehicle is climbing a hill, and sudden braking refers to the state caused by the driver's braking operation.
  • the vehicle speed is rapidly decreasing; high-speed driving refers to the state of driving at a higher speed (such as more than 30 kilometers per hour); low-speed driving refers to the process of driving at a lower speed (such as more than 30 kilometers per hour).
  • the minimum speed for high-speed driving and the maximum speed for low-speed driving can be preset according to actual needs. For example, they can be set by parameters such as the vehicle's own weight, load, and maximum output power of the vehicle.
  • starting, stopping and low-speed driving are relatively safe vehicle driving states
  • loading or sudden braking and high-speed driving are relatively dangerous driving states
  • Complex vehicle driving states are classified into starting or stopping, loading or sudden driving. It has four driving states: braking, high-speed driving, and low-speed driving, making it easy to quickly and accurately determine whether the fault is a deferrable fault based on the vehicle's driving status and the cause of the fault.
  • determining the cause of the fault based on the operating parameters, the fault and the predetermined fuzzy control rules includes: finding the fault cause corresponding to the operating parameters and the fault in the predetermined fuzzy rules as the cause of the fault.
  • the predetermined fuzzy rules include the correspondence between fuel cell system operating parameters, faults and fault causes.
  • an overtemperature fault occurs in the fuel cell stack, it may be caused by the radiator fan not rotating, the water pump not rotating, or insufficient coolant.
  • the relationship between the cause of the fault, the operating parameters of the fuel cell system and the fault can be preset. For example, there is a corresponding relationship between the overtemperature of the fuel cell stack and the low speed of the radiator fan and the low speed of the water pump. There is a corresponding relationship between the radiator fan speed being too low and the predetermined interval of the speed obtained by the speed sensor.
  • Designers can set the relationship between operating parameters, faults, and fault causes in the preset fuzzy control rules based on experience.
  • the fault cause corresponding to the operating parameters and fault is found as the determined fault cause based on the operating parameters, fault and predetermined fuzzy control rules. For example, when a stack overtemperature fault occurs in the fuel cell system, search for the cause of the fault, including insufficient coolant, water pump not rotating, radiator fan not rotating, search for the corresponding operating parameters, and find that the coolant level is normal, If the water pump speed is normal and the radiator fan speed is 0, it can be determined that the cause of the fuel cell stack overheating failure is that the radiator fan does not rotate.
  • the fuzzy control rules pre-designed by the designer can be used to quickly determine the cause of the fault, providing a strong basis for judging whether the fault is a delayable fault.
  • judging whether the fault is a deferrable fault based on the cause of the fault and the current driving state includes: finding the judgment result corresponding to the cause of the fault and the current driving state in a predetermined correspondence relationship, as The judgment result of whether the fault is a fault that can be delayed.
  • the predetermined correspondence includes the correspondence between the vehicle's driving status, fault causes and judgment results.
  • the corresponding relationship between the cause of the fault, the driving state and the judgment result can be preset.
  • a fault occurs in the fuel cell system and the cause of the fault is found, it is determined based on the corresponding relationship whether the fault can be delayed. For example, when the vehicle is parked due to the overheating of the fuel cell stack caused by the radiator fan not turning, you can wait for the vehicle to stop and then deal with the fault. Therefore, you can preset the parking state and the radiator fan not turning.
  • the corresponding judgment results of the two are deferrable processing. In this case, the fuel cell stack over-temperature fault is a deferrable processing fault.
  • the fuel cell stack when the vehicle is driving at low speed, the fuel cell stack overheats because the radiator fan does not rotate.
  • the vehicle is driving at low speed and is not in a dangerous state. There is no expectation that the vehicle will stop running. You can consider handling the fault immediately. Therefore, the judgment results corresponding to the pre-low-speed driving state and the radiator fan not rotating can be preset as non-delayable processing.
  • the fuel cell stack over-temperature fault is a non-delayable processing fault.
  • a basis is provided for determining whether the fault can be delayed.
  • a fault occurs in the fuel cell system, it can be quickly determined whether the current fault is a fault that can be delayed, thus ensuring the safety of the vehicle.
  • the judgment result corresponding to the vehicle's driving status is stopped and the fault cause is high-voltage power-on timeout is a fault, which means that the fault can be delayed;
  • the judgment result corresponding to the vehicle's driving status is starting, fault If the cause is controller overcurrent, the corresponding judgment result is a fault, which means that the fault can be delayed; if the driving state of the vehicle is low speed and the cause of the fault is abnormal air compressor speed, the corresponding judgment result is that the fault is a fault, which means that the fault can be delayed; if If the driving status of the vehicle is high-speed driving and the cause of the fault is a radiator communication failure, the corresponding judgment result is that the fault is a deferrable processing fault.
  • corresponding judgment results are specifically set based on the cause of the fault and the driving state of the vehicle.
  • the fault can be quickly determined to be a delayable processing fault, ensuring that improve vehicle driving safety.
  • delaying processing of the fault includes: suspending shutdown of the fuel cell system until a predetermined length of time is reached.
  • the approach in the related art is to shut down the system immediately for fault repair.
  • the shutdown of the fuel cell system is suspended until a predetermined length of time is reached.
  • the scheduled time is the time left for the driver to properly position the vehicle, and can be preset based on the fault situation, current driving conditions, and relevant laws and regulations. After reaching a predetermined time period, the fuel cell system can be controlled to shut down.
  • the driver can be left with time to deal with a vehicle failure, thereby improving the driving safety of the vehicle.
  • the method before determining whether the fault is a deferrable fault based on the cause of the fault and the current driving state, the method further includes: determining whether the cause of the fault is a transient fault; The fault is cleared.
  • transient failures may occur. Before judging whether the fault is a delayable fault, it can be judged whether the cause of the fault is a transient fault. For example, the instantaneous overcurrent of the controller is a transient fault. Before judging whether the fault is a delayable fault, the instantaneous fault can be judged. sexual fault cleared. Transient faults can be determined and stored in advance, and whether they are transient faults can be determined through real-time table lookup.
  • allowed transient faults are cleared without subsequent processing, which reduces the amount of data processing and improves the stability of the fuel cell system operation.
  • the cause of the failure is determined based on the operating parameters, the failure and the predetermined fuzzy control rules, including: if the fuel cell system experiences a fuel cell stack overtemperature failure, obtain the fuel cell The speed of the water pump of the system, the speed of the fan of the fuel cell system, and the coolant level of the fuel cell system; if the speed of the water pump is higher than the preset first speed threshold, and the speed of the fan is higher than the preset second speed threshold, If the coolant level is lower than the preset level threshold, the cause of the fault is determined to be low coolant level; if the water pump speed is higher than the first speed threshold and the fan speed is lower than the second speed threshold, the coolant level is high If the water pump speed is lower than the first speed threshold, the fan speed is higher than the second speed threshold, and the coolant level is higher than the liquid level threshold, the cause of the fault is determined to be The water pump speed is low.
  • Fuel cell stack overtemperature failure is a failure that may occur during the operation of the fuel cell.
  • the fuel cell stack over-temperature fault can be predefined based on the characteristics of the fuel cell itself. For example, a fuel cell stack temperature exceeding 85°C can be defined as a fuel cell stack over-temperature failure.
  • the rotation speed of the water pump of the fuel cell system, the rotation speed of the fan of the fuel cell system, and the coolant level of the fuel cell system can be obtained through sensors.
  • the first rotational speed threshold is preset and can be set according to the characteristics of the water pump itself. For example, the first rotational speed threshold is preset to 80% of the rated rotational speed of the water pump.
  • the second rotational speed threshold is preset and can be set according to the characteristics of the fan itself.
  • the second rotational speed threshold is preset to 80% of the rated rotational speed of the fan.
  • the liquid level threshold is preset and can be set according to the characteristics of the fuel cell system heat dissipation device. For heat sinks containing coolant, the minimum liquid level that can meet the rated heat dissipation requirements will be calibrated when leaving the factory. For example, the liquid level threshold can be set to 90% of the minimum liquid level mentioned above.
  • Low water pump speed, low fan speed, and low coolant level are preset by designers and may cause fuel cell stack overheating failure.
  • the low speed of the water pump may be preset to mean that the speed of the water pump is lower than the first speed threshold.
  • the low fan speed may be preset to mean that the fan speed is lower than the second speed threshold.
  • Coolant level low may be preset to a coolant level below a level threshold.
  • fuzzy control rules are preset to quickly find the cause of the fuel cell stack over-temperature fault.
  • Over-temperature fault can quickly find the cause of the fault, facilitate fault handling, and improve driving safety.
  • judging whether the fault is a delayable fault based on the cause of the fault and the current driving state includes: if the cause of the fault is low coolant level and the current driving state is starting, then judging whether the fault is not delayable. Fault; if the cause of the fault is low fan speed and the current driving state is starting, then the fault is judged to be a deferrable fault; if the cause of the fault is low water pump speed and the current driving status is loading, the fault is judged to be a deferrable fault.
  • the cause of the fault can be quickly determined using the fuzzy control rules pre-designed by the designer based on the cause of the fault and the current driving status, providing a strong basis for judging whether the fault is a delayable fault.
  • the method before determining whether the fault is a deferrable fault based on the cause of the fault and the current driving status, the method further includes: uploading the cause of the fault and the fault to the server; and receiving a response from the server. The match between the fault and the cause of the fault.
  • judging whether the fault is a deferrable processing fault based on the cause of the fault and the current driving state includes: if the matching degree is greater than a predetermined matching degree threshold, based on the cause of the fault and the current driving state, Determine whether the fault is a deferrable fault.
  • the server After determining the cause of the fault, you can also upload the cause and fault to the server.
  • the server outputs the statistical results.
  • the judgment result of whether the cause of the fault is the true cause of the fault can be sent back to the server for server data statistics. For example, after the cause of the low fan speed fault was repaired, the fuel cell stack overtemperature fault was also solved, indicating that the cause of the fault judged based on the fuzzy control rules was the real cause. This set of data indicating the real cause of the low fan speed corresponding to the overtemperature of the fuel cell stack can be uploaded to the server as a piece of big data.
  • Matching degree refers to the probability that the fault cause judged based on fuzzy control rules in big data is the real cause. For example, for the fuel cell stack over-temperature fault and the fault determined by the fuzzy control rules to be caused by low water pump speed, the matching degree in the big data is 90%, that is, the fault determined based on the fuzzy control rules in the big data The probability that the low water pump speed is the real cause of the fuel cell stack overtemperature failure is 90%.
  • the vehicle receives the matching degree of the fuel cell stack over-temperature fault sent by the server and the cause of the fault is low water pump speed
  • the matching degree is greater than the matching degree threshold, it can be considered that the fault judged by the fuzzy control rule this time is The reason is that the water pump speed is low, which is most likely the real cause. In this case, based on the cause of the fault and the current driving status, it is judged whether the current fault is a deferrable fault.
  • the matching degree threshold is preset by the designer. For example, the matching degree threshold can be set to 30%. When the matching degree is lower than 30%, the credibility of the cause of the fault determined based on the fuzzy control rules is low.
  • a prompt message can be output on the vehicle display screen, and the prompt message is used to prompt the user to stop the vehicle and troubleshoot the problem.
  • the reliability of the cause of the fault determined by the fuzzy control rule is high, it is then determined whether the fault is a deferrable processing fault. It can also prompt the user to stop and troubleshoot the fault when the matching degree between the fault and the cause of the fault is low, so as to prevent the vehicle from running with fault and improve the safety of vehicle use.
  • FIG. 2 is a block diagram of a fuel cell system fault handling device according to an exemplary embodiment of the present disclosure.
  • the fuel cell system fault processing device 200 includes an acquisition module 201, a determination module 202, a first judgment module 203 and a processing module 204.
  • the acquisition module 201 is used to acquire the operating parameters of the fuel cell system and the current driving status of the vehicle.
  • the determination module 202 is used to determine the cause of the failure based on the operating parameters, the failure and predetermined fuzzy control rules if a failure occurs in the fuel cell system.
  • the first judgment module 203 is used to judge whether the fault is a delayable fault according to the cause of the fault and the current driving state.
  • the processing module 204 is configured to perform delayed processing on the fault if it is determined that the fault is a deferrable processing fault.
  • the driving state includes one or more of the following: starting or stopping, loading or sudden braking, high-speed driving, and low-speed driving.
  • the determination module 202 is further configured to find the fault cause corresponding to the operating parameters and the fault in the predetermined fuzzy rules as the cause of the fault.
  • the predetermined fuzzy rules include the correspondence between fuel cell system operating parameters, faults and fault causes.
  • the first judgment module 203 is further configured to find a judgment result corresponding to the cause of the fault and the current driving state in a predetermined correspondence relationship, as a judgment result of whether the fault is a delayable fault.
  • the predetermined correspondence includes the correspondence between the vehicle's driving status, fault causes and judgment results.
  • the judgment result corresponding to the vehicle's driving status is stopped and the fault cause is high-voltage power-on timeout is a fault, which means that the fault can be delayed;
  • the judgment result corresponding to the vehicle's driving status is starting, fault If the cause is controller overcurrent, the corresponding judgment result is a fault, which means that the fault can be delayed; if the driving state of the vehicle is low speed and the cause of the fault is abnormal air compressor speed, the corresponding judgment result is that the fault is a fault, which means that the fault can be delayed; if If the driving status of the vehicle is high-speed driving and the cause of the fault is a radiator communication failure, the corresponding judgment result is that the fault is a deferrable processing fault.
  • processing module 204 is further configured to suspend execution of the shutdown of the fuel cell system until a predetermined time period is reached.
  • the fuel cell system fault handling device 200 further includes a second judgment module and a clearing module.
  • the second judgment module is used to judge whether the cause of the fault is a transient fault.
  • the clearing module is used to clear transient faults among the causes of faults.
  • the determining module 202 is further configured to obtain the rotation speed of the water pump of the fuel cell system, the rotation speed of the fan of the fuel cell system, and the The coolant level of the fuel cell system; if the speed of the water pump is higher than the preset first speed threshold, the speed of the fan is higher than the preset second speed threshold, and the coolant level is lower than the preset Assuming a liquid level threshold, it is determined that the cause of the fault is low coolant level; if the rotation speed of the water pump is higher than the first rotation speed threshold and the rotation speed of the fan is lower than the second rotation speed threshold, the The coolant level is higher than the liquid level threshold, and the cause of the fault is determined to be low fan speed;
  • the rotation speed of the water pump is lower than the first rotation speed threshold, the rotation speed of the fan is higher than the second rotation speed threshold, and the coolant level is higher than the liquid level threshold, it is determined that the cause of the fault is The water pump speed is low.
  • the first judgment module 203 is further configured to judge that the fault is not a delayable processing fault if the cause of the fault is low coolant level and the current driving state is starting; if The cause of the fault is that the fan speed is low and the current driving state is starting, then it is judged that the fault is not a delayable processing fault; if the cause of the fault is that the water pump speed is low, the current driving state is If loaded, the fault is judged to be a deferrable processing fault.
  • the fuel cell system fault handling device 200 further includes an upload module and a receiving module.
  • the upload module is used to upload the cause of the fault and the fault to the server.
  • the receiving module is used to determine the matching degree between the fault returned by the server and the cause of the fault.
  • the first judgment module 203 is further configured to, if the matching degree is greater than a predetermined matching degree threshold, determine whether the fault is a delayable processing fault based on the cause of the fault and the current driving state.
  • predetermined fuzzy control rules can be used to determine the cause of the failure. This eliminates the need for staff to restart the vehicle at the maintenance location and detect various operations one by one after the fuel cell system fails. Parameters are used to screen fault causes, saving manpower and achieving better real-time performance. In addition, it is determined whether the fault can be delayed based on the cause of the fault and the current driving status of the vehicle. If the fault can be delayed, the fault will be delayed. In this way, accidents caused by sudden shutdown of the fuel cell system due to malfunction while the vehicle is traveling can be avoided, thereby improving driving safety.
  • the present disclosure also provides a non-transitory computer-readable storage medium on which a computer program is stored.
  • the program is executed by a processor, the steps of the above fuel cell system fault handling method provided by the present disclosure are implemented.
  • the present disclosure also provides an electronic device, including:
  • the processor is configured to execute the computer program in the memory to implement the steps of the above fuel cell system fault handling method provided by the present disclosure.
  • FIG. 3 is a block diagram of an electronic device 300 according to an exemplary embodiment.
  • the electronic device 300 may include: a processor 301 and a memory 302 .
  • the electronic device 300 may also include one or more of a multimedia component 303, an input/output (I/O) interface 304, and a communication component 305.
  • the processor 301 is used to control the overall operation of the electronic device 300 to complete all or part of the steps in the above fuel cell system fault handling method.
  • the memory 302 is used to store various types of data to support operations on the electronic device 300. These data may include, for example, instructions for any application program or method operating on the electronic device 300, as well as application-related data. For example, contact data, messages sent and received, pictures, audios, videos, etc.
  • the memory 302 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (Static Random Access Memory, referred to as SRAM), electrically erasable programmable read-only memory ( Electrically Erasable Programmable Read-Only Memory (EEPROM for short), Erasable Programmable Read-Only Memory (EPROM for short), Programmable Read-Only Memory (PROM for short), Read-only Memory (Read-Only Memory, ROM for short), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • PROM Programmable Read-Only Memory
  • Read-Only Memory Read-Only Memory
  • magnetic memory flash memory
  • magnetic disk or optical disk any type of volatile or non-volatile storage device or their combination
  • Multimedia components 303 may include screen and audio components.
  • the screen may be a touch screen, for
  • the received audio signals may be further stored in memory 302 or sent via communication component 305 .
  • the audio component also includes at least one speaker for outputting audio signals.
  • the I/O interface 304 provides an interface between the processor 301 and other interface modules.
  • the other interface modules may be keyboards, mice, buttons, etc. These buttons can be virtual buttons or physical buttons.
  • the communication component 305 is used for wired or wireless communication between the electronic device 300 and other devices. Wireless communication, such as Wi-Fi, Bluetooth, Near Field Communication (NFC), 2G, 3G, 4G, NB-IOT, eMTC, or other 5G, etc., or one or more of them The combination is not limited here. Therefore, the corresponding communication component 305 may include: Wi-Fi module, Bluetooth module, NFC module, etc.
  • the electronic device 300 may be configured by one or more application specific integrated circuits (Application Specific Integrated Circuit, ASIC for short), digital signal processor (Digital Signal Processor, DSP for short), digital signal processing equipment (Digital Signal Processing Equipment). Signal Processing Device (DSPD for short), Programmable Logic Device (PLD for short), Field Programmable Gate Array (FPGA for short), controller, microcontroller, microprocessor or other electronic components Implementation is used to perform the above fuel cell system fault handling method.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSP digital signal processing equipment
  • DSPD Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • a computer-readable storage medium including program instructions is also provided.
  • the program instructions are executed by a processor, the steps of the above-mentioned fuel cell system fault handling method are implemented.
  • the computer-readable storage medium can be the above-mentioned memory 302 including program instructions, and the above-mentioned program instructions can be executed by the processor 301 of the electronic device 300 to complete the above-mentioned fuel cell system fault handling method.
  • a computer program product comprising a computer program executable by a programmable device, the computer program having a function for performing the above when executed by the programmable device.
  • the code part of the fuel cell system troubleshooting method is also provided, the computer program product comprising a computer program executable by a programmable device, the computer program having a function for performing the above when executed by the programmable device.
  • any combination of various embodiments of the present disclosure can also be carried out, and as long as they do not violate the idea of the present disclosure, they should also be regarded as the contents disclosed in the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Medical Informatics (AREA)
  • Fuzzy Systems (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Artificial Intelligence (AREA)
  • Fuel Cell (AREA)

Abstract

本公开涉及一种燃料电池系统故障处理方法及装置。所述方法包括:获取所述燃料电池系统的运行参数和车辆的当前行驶状态;若燃料电池系统发生故障,则根据运行参数、故障和预定的模糊控制规则,确定所述故障的原因;根据所述故障的原因和所述当前行驶状态,判断所述故障是否为可延迟处理故障;若判定所述故障为所述可延迟处理故障,则对所述故障进行延迟处理。这样,不需要在燃料电池系统故障后,工作人员在维修地点重新启动车辆,逐一检测各种运行参数来筛查故障原因,节省了人力,实时性较好。并且,能够避免燃料电池系统在车辆行进过程中因发生故障突然停机而造成的事故,提高了驾驶的安全性。

Description

燃料电池系统故障处理方法及装置 技术领域
本公开涉及新能源车辆领域,具体地,涉及一种燃料电池系统故障处理方法及装置。
背景技术
如今,燃料电池车辆作为新能源车辆的一种,正在逐渐走进人们的生活中。在燃料电池系统运行的过程中,各关键零部件都有可能由于某种原因损坏,导致燃料电池系统不能正常运行,导致车辆性能下降。在相关技术中,当燃料电池系统出现故障时,会自动控制燃料电池系统停机。
发明内容
本公开的目的是提供一种燃料电池系统故障处理方法及装置,以便提高燃料电池系统使用时的稳定性和车辆行驶的安全性。
为了实现上述目的,本公开提供一种燃料电池系统故障处理方法,包括:获取所述燃料电池系统的运行参数和车辆的当前行驶状态;若所述燃料电池系统发生故障,则根据所述运行参数、所述故障和预定的模糊控制规则,确定所述故障的原因;根据所述故障的原因和所述当前行驶状态,判断所述故障是否为可延迟处理故障;若判定所述故障为所述可延迟处理故障,则对所述故障进行延迟处理。
可选地,所述根据所述运行参数、所述故障和预定的模糊控制规则,确定所述故障的原因,包括:在预定的模糊规则中,查找到与所述运行参数、所述故障对应的故障原因,作为所述故障的原因,其中,所述预定的模糊规则包括所述燃料电池系统运行参数、故障以及故障原因之间的对应关系。
可选地,所述根据所述故障的原因和所述当前行驶状态,判断所述故障是否为可延迟处理故障,包括:在预定的对应关系中,查找到与所述故障的原因、所述当前行驶状态对应的判断结果,作为所述故障是否为可延迟处理故障的判断结果,其中,所述预定的对应关系包括所述车辆的行驶状态、故障原因以及判断结果之间的对应关系。
可选地,在所述预定的对应关系中:与所述车辆的行驶状态为停车、故障原因为高压上电超时对应的判断结果为所述故障为可延迟处理故障;与所述车辆的行驶状态为起步、故障原因为控制器过流对应的判断结果为所述故障为可延迟处理故障;与若所述车 辆的行驶状态为低速行驶、故障原因为空压机转速异常对应的判断结果为所述故障为可延迟处理故障;与若所述车辆的行驶状态为高速行驶、故障原因为散热器通信故障对应的判断结果为所述故障为可延迟处理故障。
可选地,所述对所述故障进行延迟处理,包括:
暂停执行所述燃料电池系统的停机,直至达到预定的时长。
可选地,在所述根据所述故障的原因和所述当前行驶状态,判断所述故障是否为可延迟处理故障之前,所述方法还包括:判断所述故障的原因是否为瞬时性故障;将所述故障的原因中的瞬时性故障清除。
可选地,所述若所述燃料电池系统发生故障,则根据所述运行参数、所述故障和预定的模糊控制规则,确定所述故障的原因,包括:若所述燃料电池系统发生燃料电池电堆过温故障,获取所述燃料电池系统的水泵的转速、所述燃料电池系统的风扇的转速、所述燃料电池系统的冷却液液位;若所述水泵的转速高于预设的第一转速阈值,所述风扇的转速高于预设的第二转速阈值,所述冷却液液位低于预设的液位阈值,确定所述故障的原因为冷却液液位低;若所述水泵的转速高于所述第一转速阈值,所述风扇的转速低于所述第二转速阈值,所述冷却液液位高于所述液位阈值,确定所述故障的原因为风扇转速低;若所述水泵的转速低于所述第一转速阈值,所述风扇的转速高于所述第二转速阈值,所述冷却液液位高于所述液位阈值,确定所述故障的原因为水泵转速低。
可选地,所述根据所述故障的原因和所述当前行驶状态,判断所述故障是否为可延迟处理故障包括:若所述故障的原因为所述冷却液液位低,所述当前行驶状态为起步,则判断所述故障不是可延迟处理故障;若所述故障的原因为所述风扇转速低,所述当前行驶状态为起步,则判断所述故障不是可延迟处理故障;若所述故障的原因为所述水泵转速低,所述当前行驶状态为加载,则判断所述故障为可延迟处理故障。
可选地,在所述根据所述故障的原因和所述当前行驶状态,判断所述故障是否为可延迟处理故障之前,所述方法还包括:将所述故障的原因、所述故障上传至服务器;接收所述服务器返回的所述故障与所述故障的原因之间的匹配度。
所述根据所述故障的原因和所述当前行驶状态,判断所述故障是否为可延迟处理故障,包括:若所述匹配度大于预定的匹配度阈值,根据所述故障的原因和所述当前行驶状态,判断所述故障是否为可延迟处理故障。
本公开还提供一种燃料电池系统故障处理装置,包括:
获取模块,用于获取所述燃料电池系统的运行参数和车辆的当前行驶状态;
确定模块,用于若所述燃料电池系统发生故障,则根据所述运行参数、所述故障和预定的模糊控制规则,确定所述故障的原因;
第一判断模块,用于根据所述故障的原因和所述当前行驶状态,判断所述故障是否为可延迟处理故障;
处理模块,用于若判定所述故障为所述可延迟处理故障,则对所述故障进行延迟处理。
通过上述技术方案,在车辆燃料电池系统出现故障时,能够利用预定的模糊控制规则确定故障原因,这样就不需要在燃料电池系统故障后,工作人员在维修地点重新启动车辆,逐一检测各种运行参数来筛查故障原因,节省了人力,实时性较好。并且,依据故障原因和车辆当前行驶状态确定出故障能否延迟处理,在故障能够延迟处理时对故障延时处理。这样,能够避免燃料电池系统在车辆行进过程中因发生故障突然停机而造成的事故,提高了驾驶的安全性。
本公开的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1是根据本公开一示例性实施例的一种燃料电池系统故障处理方法的流程图。
图2是根据本公开一示例性实施例的一种燃料电池系统故障处理装置的框图。
图3是根据本公开一示例性实施例示出的一种电子设备的框图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
图1是根据本公开一示例性实施例的一种燃料电池系统故障处理方法的流程图。如图1所示,该方法包括步骤S101至步骤S103。
在步骤S101中,获取燃料电池系统的运行参数和车辆的当前行驶状态。
燃料电池系统的运行参数是指燃料电池系统在运行过程中各传感器获得的、用于监测燃料电池运行状况的数据,例如,燃料电池电堆的温度、燃料电池系统输出电压、燃 料电池系统输出电流、水泵转速等。车辆当前行驶状态是指当前车辆在道路上行驶的状态,例如起步状态、爬坡状态、高速行驶状态等。可以通过分析车辆当前速度和输出功率获取车辆行驶状态。例如,以相同的行驶速度行驶时,相比于在平地行驶的车辆,爬坡状态下的车辆输出功率更高;车辆的速度由0开始逐渐增大时,可以判断车辆处于起步状态。
在步骤S102中,若燃料电池系统发生故障,则根据运行参数、故障和预定的模糊控制规则,确定故障的原因。
模糊控制规则是设计人员根据故障分析经验预先设定好的分析规则。在燃料电池系统发生故障时,有时故障的原因有多种可能性,例如,在发生燃料电池电堆温度过高的故障时,故障原因可能是水泵坏了,也可能是风扇坏了,也可能是冷却液漏液了,需要进一步确定具体的是哪一种。
在步骤S103中,根据故障的原因和当前行驶状态,判断故障是否为可延迟处理故障。
可延迟处理故障是指出于安全性考虑有必要延迟处理的故障。例如,在车辆爬坡状态时,报出燃料电池电堆过温故障,在步骤S102中,根据模糊控制规则分析出燃料电池电堆过温故障的原因是水泵转速过低,在车辆爬坡状态下,应优先满足车辆驾驶的功率需求,防止车辆在坡道上停止造成安全隐患,在这种行驶状态下,将该故障判定为可延迟处理故障。
在步骤S104中,若判定故障为可延迟处理故障,则对故障进行延迟处理。
对故障进行延迟处理是指车辆在驾驶过程中出现故障时,为满足车辆安全性的需求,暂缓对发生的故障的处理。例如,在车辆以80公里每小时的速度行驶时,燃料电池系统发生了由于水泵转速过低造成的电池电堆过温,在步骤S103中,该故障被判定为可延迟处理故障,待车辆速度下降(例如下降至30公里每小时)时,再对故障进行处理,即对故障进行延迟处理。
通过上述技术方案,在车辆燃料电池系统出现故障时,能够利用预定的模糊控制规则确定故障原因,这样就不需要在燃料电池系统故障后,工作人员在维修地点重新启动车辆,逐一检测各种运行参数来筛查故障原因,节省了人力,实时性较好。并且,依据故障原因和车辆当前行驶状态确定出故障能否延迟处理,在故障能够延迟处理时对故障延时处理。这样,能够避免燃料电池系统在车辆行进过程中因发生故障突然停机而造成的事故,提高了驾驶的安全性。
在又一实施例中,行驶状态包括以下中的一者或多者:起步或停车、加载或急刹、高速行驶、低速行驶。
起步是车速正在由0逐渐增大的状态,停车是车速正在由车辆行驶速度减小至0的状态;加载是车辆正在加速或者车辆爬坡的状态,急刹是指由驾驶员刹车操作导致的车辆速度正在快速下降的状态;高速行驶是指以较高速度(例如30公里每小时以上)行驶的状态;低速行驶是指以较低速度(例如30公里每小时以上)行驶的过程。高速行驶的最低速度和低速行驶的最高速度可以根据实际需求预先设定,例如,可以由车辆自身重量、载重、车辆最大输出功率等参数来设定。
在该实施例中,起步、停车和低速行驶是相对安全的车辆行驶状态,加载或急刹和高速行驶是相对危险的行驶状态,将复杂的车辆行驶状态归类为起步或停车、加载或急刹、高速行驶、低速行驶四种行驶状态,便于依据车辆行驶状态和故障的原因快速、准确地判断故障是否为可延迟处理故障。
在又一实施例中,根据运行参数、故障和预定的模糊控制规则,确定故障的原因,包括:在预定的模糊规则中,查找到与运行参数、故障对应的故障原因,作为故障的原因。其中,预定的模糊规则包括燃料电池系统运行参数、故障以及故障原因之间的对应关系。
如上所述,对于燃料电池系统的某一种故障,可能有多个故障的原因。例如在燃料电池电堆出现过温故障时,有可能是散热器风扇不转造成的、也有可能是水泵不转造成的、还有可能是冷却液不足造成的。故障的故障原因、燃料电池系统运行参数和该故障之间关系可以预先设定。例如,燃料电池电堆过温与散热器风扇转速过低、水泵转速过低存在对应关系。散热器风扇转速过低与转速传感器获取的转速的预定区间存在对应关系。设计人员可以依据经验在预设的模糊控制规则中设定好运行参数、故障、故障原因三者之间的关系。在车辆行驶过程中燃料电池系统发生故障时,根据运行参数、故障和预定的模糊控制规则,查找到与运行参数、故障对应的故障原因作为所确定的故障原因。例如,当燃料电池系统出现电堆过温故障时,查找与故障对应的故障原因,包括冷却液不足、水泵不转、散热器风扇不转,查找对应的运行参数,发现冷却液液位正常、水泵转速正常、散热器风扇转速为0,则可以确定燃料电池电堆过温故障的原因为散热器风扇不转。
在该实施例中,可以依据故障,利用设计人员预先设计好的模糊控制规则快速确定 故障的原因,为故障是否为可延迟处理故障的判断提供有力的判断基础。
在又一实施例中,根据故障的原因和当前行驶状态,判断故障是否为可延迟处理故障,包括:在预定的对应关系中,查找到与故障的原因、当前行驶状态对应的判断结果,作为故障是否为可延迟处理故障的判断结果。其中,预定的对应关系包括车辆的行驶状态、故障原因以及判断结果之间的对应关系。
可以预先设定故障的原因、行驶状态以及判断结果之间的对应关系,在燃料电池系统发生故障并找到故障的原因时,依据该对应关系确定是否为可延迟处理故障。例如,由于散热器风扇不转导致燃料电池电堆过温,车辆在停车状态时,此时,可以等待车辆停稳后处理该故障,因此,可以预先设定与停车状态、散热器风扇不转二者对应的判断结果为可延迟处理,在这种情况下,燃料电池电堆过温故障为可延迟处理故障。
又例如,车辆在低速行驶时,由于散热器风扇不转导致燃料电池电堆过温,车辆在低速行驶,并不处于危险状态,车辆也没有即将停止运行的预期,可以考虑立即处理该故障,因此,可以预先设定预低速行驶状态、散热器风扇不转二者对应的判断结果为不可延迟处理,在这种情况下,燃料电池电堆过温故障为不可延迟处理故障。
在该实施例中,为可延迟处理故障的判断提供了依据,在燃料电池系统发生故障时,能够快速地确定当前故障是否为可延迟处理故障,保障了车辆行驶的安全性。
在又一实施例中,在预定的对应关系中:与车辆的行驶状态为停车、故障原因为高压上电超时对应的判断结果为故障为可延迟处理故障;与车辆的行驶状态为起步、故障原因为控制器过流对应的判断结果为故障为可延迟处理故障;与若车辆的行驶状态为低速行驶、故障原因为空压机转速异常对应的判断结果为故障为可延迟处理故障;与若车辆的行驶状态为高速行驶、故障原因为散热器通信故障对应的判断结果为故障为可延迟处理故障。
在该实施例中,具体地依据故障的原因和车辆行驶状态设定了对应的判断结果,在车辆行驶过程中,出现上述的四种情况时,可以快速判定出故障为可延迟处理故障,保障了车辆行驶的安全性。
在又一实施例中,对故障进行延迟处理,包括:暂停执行燃料电池系统的停机,直至达到预定的时长。
当燃料电池系统出现故障时,相关技术中的做法是立即停机进行故障修复。在该实施例中,车辆在行进过程中如果出现了被判定为可延迟处理的故障时,暂停燃料电池系 统的停机,直至达到预定的时长。预定的时长是留给驾驶员妥善安置车辆的时间,可以依据故障情况、当前行驶状况、相关法律法规预先设定。在达到预定的时长后,可以控制燃料电池系统停机。
在该实施例中,能够在车辆出现故障时给驾驶员留有处置时间,提高车辆的驾驶安全性。
在又一实施例中,在根据故障的原因和当前行驶状态,判断故障是否为可延迟处理故障之前,该方法还包括:判断故障的原因是否为瞬时性故障;将故障的原因中的瞬时性故障清除。
在燃料电池系统运行过程中,可能会出现瞬时性故障。可以在判断故障是否为可延迟处理故障之前,判断故障的原因是否为瞬时性故障,例如控制器瞬间的电流过流等都属于瞬时性故障,在判断故障是否为可延迟处理故障之前,将瞬时性故障清除。瞬时性故障可以预先确定好并存储,通过实时查表的方式判断是否为瞬时性故障。
在该实施例中,将允许出现的瞬时性故障清除,不进行后续处理,减少了数据处理量,提高了燃料电池系统运行的稳定性。
在又一实施例中,若燃料电池系统发生故障,则根据运行参数、故障和预定的模糊控制规则,确定故障的原因,包括:若燃料电池系统发生燃料电池电堆过温故障,获取燃料电池系统的水泵的转速、燃料电池系统的风扇的转速、燃料电池系统的冷却液液位;若水泵的转速高于预设的第一转速阈值,风扇的转速高于预设的第二转速阈值,冷却液液位低于预设的液位阈值,确定故障的原因为冷却液液位低;若水泵的转速高于第一转速阈值,风扇的转速低于第二转速阈值,冷却液液位高于液位阈值,确定故障的原因为风扇转速低;若水泵的转速低于第一转速阈值,风扇的转速高于第二转速阈值,冷却液液位高于液位阈值,确定故障的原因为水泵转速低。
燃料电池电堆过温故障是燃料电池在运行过程当中可能会出现的一种故障。可以依据燃料电池本身的特性预先定义燃料电池电堆过温故障。例如,可以将燃料电池电堆温度超过85℃定义为燃料电池电堆过温故障。可以通过传感器获得燃料电池系统的水泵的转速、燃料电池系统的风扇的转速、燃料电池系统的冷却液液位。第一转速阈值是预先设定的,可以依据水泵自身的特性设定,例如,将第一转速阈值预设为水泵额定转速的80%。第二转速阈值是预先设定的,可以依据风扇自身的特性设定,例如,将第二转速阈值预设为风扇额定转速的80%。液位阈值是预先设定的,可以依据燃料电池系统散热 装置的自身特性设定。对于装有冷却液的散热装置,出厂时,都会标定能够满足额定散热要求的最低液位,例如,可以将液位阈值设定为前面所述的最低液位的90%。水泵转速低、风扇转速低、冷却液液位低是由设计人员预先设定的,可能导致燃料电池电堆过温故障发生的故障的原因。水泵转速低可以预先设定为水泵的转速低于第一转速阈值。风扇转速低可以预先设定为风扇的转速低于第二转速阈值。冷却液液位低可以预先设定为冷却液液位低于液位阈值。
在该实施例中,针对燃料电池电堆过温故障,预先设定了模糊控制规则用于快速查找到燃料电池电堆过温故障的原因,能够在用户驾驶车辆时,如果发生燃料电池电堆过温故障,能够快速查找到故障的原因,便于故障的处理,提高驾驶的安全性。
在又一实施例中,根据故障的原因和当前行驶状态,判断故障是否为可延迟处理故障包括:若故障的原因为冷却液液位低,当前行驶状态为起步,则判断故障不是可延迟处理故障;若故障的原因为风扇转速低,当前行驶状态为起步,则判断故障不是可延迟处理故障;若故障的原因为水泵转速低,当前行驶状态为加载,则判断故障为可延迟处理故障。
在该实施例中,可以依据故障的原因和当前行驶状态,利用设计人员预先设计好的模糊控制规则快速确定故障的原因,为故障是否为可延迟处理故障的判断提供有力的判断基础。
在又一实施例中,在根据故障的原因和当前行驶状态,判断故障是否为可延迟处理故障之前,方法还包括:将所述故障的原因、所述故障上传至服务器;接收所述服务器返回的所述故障与所述故障的原因之间的匹配度。
该实施例中,根据故障的原因和当前行驶状态,判断故障是否为可延迟处理故障,包括:若所述匹配度大于预定的匹配度阈值,根据所述故障的原因和所述当前行驶状态,判断所述故障是否为可延迟处理故障。
在判定故障的原因之后,还可以将故障的原因与故障上传服务器。服务器将统计结果输出。在人工针对故障的原因对故障处理后,可以将故障的原因是否为该故障的真实原因的判断结果回传到服务器中,用于服务器数据的统计。例如,在修复风扇转速低这一故障的原因后,燃料电池电堆过温故障也得到了解决,说明根据模糊控制规则判断的该故障的原因是真实的原因。可以将燃料电池电堆过温对应的风扇转速低的故障原因为真实原因的这一组数据上传至服务器,作为大数据中的一条。
匹配度是指在大数据中根据模糊控制规则判断出的故障原因为真实原因的概率。例如,对于燃料电池电堆过温故障、模糊控制规则判断出的故障的原因为水泵转速低这二者,大数据中的匹配度为90%,即在大数据中根据模糊控制规则判断出的燃料电池电堆过温故障的原因——水泵转速低为真实原因的概率为90%。
当车辆接收到服务器发送的燃料电池电堆过温故障、故障的原因为水泵转速低这二者的匹配度时,若该匹配度大于匹配度阈值,可以认为这一次模糊控制规则判断的故障的原因为水泵转速低也大概率是真实的原因,在此情况下,再执行根据故障的原因和当前行驶状态,判断当前故障是否为可延迟处理故障。
匹配度阈值是设计人员预先设定的,例如,可以将匹配度阈值设定为30%,当匹配度低于30%时,根据模糊控制规则判断出的故障的原因的可信度偏低。可以在车载显示屏中输出提示消息,提示消息用于提示用户停车排查故障的信息。
在该实施例中,在模糊控制规则判断出的故障的原因的可信度较高的情况下,再判断故障是否为可延迟处理故障。还可以在故障与故障的原因之间的匹配度较低时,提示用户停车排查故障,避免车辆带故障运行,提高了车辆使用的安全性。
图2是根据本公开一示例性实施例的一种燃料电池系统故障处理装置的框图。该燃料电池系统故障处理装置200包括获取模块201、确定模块202、第一判断模块203和处理模块204。
获取模块201用于获取燃料电池系统的运行参数和车辆的当前行驶状态。
确定模块202用于若燃料电池系统发生故障,则根据运行参数、故障和预定的模糊控制规则,确定故障的原因。
第一判断模块203用于根据故障的原因和当前行驶状态,判断故障是否为可延迟处理故障。
处理模块204用于若判定故障为可延迟处理故障,则对故障进行延迟处理。
在又一实施例中,行驶状态包括以下中的一者或多者:起步或停车、加载或急刹、高速行驶、低速行驶。
在又一实施例中,确定模块202进一步用于在预定的模糊规则中,查找到与运行参数、故障对应的故障原因,作为故障的原因。其中,预定的模糊规则包括燃料电池系统运行参数、故障以及故障原因之间的对应关系。
在又一实施例中,第一判断模块203进一步用于在预定的对应关系中,查找到与故 障的原因、当前行驶状态对应的判断结果,作为故障是否为可延迟处理故障的判断结果。其中,预定的对应关系包括车辆的行驶状态、故障原因以及判断结果之间的对应关系。
在又一实施例中,在预定的对应关系中:与车辆的行驶状态为停车、故障原因为高压上电超时对应的判断结果为故障为可延迟处理故障;与车辆的行驶状态为起步、故障原因为控制器过流对应的判断结果为故障为可延迟处理故障;与若车辆的行驶状态为低速行驶、故障原因为空压机转速异常对应的判断结果为故障为可延迟处理故障;与若车辆的行驶状态为高速行驶、故障原因为散热器通信故障对应的判断结果为故障为可延迟处理故障。
在又一实施例中,处理模块204进一步用于暂停执行燃料电池系统的停机,直至达到预定的时长。
在又一实施例中,燃料电池系统故障处理装置200还包括第二判断模块和清除模块。
第二判断模块用于判断故障的原因是否为瞬时性故障。
清除模块用于将故障的原因中的瞬时性故障清除。
在又一实施例中,确定模块202进一步用于若所述燃料电池系统发生燃料电池电堆过温故障,获取所述燃料电池系统的水泵的转速、所述燃料电池系统的风扇的转速、所述燃料电池系统的冷却液液位;若所述水泵的转速高于预设的第一转速阈值,所述风扇的转速高于预设的第二转速阈值,所述冷却液液位低于预设的液位阈值,确定所述故障的原因为冷却液液位低;若所述水泵的转速高于所述第一转速阈值,所述风扇的转速低于所述第二转速阈值,所述冷却液液位高于所述液位阈值,确定所述故障的原因为风扇转速低;
若所述水泵的转速低于所述第一转速阈值,所述风扇的转速高于所述第二转速阈值,所述冷却液液位高于所述液位阈值,确定所述故障的原因为水泵转速低。
在又一实施例中,第一判断模块203进一步用于若所述故障的原因为所述冷却液液位低,所述当前行驶状态为起步,则判断所述故障不是可延迟处理故障;若所述故障的原因为所述风扇转速低,所述当前行驶状态为起步,则判断所述故障不是可延迟处理故障;若所述故障的原因为所述水泵转速低,所述当前行驶状态为加载,则判断所述故障为可延迟处理故障。
在又一实施例中,燃料电池系统故障处理装置200还包括上传模块和接收模块。
上传模块用于将所述故障的原因、所述故障上传至服务器。
接收模块用于所述服务器返回的所述故障与所述故障的原因之间的匹配度。
第一判断模块203进一步用于若所述匹配度大于预定的匹配度阈值,根据所述故障的原因和所述当前行驶状态,判断所述故障是否为可延迟处理故障。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
通过上述技术方案,在车辆燃料电池系统出现故障时,能够利用预定的模糊控制规则确定故障原因,这样就不需要在燃料电池系统故障后,工作人员在维修地点重新启动车辆,逐一检测各种运行参数来筛查故障原因,节省了人力,实时性较好。并且,依据故障原因和车辆当前行驶状态确定出故障能否延迟处理,在故障能够延迟处理时对故障延时处理。这样,能够避免燃料电池系统在车辆行进过程中因发生故障突然停机而造成的事故,提高了驾驶的安全性。
本公开还提供一种非临时性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本公开提供的上述燃料电池系统故障处理方法的步骤。
本公开还提供一种电子设备,包括:
存储器,其上存储有计算机程序;
处理器,用于执行存储器中的计算机程序,以实现本公开提供的上述燃料电池系统故障处理方法的步骤。
图3是根据一示例性实施例示出的一种电子设备300的框图。如图3所示,该电子设备300可以包括:处理器301,存储器302。该电子设备300还可以包括多媒体组件303,输入/输出(I/O)接口304,以及通信组件305中的一者或多者。
其中,处理器301用于控制该电子设备300的整体操作,以完成上述的燃料电池系统故障处理方法中的全部或部分步骤。存储器302用于存储各种类型的数据以支持在该电子设备300的操作,这些数据例如可以包括用于在该电子设备300上操作的任何应用程序或方法的指令,以及应用程序相关的数据,例如联系人数据、收发的消息、图片、音频、视频等等。该存储器302可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,例如静态随机存取存储器(Static Random Access Memory,简称SRAM),电可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,简称EEPROM),可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,简称EPROM),可编程只读存储器(Programmable Read-Only Memory,简称PROM), 只读存储器(Read-Only Memory,简称ROM),磁存储器,快闪存储器,磁盘或光盘。多媒体组件303可以包括屏幕和音频组件。其中屏幕例如可以是触摸屏,音频组件用于输出和/或输入音频信号。例如,音频组件可以包括一个麦克风,麦克风用于接收外部音频信号。所接收的音频信号可以被进一步存储在存储器302或通过通信组件305发送。音频组件还包括至少一个扬声器,用于输出音频信号。I/O接口304为处理器301和其他接口模块之间提供接口,上述其他接口模块可以是键盘,鼠标,按钮等。这些按钮可以是虚拟按钮或者实体按钮。通信组件305用于该电子设备300与其他设备之间进行有线或无线通信。无线通信,例如Wi-Fi,蓝牙,近场通信(Near Field Communication,简称NFC),2G、3G、4G、NB-IOT、eMTC、或其他5G等等,或它们中的一种或几种的组合,在此不做限定。因此相应的该通信组件305可以包括:Wi-Fi模块,蓝牙模块,NFC模块等等。
在一示例性实施例中,电子设备300可以被一个或多个应用专用集成电路(Application Specific Integrated Circuit,简称ASIC)、数字信号处理器(Digital Signal Processor,简称DSP)、数字信号处理设备(Digital Signal Processing Device,简称DSPD)、可编程逻辑器件(Programmable Logic Device,简称PLD)、现场可编程门阵列(Field Programmable Gate Array,简称FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述的燃料电池系统故障处理方法。
在另一示例性实施例中,还提供了一种包括程序指令的计算机可读存储介质,该程序指令被处理器执行时实现上述的燃料电池系统故障处理方法的步骤。例如,该计算机可读存储介质可以为上述包括程序指令的存储器302,上述程序指令可由电子设备300的处理器301执行以完成上述的燃料电池系统故障处理方法。
在另一示例性实施例中,还提供一种计算机程序产品,该计算机程序产品包含能够由可编程的装置执行的计算机程序,该计算机程序具有当由该可编程的装置执行时用于执行上述的燃料电池系统故障处理方法的代码部分。
以上结合附图详细描述了本公开的优选实施方式,但是,本公开并不限于上述实施方式中的具体细节,在本公开的技术构思范围内,可以对本公开的技术方案进行多种简单变型,这些简单变型均属于本公开的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本公开对各种 可能的组合方式不再另行说明。
此外,本公开的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本公开所公开的内容。

Claims (10)

  1. 一种燃料电池系统故障处理方法,其特征在于,包括:
    获取所述燃料电池系统的运行参数和车辆的当前行驶状态;
    若所述燃料电池系统发生故障,则根据所述运行参数、所述故障和预定的模糊控制规则,确定所述故障的原因;
    根据所述故障的原因和所述当前行驶状态,判断所述故障是否为可延迟处理故障;
    若判定所述故障为所述可延迟处理故障,则对所述故障进行延迟处理。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述运行参数、所述故障和预定的模糊控制规则,确定所述故障的原因,包括:
    在预定的模糊规则中,查找到与所述运行参数、所述故障对应的故障原因,作为所述故障的原因,其中,所述预定的模糊规则包括所述燃料电池系统运行参数、故障以及故障原因之间的对应关系。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述故障的原因和所述当前行驶状态,判断所述故障是否为可延迟处理故障,包括:
    在预定的对应关系中,查找到与所述故障的原因、所述当前行驶状态对应的判断结果,作为所述故障是否为可延迟处理故障的判断结果,其中,所述预定的对应关系包括所述车辆的行驶状态、故障原因以及判断结果之间的对应关系。
  4. 根据权利要求2所述的方法,其特征在于,在所述预定的对应关系中:
    与所述车辆的行驶状态为停车、故障原因为高压上电超时对应的判断结果为所述故障为可延迟处理故障;
    与所述车辆的行驶状态为起步、故障原因为控制器过流对应的判断结果为所述故障为可延迟处理故障;
    与若所述车辆的行驶状态为低速行驶、故障原因为空压机转速异常对应的判断结果为所述故障为可延迟处理故障;
    与若所述车辆的行驶状态为高速行驶、故障原因为散热器通信故障对应的判断结果为所述故障为可延迟处理故障。
  5. 根据权利要求1所述的方法,其特征在于,所述对所述故障进行延迟处理,包括:
    暂停执行所述燃料电池系统的停机,直至达到预定的时长。
  6. 根据权利要求1所述的方法,其特征在于,在所述根据所述故障的原因和所述当前行驶状态,判断所述故障是否为可延迟处理故障之前,所述方法还包括:
    判断所述故障的原因是否为瞬时性故障;
    将所述故障的原因中的瞬时性故障清除。
  7. 根据权利要求1所述的方法,其特征在于,所述若所述燃料电池系统发生故障,则根据所述运行参数、所述故障和预定的模糊控制规则,确定所述故障的原因,包括:
    若所述燃料电池系统发生燃料电池电堆过温故障,获取所述燃料电池系统的水泵的转速、所述燃料电池系统的风扇的转速、所述燃料电池系统的冷却液液位;
    若所述水泵的转速高于预设的第一转速阈值,所述风扇的转速高于预设的第二转速阈值,所述冷却液液位低于预设的液位阈值,确定所述故障的原因为冷却液液位低;
    若所述水泵的转速高于所述第一转速阈值,所述风扇的转速低于所述第二转速阈值,所述冷却液液位高于所述液位阈值,确定所述故障的原因为风扇转速低;
    若所述水泵的转速低于所述第一转速阈值,所述风扇的转速高于所述第二转速阈值,所述冷却液液位高于所述液位阈值,确定所述故障的原因为水泵转速低。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述故障的原因和所述当前行驶状态,判断所述故障是否为可延迟处理故障包括:
    若所述故障的原因为所述冷却液液位低,所述当前行驶状态为起步,则判断所述故障不是可延迟处理故障;
    若所述故障的原因为所述风扇转速低,所述当前行驶状态为起步,则判断所述故障不是可延迟处理故障;
    若所述故障的原因为所述水泵转速低,所述当前行驶状态为加载,则判断所述故障为可延迟处理故障。
  9. 根据权利要求1所述的方法,其特征在于,在所述根据所述故障的原因和所述当前行驶状态,判断所述故障是否为可延迟处理故障之前,所述方法还包括:
    将所述故障的原因、所述故障上传至服务器;
    接收所述服务器返回的所述故障与所述故障的原因之间的匹配度;
    所述根据所述故障的原因和所述当前行驶状态,判断所述故障是否为可延迟处理故障,包括:
    若所述匹配度大于预定的匹配度阈值,根据所述故障的原因和所述当前行驶状态,判断所述故障是否为可延迟处理故障。
  10. 一种燃料电池系统故障处理装置,其特征在于,包括:
    获取模块,用于获取所述燃料电池系统的运行参数和车辆的当前行驶状态;
    确定模块,用于若所述燃料电池系统发生故障,则根据所述运行参数、所述故障和预定的模糊控制规则,确定所述故障的原因;
    第一判断模块,用于根据所述故障的原因和所述当前行驶状态,判断所述故障是否为可延迟处理故障;
    处理模块,用于若判定所述故障为所述可延迟处理故障,则对所述故障进行延迟处理。
PCT/CN2022/136388 2022-03-18 2022-12-02 燃料电池系统故障处理方法及装置 WO2023173815A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210270082.6A CN114361536B (zh) 2022-03-18 2022-03-18 燃料电池系统故障处理方法及装置
CN202210270082.6 2022-03-18

Publications (1)

Publication Number Publication Date
WO2023173815A1 true WO2023173815A1 (zh) 2023-09-21

Family

ID=81094529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136388 WO2023173815A1 (zh) 2022-03-18 2022-12-02 燃料电池系统故障处理方法及装置

Country Status (2)

Country Link
CN (1) CN114361536B (zh)
WO (1) WO2023173815A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114361536B (zh) * 2022-03-18 2022-06-14 北汽福田汽车股份有限公司 燃料电池系统故障处理方法及装置
CN115084594B (zh) * 2022-06-16 2024-03-12 塑云科技(深圳)有限公司 一种基于知识图谱的燃料电池诊断方法及系统
CN115563549B (zh) * 2022-10-27 2023-10-20 武汉理工大学 一种焊接缺陷成因诊断方法、系统及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345902A (ja) * 1999-06-01 2000-12-12 Isuzu Motors Ltd 電子燃料噴射装置
CN107134821A (zh) * 2017-04-18 2017-09-05 上海蔚来汽车有限公司 电动汽车及其低压蓄电池电量管理系统
CN110224160A (zh) * 2019-06-12 2019-09-10 北京亿华通科技股份有限公司 一种燃料电池系统故障诊断方法
CN111619355A (zh) * 2020-06-04 2020-09-04 汉腾新能源汽车科技有限公司 一种故障模式下的电动汽车下电控制方法
CN112373352A (zh) * 2020-11-12 2021-02-19 吉林大学 一种燃料电池系统故障诊断及容错控制方法
CN113561853A (zh) * 2021-06-08 2021-10-29 北京科技大学 燃料电池系统在线故障诊断方法及装置
CN114361536A (zh) * 2022-03-18 2022-04-15 北汽福田汽车股份有限公司 燃料电池系统故障处理方法及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2842922B2 (ja) * 1990-03-16 1999-01-06 マツダ株式会社 車両用故障診断装置
JPH04274456A (ja) * 1991-03-01 1992-09-30 Mita Ind Co Ltd 自己診断修復システムを備えた画像形成装置
KR100969083B1 (ko) * 2009-07-27 2010-07-09 현대자동차주식회사 멀티 동력원 및 멀티 구동계를 갖는 하이브리드 연료전지차량의 제어방법
CN102097636B (zh) * 2011-01-07 2013-07-17 武汉理工大学 一种燃料电池系统的故障诊断装置及方法
CN104122488A (zh) * 2014-08-13 2014-10-29 国家电网公司 一种输电线路故障校核诊断方法
CN105445591B (zh) * 2015-12-25 2019-02-12 大连尚能科技发展有限公司 变流器故障诊断方法以及变流器故障诊断装置
CN108674191B (zh) * 2018-05-21 2020-06-30 北斗航天汽车(北京)有限公司 电动汽车故障诊断方法、装置和电动汽车
CN110865628B (zh) * 2019-10-25 2020-12-25 清华大学深圳国际研究生院 基于工况数据的新能源汽车电控系统故障预测方法
CN112101597A (zh) * 2020-10-14 2020-12-18 辽宁电能发展股份有限公司 电动汽车租赁运营平台车辆故障预判系统、方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345902A (ja) * 1999-06-01 2000-12-12 Isuzu Motors Ltd 電子燃料噴射装置
CN107134821A (zh) * 2017-04-18 2017-09-05 上海蔚来汽车有限公司 电动汽车及其低压蓄电池电量管理系统
CN110224160A (zh) * 2019-06-12 2019-09-10 北京亿华通科技股份有限公司 一种燃料电池系统故障诊断方法
CN111619355A (zh) * 2020-06-04 2020-09-04 汉腾新能源汽车科技有限公司 一种故障模式下的电动汽车下电控制方法
CN112373352A (zh) * 2020-11-12 2021-02-19 吉林大学 一种燃料电池系统故障诊断及容错控制方法
CN113561853A (zh) * 2021-06-08 2021-10-29 北京科技大学 燃料电池系统在线故障诊断方法及装置
CN114361536A (zh) * 2022-03-18 2022-04-15 北汽福田汽车股份有限公司 燃料电池系统故障处理方法及装置

Also Published As

Publication number Publication date
CN114361536A (zh) 2022-04-15
CN114361536B (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
WO2023173815A1 (zh) 燃料电池系统故障处理方法及装置
US11501649B2 (en) Drone control method and device and drone
JP6356131B2 (ja) 車両の内燃エンジンの自動再始動中に機器の少なくとも1つの部品の給電を管理するためのシステムおよび方法
US8779698B2 (en) Automatic variable speed motor drive bypass
CN108528242B (zh) 中低压上下电控制方法、装置及电子设备
CN113738554B (zh) 一种柴油机的启动方法及相关装置
CN110356245B (zh) 一种电机过温保护方法及装置
CN110103669B (zh) 一种散热风扇的故障处理方法和装置
WO2016202084A1 (zh) 单板过温处理方法及装置
CN110194137B (zh) 真空泵温度控制方法、装置、车辆和存储介质
CN114614051B (zh) 燃料电池热管理控制方法、装置、介质、电子设备
CN103452684A (zh) 怠速起停控制方法及控制系统
CN109292573B (zh) 一种制动器线圈检测方法、装置、设备和存储介质
CN114322194B (zh) 空调末端装置的控制处理方法、装置和空调设备
CN110797841A (zh) 供电管理装置、电子设备及管理装置控制方法
CN114233674B (zh) 一种磁悬浮分子泵过载保护方法、装置及存储介质
CN112737023A (zh) 一种快充模式下的受电设备控制方法、装置及受电设备
KR101786308B1 (ko) 상용환경차량의 초퍼 제어 방법
CN114623084A (zh) 过温保护方法、装置、存储介质及电子设备
CN105241034B (zh) 用于空调器的控制方法及控制装置
CN109823177B (zh) 一种用于电动汽车的保护装置以及方法
CN113606029B (zh) 散热风扇的控制方法、控制装置、工程机械及存储介质
CN115419499B (zh) 车辆冷却回路排气加注方法、装置、设备及存储介质
CN115355087B (zh) 发动机失火故障报警方法、装置、电子设备及存储介质
CN117846843A (zh) 一种车辆怠速启停控制方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931826

Country of ref document: EP

Kind code of ref document: A1