WO2023173773A1 - Procédé de recyclage de batterie au lithium-ion et son application - Google Patents

Procédé de recyclage de batterie au lithium-ion et son application Download PDF

Info

Publication number
WO2023173773A1
WO2023173773A1 PCT/CN2022/131443 CN2022131443W WO2023173773A1 WO 2023173773 A1 WO2023173773 A1 WO 2023173773A1 CN 2022131443 W CN2022131443 W CN 2022131443W WO 2023173773 A1 WO2023173773 A1 WO 2023173773A1
Authority
WO
WIPO (PCT)
Prior art keywords
filtrate
battery
reaction
add
iron
Prior art date
Application number
PCT/CN2022/131443
Other languages
English (en)
Chinese (zh)
Inventor
陈鑫根
曹磊军
何然
黎亮
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2023173773A1 publication Critical patent/WO2023173773A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention belongs to the technical field of battery recycling, and specifically relates to a method for recycling and remanufacturing lithium ion batteries and its application.
  • lithium-ion battery recycling mainly uses the fire humidification method.
  • the fire method involves the risk of high-voltage direct current and combustion and explosion. Due to the high temperature treatment, there is the risk of thermite reaction. Metals such as copper and aluminum are oxidized, and the overall recovery rate is not high.
  • the separator and electrolyte in the battery are mainly incinerated and are not properly treated, causing secondary pollution to a certain extent.
  • the present invention aims to solve at least one of the technical problems existing in the above-mentioned prior art.
  • the present invention proposes a method and application for recycling lithium-ion batteries. This method does not produce hydrogen during the recycling process, can also achieve the separation of positive electrode materials/negative electrode materials from black powder, and uses phosphate to remove iron and prevent iron The colloid entrains valuable metals, improving the metal recovery rate.
  • a method for recycling lithium-ion batteries including the following steps:
  • step (3) also includes placing the graphite slag in an oxidizing agent solution for ultrasonic treatment, centrifugation, washing, drying, and then placing it in a reducing agent solution, adjusting the pH, ultrasonic reaction, and then flowing in rare earth. The gas is repaired to obtain battery-grade graphite.
  • the ultrasonic treatment time is 10-30 minutes.
  • the oxidizing agent solution is at least one of a perchloric acid solution and a nitric acid solution.
  • the reducing agent solution is at least one of an ethylenediamine solution and a hydrazine hydrate solution.
  • the pH adjustment is to adjust the pH to 7-9.
  • the rare gas is argon.
  • the repair temperature is 2600-3300°C, and the repair time is 3-24 hours.
  • step (1) also includes carrying out negative pressure fractionation of the first filtrate, then adding a chlorinating agent and mixing with the first solvent to perform chlorination, then adding a second solvent to mix, and heating for dechlorination to obtain Electrolyte.
  • the temperature of the negative pressure fractionation is 20-155°C, which are respectively 25°C-60°C, 60°C-70, 70°C-80°C, and 90°C-105 °C, 105°C ⁇ 155°C, depending on the electrolyte, the main ingredients are 25°C ⁇ 60°C (dimethyl carbonate), 60°C ⁇ 70°C (water), 70°C ⁇ 80°C (diethyl carbonate), 90 °C ⁇ 105 °C (N-methylpyrrolidone), 105 °C ⁇ 155 °C (ethylene (propylene) carbonate), the remaining residue of negative pressure separation is the electrolyte.
  • the chlorinating agent is at least one of hydrochloric acid, phosphorus trichloride, and benzoyl peroxide.
  • the first solvent is butynyl alcohol or chloroform.
  • the butynyl alcohol and chloroform are mixed in a volume ratio of 1:(1-2).
  • the second solvent is at least one of ethylenetriamine or toluene.
  • the heating dechlorination temperature is 250°C to 350°C, and the heating dechlorination time is 4 to 5 hours.
  • step (1) before mixing, the waste lithium-ion battery is physically discharged and then crushed.
  • the waste lithium ion battery is one of lithium nickel cobalt manganate, lithium cobalt oxide, and lithium manganate batteries.
  • the N-methylpyrrolidone (NMP) is obtained by crushing and sieving the waste lithium-ion battery cathode slurry, adding flocculant for flocculation, and filtering to obtain N-methylpyrrolidone (NMP). ).
  • the flocculant is one of PAM (polyacrylamide) and iron sulfate.
  • the specific steps of deorganizing are: placing the filter residue in a furnace with a heating rate of 2-6°C/min and raising the temperature to 200°C-300°C for deorganizing treatment for 1-4 hours. , that’s it.
  • the ferrous salt is one of ferrous sulfate and ferrous chloride.
  • the acid used in the acid leaching is one of sulfuric acid or hydrochloric acid.
  • the pH adjustment is to adjust the pH to 1.5 to 2.0.
  • the temperature of the mixing reaction is 60-90°C.
  • the oxidizing agent is one of hydrogen peroxide and sodium sulfite.
  • the phosphorus removing agent is calcium carbonate.
  • step (4) the impurities are removed by extraction.
  • the ions to be extracted react with the extraction agent to form an extraction compound that is insoluble in the water phase but easily soluble in the organic phase, thereby transferring from the aqueous phase into the organic phase. And by controlling the pH between 4.0 and 5.0, calcium and magnesium ions enter the oil phase, and nickel and cobalt ions enter the water phase, so that nickel and cobalt ions and calcium and magnesium ions are separated.
  • the extraction agent used in the extraction is P204.
  • the precipitating agent is sodium hydroxide.
  • the complexing agent is ammonia water.
  • step (4) also includes mixing the precursor and the lithium source and calcining to obtain the cathode material.
  • the lithium source is one of lithium hydroxide and lithium carbonate.
  • the invention also provides the application of the method in preparing batteries.
  • the method of the present invention first mixes waste battery powder and waste NMP (N-methylpyrrolidone), and utilizes the similar miscibility principle between NMP (N-methylpyrrolidone) and electrolyte and binder to effectively separate the battery solids With the electrolyte, black powder and current collector; then use salt washing to inhibit the generation of hydrogen and remove the copper and aluminum oxide layer, and achieve a good separation of the positive electrode material/negative electrode material from the black powder; finally, under controlled pH conditions, use phosphoric acid to eradicate Iron prevents the iron colloid from being entrained with valuable metals, improves the metal recovery rate, and obtains iron phosphate to prepare lithium iron phosphate.
  • the filtrate further removes phosphorus, and after extraction and impurity removal, the precursor is synthesized.
  • the precursor is further synthesized into the cathode material.
  • the present invention physically recovers the components of the lithium battery through negative pressure distillation.
  • the negative pressure distillation recovery avoids the thermite reaction in the conventional fire recovery process, and at the same time fully recovers the electrolyte in the lithium battery. It avoids the oxidation of copper and aluminum in the battery and improves its recycling quality.
  • the NMP (N-methylpyrrolidone) recovered by distillation can be reused, which greatly saves the cost of auxiliary materials; iron/ferrous ions are introduced during the salt washing process to reduce the Manganese oxide/hydrogen peroxide catalysis inhibits the generation of hydrogen in the whole process, removes the copper and aluminum oxide layer, and effectively separates the positive electrode material/negative electrode material from the black powder.
  • Figure 1 is a schematic process flow diagram of Embodiment 1 of the present invention.
  • liquid under temperature gradients of 70°C to 80°C, 80°C to 105°C, and 105°C to 155°C (after analysis and detection, the main components under each temperature condition are dimethyl carbonate, water/N-methylpyrrolidone, dicarbonate Ethyl ester, ethylene (propylene) carbonate), mix the resulting liquid with butynyl alcohol and concentrated hydrochloric acid in a volume ratio of 2:2:1, and then add cuprous chloride and phosphorus trichloride in a total proportion of 1.5% , chlorination reaction at room temperature for 4 hours, mix the reacted liquid with ethylenetriamine at a volume ratio of 1:1, heat it at 280°C for 4 hours, let it stand for stratification, and separate to obtain the electrolyte;
  • step (2) Place the filter residue in step (2) in a furnace with a heating rate of 3°C/min and heat it to 250°C for deorganization treatment for 2 hours. Then use an impact crusher to break it finely, separate out the metal shell, and then air Select, remove the separator, add ferrous sulfate and manganese dioxide to the residue and mix, carry out salt washing for 30 minutes, specific gravity separation, separate copper and aluminum, and obtain battery powder;
  • step (6) Place the graphite residue in step (5) into a mixture of perchloric acid and nitric acid, react ultrasonically for 2 hours, then centrifuge, wash, and vacuum dry at 100°C, and then place it in a mass fraction of 3g:1mL solid-liquid ratio into a mixed solution of 10% ethylenediamine and hydrazine hydrate (volume ratio is 1:1), and adjust the pH of the system to 9, react ultrasonic for 2 hours, then add argon gas, and crystallize the graphite at 2600°C. Grid, repair, and get battery-grade graphite;
  • FIG. 1 is a schematic process flow diagram of Embodiment 1 of the present invention.
  • waste battery powder and waste NMP N-methylpyrrolidone
  • NMP N-methylpyrrolidone
  • electrolyte Similar to the miscibility principle of the binder, it can effectively separate the battery solid from the electrolyte, black powder and current collector; then use salt washing to achieve a good separation of the positive electrode material/negative electrode material and the black powder; under controlled pH conditions, Phosphate is used to remove iron to prevent the iron colloid from being entrained with valuable metals, which improves the metal recovery rate.
  • the filtrate is removed from phosphorus, and then extracted and removed from impurities to synthesize the precursor.
  • the precursor is further synthesized into the cathode material.
  • the recovered cathode material, battery-grade graphite, electrolyte, and binder polyvinylidene fluoride, acetylene black, and N-methylpyrrolidone (NMP) are then assembled into a qualified battery.
  • NMP and water are not separated, and the NMP content is 70%.
  • liquid under temperature gradients of 70°C to 80°C, 80°C to 105°C, and 105°C to 155°C (after analysis and detection, the main components under each temperature condition are dimethyl carbonate, water/N-methylpyrrolidone, dicarbonate Ethyl ester, ethylene (propylene) carbonate), mix the resulting liquid with butynyl alcohol and concentrated hydrochloric acid in a volume ratio of 2:2:1, and then add cuprous chloride and phosphorus trichloride in a total proportion of 1.5% , chlorination reaction at room temperature for 4 hours, mix the reacted liquid with ethylenetriamine at a volume ratio of 1:1, heat it at 280°C for 4 hours, let it stand for stratification, and separate to obtain the electrolyte;
  • step (2) Place the filter residue in step (2) in a furnace with a heating rate of 3°C/min and heat it to 250°C for deorganization treatment for 2 hours. Then use an impact crusher to break it finely, separate out the metal shell, and then air Select, remove the separator, add ferrous sulfate and manganese dioxide to the residue and mix, carry out salt washing for 30 minutes, specific gravity separation, separate copper and aluminum, and obtain battery powder;
  • step (6) Place the graphite slag in step (5) in a mixture of perchloric acid and nitric acid, react ultrasonically for 2 hours, then centrifuge, wash, dry under vacuum at 100°C, and then place it in a mass fraction of 3g:1mL solid-liquid ratio into a mixed solution of 10% ethylenediamine and hydrazine hydrate (volume ratio is 1:1), and adjust the pH of the system to 9, react ultrasonic for 2 hours, then add argon gas, and crystallize the graphite at 2600°C. Grid, repair, and get battery-grade graphite;
  • liquid under temperature gradients of 70°C to 80°C, 80°C to 105°C, and 105°C to 155°C (after analysis and detection, the main components under each temperature condition are dimethyl carbonate, water/N-methylpyrrolidone, dicarbonate Ethyl ester, ethylene (propylene) carbonate), mix the resulting liquid with butynyl alcohol and concentrated hydrochloric acid in a volume ratio of 2:2:1, and then add cuprous chloride and phosphorus trichloride in a total proportion of 1.5% , chlorination reaction at room temperature for 4 hours, mix the reacted liquid with ethylenetriamine at a volume ratio of 1:1, heat it at 280°C for 4 hours, let it stand for stratification, and separate to obtain the electrolyte;
  • step (2) Place the filter residue in step (2) in a furnace with a heating rate of 3°C/min and heat it to 250°C for deorganization treatment for 2 hours. Then use an impact crusher to break it finely, separate out the metal shell, and then air Select, remove the separator, add ferrous sulfate and manganese dioxide to the residue and mix, carry out salt washing for 30 minutes, specific gravity separation, separate copper and aluminum, and obtain battery powder;
  • step (6) Place the graphite residue in step (5) into a mixture of perchloric acid and nitric acid, react ultrasonically for 2 hours, then centrifuge, wash, and vacuum dry at 100°C, and then place it in a mass fraction of 3g:1mL solid-liquid ratio into a mixed solution of 10% ethylenediamine and hydrazine hydrate (volume ratio is 1:1), and adjust the pH of the system to 9, react ultrasonic for 2 hours, then add argon gas, and crystallize the graphite at 2600°C. Grid, repair, and get battery-grade graphite;
  • the method for recycling lithium-ion batteries in this comparative example includes the following steps:
  • liquid under temperature gradients of 70°C to 80°C, 80°C to 105°C, and 105°C to 155°C (after analysis and detection, the main components under each temperature condition are dimethyl carbonate, water/N-methylpyrrolidone, dicarbonate Ethyl ester, ethylene (propylene) carbonate), mix the resulting liquid with butynyl alcohol and concentrated hydrochloric acid in a volume ratio of 2:2:1, and then add cuprous chloride and phosphorus trichloride in a total proportion of 1.5% , chlorination reaction at room temperature for 4 hours, mix the reacted liquid with ethylenetriamine at a volume ratio of 1:1, heat it at 280°C for 4 hours, let it stand for stratification, and separate to obtain the electrolyte;
  • step (2) Place the filter residue in step (2) in a furnace with a heating rate of 3°C/min and heat it to 250°C for deorganization treatment for 2 hours. Then use an impact crusher to break it finely, separate out the metal shell, and then air Select, remove the separator, add ferrous sulfate and manganese dioxide to the residue and mix, carry out salt washing for 30 minutes, specific gravity separation, separate copper and aluminum, and obtain battery powder;
  • the method for recycling lithium-ion batteries in this comparative example includes the following steps:
  • liquid under temperature gradients of 70°C to 80°C, 80°C to 105°C, and 105°C to 155°C (after analysis and detection, the main components under each temperature condition are dimethyl carbonate, water/N-methylpyrrolidone, dicarbonate Ethyl ester, ethylene (propylene) carbonate), mix the resulting liquid with butynyl alcohol and concentrated hydrochloric acid in a volume ratio of 2:2:1, and then add cuprous chloride and phosphorus trichloride in a total proportion of 1.5% , chlorination reaction at room temperature for 4 hours, mix the reacted liquid with ethylenetriamine at a volume ratio of 1:1, heat it at 280°C for 4 hours, let it stand for stratification, and separate to obtain the electrolyte;
  • step (2) Place the filter residue in step (2) in a furnace with a heating rate of 3°C/min and heat it to 250°C for deorganization treatment for 2 hours. Then use an impact crusher to break it finely, separate out the metal shell, and then air Select, remove the separator, separate by specific gravity, separate copper and aluminum, and obtain battery powder;
  • step (6) Place the graphite residue in step (5) into a mixture of perchloric acid and nitric acid, react ultrasonically for 2 hours, then centrifuge, wash, and vacuum dry at 100°C, and then place it in a mass fraction of 3g:1mL solid-liquid ratio into a mixed solution of 10% ethylenediamine and hydrazine hydrate (volume ratio is 1:1), and adjust the pH of the system to 9, react ultrasonic for 2 hours, then add argon gas, and crystallize the graphite at 2600°C. Grid, repair, and get battery-grade graphite;
  • the method for recycling lithium-ion batteries in this comparative example includes the following steps:
  • Liquid under temperature gradients of °C ⁇ 105 °C, 105 °C ⁇ 155 °C (after analysis and detection, the main components under each temperature condition are dimethyl carbonate, water/N-methylpyrrolidone, diethyl carbonate, and ethylene carbonate (propylene) ester), mix the resulting liquid with butynyl alcohol and concentrated hydrochloric acid in a volume ratio of 2:2:1, then add cuprous chloride and phosphorus trichloride with a total proportion of 1.5%, and perform a chlorination reaction at room temperature for 4 hours.
  • the reacted liquid is mixed with ethylenetriamine at a volume ratio of 1:1, heated at 280°C for 4 hours, left to separate, and separated to obtain an electrolyte;
  • step (3) Place the graphite slag in step (3) into a mixture of perchloric acid and nitric acid, react with ultrasonic for 2 hours, then centrifuge, wash, dry under vacuum at 100°C, and then place it in a mass fraction with a solid-to-liquid ratio of 3g:1mL. into a mixed solution of 10% ethylenediamine and hydrazine hydrate (volume ratio is 1:1), and adjust the pH of the system to 9, react ultrasonic for 2 hours, then add argon gas, and crystallize the graphite at 2600°C. Grid, repair, and get battery-grade graphite;
  • step (5) Combine the cathode material prepared in step (3), the battery grade graphite recovered in step (4), the electrolyte of step (1), the binder polyvinylidene fluoride, acetylene black, N-methylpyrrolidone ( NMP) assembled into lithium batteries.

Abstract

La présente invention appartient au domaine technique de la récupération de batterie. Sont divulgués un procédé de recyclage de batterie au lithium-ion et une application. Le procédé comprend les étapes suivantes consistant à : mélanger une batterie au lithium-ion usagée avec des déchets NMP, et réaliser une agitation ultrasonore et une séparation solide-liquide pour obtenir des résidus de filtre et un premier filtrat ; réaliser une désorganisation, un lavage au sel et un tri sur les résidus de filtre pour obtenir une poudre de batterie ; réaliser une lixiviation acide sur la poudre de batterie pour obtenir une solution de lixiviation et du laitier de graphite, prendre la solution de lixiviation, ajouter un agent oxydant pour subir une réaction, puis ajouter un agent d'élimination de fer contenant un radical phosphate pour subir une réaction de mélange, ajuster la valeur de pH, et réaliser une séparation solide-liquide pour obtenir du phosphate de fer et un second filtrat ; et ajouter un agent d'élimination de phosphore dans le second filtrat pour subir une réaction, effectuer une extraction et une élimination d'impuretés, et réaliser une réaction de précipitation pour obtenir un précurseur. Selon le procédé de la présente invention, de l'hydrogène n'est pas généré dans un processus de récupération, une séparation entre un matériau d'électrode positive/matériau d'électrode négative et une poudre noire peut être réalisée, du fer est éliminé à l'aide d'un radical phosphate, un métal de valeur est empêché d'être transporté par un colloïde de fer, et un taux de récupération de métal est amélioré.
PCT/CN2022/131443 2022-03-14 2022-11-11 Procédé de recyclage de batterie au lithium-ion et son application WO2023173773A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210248777.4A CN114583316A (zh) 2022-03-14 2022-03-14 锂离子电池回收再造的方法及其应用
CN202210248777.4 2022-03-14

Publications (1)

Publication Number Publication Date
WO2023173773A1 true WO2023173773A1 (fr) 2023-09-21

Family

ID=81774968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/131443 WO2023173773A1 (fr) 2022-03-14 2022-11-11 Procédé de recyclage de batterie au lithium-ion et son application

Country Status (2)

Country Link
CN (1) CN114583316A (fr)
WO (1) WO2023173773A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114583316A (zh) * 2022-03-14 2022-06-03 广东邦普循环科技有限公司 锂离子电池回收再造的方法及其应用
CN115057425B (zh) * 2022-08-18 2022-11-29 矿冶科技集团有限公司 一种废旧磷酸铁锂电池制备磷酸铁的方法
CN115072688B (zh) * 2022-08-18 2022-11-08 矿冶科技集团有限公司 一种废旧磷酸铁锂电池全组分回收方法
CN115608363B (zh) * 2022-12-15 2023-04-11 山东理工大学 一种利用废旧锂电池材料制备脱硝催化剂的方法
CN116837216B (zh) * 2023-09-01 2023-11-21 北京怀柔北珂新能源科技有限公司 一种锂离子电池回收正极粉料的除杂方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017145099A1 (fr) * 2016-02-24 2017-08-31 Attero Recycling Pvt. Ltd. Procédé de récupération d'oxyde de cobalt pur à partir de batteries au lithium-ion usagées ayant une teneur élevée en manganèse
CN111082043A (zh) * 2019-11-26 2020-04-28 宁夏百川新材料有限公司 一种废旧镍钴锰酸锂三元电池正极材料的回收利用方法
CN112103591A (zh) * 2020-10-20 2020-12-18 广州市豪越新能源设备有限公司 一种废旧锂电池电解液的无害化回收处理方法
CN113104866A (zh) * 2021-03-30 2021-07-13 中国石油大学(北京) 一种由磷酸亚铁锂废料制备电池级碳酸锂的方法
CN114583316A (zh) * 2022-03-14 2022-06-03 广东邦普循环科技有限公司 锂离子电池回收再造的方法及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101621312B1 (ko) * 2015-10-15 2016-05-16 이치헌 리튬이온2차전지의 자원재활용방법
CN109687051A (zh) * 2018-12-25 2019-04-26 云南能投汇龙科技股份有限公司 一种废旧锂离子电池的正极材料回收方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017145099A1 (fr) * 2016-02-24 2017-08-31 Attero Recycling Pvt. Ltd. Procédé de récupération d'oxyde de cobalt pur à partir de batteries au lithium-ion usagées ayant une teneur élevée en manganèse
CN111082043A (zh) * 2019-11-26 2020-04-28 宁夏百川新材料有限公司 一种废旧镍钴锰酸锂三元电池正极材料的回收利用方法
CN112103591A (zh) * 2020-10-20 2020-12-18 广州市豪越新能源设备有限公司 一种废旧锂电池电解液的无害化回收处理方法
CN113104866A (zh) * 2021-03-30 2021-07-13 中国石油大学(北京) 一种由磷酸亚铁锂废料制备电池级碳酸锂的方法
CN114583316A (zh) * 2022-03-14 2022-06-03 广东邦普循环科技有限公司 锂离子电池回收再造的方法及其应用

Also Published As

Publication number Publication date
CN114583316A (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
WO2023173773A1 (fr) Procédé de recyclage de batterie au lithium-ion et son application
CN111370800B (zh) 一种废旧磷酸铁锂正极材料的回收方法
EP3907182B1 (fr) Procédé de production de précurseur de lithium-fer-phosphate au moyen d'une batterie lithium-fer-phosphate mise au rebut en tant que matière première
CN111392750B (zh) 一种从废旧锂离子电池中除杂回收锂的方法
US9023130B2 (en) Method for separating positive-pole active substance and method for recovering valuable metals from lithium ion battery
CN107739830A (zh) 一种废旧磷酸铁锂电池正极材料的回收方法
JP2019160429A (ja) リチウム回収方法
US20210324495A1 (en) Process for the recycling of spent lithium ion cells
CN110783658A (zh) 一种退役动力三元锂电池回收示范工艺方法
JP2000015216A (ja) リチウムイオン2次電池からの正極活物質の再生方法
CN111370801B (zh) 一种废旧磷酸铁锂正极片的回收方法
CN109167118B (zh) 磷酸铁锂电池电极材料的综合利用方法
CN111778401B (zh) 基于电解硫酸钠的废旧三元动力锂离子电池绿色回收方法
JP2012106874A (ja) 水酸化リチウムの精製方法
WO2022252602A1 (fr) Procédé de lixiviation en toute sécurité d'une batterie usagée et son application
WO2023050805A1 (fr) Procédé d'élimination du fluor dans des batteries au lithium-ion
JP5568977B2 (ja) 電池からのマンガンの回収方法
JPH02103871A (ja) 廃鉛蓄電池から鉛を回収する方法
JP2020029613A (ja) リチウムの回収方法
WO2023193517A1 (fr) Procédé de traitement d'un alliage cuivre-cobalt de batterie au lithium usagée et son utilisation
CN115784188A (zh) 回收制备电池级磷酸铁的方法
JPH108150A (ja) 二次電池の金属箔塗着廃材の燃焼処理法
JPH09195071A (ja) 二次電池の金属箔塗着廃材からの金属箔剥離方法
CN115152078A (zh) 从废电极选择性去除铝的方法和使用该方法从废电极回收金属组分的方法
JPH1060551A (ja) ニッケルとカドミウムを含む廃棄物から鉄を分離する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931785

Country of ref document: EP

Kind code of ref document: A1