WO2023170882A1 - 鋼板の製造方法、トリミング装置、製造装置、圧延鋼板、コイル材、及びブランク材 - Google Patents

鋼板の製造方法、トリミング装置、製造装置、圧延鋼板、コイル材、及びブランク材 Download PDF

Info

Publication number
WO2023170882A1
WO2023170882A1 PCT/JP2022/010686 JP2022010686W WO2023170882A1 WO 2023170882 A1 WO2023170882 A1 WO 2023170882A1 JP 2022010686 W JP2022010686 W JP 2022010686W WO 2023170882 A1 WO2023170882 A1 WO 2023170882A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel plate
less
lubricating oil
oil
rotary blade
Prior art date
Application number
PCT/JP2022/010686
Other languages
English (en)
French (fr)
Inventor
祐一郎 平野
剛介 池田
清志 山本
幹夫 田中
義彦 小野
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to PCT/JP2022/010686 priority Critical patent/WO2023170882A1/ja
Priority to JP2023515335A priority patent/JP7355272B1/ja
Publication of WO2023170882A1 publication Critical patent/WO2023170882A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D19/00Shearing machines or shearing devices cutting by rotary discs
    • B23D19/04Shearing machines or shearing devices cutting by rotary discs having rotary shearing discs arranged in co-operating pairs
    • B23D19/06Shearing machines or shearing devices cutting by rotary discs having rotary shearing discs arranged in co-operating pairs with several spaced pairs of shearing discs working simultaneously, e.g. for trimming or making strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/10Arrangements for cooling or lubricating tools or work

Definitions

  • the present disclosure relates to manufacturing of a steel plate, including cutting technology and cutting process for edge portions (ends in the plate width direction) of a steel plate, a manufactured steel plate, and a coil material and a blank material made of the steel plate.
  • the present disclosure is a technique suitable for manufacturing a high-tensile steel plate (high tensile strength material) having a tensile strength of 590 MPa or more and a plate thickness of 0.4 mm or more, for example.
  • hot-dip galvanizing plants and cold rolling plants have a process (equipment) for trimming the edges (ends in the width direction) of steel sheets to match the width of the product.
  • equipment for trimming the edges (ends in the width direction) of steel sheets to match the width of the product.
  • demand for high-strength steel sheets has been increasing in fields such as automobiles and building materials.
  • a process of cutting the high-tensile steel plate with a rotating blade may be performed.
  • a high-tensile steel plate hereinafter also referred to as a high-strength steel plate
  • Patent Document 1 there is a method of dealing with this by applying cutting oil (lubricating oil) to the rotating rotary blade, as described in Patent Document 1, for example.
  • cutting oil lubricating oil
  • Patent Document 1 cutting oil is sprayed directly onto the rotary blade to provide lubricity between the blade and the steel plate, thereby reducing friction.
  • the present invention focuses on the above-mentioned points, and aims to further improve the frequency of blade chipping and increase the yield of steel plate manufacturing.
  • the present invention solves the lack of oil supply by directly applying (adhering) lubricating oil to the steel plate before trimming, and reduces the frequency of trimmer blade chipping by reducing friction.
  • the steel plate manufactured by applying the method of the present invention it is possible to suppress the adverse effects of iron powder caused by cutting with a rotary blade with a chipped edge, and it is possible to suppress the adverse effects of iron powder caused by cutting with a rotary blade with a chipped edge. This technology has been established to significantly suppress the occurrence of scratches caused by such processes.
  • one aspect of the present invention is a method for manufacturing a steel plate that includes a process of cutting an edge portion of a steel plate with a rotary blade, wherein in the process of cutting the steel plate with the rotary blade, before cutting, The gist of the method is to apply lubricating oil to the surface of the steel plate at the position to be cut by the rotary blade.
  • an aspect of the present invention is a trimming device that cuts the edge portion of a conveyed steel plate with a rotary blade, in which lubricating oil is applied upstream of the rotary blade at a position of the steel plate to be cut by the rotary blade.
  • This is a steel plate manufacturing device equipped with a lubricating oil deposition device.
  • one aspect of the present invention is a rolled steel plate, a coil material, and a blank material that have a smooth end surface (first cut surface) in the widthwise cut surface.
  • a rolled steel plate refers to a steel plate manufactured on a production line that includes a rolling process.
  • at least one end surface in the width direction is a cut surface.
  • the aspect of the present invention it becomes possible to supply lubricating oil between the blade and the steel plate more reliably, further improve the frequency of chipping of the blade, and improve the yield of steel plate manufacturing. Further, according to the aspect of the present invention, it is possible to provide a steel plate or a coil material having a smooth end surface (first cut surface) on the cut surface of the edge (width direction end portion). As a result, according to the aspect of the present invention, it is possible to provide a steel plate or the like in which peeling of iron powder is suppressed and indentation scratches on a steel plate manufacturing line or an automobile press line are suppressed.
  • FIG. 1 is a side view for explaining a steel plate trimming device according to an embodiment of the present invention.
  • FIG. 1 is a plan view for explaining a steel plate trimming device according to an embodiment of the present invention. It is a side view explaining another example of composition of a lubricating oil adhesion device. SEM observation of a sheared surface (cut surface), (a) is the case of Comparative Example 2, and (b) is the case of Comparative Example 7.
  • FIG. 3 is a diagram showing a sheared surface (cut surface) observed by SEM.
  • the present embodiment can be applied to a high-tensile steel plate, particularly a high-tensile steel plate with a tensile strength of 590 MPa or more and a plate thickness of 0.4 mm or more, as the processing target.
  • This embodiment may be applied to, for example, a high-strength steel plate having a plate thickness of 4.0 mm or less.
  • steel plates cut by the rotary blade include GI, GA, EG, CRS, tin-plated steel plates, Zn-based plated steel plates, and Al-based plated steel plates.
  • the steel plate is not limited to this, and any steel plate can be used.
  • This embodiment is also applicable to, for example, a steel plate provided with a solid lubricant film on GI or GA, or a steel plate provided with an organic coating.
  • composition of the high-strength steel sheet to be treated in this embodiment is, for example, in mass %: C: 0.03% or more and 0.35% or less, Si: 0.01% or more and 3.00% or less, Mn : 0.50% or more and 3.50% or less, Al: 0.001% or more and 1.000% or less, P: 0.100% or less, S: 0.0100% or less, N: 0.0200% or less. , the remainder consists of Fe and unavoidable impurities.
  • % indication regarding a component shall mean mass %.
  • C 0.03% or more and 0.35% or less C has the effect of increasing the strength of the steel strip.
  • 0.03% or more of C is required.
  • the amount of C may be set to 0.03% or more and 0.35% or less.
  • the C content is preferably 0.10% or more. Further, from the viewpoint of obtaining a high-strength material with a tensile strength of 1320 MPa or more, the C content is preferably 0.13% or more.
  • Si is an effective element for strengthening steel and improving ductility, and for this purpose Si needs to be 0.01% or more.
  • Si if Si exceeds 3.00%, Si forms oxides on the surface and the appearance of the plating deteriorates. Therefore, the amount of Si may be set to 0.01% or more and 3.00% or less.
  • Mn is an element useful for improving hardenability and increasing the strength of the steel plate. This effect cannot be obtained when Mn is less than 0.50%.
  • Mn content exceeds 3.50%, Mn segregation occurs and workability decreases. Therefore, the Mn content is desirably 0.50% or more and 3.50% or less. From the viewpoint of obtaining a high-strength material with a tensile strength of 1180 MPa or more, the Mn content is preferably 1.00% or more.
  • Mn be 2.20% or more.
  • Al 0.001-1.000%
  • Al is added for the purpose of deoxidizing molten steel, but if the Al content is less than 0.001%, this purpose will not be achieved.
  • Al exceeds 1.000%, Al forms oxides on the surface, deteriorating the plating appearance (surface appearance). Therefore, the amount of Al may be set to 0.001% or more and 1.000% or less.
  • P 0.100% or less
  • P is one of the elements that is unavoidably contained, and in order to reduce P to less than 0.005%, there is a concern that the cost will increase, so P should be 0.005%. The above is desirable.
  • P increases, slab manufacturability deteriorates.
  • the inclusion of P suppresses the alloying reaction and causes plating unevenness. In order to suppress these, it is necessary to reduce the P content to 0.100% or less. Therefore, the amount of P may be set to 0.100% or less. Preferably it is 0.050% or less.
  • S is an element that is unavoidably contained in the steelmaking process. However, if it is contained in a large amount, weldability deteriorates. Therefore, S may be set to 0.0100% or less. If S is to be less than 0.0002%, there is a concern that the cost will increase, so S is preferably 0.0002% or more.
  • N is an element that is unavoidably contained in the steelmaking process. However, if it is contained in a large amount, ductility deteriorates. Therefore, N may be set to 0.0200% or less.
  • the lower limit is not limited, but since reducing it to 0.0005% or less requires a great deal of cost, the lower limit is about 0.0005%.
  • the steel plate to be treated in this embodiment has the following objectives: B: 0.0002% to 0.0050%, Nb: 0.005% to 0.100%, Ti: 0.005% to 0. .200% or less, Cr: 0.005% or more and 1.000% or less, Mo: 0.005% or more and 1.000% or less, Cu: 0.005% or more and 1.000% or less, Ni: 0.005% 1.000% or more, Sb: 0.001% or more and 0.200% or less, Zr: 0.005% or more and 0.100% or less, V: 0.005% or more and 0.200% or less, W: 0.
  • B 0.0002% or more and 0.0050% or less
  • B has a hardening promotion effect when it is 0.0002% or more.
  • the amount of B may be set to 0.0002% or more and 0.0050% or less.
  • B is preferably 0.0005% or more, and from the viewpoint of reducing inclusions, B is preferably 0.0025% or less.
  • Nb has the effect of adjusting strength (strength improvement) at 0.005% or more.
  • the amount of Nb may be set to 0.005% or more and 0.100% or less. It is more preferable to add Nb in an amount of 0.01% or more from the viewpoint of obtaining the effect of increasing strength by refining the structure and improving delayed fracture resistance. Further, from the viewpoint of reducing inclusions, it is more preferable that Nb be 0.06% or less.
  • Ti has the effect of adjusting strength (strength improvement) at 0.005% or more.
  • strength stress improvement
  • Ti exceeds 0.200%, inclusions increase, impairing castability and ductility of the steel sheet. Moreover, it causes deterioration of chemical conversion treatment properties. Therefore, when containing Ti, the amount of Ti may be set to 0.005% or more and 0.200% or less. From the viewpoint of obtaining the effect of increasing strength by refining the structure and improving delayed fracture resistance, it is more preferable to add 0.01% or more of Ti. Further, from the viewpoint of reducing inclusions, it is more preferable that Ti is 0.15% or less.
  • the amount of Cr may be set to 0.005% or more and 1.000% or less.
  • Mo 0.005% or more and 1.000% or less Mo can provide the effect of strength adjustment (strength improvement) at 0.005% or more.
  • strength adjustment strength improvement
  • the amount of Mo may be set to 0.0005% or more and 1.000% or less.
  • Cu 0.005% or more and 1.000% or less
  • Cu is 0.005% or more to improve delayed fracture resistance.
  • the amount of Cu may be set to 0.005% or more and 1.000% or less. From the viewpoint of improving delayed fracture resistance, it is more preferable to add 0.05% or more of Cu. Further, from the viewpoint of preventing deterioration of chemical conversion treatment properties, it is more preferable that Cu be 0.2% or less.
  • Ni 0.005% or more and 1.000% or less
  • the Ni amount may be set to 0.005% or more and 1.000%.
  • Sb can be contained from the viewpoint of suppressing decarburization in a region of several tens of microns on the steel plate surface caused by nitridation, oxidation, or oxidation of the steel plate surface.
  • Sb 0.001% or more.
  • Sb exceeds 0.200%, toughness deteriorates. Therefore, when containing Sb, the amount of Sb may be set to 0.001% or more and 0.200% or less. From the viewpoint of improving fatigue resistance characteristics, it is preferable to add Sb in an amount of 0.002% or more, and from the viewpoint of obtaining high toughness, it is more preferable to add Sb to 0.100% or less.
  • Zr has the effect of increasing strength when it is 0.005% or more.
  • Zr exceeds 0.100%, inclusions increase, impairing castability and ductility of the steel sheet. Therefore, when containing Zr, the amount of Zr may be set to 0.005% or more and 0.100% or less.
  • V 0.005% or more and 0.200% or less
  • V the amount of V may be set to 0.005% or more and 0.200% or less.
  • W 0.005% or more and 0.100% or less W has the effect of increasing strength when it is 0.005% or more.
  • W exceeds 0.100%, inclusions increase, impairing castability and ductility of the steel sheet. Therefore, when containing W, the amount of W may be set to 0.005% or more and 0.100% or less.
  • Sn can be contained from the viewpoint of suppressing decarburization in a region of several tens of microns on the steel plate surface caused by nitridation, oxidation, or oxidation of the steel plate surface.
  • Sn 0.001% or more.
  • Sn exceeds 0.200%, toughness deteriorates. Therefore, when Sn is contained, the amount of Sn may be set to 0.001% or more and 0.200% or less. From the viewpoint of improving fatigue resistance properties, it is preferable to add Sn in an amount of 0.002% or more, and from the viewpoint of obtaining high toughness, it is more preferable to add Sn in an amount of 0.100% or less.
  • Ca has the effect of making inclusions spherical and improving bendability and delayed fracture resistance. From the viewpoint of obtaining such an effect, Ca can be added in an amount of 0.0002% or more. However, adding a large amount of Ca leads to an increase in cost, so it is preferable that the Ca content is 0.0050% or less.
  • REM (Rare Earth Metal): 0.0002% or more and 0.0050% or less REM has the effect of making inclusions spherical and improving bendability and delayed fracture resistance. From the viewpoint of obtaining such an effect, REM can be added in an amount of 0.0002% or more. However, adding a large amount of REM leads to an increase in cost. Therefore, REM is preferably 0.0050% or less.
  • Mg has the effect of spheroidizing the shape of inclusions and improving bendability and delayed fracture resistance. From the viewpoint of obtaining such effects, it is preferable to add Mg in an amount of 0.0002% or more. However, since adding a large amount of Mg leads to an increase in cost, it is preferable that Mg be 0.0050% or less.
  • a steel plate having the composition described above can be manufactured by any known or arbitrary method.
  • a slab having the above-mentioned composition is heated and hot-rolled to form a hot-rolled steel sheet, and after this hot-rolled steel sheet is pickled, the hot-rolled steel sheet is cold-rolled as necessary to form a cold-rolled steel sheet. can do.
  • the above-mentioned surface treatment may be performed on the surface of the steel plate.
  • FIG. 1 is a diagram illustrating the configuration of a trimming device provided in trimmer equipment. As shown in FIG. 1, in this embodiment, a steel plate 1 that has been subjected to plating and other surface treatments is transported to a trimmer equipment along a transport line, and the ends (edges) of the steel plate 1 in the width direction are transported along a transport line. ) is trimmed.
  • the trimming device of this embodiment includes a rotary blade 2, a press roll 7, and a lubricating oil application device. Further, the trimming device of this embodiment includes a film thickness equalizing device. It is not necessary to have at least one of the presser roll 7 and the film thickness equalizing device. In addition, in this embodiment, the presser roll 7 also serves as a film thickness equalization device.
  • the rotary blade 2 has a pair of rotary blades 2A and 2B (an upper blade 2A and a lower blade 2B) that can face each other across the steel plate 1, and the pair of rotary blades 2A, 2B is configured to cut the steel plate 1 by sandwiching it from the thickness direction.
  • the cutting position is the contact position between the cutting edges of the pair of rotary blades 2A and 2B.
  • the symbol L in FIG. 2 indicates the position of the steel plate 1 before cutting, which is assumed to pass through the cutting position.
  • the reference numeral 10 in FIGS. 1 and 2 indicates lubricating oil deposited on the steel plate 1 by the lubricating oil depositing device.
  • the pair of rotary blades 2A and 2B are set in a forward direction in which the direction of rotation at the cutting position is the same as the conveyance direction.
  • the rotary blade 2 performs a trim process of cutting the edge portion (end portion) of the steel plate 1 according to the width of the product, for example, before the delivery inspection.
  • the lubricating oil adhesion device is disposed upstream of the installation position of the rotary blade 2 in the steel sheet conveyance direction, that is, at a position where it can face the surfaces 1a and 1b of the steel sheet 1 before cutting.
  • the lubricating oil application device is a device that applies lubricating oil 10 in advance to an area on the surfaces 1a and 1b of the steel plate 1 that includes the position to be cut by the rotary blade 2 (the position indicated by the symbol L). It is.
  • the lubricating oil deposition device of this embodiment has a spraying device 3 (spray nozzle), and the spraying device 3 sprays lubricating oil toward the surfaces 1a and 1b of the steel plate 1, thereby spraying the lubricating oil toward the surfaces 1a and 1b of the steel plate 1. Apply lubricating oil to 1b.
  • the spray device 3 is connected to an oil tank 4 that stores lubricating oil, and an air supply device 5 such as a compressor that supplies air.
  • the spray device 3 mixes air with the lubricating oil at the tip of the nozzle in response to a command from the controller 6, turns the lubricating oil into a mist, and directs the atomized lubricating oil toward the surfaces 1a and 1b of the steel plate 1. It is configured so that it can be sprayed.
  • the water content of the lubricating oil is preferably less than 3000 ppm. If left as is, the lubricating oil will remain attached to the end of the steel plate after being cut by the rotary blade 2. If the attached lubricating oil has a high water content of 3000 ppm or more, the lubricating oil may not be lubricated during the period from cutting with the rotary blade 2 until the steel plate is processed into products by automobile manufacturers, home appliance manufacturers, etc. The moisture contained in the oil may cause rust on the flat or cut surfaces of the steel plate. This makes it difficult to use this embodiment for manufacturing steel sheets for automobiles and home appliances.
  • the water content of the lubricating oil is 2000 ppm or less.
  • the lower limit of the water content of the lubricating oil is 0 ppm.
  • the lower limit of the water content of the lubricating oil is preferably 20 ppm or more.
  • "ppm" in this specification represents weight ppm.
  • the amount of spraying is synonymous with the amount of adhesion to the surface of the steel plate.
  • Manufacturers that process steel plates in the automobile manufacturing industry for example, press a steel plate or a blank material trimmed from a steel plate, and then remove oil (press oil) that has adhered to the steel plate before chemical conversion treatment or electrodeposition painting.
  • a cleaning process is included to degrease the oil (and anti-corrosion oil) with an alkaline cleaning solution. At this time, the greater the amount of oil deposited, the more the degreasing performance in the degreasing process deteriorates, which adversely affects chemical conversion treatment properties and paintability.
  • the amount of lubricating oil sprayed is adjusted so that the lubricating oil can be applied (adhered) continuously and evenly to the edge portions of the surfaces 1a and 1b of the steel plate 1.
  • the spray amount is set as shown in equation (1) below in order to ensure a certain or higher oil coating density on the surfaces 1a and 1b of the steel plate 1. That is, the lower limit of the spray amount is set, for example, by the following equation (1), depending on the conveyance speed of the steel plate. More preferably, the lower limit value of the spray amount is set using equation (2).
  • the lower limit of the spray amount defined by equation (1) corresponds to an oil coating density of 1.00 mL/m 2 .
  • the oil application density is the amount of lubricant applied to the steel plate surface per unit area.
  • the lower limit of the spray amount is within this range.
  • the lower limit of the spray amount defined by equation (2) corresponds to an oil coating density of 7.24 mL/m 2 .
  • the above-mentioned oil coating density be applied to the steel plate surface on the upper blade side (upper surface) where blade chipping initially occurs. It is more preferable that both the steel plate surfaces on the upper blade side and the lower blade side have the above-mentioned oil coating density.
  • the specifications in equations (1) and (2) are based on the premise that the width of the spray area (adhesion area) is within a range of 0.04 m from the edge of the steel plate. If the widths are different, the spray amount can be determined by substituting that value in place of 0.04 m. [mpm] is the passing distance (m) of the steel plate per minute. When the width of the spray area is 0.01 m and the conveyance speed is 40 mpm, the equation (1) gives 0.02 L/hr, and the equation (2) gives 0.17 L/hr. These values can be considered as the lower limit of the spray amount for excellent suppression of blade chipping, and the lower limit of the spray amount for further suppressing blade chipping. Note that the value when converted to oil coating density is as described above.
  • the spray amount be as small as possible. From this point of view, it is desirable that the total amount of lubricating oil sprayed on both sides be less than 60 L/hr. The reason why the spray amount is the sum of both sides is because the oil flows out from both the upper and lower surfaces, and in the case of a coil, the oil from both sides flows out as a unit.
  • a total spray amount of less than 60 L/hr on both sides corresponds to an oil application density of less than 15 mL/m 2 per side when spraying on both sides. When spraying only on one side, it corresponds to an oil application density of less than 30 mL/m 2 .
  • the width of the spray area was 0.15 m
  • the conveyance speed of the steel plate was 230 mpm. This condition corresponds to the upper limit of the width of the spray area and the conveyance speed of the steel plate.
  • the oil application density is preferably 10 mL/m 2 or less. This is because the degreasing time is significantly affected by the oil density.
  • An oil application density of 10 mL/m 2 or less corresponds to a lubricating oil spray amount of 20 L/hr or less in the case of single-sided spraying, and a lubricant spray amount of 40 L/hr or less in the case of double-sided spraying.
  • the amount of lubricating oil sprayed is the amount of lubricating oil calculated assuming that the width of the spray area is 0.15 m and the conveyance speed of the steel plate is 230 mpm.
  • the oil application density be 5 mL/m 2 or less. In the case of single-sided spraying, this corresponds to a lubricant spray amount of 10 L/hr or less, and in the case of double-sided spraying, this corresponds to a lubricant spray amount of 20 L/hr or less.
  • the lubricating oil is not sprayed as it is, but is supplied in the form of a mist. Therefore, the supply of lubricating oil is naturally suppressed.
  • the range of the dropping amount is the same as in the case of spraying described above.
  • calculation may be made by replacing (width of the spray area) with (width of the dropping area) in equations (1) and (2).
  • the spray pressure is, for example, 0.09 MPa or more and 0.12 MPa or less. There is no particular limitation on the spray pressure as long as it is set so that oil can be uniformly applied to the defined spray area.
  • the spray area has an area of ⁇ 20 mm in the width direction of the steel plate 1 with reference to the position L, which is the cutting position. If the width of the spray area (spray width) is less than 40 mm, a sufficient lubrication area cannot be secured at the cutting position, and there is a risk of blade chipping. There are no particular regulations regarding the upper limit of the width of the spray area. However, in the case of excessive oil application, there is a concern that the oil 10 adhering to the edge portion of the steel plate 1 will fall from the steel plate and have an adverse effect on subsequent line equipment, so it is desirable that the width of the spray area be as small as possible.
  • the width of the spray area is ⁇ 100 mm (200 mm width) or less.
  • the width of the spray area is preferably ⁇ 40 mm (80 mm width) or less by precisely controlling the density of lubricant applied to the steel plate. Further, the width of the spray area is more preferably ⁇ 20 mm (40 mm width) or less, and even more preferably ⁇ 10 mm (20 mm width) or less.
  • the distance between the spraying part of the spraying device 3 and the steel plate 1 is preferably 40 mm or more. If it is less than 40 mm, there is a risk that the nozzle portion of the spray device 3 may interfere with the steel plate 1 when the steel plate 1 having a bad shape passes through. There is no particular regulation regarding the upper limit of the distance between the spraying part of the spraying device 3 and the steel plate 1. As the distance increases, the density of the lubricating oil adhering to the surfaces 1a and 1b of the steel plate 1 (oil coating density) decreases, and the width of the spray area increases.
  • the injection nozzle is arranged to face the upper surface 1a and the lower surface 1b of the steel plate 1, and is configured to apply lubricating oil to the position to be cut by the rotary blade 2 on both the front and back surfaces of the steel plate 1. .
  • the injection nozzle may be arranged only on one of the front and back surfaces 1a and 1b of the steel plate 1.
  • the viscosity of the lubricating oil is preferably 3 mm 2 /s or more and 130 mm 2 /s or less when the liquid temperature of the lubricating oil is 40°C.
  • the speed is less than 3 mm 2 /s, the cutting surface of the rotary blade and the steel plate act with high surface pressure. Therefore, there is a risk that the rotary blade and the steel plate will come into direct contact due to lack of oil.
  • the viscosity of the lubricating oil is 8 mm 2 / s or more is more preferable.
  • the viscosity of the lubricating oil is greater than 130 mm 2 /s, after the lubricating oil adheres to the steel plate surface, diffusion and permeation on the steel plate surface will be insufficient, and there is a possibility that the lubricating oil may become locally insufficient. Furthermore, in the process of the rotary blade cutting the steel plate, there is a risk that the supply of lubricating oil to the side surface of the rotary blade may be insufficient, and the side surface of the rotary blade may come into direct contact with the steel plate. Therefore, the viscosity of the lubricating oil is preferably 130 mm 2 /s or less.
  • the viscosity of the lubricating oil is 100 mm 2 /s or less when the liquid temperature of the lubricating oil is 40°C.
  • the viscosity can be measured using, for example, a rotational viscometer.
  • the type of lubricating oil is not particularly specified.
  • examples of the lubricating oil include press oil, antirust oil, cutting oil, and the like. In order to stably suppress blade chipping even when cutting high-strength steel plates, extreme pressure additives may be added to these lubricating oils.
  • the average diameter of the mist after spraying is, for example, in the range of 1 ⁇ m or more and 2000 ⁇ m or less. There is no particular lower limit on the average diameter of the mist. However, if the particle size is too small, it will scatter to the surroundings and the adhesion rate to the steel plate will decrease. Additionally, there are concerns that the spilled oil will spread to the surrounding area, creating a risk from a disaster prevention perspective. There is no particular upper limit on the average diameter of the mist. However, there is a concern that the amount of adhesion will be uneven, making the blade more likely to chip. From the viewpoint of suppressing blade chipping, a more preferable range of the average diameter of the mist is 100 ⁇ m or less.
  • the holding time is preferably 1 second or more.
  • the diameter of the attached lubricating oil particles is large, it takes a long time for the oil particles attached to the steel plate surface to be dispersed and uniformly adhered to the steel plate surface. For this reason, when the particle size of the lubricating oil exceeds 2000 ⁇ m, it is desirable that the holding time be 3 seconds or more.
  • the constituent materials of the rotary blade there are no particular regulations regarding the constituent materials of the rotary blade.
  • the constituent material of the rotary blade include carbon tool steel, alloy tool steel, high speed tool steel, and the like. From the viewpoint of stably suppressing tooth chipping when cutting high-tensile steel plates having a tensile strength of 1180 MPa or more, it is preferable to use alloy tool steel or high-speed tool steel as the constituent material of the rotary blade. Further, it is more preferable that the surface of the rotary blade is subjected to surface hardening treatment such as quenching treatment, nitriding/carburizing, TD treatment, or surface coating treatment such as PVD, CVD, plating, thermal spraying, etc.
  • surface hardening treatment such as quenching treatment, nitriding/carburizing, TD treatment, or surface coating treatment such as PVD, CVD, plating, thermal spraying, etc.
  • the pair of presser rolls 7 are arranged so as to be able to grip the steel plate 1 with the steel plate 1 in between.
  • the pair of presser rolls 7 are set between the rotary blade 2 and the lubricating oil application position by the lubricating oil application device in the conveyance direction of the steel plate 1 .
  • the area of the steel plate 1 gripped by the pair of pressure rolls 7 is set to include at least the position of the steel plate 1 to be cut by the rotary blade 2.
  • This pair of presser rolls 7 suppresses vibrations of the steel plate 1 and enables cutting by the rotary blade 2 to be performed more stably. It also has the role of pressing and stretching the lubricating oil 10 adhering to the steel plate 1 against the surfaces 1a and 1b of the steel plate 1, making the adhering lubricating oil 10 uniform, and increasing the degree of adhesion to the steel plate.
  • the film thickness equalizing device is a device that is disposed between the rotary blade and the lubricating oil application position, and is a device that equalizes the film thickness of the lubricating oil deposited on the surface of the steel plate.
  • the film thickness equalizing device can uniformly adjust the amount of lubricant applied to the area where the lubricant is applied, especially near the cut point (width of 10 to 100 mm). It is a device for It is preferable to use this film thickness equalization device to equalize the film thickness after the lubricating oil is applied to the steel plate and before it is cut by the rotary blade.
  • the film thickness equalizing device is installed between the lubricating oil spraying device or oil dripping device and the rotary blade.
  • a pair of presser rolls 7 are illustrated as an example of the film thickness equalizing device.
  • a brush, a flat member or a roll-shaped member made of one or more of felt, rubber, resin, and metal can be used.
  • These film thickness equalizing devices may be fixed, or may be rotatable or swingable for the purpose of making the film thickness of the lubricating oil more uniform. Any structure may be used as long as the amount of lubricant applied to the surface of the steel plate is made uniform by pressing or scratching the surface of the lubricant. Uneven distribution of lubricating oil can lead to chipping of the blade.
  • This embodiment has felt 9 impregnated with lubricating oil.
  • the felt 9 supplies lubricating oil directly to the rotary blade 2.
  • the felt 9 is supplied with lubricating oil as appropriate. Since the lubricating oil directly supplied to the rotary blade 2 is scattered due to the centrifugal force of the rotation of the rotary blade 2, the amount of lubricating oil supplied by the spray device 3 is larger than the amount of lubricating oil supplied by the felt 9. It is preferable to do so. In this embodiment, this felt 9 may be omitted.
  • the clearance between the upper blade 2A and the lower blade 2B of the rotary blade 2 is preferably in the range of 5% to 19% of the thickness of the steel plate 1.
  • the clearance between the upper blade 2A and the lower blade 2B of the rotary blade 2 is preferably in the range of 5% to 19% of the thickness of the steel plate 1.
  • the clearance between the upper blade 2A and the lower blade 2B of the rotary blade 2 is more preferably in the range of 5% or more and 14% or less from the viewpoint of suppressing blade chipping of a high-tensile steel plate having a tensile strength of 980 MPa or more. Furthermore, from the viewpoint of suppressing edge chipping of high-tensile steel plates having a tensile strength of 1180 MPa or more, a range of 5% or more and 13% or less is more preferable.
  • the vertical contact angle between the upper blade and the steel plate in the rotation direction of the rotary blade 2 is preferably 3 degrees or more and 13 degrees or less.
  • a contact angle of about 14 degrees tends to cause chipping of the blade, which was not a problem with conventional soft steel plates. If the contact angle exceeds 13 degrees, the contact area between the rotary blade 2 and the steel plate 1 becomes small, and it becomes necessary to apply bending deformation to the cutting chips, resulting in an increase in deformation resistance.
  • the angle formed between the rotational direction of the rotary blade 2 and the conveyance direction of the steel plate is preferably 0.01 degree or more and 0.5 degree or less in the direction of the opening angle toward the rear side of conveyance.
  • the angle formed between the rotation direction of the rotary blade 2 and the conveyance direction of the steel plate 1 should be 0.01 degrees or more and 0.5 degrees or less in the direction of the opening angle toward the rear side of the conveyance. is preferred.
  • the lubricating oil deposition device shown in FIG. 3 includes an oil dripping device 20, which directs lubricating oil supplied from a reserve tank 21 toward the upper surface 1a of a steel plate 1 in accordance with a command from a controller 22. It is designed to drip continuously. Note that lubricating oil cannot be dripped onto the lower surface 1b of the steel plate 1.
  • the spray device 3 is further arranged to face the lower surface 1b of the steel plate 1, and that the lubricating oil is also sprayed onto the lower surface 1b.
  • the oil droplets 23 dropped onto the surface 1b of the steel plate 1 along the conveyance direction are stretched by the press roll 7, and the oil droplets adhering to the steel plate 1 are made uniform along the conveyance direction.
  • the lubricating oil application device may include a brush, and the lubricating oil may be applied to the steel plate 1 using the brush.
  • the brush is brought into direct contact with the surfaces 1a and 1b of the steel plate 1, unlike the spray device 3 and the like that supplies the lubricating oil 10 in a non-contact manner.
  • it is difficult to use the brush in a steel plate manufacturing line where the steel plate 1 is conveyed at high speed and vibrates.
  • there are issues with application such as the need to stop the line during coating or the need for workers to enter the line.
  • the lubricating oil application device may be a flat member or a roll-shaped member made of one or more of felt, rubber, resin, and metal. Then, after applying lubricating oil to these, the lubricating oil may be applied to the steel plate 1. Furthermore, these lubricating oil application devices may be fixed, or may be rotated or oscillated for the purpose of making the oil more uniform in application.
  • the presser roll 7 can also be used as the lubricating oil adhesion device. By applying lubricating oil to the outer circumferential surface of the presser roll 7 and supplying the lubricant to the steel plate, the presser roll 7 can function as both the presser roll and the lubricant adhering device.
  • a lubricating oil removal device for removing excess lubricating oil may be provided at a position before or after the installation position of the rotary blade in the traveling direction of the steel plate.
  • the amount of lubricant attached can be adjusted by removing a portion of the lubricant attached to the steel plate before or after cutting with the rotary blade.
  • 10 mL/m2 or more of lubricating oil is applied, and then the lubricating oil is removed using a lubricating oil removal device. It is preferable to adjust the adhesion amount to 10 mL/m 2 or less. However, in this case, it is necessary to provide a lubricating oil removal device, which causes a problem of increased costs.
  • the removed lubricating oil may be circulated to the lubricating oil deposition device and reused.
  • the above steel sheet manufacturing method of the present embodiment is a technique suitable for manufacturing rolled steel sheets.
  • the rolled steel plate of this embodiment is manufactured in a facility that has a rolling process of rolling a slab with a rolling mill and the above-mentioned cutting process, and has a band-like shape.
  • the rolled steel plate is also simply referred to as a steel plate.
  • oil is applied to the portion of the steel plate to be cut.
  • the end face in the width direction of the steel plate cut by the cutting method of this embodiment is a smooth cut end face.
  • this smooth cut end surface portion is referred to as a first cut surface.
  • the first cut surface has a prescribed configuration as described below.
  • the cut end surface formed in the width direction of the steel sheet is the first cut surface over the entire longitudinal direction of the steel sheet.
  • only a portion of the cut end surface formed in the width direction of the steel sheet in the longitudinal direction of the steel sheet may be the first cut surface.
  • the cutting surfaces of the tip and tail ends of the steel plate, where the conveyance speed during cutting tends to be unsteady do not need to be the first cutting surfaces.
  • some of the longitudinal cut surfaces may not be the first cut surfaces.
  • it is preferable that 50% or more, preferably 70% or more, more preferably 90% or more of the cut end surface formed in the width direction of the steel sheet in the longitudinal direction is the first cut surface.
  • the strip-shaped steel plate is wound into a roll using a winding device to form a coil material. Further, by appropriately cutting out the above-mentioned rolled steel plate or steel plate obtained by unwinding the coiled material, a blank material for pressing is obtained. In the blank material of this embodiment, at least one end surface of both ends in the width direction of the steel plate has a first cut surface.
  • the blade chipping of the rotary blade 2 depends on the strength of the steel plate, setting conditions, etc., so it is not strictly specified, but it occurs within a cutting length of several hundred meters to several tens of thousands of meters.
  • the tip (5 to 10 m from the longitudinal tip of the coil material), the longitudinal center, and the tail end (5 to 10 m from the longitudinal end of the coil material) It is preferable that measurements are taken at three locations (10m center side), and that 50% or more of the area satisfies the following first cut plane.
  • the ratio of the applicable areas is that the area sandwiched between the passing part and the passing part is considered to be pass, and the area sandwiched between the passing part and the failing part is considered to be half of the area pass and half of the area is fail, Areas sandwiched between failed points are calculated as failed. If it is not possible to measure at the above location, measure at an adjacent area.
  • the widthwise end portion having the first cut surface is a right side and parallel to the rolling direction.
  • the blank material needs to satisfy the following regulations for the first cut surface.
  • the blank material is a flat plate material because it is intended to be press-worked.
  • the length of the end face consisting of the first cut surface of the blank material is, for example, 100 mm to 2500 mm, and is, for example, a rectangular plate material.
  • the blank material may have punched holes such as pierced holes.
  • the steel plate of this embodiment is made of a high-tensile steel plate with a tensile strength TS of 590 MPa or more.
  • the steel plate may be a hot-rolled steel plate, a cold-rolled steel plate, a hot-rolled steel plate or a steel plate obtained by subjecting a cold-rolled steel plate to surface treatment, or a full hard material obtained by cold-rolling a hot-rolled steel plate. Note that the full hard material only needs to have a TS of 590 MPa or more in the trimming process, not the strength after annealing after trimming.
  • the surface of the steel plate of this embodiment may be subjected to surface treatment.
  • surface-treated steel sheets include GI, GA, EG, CRS, tin-plated steel sheets, Zn-based plated steel sheets, and Al-based plated steel sheets.
  • the present invention is not limited thereto, and any steel plate can be used as the steel plate.
  • the present disclosure is also applicable to, for example, a steel plate provided with a solid lubricant film on GI or GA, or a steel plate provided with an organic coating. It is preferable that the above-mentioned surface treatment is performed before the cutting treatment of the edge portion of the steel plate.
  • the thickness of the steel plate is targeted to be 0.4 mm or more, at which the cutting load is high and blade chipping is likely to occur, and a thickness of 0.8 mm or more is more suitable.
  • the effects of the present disclosure can be sufficiently obtained even if the plate thickness is 4.0 mm or less, this range is also included in the scope of the present invention.
  • the first cut plane which is at least a part of the cut plane in the longitudinal direction of the steel plate, has a shear plane ratio (%) of the following according to the tensile strength TS (MPa) of the steel plate: It is within the range of formulas (3) to (6).
  • TS 590 MPa or more and less than 980 MPa> 19-0.0146 ⁇ TS ⁇ Shear surface ratio ⁇ 48-0.0300 ⁇ TS ...Formula (3)
  • the cut surface has a fractured surface shape with a high shear surface ratio.
  • a cut surface with such large plastic deformation has poor residual ductility. For this reason, the iron powder is likely to peel off from the end face during processing subsequent to the cutting process, and the stripped iron powder causes indentation scratches and increases the incidence of surface defects.
  • the inventor has discovered that by applying the cutting method of the present disclosure, the shear surface ratio at the first cutting surface can be suppressed to the range described by formulas (1) to (4). Obtained.
  • the steel plate formed by applying the cutting method of the present disclosure, and the coil material and blank material made of the steel plate have an end face during the transportation process, rolling process, annealing process, steel plate winding process, etc. after the cutting process. It is possible to suppress the exfoliation of iron powder from the iron powder more than before, and it is possible to reduce the number of scratches caused by the re-adhesion of the exfoliated iron powder in each process.
  • the lower limit of the shear surface ratio in formulas (1) to (4) does not need to be limited from the viewpoint of suppressing iron powder flaking, and is the lower limit obtained by the cutting method of the present disclosure.
  • the area ratio of the sheared surface of the cut surface is determined by observing the cut surface with a SEM at a magnification that allows observation of an area of 2 to 2.5 times the plate thickness, and the total length in the rolling direction, as shown in Figure 4. This is done by observing the length at which the length is 100 mm. Samples for observation may be taken in pieces, but they are taken from a length range not exceeding 150 mm in the rolling direction.
  • the area ratio of the sheared surface is the measured total area of the sheared surface divided by the total area of the sheared surface and the fractured surface.
  • FIG. 4(a) shows the case of a conventional example in which there is no direct coating on the steel plate
  • P1 is the center line of the boundary between the sheared surface and the fractured surface
  • P2 is the position of P1. This line is shifted by 4% toward the fracture surface.
  • FIG. 4(b) is an example of the case where the coating is applied to a steel plate based on the present disclosure.
  • the vertical angle between the cutting blade and the steel plate is about 0 to 2 degrees.
  • the angle is generally larger than the above.
  • the occurrence of a striped pattern on the fracture surface is allowed, and the angle formed between the direction of the striped pattern and the thickness direction of the steel sheet in a side view is 3 degrees or more and 13 degrees or less.
  • the angle formed between the direction of the striped pattern and the thickness direction of the steel sheet in a side view can be measured by a method using an SEM similar to the measurement of the area ratio of the sheared surface.
  • the number of convex portions present at the boundary between the sheared surface and the fractured surface on the first cut surface is 5 pieces/100 mm or less.
  • the number of convex portions present at the boundary between the sheared surface and the fractured surface corresponds to the degree of disturbance of the sheared surface at the boundary between the sheared surface and the fractured surface.
  • the number of convex portions is measured using a SEM at the same magnification and observation length as in the measurement of the shear surface ratio.
  • the boundary line between the sheared surface and the fractured surface is drawn as a straight line, and the number of sheared surfaces that protrude from the boundary line to the fractured surface side by 4% or more of the plate thickness is counted as a convex part.
  • the convex portion has a protruding shape that protrudes toward the fracture surface by 4% or more of the plate thickness.
  • the number of convex portions is the value obtained by dividing the total number of convex portions by the total observation length.
  • the cutting method of the present disclosure it is possible to control the number of convex portions at the boundary between the shear surface and the fracture surface of the cut end surface to 5/100 mm or less on the first cut surface.
  • lubricating oil is applied directly to the steel plate at the edge before trimming at an oil coating density of 0.900 g/ m2 or more (corresponding to an oil coating density of 1.00 mL/ m2 ), and the clearance of the rotary blade 2 is adjusted. It is preferable to adjust the contact angle when the upper blade of the rotary blade 2 contacts the steel plate 1. If the clearance of the rotary blade 2 is small, a secondary shear surface is formed and the number of convex portions increases.
  • the amount of oil applied in the area from the end face of the first cut surface to 5 mm inward toward the center of the width of the steel plate is 0.2 g/m greater than the amount of oil applied at the center of the width of the rolled steel plate. It is preferable to increase the number by 2 or more.
  • the amount of oil applied represents the amount of oil applied per one side.
  • the above control of the amount of oil applied is preferably carried out on at least one side of the front and back surfaces of the steel plate.
  • the influence on the occurrence of blade chipping is on the steel plate surface on the upper blade side, that is, the upper surface, and the steel plate surface on the shear surface side is particularly large, so it is necessary to increase the amount of oil applied to the edge part of the steel plate surface on the upper blade side. is preferred. From the viewpoint of suppressing blade chipping in a particularly stable manner, it is preferable to increase the amount of oil applied to the edge portions of both the steel plate surfaces on the upper and lower blade sides.
  • the upper limit of normal oil application to the steel plate 1 is about 2.5 g/m 2 .
  • the amount of oil applied to the surface of the steel plate in a region up to 5 mm from the end face at the first cut surface position is preferably 2.7 g/m 2 or more.
  • the amount of oil applied represents the amount of oil applied per one side. It is preferable to control the amount of oil applied on at least one side of the front and back surfaces of the steel plate, and it is preferable to control the amount of oil applied on the steel plate surface on the shear surface side within the above range.
  • the amount of lubricating oil sprayed at the time of cutting is 7.24 mL/m 2 or more.
  • the amount of oil applied in the area up to 5 mm from the first cut surface be 6.5 g/m 2 or more.
  • the amount of oil applied represents the amount of oil applied per one side. It is preferable to control the amount of oil applied on at least one side of the front and back surfaces of the steel plate, and it is preferable to control the amount of oil applied on the steel plate surface on the shear surface side within the above range.
  • the amount of oil applied in the area up to 5 mm from the first cut surface is preferably less than 27 g/m 2 (corresponding to less than 30 mL/m 2 ).
  • the amount of oil applied in the area up to 5 mm from the first cut surface is 9 g/m 2 or less (corresponds to 10 mL/m 2 or less) It is desirable to do so.
  • the amount of oil applied in the area up to 5 mm from the first cut surface is 4.5 mL/m 2 or less (corresponding to 5 mL/m 2 or less).
  • the density of the oil is 0.9 g/ cm3 .
  • the upper limit of the amount of oil applied at the center of the width of the rolled steel plate is approximately 2.5 g/ m2 , so in order to keep the amount of oil applied at the edge within the above range, from the end face of the first cut surface to the center of the width of the steel plate.
  • the amount by which the amount of oil applied in the area up to 5 mm inward in the direction is increased from the amount of oil applied at the center position of the rolled steel plate width is preferably less than 24.5 g/ m2 , and should be 6.5 g/ m2 or less. is more desirable, and even more desirable is 2.0/m 2 or less.
  • the amount of oil applied was calculated by taking six samples with a width of 5 mm and a length of 200 mm from each of the cut end face and the center of the steel sheet width, and measuring the weight change of each sample before and after alkaline degreasing. If a sufficient amount of the sample cannot be secured in the blank material, the film thickness can be measured and converted to the deposited weight per unit area, assuming the density of the oil to be 0.9 g/cm 3 .
  • the steel plate 1 to be cut is a high-tensile steel plate 1
  • the upper and lower blades constituting the pair of rotary blades 2A and 2B could be sufficiently lubricated continuously and evenly. Therefore, the lack of oil penetration is resolved and blade chipping is suppressed.
  • the amount of lubricating oil applied to the steel plate can be suppressed compared to the case where lubricating oil is supplied to the rotary blade. Therefore, the occurrence of rust on the manufactured steel plate can be suppressed compared to the case where lubricating oil is supplied to the rotating rotary blade. Furthermore, by pressing the oil with the presser roll 7, oil can be more stably supplied to the cutting position.
  • the lack of oil penetration at the cutting position can also be resolved by applying oil to the end of the steel plate 1 before trimming using an oil dripping device 20 as shown in FIG. For this reason, even if the steel plate 1 to be cut is a high-tensile steel plate 1, the upper and lower blades that make up the pair of rotary blades 2A and 2B can be sufficiently lubricated continuously and evenly, so that insufficient oil penetration is prevented. This problem has been resolved and blade chipping has been suppressed.
  • the amount of spraying and dripping of the lubricating oil is determined by adjusting the supply air pressure and oil flow rate so that the lubricating oil can be applied (attached) continuously and evenly to both the front and back surfaces of the steel plate 1, depending on the conveyance speed of the steel plate. , it is preferable to set the oil consumption amount.
  • the rolled steel plate, coil material, and blank material that have the first cut surface formed by the cutting method of the present disclosure have the first cut surface that is a smooth end surface. For this reason, since the iron powder is manufactured with less stripping of the iron powder after cutting than before, it is possible to suppress the occurrence of scratches due to the stripping of the iron powder. In other words, it is possible to provide high-quality rolled steel sheets, coil materials, and blank materials.
  • the steel plate 1 to be cut was a hot-dip galvanized steel plate (1.2 mm thick with a tensile strength of 1180 MPa), and an experiment was conducted to examine the occurrence of untrimmed material (untrimmed material) in a trimmer equipment. Ta.
  • the trim was performed under the following conditions: ⁇ Conveyance speed of steel plate 1: Maximum 230 [mpm] ⁇ Trim allowance at the edge of the board: 10 to 20 [mm]
  • Example 1 In Example 1, the above-mentioned spray device 3 was used as the lubricating oil deposition device (see FIG. 1). The conditions of the spray device 3 were set as follows. ⁇ Steel plate conveyance speed: 230 [mpm] - Oil application range by spray device 3: 40 [mm] from the end face in the width direction of the steel plate, only the top surface - Oil consumption: 4.0 [L/hr] (oil application density: 7.25 [mL/m 2 ]) ⁇ Supply air pressure: 0.4 to 0.6 [MPa]
  • Example 2 the above oil dripping device 20 was used as the lubricating oil deposition device (see FIG. 3).
  • the conditions of the oil dropping device 20 were set as follows. ⁇ Steel plate conveyance speed: 80 [mpm] ⁇ Oil application range: 40mm from the end face in the width direction of the steel plate ⁇ Amount of oil used: 0.8 [L/hr] (oil density: 4.15 [mL/m 2 ]) ⁇ Supply air pressure: 0.4 to 0.6 [MPa]
  • Example 3 the above-mentioned spray device 3 was used as the lubricating oil deposition device (see FIG. 1).
  • the conditions of the spray device 3 were set as follows. ⁇ Steel plate conveyance speed: 60 [mpm] - Oil application range by spray device 3: 40 [mm] from the end face in the width direction of the steel plate, only the top surface - Oil consumption: 4.0 [L/hr] (oil application density: 14.0 [mL/m 2 ]) ⁇ Supply air pressure: 0.4 to 0.6 [MPa] ⁇ Moisture content of oil: 700ppm
  • the steel plate manufactured by the method of Example 3 was wound to form a coil material, and after being stored in a warehouse for 100 days, the presence or absence of rust in the area where the lubricating oil was attached was checked, but no rust was observed. The 100 days is based on the assumption that the coil material will be stored at a manufacturer such as an automobile manufacturer until it is press-formed into a steel plate
  • Example 4 the above-mentioned spray device 3 was used as the lubricating oil deposition device (see FIG. 1).
  • the conditions of the spray device 3 were set as follows. ⁇ Steel plate conveyance speed: 40 [mpm] - Oil application range by spray device 3: 11 [mm] from the end face in the width direction of the steel plate, top and bottom surfaces - Oil consumption: 0.05 [L/hr] per one side, 0.1 [L/hr] for both sides (Oil density: 1.88 [mL/m 2 ]) ⁇ Supply air pressure: 0.4 to 0.6 [MPa] ⁇ Moisture content of oil: 700ppm
  • the steel plate manufactured by the method of Example 4 was wound to form a coil material, and after being stored in a warehouse for 100 days, the presence or absence of rust in the area where the lubricating oil was attached was checked, but no rust was observed.
  • Example 5 the above-mentioned spray device 3 was used as the lubricating oil deposition device (see FIG. 1).
  • the conditions of the spray device 3 were set as follows. ⁇ Steel plate conveyance speed: 80 [mpm] - Oil application range by spray device 3: 80 [mm] from the end face in the width direction of the steel plate, only the top surface - Oil consumption: 11.1 [L/hr] (oil application density: 29.0 [mL/m 2 ]) ⁇ Supply air pressure: 0.4 to 0.6 [MPa] ⁇ Oil type: NOX-RUST550 (manufactured by Nippon Parkerizing Co., Ltd.) ⁇ Oil viscosity: 17.0mm 2 /s
  • Example 6 In Example 5, the above-mentioned spray device 3 was used as the lubricating oil deposition device (see FIG. 1). The conditions of the spray device 3 were set as follows. ⁇ Steel plate conveyance speed: 80 [mpm] - Oil application range by spray device 3: 15 [mm] from the end face in the width direction of the steel plate, upper and lower surfaces - Oil consumption: 0.58 [L/hr] per one side, 1.16 [L/hr] on both sides (coating Oil density: 8.00 [mL/m 2 ]) ⁇ Supply air pressure: 0.4 to 0.6 [MPa] ⁇ Oil type: NOX-RUST550 (manufactured by Nippon Parkerizing Co., Ltd.) ⁇ Oil viscosity: 17.0 mm 2 /s (lubricating oil temperature 40°C) ⁇ Average particle size of mist after oil spraying: 5.0 ⁇ m ⁇ Holding time from when oil adheres to the steel plate until cutting: 1
  • Comparative Example 1 In Comparative Example 1, no lubricating oil application device was used. Instead, lubricating oil was supplied to both of the pair of rotary blades 2 using the felt 9 (see FIG. 1 for the placement position of the felt 9). In Comparative Example 1, the conveyance speed of the steel plate was 60 mpm, and the amount of lubricating oil supplied to the rotary blade was 4.0 L/hr in total for the upper blade and the lower blade. The coating width is 12 mm for each of the upper and lower blades (oil coating density: 46.3 [mL/m 2 ])
  • the evaluation was based on the improvement in the probability of up-fall due to the no-rim material.
  • the probability of occurrence of up-dropping is calculated from the amount of trim material (total weight of 5 to 10 manufactured coil materials) of the applied material that becomes non-trimmed material due to blade chipping and falls off (determined as defective material) (defective coil material). of total weight).
  • the evaluation results are as follows.
  • Example 1 (when applying oil only with felt 9)...8.2%
  • Example 1 (during oil spraying)...0.0%
  • Example 2 (during oil dropping)...7.1%
  • Example 3 (during oil spraying)...0.0%
  • Example 4 (during oil spraying)...0.0%
  • Example 5 (during oil spraying)...0.0%
  • Example 6 (during oil spraying)...0.0%
  • Comparative Example 2 the lubricating oil was applied directly to both of the pair of rotary blades 2 using the felt 9, without using a lubricating oil applying device.
  • the experimental conditions for Comparative Example 2 are as follows. ⁇ Steel plate conveyance speed: 180 [mpm] ⁇ Amount of lubricating oil supplied to the rotating blade: 6.0 [L/hr] in total for the upper and lower blades ⁇ Application width: 12 mm for each of the upper and lower blades (oil coating density: 23 [mL/m 2 ]) - Oil density at the center of the steel plate width: 1.5 [g/m 2 ] ⁇ Rotary blade diameter: ⁇ 300mm ⁇ Rotary blade clearance: 12% of steel plate thickness ⁇ Rotary blade overlap amount: 0.3mm ⁇ Vertical contact angle between the upper blade and the steel plate: 11 degrees ⁇ Angle between the rotation direction of the rotary blade and the conveyance direction of the steel plate: 0.15 degrees toward the rear of the conveyance ⁇ Cutting
  • Example 7 ⁇ Example 7> In Example 7, the following steel plates were used. ⁇ Steel plate: TS1020MPa, plate thickness 2.0mm Composition ingredients: C: 0.09%, Si: 0.60%, Mn: 2.50%, P: 0.012%, S: 0.0012%, sol. Al: 0.044%, N: 0.0026%, Nb: 0.040%, Cr: 0.550%, Cu: 0.006%, Mo: 0.010%, Ni: 0.010%, Ti : 0.025%, B: 0.0016%, remainder Fe and unavoidable impurities Further, the above-mentioned spray device 3 was used as a lubricating oil deposition device (see FIG. 1).
  • Example 7 the conditions of the spray device 3 were set as follows, and lubricating oil was applied before trimming.
  • a portion of the lubricant (1.6g/m 2 ) applied to the top surface was removed.Lubricant spray area: Performed on both edges.
  • Example 8 ⁇ Example 8> In Example 8, the following steel plates were used. ⁇ Steel plate: TS1220MPa, plate thickness 1.2mm Composition ingredients: C: 0.12%, Si: 0.45%, Mn: 2.50%, P: 0.008%, S: 0.0012%, sol. Al: 0.030%, N: 0.0020%, Nb: 0.040%, Cr: 0.400%, Cu: 0.010%, Mo: 0.010%, Ni: 0.010%, Ti : 0.017%, B: 0.0012%, remainder Fe and unavoidable impurities Further, the above spray device 3 was used as a lubricating oil deposition device (see FIG. 1).
  • Example 8 the conditions of the spray device 3 were set as follows, and lubricating oil was applied before trimming.
  • Example 9 In Example 9, the following steel plates were used. ⁇ Steel plate: TS1480MPa, plate thickness 1.4mm Composition ingredients: C: 0.20%, Si: 0.95%, Mn: 3.20%, P: 0.008%, S: 0.0009%, sol. Al: 0.025%, N: 0.0020%, Nb: 0.013%, Cr: 0.050%, Cu: 0.150%, Mo: 0.100%, Ni: 0.080%, Ti : 0.012%, B: 0.0012%, Sb: 0.005%, remainder Fe and unavoidable impurities Further, the above-mentioned spray device 3 was used as a lubricating oil deposition device (see FIG. 1).
  • Example 9 the conditions of the spray device 3 were set as follows, and lubricating oil was applied before trimming.
  • ⁇ Lubricating oil spray area Full length, top and bottom surfaces, and both edges.
  • ⁇ Cutting position 20 mm from the edge
  • Example 10 ⁇ Example 10> In Example 10, the following steel plates were used. ⁇ Steel plate: TS1220MPa, plate thickness 2.0mm Composition ingredients: C: 0.12%, Si: 0.45%, Mn: 2.50%, P: 0.008%, S: 0.0012%, sol. Al: 0.030%, N: 0.0020%, Nb: 0.040%, Cr: 0.400%, Cu: 0.010%, Mo: 0.010%, Ni: 0.010%, Ti : 0.017%, B: 0.0012%, remainder Fe and unavoidable impurities Further, the above spray device 3 was used as a lubricating oil deposition device (see FIG. 1).
  • Example 10 the conditions of the spray device 3 were set as follows, and lubricating oil was applied before trimming.
  • ⁇ Lubricating oil spray area Full length, top and bottom surfaces, and both edges.
  • FIG. 4 shows an example of SEM observation of the steel plates of Comparative Example 2 and Example 7.
  • FIG. 4(a) corresponds to Comparative Example 2
  • FIG. 4(b) corresponds to Example 7.
  • Fig. 4 in the case of a steel plate in which lubricating oil is applied only to the trim blade with felt, the shear plane ratio is large, and the shear plane is a shape in which the boundaries of the cross section are wavy and intricate (Fig. 4 (a)).
  • the shear plane ratio is small, and the boundary between the shear plane and the fracture plane becomes extremely straight (Fig. 4(b)).
  • Table 1 shows the evaluation results for each steel plate.
  • Example 7 the sheared surface ratio and the occurrence frequency of convex portions are within the invention range, and the occurrence rate of indentation scratches is also suppressed to 1.0% or less.
  • Comparative Example 2 in which lubricating oil was not applied directly to the steel plate, the clearance, the vertical contact angle between the upper blade and the steel plate, and the angle between the rotation direction of the rotary blade and the conveyance direction of the steel plate were inappropriate.
  • Example 10 the cutting method of the present disclosure was used, but the sheared surface ratio and frequency of occurrence of convex portions of the steel plate were outside the scope of the invention, and the occurrence rate of scratches exceeded 1.0%. ing.
  • Example 10 compared to Comparative Example 2, the sheared surface ratio and the frequency of occurrence of convex portions are smaller. In this way, the steel plate on which the first cut surface is formed by the cutting method of the present disclosure suppresses the flaking of iron powder after cutting, compared to the conventional case where lubricating oil is applied directly to the rotary blade. It was discovered that it was possible to provide steel sheets of higher quality than before. Further, the steel plates of Examples 7 and 9 were subjected to alkaline degreasing treatment in a degreasing line before pressing of automobile parts, and it was confirmed that no defective degreasing occurred.
  • the present disclosure can also take the following configuration.
  • the present embodiment is a method for manufacturing a steel plate that includes cutting the edge portion of the steel plate with a rotary blade, and in the process of cutting the steel plate with the rotary blade, the above-mentioned Apply lubricating oil to the location where the rotating blade will cut. According to this configuration, even if the lubricating oil attached to the rotary blade is blown away due to the centrifugal force of the rotary blade, the lubricating oil is attached to the surface of the steel plate, eliminating the lack of oil supply at the cutting position. By reducing friction, the frequency of trimmer blade chipping is suppressed, and the yield of steel sheet production is improved.
  • the rotary blade has a pair of rotary blades that can face each other with a steel plate in between, and is configured to sandwich and cut the steel plate between the pair of rotary blades, and the lubricating oil is
  • the attachment is performed on at least one of the front and back surfaces of the steel plate. It is preferable to apply lubricating oil to both the front and back surfaces of the steel plate. According to this configuration, by using the pair of rotating blades, it becomes possible to cut the steel plate more stably.
  • the attachment of the lubricating oil is performed, for example, by spraying the lubricating oil toward the surface of the steel plate. According to this configuration, the lubricating oil can be applied more uniformly to the surface of the steel plate.
  • the lubricating oil preferably has an average diameter of mist after spraying of 1 ⁇ m or more and 2000 ⁇ m or less.
  • the attachment of the lubricating oil is performed, for example, by dropping the lubricating oil onto the surface of the steel plate.
  • the method of applying lubricating oil to the upper surface of the steel plate may be different from the method of applying lubricating oil to the lower surface of the steel plate.
  • the lubricating oil may be applied by dropping the lubricating oil onto the upper surface of the steel plate and spraying the lubricating oil onto the lower surface of the steel plate.
  • the lubricating oil has a water content of 3000 ppm or less.
  • the lubricating oil has a viscosity of 3 mm 2 /s or more and 130 mm 2 /s or less when the liquid temperature of the lubricating oil is 40°C.
  • a film thickness equalizing device for equalizing the film thickness of the lubricating oil deposited on the surface of the steel plate is provided between the rotary blade and the location where the lubricating oil is applied.
  • a pair of press rolls for gripping the steel plate are provided between the rotary blade and the lubricating oil attachment position, and the area of the steel plate 1 gripped by the pair of press rolls is at least the above-mentioned area. It includes the position of the steel plate 1 to be cut by the rotary blade.
  • the lubricating oil attached to the steel plate is stretched by the presser roll. As a result, the attached lubricating oil becomes more uniform along the steel sheet conveyance direction.
  • the process of cutting the steel plate with the rotary blade is performed while the steel plate is being transported, and the rotary blade performs cutting by rotating in a forward direction with respect to the transport direction of the steel plate. According to this configuration, the load on the rotary blade can be suppressed to be smaller than when the rotary blade is rotated in the opposite direction.
  • the steel plate to be cut may be a high-tensile steel plate, and the thickness of the steel plate may be, for example, 0.4 mm or more. According to the method for manufacturing a steel plate of this embodiment, even if the steel plate to be cut is a high-tensile steel plate and the thickness of the steel plate is 0.4 mm or more, continuous cutting is possible with a high yield. .
  • This embodiment is a trimming device that cuts the edge portion of a transported steel plate with a rotary blade, and lubricating oil is applied upstream of the rotary blade at the position of the steel plate to be cut with the rotary blade. Equipped with a lubricating oil application device.
  • This embodiment is a manufacturing apparatus for steel plate 1 that includes the above-mentioned trimming device. According to this configuration, the frequency of chipping of the trimmer blade is suppressed, and the yield rate of steel plate manufacturing is improved.
  • compositional components of the steel plate are, in mass%, C: 0.03% or more and 0.35% or less, Si: 0.01% or more and 3.00% or less, Mn: 0.50% or more and 3.50%. % or less, Al: 0.001% or more and 1.000% or less, P: 0.100% or less, S: 0.0100% or less, N: 0.0200% or less, and further B: 0.0050% or less.
  • Nb 0.100% or less
  • Ti 0.200% or less
  • Cr 1.000% or less
  • Mo 1.00% or less
  • Cu 1.000% or less
  • Ni 1.000% or less
  • Sb 0.200% or less
  • Zr 0.100% or less
  • V 0.200% or less
  • W 0.100% or less
  • Sn 0.200% or less
  • Ca 0.0050% or less
  • REM 0 0.0050% or less
  • Mg 0.0050% or less
  • the remainder consists of Fe and inevitable impurities.
  • the rotary blade has a pair of rotary blades that can face each other with a steel plate in between, and is configured to sandwich and cut the steel plate between the pair of rotary blades, and the upper blade of the pair of rotary blades and the upper blade of the pair of rotary blades.
  • the clearance of the lower blade is 5% or more and 19% or less
  • the vertical contact angle between the upper blade and the steel plate in the rotation direction of the rotary blade is 3 degrees or more and 13 degrees or less
  • the angle formed with the conveyance direction of the steel plate is 0.01 degree or more and 0.5 degree or less in the direction of the opening angle toward the rear side of conveyance.
  • a trimming device that cuts the edge portion of a transported steel plate with a rotary blade, and a lubricating oil application device that applies lubricating oil to the position of the steel plate to be cut by the rotary blade, upstream of the rotary blade. Be prepared.
  • a steel plate manufacturing apparatus including the steel plate trimming device of the present disclosure.
  • the first cut surface, which is a cut surface of It is as follows. 10-0.00526 ⁇ TS ⁇ Shear surface ratio ⁇ 27-0.0108 ⁇ TS ...Formula (3)
  • the amount of oil applied in the area up to 5 mm from the end face in the width direction constituted by the first cut surface is as follows:
  • the amount of oil applied at the center position in the width direction is 0.2 g/m 2 or more.
  • the amount of oil applied to the surface of the steel plate in a region up to 5 mm from the end face in the width direction constituted by the first cut surface is 2.7 g/m 2 or more.
  • the amount of oil applied to the surface of the steel plate in a region up to 5 mm from the end face in the width direction constituted by the first cut surface is 6.5 g/m 2 or more.
  • compositional components of the above steel plate are, in mass%, C: 0.03% or more and 0.35% or less, Si: 0.01% or more and 3.00% or less, Mn: 0.50% or more and 3.50%. % or less, Al: 0.001% or more and 1.000% or less, P: 0.100% or less, S: 0.0100% or less, N: 0.0200% or less, and further B: 0.0050% or less.
  • Nb 0.100% or less
  • Ti 0.200% or less
  • Cr 1.000% or less
  • Mo 1.00% or less
  • Cu 1.000% or less
  • Ni 1.000% or less
  • Sb 0.200% or less
  • Zr 0.100% or less
  • V 0.200% or less
  • W 0.100% or less
  • Sn 0.200% or less
  • Ca 0.0050% or less
  • REM 0 0.0050% or less
  • Mg 0.0050% or less
  • the remainder consists of Fe and inevitable impurities.
  • compositional components of the steel sheet are, in mass %, C: 0.10% or more and 0.35% or less, Mn: 1.00% or more and 3.50% or less.
  • the composition of the steel sheet is Mn: 2.2% or more in mass %.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

更なる刃欠け頻度の改善を行い、鋼板製造の歩留まりを高める。トリム前の鋼板(1)に潤滑油を直接塗布することで、油の供給不足を解消し、摩擦を低減することによってトリマーの刃欠けの頻度を抑制する。すなわち、鋼板(1)のエッジ部を回転刃(2)で切断する処理を有する鋼板(1)の製造方法であって、上記鋼板(1)を上記回転刃(2)で切断する処理において、切断前の鋼板(1)の表面(1a、1b)における、上記回転刃(2)で切断する位置に潤滑油を付着する。

Description

鋼板の製造方法、トリミング装置、製造装置、圧延鋼板、コイル材、及びブランク材
 本開示は、鋼板のエッジ部(板幅方向端部)の切断技術及び切断処理を含む鋼板の製造、製造された鋼板及びその鋼板からなるコイル材やブランク材に関する技術である。特に、本開示は、例えば引張強度が590MPa以上の高張力鋼板(ハイテン材)であって、板厚が例えば0.4mm以上の鋼板の製造に好適な技術である。
 例えば、溶融亜鉛鍍金工場や冷延工場では、製品巾に合わせて鋼板のエッジ部(幅方向端部)をトリムする工程(設備)を有する。近年、自動車や建材等の分野において、高張力鋼板の需要が高まっている。このため、鋼板の製造において、高張力鋼板を回転刃(トリマー刃)で切断する処理を実行する場合もある。
 しかし、高張力鋼板(以下、高強度鋼板とも呼ぶ)を切断する場合、回転刃が鋼板からの荷重に耐えられずに刃欠けし、トリム未実施材(ノートリム材)が発生するおそれがある。特に、引張強度が590MPa以上の高張力鋼板であって、例えば板厚0.4mm以上の鋼板を切断する場合を想定すると、トリム時に刃に掛かる負荷が高く、刃欠けが避けられない状況である。
 これに対し、例えば特許文献1に記載されているように、回転する回転刃に対し切削油(潤滑油)を塗布することで対応する方法がある。特許文献1では、回転刃に対し直接切削油を吹き付けて塗布することで、刃と鋼板との間に潤滑性を持たせて摩擦の低減を図っている。
特開2005-153116号公報
 切断による回転刃の刃欠けは、刃の角部(刃部)で応力が集中した際に発生すると考えられる。刃に発生する負荷としては、せん断荷重に伴う垂直抗力と、鋼板-刃間の摩擦に起因する側方力との2種類があると推定される。
 このうち側方力については、鋼板-刃間の摩擦を低減することで抑制することができると考えられる。
 特許文献1のように、回転刃に直接切削油を供給する方法は、刃-鋼板間の潤滑性が向上し、摩擦を低減するという対策として用いられている。しかし、更なる刃欠け頻度の改善が要望されている。
 また、発明者の検討によれば、切断時に回転刃に刃欠けが生じることで、鋼板側に損傷が生じる場合も想定される。鋼板の端面に損傷が生じた場合、回転刃での切断処理以降の工程や、製品としての圧延鋼板やコイル材を購入した自動車会社等の製造メーカにおける加工ラインで、鋼板の損傷部分から剥脱した鉄粉が加工中の鋼板に付着することで、鋼板に押し疵を発生させやすくなる。また、加工設備への鉄粉の付着によるトラブル発生のおそれもある。
 本発明は、上記のような点に着目したもので、更なる刃欠け頻度の改善を行い、鋼板製造の歩留まりを高めることを目的とする。
 発明者は、回転刃に直接切削油を塗布することによる切断時の効果について検討したところ、更なる刃欠け頻度の改善が必要であるとの知見を得た。
 すなわち、回転刃に直接切削油を塗布する技術の欠点として、次のような知見を得た。
 (1)回転する回転刃に直接切削油をした場合、回転刃の回転の遠心力により油が飛散して、切断部への切削油の供給が不足の状態となる。なお、切断部に近づけた位置で刃に対し油を供給することも考えられるが、他の機器との干渉を考えると困難である。また、回転刃に直接油を多量に供給しても、刃が鋼板を切断する過程では、刃が鋼板と接触した後の鋼板上で刃が摺動する現象が発生する。そして、この刃の摺動により刃先では油が即座に除去される。
 (2)またこのことは、刃-鋼板間の油の浸透が不足した状況を引き起こす。したがって、刃に油を多量に塗油しても刃欠けの改善効果は小さく、特に、590MPa以上の高強度鋼板では、切断時の刃欠けを十分に抑制するには至らない。
 そして、刃欠けによる上記の鉄粉発生による問題が発生する。
 (3)これに対して、回転刃でのトリム前の鋼板に潤滑油を直接塗布することにより、刃が鋼板と接触した後の鋼板上で刃が摺動する過程においてもトリム刃の刃先に油切れを効果的に抑制することが可能であり、高強度鋼板の切断においても刃欠けを大幅に抑制できる。
 本発明は、このような知見に基づき、トリム前の鋼板に潤滑油を直接塗布する(付着させる)ことで、油の供給不足を解消し、摩擦を低減することによってトリマーの刃欠けの頻度を抑制する技術を確立したものである。
 また、本発明の手法を適用して製造された鋼板においては、刃欠けした回転刃で切断することで生じる鉄粉の悪影響を抑制することででき、エッジ切断後の鋼板製造ラインや自動車プレスライン等での押し疵の発生を大幅に抑制する技術を確立したものである。
 すなわち、課題解決のために、本発明の一態様は、鋼板のエッジ部を回転刃で切断する処理を有する鋼板の製造方法であって、上記鋼板を上記回転刃で切断する処理において、切断前の鋼板表面における、上記回転刃で切断する位置に潤滑油を付着する、ことを要旨とする。
 また、本発明の態様は、搬送されてきた鋼板のエッジ部を回転刃で切断するトリミング装置であって、回転刃よりも上流に、上記回転刃で切断する鋼板の位置に潤滑油を付着する潤滑油付着装置を備える、鋼板の製造装置である。
 更に、本発明の一様態は、幅方向の切断面に平滑な端面(第1の切断面)を有する圧延鋼板、コイル材、ブランク材である。
 圧延鋼板とは、圧延工程を含む製造ラインで製造された鋼板を指す。また、本実施形態の圧延鋼板は、幅方向の少なくとも一方の端面が切断面からなる。
 本発明の態様によれば、刃-鋼板間への潤滑油の供給をより確実に実行可能となり、更なる刃欠け頻度の改善を行い、鋼板製造の歩留まりを向上させることが可能となる。
 また、本発明の態様によれば、エッジ(幅方向端部)の切断面に平滑な端面(第1の切断面)を有する鋼板やコイル材を提供可能となる。この結果、本発明の態様によれば、鉄粉の剥脱を抑制して、鋼板製造ラインや自動車プレスラインでの押し疵を抑制した鋼板などを提供可能となる。
 すなわち、本発明の態様の切断手法を適用して得た鋼板やその鋼板からなるコイル材やブランク材においては、刃欠けした回転刃(トリマー)で切断することで生じる鉄粉の発生を抑制することでできる。この結果、エッジ切断後の鋼板製造ラインや自動車プレスライン等の加工ラインでの、押し疵の発生を大幅に抑制することができる。
本発明に基づく実施形態に係る鋼板のトリミング装置を説明するための側面図である。 本発明に基づく実施形態に係る鋼板のトリミング装置を説明するための平面図である。 潤滑油付着装置の他の構成例を説明する側面図である。 せん断面(切断面)をSEM観察した図で、(a)は比較例2の場合、(b)は比較例7の場合である。 せん断面(切断面)をSEM観察した図である。
 次に、本発明の実施形態について図面を参照して説明する。
 本実施形態では、鋼板製造における表面処理鋼板製造ラインのトリマー設備(トリミング工程)を例に挙げて説明する。本発明は、冷延鋼板・熱延鋼板などの圧延鋼板の製造工場であっても適用することができる。
 「処理対象の鋼板について」
 本実施形態は、処理対象として高張力鋼板、特に引張強度が590MPa以上の高張力鋼板であって、板厚が0.4mm以上の鋼板であっても適用可能となる。本実施形態は、例えば、板厚が4.0mm以下の高張力鋼板に適用してもよい。
 回転刃で切断される鋼板の例としては、GI、GA、EG、CRS、錫めっき鋼板、Zn系めっき鋼板、Al系めっき鋼板等が例示できる。しかし、鋼板は、これに限定されず、任意の鋼鈑で適用可能である。本実施形態は、例えば、GI、GAに固体潤滑皮膜を付与した鋼板や有機被覆を施した鋼板でも適用可能である。
 更に、発明者らが調査したところ、引張強度が1180MPa以上の高強度鋼板を切断する場合には、製造コイルの8%程度という極めて高い頻度で刃欠けによるトリム不良材が生じ、不良材のオフラインでの再トリム処理が必要となるという新たな課題も見いだされた。この課題に対し、本開示を適用した場合、従来、刃欠けによるトリム不良の著しい発生を生じていた1180MPa級や1470MPa級の高強度鋼板で且つ板厚が0.4mm以上の鋼板においても、トリム不良の発生率を顕著に低減することができることを確認した。
 本実施形態が処理対象とする高張力鋼板は、その組成成分が例えば、質量%で、C:0.03%以上0.35%以下、Si:0.01%以上3.00%以下、Mn:0.50%以上3.50%以下、Al:0.001%以上1.000%以下、P:0.100%以下、S:0.0100%以下、N:0.0200%以下を含み、残部がFe及び不可避的不純物からなる。
 なお、本明細書で、成分に関する%表示は、特に断らない限り、質量%を意味するものとする。
 次に、鋼板の組成成分の限定理由について説明する。
・C:0.03%以上0.35%以下
 Cは鋼帯の強度を高める効果を有する。そのためには、Cは0.03%以上必要である。一方で、Cが0.35%を超えると自動車や家電の素材として用いる場合に必要である溶接性が劣化する。したがって、C量は0.03%以上0.35%以下としてよい。
 引張強度1180MPa以上の高強度材を得る観点からは、C量は0.10%以上とすることが好ましい。また、引張強度1320MPa以上の高強度材を得る観点からは、C量は0.13%以上とすることが好ましい。
・Si:0.01%以上3.00%以下
 Siは鋼を強化し、延性を向上させるのに有効な元素であり、そのためにはSiは0.01%以上が必要である。一方で、Siが3.00%を超えると、Siが表面に酸化物を形成し、めっき外観が劣化する。したがって、Si量は0.01%以上3.00%以下としてよい。
・Mn:0.50%以上3.50%以下
 Mnは、焼入れ性を高め鋼板の強度を高めるために有用な元素である。その効果は、Mnが0.50%未満では得られない。一方、Mnの含有量が3.50%を超えるとMnの偏析が生じ、加工性が低下する。したがって、Mn量は0.50%以上3.50%以下が望ましい。
 引張強度1180MPa以上の高強度材を得る観点からは、Mn量は1.00%以上とすることが好ましい。ガスジェット冷却設備のような冷却速度の比較的緩やかな設備で焼鈍後の冷却を行う場合において、1180MPa級の鋼板を得る観点からは、Mnは2.20%以上とすることが更に好ましい。
・Al:0.001~1.000%
 Alは溶鋼の脱酸を目的に添加されるが、Alの含有量が0.001%未満の場合、その目的が達成されない。一方、Alが1.000%を超えると、Alが表面に酸化物を形成し、めっき外観(表面外観)が劣化する。したがって、Al量は0.001%以上1.000%以下としてよい。
・P:0.100%以下
 Pは不可避的に含有される元素のひとつであり、Pを0.005%未満にするためには、コストの増大が懸念されるため、Pは0.005%以上が望ましい。一方、Pの増加に伴いスラブ製造性が劣化する。更に、Pの含有は合金化反応を抑制し、めっきムラを引き起こす。これらを抑制するためには、Pの含有量を0.100%以下にすることが必要である。したがって、P量は0.100%以下としてよい。好ましくは0.050%以下である。
・S:0.0100%以下
 Sは製鋼過程で不可避的に含有される元素である。しかしながら、多量に含有すると溶接性が劣化する。そのため、Sは0.0100%以下としてよい。Sを0.0002%未満にするためには、コストの増大が懸念されるため、Sは0.0002%以上とすることが好ましい。
・N:0.0200%以下
 Nは製鋼過程で不可避的に含有される元素である。しかしながら、多量に含有すると延性が劣化する。そのため、Nは0.0200%以下としてよい。下限は限定されないが、0.0005%以下に低減するには多大なコストを要するので、下限は0.0005%程度である。
 その他の添加可能な組成成分について説明する。
 本実施形態が処理対象とする鋼板は、下記を目的として、B:0.0002%以上0.0050%以下、Nb:0.005%以上0.100%以下、Ti:0.005%以上0.200%以下、Cr:0.005%以上1.000%以下、Mo:0.005%以上1.000%以下、Cu:0.005%以上1.000%以下、Ni:0.005%以上1.000%以下、Sb:0.001%以上0.200%以下、Zr:0.005%以上0.100%以下、V:0.005%以上0.200%以下、W:0.005%以上0.100%以下、Sn:0.001%以上0.200%以下、Ca:0.0002%以上0.0050%以下、REM:0.0002%以上0.0050%以下、Mg:0.0002%以上0.0050%以下の中から選ばれる1種以上の元素を必要に応じて含有してもよい。
 これらの元素を添加する場合における適正含有量、及びその限定理由は以下の通りである。
・B:0.0002%以上0.0050%以下
 Bは0.0002%以上で焼き入れ促進効果が得られる。一方、Bの含有量が0.0050%を超えると、鋳造性や化成処理性が劣化する。よって、Bを含有する場合、B量は0.0002%以上0.0050%以下としてよい。十分な焼き入れ性促進効果を得る観点からBは0.0005%以上とすることが好ましく、介在物を低減する観点からBは0.0025%以下とすることが好ましい。
・Nb:0.005%以上0.100%以下
 Nbは0.005%以上で強度調整(強度向上)の効果が得られる。一方、Nbが0.100%を超えるとコストアップを招く。また、介在物が増加して鋳造性や鋼板の延性を損なう。よって、含有する場合、Nb量は0.005%以上0.100%以下としてよい。組織を微細化して強度上昇の効果を得る観点、耐遅れ破壊特性を改善する観点からNbは0.01%以上添加することがさらに好ましい。また、介在物を低減する観点からNbは0.06%以下とすることがさらに好ましい。
・Ti:0.005%以上0.200%以下
 Tiは0.005%以上で強度調整(強度向上)の効果が得られる。一方、Tiが0.200%を超えると、介在物が増加して鋳造性や鋼板の延性を損なう。また、化成処理性の劣化を招く。よって、Tiを含有する場合、Ti量は0.005%以上0.200%以下としてよい。組織を微細化して強度上昇の効果を得る観点、耐遅れ破壊特性を改善する観点からTiは0.01%以上添加することがさらに好ましい。また、介在物を低減する観点からTiは0.15%以下とすることがさらに好ましい。
・Cr:0.005%以上1.000%以下
 Crは0.005%以上で焼き入れ性効果が得られる。一方、Crが1.000%を超えるとCrが表面濃化するため、化成処理性、めっき性、溶接性が劣化する。よって、含有する場合、Cr量は0.005%以上1.000%以下としてよい。
・Mo:0.005%以上1.000%以下
 Moは0.005%以上で強度調整(強度向上)の効果が得られる。一方、Moが1.000%を超えると化成処理性の劣化やコストアップを招く。よって、含有する場合、Mo量は0.0005%以上1.000%以下としてよい。
・Cu:0.005%以上1.000%以下
 Cuは0.005%以上で耐遅れ破壊改善効果が得られる。一方、Cuが1.000%超えると化成処理性の劣化やコストアップを招く。よって、Cuを含有する場合、Cu量は0.005%以上1.000%以下としてよい。耐遅れ破壊特性を向上させる観点から、Cuは0.05%以上添加することがさらに好ましい。また、化成処理性の劣化を防止する観点からCuは0.2%以下とすることがさらに好ましい。
・Ni:0.005%以上1.000%以下
 Niは0.005%以上で残留γ相形成促進効果が得られる。一方、Niが1.000%を超えるとコストアップを招く。よって、Niを含有する場合、Ni量は0.005%以上1.000%としてよい。
・Sb:0.001%以上0.200%以下
 Sbは鋼板表面の窒化、酸化、あるいは酸化により生じる鋼板表面の数十ミクロン領域の脱炭を抑制する観点から含有することができる。窒化や酸化を抑制することで鋼板表面においてマルテンサイトの生成量が減少するのを防止し、疲労特性や表面品質が改善する。このような効果は、Sb:0.001%以上で得られる。一方、Sb:0.200%を超えると靭性が劣化する。よって、Sbを含有する場合、Sb量は0.001%以上0.200%以下としてよい。耐疲労特性を改善する観点からSbは0.002%以上添加することが好ましく、高い靭性を得る観点からSbは0.100%以下とすることがさらに好ましい。
・Zr:0.005%以上0.100%以下
 Zrは、0.005%以上で高強度化の効果が得られる。一方、Zrが0.100%を超えると、介在物が増加して鋳造性や鋼板の延性を損なう。よって、Zrを含有する場合、Zr量は0.005%以上0.100%以下としてよい。
・V:0.005%以上0.200%以下
 Vは、0.005%以上で高強度化の効果が得られる。一方、Vが0.200%を超えると、介在物が増加して鋳造性や鋼板の延性を損なう。よって、Vを含有する場合、V量は0.005%以上0.200%以下としてよい。
・W:0.005%以上0.100%以下
 Wは、0.005%以上で高強度化の効果が得られる。一方、Wが0.100%を超えると、介在物が増加して鋳造性や鋼板の延性を損なう。よって、Wを含有する場合、W量は0.005%以上0.100%以下としてよい。
・Sn:0.001%以上0.200%以下
 Snは、鋼板表面の窒化、酸化、あるいは酸化により生じる鋼板表面の数十ミクロン領域の脱炭を抑制する観点から、含有することができる。窒化や酸化を抑制することで、鋼板表面においてマルテンサイトの生成量が減少するのを防止する。この結果、疲労特性や表面品質が改善する。このような効果は、Sn:0.001%以上で得られる。一方、Sn:0.200%を超えると靭性が劣化する。よって、Snを含有する場合、Sn量は0.001%以上0.200%以下としてよい。耐疲労特性を改善する観点からSnは0.002%以上添加することが好ましく、高い靭性を得る観点からSnは0.100%以下とすることがさらに好ましい。
・Ca:0.0002%以上0.0050%以下
 Caは、介在物の形態を球状化して曲げ性や耐遅れ破壊特性を改善する効果がある。このような効果を得る観点から、Caは、0.0002%以上添加することができる。しかし、Caを多量に添加すると、コストアップにつながるので、Caは0.0050%以下とすることが好ましい。
・REM(Rare Earth Metal):0.0002%以上0.0050%以下
 REMは、介在物の形態を球状化して曲げ性や耐遅れ破壊特性を改善する効果がある。このような効果を得る観点から、REMは0.0002%以上添加することができる。しかし、REMを多量に添加すると、コストアップにつながる。したがって、REMは0.0050%以下とすることが好ましい。
・Mg:0.0002%以上0.0050%以下
 Mgは、介在物の形態を球状化して、曲げ性や耐遅れ破壊特性を改善する効果がある。このような効果を得る観点から、Mgは0.0002%以上添加することが好ましい。しかし、Mgを多量に添加すると、コストアップにつながるので、Mgは0.0050%以下とすることが好ましい。
 以上説明してきたような成分組成の鋼板は、公知又は任意の方法で製造することができる。例えば、上記成分組成を有するスラブを加熱し、熱間圧延して熱延鋼板とし、この熱延鋼板を酸洗した後、必要に応じて熱延鋼板に冷間圧延を施して冷延鋼板とすることができる。更に、鋼板表面に、上述のような表面処理を実行する場合もある。
 「第1実施形態」
 図1は、トリマー設備に設けられたトリミング装置の構成を説明する図である。
 図1に示すように、本実施形態では、めっきその他の表面処理が施された鋼板1が、搬送ラインに沿ってトリマー設備に搬送され、搬送中の鋼板1の板幅方向端部(エッジ部)に対してトリム処理が実行される。
 (構成)
 本実施形態のトリミング装置は、回転刃2と、押さえロール7と、潤滑油付着装置とを備える。また、本実施形態のトリミング装置は、膜厚均一化器具を備える。押さえロール7及び膜厚均一化器具の少なくとも一方を有しなくても良い。なお、本実施形態では、押さえロール7が膜厚均一化器具を兼ねる。
 <回転刃2>
 回転刃2は、図1及び図2に示すように、鋼板1を挟んで対向可能な一対の回転刃2A、2B(上刃2A及び下刃2B)を有し、その一対の回転刃2A、2Bで鋼板1を板厚方向から挟み込んで切断する構成となっている。図2のように、一対の回転刃2A、2Bの刃先同士の接触位置が切断位置となる。
 図2における符号Lは、切断位置を通過すると想定される切断前の鋼板1の位置を示す。また、図1及び図2における符号10は、潤滑油付着装置にて鋼板1に付着した潤滑油を示す。
 一対の回転刃2A、2Bは、図1に示すように、切断位置での回転方向が搬送方向と同方向となる順方向に設定されている。
 回転刃2は、例えば、出側検査前にて、製品巾に合わせて鋼板1のエッジ部(端部)を切断するトリム処理を実行する。
 <潤滑油付着装置>
 潤滑油付着装置は、図1に示すように、鋼板搬送方向における回転刃2の設置位置よりも上流位置、すなわち切断前の鋼板1の表面1a、1bと対向可能な位置に配置されている。潤滑油付着装置は、図2に示すように、鋼板1の表面1a、1bにおける、回転刃2で切断される位置(符号Lの位置)を含む領域に対し事前に潤滑油10を付着する装置である。
 本実施形態の潤滑油付着装置は、噴霧装置3(噴射ノズル)を有し、噴霧装置3は、鋼板1の表面1a、1bに向けて潤滑油を噴霧することで、鋼板1の表面1a、1bに潤滑油を付着する。噴霧装置3には、潤滑油を貯蔵した油タンク4と、空気を供給するコンプレッサその他のエア供給装置5が接続されている。噴霧装置3は、コントローラ6からの指令に応じて、ノズル先端部で潤滑油に空気を混合して、潤滑油を霧状にし、その霧状の潤滑油を鋼板1の表面1a、1bに向けて噴霧可能に構成されている。
 [潤滑油の水分含有量]
 潤滑油の含有水分量は、3000ppm未満であることが好ましい。
 そのままでは、回転刃2で切断後の鋼板の端部には、潤滑油が付着したままとなる。その付着している潤滑油の含有水分量が3000ppm以上と含有水分量が多い場合、回転刃2での切断から、自動車メーカや家電メーカ等で鋼板を製品に加工される迄の間に、潤滑油に含有する水分によって、鋼板の平坦面あるいは切断面に錆が発生するおそれがある。このことは、自動車用途や家電用途の鋼板の製造に、本実施形態が使用し難しくなることに繋がる。
 一方、潤滑油の含有水分量を3000ppm未満とすることで、鋼板の平坦面あるいは切断面での錆の発生を抑制することができる。
 より長期間に渡って錆の発生を抑制する観点を考えると、潤滑油の含有水分量は、2000ppm以下であることが更に好ましい。
 また、潤滑油の含有水分量の下限は0ppmである。脱水に要するコストを考慮すると、潤滑油の含有水分量の下限は、20ppm以上が好ましい。
 なお、本明細書のおける「ppm」は、重量ppmを表す。
 [噴霧量]
 噴霧量とは、鋼板表面への付着量と同義である。
 自動車製造業等の鋼板を加工する製造メーカでは、例えば、鋼板若しくは鋼板からトリムしたブランク材にプレス加工を施した後、化成処理・電着塗装工程の前に、鋼板に付着した油(プレス油や防錆油)をアルカリ洗浄液で脱脂する洗浄工程を備える。このとき、油の付着量が多くなるほど、脱脂工程での脱脂性が著しく劣化し、化成処理性や塗装性に悪影響を及ぼす。したがって、このような用途の鋼板を製造する場合、従来のように、回転刃に直接油を塗布して鋼板を切断する方法では、更に多量の切削油を供給することは、回転刃から鋼板に油が過剰に転写されて脱脂不良を招くので、困難である。
 一方で、発明者らが種々検討したところ、トリム前の鋼板に潤滑油を直接塗布して(付着させて)切断する方法を採用した場合、以下のような効果が得られるという新たな知見を得た。
 すなわち、発明者らは、鋼板への潤滑油の供給量が同じであっても、トリム用の回転刃に直接油を塗布する場合に比べて、鋼板に直接潤滑油を供給(付着)して切断した方が、刃欠けの頻度が抑制されることを確認した。
 この理由は必ずしも明らかではないが、次に示すような、刃先で油を保つ新たな機構が生じる事が理由と考えられる。
 すなわち、従来のように回転刃に直接塗布する場合、刃が鋼板に接触した後、新たな潤滑油の供給が生じない。このため、刃のコーナ部、つまり刃先が鋼板上を摺動しながら鋼板を変形させて切断に至る過程において、刃先の油切れを抑制できない。このため、この過程で、刃には、鋼板-刃間の摩擦に起因する側方力が強く作用すると推定される。
 一方、トリム前の鋼板に直接塗布(付着)した場合、刃が鋼板に接触した後も、刃先が鋼板表面を摺動して切断する過程で、刃先が摺動した先の新たな鋼板表面の領域にも、塗布された(付着した)潤滑油が存在する。このため、潤滑油が供給され続けることになる。この結果、油切れが抑制され、鋼板-刃間の摩擦も低減されることで、鋼板に直接潤滑油を塗布(付着)する場合に刃欠けが著しく抑制されると考えられる。また、摺動過程で刃先と鋼板の間に局所的に堆積する油は、トリム除去される切り屑側に生じるので、堆積した油による脱脂不良も生じにくい。
 以上のことから、油を回転刃に直接塗布する場合に比べ、鋼板に直接潤滑油を塗布(付着)させる場合、トリムのために鋼板に供給される潤滑油の量を抑えることが可能となる。
 なお、鋼板全体に多量の塗油を行うと、脱脂ラインで大量の潤滑油の除去が必要となり、薬液交換頻度が著しく増大する。このため、コストやライン操業性の面から、現実的に実施するのは非常に難しい。また、鋼板全体に塗布した場合には、地球環境への負荷増大も顕著である。本開示の切断手法では、回転刃の近傍の領域のみに塗布することで顕著な効果が得られるので、かかる問題も解決できる。
 すなわち、本実施形態を適用することで、顕著な刃欠けの抑制効果を得るのに多量の油の塗布(付着)を必要としない。この結果、自動車メーカなどから求められる脱脂性を損なわない範囲の油の付着量で、その効果が得られるという有利な点がある。
 このように、本開示によれば、回転刃に直接油を塗布して鋼板を切断する方法に比べて、少ない潤滑油の付着量で、刃欠けの頻度が抑制される。この結果、本開示によれば、自動車骨格・ボディ部品用等の用途に適用できる利点を有し、環境保全の面においても優れている、との知見を得た。また、本開示によれば、飛散することが防止され、鋼板への潤滑油の付着領域も限定的にすることも可能となる。
 ここで、潤滑油の噴霧量は、鋼板1の表面1a、1bのエッジ部に対し、連続的かつムラなく塗布(付着)できるように、油流量などを調整する。
 例えば、噴霧量は、鋼板1の表面1a、1bに対して一定以上の塗油密度を確保するために、下記(1)式のように設定する。
 すなわち、噴霧量の下限値は、鋼板の搬送速度に応じて、例えば下記(1)式によって設定する。より好ましくは、噴霧量の下限値は、(2)式によって設定する。
 噴霧量の下限値=1.00[mL/m
         ×0.04(:噴霧領域の幅)[m]
         ×搬送速度[mpm]×60[min/hr]
                          ・・・・(1)
 噴霧量の下限値=7.24[mL/m
         ×0.04(:噴霧領域の幅)[m]
         ×搬送速度[mpm]×60[min/hr]
                          ・・・・(2)
 噴霧量を、片面あたり(1)式で規定する量以上に設定することで、特に優れた刃欠けの抑制効果が得られる。なお、(1)式で規定される噴霧量の下限値は、1.00mL/mの塗油密度に対応する。塗油密度は、単位面積当たりの鋼板表面における潤滑油の付着量である。更に、噴霧量を(2)式で規定する量以上に設定することで、更に優れた刃欠けの抑制効果が得られる。このため、噴霧量の下限値はこの範囲とすることが好ましい。なお、(2)式で規定される噴霧量の下限値は、7.24mL/mの塗油密度に対応する。刃欠けの初期発生箇所となる上刃側(上面)の鋼板面で、上記塗油密度とすることが好ましい。上刃側と下刃側の両鋼板面で、上記塗油密度とすることが更に好ましい。
 ここで、(1)式及び(2)式での規定は、噴霧領域(付着領域)の幅が鋼板エッジ部から0.04mの範囲を前提としたものである。その幅が異なる場合は、0.04mに替えてその値を代入することで噴霧量を求めることができる。[mpm]は、一分間当たりの鋼板の通過距離(m)である。
 噴霧領域の幅を0.01m、搬送速度を40mpmとすると、(1)式では0.02L/hr、(2)式では0.17L/hrとなる。これらの値が、優れた刃欠けを抑制する場合の噴霧量の下限値、及び、更に刃欠けを抑制する場合の噴霧量の下限値と考えることができる。なお、塗油密度に換算した場合の値は、上述の通りである。
 噴霧量の上限値については、特に規定は無い。
 ただし、過剰塗油の場合、鋼板1のエッジ部に付着した油10が鋼板から落下し、以降のライン機器に悪影響を及ぼす懸念がある。このため、噴霧量は極力少量が望ましい。このような観点から、潤滑油の噴霧量は、両面合計で60L/hr未満とすることが望ましい。両面合計の噴霧量とする理由は、油が上下面の両面から流れ出てくるためと、コイルとした場合には両面の油が一体化して流れ出るためである。両面合計で60L/hr未満の噴霧量は、両面へ噴霧する場合、片面あたり15mL/m未満の塗油密度に対応する。片面のみに噴霧する場合、30mL/m未満の塗油密度に対応する。ここで、噴霧領域の幅は0.15m、鋼板の搬送速度は230mpmとした。これは噴霧領域の幅と鋼板の搬送速度の上限相当の条件である。
 また、自動車用鋼板で必要とされる優れた脱脂性を確保する観点からは、塗油密度は10mL/m以下とするのが好ましい。これは、脱脂時間は塗油密度の影響を顕著に受けるためである。塗油密度が10mL/m以下は、片面噴霧の場合、20L/hr以下に対応し、両面噴霧の場合、40L/hr以下の潤滑油の噴霧量に対応する。ここで、前記潤滑油の噴霧量は、噴霧領域の幅0.15m、鋼板の搬送速度230mpmとして算出される潤滑油の噴霧量である。より優れた脱脂性を確保する観点からは、塗油密度は5mL/m以下とするのがさらに好ましい。これは、片面噴霧の場合、10L/hr以下の潤滑油の噴霧量に対応し、両面噴霧の場合、20L/hr以下の潤滑油の噴霧量に対応する。塗油密度をこの範囲に制御することで、自動車メーカ等で実施する脱脂処理に要する時間を削減できる。
 なお、この実施形態では、潤滑油をそのまま噴射すること無く、霧状として供給する。このため、潤滑油の給油が自ずと抑えられる。
 ここで、潤滑油の塗布(付着)を滴下で実行した場合、その滴下量の範囲は、上記の噴霧の場合と同様の範囲となる。なお、滴下の場合、(1)式や(2)式において(噴霧領域の幅)を(滴下領域の幅)に置き換えて算定すればよい。
 [噴霧圧力]
 噴霧圧力は、例えば0.09MPa以上0.12MPa以下とする。
 噴霧圧力は、規定する噴霧領域に均一塗油可能となるように設定されれば、特に限定は無い。
 [噴霧領域]
 噴霧領域は、切断位置となる位置Lを基準として、鋼板1の巾方向へ±20mmの領域を有することが好ましい。
 噴霧領域の巾(噴霧巾)が40mm以下の噴霧巾になると、切断位置において、十分な潤滑領域を確保できず、刃欠けのおそれが発生する。
 噴霧領域の巾の上限値については特に規定はない。ただし、過剰塗油の場合、鋼板1のエッジ部に付着した油10が鋼板から落下し、以降のライン機器に悪影響を及ぼす懸念があるため、噴霧領域の巾は極力少量が望ましい。
 製造された鋼板を自動車用途へ適用する場合には、脱脂速度向上、脱脂不良削減、薬液交換頻度削減、環境負荷低減の観点から優れた脱脂性が求められる。このため、噴霧領域の幅は極力低減することが望ましい。このような観点から、塗布領域の幅は±100mm(200mm幅)以下とすることが望ましい。また、噴霧領域の幅は、鋼板への潤滑油塗布密度を精密に制御することにより、±40mm(80mm幅)以下とすることが好ましい。更に、噴霧領域の幅は、±20mm(40mm幅)以下とすることがより好ましく、±10mm(20mm幅)以下とすることが更に好ましい。
 [噴霧装置3の噴射部と鋼板1との距離]
 噴霧装置3の噴射部と鋼板1との距離は、40mm以上離すことが好ましい。40mm未満の場合、鋼板形状が悪形状の鋼板1が通過する時に、噴霧装置3のノズル部が鋼板1と干渉するおそれがある。
 噴霧装置3の噴射部と鋼板1との距離の上限値については、特に規定はない。距離を離すほど、鋼板1の表面1a、1bに付着する潤滑油の密度(塗油密度)が低くなると共に、噴霧領域の巾が広くなる。しかし、塗油密度と噴霧領域とが予め設定した目的とする範囲に確保できる距離の範囲であれば、距離の上限値に規定はない。
 本実施形態では、噴射ノズルは、鋼板1の上面1a及び下面1bに対向させて配置されて、鋼板1の表裏両面における、回転刃2で切断する位置に潤滑油を付着する構成となっている。
 噴射ノズルは、鋼板1の表裏表面1a、1bのうちの、一方の面のみに配置されていても良い。
 [潤滑油の粘度]
 潤滑油の粘度は、潤滑油の液温が40℃のときにおいて、3mm/s以上、130mm/s以下であることが望ましい。3mm/s未満の場合、回転刃の切断面と鋼板が高い面圧で作用する。このため、油切れにより回転刃と鋼板が直接接触する恐れがある。1180MPa以上の強度の高強度鋼板の切断においては、より高い面圧となっても油切れを抑制する観点からは、潤滑油の液温が40℃のときにおいて、潤滑油の粘度は8mm/s以上が更に好ましい。
 また、滑油の粘度が130mm/sより大きい場合、潤滑油が鋼板面に付着した後に鋼板面での拡散・浸透が不足し、局所的に潤滑油が不足する恐れがある。また、回転刃が鋼板を切断する過程で潤滑油の回転刃側面への供給が不足し、回転刃側面と鋼板が直接接触する恐れがある。したがって、滑油の粘度は、130mm/s以下とすることが好ましい。更に、付着した油をより均一に分布させる観点からは、潤滑油の粘度は潤滑油の液温が40℃のときにおいて、100mm/s以下とすることが更に好ましい。なお、粘度の測定は、JIS Z8803に基づく。粘度の測定は、例えば、回転粘度計で測定できる。
 潤滑油の種類は特に規定しない。例えば、潤滑油として、プレス油、防錆油、切削油等が例示できる。高強度鋼板を切断する場合においても安定して刃欠けを抑制する観点から、これらの潤滑油に対し、極圧添加剤を添加したものとすることもできる。
 [潤滑油の粒径]
 噴霧後のミストの平均直径は、例えば1μm以上2000μm以下の範囲とする。ミストの平均直径について、下限の制約は特にない。ただし、粒径が小さすぎると、周囲へ飛散し鋼板への付着率が下がる。また、飛散した油が周囲へ飛び散り、防災の観点からリスクが発生する、などの懸念がある。ミストの平均直径について、上限の制約も特にない。ただし、付着量が不均一になり、刃欠けが生じやすくなる懸念がある。刃欠け抑制の観点から、ミストの平均直径のより好ましい範囲は、100μm以下である。
 [潤滑油の鋼板への付着後、切断が開始されるまでの保持時間]
 潤滑油の鋼板への付着後、切断が開始されるまでの保持時間は特に規定しない。ただし、鋼板表面に付着した油の粒子を鋼板表面に分散させて均一な付着状態とする観点から、該保持時間は1秒以上とすることが好ましい。付着した潤滑油の粒子の直径が大きい場合は、鋼板表面に付着した油の粒子が鋼板表面に分散して均一な付着状態となる時間が長くなる。このため、潤滑油の粒径が2000μmを超える場合は、該保持時間は3秒以上とすることが望ましい。
 [回転刃の構成材]
 回転刃の構成材については特に規定しない。回転刃の構成材の例としては、炭素工具鋼、合金工具鋼、高速度工具鋼等を挙げることができる。引張強度が1180MPa以上の高張力鋼板の切断において歯欠けを安定して抑制する観点からは、回転刃の構成材として、合金工具鋼や高速度工具鋼を使用するのが好ましい。また、回転刃の表面に、焼き入れ処理、窒化・浸炭、TD処理等の表面硬化処理や、PVD、CVD、めっき、溶射等の表面被覆処理が施されていることが、更に好ましい。
 <押さえロール7>
 一対の押さえロール7は、鋼板1を挟んで当該鋼板1を把持可能に配置されている。
 一対の押さえロール7は、鋼板1の搬送方向における、回転刃2と、潤滑油付着装置による潤滑油の付着位置との間に設定されている。
 この一対の押さえロール7で把持する鋼板1の領域は、少なくとも上記回転刃2で切断される鋼板1の位置を含むように設定される。
 この一対の押さえロール7は、鋼板1の振動を抑えて、回転刃2による切断をより安定して実行可能とする。
 また、鋼板1に付着した潤滑油10を、鋼板1の表面1a、1bに押しつけて引き伸ばして、付着した潤滑油10を均一化すると共に鋼板への密着度を高める役割も有する。
 [膜厚均一化器具]
 膜厚均一化器具は、回転刃と潤滑油の付着位置との間に配置され、鋼板表面に付着させた潤滑油の膜厚を均一化する器具である。すなわち、膜厚均一化器具は、滴下や噴霧により付着させた潤滑油が不均一に分布していた場合に潤滑油の付着領域とりわけ切断箇所近傍(10~100mm幅)の付着量を均一に調整する器具である。
 この膜厚均一化器具によって、潤滑油の鋼板への付着後、回転刃で切断されるまでの間に、膜厚を均一化することが好ましい。
 本実施形態では、膜厚均一化器具は、潤滑油の噴霧装置又は油滴下装置と回転刃との間に設置される。
 本実施形態では、膜厚均一化器具の例として、一対の押さえロール7が例示されている。
 膜厚均一化器具としては、刷毛又はフェルト、ゴム、樹脂、金属の1種又は2種以上で構成される平面部材もしくはロール形状の部材を用いることができる。これらの膜厚均一化器具は、固定したもの、又は潤滑油の膜厚をより均一化する目的で回転もしくは揺動するものとしてもよい。潤滑油の表面を押圧するもしくは掻くことで鋼板表面の潤滑油の付着量を均一化する構成となっていればよい。
 潤滑油が不均一に分布すると刃欠けを誘発する原因となる。これに対し、膜厚均一化器具の利用によって、刃欠けを顕著に抑制する作用があり、安定して刃欠けが抑制することができる。また、潤滑油が不均一に分布すると脱脂性が劣化する原因となる。しかし、膜厚均一化器具の利用によって、それを抑制することができる。
 <その他の構成>
 本実施形態は、潤滑油を含浸させたフェルト9を有する。フェルト9は、回転刃2に直接、潤滑油を供給する。なお、フェルト9には、適宜、潤滑油が供給される。回転刃2に直接、供給した潤滑油は、回転刃2の回転の遠心力により飛散してしまうため、フェルト9によって供給される潤滑油の量よりも、噴霧装置3によって供給される量を多くすることが好ましい。
 本実施形態では、このフェルト9は、無くても良い。
 [回転刃2の上刃2Aと下刃2Bのクリアランス]
 回転刃2の上刃2Aと下刃2Bのクリアランスは、鋼板1の板厚に対し5%以上19%以下の範囲であることが好ましい。引張強度590MPa以上の高張力鋼板の切断においては、従来の軟質な鋼板で問題とならなかった20%程度のクリアランスでは、刃欠けが生じやすくなる。回転刃2の上刃2Aと下刃2Bのクリアランスを5%以上19%以下の範囲制御することで、引張強度590MPa以上の高張力鋼板の切断においても、トリム刃欠けとそれによる鉄粉発生が抑制される。この結果、切断以降の処理での押し疵が抑制される。回転刃2の上刃2Aと下刃2Bのクリアランスは、引張強度980MPa以上の高張力鋼板の刃欠けを抑制する観点からは、5%以上14%以下の範囲が更に好ましい。更に、引張強度1180MPa以上の高張力鋼板の刃欠けを抑制する観点からは、5%以上13%以下の範囲が更に好ましい。
 [回転刃2の回転方向における上刃と鋼板の垂直方向接触角]
 回転刃2の回転方向における上刃2Aと鋼板1の垂直方向接触角は、3度以上13度以下であることが好ましい。引張強度590MPa以上の高張力鋼板の切断においては、従来の軟質な鋼板で問題とならなかった、14度程度の接触角では刃欠けが生じやすくなる。接触角が13度超では、回転刃2と鋼板1の接触面積が小さくなることに加え、曲げ変形を切断屑に与える必要が生じて変形抵抗が高くなる。このことにより、高張力鋼板の切断においては、非常に高い応力が回転刃2の刃先に集中することになり、刃欠けが顕在化する。接触角が3度未満では、板厚方向に十分な切断深さが確保できず、切断不良が生じる。接触角を3度以上13度以下の範囲に制御することで、引張強度590MPa以上の高張力鋼板の切断においても回転刃2の刃欠けとそれによる鉄粉発生が抑制され、押し疵が抑制される。
 [回転刃2の回転方向と鋼板の搬送方向のなす角]
 回転刃2の回転方向と鋼板の搬送方向のなす角は、搬送後方側に開き角となる方向に、0.01度以上0.5度以下であることが好ましい。引張強度590MPa以上の高張力鋼板の切断においては、回転刃2と鋼板1の切断端面の再接触により高い面圧が生じて刃先に凝着物の堆積が生じやすくなる。刃先に凝着物の堆積が生じると、局所的なクリアランスの狭小化を通じて大きな応力が刃先にかかり刃欠けを誘発する。このような現象を回避する観点から、回転刃2の回転方向と鋼板1の搬送方向のなす角は、搬送後方側に開き角となる方向に0.01度以上0.5度以下であることが好ましい。
 (変形例)
 (1)上記説明では、潤滑油付着装置を噴霧装置3で構成する場合を例示した。潤滑油付着装置の他の例を、図3を参照して説明する。
 図3に示す潤滑油付着装置は、油滴下装置20を備え、リザーブタンク21から供給される潤滑油を、コントローラ22からの指令に応じて、鋼板1の上面1aに向けて潤滑油の油滴を連続的に滴下する構成となっている。なお、鋼板1の下面1bに対して潤滑油を滴下させることはできない。したがって、更に、鋼板1の下面1bに対向させて噴霧装置3を配置し、下面1bへも潤滑油を噴霧することがより好ましい。
 鋼板1の表面1bに対し搬送方向に沿って滴下された油滴23は、押さえロール7で引き伸ばされて、鋼板1に付着した油滴が、搬送方向に沿って均一化する。
 (2)また、潤滑油付着装置を、刷毛から構成し、刷毛によって、鋼板1に潤滑油を付着させる構成でも良い。
 ただし、刷毛による塗布の場合、非接触で潤滑油10を供給する噴霧装置3などと異なり、鋼板1の表面1a、1bに刷毛を直接接触させる。このため、刷毛による塗布の場合、鋼板1が高速で搬送されて振動する鋼板製造ラインで刷毛を適用するのは難しい。例えば、塗布時にラインを止める必要があったり、ライン内に作業員が入る必要があったりするなど、適用に対する課題がある。
 (3)また、潤滑油付着装置を、フェルト、ゴム、樹脂、金属の一種もしくは二種以上から構成される平面部材もしくはロール形状部材としてもよい。そして、これらに潤滑油を付着させたのち、当該潤滑油を鋼板1に付着させる構成でも良い。更に、これらの潤滑油付着装置は、固定したもの、又は油の付着をより均一化する目的で回転もしくは揺動するものとしてもよい。
 例えば、潤滑油付着装置をロール形状とする場合は、押さえロール7は、潤滑油付着装置としても利用することができる。押さえロール7の外周面に潤滑油を付着させて鋼板に潤滑油を供給することで、上述の押さえロールの機能と潤滑油付着装置としての機能の両機能を受け持たせることができる。
 (4)更に、鋼板の進行方向における回転刃の設置位置の前もしくは後の位置に、余分な潤滑油を除去する潤滑油除去装置を有していてもよい。この場合、回転刃での切断の前もしくは後において、鋼板に付着した潤滑油の一部を除去することで、潤滑油の付着量を調整可能となる。
 例えば、製造した鋼板を自動車用等の優れた脱脂性が求められる用途で使用する場合、トリム刃欠け抑制の観点から潤滑油を10mL/m以上付着させた後、潤滑油除去装置により潤滑油の付着量を10mL/m以下に調整することが好ましい。ただし、この場合、潤滑油除去装置を備える必要があるので、コスト増となる問題が生じる。
 (5)更に、除去した潤滑油を潤滑油付着装置に循環させ、再利用してもよい。
 (圧延鋼板、コイル材、及びブランク材)
 次に、本開示に基づく、本実施形態の圧延鋼板その他について説明する。
 本実施形態の上記の鋼板製造方法は、圧延鋼板の製造に好適な技術である。
 本実施形態の圧延鋼板は、スラブを圧延機で圧延する圧延工程と上記の切断工程を有する設備にて製造されて、形状が帯状となっている。なお、以下、圧延鋼板を、単に鋼板とも記載する。
 ここで、上述の切断方法では、回転刃2で切断する前に、切断予定の鋼板箇所に油を塗布している。この本実施形態の切断方法で切断された鋼板幅方向の端面は、平滑な切断端面となっている。本実施形態では、この平滑な切断端面の部分を、第1の切断面と呼ぶ。第1の切断面は、後述のような規定の構成となっている。
 ここで、鋼板幅方向に形成された切断端面は、鋼板長手方向全体にわたって、第1の切断面であることが好ましい。ただし、鋼板幅方向に形成された切断端面は、鋼板長手方向の一部だけが第1の切断面であっても良い。例えば、切断時の搬送速度が非定常となりがちな、鋼板の先端部及び尾端部の切断面は、第1の切断面でなくても良い。また、長手方向の一部の切断面についても第1の切断面で無くても良い。例えば、部分的に油の塗布量が少な過ぎて、第1の切断面の規定を満たさない端面部分があっても良い。ただし、鋼板幅方向に形成された切断端面の、長手方向50%以上、好ましくは70%以上、より好ましくは90%以上が、第1の切断面であることが好ましい。
 また、その帯状の鋼板を巻取り装置にて、ロール状に巻かれることでコイル材となる。
 更に、上記の圧延鋼板、又はコイル材を巻き戻してなる鋼板を、適宜、切り出すことで、プレス用のブランク材となる。本実施形態のブランク材は、鋼板の幅方向両端部の少なくとも一方の端面が第1の切断面からなる。
 ここで、回転刃2の刃欠けは、鋼板強度や設定条件等にも依存するので、厳密には特定されないが、数百m~数万mの切断長の中で発生する。このため、生産性向上の観点から、鋼板長手方向において数百mの範囲で部分的に塗油を行わない領域を作ることが可能である。部分的に塗油を行わない領域が存在しても、本開示の要件を満たす領域が存在することで、刃欠けの抑制効果やそれによる押し疵の抑制効果、更には搬送トラブル、コイル巻き形状不良、プレス寸法精度不良の抑制効果は得られる。
 また、鋼板やコイル材において、上記の効果を十分に享受する観点からは、先端(コイル材の長手先端から5~10m中央側)、長手中央、尾端(コイル材の長手尾端から5~10m中央側)の3カ所を測定し、50%以上の領域で、下記の第1の切断面の規定を満たすことが好ましい。ここで、該当領域の比率は、合格箇所と合格箇所で挟まれる領域は合格とし、合格箇所と不合格箇所で挟まれる領域はその区間の半分の領域が合格、半分の領域が不合格とし、不合格箇所で挟まれる領域は不合格として算出する。上記箇所で測定が不可能な場合は、隣接する領域で測定を行う。
 また、ブランク材の場合、第1の切断面を有する幅方向の端部は、直辺であり圧延方向に平行である。更に、ブランク材は、第1の切断面の下記の規定を満足する必要がある。ブランク材は、プレス加工を施すことを前提とするため、平坦な板材である。ブランク材の第1の切断面からなる端面の長さは、例えば、100mm~2500mmであり、例えば、矩形形状の板材である。ただし、ブランク材は、ピアス穴などの打ち抜き穴を有しても良い。
 また、本実施形態の鋼板は、引張強度TSが590MPa以上の高張力鋼板からなる。
 上記鋼板は、熱延鋼板、冷延鋼板、熱延鋼板もしくは冷延鋼板に表面処理を施した鋼板、熱延鋼板を冷間圧延したフルハード材のいずれでもよい。なお、フルハード材は、トリムの後の焼鈍を行った後の強度ではなく、トリムを行う工程での素材のTSが590MPa以上であればよい。
 本実施形態の鋼板の表面に表面処理が施されていても良い。表面処理が施された鋼板としては、GI、GA、EG、CRS、錫めっき鋼板、Zn系めっき鋼板、Al系めっき鋼板等が例示できる。しかし、これに限定されず、鋼板として、任意の鋼鈑を適用可能である。本開示は、例えば、GI、GAに固体潤滑皮膜を付与した鋼板や有機被覆を施した鋼板でも適用可能である。上記表面処理は、鋼板エッジ部の切断処理よりも前に行われていることが好ましい。
 本実施形態では、鋼板の板厚は、切断荷重が高くなり、刃欠けが顕在化しやすい0.4mm以上を対象とし、0.8mm以上が更に適している。一方、板厚が4.0mm以下でも本開示の効果が十分得られるので、その範囲も、本発明の範囲とする。
 [せん断面比率]
 鋼板の上記の切断面のうちの鋼板長手方向の少なくとも一部の切断面である第1の切断面は、鋼板の引張強度TS(MPa)に応じて、せん断面比率(%)が、以下の式(3)~(6)の範囲とする。
<TS:590MPa以上980MPa未満>
 19-0.0146×TS≦せん断面比率≦48-0.0300×TS
                          ・・・式(3)
 
<TS:980MPa以上1180MPa未満>
 10-0.00526×TS≦せん断面比率≦36-0.0180×TS
                          ・・・式(4)
 
<TS:1180MPa以上1320MPa未満>
 10-0.00526×TS≦せん断面比率≦27-0,108×TS
                          ・・・式(5)
 
<TS:1320MPa以上1850MPa未満>
 3 ≦せん断面比率≦ 16-0.0254×TS  ・・・式(6)
 
 ここで、潤滑油を鋼板1に直接塗布せず回転刃2に塗布する場合は、前述の通り刃先で油切れを生じやすく、その結果、せん断断面に大きな摩擦力が生じて大きな塑性変形を生じる。このため、切断面が、せん断面比率の高い破面形状となる。このように大きな塑性変形を伴った切断面は、残留延性が乏しい。このため、端面からの鉄粉の剥脱が切断工程以降の処理で生じやすく、剥奪した鉄粉が押し疵を招いて表面欠陥の発生率を増加させる。その作用は、980MPa級以上の高張力鋼板で特に顕在化し、1180MPa級以上の高張力鋼板で一層顕在化する。
 一方で、本開示に基づき、潤滑油を鋼板に直接塗布して切断した場合は、590MPa級以上の広い範囲の強度の高張力鋼板において、第1の切断面での摩擦力を軽減する。
 このため、発明者は、本開示の切断方法を適用することで、第1の切断面でのせん断面比率を式(1)~(4)で記述する範囲に抑えることができるとの知見を得た。その結果、本開示の切断方法を適用することで形成した鋼板、及びその鋼板からなるコイル材やブランク材は、切断工程以降の搬送工程、圧延工程、焼鈍工程、鋼板巻き取り工程などにおいて、端面からの鉄粉の剥脱を従来よりも抑制することができ、各工程で剥脱鉄粉の再付着に起因した押し疵の削減が可能である。
 なお、式(1)~(4)のせん断面比率の下限は、鉄粉剥脱抑制の観点からは限定する必要はなく、本開示の切断手法で得られる下限を記したものである。
 また、せん断面比率をこのような範囲に制御することで、端面の鉛直方向の材料の塑性流動が抑制される。この結果、ダレ、バリ、かえりも小さく抑えることができ、高い寸法精度の端面形状の鋼板とすることができる。このような鋼板では、切断以降の搬送工程、圧延工程、焼鈍工程、鋼板巻き取り工程などにおいて、搬送トラブル、巻き取り形状不良を防止することができる。また、自動車メーカでのプレス工程においても、プレス部品の寸法精度不良を抑制することができる。
 ここで、切断面のせん断面の面積率は、図4に示すように、切断面を板厚の2~2.5倍の範囲の領域が観察できる倍率でSEM観察し、圧延方向における合計長さが100mmとなる長さを観察して行う。観察用のサンプルは、分割して採取してよいが、圧延方向に150mmを超えない長さの範囲から採取する。せん断面の面積率は、測定した、せん断面の合計面積をせん断面と破断面の合計面積で除した値とする。
 なお、図4(a)は、鋼板への直接塗布がない従来例の場合であり、P1はせん断面と破断面との境界の中心線を、P2は、P1の位置を、「板厚×4%」だけ破断面側にシフトした線である。また、図4(b)は本開示に基づき、鋼板に塗布した場合の例である。
 ここで、通常の抜き型によるブランク加工、シャーによる切断、打ち抜きポンチによるピアス穴加工の場合では、切断刃と鋼板のなす垂直角が0~2度程度である。これに対し、本開示のような回転刃2による切断においては、ある曲率の回転刃2で鋼板1を挟み込む機構であるので、一般に当該角度が上記より大きくなる。本開示においては、上記の通り当該角度を3度以上13度以下に制御することが望ましく、その結果、図4の(b)および図5に矢印と破線にて示すように、切断破面の破断面に切断時の角度に対応したかすかな縞模様が互いに平行に現れる場合がある。本開示において、この破断面に生じる縞模様の発生は許容され、縞模様の方向と鋼板厚さ方向の側面視でのなす角は、3度以上13度以下である。縞模様の方向と鋼板厚さ方向の側面視でのなす角は、せん断面の面積率の測定と同様のSEMを用いた方法で計測することができる。
 [せん断面と破断面の境界における凸部の存在個数]
 第1の切断面での、せん断面と破断面の境界における凸部の存在個数は、5個/100mm以下とする。せん断面と破断面の境界における凸部の存在個数は、せん断面の、当該せん断面と破断面との境界での乱れ具合に相当する。
 ここで、潤滑油を鋼板に直接塗布せず刃に塗布する場合は、前述の通り刃先で油切れを生じやすく、刃が欠けやすい。また、鋼板と回転刃の接触面圧が高くなることで切断された鋼板の新生面の一部が金型に凝着する現象が起きやすい。このような刃欠けや凝着が生じると、切断端面のせん断面と破断面の境界線が波状の形状になる(図4(a)参照)。また、波状の形状となった場合には、特にその部分から鉄粉の剥脱が生じやすくなり、押し疵の発生頻度を増加させる。
 一方、切断端面のせん断面と破断面の境界における凸部の存在個数を5個/100mm以下とする(図4(b)、図5参照)ことで、押し疵の発生頻度を大幅に抑制できる。
 また、かかる境界線が波状の領域では、局所的に大きなダレ、バリ、カエリが生じやすい。この結果、そのような領域を有するコイル材では搬送トラブルや、自動車メーカでのプレス工程において、プレス部品の寸法精度不良を生じやすい。凸部の存在個数を上記範囲に制御したコイル材では、これらの課題を解決することができる。
 凸部の個数は、SEMを用いてせん断面比率の測定と同様の倍率、観察長で測定を行う。各観察視野で、せん断面と破断面の境界線を直線で描画し、境界線より板厚の4%以上破断面側に張り出した、せん断面の個数を凸部として計測する。すなわち、凸部とは、板厚の4%以上破断面側に張り出した張り出し形状からなる。
 境界線の位置は、せん断面の上端部とほぼ平行になる線を設け、その線より下に位置する、せん断面の面積と、その線より上に位置する破断面の面積が等しくなるように線の高さを設定する。凸部の個数は、凸部の合計個数を合計観察長で除した値とする。
 第1の切断面で、切断端面のせん断面と破断面の境界における凸部の存在個数を5個/100mm以下に制御することは、本開示の切断方法を適用することで実現可能である。例えば、潤滑油を、エッジ部のトリム前の鋼板に直接0.900g/m以上の塗油密度(1.00mL/mの塗油密度に対応)で塗布し、回転刃2のクリアランスと、回転刃2の上刃と鋼板1が接触する時の接触角度を調整することが好ましい。回転刃2のクリアランスが小さいと、2次せん断面が形成されて凸部の個数が増大する。クリアランスが大きいとせん断面比率が増大して工具の損耗が顕著になり、切断長が増加すると刃欠けが高い頻度で発生するようになり、凸部の個数が増大する。回転刃2と鋼板1の接触角度が小さいと、同時に切断する範囲が広範囲化して破面形態が安定しにくい。一方、接触角が大きいと、曲げ変形荷重が大きく重畳して刃先に大きな荷重が加わり、刃欠けが生じやすくなる。このため凸部の個数が増大する。
 [切断面から5mmまでの領域の塗油量]
 前述した通り、本開示を適用する場合、回転刃2の周辺領域(切断される領域近傍)のみに潤滑油を塗布することで、効果的に刃欠けを抑制できる。したがって、優れた脱脂性を確保する観点から、エッジ部のみに潤滑油を多く塗布して切断して製造した鋼板が好ましい。また、第1の切断面付近の油の塗布量を鋼板幅方向中央部より多く残存させることで、切断以降における、鋼板1のエッジ部分で鉄粉が剥脱して飛散することを、より効果的に防止できる。したがって、鋼板1の切断端面のうち、第1の切断面の端面から、鋼板幅中央方向へ5mm内側までの領域の塗油量が、圧延鋼板幅中央位置の塗油量より0.2g/m以上多くすることが好ましい。ここで、塗油量は片面あたりの付着量を表す。
 上記の塗油量の制御は、鋼板表裏面の少なくとも片側面で実施するのが好ましい。刃欠けの発生に対する影響は、上刃側の鋼板面、すなわち、上面であり、せん断面側の鋼板面が特に大きいので、上刃側の鋼板面において、エッジ部の塗油量を多くすることが好ましい。刃欠けを特に安定して抑制する観点からは、上刃側と下刃側の両鋼板面でエッジ部の塗油量を多くすることが好ましい。ただし、脱脂工程での薬液交換頻度を削減する観点からは、影響の小さい下刃側の鋼板面への付加的な塗油は行わず、上刃側の鋼板面のみの塗油量を多くすることができる。
 一般に、鋼板1の普通塗油の上限は2.5g/m程度である。第1の切断面位置の端面から5mmまでの領域の鋼板表面の塗油量は、2.7g/m以上とすることが好ましい。ここで、塗油量は片面あたりの付着量を表す。上記の塗油量の制御は、鋼板表裏面の少なくとも片側面で実施するのが好ましく、せん断面側の鋼板面において塗油量を前記範囲に制御することが好ましい。
 更に、刃欠け抑制効果をより一層享受する観点からは、切断時において、7.24mL/m以上の潤滑油の噴霧量とすることが好ましい。これは、6.5g/mの塗油量に対応する。したがって、第1の切断面から5mmまでの領域の塗油量は6.5g/m以上とすることが一層望ましい。ここで、塗油量は片面あたりの付着量を表す。上記の塗油量の制御は、鋼板表裏面の少なくとも片側面で実施するのが好ましく、せん断面側の鋼板面において塗油量を前記範囲に制御することが好ましい。
 一方で、過剰塗油の場合、エッジ部の油が落下してライン機器に悪影響を及ぼす懸念がある。このため、第1の切断面から5mmまでの領域の塗油量は27g/m未満(30mL/m未満に対応)とすることが好ましい。また、自動車用鋼板で必要とされる優れた脱脂性を確保する観点からは、第1の切断面から5mmまでの領域の塗油量は9g/m以下(10mL/m以下に対応)とすることが望ましい。脱脂時間をより削減する観点からは、第1の切断面から5mmまでの領域の塗油量は4.5mL/m以下(5mL/m以下に対応)とすることがさらに好ましい。ここで、油の密度は0.9g/cmである。
 圧延鋼板幅中央位置の塗油量の上限はおよそ2.5g/mであるので、エッジの塗油量が上記の範囲をとするために、第1の切断面の端面から、鋼板幅中央方向へ5mm内側までの領域の塗油量を圧延鋼板幅中央位置の塗油量より増加させる量は、24.5g/m未満であることが望ましく、6.5g/m以下であることがさらに望ましく、2.0/m以下であることがさらに望ましい。
 ここで、塗油量は、切断端面と鋼板幅中央のそれぞれから幅5mm、長さ200mmのサンプルを6枚採取し、アルカリ脱脂の前後でのそれぞれの重量変化を測定して算出した。ブランク材においてサンプルが十分な量を確保できない場合は、膜厚を測定し、油の密度を0.9g/cmとして単位面積あたりの付着重量に換算することができる。
 (作用)
 本実施形態では、トリム前の鋼板1に潤滑油を直接塗布する(付着させる)ことで、切断位置での油の供給不足を解消する。これによって、本実施形態では、摩擦を低減することによってトリマーの刃欠けの頻度を抑制して、仮に回転刃を高速回転させて切断を行う必要があっても、鋼板製造の歩留まりが向上する。
 例えば、鋼板1の表裏両面1a、1bに対し連続的に塗油できるような噴霧装置3をトリマーの前に設置する。そして、この噴霧装置3を用いて切断前の鋼板1の切断される位置に塗油することで、切断位置での油浸透不足を解消できる。このため、切断対象の鋼板1を高張力鋼板1としても、一対の回転刃2A、2Bを構成する上刃及び下刃共に連続的にかつムラなく十分に塗油できた。このため、油の浸透不足は解消され、刃欠けは抑制される。
 また、本実施形態では、回転刃に潤滑油を供給する場合に比べて、鋼板に付与する潤滑油の量を抑えることが出来る。このため、製造した鋼板での錆発生を、回転する回転刃に潤滑油を供給する場合に比べて抑えることができる。
 更に、押さえロール7で油を押さえることで、より安定して切断位置に対し油を供給可能となる。
 同様に、図3に示すような、油滴下装置20によってトリム前の鋼板1の端部に塗油することでも、切断位置での油浸透不足を解消できる。このため、切断対象の鋼板1を高張力鋼板1としても、一対の回転刃2A、2Bを構成する上刃及び下刃共に連続的にかつムラなく十分に塗油できたため、油の浸透不足は解消され、刃欠けは抑制された。
 ここで、潤滑油の噴霧量や滴下量は、鋼板の搬送速度に応じて、鋼板1の表裏両面とも潤滑油が連続的にかつムラなく塗布(付着)できるように、供給エア圧や油流量、油消費量を設定することが好ましい。
 また、本開示の切断方法で形成された第1の切断面を有する圧延鋼板、コイル材、及びブランク材では、平滑な端面となる第1の切断面を有する。このため、切断後の鉄粉の剥奪が従来よりも抑制されて製造されるため、鉄粉剥奪による押し疵の発生が抑制することが可能となる。つまり、品質の良い圧延鋼板、コイル材、及びブランク材を提供可能となる。
 (実施例)
 次に、本実施形態に基づく実施例について説明する。
 「第1の実施例」
 第1の実施例では、切断対象の鋼板1を、溶融亜鉛鍍金鋼板(引張強度1180MPaの板厚1.2mm)として、トリマー設備でのノートリム材(トリム未実施材)の発生状況について実験を行った。
 トリムの条件として、次の条件で実行した。
・鋼板1の搬送速度:最大230[mpm]
・板端部のトリム代:10~20[mm]
 <実施例1>
 実施例1では、潤滑油付着装置として上記の噴霧装置3を用いた(図1参照)。
 噴霧装置3の条件は次のように設定した。
・鋼板の搬送速度:230[mpm]
・噴霧装置3による塗油範囲:鋼板巾方向の端面から40[mm]、上面のみ
・油使用量:4.0[L/hr](塗油密度:7.25[mL/m])
・供給エア圧:0.4~0.6[MPa]
 <実施例2>
 実施例2では、潤滑油付着装置として上記の油滴下装置20を用いた(図3参照)。
 油滴下装置20の条件は次のように設定した。
・鋼板の搬送速度:80[mpm]
・塗油範囲:鋼板巾方向の端面から40mm
・油使用量:0.8[L/hr](塗油密度:4.15[mL/m])
・供給エア圧:0.4~0.6[MPa]
 <実施例3>
 実施例3では、潤滑油付着装置として上記の噴霧装置3を用いた(図1参照)。
 噴霧装置3の条件は次のように設定した。
・鋼板の搬送速度:60[mpm]
・噴霧装置3による塗油範囲:鋼板巾方向の端面から40[mm]、上面のみ
・油使用量:4.0[L/hr](塗油密度:14.0[mL/m])
・供給エア圧:0.4~0.6[MPa]
・油の水分含有量:700ppm
 ここで、実施例3の方法で製造した鋼板を巻いてコイル材とし、100日間倉庫に保管した後、潤滑油付着領域での錆発生の有無を確認したが、錆は認められなかった。
 100日間としたのは、コイル材を自動車メーカなどのメーカにおいて、鋼板をプレス成形するまでの保管期間を想定したものである。
 <実施例4>
 実施例4では、潤滑油付着装置として上記の噴霧装置3を用いた(図1参照)。
 噴霧装置3の条件は次のように設定した。
・鋼板の搬送速度:40[mpm]
・噴霧装置3による塗油範囲:鋼板巾方向の端面から11[mm]、上下面
・油使用量:片面あたり0.05[L/hr]、両面で0.1[L/hr]
      (塗油密度:1.88[mL/m])
・供給エア圧:0.4~0.6[MPa]
・油の水分含有量:700ppm
 ここで、実施例4の方法で製造した鋼板を巻いてコイル材とし、100日間倉庫に保管した後、潤滑油付着領域での錆発生の有無を確認したが、錆は認められなかった。
 <実施例5>
 実施例5では、潤滑油付着装置として上記の噴霧装置3を用いた(図1参照)。
 噴霧装置3の条件は次のように設定した。
・鋼板の搬送速度:80[mpm]
・噴霧装置3による塗油範囲:鋼板巾方向の端面から80[mm]、上面のみ
・油使用量:11.1[L/hr](塗油密度:29.0[mL/m])
・供給エア圧:0.4~0.6[MPa]
・油種:NOX-RUST550(日本パーカライジング株式会社製)
・油の粘度:17.0mm/s
 <実施例6>
 実施例5では、潤滑油付着装置として上記の噴霧装置3を用いた(図1参照)。
 噴霧装置3の条件は次のように設定した。
・鋼板の搬送速度:80[mpm]
・噴霧装置3による塗油範囲:鋼板巾方向の端面から15[mm]、上下面
・油使用量:片面あたり0.58[L/hr]、両面で1.16[L/hr]    (塗油密度:8.00[mL/m])
・供給エア圧:0.4~0.6[MPa]
・油種:NOX-RUST550(日本パーカライジング株式会社製)
・油の粘度:17.0mm/s(潤滑油の液温が40℃)
・油噴霧後のミストの平均粒径:5.0μm
・油が鋼板に付着してから切断までの保持時間:1秒
 <比較例1>
 比較例1では、潤滑油付着装置を使用しなかった。代わりに、一対の回転刃2の両方に対し、フェルト9によって潤滑油を給油した(フェルト9の配置位置は、図1を参照)。
 比較例1では、鋼板の搬送速度を60mpm、回転刃に対する潤滑油の供給量を、上刃と下刃の合計で4.0L/hrとした。塗布幅を上下の刃それぞれに対して12mm(塗油密度:46.3[mL/m])
 <評価>
 評価は、ノートリム材によるアップ落ち発生確率の改善で評価した。
 アップ落ち発生確率は、適用材のトリム材装入量(製造したコイル材5~10本の全重量)のうち、刃欠けによりノートリム材となりアップ落ち(不良材と判定)した量(不良コイル材の全重量)の割合である。
 評価結果は、次の通りである。
 比較例1(フェルト9のみでの塗油時)…8.2%
 実施例1(油噴霧時)…0.0%
 実施例2(油滴下時)…7.1%
 実施例3(油噴霧時)…0.0%
 実施例4(油噴霧時)…0.0%
 実施例5(油噴霧時)…0.0%
 実施例6(油噴霧時)…0.0%
 この評価から分かるように、本開示に基づく実施例1~6では、比較例1に比べ、トリマーの刃欠けの頻度を抑制できた。この結果、本開示では、鋼板製造の歩留まりが向上できることが分かった。
 ここで、実施例2が、実施例1、3~6に比べ、アップ落ち発生確率が悪かった原因としては、以下2点が考えられる。
 すなわち、(1)油滴下装置20は滴下であるため表面1a、1bのみしか塗油できず、裏面(下刃)での刃欠けは減らなかった。(2)また、滴下であるため連続的に塗布(付着)ができていなかったため未塗油部分で刃に負荷が掛かり、表面1a、1b(上刃)での刃欠け頻度は著しく減ったがゼロにはならなかった。
 「第2の実施例」
 次に第2の実施例について説明する。
 <比較例2>
 比較例2では、鋼板として、以下を用いた。
・鋼板:TS1020MPa、板厚1.8mm
 組成成分:
 C:0.09%、Si:0.60%、Mn:2.50%、P:0.012%、S:0.0013%、sol.Al:0.045%、N:0.0025%、Nb:0.040%、Cr:0.550%、Cu:0.006%、Mo:0.010%、Ni:0.010%、Ti:0.025%、B:0.0016%、残部Fe及び不可避的不純物
 比較例2では、潤滑油付着装置を使用せず、一対の回転刃2の両方に対し、フェルト9によって直接に潤滑油を塗布して給油した。
 比較例2の実験条件は次の通りである。
・鋼板の搬送速度:180[mpm]
・回転刃への潤滑油の供給量:上刃と下刃の合計で6.0[L/hr]
・塗布幅:上下の刃それぞれに対して12mm(塗油密度:23[mL/m])
・鋼板幅中央部での塗油密度:1.5[g/m
・回転刃径:φ300mm
・回転刃のクリアランス:鋼板板厚の12%
・回転刃のオーバーラップ量:0.3mm
・上刃と鋼板の垂直方向接触角:11度
・回転刃の回転方向と鋼板の搬送方向のなす角:搬送後方側に0.15度
・切断位置:エッジから12mm
 <実施例7>
 実施例7では、鋼板として、以下を用いた。
・鋼板:TS1020MPa、板厚2.0mm
 組成成分:
 C:0.09%、Si:0.60%、Mn:2.50%、P:0.012%、S:0.0012%、sol.Al:0.044%、N:0.0026%、 Nb:0.040%、Cr:0.550%、Cu:0.006%、Mo:0.010%、Ni:0.010%、Ti:0.025%、B:0.0016%、残部Fe及び不可避的不純物
 また、潤滑油付着装置として上記の噴霧装置3を用いた(図1参照)。
 実施例7では、噴霧装置3の条件は次のように設定し、トリム前に潤滑油を塗布した。
・鋼板の搬送速度:230[mpm]
・噴霧装置3による塗油範囲:鋼板巾方向の端面から20[mm]、上面のみ
・油使用量:2.0[L/hr](塗油密度:7.25[mL/m])
・供給エア圧:0.4~0.6[MPa]
・鋼板幅中央部での塗油密度:1.5[g/m
・エッジ5mmの範囲の塗油量
:上面4.9[g/m]下面1.5[g/m
トリム後に上面に塗布した潤滑油の一部(1.6g/m)を除去
・潤滑油噴霧領域:両エッジで実施。
全長900mに対して、先端150mと尾端150mはエッジ部への噴霧は無し。
(中央部の塗油量と同じ)それ以外噴霧実施。
・回転刃径:φ300mm
・回転刃のクリアランス:鋼板板厚の9%
・回転刃のオーバーラップ量:0.3mm
・上刃と鋼板の垂直方向接触角:11度
・回転刃の回転方向と鋼板の搬送方向のなす角:搬送後方側に0.15度
・切断位置:エッジから10mm
 <実施例8>
 実施例8では、鋼板として、以下を用いた。
・鋼板:TS1220MPa、板厚1.2mm
 組成成分:
 C:0.12%、Si:0.45%、Mn:2.50%、P:0.008%、S:0.0012%、sol.Al:0.030%、N:0.0020%、Nb:0.040%、Cr:0.400%、Cu:0.010%、Mo:0.010%、Ni:0.010%、Ti:0.017%、B:0.0012%、残部Fe及び不可避的不純物
 また、潤滑油付着装置として上記の噴霧装置3を用いた(図1参照)。
 実施例8では、噴霧装置3の条件は次のように設定し、トリム前に潤滑油を塗布した。
・鋼板の搬送速度:230[mpm]
・噴霧装置3による塗油範囲:鋼板巾方向の端面から20[mm]、上面のみ
・油使用量:0.9[L/hr](塗油密度:2.8[mL/m])
・供給エア圧:0.4~0.6[MPa]
・鋼板幅中央部での塗油量:1.5[g/m
・エッジ5mmの範囲の塗油量
:上面2.5[g/m]、下面1.5[g/m
・潤滑油噴霧領域:全長、上面、両エッジで実施。
・回転刃径:φ300mm
・回転刃のクリアランス:鋼板板厚の9%
・回転刃のオーバーラップ量:0mm
・上刃と鋼板の垂直方向接触角:7度
・回転刃の回転方向と鋼板の搬送方向のなす角:搬送後方側に0.09度
・切断位置:エッジから10mm
 <実施例9>
 実施例9では、鋼板として、以下を用いた。
・鋼板:TS1480MPa、板厚1.4mm
 組成成分:
 C:0.20%、Si:0.95%、Mn:3.20%、P:0.008%、S:0.0009%、sol.Al:0.025%、N:0.0020%、 Nb:0.013%、Cr:0.050%、Cu:0.150%、Mo:0.100%、Ni:0.080%、Ti:0.012%、B:0.0012%、Sb:0.005%、残部Fe及び不可避的不純物
 また、潤滑油付着装置として上記の噴霧装置3を用いた(図1参照)。
 実施例9では、噴霧装置3の条件は次のように設定し、トリム前に潤滑油を塗布した。
・鋼板の搬送速度:115[mpm]
・噴霧装置3による塗油範囲:鋼板巾方向の端面から40[mm]、上下面
・油使用量:片面あたり3.1[L/hr]、両面で6.2[L/hr]
     (塗油密度:11.2[mL/m])
・供給エア圧:0.4~0.6[MPa]
・鋼板幅中央部での塗油量:1.5[g/m
・エッジ5mmの範囲の塗油量:3.8[g/m2]
  トリム後に塗布した潤滑油の一部を除去。
・潤滑油噴霧領域:全長、上下面、両エッジで実施。
・回転刃径:φ300mm
・回転刃のクリアランス:鋼板板厚の9%
・回転刃のオーバーラップ量:0.1mm
・上刃と鋼板の垂直方向接触角:8度
・回転刃の回転方向と鋼板の搬送方向のなす角:搬送後方側に0.20度
・切断位置:エッジから20mm
 <実施例10>
 実施例10では、鋼板として、以下を用いた。
・鋼板:TS1220MPa、板厚2.0mm
 組成成分:
  C:0.12%、Si:0.45%、Mn:2.50%、P:0.008%、S:0.0012%、sol.Al:0.030%、N:0.0020%、Nb:0.040%、Cr:0.400%、Cu:0.010%、Mo:0.010%、Ni:0.010%、Ti:0.017%、B:0.0012%、残部Fe及び不可避的不純物
 また、潤滑油付着装置として上記の噴霧装置3を用いた(図1参照)。
 実施例10では、噴霧装置3の条件は次のように設定し、トリム前に潤滑油を塗布した。
・鋼板の搬送速度:230[mpm]
・噴霧装置3による塗油範囲:鋼板巾方向の端面から20[mm]、上下面
・油使用量:片面あたり0.8[L/hr]、両面で1.6[L/hr]
     (塗油密度:2.8[mL/m])
・供給エア圧:0.4~0.6[MPa]
・鋼板幅中央部での塗油量:1.5[g/m
・エッジ5mmの範囲の塗油量:2.5[g/m2]
・潤滑油噴霧領域:全長、上下面、両エッジで実施。
・回転刃径:φ300mm
・回転刃のクリアランス:鋼板板厚の4%
・回転刃のオーバーラップ量:2.5mm
・上刃と鋼板の垂直方向接触角:14度
・回転刃の回転方向と鋼板の搬送方向のなす角:搬送後方側に0度
・切断位置:エッジから10mm
 <評価>
 評価は、同一の製造条件でコイル材(品種:GA)をCGLにて20本通板して全コイルで全長両エッジのトリムを行った後に軟鋼を約500トン通板した時の軟鋼における押し疵(炉内ピックアップを除く異物押し込み要因)の発生率を評価した。押し疵の発生率は、軟鋼の通板コイル材のうち、押し疵が認められ、除去されたコイル材部位の重量割合である。なお、押し疵部を除去した後の1本あたりのコイルの重量が1.5トンに満たないコイルの部位は、製品重量として不十分であるので、不合格対象とした。また、通板コイル材の長手中央部でせん断面比率、凸部の発生頻度を評価した。
 比較例2と実施例7の鋼板について、SEM観察した例を図4に示す。図4(a)が比較例2に対応し、図4(b)が実施例7に対応する。
 図4から分かるように、潤滑油をフェルトでトリム刃のみに塗布した鋼板では、せん断面比率が大きく、せん断面とは断面の境界が波状に入り組んだ形状である(図4(a))が、潤滑油を鋼板に直接塗布した鋼板では、せん断面比率が小さく、せん断面と破断面の境界が著しく直線的になっている(図4(b))。
 各鋼板の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本開示に基づく実施例7~9では、せん断面比率、凸部の発生頻度が発明範囲にあり、押し疵の発生率も1.0%以下に抑えられている。一方、潤滑油の塗布を鋼板に直接行っていない比較例2では、クリアランス、上刃と鋼板の垂直方向接触角、回転刃の回転方向と鋼板の搬送方向のなす角が適正でない。
 なお、実施例10では、本開示の切断方法を使用しているが、鋼板としては、せん断面比率、凸部の発生頻度が発明範囲外であり、押し疵発生率が1.0%を超えている。ただし、実施例10は、比較例2に比べて、せん断面比率、凸部の発生頻度が小さい。
 このように、本開示の切断方法で第1の切断面が形成された鋼板は、従来のように回転刃に直接に潤滑油を塗布する場合に比べて、切断後の鉄粉の剥落が抑制されて、従来よりも高品質の鋼板を提供できることが分かった。
 また、実施例7、9の鋼板については、自動車部品のプレス前の脱脂ラインでアルカリ脱脂処理を行い、脱脂不良が生じないことを確認した。
 (その他)
 本開示は、以下のような構成も取ることができる。
 (1)本実施形態は、鋼板のエッジ部を回転刃で切断する処理を有する鋼板の製造方法であって、上記鋼板を上記回転刃で切断する処理において、切断前の鋼板の表面における、上記回転刃で切断する位置に潤滑油を付着する。
 この構成によれば、回転刃の遠心力で、仮に回転刃に付着した潤滑油が飛んでしまっても、鋼板の表面に潤滑油を付着することで、切断位置における油の供給不足を解消し、摩擦を低減することによってトリマーの刃欠けの頻度を抑制して、鋼板製造の歩留まりが向上する。
 (2)本実施形態では、上記回転刃は、鋼板を挟んで対向可能な一対の回転刃を有し、その一対の回転刃で鋼板を挟み込んで切断する構成となっており、上記潤滑油の付着は、上記鋼板の表裏両面のうちの、少なくとも一方の面に対して付着を行う。潤滑油の付着は、上記鋼板の表裏両面ともに実行することが好ましい。
 この構成によれば、一対の回転刃を用いることで、より安定して鋼板の切断が可能となる。
 (3)上記潤滑油の付着は、例えば、鋼板の表面に向けて潤滑油を噴霧することで行う。
 この構成によれば、鋼板の表面に対し、より均一に潤滑油を付着させることが可能となる。
 上記潤滑油は、噴霧後のミストの平均直径が1μm以上2000μm以下であることが好ましい。
 (4)上記潤滑油の付着は、例えば、鋼板の表面に向けて潤滑油を滴下することで行う。
 この構成によれば、鋼板の表面に対し潤滑油を付着させることが可能となる。
 ここで、鋼板の上面側に潤滑油の付着を付着する付着方法と、鋼板の下面側に潤滑油の付着を付着する付着方法とは異なっていても良い。
 例えば、上記潤滑油の付着は、鋼板の上側の面に向けて潤滑油を滴下し、鋼板の下側の面に潤滑油を噴霧することで行う、構成でも良い。
 (5)上記潤滑油の付着量を、30mL/m未満となるように調整する。
 (6)上記潤滑油は、水分含有量が3000ppm以下である。
 (7)上記潤滑油は、潤滑油の液温が40℃のときにおいて、粘度が3mm/s以上、130mm/s以下である。
 (8)上記回転刃と上記潤滑油の付着位置との間に、上記鋼板表面に付着させた上記潤滑油の膜厚を均一化する膜厚均一化器具を備える。
 (9)本実施形態では、上記回転刃と上記潤滑油の付着位置との間に上記鋼板を把持する一対の押さえロールを備え、上記一対の押さえロールで把持する鋼板1の領域は、少なくとも上記回転刃で切断される鋼板1の位置を含む。
 この構成によれば、鋼板に付着させた潤滑油が押さえロールで引き伸ばされる。この結果、付着した潤滑油が、鋼板搬送方向に沿ってより均一化する。
 (10)本実施形態では、上記鋼板を上記回転刃で切断する処理は、鋼板を搬送中に行われ、上記回転刃は、鋼板の搬送方向に対して順方向に回転して切断を行う。
 この構成によれば、回転刃を逆方向に回転させる場合に比べて、回転刃に対する負荷を小さく抑えられる。
 (11)切断対象の鋼板は、高張力鋼板であり、且つ、例えば鋼板の板厚が0.4mm以上であってもよい。
 本実施形態の鋼板の製造方法によれば、切断対象の鋼板は、高張力鋼板であり、且つ、鋼板の板厚が0.4mm以上であっても、歩留まり良く連続して切断が可能となる。
 (12)本実施形態は、搬送されてきた鋼板のエッジ部を回転刃で切断するトリミング装置であって、回転刃よりも上流に、上記回転刃で切断する鋼板の位置に潤滑油を付着する潤滑油付着装置を備える。
 この構成によれば、回転刃の遠心力で、仮に回転刃に付着した潤滑油が飛んでしまっても、鋼板の表面に潤滑油を付着することで、切断位置における油の供給不足を解消し、摩擦を低減することによってトリマーの刃欠けの頻度を抑制可能となる。
 (13)本実施形態は、上記のトリミング装置を備える鋼板1の製造装置である。
 この構成によれば、トリマーの刃欠けの頻度を抑制されて、鋼板製造の歩留まりが向上する。
 (14)上記鋼板の組成成分は、質量%で、C:0.03%以上0.35%以下、Si:0.01%以上3.00%以下、Mn:0.50%以上3.50%以下、Al:0.001%以上1.000%以下、P:0.100%以下、S:0.0100%以下、N:0.0200%以下を含み、更にB:0.0050%以下、Nb:0.100%以下、Ti:0.200%以下、Cr:1.000%以下、Mo:1.00%以下、Cu:1.000%以下、Ni:1.000%以下、Sb:0.200%以下、Zr:0.100%以下、V:0.200%以下、W:0.100%以下、Sn:0.200%以下、Ca:0.0050%以下、REM:0.0050%以下、Mg:0.0050%以下の1種又は2種以上を含み、残部がFe及び不可避的不純物からなる。
 (15)上記回転刃は、鋼板を挟んで対向可能な一対の回転刃を有し、その一対の回転刃で鋼板を挟み込んで切断する構成となっており、上記一対の回転刃の上刃と下刃のクリアランスが5%以上19%以下であり、上記回転刃の回転方向における上刃と上記鋼板の垂直方向接触角が、3度以上13度以下であり、上記回転刃の回転方向と上記鋼板の搬送方向とのなす角が、搬送後方側に開き角となる方向に、0.01度以上0.5度以下である。
 (16)搬送されてきた鋼板のエッジ部を回転刃で切断するトリミング装置であって、回転刃よりも上流に、上記回転刃で切断する鋼板の位置に潤滑油を付着する潤滑油付着装置を備える。
 (17)本開示の鋼板のトリミング装置を備える鋼板の製造装置。
 (18)幅方向両端の少なくとも一方の端面が切断面からなる圧延鋼板であって、上記鋼板の引張強度TSが、590MPa以上980MPa未満であり、上記切断面のうちの鋼板長手方向の少なくとも一部の切断面である第1の切断面は、せん断面比率(%)が式(1)を満たし、上記第1の切断面の、せん断面と破断面の境界における凸部の存在個数が、5個/100mm以下である。
 19-0.0146×TS≦せん断面比率≦48-0.0300×TS
                           ・・・式(1)
 (19)幅方向両端の少なくとも一方の端面が切断面からなる圧延鋼板であって、上記鋼板の引張強度TSが、980MPa以上1180MPa未満であり、上記切断面のうちの鋼板長手方向の少なくとも一部の切断面である第1の切断面は、せん断面比率(%)が式(2)を満たし、上記第1の切断面の、せん断面と破断面の境界における凸部の存在個数が、5個/100mm以下である。
 10-0.00526×TS≦せん断面比率≦36-0.0180×TS
                           ・・・式(2)
 (20)幅方向両端の少なくとも一方の端面が切断面からなる圧延鋼板であって、上記鋼板の引張強度TSが、1180MPa以上1320MPa未満であり、上記切断面のうちの鋼板長手方向の少なくとも一部の切断面である第1の切断面は、せん断面比率(%)が式(3)を満たし、上記切断面の、せん断面と破断面の境界における凸部の存在個数が、5個/100mm以下である。
 10-0.00526×TS≦せん断面比率≦ 27-0.0108×TS
                           ・・・式(3)
 (21)幅方向両端の少なくとも一方の端面が切断面からなる圧延鋼板であって、上記鋼板の引張強度TSが、1320MPa以上1850MPa未満であり、上記切断面ののうちの鋼板長手方向の少なくとも一部の切断面である第1の切断面は、せん断面比率(%)が、式(4)を満たし、上記第1の切断面の、せん断面と破断面の境界における凸部の存在個数が、5個/100mm以下である。
 3 ≦せん断面比率 ≦16-0.0254×TS・・・式(4)
 (22)板厚方向で対向する鋼板表面のうちの、少なくとも一方の鋼板表面の塗油量について、上記第1の切断面で構成される幅方向端面から5mmまでの領域の塗油量が、幅方向中央の位置での塗油量より、0.2g/m以上多い。
 (23)上記第1の切断面で構成される幅方向端面から5mmまでの領域の鋼板表面の塗油量が、2.7g/m以上である。
 (24)上記第1の切断面で構成される幅方向端面から5mmまでの領域の鋼板表面の塗油量が6.5g/m以上である。
 (25)上記鋼板の組成成分は、質量%で、C:0.03%以上0.35%以下、Si:0.01%以上3.00%以下、Mn:0.50%以上3.50%以下、Al:0.001%以上1.000%以下、P:0.100%以下、S:0.0100%以下、N:0.0200%以下を含み、更にB:0.0050%以下、Nb:0.100%以下、Ti:0.200%以下、Cr:1.000%以下、Mo:1.00%以下、Cu:1.000%以下、Ni:1.000%以下、Sb:0.200%以下、Zr:0.100%以下、V:0.200%以下、W:0.100%以下、Sn:0.200%以下、Ca:0.0050%以下、REM:0.0050%以下、Mg:0.0050%以下の1種又は2種以上を含み、残部がFe及び不可避的不純物からなる。
 (26)上記鋼板の組成成分は、質量%で、C:0.10%以上0.35%以下、Mn:1.00%以上3.50%以下である。
 (27)上記鋼板の組成成分は、質量%で、Mn:2.2%以上である。
 (28)本開示の圧延鋼板をロール状に巻いたコイル材。
 (29)本開示の圧延鋼板を加工してなるプレス用のブランク材であって、少なくとも一辺の端面が、上記第1の切断面からなる。
1 鋼板
1a、1b 鋼板表面
2 回転刃
2A、2B 一対の回転刃
3 噴霧装置(潤滑油付着装置)
7 押さえロール
9 フェルト
20 油滴下装置(潤滑油付着装置)

Claims (29)

  1.  鋼板のエッジ部を回転刃で切断する処理を有する鋼板の製造方法であって、
     上記鋼板を上記回転刃で切断する処理において、切断前の鋼板表面における、上記回転刃で切断する位置に潤滑油を付着する、
     ことを特徴とする鋼板の製造方法。
  2.  上記回転刃は、鋼板を挟んで対向可能な一対の回転刃を有し、その一対の回転刃で鋼板を挟み込んで切断する構成となっており、
     上記潤滑油の付着は、上記鋼板の表裏両面のうちの少なくとも一方の面に対し行う、
     ことを特徴とする請求項1に記載した鋼板の製造方法。
  3.  上記潤滑油の付着は、鋼板表面に向けて潤滑油を噴霧することで行う、ことを特徴とする請求項1又は請求項2に記載した鋼板の製造方法。
  4.  上記潤滑油は、噴霧後のミストの平均直径が1μm以上2000μm以下である、ことを特徴とする請求項3に記載した鋼板の製造方法。
  5.  上記潤滑油の付着は、鋼板表面に向けて潤滑油を滴下することで行う、ことを特徴とする請求項1又は請求項2に記載した鋼板の製造方法。
  6.  上記潤滑油の付着は、鋼板の上側の面に向けて潤滑油を滴下し、鋼板の下側の面に潤滑油を噴霧することで行う、ことを特徴とする請求項1~請求項5のいずれか1項に記載した鋼板の製造方法。
  7.  上記潤滑油の付着量を、30mL/m未満となるように調整する、ことを特徴とする請求項1~請求項6のいずれか1項に記載した鋼板の製造方法。
  8.  上記潤滑油は、水分含有量が3000ppm以下である、ことを特徴とする請求項1~請求項7のいずれか1項に記載した鋼板の製造方法。
  9.  上記潤滑油は、潤滑油の液温が40℃のときにおいて、粘度が3mm/s以上130mm/s以下である、ことを特徴とする請求項1~請求項8のいずれか1項に記載した鋼板の製造方法。
  10.  上記回転刃と上記潤滑油の付着位置との間に、上記鋼板表面に付着させた上記潤滑油の膜厚を均一化する膜厚均一化器具を備える、ことを特徴とする請求項1~請求項9のいずれか1項に記載した鋼板の製造方法。
  11.  上記回転刃と上記潤滑油の付着位置との間に上記鋼板を把持する一対の押さえロールを備え、上記一対の押さえロールで把持する鋼板の領域は、少なくとも上記回転刃で切断される鋼板の位置を含む、ことを特徴とする請求項1~請求項10のいずれか1項に記載した鋼板の製造方法。
  12.  上記鋼板を上記回転刃で切断する処理は、鋼板を搬送中に行われ、
     上記回転刃は、鋼板の搬送方向に対して順方向に回転して切断を行う、ことを特徴とする請求項1~請求項11のいずれか1項に記載した鋼板の製造方法。
  13.  上記鋼板は、高張力鋼板であり、且つ、鋼板の板厚が0.4mm以上である、ことを特徴とする請求項1~請求項12のいずれか1項に記載した鋼板の製造方法。
  14.  上記鋼板の組成成分は、質量%で、C:0.03%以上0.35%以下、Si:0.01%以上3.00%以下、Mn:0.50%以上3.50%以下、Al:0.001%以上1.000%以下、P:0.100%以下、S:0.0100%以下、N:0.0200%以下を含み、更にB:0.0050%以下、Nb:0.100%以下、Ti:0.200%以下、Cr:1.000%以下、Mo:1.00%以下、Cu:1.000%以下、Ni:1.000%以下、Sb:0.200%以下、Zr:0.100%以下、V:0.200%以下、W:0.100%以下、Sn:0.200%以下、Ca:0.0050%以下、REM:0.0050%以下、Mg:0.0050%以下の1種又は2種以上を含み、残部がFe及び不可避的不純物からなる、
     ことを特徴とする請求項13に記載した鋼板の製造方法。
  15.  上記回転刃は、鋼板を挟んで対向可能な一対の回転刃を有し、その一対の回転刃で鋼板を挟み込んで切断する構成となっており、
     上記一対の回転刃の上刃と下刃のクリアランスが5%以上19%以下であり、
     上記回転刃の回転方向における上刃と上記鋼板の垂直方向接触角が、3度以上13度以下であり、
     上記回転刃の回転方向と上記鋼板の搬送方向とのなす角が、搬送後方側に開き角となる方向に、0.01度以上0.5度以下である、
     ことを特徴とする請求項1~請求項14のいずれか1項に記載した鋼板の製造方法。
  16.  搬送されてきた鋼板のエッジ部を回転刃で切断するトリミング装置であって、
     回転刃よりも上流に、上記回転刃で切断する鋼板の位置に潤滑油を付着する潤滑油付着装置を備える、
     ことを特徴とする鋼板のトリミング装置。
  17.  請求項16に記載した鋼板のトリミング装置を備える鋼板の製造装置。
  18.  幅方向両端の少なくとも一方の端面が切断面からなる圧延鋼板であって、
     上記鋼板の引張強度TSが、590MPa以上980MPa未満であり、
     上記切断面のうちの鋼板長手方向の少なくとも一部の切断面である第1の切断面は、せん断面比率(%)が式(1)を満たし、
     上記第1の切断面の、せん断面と破断面の境界における凸部の存在個数が、5個/100mm以下である、
     ことを特徴とする圧延鋼板。
     19-0.0146×TS≦せん断面比率≦48-0.0300×TS                      ・・・式(1)
  19.  幅方向両端の少なくとも一方の端面が切断面からなる圧延鋼板であって、
     上記鋼板の引張強度TSが、980MPa以上1180MPa未満であり、
     上記切断面のうちの鋼板長手方向の少なくとも一部の切断面である第1の切断面は、せん断面比率(%)が式(2)を満たし、
     上記第1の切断面の、せん断面と破断面の境界における凸部の存在個数が、5個/100mm以下である、
     ことを特徴とする圧延鋼板。
     10-0.00526×TS≦せん断面比率≦36-0.0180×TS                     ・・・式(2)
  20.  幅方向両端の少なくとも一方の端面が切断面からなる圧延鋼板であって、
     上記鋼板の引張強度TSが、1180MPa以上1320MPa未満であり、
     上記切断面のうちの鋼板長手方向の少なくとも一部の切断面である第1の切断面は、せん断面比率(%)が式(3)を満たし、
     上記切断面の、せん断面と破断面の境界における凸部の存在個数が、5個/100mm以下である、
     ことを特徴とする圧延鋼板。
     10-0.00526×TS≦せん断面比率≦ 27-0.0108×TS                    ・・・式(3)
  21.  幅方向両端の少なくとも一方の端面が切断面からなる圧延鋼板であって、
     上記鋼板の引張強度TSが、1320MPa以上1850MPa未満であり、
     上記切断面ののうちの鋼板長手方向の少なくとも一部の切断面である第1の切断面は、せん断面比率(%)が、式(4)を満たし、
     上記第1の切断面の、せん断面と破断面の境界における凸部の存在個数が、5個/100mm以下である、
     ことを特徴とする圧延鋼板。
     3 ≦せん断面比率 ≦16-0.0254×TS・・・式(4)
  22.  板厚方向で対向する鋼板表面のうちの、少なくとも一方の鋼板表面の塗油量について、
     上記第1の切断面で構成される幅方向端面から5mmまでの領域の塗油量が、幅方向中央の位置での塗油量より、0.2g/m以上多い、
     ことを特徴とする請求項18~請求項21のいずれか1項に記載の圧延鋼板。
  23.  上記第1の切断面で構成される幅方向端面から5mmまでの領域の鋼板表面の塗油量が、2.7g/m以上である、ことを特徴とする請求項18~請求項22のいずれか1項に記載の圧延鋼板。
  24.  上記第1の切断面で構成される幅方向端面から5mmまでの領域の鋼板表面の塗油量が6.5g/m以上である、
     ことを特徴とする請求項23に記載の圧延鋼板。
  25.  上記鋼板の組成成分は、質量%で、C:0.03%以上0.35%以下、Si:0.01%以上3.00%以下、Mn:0.50%以上3.50%以下、Al:0.001%以上1.000%以下、P:0.100%以下、S:0.0100%以下、N:0.0200%以下を含み、更にB:0.0050%以下、Nb:0.100%以下、Ti:0.200%以下、Cr:1.000%以下、Mo:1.00%以下、Cu:1.000%以下、Ni:1.000%以下、Sb:0.200%以下、Zr:0.100%以下、V:0.200%以下、W:0.100%以下、Sn:0.200%以下、Ca:0.0050%以下、REM:0.0050%以下、Mg:0.0050%以下の1種又は2種以上を含み、残部がFe及び不可避的不純物からなる、ことを特徴とする請求項18~24のいずれか1項に記載した圧延鋼板。
  26.  上記鋼板の組成成分は、質量%で、C:0.10%以上0.35%以下、Mn:1.00%以上3.50%以下である、
     ことを特徴とする請求項25に記載した圧延鋼板。
  27.  上記鋼板の組成成分は、質量%で、Mn:2.20%以上である、ことを特徴とする請求項26に記載した圧延鋼板。
  28.  請求項18~請求項27のいずれか1項に記載した圧延鋼板をロール状に巻いたコイル材。
  29.  請求項18~請求項27のいずれか1項に記載した圧延鋼板を加工してなるプレス用のブランク材であって、
     少なくとも一辺の端面が、上記第1の切断面からなる、
     ことを特徴とするブランク材。
PCT/JP2022/010686 2022-03-10 2022-03-10 鋼板の製造方法、トリミング装置、製造装置、圧延鋼板、コイル材、及びブランク材 WO2023170882A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/010686 WO2023170882A1 (ja) 2022-03-10 2022-03-10 鋼板の製造方法、トリミング装置、製造装置、圧延鋼板、コイル材、及びブランク材
JP2023515335A JP7355272B1 (ja) 2022-03-10 2022-03-10 鋼板の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/010686 WO2023170882A1 (ja) 2022-03-10 2022-03-10 鋼板の製造方法、トリミング装置、製造装置、圧延鋼板、コイル材、及びブランク材

Publications (1)

Publication Number Publication Date
WO2023170882A1 true WO2023170882A1 (ja) 2023-09-14

Family

ID=87936377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010686 WO2023170882A1 (ja) 2022-03-10 2022-03-10 鋼板の製造方法、トリミング装置、製造装置、圧延鋼板、コイル材、及びブランク材

Country Status (2)

Country Link
JP (1) JP7355272B1 (ja)
WO (1) WO2023170882A1 (ja)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816706A (ja) * 1981-07-22 1983-01-31 Nippon Kokan Kk <Nkk> 完全連続式冷間圧延方法
JPS5935805A (ja) * 1982-08-24 1984-02-27 Nippon Kokan Kk <Nkk> 冷延鋼帯の連続製造設備
JPS6389216A (ja) * 1986-10-03 1988-04-20 Nippon Steel Corp 鋼帯のサイドトリミング装置
JPH05212430A (ja) * 1992-02-06 1993-08-24 Furukawa Alum Co Ltd 圧延油の浄化方法及びそれを用いた圧延方法
JPH08126909A (ja) * 1994-10-27 1996-05-21 Mitsubishi Heavy Ind Ltd サイドトリミング方法及びサイドトリマ
JPH08155509A (ja) * 1994-11-30 1996-06-18 Kawasaki Steel Corp 金属ストリップのスキンパス圧延機におけるスキンパス液の供給方法
JPH0938709A (ja) * 1995-07-28 1997-02-10 Sumitomo Metal Ind Ltd 冷延鋼板の調質圧延方法
KR100643363B1 (ko) * 2005-08-03 2006-11-10 주식회사 포스코 이물질 제거기능을 갖는 압연유 분사장치
JP2007144548A (ja) * 2005-11-28 2007-06-14 Nippon Steel Corp トリマーの走間切り込み方法
JP2007160367A (ja) * 2005-12-15 2007-06-28 Jfe Steel Kk 冷間圧延方法及び装置
JP2007177326A (ja) * 2005-11-30 2007-07-12 Jfe Steel Kk 低降伏比を有する高張力薄肉鋼板およびその製造方法
JP2011143430A (ja) * 2010-01-13 2011-07-28 Sumitomo Metal Ind Ltd テーラードブランクの製造方法およびテーラードブランク用鋼板
JP2012055955A (ja) * 2010-09-13 2012-03-22 Nippon Steel Corp 冷間圧延における圧延潤滑方法およびその装置
CN209849979U (zh) * 2019-01-28 2019-12-27 湖南金沙重工科技有限公司 一种新型薄钢板切割装置
WO2021153037A1 (ja) * 2020-01-27 2021-08-05 日本製鉄株式会社 熱延鋼板
JP2022030694A (ja) * 2020-08-07 2022-02-18 日本製鉄株式会社 表面処理鋼板及び加工材の製造方法
JP2022050331A (ja) * 2020-09-17 2022-03-30 Jfeスチール株式会社 鋼板の製造方法、トリミング装置及び製造装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW482761B (en) 1999-07-19 2002-04-11 New Japan Chem Co Ltd Dicarboxylic acid diester, a process for preparation thereof and refrigerator lubricating oil containing the diester

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816706A (ja) * 1981-07-22 1983-01-31 Nippon Kokan Kk <Nkk> 完全連続式冷間圧延方法
JPS5935805A (ja) * 1982-08-24 1984-02-27 Nippon Kokan Kk <Nkk> 冷延鋼帯の連続製造設備
JPS6389216A (ja) * 1986-10-03 1988-04-20 Nippon Steel Corp 鋼帯のサイドトリミング装置
JPH05212430A (ja) * 1992-02-06 1993-08-24 Furukawa Alum Co Ltd 圧延油の浄化方法及びそれを用いた圧延方法
JPH08126909A (ja) * 1994-10-27 1996-05-21 Mitsubishi Heavy Ind Ltd サイドトリミング方法及びサイドトリマ
JPH08155509A (ja) * 1994-11-30 1996-06-18 Kawasaki Steel Corp 金属ストリップのスキンパス圧延機におけるスキンパス液の供給方法
JPH0938709A (ja) * 1995-07-28 1997-02-10 Sumitomo Metal Ind Ltd 冷延鋼板の調質圧延方法
KR100643363B1 (ko) * 2005-08-03 2006-11-10 주식회사 포스코 이물질 제거기능을 갖는 압연유 분사장치
JP2007144548A (ja) * 2005-11-28 2007-06-14 Nippon Steel Corp トリマーの走間切り込み方法
JP2007177326A (ja) * 2005-11-30 2007-07-12 Jfe Steel Kk 低降伏比を有する高張力薄肉鋼板およびその製造方法
JP2007160367A (ja) * 2005-12-15 2007-06-28 Jfe Steel Kk 冷間圧延方法及び装置
JP2011143430A (ja) * 2010-01-13 2011-07-28 Sumitomo Metal Ind Ltd テーラードブランクの製造方法およびテーラードブランク用鋼板
JP2012055955A (ja) * 2010-09-13 2012-03-22 Nippon Steel Corp 冷間圧延における圧延潤滑方法およびその装置
CN209849979U (zh) * 2019-01-28 2019-12-27 湖南金沙重工科技有限公司 一种新型薄钢板切割装置
WO2021153037A1 (ja) * 2020-01-27 2021-08-05 日本製鉄株式会社 熱延鋼板
JP2022030694A (ja) * 2020-08-07 2022-02-18 日本製鉄株式会社 表面処理鋼板及び加工材の製造方法
JP2022050331A (ja) * 2020-09-17 2022-03-30 Jfeスチール株式会社 鋼板の製造方法、トリミング装置及び製造装置

Also Published As

Publication number Publication date
JP7355272B1 (ja) 2023-10-03
JPWO2023170882A1 (ja) 2023-09-14

Similar Documents

Publication Publication Date Title
WO2013161831A1 (ja) ホットスタンプ用亜鉛めっき鋼板の製造方法、ホットスタンプ用合金化溶融亜鉛めっき鋼板とその製造方法、およびホットスタンプ部品
WO2013122004A1 (ja) 熱間プレス用めっき鋼板及びめっき鋼板の熱間プレス方法
JP2017534758A (ja) 冷間圧延および再結晶焼鈍平鋼製品、ならびにそれを製造するための方法
KR20160015388A (ko) 도장 후 내식성이 우수한 핫 스탬핑 성형된 고강도 부품 및 그 제조 방법
KR20150096513A (ko) 용융 아연 도금 강판
CN116157544A (zh) 具有薄的铝合金镀层的镀层钢板及其涂镀方法
JP2011153368A (ja) 密着性に優れた高強度合金化溶融亜鉛めっき鋼板および製造方法
US20160194744A1 (en) Method of producing high-strength hot-dip galvanized steel sheet and method of producing high-strength galvannealed steel sheet
KR102568479B1 (ko) 연속 용융 도금 강 스트립 및 용융 도금 강 시트 제조 방법
RU2710396C1 (ru) Плакированный стальной лист для горячей штамповки, способ изготовления плакированного стального листа для горячей штамповки, способ изготовления горячештампованного компонента и способ изготовления транспортного средства
EP3907304B1 (en) High-strength hot-dip galvanized steel sheet and method for producing same
JP7388414B2 (ja) 鋼板の製造方法、トリミング装置及び製造装置
JP7355272B1 (ja) 鋼板の製造方法
JP2023133449A (ja) 圧延鋼板、コイル材、及びブランク材
KR20190077199A (ko) 저온 밀착성과 가공성이 우수한 용융아연도금강판 및 그 제조방법
JP5070863B2 (ja) 合金化めっき鋼板及びその製造方法
JP2020535970A (ja) ロール材の圧延
JP7493137B2 (ja) 鋼板の製造方法、鋼板の切断設備、及び鋼板の製造装置
CN114829666B (zh) 加工性和耐蚀性优异的铝基合金镀覆钢板及其制造方法
US20230323495A1 (en) Method of manufacturing a steel strip and coated steel sheet obtainable thereby
JP3931859B2 (ja) 熱間成形用亜鉛系めっき鋼材と熱間成形方法
JP2003033802A (ja) 脱脂性および化成処理性にすぐれた冷延鋼板の製造方法
CN114438417A (zh) 具有良好抗脱锌粉性能及表面质量的纯锌镀层钢板及其生产方法和应用
JP2023132134A (ja) 鋼板の製造方法、鋼板の切断設備、及び鋼板の製造装置
JP3239831B2 (ja) 合金化溶融亜鉛めっき鋼板およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023515335

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930863

Country of ref document: EP

Kind code of ref document: A1