WO2021153037A1 - 熱延鋼板 - Google Patents

熱延鋼板 Download PDF

Info

Publication number
WO2021153037A1
WO2021153037A1 PCT/JP2020/046384 JP2020046384W WO2021153037A1 WO 2021153037 A1 WO2021153037 A1 WO 2021153037A1 JP 2020046384 W JP2020046384 W JP 2020046384W WO 2021153037 A1 WO2021153037 A1 WO 2021153037A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
hot
steel sheet
rolled steel
content
Prior art date
Application number
PCT/JP2020/046384
Other languages
English (en)
French (fr)
Inventor
洋志 首藤
和政 筒井
洵 安藤
林 宏太郎
章文 ▲榊▼原
小林 駿介
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN202080093969.1A priority Critical patent/CN115003835B/zh
Priority to KR1020227025061A priority patent/KR20220111724A/ko
Priority to MX2022008861A priority patent/MX2022008861A/es
Priority to EP20916290.8A priority patent/EP4098761A1/en
Priority to US17/792,985 priority patent/US20230055479A1/en
Priority to JP2021574511A priority patent/JP7260825B2/ja
Publication of WO2021153037A1 publication Critical patent/WO2021153037A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to a hot-rolled steel sheet. Specifically, the present invention relates to a hot-rolled steel sheet that is formed into various shapes by press working or the like and is used, and in particular, a hot-rolled steel sheet that has high strength and is excellent in ductility and shearing workability.
  • the present application claims priority based on Japanese Patent Application No. 2020-010944 filed in Japan on January 27, 2020, the contents of which are incorporated herein by reference.
  • Patent Document 1 states that retained austenite having an average crystal grain size of 5 ⁇ m or less is dispersed in ferrite having an average crystal grain size of 10 ⁇ m or less to improve collision resistance and moldability.
  • Excellent automotive high-strength steel sheets are disclosed.
  • austenite undergoes martensitic transformation during processing and exhibits a large elongation due to transformation-induced plasticity, but the formation of hard martensite impairs hole expansion.
  • Patent Document 1 discloses that not only ductility but also hole expansion property is improved by miniaturizing ferrite and retained austenite.
  • Patent Document 2 discloses a high-strength steel plate having excellent ductility and stretch flangeability and a tensile strength of 980 MPa or more, in which a second phase composed of retained austenite and / or martensite is finely dispersed in crystal grains. There is.
  • Patent Document 4 discloses a technique for improving peeling and creases on the end face of a plate by reducing the content of P.
  • Patent Documents 1 to 4 are all techniques for improving either ductility or end face properties after shearing. However, Patent Documents 1 to 3 do not mention a technique for achieving both of these characteristics. Patent Document 4 refers to both shearing workability and press moldability. However, since the strength of the steel sheet disclosed in Patent Document 4 is less than 850 MPa, it may be difficult to apply it to a member having a high strength of 980 MPa or more.
  • the ratio of the sheared surface to the end face after the shearing process is not stable, and the accuracy of the cut end face varies.
  • the present invention has been made in view of the above problems of the prior art, and an object of the present invention is to provide a hot-rolled steel sheet having high strength and excellent ductility and shearing workability.
  • having excellent shearing workability means that the ratio of the sheared surface to the end face after shearing (hereinafter, may be referred to as the sheared surface ratio) is stable (the amount of change in the sheared surface ratio is small). ) Indicates that. Further, having excellent strength or high strength means that the tensile strength is 980 MPa or more.
  • a hard structure is generally formed in a phase transformation of 600 ° C. or lower, but in this temperature range, a grain boundary having a crystal orientation difference of 60 ° with respect to the ⁇ 110> direction and a crystal orientation difference of 7 A large number of grain boundaries at ° are formed.
  • the gist of the present invention made based on the above findings is as follows.
  • the hot-rolled steel sheet according to one aspect of the present invention has a chemical composition of mass%.
  • C 0.050 to 0.250%
  • Si 0.05 to 3.00%
  • Mn 1.00 to 4.00%
  • One or more of Ti, Nb and V 0.060 to 0.500% in total, sol.
  • Al 0.001 to 2.000%, P: 0.100% or less, S: 0.0300% or less, N: 0.1000% or less, O: 0.0100% or less, Cu: 0-2.00%, Cr: 0 to 2.00%, Mo: 0 to 1.00%, Ni: 0 to 2.00%, B: 0 to 0.0100%, Ca: 0-0.0200%, Mg: 0-0.0200%, REM: 0 to 0.1000%, Bi: 0 to 0.020%, One or more of Zr, Co, Zn and W: 0 to 1.00% in total, and Sn: 0 to 0.050%.
  • the rest consists of Fe and impurities
  • the metal structure is% of the area, Retained austenite is less than 3.0% Ferrite is 15.0% or more and less than 60.0%, Pearlite is less than 5.0% L 60 / L 7 which is the ratio of the grain boundary length L 60 having a crystal orientation difference of 60 ° and the grain boundary length L 7 having a crystal orientation difference of 7 ° about the ⁇ 110> direction. Is 0.60 or more, The standard deviation of the Mn concentration is 0.60% by mass or less, The tensile strength is 980 MPa or more.
  • the hot-rolled steel sheet according to (1) above may have an average crystal grain size of less than 3.0 ⁇ m on the surface layer.
  • the hot-rolled steel sheet according to (1) or (2) above has a chemical composition of% by mass.
  • a hot-rolled steel sheet having excellent strength, ductility and shear workability can be obtained. Further, according to the above-mentioned preferred embodiment according to the present invention, it is possible to obtain a hot-rolled steel sheet having the above-mentioned characteristics and further suppressing the occurrence of bending internal cracks, that is, having excellent bending internal crack resistance. can.
  • the hot-rolled steel sheet according to the above aspect of the present invention is suitable as an industrial material used for automobile members, mechanical structural members, and building members.
  • the hot-rolled steel sheet according to the present embodiment has C: 0.050 to 0.250%, Si: 0.05 to 3.00%, Mn: 1.00 to 4.00%, Ti in mass%. , Nb and V, one or more: 0.060 to 0.500% in total, sol. Al: 0.001 to 2.000%, P: 0.100% or less, S: 0.0300% or less, N: 0.1000% or less, O: 0.0100% or less, and the balance: Fe and impurities including. Each element will be described in detail below.
  • C 0.050 to 0.250% C increases the surface integral of the hard phase and increases the strength of ferrite by combining with precipitation strengthening elements such as Ti, Nb, and V. If the C content is less than 0.050%, it becomes difficult to obtain the desired strength. Therefore, the C content is set to 0.050% or more.
  • the C content is preferably 0.060% or more, more preferably 0.070% or more.
  • the C content is set to 0.250% or less.
  • the C content is preferably 0.150% or less, less than 0.150%, and 0.130% or less.
  • Si 0.05 to 3.00%
  • Si has an action of promoting the formation of ferrite to improve the ductility of the hot-rolled steel sheet and an action of solid-solving and strengthening the ferrite to increase the strength of the hot-rolled steel sheet.
  • Si has an action of making the steel sound by deoxidation (suppressing the occurrence of defects such as blow holes in the steel). If the Si content is less than 0.05%, the effect of the above action cannot be obtained. Therefore, the Si content is set to 0.05% or more.
  • the Si content is preferably 0.30% or more, 0.50% or more, and 0.80% or more.
  • the Si content is 3.00% greater than the surface texture and chemical conversion of the hot-rolled steel sheet, more with ductility and weldability is significantly degraded, A 3 transformation point increases significantly. This makes it difficult to perform hot rolling in a stable manner. Therefore, the Si content is set to 3.00% or less.
  • the Si content is preferably 2.70% or less, more preferably 2.50% or less.
  • Mn 1.00 to 4.00% Mn has the effect of suppressing the ferrite transformation and increasing the strength of the hot-rolled steel sheet. If the Mn content is less than 1.00%, a tensile strength of 980 MPa or more cannot be obtained. Therefore, the Mn content is set to 1.00% or more.
  • the Mn content is preferably 1.50% or more, more preferably 1.80% or more.
  • the Mn content exceeds 4.00%, the angular difference of the crystal grains in the hard phase becomes non-uniform due to the segregation of Mn, and the shear plane ratio becomes unstable. Therefore, the Mn content is set to 4.00% or less.
  • the Mn content is preferably 3.70% or less and 3.50% or less.
  • Ti, Nb and V 0.060 to 0.500% in total Ti, Nb and V are elements that are finely precipitated in steel as carbides and nitrides and improve the strength of steel by precipitation strengthening. Further, it is an element that fixes C by forming the above-mentioned carbide and suppresses the formation of cementite, which is harmful to shearing workability. In order to obtain these effects, the total content of Ti, Nb and V is set to 0.060% or more. It is not necessary that all of Ti, Nb and V are contained, and any one of them may be contained.
  • Ti, Nb and V may contain one of Ti, Nb and V and its content may be 0.060% or more, and may contain two or more of Ti, Nb and V and the total content thereof is 0.060. It may be% or more.
  • the total content of Ti, Nb and V is preferably 0.080% or more.
  • the total content of Ti, Nb and V is set to 0.500% or less. It is preferably 0.300% or less, and more preferably 0.250% or less.
  • sol. Al 0.001 to 2.000% Like Si, Al has the effect of deoxidizing the steel to make it sound, and also has the effect of promoting the formation of ferrite and increasing the ductility of the hot-rolled steel sheet. sol. If the Al content is less than 0.001%, the effect of the above action cannot be obtained. Therefore, sol. The Al content is 0.001% or more. sol. The Al content is preferably 0.010% or more and 0.030% or more. On the other hand, sol. If the Al content exceeds 2.000%, the above effects are saturated and economically unfavorable. The Al content is 2.000% or less. sol. The Al content is preferably 1.500% or less, 1.000% or less, 0.500% or less, and 0.100% or less. In this embodiment, sol. Al means acid-soluble Al, and indicates solid solution Al existing in steel in a solid solution state.
  • P 0.100% or less
  • P is an element generally contained as an impurity, but it is also an element having an effect of increasing the strength of a hot-rolled steel sheet by solid solution strengthening. Therefore, P may be positively contained, but P is an element that is easily segregated, and when the P content exceeds 0.100%, the decrease in ductility due to grain boundary segregation becomes remarkable. Therefore, the P content is set to 0.100% or less.
  • the P content is preferably 0.030% or less.
  • the lower limit of the P content does not need to be specified, but it is preferably 0.001% from the viewpoint of refining cost.
  • S 0.0300% or less
  • S is an element contained as an impurity and forms sulfide-based inclusions in the steel to reduce the ductility of the hot-rolled steel sheet.
  • the S content exceeds 0.0300%, the ductility of the hot-rolled steel sheet is significantly reduced. Therefore, the S content is 0.0300% or less.
  • the S content is preferably 0.0050% or less.
  • the lower limit of the S content does not need to be specified, but is preferably 0.0001% from the viewpoint of refining cost.
  • N 0.1000% or less
  • N is an element contained in steel as an impurity and has an effect of reducing the ductility of the hot-rolled steel sheet. If the N content exceeds 0.1000%, the ductility of the hot-rolled steel sheet is significantly reduced. Therefore, the N content is set to 0.1000% or less.
  • the N content is preferably 0.0800% or less, and more preferably 0.0700% or less.
  • the lower limit of the N content does not need to be specified, but when one or more of Ti, Nb and V are contained to further refine the metal structure, the precipitation of carbonitride is promoted.
  • the N content is preferably 0.0010% or more, and more preferably 0.0020% or more.
  • O 0.0100% or less
  • O forms a coarse oxide that becomes a starting point of fracture when it is contained in a large amount in steel, and causes brittle fracture and hydrogen-induced cracking. Therefore, the O content is set to 0.0100% or less.
  • the O content is preferably 0.0080% or less and 0.0050% or less.
  • the O content may be 0.0005% or more and 0.0010% or more in order to disperse a large number of fine oxides when the molten steel is deoxidized.
  • the balance of the chemical composition of the hot-rolled steel sheet according to the present embodiment may be Fe and impurities.
  • the impurities mean those mixed from ore as a raw material, scrap, manufacturing environment, etc., and are allowed as long as they do not adversely affect the hot-rolled steel sheet according to the present embodiment. do.
  • the hot-rolled steel sheet according to the present embodiment contains Cu, Cr, Mo, Ni, B, Ca, Mg, REM, Bi, Zr, Co, Zn, W and Sn as optional elements instead of a part of Fe. You may. When the above optional element is not contained, the lower limit of the content is 0%. Hereinafter, the above optional elements will be described in detail.
  • the Cu has an action of enhancing the hardenability of the hot-rolled steel sheet and an action of precipitating as carbide in the steel at a low temperature to increase the strength of the hot-rolled steel sheet.
  • the Cu content is preferably 0.01% or more, and more preferably 0.05% or more.
  • the Cu content is set to 2.00% or less.
  • the Cu content is preferably 1.50% or less and 1.00% or less.
  • the Cr content is preferably 0.01% or more and 0.05% or more.
  • the Cr content is set to 2.00% or less.
  • Mo has an action of enhancing the hardenability of the hot-rolled steel sheet and an action of precipitating as carbides in the steel to increase the strength of the hot-rolled steel sheet.
  • the Mo content is preferably 0.01% or more and 0.02% or more.
  • the Mo content is set to 1.00% or less.
  • the Mo content is preferably 0.50% or less and 0.20% or less.
  • Ni has an effect of enhancing the hardenability of the hot-rolled steel sheet. Further, when Ni contains Cu, it has an effect of effectively suppressing the grain boundary cracking of the slab caused by Cu. In order to obtain the effect of the above action more reliably, the Ni content is preferably 0.02% or more. Since Ni is an expensive element, it is economically unfavorable to contain it in a large amount. Therefore, the Ni content is set to 2.00% or less.
  • B has an effect of enhancing the hardenability of the hot-rolled steel sheet.
  • the B content is preferably 0.0001% or more and 0.0002% or more.
  • the B content is set to 0.0100% or less.
  • the B content is preferably 0.0050% or less.
  • Ca, Mg and REM all have an effect of improving the formability of the hot-rolled steel sheet by adjusting the shape of the inclusions in the steel to a preferable shape.
  • Bi has an effect of improving the formability of the hot-rolled steel sheet by refining the solidified structure. Therefore, one or more of these elements may be contained. In order to obtain the effect of the above action more reliably, it is preferable that any one or more of Ca, Mg, REM and Bi is 0.0005% or more.
  • the Ca content or Mg content exceeds 0.0200%, or when the REM content exceeds 0.1000%, inclusions are excessively formed in the steel, which in turn reduces the ductility of the hot-rolled steel sheet. May cause you to. Further, even if the Bi content exceeds 0.020%, the effect of the above action is saturated, which is economically unfavorable. Therefore, the Ca content and Mg content are 0.0200% or less, the REM content is 0.1000% or less, and the Bi content is 0.020% or less.
  • the Bi content is preferably 0.010% or less.
  • REM refers to a total of 17 elements composed of Sc, Y and lanthanoid, and the content of REM refers to the total content of these elements.
  • lanthanoids they are industrially added in the form of misch metal.
  • the present inventors have confirmed that the effect of the hot-rolled steel sheet according to the present embodiment is not impaired even if a small amount of Sn is contained. However, if a large amount of Sn is contained, defects may occur during hot rolling, so the Sn content is set to 0.050% or less.
  • the chemical composition of the hot-rolled steel sheet described above may be measured by a general analysis method.
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrometry
  • sol. Al may be measured by ICP-AES using a filtrate obtained by heat-decomposing the sample with an acid.
  • C and S may be measured by using the combustion-infrared absorption method, and N may be measured by using the inert gas melting-thermal conductivity method.
  • the metal structure of the hot-rolled steel sheet according to the present embodiment will be described.
  • the metal structure is an area%
  • the retained austenite is less than 3.0%
  • the ferrite is 15.0% or more and less than 60.0%
  • the pearlite is 5.0%.
  • L which is less than the ratio of the grain boundary length L 60 having a crystal orientation difference of 60 ° and the grain boundary length L 7 having a crystal orientation difference of 7 ° with the ⁇ 110> direction as the axis.
  • 60 / L 7 is 0.60 or more
  • the standard deviation of Mn concentration is 0.60 mass% or less. Therefore, the hot-rolled steel sheet according to the present embodiment can obtain excellent strength, ductility, and shear workability.
  • the cross section parallel to the rolling direction the structure fraction in the metal structure at a depth of 1/4 of the plate thickness from the surface and the center position in the plate width direction, and the standard deviation of L 60 / L 7 and Mn concentration.
  • the reason for defining the metal structure at the depth of 1/4 of the plate thickness from the surface and the center position in the plate width direction of the cross section parallel to the rolling direction is that the metal structure at this position indicates a typical metal structure of the steel sheet. Is.
  • the position of 1/4 depth from the surface to the plate thickness is a region from 1/8 depth from the surface to 3/8 depth from the surface to the plate thickness.
  • Retained austenite is a tissue that exists as a face-centered cubic lattice even at room temperature. Residual austenite enhances the ductility of hot-rolled steel sheets due to transformation-induced plasticity (TRIP).
  • TRIP transformation-induced plasticity
  • retained austenite transforms into high-carbon martensite during shearing and has an effect of inhibiting stable crack generation, which causes the shear plane ratio to become unstable.
  • the surface integral of retained austenite is 3.0% or more, the above-mentioned action becomes apparent and the shearing workability of the hot-rolled steel sheet deteriorates. Therefore, the surface integral of retained austenite is less than 3.0%.
  • the surface integral of retained austenite is preferably less than 1.0%. Since the smaller the retained austenite, the more preferable it is, the surface integral of the retained austenite may be 0%.
  • Methods for measuring the area fraction of retained austenite include X-ray diffraction, EBSP (electron backscatter diffraction image, Electron Backscattering Diffraction Pattern) analysis, and magnetic measurement methods, and the measured values may differ depending on the measurement method. ..
  • the surface integral of retained austenite is measured by X-ray diffraction.
  • the depth of 1/4 of the plate thickness of the hot-rolled steel plate (1/8 depth from the surface to the plate thickness to 3 / of the plate thickness from the surface).
  • the integrated intensity of a total of 6 peaks of ⁇ (200) and ⁇ (220) is obtained and calculated by using the intensity averaging method to obtain the area fraction of retained austenite.
  • Ferrite is a structure formed when fcc is transformed into bcc at a relatively high temperature. Since ferrite has a high work hardening rate, it has the effect of increasing the strength-ductility balance of hot-rolled steel sheets. In order to obtain the above action, the surface integral of ferrite is set to 15.0% or more. It is preferably 20.0% or more. On the other hand, since ferrite has low strength, it is not possible to obtain a desired tensile strength if the surface integral is excessive. Therefore, the surface integral of ferrite is set to less than 60.0%. It is preferably 50.0% or less, 45.0% or less, and 40.0% or less.
  • Pearlite is a lamellar metal structure in which cementite is deposited in layers between ferrites, and is a soft metal structure compared to bainite and martensite. be.
  • the surface integral of pearlite is set to less than 5.0%.
  • the surface integral of pearlite is preferably 3.0% or less, 2.0% or less, and 1.0% or less. In order to improve the ductility of the hot-rolled steel sheet, the surface integral of pearlite is preferably reduced as much as possible, and the lower limit thereof is 0%.
  • the hot-rolled steel sheet according to the present embodiment has a residual structure other than retained austenite, ferrite and pearlite.
  • a hard structure consisting of one or more of bainite, martensite and tempered martensite having a total area fraction of more than 32.0% and 85.0% or less may be included.
  • the total surface integral of bainite, martensite and tempered martensite is preferably more than 32.0%. More preferably, it is 35.0% or more, 40.0% or more, more than 43.0%, and 50.0% or more.
  • the total surface integral of bainite, martensite and tempered martensite is preferably 85.0% or less. More preferably, it is 80.0% or less, 75.0% or less, and 70.0% or less.
  • one of bainite, martensite and tempered martensite may be contained, and the area fraction thereof may be more than 32.0% and 85.0% or less, and among bainite, martensite and tempered martensite. Two or more types may be included, and the total area fraction thereof may be more than 32.0% and 85.0% or less.
  • the surface integral of ferrite and pearlite is measured by the following method.
  • the cross section perpendicular to the rolling direction is mirror-finished and polished at room temperature with colloidal silica containing no alkaline solution for 8 minutes to remove the strain introduced into the surface layer of the sample.
  • the length is 50 ⁇ m and the thickness is from the surface so that it can be measured at a depth of 1/4 of the plate thickness from the surface and at the center position in the plate width direction.
  • Crystal orientation information is obtained by measuring a region from 1/8 depth to 3/8 depth of the plate thickness at a measurement interval of 0.1 ⁇ m by the electron backscattering diffraction method.
  • an EBSD analyzer composed of a thermal field emission scanning electron microscope (JSM-7001F manufactured by JEOL) and an EBSD detector (DVC5 type detector manufactured by TSL) is used.
  • the degree of vacuum in the EBSD analyzer is 9.6 ⁇ 10-5 Pa or less
  • the acceleration voltage is 15 kV
  • the irradiation current level is 13
  • the electron beam irradiation level is 62.
  • the reflected electron image is taken in the same field of view.
  • crystal grains in which ferrite and cementite are precipitated in layers are specified from the reflected electron image, and the area fraction of the crystal grains is calculated to obtain the area fraction of pearlite.
  • the obtained crystal orientation information is applied to the "OIM Analysis (registered trademark)" (manufactured by AMETek) attached to the EBSD analyzer, and the "Grain Average” is installed.
  • OIM Analysis registered trademark
  • AMETek manufactured by AMETek
  • the "Grain Average” is installed.
  • a region having a Grain Ametek Measurement value of 1.0 ° or less is determined to be ferrite.
  • the surface integral of ferrite is obtained by obtaining the surface integral of the region determined to be ferrite.
  • the area fraction of the residual structure (hard structure consisting of one or more of bainite, martensite and tempered martensite) ranges from 100% to the area fraction of retained austenite, the area fraction of ferrite and the area fraction of pearlite. Obtained by subtracting the rate.
  • L 60 / L 7 0.60 or more
  • a hard structure is generally formed in a phase transformation of 600 ° C. or lower, but in this temperature range, the grain boundary with a crystal orientation difference of 60 ° and the crystal orientation difference of 7 ° with the ⁇ 110> direction as the axis. A large amount of grain boundaries are formed. Dislocations are less likely to accumulate in the hard structure during the formation of grain boundaries with a crystal orientation difference of 60 ° about the ⁇ 110> direction.
  • the density of such grain boundaries is high and the grain boundaries are uniformly dispersed (that is, the total length of the grain boundaries having a crystal orientation difference of 60 ° with respect to the ⁇ 110> direction is calculated.
  • strain is hard to concentrate inside the hard structure, and cracks are stably generated regardless of the presence or absence of the hard phase near the cutting edge of the shear tool. As a result, the shear plane ratio becomes stable.
  • dislocations are likely to accumulate in the hard phase at grain boundaries where the crystal orientation difference is 7 ° with respect to the ⁇ 110> direction. Therefore, in a metal structure having a high grain boundary density with a crystal orientation difference of 7 ° about the ⁇ 110> direction in the hard phase, the hard phase is easily deformed, so that dislocations are introduced into the hard phase during shearing. Since crack generation is promoted from the inside of the hard phase, the shear surface ratio changes depending on the presence or absence of the hard phase near the cutting edge of the shear tool. As a result, the shear plane ratio becomes unstable.
  • L 60 when the length of the grain boundary having a crystal orientation difference of 60 ° is L 60 and the length of the grain boundary having a crystal orientation difference of 7 ° is L 7 with the ⁇ 110> direction as the axis, the shear plane.
  • the stability of the ratio is dominated by L 60 / L 7.
  • L 60 / L 7 is less than 0.60, the shear plane ratio becomes unstable due to the above action. Therefore, in order to improve the shearing workability of the hot-rolled steel sheet, it is necessary to set L 60 / L 7 to 0.60 or more.
  • L 60 / L 7 is preferably 0.63 or more, 0.65 or more, and 0.70 or more.
  • the upper limit of L 60 / L 7 is not particularly specified, but may be 1.50 or less and 1.00 or less.
  • the grain boundary having a crystal orientation difference of X ° about the ⁇ 110> direction means that when two adjacent crystal grains A and B are specified at a certain grain boundary, one crystal grain B is defined as ⁇ . 110> refers to a grain boundary having a crystal boundary in which the crystal orientations of the crystal grains A and the crystal grains B are the same when rotated by X ° along the axis. However, considering the measurement accuracy of the crystal orientation, an orientation difference of ⁇ 4 ° is allowed from the matching orientation relation.
  • a highly inclined sample is irradiated with an electron beam in a scanning electron microscope (SEM), the Kikuchi pattern formed by backscattering is photographed with a high-sensitivity camera, and the photographed photograph is image-processed by a computer. By doing so, the crystal orientation of the irradiation point can be measured in a short waiting time.
  • SEM scanning electron microscope
  • the EBSP-OIM method is performed using an EBSD analyzer composed of a thermal field emission scanning electron microscope (JSM-7001F manufactured by JEOL) and an EBSD detector, and an OIM Analysis (registered trademark) manufactured by AMETEK.
  • JSM-7001F thermal field emission scanning electron microscope
  • EBSD detector an OIM Analysis (registered trademark) manufactured by AMETEK.
  • OIM Analysis registered trademark manufactured by AMETEK.
  • the analyzable area of the EBSP-OIM method is an area that can be observed by SEM. Although it depends on the resolution of the SEM, according to the EBSP-OIM method, analysis can be performed with a minimum resolution of 20 nm.
  • Ferrite and pearlite are soft phases and have little effect on the dislocation accumulation effect inside the hard phase, and retained austenite is not a structure formed by phase transformation at 600 ° C or lower and has no dislocation accumulation effect. Therefore, in this measurement method, ferrite, pearlite and retained austenite are not included in the analysis. That is, in this embodiment, as an axis of ⁇ 110> direction, the grain boundary length L 7 length L 60, and the crystal orientation difference of grain boundary misorientation is 60 ° is 7 °, the hard It is of a tissue (one or more of bainite, martensite and tempered martensite).
  • Pearlite can be specified by the same method as the method for measuring the area fraction of pearlite
  • ferrite can be specified by the same method as the method for measuring the area fraction of ferrite
  • pearlite and ferrite can be excluded from the analysis target.
  • retained austenite having a crystal structure of fcc can be excluded from the analysis target.
  • Standard deviation of Mn concentration 0.60% by mass or less 1/4 depth from the surface of the hot-rolled steel sheet according to the present embodiment (1/8 depth from the surface to the surface)
  • the standard deviation of the Mn concentration at the center position in the plate width direction is 0.60 mass% or less.
  • the standard deviation of the Mn concentration is preferably 0.55% by mass or less, 0.50% by mass or less, and 0.45% by mass or less.
  • the lower limit of the standard deviation of the Mn concentration is preferably as small as the value from the viewpoint of stabilizing the shear surface ratio, but the practical lower limit is 0.10% by mass due to the restrictions of the manufacturing process.
  • the standard deviation of the Mn concentration is measured by the following method. After mirror-polishing the L cross section of the hot-rolled steel sheet, the depth from the surface to 1/4 of the plate thickness (the region from the surface to the depth of 1/8 of the plate thickness to the region from the surface to the depth of 3/8 of the plate thickness) and the plate width. The center position in the direction is measured with an electron probe microanalyzer (EPMA) to measure the standard deviation of the Mn concentration.
  • the measurement conditions are that the acceleration voltage is 15 kV, the magnification is 5000 times, and the distribution image in the range of 20 ⁇ m in the sample rolling direction and 20 ⁇ m in the sample plate thickness direction is measured. More specifically, the measurement interval is set to 0.1 ⁇ m, and the Mn concentration at 40,000 or more points is measured.
  • the standard deviation of the Mn concentration is obtained by calculating the standard deviation based on the Mn concentration obtained from all the measurement points.
  • the mechanism of internal bending cracking is presumed as follows. During bending, compressive stress is generated inside the bend. At first, the entire inside of the bend is deformed uniformly while processing proceeds, but when the amount of processing increases, the deformation cannot be carried out only by uniform deformation, and the deformation progresses due to the local concentration of strain (generation of shear deformation zone). .. As this shear band grows further, cracks along the shear band are generated from the inner surface of the bend and grow.
  • in-bending cracks are more likely to occur as the strength increases is that uniform deformation is less likely to proceed due to the decrease in work hardening ability due to the increase in strength, and biased deformation is likely to occur at an early stage of processing ( It is presumed that a shear band is generated (or under loose processing conditions).
  • the internal bending crack becomes remarkable in the steel sheet having a tensile strength of 980 MPa or more. Further, the present inventors have found that the finer the crystal grain size of the surface layer of the hot-rolled steel sheet, the more the local strain concentration is suppressed and the less likely it is that internal bending cracks occur.
  • the average crystal grain size of the surface layer of the hot-rolled steel sheet is preferably less than 3.0 ⁇ m. More preferably, it is 2.5 ⁇ m or less. The lower limit is not particularly limited, but may be 1.0 ⁇ m or more, 1.5 ⁇ m or more, or 2.0 ⁇ m or more.
  • the surface layer is a region from the surface of the hot-rolled steel sheet to a depth of 50 ⁇ m from the surface.
  • the crystal grain size of the surface layer is measured using the above-mentioned EBSP-OIM method.
  • analysis was performed in a region of 1200 times magnification and 40 ⁇ m ⁇ 30 ⁇ m in at least 5 visual fields.
  • a place where the angle difference between adjacent measurement points is 5 ° or more is defined as a grain boundary, and the crystal grain size of the area average is calculated.
  • the obtained area average crystal grain size is defined as the average crystal grain size of the surface layer.
  • Retained austenite is not a structure generated by phase transformation at 600 ° C or lower and has no effect of dislocation accumulation. Therefore, retained austenite is not included in the analysis in this measurement method. That is, in the present embodiment, the average crystal grain size of the surface layer is that of ferrite, pearlite and a hard structure (one or more of bainite, martensite and tempered martensite). In the EBSP-OIM method, retained austenite having a crystal structure of fcc can be excluded from the analysis target.
  • tensile strength characteristics are evaluated in accordance with JIS Z 2241: 2011.
  • the test piece shall be JIS Z 2241: 2011 No. 5 test piece.
  • the sampling position of the tensile test piece may be 1/4 from the end in the plate width direction, and the direction perpendicular to the rolling direction may be the longitudinal direction.
  • the hot-rolled steel sheet according to this embodiment has a tensile (maximum) strength of 980 MPa or more. If the tensile strength is less than 980 MPa, the applicable parts are limited, and the contribution of weight reduction of the vehicle body is small.
  • the upper limit is not particularly limited, but may be 1400 MPa or 1350 MPa from the viewpoint of suppressing mold wear.
  • the product (TS ⁇ El) of the tensile strength which is an index of ductility, and the total elongation is preferably 15000 MPa ⁇ % or more.
  • the plate thickness of the hot-rolled steel sheet according to the present embodiment is not particularly limited, but may be 0.5 to 8.0 mm.
  • the thickness of the hot-rolled steel sheet according to the present embodiment may be 0.5 mm or more. It is preferably 1.2 mm or more and 1.4 mm or more.
  • the plate thickness may be 8.0 mm or less. It is preferably 6.0 mm or less.
  • the hot-rolled steel sheet according to the present embodiment having the above-mentioned chemical composition and metal structure may be provided with a plating layer on the surface for the purpose of improving corrosion resistance or the like to be a surface-treated steel sheet.
  • the plating layer may be an electroplating layer or a hot-dip plating layer.
  • the electroplating layer include electrogalvanization and electroZn—Ni alloy plating.
  • the hot-dip plating layer include hot-dip zinc plating, alloyed hot-dip zinc plating, hot-dip aluminum plating, hot-dip Zn-Al alloy plating, hot-dip Zn-Al-Mg alloy plating, and hot-dip Zn-Al-Mg-Si alloy plating.
  • NS hot-dip zinc plating, alloyed hot-dip zinc plating, hot-dip aluminum plating, hot-dip Zn-Al alloy plating, hot-dip Zn-Al-Mg alloy plating, and hot-dip Zn-Al-Mg-Si alloy plat
  • the amount of plating adhesion is not particularly limited and may be the same as before. Further, it is also possible to further enhance the corrosion resistance by subjecting an appropriate chemical conversion treatment (for example, application and drying of a silicate-based chromium-free chemical conversion treatment liquid) after plating.
  • an appropriate chemical conversion treatment for example, application and drying of a silicate-based chromium-free chemical conversion treatment liquid
  • the slab is heated under predetermined conditions, then hot-rolled, accelerated and cooled to a predetermined temperature range, then slowly cooled, and cooled until winding. It is effective to control the history.
  • the following steps (1) to (7) are sequentially performed.
  • the temperature of the slab and the temperature of the steel plate in this embodiment refer to the surface temperature of the slab and the surface temperature of the steel plate.
  • the slab is held in a temperature range of 700 to 850 ° C. for 900 seconds or longer, then further heated and held in a temperature range of 1100 ° C. or higher for 6000 seconds or longer.
  • Hot rolling is performed in a temperature range of 850 to 1100 ° C. so that the total plate thickness is reduced by 90% or more.
  • Hot rolling is completed so that the hot rolling completion temperature Tf becomes equal to or higher than the temperature T1 (° C.) represented by the following formula ⁇ 1>.
  • the hot rolling is cooled to a temperature range of Tf-50 ° C or lower, and then accelerated to a temperature range of 600 to 730 ° C at an average cooling rate of 50 ° C / s or higher. Cooling. However, it is a more preferable cooling condition to cool to a temperature range of the hot rolling completion temperature Tf-50 ° C. or lower within 1 second after the completion of hot rolling. (5) In the temperature range of 600 to 730 ° C., slow cooling with an average cooling rate of less than 5 ° C./s is performed for 2.0 seconds or more. (6) Cool to a temperature range of 600 ° C. or lower at an average cooling rate of 50 ° C./s or higher. (7) Wind up in a temperature range of 400 to 600 ° C.
  • T1 (° C.) 868-396 x [C] -68.1 x [Mn] + 24.6 x [Si] -36.1 x [Ni] -24.8 x [Cr] -20.7 x [Cu] ] + 250 ⁇ [sol. Al] ... ⁇ 1>
  • the [element symbol] in the above formula ⁇ 1> indicates the content (mass%) of each element in the steel. If the element is not contained, 0 is substituted.
  • the slab to be subjected to hot rolling is held in a temperature range of 700 to 850 ° C. during heating for 900 seconds or longer, and then further heated and held in a temperature range of 1100 ° C. or higher for 6000 seconds or longer.
  • the temperature of the steel sheet may be changed in this temperature range or may be constant.
  • the temperature of the steel sheet may be changed at 1100 ° C. or higher, or may be constant.
  • Mn is dispersed between the ferrite and the austenite, and by lengthening the transformation time, Mn can be diffused in the ferrite region.
  • the Mn microsegregation unevenly distributed in the slab can be eliminated, and the standard deviation of the Mn concentration can be significantly reduced.
  • Hot rolling reduction rate A total plate thickness reduction of 90% or more in the temperature range of 850 to 1100 ° C. A total plate thickness reduction of 90% or more in the temperature range of 850 to 1100 ° C.
  • the recrystallized austenite grains are mainly made finer, and the accumulation of strain energy in the unrecrystallized austenite grains is promoted.
  • the recrystallization of austenite is promoted and the atomic diffusion of Mn is promoted, so that the standard deviation of the Mn concentration can be reduced.
  • the standard deviation of the Mn concentration it is possible to uniformly disperse the grain boundaries having a crystal orientation difference of 60 ° about the ⁇ 110> direction in the final metal structure, and stabilize the shear plane ratio. can do. Therefore, it is preferable to perform hot rolling so that the total plate thickness is reduced by 90% or more in the temperature range of 850 to 1100 ° C.
  • the plate thickness reduction in the temperature range of 850 to 1100 ° C. means that the inlet plate thickness before the first pass in rolling in this temperature range is t 0, and the outlet plate thickness after the final pass in rolling in this temperature range is t. When it is 1 , it can be expressed as (t 0 ⁇ t 1 ) / t 0 ⁇ 100 (%).
  • Hot rolling completion temperature Tf T1 (° C.) or higher
  • the hot rolling completion temperature Tf is preferably T1 (° C.) or higher.
  • (6-4) Within 1 second after the completion of hot rolling, the temperature is cooled to a temperature range of Tf-50 ° C or lower, and then a temperature of 600 to 730 ° C at an average cooling rate of 50 ° C / s or higher. Accelerated cooling to a range Within 1 second after the completion of hot rolling, the temperature is cooled to a temperature range of Tf-50 ° C or lower, and then a temperature of 600 to 730 ° C at an average cooling rate of 50 ° C / s or higher. It is preferable to accelerate cooling to the region. However, it is a more preferable cooling condition to cool to a temperature range of the hot rolling completion temperature Tf-50 ° C. or lower within 1 second after the completion of hot rolling.
  • the temperature is cooled to 50 ° C. or higher within 1 second after the completion of hot rolling, that is, within 1 second after the completion of hot rolling. It is more preferable to cool to a temperature range of Tf-50 ° C. or lower.
  • Tf-50 ° C. or lower In order to cool to a temperature range of hot rolling completion temperature Tf-50 ° C or lower within 1 second after the completion of hot rolling, cooling with a large average cooling rate is performed immediately after the completion of hot rolling, for example, cooling water is applied to the surface of the steel sheet. It may be sprayed on.
  • the average cooling rate here refers to the range of temperature drop of the steel plate from the start of accelerated cooling (when the steel plate is introduced into the cooling equipment) to the completion of accelerated cooling (when the steel plate is taken out from the cooling equipment). The value divided by the time required from the start to the completion of accelerated cooling.
  • the upper limit of the average cooling rate is not specified, but if the cooling rate is increased, the cooling equipment becomes large and the equipment cost increases. Therefore, considering the equipment cost, 300 ° C./s or less is preferable.
  • the average cooling rate here is the temperature drop width of the steel plate from the cooling stop temperature of accelerated cooling to the start temperature of slow cooling divided by the time required from the stop of accelerated cooling to the start of slow cooling. It refers to the value.
  • the time for slow cooling in the temperature range of 600 to 730 ° C. is 2.0 seconds or more, the surface integral of the precipitation-strengthened ferrite reaches a desired amount, and the above action can be obtained. Therefore, in the temperature range of 600 to 730 ° C., slow cooling with an average cooling rate of less than 5 ° C./s is performed for 2.0 seconds or more.
  • the time for slow cooling is preferably 3.0 seconds or longer, more preferably 4.0 seconds or longer.
  • the upper limit of the time for slow cooling is determined by the equipment layout, but it may be less than 10.0 seconds. Further, although the lower limit of the average cooling rate for slow cooling is not particularly set, raising the temperature without cooling may require a large investment in equipment, and may be set to 0 ° C./s or higher.
  • the average cooling rate up to is 50 ° C./s or more. As a result, the matrix structure can be made hard.
  • the average cooling rate referred to here is the temperature drop width of the steel plate from the cooling stop temperature of slow cooling where the average cooling rate is less than 5 ° C / s to the winding temperature, and the average cooling rate is less than 5 ° C / s. It means the value divided by the time required from the stop of slow cooling to 600 ° C.
  • the average cooling rate from the cooling shutdown temperature of slow cooling where the average cooling rate is less than 5 ° C./s to the temperature range of 600 ° C. or lower is set to 50 ° C./s or more.
  • Winding temperature 400-600 ° C
  • the winding temperature is in the temperature range of 400 to 600 ° C.
  • the transformation driving force from austenite to bcc can be reduced, and the deformation strength of austenite can be reduced. Therefore, when the bainite and martensite transformation from austenite, ⁇ 110> direction grain boundary length L 7 crystal orientation difference of 7 ° is reduced as the shaft, and ⁇ 110> crystal orientation difference direction axis
  • L 60 / L 7 can be set to 0.60 or more. As a result, the shear plane ratio can be stabilized.
  • the winding temperature is preferably in the temperature range of 400 to 600 ° C.
  • the winding temperature is more preferably 450 ° C. or higher.
  • the winding temperature is more preferably 550 ° C. or lower.
  • the conditions in the examples are one condition example adopted for confirming the feasibility and effect of the present invention.
  • the present invention is not limited to this one-condition example.
  • the present invention can adopt various conditions as long as the gist of the present invention is not deviated and the object of the present invention is achieved.
  • the test piece was JIS Z 2241: 2011 No. 5 test piece.
  • the sampling position of the tensile test piece was 1/4 from the end in the plate width direction, and the direction perpendicular to the rolling direction was the longitudinal direction.
  • Shear workability The shear workability of the hot-rolled steel sheet was evaluated by determining the amount of change in the shear surface ratio by a punching test. Five punched holes were prepared at the center of the plate width at a hole diameter of 10 mm, a clearance of 15%, and a punching speed of 3 m / s. Next, with respect to the five punched holes, the state of the end faces parallel to the rolling direction at ten places (two end faces per one punched hole) was photographed with an optical microscope view.
  • FIG. 1A is a schematic view of an end face parallel to the rolling direction of the punched hole
  • FIG. 1B is a schematic view of a side surface of the punched hole.
  • the sagging is an R-shaped smooth surface
  • the shearing surface is a punched end face separated by shear deformation
  • the fracture surface is a punched end face separated by cracks generated from the vicinity of the cutting edge after the completion of shear deformation.
  • a burr is a surface having protrusions protruding from the lower surface of a hot-rolled steel sheet.
  • the ratio of the sheared surface to the end face is measured, and the difference between the maximum value and the minimum value of the obtained sheared surface ratio (%) is the sheared surface ratio.
  • the ratio of the shear plane to the end face is such that a straight line 1 perpendicular to the upper surface and the lower surface of the hot-rolled steel plate is drawn in the observation photograph of the end face, and the sagging in the straight line 1 is drawn.
  • the amount of change in the shear surface ratio was 20% or less, it was judged to be a hot-rolled steel sheet with excellent shearing workability and passed. On the other hand, if the amount of change in the shear surface ratio is more than 20%, it is judged that the hot-rolled steel sheet is inferior in shearing workability and is rejected.
  • the presence or absence of cracks is determined by mirror-polishing the cross section of the test piece after the V block 90 ° bending test cut on a surface parallel to the bending direction and perpendicular to the plate surface, and then observing the cracks with an optical microscope. When the crack length observed inside the bend exceeds 30 ⁇ m, it is judged that there is a crack.
  • the manufacturing No. which is a comparative example. 3 to 5, 7 to 12 and 26 to 30 were inferior in any one or more of strength, ductility and shearability.
  • the present invention it is possible to provide a hot-rolled steel sheet having excellent strength, ductility and shear workability. Further, according to the above-mentioned preferred embodiment according to the present invention, it is possible to obtain a hot-rolled steel sheet having the above-mentioned characteristics and further suppressing the occurrence of bending internal cracks, that is, having excellent bending internal crack resistance. can.
  • the hot-rolled steel sheet according to the present invention is suitable as an industrial material used for automobile members, mechanical structural members, and building members.

Abstract

この熱延鋼板は、所定の化学組成を有し、金属組織において、面積%で、残留オーステナイトが3.0%未満であり、フェライトが15.0%以上60.0%未満であり、パーライトが5.0%未満であり、<110>方向を軸として、結晶方位差が60°である粒界の長さL60と結晶方位差が7°である粒界の長さLとの比であるL60/Lが0.60以上であり、Mn濃度の標準偏差が0.60質量%以下であり、引張強さが980MPa以上である。

Description

熱延鋼板
 本発明は、熱延鋼板に関する。具体的には、プレス加工等により様々な形状に成形して利用される熱延鋼板、特に、高強度であり、且つ延性およびせん断加工性に優れる熱延鋼板に関する。
 本願は、2020年1月27日に、日本に出願された特願2020-010944号に基づき優先権を主張し、その内容をここに援用する。
 近年、地球環境保護の観点から、多くの分野において炭酸ガス排出量の削減が取り組まれている。自動車メーカーにおいても低燃費化を目的とした車体軽量化の技術開発が盛んに行われている。しかし、乗員の安全確保のために耐衝突特性の向上にも重点が置かれるため、車体軽量化は容易ではない。
 車体軽量化と耐衝突特性とを両立させるべく、高強度鋼板を用いて部材を薄肉化することが検討されている。このため、高い強度と優れた成形性とを兼備する鋼板が強く望まれている。これらの要求に応えるべく、幾つかの技術が従来から提案されている。
 自動車部材には様々な加工様式があるため、要求される成形性は適用される部材により異なるが、その中でも延性は成形性の重要な指標として位置付けられている。
 また、自動車部材はプレス成形によって成形されるが、そのプレス成形のブランク板は生産性が高いせん断加工によって製造されることが多い。せん断加工によって製造されるブランク板では、せん断加工後の端面精度に優れる必要がある。
 延性向上の技術については、例えば特許文献1には、平均結晶粒径が10μm以下であるフェライト中に平均結晶粒径が5μm以下である残留オーステナイトを分散させた、耐衝突安全性および成形性に優れた自動車用高強度鋼板が開示されている。金属組織に残留オーステナイトを含む鋼板では、加工中にオーステナイトがマルテンサイト変態して、変態誘起塑性により大きな伸びを示すものの、硬質なマルテンサイトの生成により穴拡げ性が損なわれる。特許文献1には、フェライトおよび残留オーステナイトを微細化することにより、延性のみならず穴拡げ性も向上する、と開示されている。
 特許文献2には、結晶粒内に残留オーステナイトおよび/またはマルテンサイトからなる第二相を微細に分散させた、延性および伸びフランジ性に優れた引張強度が980MPa以上の高強度鋼板が開示されている。
 せん断加工性の向上についての技術は、例えば特許文献3には、表層のフェライト粒径dと内部のフェライト結晶粒dとの比d/dを0.95以下に制御することで、打ち抜き後のバリ高さを制御する技術が開示されている。
 特許文献4には、Pの含有量を低減することで板端面のハガレやメクレを改善する技術が開示されている。
日本国特開平11-61326号公報 日本国特開2005-179703号公報 日本国特開平10-168544号公報 日本国特開2005-298924号公報
 特許文献1~4に開示された技術は、いずれも延性またはせん断加工後の端面性状のいずれか一方を向上させる技術である。しかし、特許文献1~3ではこれらの特性を両立させる技術について言及されてない。特許文献4では、せん断加工性とプレス成形性との両立について言及されている。しかし、特許文献4に開示された鋼板の強度は850MPa未満であるため、980MPa以上の高強度の部材へ適用することは困難な場合がある。
 また、特に980MPa以上の高強度鋼板では、せん断加工後の端面に占めるせん断面の比率が安定せず、切断端面の精度がばらつくことが課題である。
 本発明は、従来技術の上記課題に鑑みてなされたものであり、高い強度を有するとともに、優れた延性およびせん断加工性を有する熱延鋼板を提供することを目的とする。
 本発明者らは、上述の課題に鑑み、熱延鋼板の化学組成および金属組織と機械特性との関係について鋭意研究を重ねた。その結果、以下の知見(a)~(h)を得て、本発明を完成した。
 なお、優れたせん断加工性を有するとは、せん断加工後の端面に占めるせん断面の比率(以下、せん断面比率と記載する場合がある)が安定している(せん断面比率の変化量が小さい)ことを示す。
 また、優れた強度または高い強度を有するとは、引張強さが980MPa以上であることを示す。
(a)優れた引張(最大)強さを得るためには、硬質な組織を活用することが好ましい。すなわち、マルテンサイト、焼き戻しマルテンサイトおよび/またはベイナイトを組織中に含むことが好ましい。
(b)しかし、硬質な組織は延性に乏しい組織であるため、単にこれらを主体とする金属組織とするだけでは、優れた延性を確保することができない。
(c)高強度の熱延鋼板に優れた延性も兼備させるためには、延性の高いフェライトを適量含有させることが効果的である。
(d)フェライトは一般的に軟質であるため、所望の強度を得るために、Ti、Nb、V等を析出強化元素として活用することが必要である。そのため、熱延プロセスにおいて中間空冷を施し、適切な量の析出強化フェライトを得ることが効果的である。
(e)硬質な組織は一般的に600℃以下の相変態において形成されるが、この温度域においては<110>方向を軸として結晶方位差が60°である粒界および結晶方位差が7°である粒界が多量に形成される。
(f)<110>方向を軸として結晶方位差が60°である粒界の生成時には、硬質組織中に転位が蓄積されにくい。硬質相中において、このような粒界の密度が高く、且つ均一に分散している(すなわち<110>方向を軸として結晶方位差が60°である粒界の合計の長さが大きい)金属組織では、せん断加工時に硬質組織中に転位が蓄積しにくく,硬質組織内部からき裂が発生しにくい。その結果、せん断工具の刃先近傍に硬質相がたまたま存在してもき裂が発生しにくく、せん断面の比率が一定に保たれる、すなわちせん断面の比率が安定化する。
(g)<110>方向を軸として結晶方位差が60°である粒界を硬質相中に均一に分散させるには、Mn濃度の標準偏差を一定値以下とする必要がある。Mn濃度の標準偏差を一定値以下とするためには、スラブ加熱の際に700~850℃の温度域で900秒以上保持し、その後更に加熱し、1100℃以上の温度域で6000秒以上保持し、かつ850~1100℃の温度域で合計90%以上の板厚減となるような熱間圧延を行うことが効果的である。
(h)<110>方向を軸として結晶方位差が60°である粒界の長さを増大させ、且つ<110>方向を軸として結晶方位差が7°である粒界の長さを減少させるには、400~600℃で巻き取ることが効果的である。
 上記知見に基づいてなされた本発明の要旨は、以下の通りである。
(1)本発明の一態様に係る熱延鋼板は、化学組成が、質量%で、
C:0.050~0.250%、
Si:0.05~3.00%、
Mn:1.00~4.00%、
Ti、NbおよびVのうち1種または2種以上:合計で0.060~0.500%、
sol.Al:0.001~2.000%、
P:0.100%以下、
S:0.0300%以下、
N:0.1000%以下、
O:0.0100%以下、
Cu:0~2.00%、
Cr:0~2.00%、
Mo:0~1.00%、
Ni:0~2.00%、
B:0~0.0100%、
Ca:0~0.0200%、
Mg:0~0.0200%、
REM:0~0.1000%、
Bi:0~0.020%、
Zr、Co、ZnおよびWのうち1種または2種以上:合計で0~1.00%、並びに
Sn:0~0.050%を含有し、
 残部がFeおよび不純物からなり、
 金属組織が、面積%で、
  残留オーステナイトが3.0%未満であり、
  フェライトが15.0%以上60.0%未満であり、
  パーライトが5.0%未満であり、
  <110>方向を軸として、結晶方位差が60°である粒界の長さL60と、結晶方位差が7°である粒界の長さLとの比であるL60/Lが0.60以上であり、
  Mn濃度の標準偏差が0.60質量%以下であり、
 引張強さが980MPa以上である。
(2)上記(1)に記載の熱延鋼板は、表層の平均結晶粒径が3.0μm未満であってもよい。
(3)上記(1)または(2)に記載の熱延鋼板は、前記化学組成が、質量%で、
Cu:0.01~2.00%、
Cr:0.01~2.00%、
Mo:0.01~1.00%、
Ni:0.02~2.00%、
B:0.0001~0.0100%、
Ca:0.0005~0.0200%、
Mg:0.0005~0.0200%、
REM:0.0005~0.1000%、および
Bi:0.0005~0.020%
からなる群から選択される1種または2種以上を含有してもよい。
 本発明に係る上記態様によれば、優れた強度、延性およびせん断加工性を有する熱延鋼板を得ることができる。また、本発明に係る上記の好ましい態様によれば、上記諸特性を有した上で更に、曲げ内割れの発生が抑制された、すなわち耐曲げ内割れ性に優れた熱延鋼板を得ることができる。
 本発明の上記態様に係る熱延鋼板は、自動車部材、機械構造部材さらには建築部材に用いられる工業用素材として好適である。
せん断加工後の端面に占めるせん断面の比率の測定方法を説明するための図である。
 本実施形態に係る熱延鋼板(以下、単に鋼板と記載する場合がある)の化学組成および金属組織について、以下により具体的に説明する。ただし、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。
 以下に「~」を挟んで記載する数値限定範囲には、下限値および上限値がその範囲に含まれる。「未満」または「超」と示す数値には、その値が数値範囲に含まれない。
 以下の説明において、熱延鋼板の化学組成に関する%は特に指定しない限り質量%である。
1.化学組成
 本実施形態に係る熱延鋼板は、質量%で、C:0.050~0.250%、Si:0.05~3.00%、Mn:1.00~4.00%、Ti、NbおよびVのうち1種または2種以上:合計で0.060~0.500%、sol.Al:0.001~2.000%、P:0.100%以下、S:0.0300%以下、N:0.1000%以下、O:0.0100%以下、並びに、残部:Feおよび不純物を含む。以下に各元素について詳細に説明する。
(1-1)C:0.050~0.250%
 Cは、硬質相の面積分率を上昇させるとともに、Ti、Nb、V等の析出強化元素と結合することで、フェライトの強度を上昇させる。C含有量が0.050%未満では、所望の強度を得ることが困難となる。したがって、C含有量は0.050%以上とする。C含有量は、好ましくは0.060%以上、より好ましくは0.070%以上である。
 一方、C含有量が0.250%超では、フェライトの面積分率が低下することで、熱延鋼板の延性が低下する。したがって、C含有量は0.250%以下とする。C含有量は好ましくは0.150%以下、0.150%未満、0.130%以下である。
(1-2)Si:0.05~3.00%
 Siは、フェライトの生成を促進して熱延鋼板の延性を向上させる作用と、フェライトを固溶強化して熱延鋼板の強度を上昇させる作用とを有する。また、Siは脱酸により鋼を健全化する(鋼にブローホールなどの欠陥が生じることを抑制する)作用を有する。Si含有量が0.05%未満では、上記作用による効果を得ることができない。したがって、Si含有量は0.05%以上とする。Si含有量は、好ましくは0.30%以上、0.50%以上、0.80%以上である。
 しかし、Si含有量が3.00%超では、熱延鋼板の表面性状および化成処理性、さらには延性および溶接性が著しく劣化するとともに、A変態点が著しく上昇する。これにより、安定して熱間圧延を行うことが困難になる。したがって、Si含有量は3.00%以下とする。Si含有量は、好ましくは2.70%以下、より好ましくは2.50%以下である。
(1-3)Mn:1.00~4.00%
 Mnは、フェライト変態を抑制して熱延鋼板を高強度化する作用を有する。Mn含有量が1.00%未満では、980MPa以上の引張強さを得ることができない。したがって、Mn含有量は1.00%以上とする。Mn含有量は、好ましくは1.50%以上であり、より好ましくは1.80%以上である。
 一方、Mn含有量が4.00%超では、Mnの偏析に起因して、硬質相中の結晶粒の角度差が不均一となり、せん断面比率が不安定になる。したがって、Mn含有量は4.00%以下とする。Mn含有量は、好ましくは3.70%以下、3.50%以下である。
(1-4)Ti、NbおよびVの1種または2種以上:合計で0.060~0.500%
 Ti、NbおよびVは、炭化物および窒化物として鋼中に微細析出し、析出強化により鋼の強度を向上させる元素である。また、上記炭化物を形成することによってCを固定して、せん断加工性にとって有害なセメンタイトの生成を抑制する元素である。これらの効果を得るため、Ti、NbおよびVの含有量の合計を0.060%以上とする。なお、Ti、NbおよびVの全てが含有されている必要はなく、いずれか1種でも含まれていればよい。Ti、NbおよびVのうち1種を含み、その含有量が0.060%以上であってもよく、Ti、NbおよびVのうち2種以上を含み、それらの含有量の合計が0.060%以上であってもよい。Ti、NbおよびVの合計の含有量は、好ましくは、0.080%以上である。
 一方、Ti、NbおよびVの含有量の合計が0.500%を超えると、加工性が劣化する。そのため、Ti、NbおよびVの含有量の合計を0.500%以下とする。好ましくは、0.300%以下であり、より好ましくは、0.250%以下である。
(1-5)sol.Al:0.001~2.000%
 Alは、Siと同様に、脱酸により鋼を健全化する作用を有するとともに、フェライトの生成を促進し、熱延鋼板の延性を高める作用を有する。sol.Al含有量が0.001%未満では上記作用による効果を得ることができない。したがって、sol.Al含有量は、0.001%以上とする。sol.Al含有量は、好ましくは0.010%以上、0.030%以上である。
 一方、sol.Al含有量が2.000%超では、上記効果が飽和するとともに経済的に好ましくないため、sol.Al含有量は2.000%以下とする。sol.Al含有量は、好ましくは1.500%以下、1.000%以下、0.500%以下、0.100%以下である。
 なお、本実施形態においてsol.Alとは、酸可溶性Alを意味し、固溶状態で鋼中に存在する固溶Alのことを示す。
(1-6)P:0.100%以下
 Pは、一般的に不純物として含有される元素であるが、固溶強化により熱延鋼板の強度を高める作用を有する元素でもある。したがって、Pを積極的に含有させてもよいが、Pは偏析し易い元素であり、P含有量が0.100%を超えると、粒界偏析に起因する延性の低下が顕著となる。したがって、P含有量は、0.100%以下とする。P含有量は、好ましくは0.030%以下である。
 P含有量の下限は特に規定する必要はないが、精錬コストの観点から、0.001%とすることが好ましい。
(1-7)S:0.0300%以下
 Sは、不純物として含有される元素であり、鋼中に硫化物系介在物を形成して熱延鋼板の延性を低下させる。S含有量が0.0300%を超えると、熱延鋼板の延性が著しく低下する。したがって、S含有量は0.0300%以下とする。S含有量は、好ましくは0.0050%以下である。
 S含有量の下限は特に規定する必要はないが、精錬コストの観点から、0.0001%とすることが好ましい。
(1-8)N:0.1000%以下
 Nは、不純物として鋼中に含有される元素であり、熱延鋼板の延性を低下させる作用を有する。N含有量が0.1000%超では、熱延鋼板の延性が著しく低下する。したがって、N含有量は0.1000%以下とする。N含有量は、好ましくは0.0800%以下であり、さらに好ましくは0.0700%以下である。
 N含有量の下限は特に規定する必要はないが、Ti、NbおよびVの1種または2種以上を含有させて金属組織をより微細化する場合には、炭窒化物の析出を促進させるためにN含有量は0.0010%以上とすることが好ましく、0.0020%以上とすることがより好ましい。
(1-9)O:0.0100%以下
 Oは、鋼中に多く含まれると破壊の起点となる粗大な酸化物を形成し、脆性破壊や水素誘起割れを引き起こす。そのため、O含有量は0.0100%以下とする。O含有量は、0.0080%以下、0.0050%以下とすることが好ましい。
 溶鋼の脱酸時に微細な酸化物を多数分散させるために、O含有量は0.0005%以上、0.0010%以上としてもよい。
 本実施形態に係る熱延鋼板の化学組成の残部は、Feおよび不純物であってもよい。本実施形態において、不純物とは、原料としての鉱石、スクラップ、または製造環境等から混入されるものであって、本実施形態に係る熱延鋼板に悪影響を与えない範囲で許容されるものを意味する。
 本実施形態に係る熱延鋼板は、Feの一部に代えて、Cu、Cr、Mo、Ni、B、Ca、Mg、REM、Bi、Zr、Co、Zn、WおよびSnを任意元素として含有してもよい。上記任意元素を含有させない場合の含有量の下限は0%である。以下、上記任意元素について詳細に説明する。
(1-10)Cu:0.01~2.00%、Cr:0.01~2.00%、Mo:0.01~1.00%、Ni:0.02~2.00%およびB:0.0001~0.0100%
 Cu、Cr、Mo、NiおよびBは、いずれも、熱延鋼板の焼入性を高めて引張強さを上昇させる作用を有する。また、CuおよびMoは鋼中に炭化物として析出して熱延鋼板の強度を高める作用を有する。さらに、Niは、Cuを含有させる場合においては、Cuに起因するスラブの粒界割れを効果的に抑制する作用を有する。したがって、これらの元素の1種または2種以上を含有させてもよい。
 上述したようにCuは、熱延鋼板の焼入れ性を高める作用および低温で鋼中に炭化物として析出して熱延鋼板の強度を高める作用を有する。上記作用による効果をより確実に得るためには、Cu含有量は0.01%以上とすることが好ましく、0.05%以上とすることがより好ましい。
 しかし、Cu含有量が2.00%超では、スラブの粒界割れが生じる場合がある。したがって、Cu含有量は2.00%以下とする。Cu含有量は、好ましくは1.50%以下、1.00%以下である。
 上述したようにCrは、熱延鋼板の焼入性を高める作用を有する。上記作用による効果をより確実に得るためには、Cr含有量を0.01%以上、0.05%以上とすることが好ましい。
 しかし、Cr含有量が2.00%超では、熱延鋼板の化成処理性が著しく低下する。したがって、Cr含有量は2.00%以下とする。
 上述したようにMoは、熱延鋼板の焼入性を高める作用および鋼中に炭化物として析出して熱延鋼板の強度を高める作用を有する。上記作用による効果をより確実に得るためには、Mo含有量を0.01%以上、0.02%以上とすることが好ましい。
 しかし、Mo含有量を1.00%超としても上記作用による効果は飽和して経済的に好ましくない。したがって、Mo含有量は1.00%以下とする。Mo含有量は、好ましくは0.50%以下、0.20%以下である。
 上述したようにNiは、熱延鋼板の焼入性を高める作用を有する。またNiは、Cuを含有させる場合においては、Cuに起因するスラブの粒界割れを効果的に抑制する作用を有する。上記作用による効果をより確実に得るためには、Ni含有量を0.02%以上とすることが好ましい。
 Niは、高価な元素であるため、多量に含有させることは経済的に好ましくない。したがって、Ni含有量は2.00%以下とする。
 上述したようにBは、熱延鋼板の焼入れ性を高める作用を有する。この作用による効果をより確実に得るためには、B含有量を0.0001%以上、0.0002%以上とすることが好ましい。
 しかし、B含有量が0.0100%超では、熱延鋼板の延性が著しく低下するため、B含有量は0.0100%以下とする。B含有量は、0.0050%以下とすることが好ましい。
(1-11)Ca:0.0005~0.0200%、Mg:0.0005~0.0200%、REM:0.0005~0.1000%およびBi:0.0005~0.020%
 Ca、MgおよびREMは、いずれも、鋼中の介在物の形状を好ましい形状に調整することにより、熱延鋼板の成形性を高める作用を有する。また、Biは、凝固組織を微細化することにより、熱延鋼板の成形性を高める作用を有する。したがって、これらの元素の1種または2種以上を含有させてもよい。上記作用による効果をより確実に得るためには、Ca、Mg、REMおよびBiのいずれか1種以上を0.0005%以上とすることが好ましい。
 しかし、Ca含有量またはMg含有量が0.0200%を超えると、あるいはREM含有量が0.1000%を超えると、鋼中に介在物が過剰に生成され、却って熱延鋼板の延性を低下させる場合がある。また、Bi含有量を0.020%超としても、上記作用による効果は飽和してしまい、経済的に好ましくない。したがって、Ca含有量およびMg含有量を0.0200%以下、REM含有量を0.1000%以下、並びにBi含有量を0.020%以下とする。Bi含有量は、好ましくは0.010%以下である。
 ここで、REMは、Sc、Yおよびランタノイドからなる合計17元素を指し、上記REMの含有量は、これらの元素の合計含有量を指す。ランタノイドの場合、工業的にはミッシュメタルの形で添加される。
(1-12)Zr、Co、ZnおよびWのうち1種または2種以上:合計で0~1.00%およびSn:0~0.050%
 Zr、Co、ZnおよびWについて、本発明者らは、これらの元素を合計で1.00%以下含有させても、本実施形態に係る熱延鋼板の効果は損なわれないことを確認している。そのため、Zr、Co、ZnおよびWのうち1種または2種以上を合計で1.00%以下含有させてもよい。
 また、本発明者らは、Snを少量含有させても本実施形態に係る熱延鋼板の効果は損なわれないことを確認している。しかし、Snを多量に含有させると熱間圧延時に疵が発生する場合があるため、Sn含有量は0.050%以下とする。
 上述した熱延鋼板の化学組成は、一般的な分析方法によって測定すればよい。例えば、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。なお、sol.Alは、試料を酸で加熱分解した後の濾液を用いてICP-AESによって測定すればよい。CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用いて測定すればよい。
2.熱延鋼板の金属組織
 次に、本実施形態に係る熱延鋼板の金属組織について説明する。
 本実施形態に係る熱延鋼板では、金属組織が、面積%で、残留オーステナイトが3.0%未満であり、フェライトが15.0%以上60.0%未満であり、パーライトが5.0%未満であり、<110>方向を軸として、結晶方位差が60°である粒界の長さL60と、結晶方位差が7°である粒界の長さLとの比であるL60/Lが0.60以上であり、Mn濃度の標準偏差が0.60質量%以下である。そのため、本実施形態に係る熱延鋼板は、優れた強度、延性およびせん断加工性を得ることができる。
 なお、本実施形態では、圧延方向に平行な断面で、表面から板厚の1/4深さ且つ板幅方向中央位置における金属組織における組織分率、L60/LおよびMn濃度の標準偏差を規定する。圧延方向に平行な断面の、表面から板厚の1/4深さ且つ板幅方向中央位置における金属組織を規定する理由は、この位置における金属組織が、鋼板の代表的な金属組織を示すからである。
 なお、表面から板厚の1/4深さの位置とは、表面から板厚の1/8深さ~表面から板厚の3/8深さの領域のことである。
(2-1)残留オーステナイトの面積分率:3.0%未満
 残留オーステナイトは室温でも面心立方格子として存在する組織である。残留オーステナイトは、変態誘起塑性(TRIP)により熱延鋼板の延性を高める。一方、残留オーステナイトは、せん断加工中には高炭素のマルテンサイトに変態して、安定的なき裂発生を阻害する作用を有するため、せん断面比率が不安定化する原因となる。残留オーステナイトの面積分率が3.0%以上では、上記作用が顕在化し、熱延鋼板のせん断加工性が劣化する。したがって、残留オーステナイトの面積分率は3.0%未満とする。残留オーステナイトの面積分率は、好ましくは1.0%未満である。残留オーステナイトは少ない程好ましいため、残留オーステナイトの面積分率は0%であってもよい。
 残留オーステナイトの面積分率の測定方法には、X線回折、EBSP(電子後方散乱回折像、Electron Back Scattering Diffraction Pattern)解析、磁気測定による方法などがあり、測定方法によって測定値が異なる場合がある。本実施形態では、残留オーステナイトの面積分率はX線回折により測定する。
 本実施形態におけるX線回折による残留オーステナイト面積分率の測定では、まず、熱延鋼板の板厚の1/4深さ(表面から板厚の1/8深さ~表面から板厚の3/8深さの領域)且つ板幅方向中央位置における、圧延方向に平行な断面において、Co-Kα線を用いて、α(110)、α(200)、α(211)、γ(111)、γ(200)、γ(220)の計6ピークの積分強度を求め、強度平均法を用いて算出することで、残留オーステナイトの面積分率を得る。
(2-2)フェライトの面積分率:15.0%以上60.0%未満
 フェライトは比較的高温でfccがbccに変態したときに生成する組織である。フェライトは加工硬化率が高いため、熱延鋼板の強度-延性バランスを高める作用がある。上記の作用を得るため、フェライトの面積分率は15.0%以上とする。好ましくは20.0%以上である。一方、フェライトは強度が低いため、面積分率が過剰であると所望の引張強さを得ることができない。このため、フェライトの面積分率は60.0%未満とする。好ましくは50.0%以下、45.0%以下、40.0%以下である。
(2-3)パーライトの面積分率:5.0%未満
 パーライトはフェライト同士の間にセメンタイトが層状に析出したラメラ状の金属組織であり、またベイナイトやマルテンサイトと比較すると軟質な金属組織である。パーライトの面積分率が5.0%以上であると、パーライトに含まれるセメンタイトに炭素が消費され、残部組織であるマルテンサイトやベイナイトの強度が低下し、980MPa以上の引張強さを得ることができない。したがって、パーライトの面積分率は5.0%未満とする。パーライトの面積分率は、好ましくは3.0%以下、2.0%以下、1.0%以下である。熱延鋼板の延性を向上させるために、パーライトの面積分率は可能な限り低減することが好ましく、その下限は0%とする。
 (2-4)ベイナイト、マルテンサイトおよび焼き戻しマルテンサイト:合計で32.0%超85.0%以下
 本実施形態に係る熱延鋼板には、残留オーステナイト、フェライトおよびパーライト以外の残部組織として、面積分率の合計が32.0%超85.0%以下のベイナイト、マルテンサイトおよび焼き戻しマルテンサイトの1種または2種以上からなる硬質組織が含まれてもよい。ベイナイト、マルテンサイトおよび焼き戻しマルテンサイトの面積分率の合計を32.0%超とすることで、熱延鋼板の強度を向上することができる。そのため、ベイナイト、マルテンサイトおよび焼き戻しマルテンサイトの面積分率の合計は32.0%超とすることが好ましい。より好ましくは、35.0%以上、40.0%以上、43.0%超、50.0%以上である。
 また、ベイナイト、マルテンサイトおよび焼き戻しマルテンサイトの面積分率の合計を85.0%以下とすることで、熱延鋼板の延性を向上することができる。そのため、ベイナイト、マルテンサイトおよび焼き戻しマルテンサイトの面積分率の合計は85.0%以下とすることが好ましい。より好ましくは、80.0%以下、75.0%以下、70.0%以下である。
 なお、ベイナイト、マルテンサイトおよび焼き戻しマルテンサイトのうち1種を含み、その面積分率が32.0%超85.0%以下であってもよく、ベイナイト、マルテンサイトおよび焼き戻しマルテンサイトのうち2種以上を含み、それらの面積分率の合計が32.0%超85.0%以下であってもよい。
 フェライトおよびパーライトの面積分率の測定は、以下の方法で行う。
 圧延方向に垂直な断面を鏡面に仕上げ、室温においてアルカリ性溶液を含まないコロイダルシリカを用いて8分間研磨し、サンプルの表層に導入されたひずみを除去する。サンプル断面の長手方向の任意の位置において、圧延方向に平行な断面で、表面から板厚の1/4深さ且つ板幅方向中央位置について測定できるように、長さ50μm、表面から板厚の1/8深さ~表面から板厚の3/8深さの領域を、0.1μmの測定間隔で電子後方散乱回折法により測定して結晶方位情報を得る。
 測定には、サーマル電界放射型走査電子顕微鏡(JEOL製JSM-7001F)とEBSD検出器(TSL製DVC5型検出器)とで構成されたEBSD解析装置を用いる。この際、EBSD解析装置内の真空度は9.6×10-5Pa以下、加速電圧は15kV、照射電流レベルは13、電子線の照射レベルは62とする。さらに、同一視野において反射電子像を撮影する。まず、反射電子像からフェライトとセメンタイトとが層状に析出した結晶粒を特定し、当該結晶粒の面積分率を算出することで、パーライトの面積分率を得る。その後、パーライトと判別された結晶粒を除く結晶粒に対し、得られた結晶方位情報をEBSD解析装置に付属のソフトウェア「OIM Analysis(登録商標)」(AMETEK社製)に搭載された「Grain Average Misorientation」機能を用いて、Grain Average Misorientation値が1.0°以下の領域をフェライトと判定する。フェライトと判定された領域の面積分率を求めることで、フェライトの面積分率を得る。
 残部組織(ベイナイト、マルテンサイトおよび焼き戻しマルテンサイトの1種または2種以上からなる硬質組織)の面積分率は、100%から残留オーステナイトの面積分率、フェライトの面積分率およびパーライトの面積分率を差し引くことで得る。
(2-5)<110>方向を軸として、結晶方位差が60°である粒界の長さL60と、結晶方位差が7°である粒界の長さLとの比であるL60/L:0.60以上
 980MPa以上の高強度を得るには、母相を硬質な組織にする必要がある。硬質な組織は一般的に600℃以下の相変態において形成されるが、この温度域においては<110>方向を軸として、結晶方位差が60°である粒界と結晶方位差が7°である粒界とが多量に形成される。<110>方向を軸として、結晶方位差が60°である粒界の生成時においては、硬質組織中に転位が蓄積されにくい。そのため、硬質相中において、このような粒界の密度が高く、且つ均一に分散している(すなわち、<110>方向を軸として結晶方位差が60°である粒界の長さの合計が大きい)金属組織では、硬質相が変形しにくいため硬質組織の内部にひずみ集中しにくく、せん断工具の刃先近傍の硬質相の存在有無にかかわらずき裂が安定的に発生する。その結果、せん断面比率が安定する。
 一方、<110>方向を軸として、結晶方位差が7°である粒界においては、硬質相中に転位が蓄積されやすい。そのため、硬質相中において、<110>方向を軸として結晶方位差が7°である粒界の密度が高い金属組織では、硬質相が変形しやすいため、せん断加工時に硬質相中への転位導入が容易であり、硬質相内部からのき裂発生が促進されるため、せん断工具の刃先近傍の硬質相の存在有無によりせん断面比率が変化する。その結果、せん断面比率が不安定になる。
 よって、<110>方向を軸として、結晶方位差が60°である粒界の長さをL60とし、結晶方位差が7°である粒界の長さをLとしたとき、せん断面比率の安定度はL60/Lによって支配される。L60/Lが0.60未満である場合には、上記の作用によりせん断面比率が不安定になる。よって、熱延鋼板のせん断加工性を向上させるために、L60/Lを0.60以上とする必要がある。L60/Lは好ましくは0.63以上、0.65以上、0.70以上である。L60/Lの上限は特に規定する必要は無いが、1.50以下、1.00以下としてもよい。
 なお、<110>方向を軸として結晶方位差がX°である粒界とは、ある粒界で隣接する二つの結晶粒Aおよび結晶粒Bとを特定したとき、片方の結晶粒Bを<110>軸に沿ってX°回転させることによって、結晶粒Aと結晶粒Bの結晶方位が一致する結晶学的関係を有する粒界のことをいう。ただし、結晶方位の測定精度を考慮すると、一致する方位関係から±4°の方位差を許容する。
 本実施形態では、<110>方向を軸として結晶方位差が60°である粒界の長さL60および結晶方位差が7°である粒界の長さLをEBSP-OIM(Electron Back Scatter Diffraction Pattern-Orientation Image Microscopy)法を用いて測定する。
 EBSP-OIM法では、走査型電子顕微鏡(SEM)内で高傾斜した試料に電子線を照射し、後方散乱して形成された菊池パターンを高感度カメラで撮影し、撮影写真をコンピュータで画像処理する事により、照射点の結晶方位を短待間で測定することができる。
 EBSP-OIM法は、サーマル電界放射型走査型電子顕微鏡(JEOL製JSM-7001F)とEBSD検出器とで構成されたEBSD解析装置及びAMETEK社製のOIM Analysis(登録商標)を用いて行う。EBSP-OIM法では、試料表面の微細構造並びに結晶方位を解析できるため、特定の結晶方位差を持つ粒界の長さを定量的に求めることができる。また、EBSP-OIM法の分析可能エリアは、SEMで観察できる領域である。SEMの分解能にもよるが、EBSP-OIM法によれば、最小20nmの分解能で分析できる。
 圧延方向に平行な断面における、鋼板表面から板厚の1/4深さ(表面から板厚の1/8深さ~表面から板厚の3/8深さの領域)且つ板幅方向中央位置における金属組織の特定粒界の長さの測定に当たっては、1200倍の倍率、40μm×30μmの領域で、少なくとも5視野において解析を行う。そして、<110>方向を軸として、結晶方位差が60°である粒界の長さの平均値を算出することで、L60を得る。同様に、<110>方向を軸として、結晶方位差が7°である粒界の長さの平均値を算出することで、Lを得る。なお、前述したように±4°の方位差を許容する。
 なお、フェライトおよびパーライトは軟質相であり、硬質相内部の転位蓄積効果に及ぼす影響が小さく、また残留オーステナイトは600℃以下の相変態で生成した組織でなく、転位蓄積の効果を有さないことから、本測定方法では、フェライト、パーライトおよび残留オーステナイトは解析の対象としない。つまり、本実施形態において、<110>方向を軸として、結晶方位差が60°である粒界の長さL60、および結晶方位差が7°である粒界の長さLは、硬質組織(ベイナイト、マルテンサイトおよび焼き戻しマルテンサイトの1種または2種以上)のものである。パーライトの面積分率の測定方法と同様の方法でパーライトを特定し、フェライトの面積分率の測定方法と同様の方法でフェライトを特定して、パーライトおよびフェライトを解析対象から除外することができる。また、EBSP-OIM法では、結晶構造がfccである残留オーステナイトを解析対象から除外することができる。
(2-6)Mn濃度の標準偏差:0.60質量%以下
 本実施形態に係る熱延鋼板の表面から板厚の1/4深さ(表面から板厚の1/8深さ~表面から板厚の3/8深さの領域)且つ板幅方向中央位置におけるMn濃度の標準偏差は0.60質量%以下である。これにより、<110>方向を軸として結晶方位差が60°である粒界を均一に分散させることができる。その結果、せん断面比率を安定化することができる。Mn濃度の標準偏差は、好ましくは、0.55質量%以下、0.50質量%以下、0.45質量%以下である。
 Mn濃度の標準偏差の下限は、せん断面比率の安定化の観点から、その値は小さいほど望ましいが、製造プロセスの制約より、実質的な下限は0.10質量%である。
 Mn濃度の標準偏差は、以下の方法により測定する。
 熱延鋼板のL断面を鏡面研磨した後に、表面から板厚の1/4深さ(表面から板厚の1/8深さ~表面から板厚の3/8深さの領域)且つ板幅方向中央位置を電子プローブマイクロアナライザ(EPMA)で測定して、Mn濃度の標準偏差を測定する。測定条件は加速電圧を15kVとし、倍率を5000倍として試料圧延方向に20μm及び試料板厚方向に20μmの範囲の分布像を測定する。より具体的には、測定間隔を0.1μmとし、40000か所以上のMn濃度を測定する。次いで、全測定点から得られたMn濃度に基づいて標準偏差を算出することで、Mn濃度の標準偏差を得る。
(2-7)表層の平均結晶粒径:3.0μm未満
 鋼板強度が高くなるほど、曲げ加工時に曲げ内側から亀裂が生じやすくなる(以下、曲げ内割れと呼称する)。表層の結晶粒径を細かくすることで、熱延鋼板の曲げ内割れを抑制することができる。
 曲げ内割れのメカニズムは以下のように推定される。曲げ加工時には曲げ内側に圧縮の応力が生じる。最初は曲げ内側全体が均一に変形しながら加工が進むが、加工量が大きくなると均一な変形のみで変形を担えなくなり、局所的にひずみが集中することで変形が進む(せん断変形帯の発生)。このせん断変形帯が更に成長することで曲げ内側表面からせん断帯に沿った亀裂が発生し、成長する。高強度化に伴い曲げ内割れが発生しやすくなる理由は、高強度化に伴う加工硬化能の低下により、均一な変形が進みにくくなり、変形の偏りが生じやすくなることで、加工早期に(または緩い加工条件で)せん断変形帯が生じるためと推定される。
 本発明者らの研究により、曲げ内割れは、引張強さ980MPa以上の鋼板で顕著になることが分かった。また、本発明者らは、熱延鋼板の表層の結晶粒径が細かいほど、局所的なひずみ集中が抑制され、曲げ内割れが発生しにくくなることを見出した。上記作用を得るためには、熱延鋼板の表層の平均結晶粒径は3.0μm未満とすることが好ましい。より好ましくは2.5μm以下とする。下限は特に限定しないが、1.0μm以上、1.5μm以上、または2.0μm以上としてもよい。
 なお、本実施形態において表層とは、熱延鋼板の表面~表面から深さ50μm位置の領域である。
 表層の結晶粒径は、前述のEBSP-OIM法を用いて測定する。圧延方向に平行な断面における、熱延鋼板の表面~表面から深さ50μm位置且つ板幅方向中央位置の領域において、1200倍の倍率、40μm×30μmの領域で、少なくとも5視野において解析を行い、隣接する測定点の角度差が5°以上の場所を結晶粒界と定義し、面積平均の結晶粒径を算出する。得られた面積平均の結晶粒径を、表層の平均結晶粒径とする。
 なお、残留オーステナイトは600℃以下の相変態で生成した組織でなく、転位蓄積の効果を有さないので、本測定方法では、残留オーステナイトは解析の対象としない。つまり、本実施形態において、表層の平均結晶粒径は、フェライト、パーライトおよび硬質組織(ベイナイト、マルテンサイトおよび焼き戻しマルテンサイトの1種または2種以上)のものである。EBSP-OIM法では、結晶構造がfccである残留オーステナイトを解析対象から除外することができる。
3.引張強度特性
 熱延鋼板の機械的性質のうち引張強度特性(引張強さ、全伸び)は、JIS Z 2241:2011に準拠して評価する。試験片はJIS Z 2241:2011の5号試験片とする。引張試験片の採取位置は、板幅方向の端部から1/4部分とし、圧延方向に直角な方向を長手方向とすればよい。
 本実施形態に係る熱延鋼板は、引張(最大)強さが980MPa以上である。引張強さが980MPa未満であると、適用部品が限定され、車体軽量化の寄与が小さい。上限は特に限定する必要は無いが、金型摩耗抑制の観点から、1400MPa、1350MPaとしてもよい。
 また、延性の指標となる引張強さと全伸びとの積(TS×El)は15000MPa・%以上とすることが好ましい。引張強さと全伸びとの積を15000MPa・%以上とすることで、適用部品が限定されることなく、車体軽量化の寄与が大きい熱延鋼板を得ることができる。
4.板厚
 本実施形態に係る熱延鋼板の板厚は特に限定されないが、0.5~8.0mmとしてもよい。熱延鋼板の板厚を0.5mm以上とすることで、圧延完了温度の確保が容易になるとともに圧延荷重を低減でき、熱間圧延を容易に行うことができる。したがって、本実施形態に係る熱延鋼板の板厚は0.5mm以上としてもよい。好ましくは1.2mm以上、1.4mm以上である。また、板厚を8.0mm以下とすることで、金属組織の微細化が容易となり、上述した金属組織を容易に確保することができる。したがって、板厚は8.0mm以下としてもよい。好ましくは6.0mm以下である。
5.その他
(5-1)めっき層
 上述した化学組成および金属組織を有する本実施形態に係る熱延鋼板は、表面に耐食性の向上等を目的としてめっき層を備えさせて表面処理鋼板としてもよい。めっき層は電気めっき層であってもよく溶融めっき層であってもよい。電気めっき層としては、電気亜鉛めっき、電気Zn-Ni合金めっき等が例示される。溶融めっき層としては、溶融亜鉛めっき、合金化溶融亜鉛めっき、溶融アルミニウムめっき、溶融Zn-Al合金めっき、溶融Zn-Al-Mg合金めっき、溶融Zn-Al-Mg-Si合金めっき等が例示される。
 めっき付着量は特に制限されず、従来と同様としてよい。また、めっき後に適当な化成処理(例えば、シリケート系のクロムフリー化成処理液の塗布と乾燥)を施して、耐食性をさらに高めることも可能である。
6.製造条件
 上述した化学組成および金属組織を有する本実施形態に係る熱延鋼板の好適な製造方法は、以下の通りである。
 本実施形態に係る熱延鋼板を得るためには、所定の条件でスラブの加熱を行った後に熱間圧延を行い、所定の温度域まで加速冷却し、その後緩冷却し、巻き取るまでの冷却履歴を制御することが効果的である。
 本実施形態に係る熱延鋼板の好適な製造方法では、以下の工程(1)~(7)を順次行う。なお、本実施形態におけるスラブの温度および鋼板の温度は、スラブの表面温度および鋼板の表面温度のことをいう。
(1)スラブを700~850℃の温度域で900秒以上保持し、その後更に加熱し、1100℃以上の温度域で6000秒以上保持する。
(2)850~1100℃の温度域で合計90%以上の板厚減となるような熱間圧延を行う。
(3)熱間圧延完了温度Tfが下記式<1>により表される温度T1(℃)以上となるように熱間圧延を完了する。
(4)熱間圧延完了後1秒以内に、熱間圧延完了温度Tf-50℃以下の温度域まで冷却した後、50℃/s以上の平均冷却速度で600~730℃の温度域まで加速冷却する。
 ただし、熱間圧延完了後1秒以内に、熱間圧延完了温度Tf-50℃以下の温度域まで冷却することは、より好ましい冷却条件である。
(5)600~730℃の温度域で、平均冷却速度が5℃/s未満である緩冷却を2.0秒以上行う。
(6)50℃/s以上の平均冷却速度で600℃以下の温度域まで冷却する。
(7)400~600℃の温度域で巻き取る。
T1(℃)=868-396×[C]-68.1×[Mn]+24.6×[Si]-36.1×[Ni]-24.8×[Cr]-20.7×[Cu]+250×[sol.Al]…<1>
 ただし、上記式<1>中の[元素記号]は各元素の鋼中の含有量(質量%)を示す。当該元素を含有しない場合は0を代入する。
(6-1)スラブ、熱間圧延に供する際のスラブ温度および保持時間
 熱間圧延に供するスラブは、連続鋳造により得られたスラブや鋳造・分塊により得られたスラブなどを用いることができ、必要によってはそれらに熱間加工または冷間加工を加えたものを用いることができる。
 熱間圧延に供するスラブは、加熱時の700~850℃の温度域で900秒以上保持し、その後更に加熱し、1100℃以上の温度域で6000秒以上保持することが好ましい。なお、700~850℃の温度域での保持時には、鋼板温度をこの温度域で変動させてもよく、一定としてもよい。また、1100℃以上の温度域での保持時には、鋼板温度を1100℃以上で変動させてもよく、一定としてもよい。
 700~850℃の温度域におけるオーステナイト変態において、Mnがフェライトとオーステナイト間で分配し、その変態時間を長くすることによって、Mnがフェライト領域内を拡散することができる。これにより、スラブに偏在するMnミクロ偏析を解消し、Mn濃度の標準偏差を著しく減ずることができる。Mn濃度の標準偏差を減少させることで、最終的な金属組織において、<110>方向を軸として結晶方位差が60°である粒界を均一に分散することができ、せん断面比率を安定化することができる。
 また、スラブ加熱時のオーステナイト粒を均一にするためには、1100℃以上の温度域で6000秒以上加熱することが好ましい。
 熱間圧延は、多パス圧延としてレバースミルまたはタンデムミルを用いることが好ましい。特に工業的生産性の観点から、少なくとも最終の数段はタンデムミルを用いた熱間圧延とすることがより好ましい。
(6-2)熱間圧延の圧下率:850~1100℃の温度域で合計90%以上の板厚減
 850~1100℃の温度域で合計90%以上の板厚減となるような熱間圧延を行うことにより、主に再結晶オーステナイト粒の微細化が図られるとともに、未再結晶オーステナイト粒内へのひずみエネルギーの蓄積が促進される。また、オーステナイトの再結晶が促進されるとともにMnの原子拡散が促進され、Mn濃度の標準偏差を小さくすることができる。
 Mn濃度の標準偏差を減少させることで、最終的な金属組織において、<110>方向を軸として結晶方位差が60°である粒界を均一に分散することができ、せん断面比率を安定化することができる。したがって、850~1100℃の温度域で合計90%以上の板厚減となるような熱間圧延を行うことが好ましい。
 なお、850~1100℃の温度域の板厚減とは、この温度域の圧延における最初のパス前の入口板厚をtとし、この温度域の圧延における最終パス後の出口板厚をtとしたとき、(t-t)/t×100(%)で表すことができる。
(6-3)熱間圧延完了温度Tf:T1(℃)以上
 熱間圧延完了温度TfはT1(℃)以上とすることが好ましい。熱間圧延完了温度TfをT1(℃)以上とすることで、オーステナイト中のフェライト核生成サイト数の過剰な増大を抑制することができ、最終組織(製造後の熱延鋼板の金属組織)におけるフェライトの生成を抑えられ、高強度の熱延鋼板を得ることができる。
(6-4)熱間圧延完了後1秒以内に、熱間圧延完了温度Tf-50℃以下の温度域まで冷却し、その後は50℃/s以上の平均冷却速度で600~730℃の温度域まで加速冷却する
 熱間圧延完了後1秒以内に、熱間圧延完了温度Tf-50℃以下の温度域まで冷却し、その後は50℃/s以上の平均冷却速度で600~730℃の温度域まで加速冷却することが好ましい。ただし、熱間圧延完了後1秒以内に、熱間圧延完了温度Tf-50℃以下の温度域まで冷却することは、より好ましい冷却条件である。
 熱間圧延により細粒化したオーステナイト結晶粒の成長を抑制するため、熱間圧延完了後1秒以内に、50℃以上冷却する、すなわち熱間圧延完了後1秒以内に、熱間圧延完了温度Tf-50℃以下の温度域まで冷却することがより好ましい。熱間圧延完了後1秒以内に熱間圧延完了温度Tf-50℃以下の温度域まで冷却するためには、熱間圧延完了直後に平均冷却速度の大きい冷却を行う、例えば冷却水を鋼板表面に噴射すればよい。熱間圧延完了後1秒以内にTf-50℃以下の温度域まで冷却することにより、表層の結晶粒径を微細化でき、熱延鋼板の耐曲げ内割れ性を高めることができる。
 また、熱間圧延完了後、あるいは上記の冷却後に50℃/s以上の平均冷却速度で730℃以下の温度域まで加速冷却を行うことで、析出強化量が少ないフェライトおよびパーライトの生成を抑制できる。これにより、熱延鋼板の強度が向上する。
 なお、ここでいう平均冷却速度とは、加速冷却開始時(冷却設備への鋼板の導入時)から加速冷却完了時(冷却設備から鋼板の導出時)までの鋼板の温度降下幅を、加速冷却開始時から加速冷却完了時までの所要時間で除した値のことをいう。
 熱間圧延完了後の冷却において、600~730℃の温度域までの加速冷却時の平均冷却速度が50℃/s以上であると、鋼板内部での析出強化量が少ないフェライト変態および/またはパーライト変態が抑制され、980MPa以上の引張強さを得ることができる。したがって、熱間圧延完了後は、50℃/s以上の平均冷却速度で600~730℃の温度域まで加速冷却する。
 平均冷却速度の上限値は特に規定しないが、冷却速度を速くすると冷却設備が大掛かりとなり、設備コストが高くなる。このため、設備コストを考えると、300℃/s以下が好ましい。
(6-5)600~730℃の温度域で、平均冷却速度が5℃/s未満である緩冷却を2.0秒以上行う。
 600~730℃の温度域で、平均冷却速度が5℃/s未満である緩冷却を2.0秒以上行うことにより、析出強化したフェライトを十分に析出させることができる。これにより、熱延鋼板の強度と延性とを両立することができる。
 なお、ここでいう平均冷却速度とは、加速冷却の冷却停止温度から緩冷却の開始温度までの鋼板の温度降下幅を、加速冷却の停止時から緩冷却の開始時までの所要時間で除した値のことをいう。
 600~730℃の温度域で緩冷却を行う時間が2.0秒以上であると、析出強化したフェライトの面積分率が所望の量に達し、上記作用を得ることができる。よって、600~730℃の温度域で、平均冷却速度が5℃/s未満である緩冷却を2.0秒以上行う。緩冷却を行う時間は、好ましくは3.0秒以上であり、より好ましくは4.0秒以上である。
 緩冷却を行う時間の上限は、設備レイアウトによって決定されるが、10.0秒未満とすればよい。また、緩冷却の平均冷却速度の下限は特に設けないが、冷却させずに昇温させることは設備上大きな投資を伴うため、0℃/s以上としてもよい。
(6-6)600℃以下の温度域までの平均冷却速度:50℃/s以上
 パーライトの面積分率を抑え、980MPa以上の引張強さを得るために、緩冷却の冷却停止温度から600℃までの平均冷却速度を50℃/s以上とする。これにより母相組織を硬質にすることができる。
 なお、ここでいう平均冷却速度とは、平均冷却速度が5℃/s未満である緩冷却の冷却停止温度から巻取り温度までの鋼板の温度降下幅を、平均冷却速度が5℃/s未満である緩冷却の停止時から600℃までの所要時間で除した値のことをいう。
 上記平均冷却速度が50℃/s以上であると、パーライトの面積分率が減少し、熱延鋼板の強度および延性が向上する。したがって、平均冷却速度が5℃/s未満である緩冷却の冷却停止温度から600℃以下の温度域までの平均冷却速度は50℃/s以上とする。
(6-7)巻取り温度:400~600℃
 巻取り温度は400~600℃の温度域とする。巻取り温度を400℃以上とすることで、オーステナイトからbccへの変態駆動力を小さくすることができ、また、オーステナイトの変形強度を小さくすることができる。そのため、オーステナイトからベイナイトおよびマルテンサイト変態する際に、<110>方向を軸として結晶方位差が7°である粒界の長さLが減少し、且つ<110>方向を軸として結晶方位差が60°である粒界の長さL60が増加することで、L60/Lを0.60以上とすることができる。結果として、せん断面比率を安定化することができる。
 巻取り温度を600℃以下とすることで、フェライトの面積分率を60%未満とすることができ、所望の引張強さを得ることができる。したがって、巻取り温度は400~600℃の温度域とすることが好ましい。巻取り温度は、より好ましくは450℃以上である。また、巻取り温度は、より好ましくは550℃以下である。
 次に、実施例により本発明の一態様の効果を更に具体的に説明するが、実施例での条件は、本発明の実施可能性および効果を確認するために採用した一条件例であり、本発明はこの一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 表1および表2の鋼No.A~Tに示す化学組成を有する鋼を溶製し、連続鋳造により厚みが240~300mmのスラブを製造した。得られたスラブを用いて、表3に示す製造条件により、表4に示す熱延鋼板を得た。
 なお、スラブを700~850℃の温度域において表3に示す保持時間で保持し、その後更に加熱して、表3に示す加熱温度まで加熱して保持した。また、緩冷却の平均冷却速度は5℃/s未満とした。
 得られた熱延鋼板に対し、上述の方法により、金属組織の面積分率、L60/L、Mn濃度の標準偏差および表層の平均結晶粒径を求めた。得られた測定結果を表4に示す。
 熱延鋼板の特性の評価方法
 (1)引張強度特性
 得られた熱延鋼板の機械的性質のうち引張強度特性(引張強さTSおよび全伸びEL)は、JIS Z 2241:2011に準拠して評価した。試験片はJIS Z 2241:2011の5号試験片とした。引張試験片の採取位置は、板幅方向の端部から1/4部分とし、圧延方向に直角な方向を長手方向とした。
 引張強さTS≧980MPaかつ引張強さTS×全伸びEl≧15000(MPa・%)を満たした場合、強度および延性に優れた熱延鋼板であるとして合格と判定した。一方、引張強さTS≧980MPaおよび引張強さTS×全伸びEl≧15000(MPa・%)のいずれか一方でも満たさない場合、強度および延性に優れた熱延鋼板ではないとして不合格と判定した。
(2)せん断加工性
 熱延鋼板のせん断加工性は、打ち抜き試験によりせん断面比率の変化量を求めることで評価した。板幅中央位置に、穴直径10mm、クリアランス15%、打ち抜き速度3m/sで5個の打ち抜き穴を作製した。次に、5個の打ち抜き穴について、10箇所の圧延方向に平行な端面(1個の打ち抜き穴につき2箇所の端面)の様子を光学顕微鏡観で撮影した。
 得られた観察写真では、図1(a)に示すような端面を観察することができる。図1(a)および(b)に示すように、打ち抜き後の端面では、ダレ、せん断面、破断面およびバリが観察される。なお、図1(a)は打ち抜き穴の圧延方向に平行な端面の概略図であり、図1(b)は、打ち抜き穴の側面の概略図である。
 ダレとはR状の滑らかな面であり、せん断面とはせん断変形により分離した打ち抜き端面であり、破断面とはせん断変形終了後、刃先近傍から発生したき裂によって分離した打ち抜き端面であり、バリとは熱延鋼板の下面からはみ出した突起を有する面である。
 5個の端面から得られた10個の端面の観察写真において、端面に占めるせん断面の比率を測定し、得られたせん断面の比率(%)の最大値と最小値の差をせん断面比率の変化量(%)と定義した。端面に占めるせん断面の比率(せん断面比率)は、図1(a)に示すように、端面の観察写真において熱延鋼板の上面および下面に直角な直線1を引き、その直線1におけるダレの長さd1、せん断面の長さd2、破断面の長さd3およびバリの長さd4の合計に対する、せん断面の長さd2の比率(=d2/(d1+d2+d3+d4)×100)を算出することで得られる。
 せん断面比率の変化量が20%以下であれば、せん断加工性に優れた熱延鋼板であるとして、合格と判定した。一方、せん断面比率の変化量が20%超であれば、せん断加工性に劣る熱延鋼板であるとして、不合格と判定した。
(3)耐曲げ内割れ性
 曲げ試験片は、熱延鋼板の幅方向1/2位置から、100mm×30mmの短冊形状の試験片を切り出し、以下の曲げ試験により耐曲げ内割れ性を評価した。
 曲げ稜線が圧延方向(L方向)に平行である曲げ(L軸曲げ)と、曲げ稜線が圧延方向に垂直な方向(C方向)に平行である曲げ(C軸曲げ)の両者について、JIS Z 2248:2014(Vブロック90°曲げ試験)に準拠して耐曲げ内割れ性を調査し、亀裂の発生しない最小曲げ半径を求め、L軸およびC軸の最小曲げ半径の平均値Rを板厚tで除した値を限界曲げR/tとして曲げ性の指標値とした。R/t≦2.5であった場合、耐曲げ内割れ性に優れた熱延鋼板であると判断した。
 ただし、亀裂の有無は、Vブロック90°曲げ試験後の試験片を曲げ方向と平行でかつ板面に垂直な面で切断した断面を鏡面研磨後、光学顕微鏡で亀裂を観察し、試験片の曲げ内側に観察される亀裂長さが30μmを超える場合に亀裂有と判断した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表4から分かるように、本発明例である製造No.1、2、6および13~25において、優れた強度、延性およびせん断加工性を有する熱延鋼板が得られた。更に、表層の平均粒径が3.0μm未満である製造No.1、2、14~21および23~25において、上記諸特性を有した上で更に、耐曲げ内割れ性に優れた熱延鋼板が得られた。
 一方、比較例である製造No.3~5、7~12および26~30は、強度、延性およびせん断加工性のうちいずれか一つ以上が劣った。
 本発明に係る上記態様によれば、優れた強度、延性およびせん断加工性を有する熱延鋼板を提供することができる。また、本発明に係る上記の好ましい態様によれば、上記諸特性を有した上で更に、曲げ内割れの発生が抑制された、すなわち耐曲げ内割れ性に優れた熱延鋼板を得ることができる。
 本発明に係る熱延鋼板は、自動車部材、機械構造部材さらには建築部材に用いられる工業用素材として好適である。

Claims (3)

  1.  化学組成が、質量%で、
    C:0.050~0.250%、
    Si:0.05~3.00%、
    Mn:1.00~4.00%、
    Ti、NbおよびVのうち1種または2種以上:合計で0.060~0.500%、
    sol.Al:0.001~2.000%、
    P:0.100%以下、
    S:0.0300%以下、
    N:0.1000%以下、
    O:0.0100%以下、
    Cu:0~2.00%、
    Cr:0~2.00%、
    Mo:0~1.00%、
    Ni:0~2.00%、
    B:0~0.0100%、
    Ca:0~0.0200%、
    Mg:0~0.0200%、
    REM:0~0.1000%、
    Bi:0~0.020%、
    Zr、Co、ZnおよびWのうち1種または2種以上:合計で0~1.00%、並びに
    Sn:0~0.050%を含有し、
     残部がFeおよび不純物からなり、
     金属組織が、面積%で、
      残留オーステナイトが3.0%未満であり、
      フェライトが15.0%以上60.0%未満であり、
      パーライトが5.0%未満であり、
      <110>方向を軸として、結晶方位差が60°である粒界の長さL60と、結晶方位差が7°である粒界の長さLとの比であるL60/Lが0.60以上であり、
      Mn濃度の標準偏差が0.60質量%以下であり、
     引張強さが980MPa以上である
    ことを特徴とする熱延鋼板。
  2.  表層の平均結晶粒径が3.0μm未満であることを特徴とする請求項1に記載の熱延鋼板。
  3.  前記化学組成が、質量%で、
    Cu:0.01~2.00%、
    Cr:0.01~2.00%、
    Mo:0.01~1.00%、
    Ni:0.02~2.00%、
    B:0.0001~0.0100%、
    Ca:0.0005~0.0200%、
    Mg:0.0005~0.0200%、
    REM:0.0005~0.1000%、および
    Bi:0.0005~0.020%
    からなる群から選択される1種または2種以上を含有する
    ことを特徴とする請求項1または2に記載の熱延鋼板。
PCT/JP2020/046384 2020-01-27 2020-12-11 熱延鋼板 WO2021153037A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202080093969.1A CN115003835B (zh) 2020-01-27 2020-12-11 热轧钢板
KR1020227025061A KR20220111724A (ko) 2020-01-27 2020-12-11 열연 강판
MX2022008861A MX2022008861A (es) 2020-01-27 2020-12-11 Lamina de acero laminada en caliente.
EP20916290.8A EP4098761A1 (en) 2020-01-27 2020-12-11 Hot-rolled steel sheet
US17/792,985 US20230055479A1 (en) 2020-01-27 2020-12-11 Hot-rolled steel sheet
JP2021574511A JP7260825B2 (ja) 2020-01-27 2020-12-11 熱延鋼板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-010944 2020-01-27
JP2020010944 2020-01-27

Publications (1)

Publication Number Publication Date
WO2021153037A1 true WO2021153037A1 (ja) 2021-08-05

Family

ID=77078504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046384 WO2021153037A1 (ja) 2020-01-27 2020-12-11 熱延鋼板

Country Status (7)

Country Link
US (1) US20230055479A1 (ja)
EP (1) EP4098761A1 (ja)
JP (1) JP7260825B2 (ja)
KR (1) KR20220111724A (ja)
CN (1) CN115003835B (ja)
MX (1) MX2022008861A (ja)
WO (1) WO2021153037A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023170882A1 (ja) * 2022-03-10 2023-09-14 Jfeスチール株式会社 鋼板の製造方法、トリミング装置、製造装置、圧延鋼板、コイル材、及びブランク材

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179703A (ja) 2003-12-16 2005-07-07 Kobe Steel Ltd 伸び、及び伸びフランジ性に優れた高強度鋼板
JP2005298924A (ja) 2004-04-13 2005-10-27 Nippon Steel Corp 打ち抜き加工性に優れた高強度熱延鋼板及びその製造方法
JP2007070648A (ja) * 2005-09-02 2007-03-22 Nippon Steel Corp 穴拡げ性に優れた高強度薄鋼板およびその製造方法
JP2009263685A (ja) * 2008-04-22 2009-11-12 Nippon Steel Corp 切断後の特性劣化の少ない高強度鋼板及びその製造方法
WO2019009410A1 (ja) * 2017-07-07 2019-01-10 新日鐵住金株式会社 熱延鋼板及びその製造方法
JP2020010944A (ja) 2018-07-20 2020-01-23 眞弓 仲山 折り畳み式トイレ
WO2020179292A1 (ja) * 2019-03-06 2020-09-10 日本製鉄株式会社 熱延鋼板

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161326A (ja) 1997-08-06 1999-03-05 Nippon Steel Corp 耐衝突安全性及び成形性に優れた自動車用高強度鋼板とその製造方法
JP3355970B2 (ja) 1996-12-10 2002-12-09 日本鋼管株式会社 打ち抜き性に優れる冷延鋼板の製造方法
JP4299511B2 (ja) * 2002-07-23 2009-07-22 新日本製鐵株式会社 打ち抜き性に優れた熱延鋼板
JP6696209B2 (ja) * 2016-02-18 2020-05-20 日本製鉄株式会社 高強度鋼板の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179703A (ja) 2003-12-16 2005-07-07 Kobe Steel Ltd 伸び、及び伸びフランジ性に優れた高強度鋼板
JP2005298924A (ja) 2004-04-13 2005-10-27 Nippon Steel Corp 打ち抜き加工性に優れた高強度熱延鋼板及びその製造方法
JP2007070648A (ja) * 2005-09-02 2007-03-22 Nippon Steel Corp 穴拡げ性に優れた高強度薄鋼板およびその製造方法
JP2009263685A (ja) * 2008-04-22 2009-11-12 Nippon Steel Corp 切断後の特性劣化の少ない高強度鋼板及びその製造方法
WO2019009410A1 (ja) * 2017-07-07 2019-01-10 新日鐵住金株式会社 熱延鋼板及びその製造方法
JP2020010944A (ja) 2018-07-20 2020-01-23 眞弓 仲山 折り畳み式トイレ
WO2020179292A1 (ja) * 2019-03-06 2020-09-10 日本製鉄株式会社 熱延鋼板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023170882A1 (ja) * 2022-03-10 2023-09-14 Jfeスチール株式会社 鋼板の製造方法、トリミング装置、製造装置、圧延鋼板、コイル材、及びブランク材

Also Published As

Publication number Publication date
MX2022008861A (es) 2022-08-11
JPWO2021153037A1 (ja) 2021-08-05
EP4098761A4 (en) 2022-12-07
US20230055479A1 (en) 2023-02-23
EP4098761A1 (en) 2022-12-07
JP7260825B2 (ja) 2023-04-19
KR20220111724A (ko) 2022-08-09
CN115003835B (zh) 2024-04-12
CN115003835A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
WO2021065346A1 (ja) 熱延鋼板
CN113637923B (zh) 钢板及镀覆钢板
JP6784344B1 (ja) 熱延鋼板
JP6784343B1 (ja) 熱延鋼板
WO2022044493A1 (ja) 熱延鋼板
WO2023063010A1 (ja) 熱間圧延鋼板
WO2021153037A1 (ja) 熱延鋼板
WO2022044495A1 (ja) 熱延鋼板
WO2021182395A1 (ja) 熱延鋼板
WO2021182389A1 (ja) 熱延鋼板
WO2021153036A1 (ja) 熱延鋼板
WO2022044494A1 (ja) 熱延鋼板
WO2022044492A1 (ja) 熱延鋼板
KR20240051972A (ko) 열간 압연 강판
KR20230167417A (ko) 열연 강판

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916290

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021574511

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227025061

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020916290

Country of ref document: EP

Effective date: 20220829