WO2022044495A1 - 熱延鋼板 - Google Patents

熱延鋼板 Download PDF

Info

Publication number
WO2022044495A1
WO2022044495A1 PCT/JP2021/022677 JP2021022677W WO2022044495A1 WO 2022044495 A1 WO2022044495 A1 WO 2022044495A1 JP 2021022677 W JP2021022677 W JP 2021022677W WO 2022044495 A1 WO2022044495 A1 WO 2022044495A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
hot
steel sheet
rolled steel
content
Prior art date
Application number
PCT/JP2021/022677
Other languages
English (en)
French (fr)
Inventor
洋志 首藤
和政 筒井
宏太郎 林
章文 榊原
洵 安藤
充 吉田
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to KR1020237004372A priority Critical patent/KR20230035624A/ko
Priority to JP2022545468A priority patent/JP7495641B2/ja
Priority to MX2023001627A priority patent/MX2023001627A/es
Priority to CN202180056206.4A priority patent/CN116113508A/zh
Priority to US18/016,141 priority patent/US20230257845A1/en
Priority to EP21860926.1A priority patent/EP4206344A4/en
Publication of WO2022044495A1 publication Critical patent/WO2022044495A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/84Controlled slow cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling

Definitions

  • the present invention relates to a hot-rolled steel sheet. Specifically, the present invention relates to a hot-rolled steel sheet that is formed into various shapes by press working or the like and is used, and in particular, a hot-rolled steel sheet having high strength and excellent ductility and shear workability.
  • This application claims priority based on Japanese Patent Application No. 2020-143743 filed in Japan on August 27, 2020, the contents of which are incorporated herein by reference.
  • the sheared surface ratio the ratio of the sheared surface to the end surface (sheared end surface) after shearing (hereinafter referred to as the sheared surface ratio) is not stable (the amount of change in the sheared surface ratio is large), the accuracy of the sheared end surface is significantly deteriorated.
  • Patent Document 1 discloses that retained austenite having an average crystal grain size of 5 ⁇ m or less is dispersed in ferrite having an average crystal grain size of 10 ⁇ m or less, for collision resistance and moldability. Excellent automotive high-strength steel sheets are disclosed. In a steel sheet containing retained austenite in its metal structure, austenite undergoes martensitic transformation during processing and exhibits large elongation due to transformation-induced plasticity, but the formation of hard martensite impairs hole expansion. Patent Document 1 discloses that not only ductility but also hole expansion property is improved by miniaturizing ferrite and retained austenite.
  • Patent Document 2 discloses a high-strength steel plate having a tensile strength of 980 MPa or more, which is excellent in ductility and elongation and flangeability, in which a second phase composed of retained austenite and / or martensite is finely dispersed in crystal grains. There is.
  • Patent Document 3 discloses a technique for improving peeling and blistering of a plate end surface by reducing the content of P.
  • Patent Documents 1 to 4 are all techniques for improving either ductility or end face properties after shearing. However, Patent Documents 1 to 3 do not mention a technique for achieving both of these characteristics. Patent Document 4 refers to both shear workability and press formability. However, since the strength of the steel sheet disclosed in Patent Document 4 is less than 850 MPa, it may be difficult to apply it to a member having a high strength of 980 MPa or more.
  • the present invention has been made in view of the above problems of the prior art, and an object of the present invention is to provide a hot-rolled steel sheet having high strength and excellent ductility and shear workability.
  • the present inventors have obtained the following findings (a) to (i) as a result of intensive studies on the chemical composition of the hot-rolled steel sheet and the relationship between the metallographic structure and the mechanical properties. Completed the invention.
  • having excellent shearing workability means that the ratio of the sheared surface to the sheared end surface is stable, that is, the amount of change in the sheared surface ratio is small.
  • having excellent strength or high strength means that the tensile strength is 980 MPa or more.
  • the slab heating step and the subsequent hot rolling step are important. For example, after holding for 900 seconds or more in the temperature range of 700 to 850 ° C, further heating and holding for 6000 seconds or more in the temperature range of 1100 ° C or higher, and a plate having a total of 90% or more in the temperature range of 850 ° C to 1100 ° C. It is effective to perform hot rolling so that the thickness is reduced.
  • the rolling reduction ratio and rolling temperature of the final stage of hot rolling are controlled within a predetermined range, and the stress applied to the steel sheet after rolling one stage before the final stage of hot rolling and before rolling in the final stage is applied. It is effective that the stress is 170 kPa or more and the stress applied to the steel sheet after the final stage of hot rolling and until the steel sheet is cooled to 800 ° C. is less than 200 kPa. Under such hot rolling conditions, fine and equiaxed recrystallized austenite grains can be produced, and by combining with the subsequent cooling conditions, the periodicity of the structure morphology can be reduced.
  • the gist of the present invention made based on the above findings is as follows.
  • (1) The hot-rolled steel sheet according to one aspect of the present invention has a chemical composition of mass%. C: 0.050 to 0.250%, Si: 0.05 to 3.00%, Mn: 1.00 to 4.00%, One or more of Ti, Nb and V: 0.060 to 0.500% in total, sol.
  • Al 0.001 to 2.000%, P: 0.100% or less, S: 0.0300% or less, N: 0.1000% or less, O: 0.0100% or less, Cu: 0 to 2.00%, Cr: 0 to 2.00%, Mo: 0 to 1.00%, Ni: 0 to 2.00%, B: 0 to 0.0100%, Ca: 0-0.0200%, Mg: 0-0.0200%, REM: 0 to 0.1000%, Bi: 0 to 0.020%, One or more of Zr, Co, Zn and W: 0 to 1.00% in total, and Sn: 0 to 0.05%.
  • the rest consists of Fe and impurities
  • the metallographic structure Area%, retained austenite less than 3.0%, ferrite greater than or equal to 15.0% and less than 60.0%, pearlite less than 5.0%,
  • the E value indicating the periodicity of the metal structure is 10.7 or more
  • the I value indicating the uniformity of the metal structure is less than 1.020.
  • the standard deviation of the Mn concentration is 0.60% by mass or less
  • the tensile strength is 980 MPa or more.
  • the hot-rolled steel sheet according to (1) above may have an average crystal grain size of less than 3.0 ⁇ m on the surface layer.
  • the hot-rolled steel sheet according to (1) or (2) above has a chemical composition of% by mass.
  • Cu 0.01-2.00%, Cr: 0.01-2.00%, Mo: 0.01-1.00%, Ni: 0.02-2.00%, B: 0.0001 to 0.0100%, Ca: 0.0005-0.0200%, Mg: 0.0005-0.0200%, REM: 0.0005 to 0.1000%, and Bi: 0.0005 to 0.020% It may contain one or more selected from the group consisting of.
  • a hot-rolled steel sheet having excellent strength, ductility and shear workability can be obtained. Further, according to the above-mentioned preferred embodiment according to the present invention, it is possible to obtain a hot-rolled steel sheet having the above-mentioned various characteristics and further suppressing the occurrence of bending internal cracking, that is, having excellent bending internal cracking resistance. can.
  • the hot-rolled steel sheet according to the above aspect of the present invention is suitable as an industrial material used for automobile members, mechanical structural members, and building members.
  • the chemical composition and metallographic structure of the hot-rolled steel sheet (hereinafter, may be simply referred to as a steel sheet) according to the present embodiment will be specifically described below.
  • the present invention is not limited to the configuration disclosed in the present embodiment, and various modifications can be made without departing from the spirit of the present invention.
  • the numerical limit range described below with “to” in between includes the lower limit value and the upper limit value. Numerical values marked “less than” or “greater than” do not fall within the numerical range.
  • % regarding the chemical composition of the steel sheet is mass% unless otherwise specified.
  • the hot-rolled steel sheet according to this embodiment has C: 0.050 to 0.250%, Si: 0.05 to 3.00%, Mn: 1.00 to 4.00%, Ti in mass%. , Nb and V, one or more: 0.060 to 0.500% in total, sol. Al: 0.001 to 2.000%, P: 0.100% or less, S: 0.0300% or less, N: 0.1000% or less, O: 0.0100% or less, and the balance: Fe and impurities including. Each element will be described in detail below.
  • C 0.050 to 0.250% C increases the fraction of the hard phase and increases the strength of ferrite by binding to precipitation-strengthening elements such as Ti, Nb, and V. If the C content is less than 0.050%, it becomes difficult to obtain the desired strength. Therefore, the C content is set to 0.050% or more.
  • the C content is preferably 0.060% or more, more preferably 0.070% or more, and even more preferably 0.080% or more.
  • the C content exceeds 0.250%, the fraction of ferrite is lowered, so that the ductility of the hot-rolled steel sheet is lowered. Therefore, the C content is set to 0.250% or less.
  • the C content is preferably 0.150% or less.
  • Si 0.05 to 3.00%
  • Si has an action of promoting the formation of ferrite to improve the ductility of the hot-rolled steel sheet and an action of solid-solving and strengthening the ferrite to increase the strength of the hot-rolled steel sheet.
  • Si has an action of deoxidizing the steel to make it sound (suppressing the occurrence of defects such as blow holes in the steel). If the Si content is less than 0.05%, the effect of the above action cannot be obtained. Therefore, the Si content is set to 0.05% or more.
  • the Si content is preferably 0.50% or more, more preferably 0.80% or more.
  • the Si content is set to 3.00% or less.
  • the Si content is preferably 2.70% or less, more preferably 2.50% or less.
  • Mn 1.00 to 4.00% Mn has the effect of suppressing ferrite transformation and increasing the strength of hot-rolled steel sheets. If the Mn content is less than 1.00%, a tensile strength of 980 MPa or more cannot be obtained. Therefore, the Mn content is set to 1.00% or more.
  • the Mn content is preferably 1.30% or more, more preferably 1.50% or more.
  • the Mn content is set to 4.00% or less.
  • the Mn content is preferably 3.70% or less, more preferably 3.50% or less.
  • Ti, Nb and V 0.060 to 0.500% in total Ti, Nb and V are elements that are finely precipitated in the steel as carbides and nitrides and improve the strength of the steel by strengthening the precipitation. Further, it is an element that fixes C by forming the above-mentioned carbide and suppresses the formation of cementite, which is harmful to shearing workability. If the total content of Ti, Nb and V is less than 0.060%, these effects cannot be obtained. Therefore, the total content of Ti, Nb and V is set to 0.060% or more. It should be noted that it is not necessary that all of Ti, Nb and V are contained, and any one of them may be contained, and the total content thereof may be 0.060% or more.
  • the total content of Ti, Nb and V is preferably 0.080% or more, more preferably 0.100% or more. On the other hand, if the total content of Ti, Nb and V exceeds 0.500%, the workability deteriorates. Therefore, the total content of Ti, Nb and V is set to 0.500% or less. It is preferably 0.300% or less, more preferably 0.250% or less, and even more preferably 0.200% or less.
  • sol. Al 0.001 to 2.000%
  • Al has an action of deoxidizing the steel to make the steel sound, and also has an action of promoting the formation of ferrite and increasing the ductility of the hot-rolled steel sheet.
  • sol. If the Al content is less than 0.001%, the effect of the above action cannot be obtained. Therefore, sol.
  • the Al content is 0.001% or more. sol.
  • the Al content is preferably 0.010% or more.
  • sol. If the Al content exceeds 2.000%, the above effects are saturated and economically unfavorable.
  • the Al content is 2.000% or less. sol.
  • the Al content is preferably 1.500% or less, more preferably 1.300% or less, and even more preferably 1.000% or less.
  • sol. Al means acid-soluble Al, and indicates solid-dissolved Al existing in steel in a solid-dissolved state.
  • P 0.100% or less
  • P is an element generally contained as an impurity, but it is also an element having an effect of increasing the strength of a hot-rolled steel sheet by solid solution strengthening. Therefore, P may be positively contained, but P is an element that is easily segregated, and when the P content exceeds 0.100%, the ductility due to the grain boundary segregation becomes remarkable. Therefore, the P content is limited to 0.100% or less.
  • the P content is preferably 0.030% or less.
  • the lower limit of the P content does not need to be specified, but is preferably 0.001% from the viewpoint of refining cost.
  • S 0.0300% or less
  • S is an element contained as an impurity and forms sulfide-based inclusions in the steel to reduce the ductility of the hot-rolled steel sheet.
  • the S content is preferably 0.0050% or less.
  • the lower limit of the S content does not need to be specified, but is preferably 0.0001% from the viewpoint of refining cost.
  • N 0.1000% or less
  • N is an element contained in steel as an impurity and has an effect of reducing the ductility of the hot-rolled steel sheet.
  • the N content is set to 0.1000% or less.
  • the N content is preferably 0.0800% or less, more preferably 0.0700% or less, and even more preferably 0.0100% or less.
  • the lower limit of the N content does not need to be specified, but when one or more of Ti, Nb and V are contained to further refine the metal structure, the precipitation of carbonitride is promoted.
  • the N content is preferably 0.0010% or more, and more preferably 0.0020% or more.
  • O 0.0100% or less
  • O forms a coarse oxide that becomes a starting point of fracture when it is contained in a large amount in steel, and causes brittle fracture and hydrogen-induced cracking. Therefore, the O content is 0.0100% or less.
  • the O content is preferably 0.0080% or less, more preferably 0.0050% or less.
  • the O content may be 0.0005% or more, or 0.0010% or more, in order to disperse a large number of fine oxides during deoxidation of the molten steel.
  • the balance of the chemical composition of the hot-rolled steel sheet according to the present embodiment may be Fe and impurities.
  • the impurities mean those mixed from ore as a raw material, scrap, or the manufacturing environment, and / or those permitted within a range that does not adversely affect the hot-rolled steel sheet according to the present embodiment. do.
  • the hot-rolled steel sheet according to the present embodiment contains Cu, Cr, Mo, Ni, B, Ca, Mg, REM, Bi, Zr, Co, Zn, W and Sn as optional elements instead of a part of Fe. You may. When the above optional element is not contained, the lower limit of the content is 0%. Hereinafter, the above optional elements will be described in detail.
  • Cu 0.01 to 2.00%, Cr: 0.01 to 2.00%, Mo: 0.01 to 1.00%, Ni: 0.02 to 2.00% and B : 0.0001-0.0100%
  • Cu, Cr, Mo, Ni and B all have the effect of enhancing the hardenability of the hot-rolled steel sheet.
  • Cu and Mo have the effect of precipitating as carbides in the steel and increasing the strength of the hot-rolled steel sheet.
  • Ni contains Cu, it has an effect of effectively suppressing the grain boundary cracking of the slab caused by Cu. Therefore, one or more of these elements may be contained.
  • the Cu has the effect of increasing the hardenability of the hot-rolled steel sheet and the effect of precipitating it as carbide in the steel at low temperature to increase the strength of the hot-rolled steel sheet.
  • the Cu content is preferably 0.01% or more, and more preferably 0.05% or more.
  • the Cu content is set to 2.00% or less.
  • the Cu content is preferably 1.50% or less, more preferably 1.00% or less.
  • the Cr content is preferably 0.01% or more, and more preferably 0.05% or more.
  • the Cr content is set to 2.00% or less.
  • Mo has an action of enhancing the hardenability of the hot-rolled steel sheet and an action of precipitating as carbides in the steel to increase the strength of the hot-rolled steel sheet.
  • the Mo content is preferably 0.01% or more, and more preferably 0.02% or more.
  • the Mo content is set to 1.00% or less.
  • the Mo content is preferably 0.50% or less, more preferably 0.20% or less.
  • Ni has the effect of enhancing the hardenability of hot-rolled steel sheets. Further, when Ni contains Cu, it has an effect of effectively suppressing the grain boundary cracking of the slab caused by Cu. In order to obtain the effect of the above action more reliably, the Ni content is preferably 0.02% or more. Since Ni is an expensive element, it is economically unfavorable to contain it in a large amount. Therefore, the Ni content is set to 2.00% or less.
  • B has an effect of enhancing the hardenability of the hot-rolled steel sheet.
  • the B content is preferably 0.0001% or more, and more preferably 0.0002% or more.
  • the B content is set to 0.0100% or less.
  • the B content is preferably 0.0050% or less.
  • Ca, Mg and REM all have the effect of increasing the ductility of the hot-rolled steel sheet by adjusting the shape of the inclusions in the steel to a preferable shape.
  • Bi has an effect of increasing the ductility of the hot-rolled steel sheet by miniaturizing the solidified structure. Therefore, one or more of these elements may be contained. In order to obtain the effect of the above action more reliably, it is preferable that any one or more of Ca, Mg, REM and Bi is 0.0005% or more.
  • the Ca content or Mg content exceeds 0.0200%, or when the REM content exceeds 0.1000%, inclusions are excessively formed in the steel, which in turn reduces the ductility of the hot-rolled steel sheet. May be caused. Further, even if the Bi content exceeds 0.020%, the effect of the above action is saturated, which is economically unfavorable. Therefore, the Ca content and Mg content are 0.0200% or less, the REM content is 0.1000% or less, and the Bi content is 0.020% or less. The Bi content is preferably 0.010% or less.
  • REM refers to a total of 17 elements composed of Sc, Y and lanthanoids
  • the content of REM refers to the total content of these elements. In the case of lanthanoids, they are industrially added in the form of misch metal.
  • the chemical composition of the hot-rolled steel sheet described above may be measured by a general analysis method.
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrum
  • sol. Al may be measured by ICP-AES using a filtrate obtained by heat-decomposing the sample with an acid.
  • C and S may be measured by using the combustion-infrared absorption method
  • N may be measured by using the inert gas melting-heat conductivity method
  • O may be measured by using the inert gas melting-non-dispersive infrared absorption method.
  • the hot-rolled steel sheet according to the present embodiment has a metal structure of% area, retained austenite of less than 3.0%, ferrite of 15.0% or more and less than 60.0%, and pearlite of 5.0%. Less than, the E value indicating the periodicity of the metal structure is 10.7 or more, the I value indicating the uniformity of the metal structure is less than 1.020, and the standard deviation of the Mn concentration is 0.60 mass. % Or less. Therefore, the hot-rolled steel sheet according to the present embodiment can obtain high strength, excellent ductility, and shear workability.
  • the standard deviations of the microstructure fraction, E value, I value and Mn concentration in the metal structure at the depth of 1/4 of the plate thickness from the surface and the center position in the plate width direction in the cross section parallel to the rolling direction. Is specified. The reason is that the metallographic structure at this position shows the typical metallic structure of the steel sheet.
  • Retained austenite is a metal structure that exists as a face-centered cubic lattice even at room temperature. Residual austenite has the effect of increasing the ductility of hot-rolled steel sheets by transformation-induced plasticity (TRIP).
  • TRIP transformation-induced plasticity
  • retained austenite transforms into high-carbon martensite during shearing, which hinders stable crack generation and causes destabilization of the shear plane ratio in the shear end face.
  • the surface integral of retained austenite is 3.0% or more, the above-mentioned action becomes apparent and the shearing workability of the hot-rolled steel sheet deteriorates. Therefore, the surface integral of retained austenite is less than 3.0%.
  • the surface integral of the retained austenite is preferably less than 1.5%, more preferably less than 1.0%. Since the smaller the amount of retained austenite, the more preferable it is, the surface integral of the retained austenite may be 0%.
  • Methods for measuring the area fraction of retained austenite include X-ray diffraction, EBSP (Electron Backscattering Diffraction Pattern) analysis, and magnetic measurement methods, and the measured values may differ depending on the measurement method. ..
  • the surface integral of retained austenite is measured by X-ray diffraction.
  • the depth of 1/4 of the plate thickness of the hot-rolled steel sheet (1/8 depth from the surface to the plate thickness to 3 / of the plate thickness from the surface).
  • Ferrite is a structure formed when fcc is transformed into bcc at a relatively high temperature. Since ferrite has a high work hardening rate, it has the effect of increasing the strength-ductility balance of hot-rolled steel sheets. In order to obtain the above action, the surface integral of ferrite shall be 15.0% or more. It is preferably 20.0% or more, more preferably 25.0% or more, and even more preferably 30.0% or more. On the other hand, since ferrite has low strength, if the surface integral is excessive, the desired tensile strength cannot be obtained. Therefore, the ferrite surface integral is set to less than 60.0%. It is preferably 50.0% or less, and more preferably 45.0% or less.
  • Pearlite is a lamellar metal structure in which cementite is deposited in layers between ferrites, and is a soft metal structure compared to bainite and martensite. Is. When the area fraction of pearlite is 5.0% or more, carbon is consumed by cementite contained in pearlite, the strength of martensite and bainite, which are the residual tissues, is lowered, and a tensile strength of 980 MPa or more can be obtained. Can not. Therefore, the surface integral of pearlite is set to less than 5.0%. The surface integral of pearlite is preferably 3.0% or less. In order to improve the stretch flangeability of the steel sheet, the surface integral of pearlite is preferably reduced as much as possible, and the surface integral of pearlite is even more preferably 0%.
  • the steel plate according to the present embodiment contains bainite, martensite, and tempered martensite having a total area fraction of more than 32.0% and 85.0% or less as a residual structure other than retained austenite, ferrite, and pearlite. Includes a hard structure consisting of one or more types.
  • the surface integral of the metallographic structure is measured by the following method.
  • the cross section parallel to the rolling direction is mirror-finished and polished at room temperature with colloidal silica containing no alkaline solution for 8 minutes to remove the strain introduced into the surface layer of the sample.
  • the region at the center position in the plate width direction is measured by the electron backscattering diffraction method at a measurement interval of 0.1 ⁇ m to obtain crystal orientation information.
  • an EBSD analyzer composed of a thermal field emission scanning electron microscope (JSM-7001F manufactured by JEOL) and an EBSD detector (DVC5 type detector manufactured by TSL) is used.
  • the degree of vacuum in the EBSD analyzer is 9.6 ⁇ 10 -5 Pa or less
  • the acceleration voltage is 15 kV
  • the irradiation current level is 13
  • the electron beam irradiation level is 62.
  • the reflected electron image is taken in the same field of view.
  • crystal grains in which ferrite and cementite are deposited in layers are specified from the backscattered electron image, and the area fraction of the crystal grains is calculated to obtain the area fraction of pearlite.
  • the obtained crystal orientation information is used for the "Grain Average Misorition" function installed in the software "OIM Analysis (registered trademark)" attached to the EBSD analysis device. Therefore, the region where the Grain Average Measurement value is 1.0 ° or less is determined to be ferrite.
  • the surface integral of ferrite is obtained by obtaining the surface integral of the region determined to be ferrite.
  • the maximum value of "Grain Average IQ" in the ferrite region is set under the condition that the 5 ° grain boundary is defined as the grain boundary in the remaining region (the region where the Grain Average Misorition value exceeds 1.0 °).
  • I ⁇ the region above I ⁇ / 2 is extracted as bainite, and the region below I ⁇ / 2 is extracted as “pearlite, martensite and tempered martensite”.
  • pearlite, martensite and tempered martensite By calculating the surface integral of the extracted bainite, the surface integral of bainite is obtained.
  • the area fraction of the extracted "pearlite, martensite and tempered martensite” is calculated, and the area fraction of pearlite obtained by the above-mentioned EBSD analysis is subtracted to obtain the area of martensite and tempered martensite. Get the sum of the rates.
  • E value 10.7 or more
  • I value less than 1.020
  • E value 10.7 or more
  • I value less than 1.020
  • the ratio of the sheared surface to the sheared end face is stabilized by controlling the E (Entropy) value indicating the periodicity of the metal structure and the I (Inverse diffused moment norm) value indicating the uniformity of the metal structure. ..
  • the E value represents the periodicity of the metal structure.
  • the E value decreases when the luminance is periodically arranged due to the formation of a band-shaped structure or the like, that is, when the periodicity of the metal structure is high.
  • the E value is less than 10.7, the ratio of the shear plane to the shear end face tends to be unstable. Starting from the periodically arranged structure, cracks are generated from the cutting edge of the shearing tool at the very early stage of shearing to form a fracture surface, and then a sheared surface is formed again. As a result, it is presumed that the ratio of the shear plane to the shear end face is likely to become unstable.
  • the E value is set to 10.7 or more. It is preferably 10.8 or more, and more preferably 11.0 or more. The higher the E value, the more preferable, and the upper limit is not particularly specified, but it may be 13.0 or less, 12.5 or less, or 12.0 or less.
  • the I value represents the uniformity of the metallographic structure, and increases as the area of the region with constant brightness increases.
  • a high I value means that the uniformity of the metal structure is high.
  • the I value is 1.020 or more, it is estimated that the ratio of the shear plane to the shear end face cannot be stabilized.
  • the I value is set to less than 1.020. It is preferably 1.015 or less, and more preferably 1.010 or less.
  • the lower limit of the I value is not particularly specified, but may be 0.900 or more, 0.950 or more, or 1.000 or more.
  • the imaging region of the SEM image captured for calculating the E value and the I value is a position at a depth of 1/4 of the plate thickness from the steel plate surface (the plate thickness from the surface) in the cross section parallel to the rolling direction. A region from 1/8 depth to 3/8 depth of the plate thickness from the surface) and at the center position in the plate width direction.
  • a SU-6600 Shotkey electron gun manufactured by Hitachi High-Technologies Corporation is used to take SEM images, the emitter is tungsten, and the acceleration voltage is 1.5 kV. Under the above settings, an SEM image is output at a magnification of 1000 times and a gray scale of 256 gradations.
  • the obtained SEM image was cut out in an area of 880 ⁇ 880 pixels, and the tile grid size was 8 ⁇ 8 smoothing, which was described in Non-Patent Document 3 and the contrast enhancement limit magnification was 2.0. Perform the conversion process. Except for 90 degrees, the SEM image after smoothing is rotated counterclockwise every 1 degree from 0 degrees to 179 degrees, and an image is created every 1 degree to obtain a total of 179 images. .. Next, for each of these 179 images, the frequency values of the luminance between adjacent pixels are collected in the form of a matrix by using the GLCM method described in Non-Patent Document 1.
  • the matrix P of is calculated. Further, the E value and the I value are calculated using the following equations (1) and (2) described in Non-Patent Document 2, respectively. In the following equations (1) and (2), the value in the i-th row and j-th column of the matrix P is expressed as Pij .
  • Standard deviation of Mn concentration 0.60% by mass or less
  • the standard deviation of Mn concentration at a depth of 1/4 of the plate thickness from the surface of the hot-rolled steel sheet according to the present embodiment and at the center position in the plate width direction is 0. It is .60% by mass or less.
  • the standard deviation of the Mn concentration is preferably 0.50% by mass or less, more preferably 0.47% by mass or less.
  • the lower limit of the standard deviation of the Mn concentration is preferably smaller as the value is smaller from the viewpoint of suppressing excessive burrs, but the practical lower limit is 0.10% by mass due to the limitation of the manufacturing process.
  • the standard deviation of the Mn concentration is measured by measuring the center position in the plate width direction with an electron probe microanalyzer (EPMA).
  • the measurement conditions are that the acceleration voltage is 15 kV, the magnification is 5000 times, and the distribution image in the range of 20 ⁇ m in the sample rolling direction and 20 ⁇ m in the sample plate thickness direction is measured. More specifically, the measurement interval is set to 0.1 ⁇ m, and the Mn concentration at 40,000 or more points is measured.
  • the standard deviation of the Mn concentration is obtained by calculating the standard deviation based on the Mn concentration obtained from all the measurement points.
  • the average crystal grain size of the surface layer of the hot-rolled steel sheet is preferably less than 3.0 ⁇ m. Therefore, in the present embodiment, the average crystal grain size of the surface layer may be less than 3.0 ⁇ m. The average crystal grain size of the surface layer is more preferably 2.5 ⁇ m or less. The lower limit of the average crystal grain size in the surface layer region is not particularly specified, but may be 0.5 ⁇ m. In the present embodiment, the surface layer is a region from the surface of the hot-rolled steel sheet to a depth of 50 ⁇ m from the surface.
  • the crystal grain size of the surface layer is measured by using the EBSP-OIM (Electron Backscatter Diffraction Pattern-Orientation Image Microscopic) method.
  • the EBSP-OIM method is performed using a device that combines a scanning electron microscope and an EBSP analysis device and an OIM Analysis (registered trademark) manufactured by AMETEK.
  • the analyzable area of the EBSP-OIM method is an area that can be observed by SEM. Although it depends on the resolution of the SEM, according to the EBSP-OIM method, analysis can be performed with a resolution of a minimum of 20 nm.
  • the crystal grain boundary In the region parallel to the rolling direction of the hot-rolled steel sheet, at a depth of 50 ⁇ m from the surface of the hot-rolled steel sheet and at the center position in the plate width direction, at a magnification of 1200 times, in a region of 40 ⁇ m ⁇ 30 ⁇ m, in at least 5 fields of view.
  • the analysis is performed, and the place where the angle difference between the adjacent measurement points is 5 ° or more is defined as the crystal grain boundary, and the crystal grain size of the area average is calculated.
  • the obtained area average crystal grain size is taken as the average crystal grain size of the surface layer.
  • the tensile strength characteristics are evaluated in accordance with JIS Z 2241: 2011.
  • the test piece shall be JIS Z 2241: 2011 No. 5 test piece.
  • the sampling position of the tensile test piece may be 1/4 of the end portion in the plate width direction, and the direction perpendicular to the rolling direction may be the longitudinal direction.
  • the hot-rolled steel sheet according to this embodiment has a tensile (maximum) strength of 980 MPa or more. It is preferably 1000 MPa or more. If the tensile strength is less than 980 MPa, the applicable parts are limited, and the contribution of weight reduction of the vehicle body is small.
  • the upper limit is not particularly limited, but may be 1780 MPa from the viewpoint of suppressing mold wear.
  • the total elongation is preferably 12.0% or more, and the product of the tensile strength and the total elongation (TS ⁇ El) is preferably 15,000 MPa ⁇ % or more. The total elongation is more preferably 13.0% or more, and even more preferably 14.0% or more.
  • the product of the tensile strength and the total elongation is more preferably 15500 MPa ⁇ % or more, and even more preferably 16000 MPa ⁇ % MPa or more.
  • the applicable parts are not limited, and it is possible to greatly contribute to the weight reduction of the vehicle body.
  • the plate thickness of the hot-rolled steel sheet according to the present embodiment is not particularly limited, but may be 1.2 to 8.0 mm. If the thickness of the hot-rolled steel sheet is less than 1.2 mm, it may be difficult to secure the rolling completion temperature and the rolling load may become excessive, making hot rolling difficult. Therefore, the thickness of the hot-rolled steel sheet according to the present embodiment may be 1.2 mm or more. It is preferably 1.4 mm or more. On the other hand, if the plate thickness exceeds 8.0 mm, it may be difficult to miniaturize the metal structure, and it may be difficult to obtain the above-mentioned metal structure. Therefore, the plate thickness may be 8.0 mm or less. It is preferably 6.0 mm or less.
  • the hot-rolled steel sheet according to the present embodiment having the above-mentioned chemical composition and metal structure may be provided with a plating layer on the surface for the purpose of improving corrosion resistance or the like to be a surface-treated steel sheet.
  • the plating layer may be an electroplating layer or a hot-dip plating layer. Examples of the electroplating layer include electrogalvanization, electroZn—Ni alloy plating, and the like.
  • hot-dip plating layer examples include hot-dip zinc plating, alloyed hot-dip zinc plating, hot-dip aluminum plating, hot-dip Zn-Al alloy plating, hot-dip Zn-Al-Mg alloy plating, and hot-dip Zn-Al-Mg-Si alloy plating.
  • the amount of plating adhered is not particularly limited and may be the same as before. Further, it is also possible to further improve the corrosion resistance by subjecting an appropriate chemical conversion treatment (for example, application and drying of a silicate-based chromium-free chemical conversion treatment liquid) after plating.
  • an appropriate chemical conversion treatment for example, application and drying of a silicate-based chromium-free chemical conversion treatment liquid
  • a suitable method for producing a hot-rolled steel sheet according to the present embodiment having the above-mentioned chemical composition and metal structure is as follows.
  • the slab is heated under predetermined conditions, then hot-rolled, accelerated and cooled to a predetermined temperature range, then slowly cooled, and cooled until winding. It is effective to control the history.
  • the following steps (1) to (9) are sequentially performed.
  • the temperature of the slab and the temperature of the steel plate in this embodiment refer to the surface temperature of the slab and the surface temperature of the steel plate.
  • the stress refers to the stress applied in the rolling direction of the steel sheet.
  • the slab is held in a temperature range of 700 to 850 ° C. for 900 seconds or longer, then further heated and held in a temperature range of 1100 ° C. or higher for 6000 seconds or longer.
  • Hot rolling is performed in a temperature range of 850 to 1100 ° C. so that the total plate thickness is reduced by 90% or more.
  • a stress of 170 kPa or more is applied to the steel sheet after rolling one step before the final stage of hot rolling and before rolling in the final stage.
  • the rolling reduction in the final stage of hot rolling is set to 8% or more, and hot rolling is completed so that the rolling completion temperature Tf is 900 ° C. or higher and less than 1010 ° C.
  • the stress applied to the steel sheet after the final stage of hot rolling and before the steel sheet is cooled to 800 ° C. is set to less than 200 kPa.
  • Cooling it is a more preferable cooling condition to cool to a temperature range of the hot rolling completion temperature Tf-50 ° C. or less within 1 second after the completion of hot rolling.
  • Tf-50 ° C. or less In the temperature range of 600 to 730 ° C, slow cooling with an average cooling rate of less than 5 ° C / s is performed for 2.0 seconds or longer.
  • a hot-rolled steel sheet having a metal structure excellent in strength, ductility and shear workability can be stably manufactured. That is, by appropriately controlling the slab heating conditions and the hot rolling conditions, the Mn segregation can be reduced and the austenite before transformation can be equiaxed, and in combination with the cooling conditions after hot rolling described later, A hot-rolled steel sheet having a desired metal structure can be stably produced.
  • the slab to be subjected to hot rolling is preferably held in a temperature range of 700 to 850 ° C. for 900 seconds or longer when the slab is heated, and then further heated and held in a temperature range of 1100 ° C. or higher for 6000 seconds or longer.
  • the temperature of the steel sheet may be changed in this temperature range or may be constant. Further, when the steel sheet is held at 1100 ° C.
  • the temperature of the steel sheet may be changed in the temperature range of 1100 ° C. or higher, or may be constant.
  • Mn is dispersed between the ferrite and the austenite, and by prolonging the transformation time, Mn can be diffused in the ferrite region.
  • the Mn microsegregation unevenly distributed in the slab can be eliminated, and the standard deviation of the Mn concentration can be significantly reduced.
  • the austenite particles during slab heating can be made uniform.
  • a levers mill or a tandem mill for multi-pass rolling.
  • at least the final two stages are hot-rolled using a tandem mill.
  • Hot rolling reduction rate A total plate thickness reduction of 90% or more in the temperature range of 850 to 1100 ° C.
  • the recrystallized austenite grains are mainly made finer, and the accumulation of strain energy in the unrecrystallized austenite grains is promoted. Then, the recrystallization of austenite is promoted and the atomic diffusion of Mn is promoted, so that the standard deviation of the Mn concentration can be reduced. Therefore, it is preferable to perform hot rolling so that the total plate thickness is reduced by 90% or more in the temperature range of 850 to 1100 ° C.
  • the stress applied to the steel sheet is preferably 170 kPa or more. This makes it possible to reduce the number of crystal grains having a crystal orientation of ⁇ 110 ⁇ ⁇ 001> among the recrystallized austenite after rolling one step before the final step. Since ⁇ 110 ⁇ ⁇ 001> has a crystal orientation that is difficult to recrystallize, recrystallization due to reduction in the final stage can be effectively promoted by suppressing the formation of this crystal orientation.
  • the band-like structure of the hot-rolled steel sheet is improved, the periodicity of the metal structure is reduced, and the E value is increased.
  • the stress applied to the steel sheet is less than 170 kPa, it may not be possible to achieve an E value of 10.7 or more.
  • the stress applied to the steel sheet is more preferably 190 kPa or more.
  • the stress applied to the steel sheet can be controlled by adjusting the roll rotation speed during tandem rolling.
  • Hot rolling at the final stage of hot rolling 8% or more, hot rolling completion temperature Tf: 900 ° C or more and less than 1010 ° C
  • the rolling ratio at the final stage of hot rolling is 8% or more, and hot rolling
  • the completion temperature Tf is preferably 900 ° C. or higher.
  • the formation of ferrite in the final structure (metal structure of the hot-rolled steel sheet after production) can be suppressed, and a high-strength hot-rolled steel sheet can be obtained.
  • Tf to less than 1010 ° C.
  • coarsening of the austenite particle size can be suppressed, the periodicity of the metal structure can be reduced, and the E value can be set to 10.7 or more.
  • the stress applied to the steel sheet is preferably less than 200 kPa.
  • the stress applied to the steel sheet is more preferably 180 MPa or less.
  • the average cooling rate here refers to the temperature drop width of the steel sheet from the start of accelerated cooling (when the steel sheet is introduced into the cooling equipment) to the completion of accelerated cooling (when the steel sheet is taken out from the cooling equipment). It is the value divided by the time required from the start to the completion of accelerated cooling.
  • the upper limit of the cooling rate is not particularly specified, but if the cooling rate is increased, the cooling equipment becomes large and the equipment cost increases. Therefore, considering the equipment cost, 300 ° C./sec or less is preferable.
  • the cooling shutdown temperature for accelerated cooling is preferably 600 ° C. or higher.
  • the time for slow cooling is preferably 3.0 seconds or longer.
  • the upper limit of the time for slow cooling is determined by the equipment layout, but it should be generally less than 10.0 seconds.
  • the lower limit of the average cooling rate for slow cooling is not particularly set, raising the temperature without cooling may require a large investment in equipment, and may be set to 0 ° C./s or higher.
  • Average cooling rate to take-up temperature 50 ° C./sec or more From the cooling stop temperature of slow cooling to the take-up temperature in order to suppress the area fraction of pearlite and obtain a tensile strength of 980 MPa or more.
  • the average cooling rate is preferably 50 ° C./sec or higher.
  • the average cooling rate referred to here is the temperature drop width of the steel plate from the cooling stop temperature of slow cooling where the average cooling rate is less than 5 ° C / s to the winding temperature, and the average cooling rate is less than 5 ° C / s. It is the value divided by the time required from the stop of slow cooling to winding.
  • Winding temperature 400 ° C or more and less than 600 ° C
  • the winding temperature shall be in the temperature range of 400 ° C or more and less than 600 ° C.
  • the conditions in the examples are one condition example adopted for confirming the feasibility and effect of the present invention.
  • the present invention is not limited to this one-condition example.
  • the present invention can adopt various conditions as long as the gist of the present invention is not deviated and the object of the present invention is achieved.
  • the area fraction of the metal structure, E value, I value, standard deviation of Mn concentration, average crystal grain size of the surface layer, tensile strength TS and total elongation El were obtained by the above method. rice field.
  • the obtained measurement results are shown in Tables 5A to 6B.
  • the remaining tissue was one or more of bainite, martensite and tempered martensite.
  • Tensile strength characteristics Tensile strength TS was 980 MPa or more, total elongation El was 12.0% or more, and tensile strength TS ⁇ total elongation El was 15,000 MPa ⁇ % or more. In this case, it was judged to be acceptable because it was a hot-rolled steel sheet having excellent strength and ductility. If any one of them was not satisfied, it was judged to be unacceptable because it was not a hot-rolled steel sheet having excellent strength and ductility.
  • FIG. 1A is a schematic view of an end surface parallel to the rolling direction of the punched hole
  • FIG. 1B is a schematic view of a side surface of the punched hole.
  • the sagging is an R-shaped smooth surface
  • the shearing surface is a punched end surface separated by shear deformation
  • the fracture surface is a punched end surface separated by cracks generated from the vicinity of the cutting edge after the completion of shear deformation.
  • a burr is a surface having protrusions protruding from the lower surface of a hot-rolled steel sheet.
  • Minimum value / maximum value of shear plane ratio was calculated. When this value was 0.70 or more, it was judged to be acceptable because it was a hot-rolled steel sheet having excellent shearing workability. On the other hand, when this value is less than 0.70, it is determined that the hot-rolled steel sheet is inferior in shearing workability and is rejected.
  • the ratio of the sheared surface to the end face As shown in FIG. 1A, a straight line 1 perpendicular to the upper surface and the lower surface of the hot-rolled steel plate is drawn in the observation photograph of the end face, and the straight line 1 is used.
  • the bending internal crack resistance was evaluated by the following bending test.
  • a strip-shaped test piece of 100 mm ⁇ 30 mm was cut out from the 1/2 position in the width direction of the hot-rolled steel sheet to obtain a bending test piece.
  • JIS Z for both bending where the bending ridge is parallel to the rolling direction (L direction) (L-axis bending) and bending where the bending ridge is parallel to the direction perpendicular to the rolling direction (C direction) (C-axis bending).
  • the bending resistance and internal crack resistance were investigated in accordance with 2248: 2014 (V block 90 ° bending test), and the minimum bending radius at which cracks did not occur was determined.
  • the value obtained by dividing the average value of the minimum bending radii of the L-axis and the C-axis by the plate thickness was defined as the limit bending R / t as an index value of bending internal crack resistance.
  • R / t was 2.5 or less, it was judged to be a hot-rolled steel sheet having excellent bending internal crack resistance.
  • the presence or absence of cracks is determined by mirror-polishing the cross section of the test piece after the V block 90 ° bending test cut on a surface parallel to the bending direction and perpendicular to the plate surface, and then observing the cracks with an optical microscope. When the crack length observed inside the bend exceeds 30 ⁇ m, it is judged that there is a crack.
  • Tables 6A and 6B The results obtained are shown in Tables 6A and 6B.
  • the hot-rolled steel sheet according to the example of the present invention has excellent strength, ductility and shear workability. Further, among the examples of the present invention, it can be seen that the hot-rolled steel sheet having an average crystal grain size of less than 3.0 ⁇ m on the surface layer has the above-mentioned various characteristics and further has excellent bending resistance and internal crack resistance. On the other hand, it can be seen that the hot-rolled steel sheet according to the comparative example does not have any one or more of excellent strength, ductility and shear workability.
  • the hot-rolled steel sheet according to the present invention it is possible to provide a hot-rolled steel sheet having excellent strength, ductility and shear workability. Further, according to the above-mentioned preferred embodiment according to the present invention, it is possible to obtain a hot-rolled steel sheet having the above-mentioned various characteristics and further suppressing the occurrence of bending internal cracking, that is, having excellent bending internal cracking resistance. can.
  • the hot-rolled steel sheet according to the present invention is suitable as an industrial material used for automobile members, mechanical structural members, and building members.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

この熱延鋼板は、所定の化学組成を有し、金属組織が、面積%で、残留オーステナイトが3.0%未満であり、フェライトが15.0%以上60.0%未満であり、パーライトが5.0%未満であり、前記金属組織の周期性を示すE値が10.7以上であり、前記金属組織の均一性を示すI値が1.020未満であり、Mn濃度の標準偏差が0.60質量%以下であり、引張強さが980MPa以上である。

Description

熱延鋼板
 本発明は、熱延鋼板に関する。具体的には、プレス加工等により様々な形状に成形して利用される熱延鋼板、特に、高強度であり、且つ延性およびせん断加工性に優れる熱延鋼板に関する。
 本願は、2020年8月27日に、日本に出願された特願2020-143743号に基づき優先権を主張し、その内容をここに援用する。
 近年、地球環境保護の観点から、多くの分野において炭酸ガス排出量の削減が取り組まれている。自動車メーカーにおいても低燃費化を目的とした車体軽量化の技術開発が盛んに行われている。しかし、乗員の安全確保のために耐衝突特性の向上にも重点が置かれるため、車体軽量化は容易ではない。
 車体軽量化と耐衝突特性とを両立させるべく、高強度鋼板を用いて部材を薄肉化することが検討されている。このため、高い強度と優れた成形性とを兼備する鋼板が強く望まれており、これらの要求に応えるべく、幾つかの技術が従来から提案されている。自動車部材には様々な加工様式があるため、要求される成形性は適用される部材により異なるが、その中でも延性は成形性の重要な指標として位置付けられている。また、自動車部材はプレス成形によって成形されるが、そのプレス成形のブランク板は生産性が高いせん断加工によって製造されることが多い。せん断加工によって製造されるブランク板では、せん断加工後の端面精度に優れる必要がある。例えば、せん断加工後の端面(せん断端面)に占めるせん断面の比率(以下、せん断面比率)が安定しない(せん断面比率の変化量が大きい)と、せん断端面の精度が著しく悪化する。
 延性向上の技術については、例えば特許文献1には、平均結晶粒径が10μm以下であるフェライト中に平均結晶粒径が5μm以下である残留オーステナイトを分散させた、耐衝突安全性および成形性に優れた自動車用高強度鋼板が開示されている。金属組織に残留オーステナイトを含む鋼板では、加工中にオーステナイトがマルテンサイト変態して、変態誘起塑性により大きな伸びを示すものの、硬質なマルテンサイトの生成により穴拡げ性が損なわれる。特許文献1には、フェライトおよび残留オーステナイトを微細化することにより、延性のみならず穴拡げ性も向上する、と開示されている。
 特許文献2には、結晶粒内に残留オーステナイトおよび/またはマルテンサイトからなる第二相を微細に分散させた、延性および伸びフランジ性に優れた引張強度が980MPa以上の高強度鋼板が開示されている。
 せん断加工性の向上についての技術は、例えば特許文献3には、表層のフェライト粒径dと内部のフェライト結晶粒dとの比d/dを0.95以下に制御することで、打ち抜き後のバリ高さを制御する技術が開示されている。
 特許文献4にはPの含有量を低減することで板端面のハガレやメクレを改善する技術が開示されている。
日本国特開平11-61326号公報 日本国特開2005-179703号公報 日本国特開平10-168544号公報 日本国特開2005-298924号公報
J. Webel, J. Gola, D. Britz, F. Mucklich, Materials Characterization 144 (2018) 584-596 D. L. Naik, H. U. Sajid, R. Kiran, Metals 2019, 9, 546 K. Zuiderveld, Contrast Limited Adaptive Histogram Equalization, Chapter VIII.5, Graphics Gems IV. P.S. Heckbert (Eds.), Cambridge, MA, Academic Press, 1994, pp. 474-485
 特許文献1~4に開示された技術は、いずれも延性またはせん断加工後の端面性状のいずれか一方を向上させる技術ではある。しかし、特許文献1~3ではこれらの特性を両立させる技術について言及されてない。特許文献4では、せん断加工性とプレス成形性との両立について言及されている。しかし、特許文献4に開示された鋼板の強度は850MPa未満であるため、980MPa以上の高強度の部材へ適用することは困難な場合がある。
 本発明は、従来技術の上記課題に鑑みてなされたものであり、高い強度を有するとともに、優れた延性およびせん断加工性を有する熱延鋼板を提供することを目的とする。
 本発明者らは、上述の課題に鑑み、熱延鋼板の化学組成および金属組織と機械特性との関係について鋭意研究を重ねた結果、以下の知見(a)~(i)を得て、本発明を完成した。なお、優れたせん断加工性を有するとは、せん断端面に占めるせん断面比率が安定している、すなわちせん断面比率の変化量が小さいことを示す。また、優れた強度または高い強度を有するとは、引張強さが980MPa以上であることを示す。
(a)優れた引張(最大)強さを得るためには、硬質な組織を活用することが好ましい。すなわち、マルテンサイトやベイナイトを金属組織中に含むことが好ましい。
(b)しかし、硬質な組織は延性に乏しい組織であるため、単にこれらを主体とする金属組織とするだけでは、優れた延性を確保することができない。
(c)高強度の熱延鋼板に優れた延性も兼備させるためには、延性の高いフェライトを適量含有させることが効果的である。
(d)フェライトは一般的に軟質であるため、所望の強度を得るために、Ti、Nb、V等を析出強化元素として活用することが必要である。そのため、熱延プロセスにおいて中間空冷を施し、適切な量の析出強化フェライトを得ることが効果的である。
(e)せん断端面に占めるせん断面比率を安定化させるには、Mn偏析が少なく、組織形態に周期性がなくランダムであり、かつ不均一である(均一性が低い)金属組織とすることが重要である。
(f)具体的には、Mn濃度の標準偏差を一定値以下とすること、並びに、金属組織の周期性および金属組織の均一性を制御することが、せん断端面に占めるせん断面比率の安定化に効果的である。
(g)Mn濃度の標準偏差を一定値以下とするためには、スラブ加熱工程およびその後の熱間圧延工程が重要である。例えば700~850℃の温度域で900秒以上保持した後、更に加熱し、1100℃以上の温度域で6000秒以上保持すること、および850℃~1100℃の温度域で合計90%以上の板厚減となるような熱間圧延を行うことが効果的である。
(h)組織形態の周期性を低下させるには、熱間圧延中のオーステナイトの再結晶挙動を制御することが重要である。例えば、熱間圧延の最終段の圧下率および圧延温度を所定の範囲内に制御し、熱間圧延の最終段の1段前の圧延後、且つ最終段の圧延前の鋼板に負荷する応力を170kPa以上とし、熱間圧延の最終段後、且つ鋼板が800℃に冷却されるまでの鋼板に負荷する応力を200kPa未満とすることが効果的である。このような熱間圧延条件により、微細かつ等軸な再結晶オーステナイト粒を作り込むことができ、その後の冷却条件との組み合わせにより、組織形態の周期性を低下させることができる。
(i)金属組織の均一性を低減させるには、中間空冷を施して所望量のフェライトを得た後、400℃以上650℃未満の温度域まで冷却して鉄炭化物の析出を抑制することが効果的である。
 上記知見に基づいてなされた本発明の要旨は、以下の通りである。
(1) 本発明の一態様に係る熱延鋼板は、化学組成が、質量%で、
C:0.050~0.250%、
Si:0.05~3.00%、
Mn:1.00~4.00%、
Ti、NbおよびVのうち1種または2種以上:合計で0.060~0.500%、
sol.Al:0.001~2.000%、
P:0.100%以下、
S:0.0300%以下、
N:0.1000%以下、
O:0.0100%以下、
Cu:0~2.00%、
Cr:0~2.00%、
Mo:0~1.00%、
Ni:0~2.00%、
B:0~0.0100%、
Ca:0~0.0200%、
Mg:0~0.0200%、
REM:0~0.1000%、
Bi:0~0.020%、
Zr、Co、ZnおよびWのうち1種または2種以上:合計で0~1.00%、並びに
Sn:0~0.05%を含有し、
 残部がFeおよび不純物からなり、
 金属組織が、
  面積%で、残留オーステナイトが3.0%未満であり、フェライトが15.0%以上60.0%未満であり、パーライトが5.0%未満であり、
  前記金属組織の周期性を示すE値が10.7以上であり、前記金属組織の均一性を示すI値が1.020未満であり、
  Mn濃度の標準偏差が0.60質量%以下であり、
 引張強さが980MPa以上である。
(2) 上記(1)に記載の熱延鋼板は、表層の平均結晶粒径が3.0μm未満であってもよい。
(3) 上記(1)または(2)に記載の熱延鋼板は、前記化学組成が、質量%で、
Cu:0.01~2.00%、
Cr:0.01~2.00%、
Mo:0.01~1.00%、
Ni:0.02~2.00%、
B:0.0001~0.0100%、
Ca:0.0005~0.0200%、
Mg:0.0005~0.0200%、
REM:0.0005~0.1000%、および
Bi:0.0005~0.020%
からなる群から選択される1種または2種以上を含有してもよい。
 本発明に係る上記態様によれば、優れた強度、延性およびせん断加工性を有する熱延鋼板を得ることができる。また、本発明に係る上記の好ましい態様によれば、上記諸特性を有した上で更に、曲げ内割れの発生が抑制された、すなわち耐曲げ内割れ性に優れた熱延鋼板を得ることができる。
 本発明の上記態様に係る熱延鋼板は、自動車部材、機械構造部材さらには建築部材に用いられる工業用素材として好適である。
せん断加工後の端面に占めるせん断面の比率の測定方法を説明するための図である。
 本実施形態に係る熱延鋼板(以下、単に鋼板と記載する場合がある)の化学組成および金属組織について、以下により具体的に説明する。ただし、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。
 以下に「~」を挟んで記載する数値限定範囲には、下限値および上限値がその範囲に含まれる。「未満」または「超」と示す数値には、その値が数値範囲に含まれない。以下の説明において、鋼板の化学組成に関する%は特に指定しない限り質量%である。
1.化学組成
 本実施形態に係る熱延鋼板は、質量%で、C:0.050~0.250%、Si:0.05~3.00%、Mn:1.00~4.00%、Ti、NbおよびVのうち1種または2種以上:合計で0.060~0.500%、sol.Al:0.001~2.000%、P:0.100%以下、S:0.0300%以下、N:0.1000%以下、O:0.0100%以下、並びに、残部:Feおよび不純物を含む。以下に各元素について詳細に説明する。
(1-1)C:0.050~0.250%
 Cは、硬質相の分率を上昇させるとともに、Ti、Nb、V等の析出強化元素と結合することで、フェライトの強度を上昇させる。C含有量が0.050%未満では、所望の強度を得ることが困難となる。したがって、C含有量は0.050%以上とする。C含有量は、好ましくは0.060%以上、より好ましくは0.070%以上、より一層好ましくは0.080%以上である。
 一方、C含有量が0.250%超では、フェライトの分率が低下することで、熱延鋼板の延性が低下する。したがって、C含有量は0.250%以下とする。C含有量は好ましくは0.150%以下である。
(1-2)Si:0.05~3.00%
 Siは、フェライトの生成を促進して熱延鋼板の延性を向上させる作用と、フェライトを固溶強化して熱延鋼板の強度を上昇させる作用とを有する。また、Siは脱酸により鋼を健全化する(鋼にブローホールなどの欠陥が生じることを抑制する)作用を有する。Si含有量が0.05%未満では、上記作用による効果を得ることができない。したがって、Si含有量は0.05%以上とする。Si含有量は、好ましくは0.50%以上、より好ましくは0.80%以上である。
 しかし、Si含有量が3.00%超では、鋼板の表面性状および化成処理性、さらには延性および溶接性が著しく劣化するとともに、A変態点が著しく上昇する。これにより、安定して熱間圧延を行うことが困難になる。したがって、Si含有量は3.00%以下とする。Si含有量は、好ましくは2.70%以下、より好ましくは2.50%以下である。
(1-3)Mn:1.00~4.00%
 Mnは、フェライト変態を抑制して熱延鋼板を高強度化する作用を有する。Mn含有量が1.00%未満では、980MPa以上の引張強さを得ることができない。したがって、Mn含有量は1.00%以上とする。Mn含有量は、好ましくは1.30%以上であり、より好ましくは1.50%以上である。
 一方、Mn含有量が4.00%超では、Mnの偏析に起因して、硬質相の形態が周期的なバンド状となり、所望のせん断加工性を得ることが困難となる。したがって、Mn含有量は4.00%以下とする。Mn含有量は、好ましくは3.70%以下、より好ましくは3.50%以下である。
(1-4)Ti、NbおよびVの1種または2種以上:合計で0.060~0.500%
 Ti、NbおよびVは、炭化物および窒化物として鋼中に微細析出し、析出強化により鋼の強度を向上させる元素である。また、上記炭化物を形成することによってCを固定して、せん断加工性にとって有害なセメンタイトの生成を抑制する元素である。Ti、NbおよびVの合計の含有量が0.060%未満であると、これらの効果を得ることができない。そのため、Ti、NbおよびVの合計の含有量を0.060%以上とする。なお、Ti、NbおよびVの全てが含有されている必要はなく、いずれか1種でも含まれていればよく、その合計の含有量が0.060%以上であればよい。Ti、NbおよびVの合計の含有量は、好ましくは0.080%以上、より好ましくは0.100%以上である。
 一方、Ti、NbおよびVの合計の含有量が0.500%を超えると、加工性が劣化する。そのため、Ti、NbおよびVの合計の含有量を0.500%以下とする。好ましくは0.300%以下であり、より好ましくは0.250%以下であり、より一層好ましくは0.200%以下である。
(1-5)sol.Al:0.001~2.000%
 Alは、Siと同様に、鋼を脱酸して、鋼を健全化する作用を有するとともに、フェライトの生成を促進し、熱延鋼板の延性を高める作用を有する。sol.Al含有量が0.001%未満では上記作用による効果を得ることができない。したがって、sol.Al含有量は、0.001%以上とする。sol.Al含有量は、好ましくは0.010%以上である。
 一方、sol.Al含有量が2.000%超では、上記効果が飽和するとともに経済的に好ましくないため、sol.Al含有量は2.000%以下とする。sol.Al含有量は、好ましくは1.500%以下、より好ましくは1.300%以下、より一層好ましくは1.000%以下である。
 なお、sol.Alとは酸可溶性Alを意味し、固溶状態で鋼中に存在する固溶Alのことを示す。
(1-6)P:0.100%以下
 Pは、一般的に不純物として含有される元素であるが、固溶強化により熱延鋼板の強度を高める作用を有する元素でもある。したがって、Pを積極的に含有させてもよいが、Pは偏析し易い元素であり、P含有量が0.100%を超えると、粒界偏析に起因する延性の低下が顕著となる。したがって、P含有量は、0.100%以下に制限する。P含有量は、好ましくは0.030%以下である。P含有量の下限は特に規定する必要はないが、精錬コストの観点から、0.001%とすることが好ましい。
(1-7)S:0.0300%以下
 Sは、不純物として含有される元素であり、鋼中に硫化物系介在物を形成して熱延鋼板の延性を低下させる。S含有量が0.0300%を超えると、熱延鋼板の延性が著しく低下する。したがって、S含有量は0.0300%以下に制限する。S含有量は、好ましくは0.0050%以下である。S含有量の下限は特に規定する必要はないが、精錬コストの観点から、0.0001%とすることが好ましい。
(1-8)N:0.1000%以下
 Nは、不純物として鋼中に含有される元素であり、熱延鋼板の延性を低下させる作用を有する。N含有量が0.1000%超では、熱延鋼板の延性が著しく低下する。したがって、N含有量は0.1000%以下とする。N含有量は、好ましくは0.0800%以下であり、より好ましくは0.0700%以下であり、より一層好ましくは0.0100%以下である。N含有量の下限は特に規定する必要はないが、Ti、NbおよびVの1種または2種以上を含有させて金属組織をより微細化する場合には、炭窒化物の析出を促進させるためにN含有量は0.0010%以上とすることが好ましく、0.0020%以上とすることがより好ましい。
(1-9)O:0.0100%以下
 Oは、鋼中に多く含まれると破壊の起点となる粗大な酸化物を形成し、脆性破壊や水素誘起割れを引き起こす。そのため、O含有量は0.0100%以下とする。O含有量は、好ましくは0.0080%以下、より好ましくは0.0050%以下である。溶鋼の脱酸時に微細な酸化物を多数分散させるために、O含有量は0.0005%以上、または0.0010%以上としてもよい。
 本実施形態に係る熱延鋼板の化学組成の残部は、Feおよび不純物であってもよい。本実施形態において、不純物とは、原料としての鉱石、スクラップ、または製造環境等から混入されるもの、および/または本実施形態に係る熱延鋼板に悪影響を与えない範囲で許容されるものを意味する。
 本実施形態に係る熱延鋼板は、Feの一部に代えて、Cu、Cr、Mo、Ni、B、Ca、Mg、REM、Bi、Zr、Co、Zn、WおよびSnを任意元素として含有してもよい。上記任意元素を含有させない場合の含有量の下限は0%である。以下、上記任意元素について詳細に説明する。
(1-10)Cu:0.01~2.00%、Cr:0.01~2.00%、Mo:0.01~1.00%、Ni:0.02~2.00%およびB:0.0001~0.0100%
 Cu、Cr、Mo、NiおよびBは、いずれも、熱延鋼板の焼入性を高める作用を有する。また、CuおよびMoは鋼中に炭化物として析出して熱延鋼板の強度を高める作用を有する。さらに、Niは、Cuを含有させる場合においては、Cuに起因するスラブの粒界割れを効果的に抑制する作用を有する。したがって、これらの元素の1種または2種以上を含有させてもよい。
 Cuは、熱延鋼板の焼入れ性を高める作用および低温で鋼中に炭化物として析出して熱延鋼板の強度を高める作用を有する。上記作用による効果をより確実に得るためには、Cu含有量は0.01%以上とすることが好ましく、0.05%以上とすることがより好ましい。しかし、Cu含有量が2.00%超では、スラブの粒界割れが生じる場合がある。したがって、Cu含有量は2.00%以下とする。Cu含有量は、好ましくは1.50%以下、より好ましくは1.00%以下である。
 上述したようにCrは、熱延鋼板の焼入性を高める作用を有する。上記作用による効果をより確実に得るためには、Cr含有量を0.01%以上とすることが好ましく、0.05%以上とすることがより好ましい。しかし、Cr含有量が2.00%超では、熱延鋼板の化成処理性が著しく低下する。したがって、Cr含有量は2.00%以下とする。
 上述したようにMoは、熱延鋼板の焼入性を高める作用および鋼中に炭化物として析出して熱延鋼板の強度を高める作用を有する。上記作用による効果をより確実に得るためには、Mo含有量を0.01%以上とすることが好ましく、0.02%以上とすることがより好ましい。しかし、Mo含有量を1.00%超としても上記作用による効果は飽和して経済的に好ましくない。したがって、Mo含有量は1.00%以下とする。Mo含有量は、好ましくは0.50%以下、より好ましくは0.20%以下である。
 上述したようにNiは、熱延鋼板の焼入性を高める作用を有する。またNiは、Cuを含有させる場合においては、Cuに起因するスラブの粒界割れを効果的に抑制する作用を有する。上記作用による効果をより確実に得るためには、Ni含有量は0.02%以上とすることが好ましい。Niは、高価な元素であるため、多量に含有させることは経済的に好ましくない。したがって、Ni含有量は2.00%以下とする。
 上述したようにBは、熱延鋼板の焼入れ性を高める作用を有する。この作用による効果をより確実に得るためには、B含有量を0.0001%以上とすることが好ましく、0.0002%以上とすることがより好ましい。しかし、B含有量が0.0100%超では、熱延鋼板の成形性が著しく低下するため、B含有量は0.0100%以下とする。B含有量は、0.0050%以下とすることが好ましい。
(1-11)Ca:0.0005~0.0200%、Mg:0.0005~0.0200%、REM:0.0005~0.1000%およびBi:0.0005~0.020%
 Ca、MgおよびREMは、いずれも、鋼中の介在物の形状を好ましい形状に調整することにより、熱延鋼板の延性を高める作用を有する。また、Biは、凝固組織を微細化することにより、熱延鋼板の延性を高める作用を有する。したがって、これらの元素の1種または2種以上を含有させてもよい。上記作用による効果をより確実に得るためには、Ca、Mg、REMおよびBiのいずれか1種以上を0.0005%以上とすることが好ましい。しかし、Ca含有量またはMg含有量が0.0200%を超えると、あるいはREM含有量が0.1000%を超えると、鋼中に介在物が過剰に生成され、却って熱延鋼板の延性を低下させる場合がある。また、Bi含有量を0.020%超としても、上記作用による効果は飽和してしまい、経済的に好ましくない。したがって、Ca含有量およびMg含有量を0.0200%以下、REM含有量を0.1000%以下、並びにBi含有量を0.020%以下とする。Bi含有量は、好ましくは0.010%以下である。
 ここで、REMは、Sc、Yおよびランタノイドからなる合計17元素を指し、上記REMの含有量は、これらの元素の合計含有量を指す。ランタノイドの場合、工業的にはミッシュメタルの形で添加される。
(1-12)Zr、Co、ZnおよびWのうち1種または2種以上:合計で0~1.00%、並びにSn:0~0.05%
 Zr、Co、ZnおよびWについて、本発明者らは、これらの元素を合計で1.00%以下含有させても、本実施形態に係る熱延鋼板の効果は損なわれないことを確認している。そのため、Zr、Co、ZnおよびWのうち1種または2種以上を合計で1.00%以下含有させてもよい。
 また、本発明者らは、Snを少量含有させても本実施形態に係る熱延鋼板の効果は損なわれないことを確認している。しかし、Snを多量に含有させると熱間圧延時に疵が発生する場合があるため、Sn含有量は0.05%以下とする。
 上述した熱延鋼板の化学組成は、一般的な分析方法によって測定すればよい。例えば、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。なお、sol.Alは、試料を酸で加熱分解した後の濾液を用いてICP-AESによって測定すればよい。CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用い、Oは不活性ガス融解-非分散型赤外線吸収法を用いて測定すればよい。
2.熱延鋼板の金属組織
 次に、本実施形態に係る熱延鋼板の金属組織について説明する。
 本実施形態に係る熱延鋼板は、金属組織が、面積%で、残留オーステナイトが3.0%未満であり、フェライトが15.0%以上60.0%未満であり、パーライトが5.0%未満であり、前記金属組織の周期性を示すE値が10.7以上であり、前記金属組織の均一性を示すI値が1.020未満であり、Mn濃度の標準偏差が0.60質量%以下である。そのため、本実施形態に係る熱延鋼板は、高強度、優れた延性およびせん断加工性を得ることができる。なお、本実施形態では、圧延方向に平行な断面で、表面から板厚の1/4深さ且つ板幅方向中央位置における金属組織における組織分率、E値、I値およびMn濃度の標準偏差を規定する。その理由は、この位置における金属組織が、鋼板の代表的な金属組織を示すからである。
(2-1)残留オーステナイトの面積分率:3.0%未満
 残留オーステナイトは室温でも面心立方格子として存在する金属組織である。残留オーステナイトは、変態誘起塑性(TRIP)により熱延鋼板の延性を高める作用を有する。一方、残留オーステナイトは、せん断加工中には高炭素のマルテンサイトに変態するため、安定的なき裂発生を阻害し、せん断端面に占めるせん断面比率が不安定化する原因となる。残留オーステナイトの面積分率が3.0%以上では、上記作用が顕在化し、熱延鋼板のせん断加工性が劣化する。したがって、残留オーステナイトの面積分率は3.0%未満とする。残留オーステナイトの面積分率は、好ましくは1.5%未満、より好ましくは1.0%未満である。残留オーステナイトは少ない程好ましいため、残留オーステナイトの面積分率は0%であってもよい。
 残留オーステナイトの面積分率の測定方法には、X線回折、EBSP(電子後方散乱回折像、Electron Back Scattering Diffraction Pattern)解析、磁気測定による方法などがあり、測定方法によって測定値が異なる場合がある。本実施形態では、残留オーステナイトの面積分率はX線回折により測定する。
 本実施形態におけるX線回折による残留オーステナイト面積分率の測定では、まず、熱延鋼板の板厚の1/4深さ(表面から板厚の1/8深さ~表面から板厚の3/8深さの領域)、且つ板幅方向中央位置における、圧延方向に平行な断面において、Co-Kα線を用いて、α(110)、α(200)、α(211)、γ(111)、γ(200)、γ(220)の計6ピークの積分強度を求め、強度平均法を用いて算出することで、残留オーステナイトの面積分率を得る。
(2-2)フェライトの面積分率:15.0%以上60.0%未満
 フェライトは比較的高温でfccがbccに変態したときに生成する組織である。フェライトは加工硬化率が高いため、熱延鋼板の強度-延性バランスを高める作用がある。上記の作用を得るため、フェライトの面積分率は15.0%以上とする。好ましくは20.0%以上であり、より好ましくは25.0%以上であり、より一層好ましくは30.0%以上である。
 一方、フェライトは強度が低いため、面積分率が過剰であると所望の引張強さを得ることができない。このため、フェライト面積分率は60.0%未満とする。好ましくは50.0%以下であり、より好ましくは45.0%以下である。
(2-3)パーライトの面積分率:5.0%未満
 パーライトは、フェライト同士の間にセメンタイトが層状に析出したラメラ状の金属組織であり、またベイナイトやマルテンサイトと比較すると軟質な金属組織である。パーライトの面積分率が5.0%以上であると、パーライトに含まれるセメンタイトに炭素が消費され、残部組織であるマルテンサイトおよびベイナイトの強度が低下し、980MPa以上の引張強さを得ることができない。したがって、パーライトの面積分率は5.0%未満とする。パーライトの面積分率は、好ましくは3.0%以下である。鋼板の伸びフランジ性を向上させるために、パーライトの面積分率は可能な限り低減することが好ましく、パーライトの面積分率は0%であることがより一層好ましい。
 なお、本実施形態に係る鋼板には、残留オーステナイト、フェライトおよびパーライト以外の残部組織として、合計の面積分率が32.0%超85.0%以下のベイナイト、マルテンサイトおよび焼き戻しマルテンサイトの1種または2種以上からなる硬質組織が含まれる。
 金属組織の面積分率の測定は、以下の方法で行う。圧延方向に平行な断面を鏡面に仕上げ、室温においてアルカリ性溶液を含まないコロイダルシリカを用いて8分間研磨し、サンプルの表層に導入されたひずみを除去する。サンプル断面の長手方向の任意の位置において、長さ50μm、表面から板厚の1/4深さ位置(表面から板厚の1/8深さ~表面から板厚の3/8深さの領域)、且つ板幅方向中央位置の領域を、0.1μmの測定間隔で電子後方散乱回折法により測定して結晶方位情報を得る。測定には、サーマル電界放射型走査電子顕微鏡(JEOL製JSM-7001F)とEBSD検出器(TSL製DVC5型検出器)とで構成されたEBSD解析装置を用いる。この際、EBSD解析装置内の真空度は9.6×10-5Pa以下、加速電圧は15kV、照射電流レベルは13、電子線の照射レベルは62とする。
 さらに、同一視野において反射電子像を撮影する。まず、反射電子像からフェライトとセメンタイトとが層状に析出した結晶粒を特定し、当該結晶粒の面積分率を算出することで、パーライトの面積分率を得る。その後、パーライトと判別された結晶粒を除く結晶粒に対し、得られた結晶方位情報をEBSD解析装置に付属のソフトウェア「OIM Analysis(登録商標)」に搭載された「Grain Average Misorientation」機能を用いて、Grain Average Misorientation値が1.0°以下の領域をフェライトと判定する。フェライトと判定された領域の面積分率を求めることで、フェライトの面積分率を得る。
 続いて、残部領域(Grain Average Misorientation値が1.0°超の領域)の内、5°粒界を結晶粒界の定義とした条件下で、フェライト領域の「Grain Average IQ」の最大値をIαとしたとき、Iα/2超となる領域をベイナイトとして抽出し、Iα/2以下となる領域を「パーライト、マルテンサイトおよび焼き戻しマルテンサイト」として抽出する。抽出したベイナイトの面積率を算出することで、ベイナイトの面積分率を得る。また、抽出した「パーライト、マルテンサイトおよび焼き戻しマルテンサイト」の面積分率を算出し、上述のEBSD解析により得られたパーライトの面積分率を引くことで、マルテンサイトおよび焼き戻しマルテンサイトの面積率の合計を得る。
(2-4)E値:10.7以上、I値:1.020未満
 せん断端面に占めるせん断面比率を安定化させるには、金属組織の周期性が低く、金属組織の均一性を低減することが重要である。本実施形態では、金属組織の周期性を示すE(Entropy)値および金属組織の均一性を示すI(Inverce differenced moment norm)値を制御することで、せん断端面に占めるせん断面比率を安定化させる。
 E値は金属組織の周期性を表す。バンド状組織が形成する等の影響で輝度が周期的に配列している、すなわち金属組織の周期性が高い場合にはE値は低下する。本実施形態では、周期性が低い金属組織とする必要があるため、E値を高める必要がある。E値が10.7未満であると、せん断端面に占めるせん断面比率が不安定化しやすくなる。周期的に配列した組織を起点として、せん断加工のごく早期にせん断工具の刃先からき裂が発生して破断面が形成され、その後再びせん断面が形成される。これにより、せん断端面に占めるせん断面比率が不安定化しやすくなると推定される。よって、E値は10.7以上とする。好ましくは10.8以上であり、より好ましくは11.0以上である。E値は高い程好ましく、上限は特に規定しないが、13.0以下、12.5以下、または12.0以下としてもよい。
 I値は金属組織の均一性を表し、一定の輝度を持つ領域の面積が広いほど上昇する。I値が高いことは、金属組織の均一性が高いことを意味する。本実施形態では、金属組織の均一性が低い金属組織とする必要があるため、I値を低減する必要がある。I値が低く金属組織の均一性が低いと、結晶粒内の析出物や元素濃度差に起因する硬度差の影響で、せん断工具の先端からき裂が発生しやすくなり、せん断面比率を安定させることができる。I値が1.020以上であると、せん断端面に占めるせん断面比率を安定化することができないと推定される。よって、I値は1.020未満とする。好ましくは1.015以下であり、より好ましくは1.010以下である。I値の下限は特に規定しないが、0.900以上、0.950以上、または1.000以上としてもよい。
 E値およびI値は以下の方法により得ることができる。
 本実施形態において、E値およびI値を算出するために撮影するSEM画像の撮影領域は、圧延方向に平行な断面における、鋼板表面から板厚の1/4深さ位置(表面から板厚の1/8深さ~表面から板厚の3/8深さの領域)、且つ、板幅方向中央位置とする。SEM画像の撮影には、株式会社日立ハイテクノロジーズ製SU-6600ショットキー電子銃を使用し、エミッタをタングステンとし、加速電圧を1.5kVとする。以上の設定のもと、倍率1000倍で、256階調のグレースケールにてSEM画像を出力する。
 次に、得られたSEM画像を880×880ピクセルの領域に切り出した画像に、非特許文献3に記載の、コントラスト強調の制限倍率を2.0とした、タイルグリッドサイズが8×8の平滑化処理を施す。90度を除いて、0度から179度まで1度毎に反時計回りに平滑化処理後のSEM画像を回転させ、1度毎に画像を作成することで、合計で179枚の画像を得る。次に、これら179枚の画像それぞれに対し、非特許文献1に記載のGLCM法を用いて、隣接するピクセル間の輝度の頻度値を行列の形式にて採取する。
 以上の方法により採取された179個の頻度値の行列を、kを元画像からの回転角度として、p(k=0・・・89、91、・・・179)と表現する。各画像に対し、生成されたpを全てのk(k=0・・・89、91・・・179)について合計した後に、各成分の総和が1となるように規格化した256×256の行列Pを算出する。更に、非特許文献2に記載の下記式(1)および式(2)を用いて、E値およびI値をそれぞれ算出する。下記式(1)および式(2)では、行列Pのi行j列目の値をPijと表記している。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
(2-5)Mn濃度の標準偏差:0.60質量%以下
 本実施形態に係る熱延鋼板の表面から板厚の1/4深さ且つ板幅方向中央位置におけるMn濃度の標準偏差は0.60質量%以下である。これにより、硬質相を均一に分散させることができ、せん断加工のごく早期にせん断工具の刃先からき裂が発生することを防ぐことができる。その結果、せん断端面に占めるせん断面比率を安定化することができる。Mn濃度の標準偏差は、0.50質量%以下が好ましく、0.47質量%以下がより好ましい。Mn濃度の標準偏差の下限は、過大バリの抑制の観点から、その値は小さいほど望ましいが、製造プロセスの制約より、実質的な下限は0.10質量%である。
 熱延鋼板の圧延方向に平行な断面(L断面)を鏡面研磨した後に、鋼板の表面から板厚の1/4深さ(表面から板厚の1/8深さ~表面から板厚の3/8深さの領域)、且つ板幅方向中央位置を電子プローブマイクロアナライザ(EPMA)で測定して、Mn濃度の標準偏差を測定する。測定条件は加速電圧を15kVとし、倍率を5000倍として試料圧延方向に20μm及び試料板厚方向に20μmの範囲の分布像を測定する。より具体的には、測定間隔を0.1μmとし、40000か所以上のMn濃度を測定する。次いで、全測定点から得られたMn濃度に基づいて標準偏差を算出することで、Mn濃度の標準偏差を得る。
(2-6)表層の平均結晶粒径:3.0μm未満
 表層の結晶粒径を細かくすることで、熱延鋼板の曲げ内割れを抑制することができる。鋼板強度が高くなるほど、曲げ加工時に曲げ内側から亀裂が生じやすくなる(以下、曲げ内割れと呼称する)。曲げ内割れのメカニズムは以下のように推定される。曲げ加工時には曲げ内側に圧縮の応力が生じる。最初は曲げ内側全体が均一に変形しながら加工が進むが、加工量が大きくなると均一な変形のみで変形を担えなくなり、局所にひずみが集中することで変形が進む(せん断変形帯の発生)。このせん断変形帯が更に成長することで曲げ内側表面からせん断帯に沿った亀裂が発生し、成長する。高強度化に伴い曲げ内割れが発生しやすくなる理由は、高強度化に伴う加工硬化能の低下により、均一な変形が進みにくくなり、変形の偏りが生じやすくなることで、加工早期に(または緩い加工条件で)せん断変形帯が生じるためと推定される。
 本発明者らの研究により、曲げ内割れは、引張強さ980MPa級以上の鋼板で顕著になることが分かった。また、本発明者らは、熱延鋼板の表層の結晶粒径が細かいほど、局所的なひずみ集中が抑制され、曲げ内割れが発生しにくくなることを見出した。上記作用を得るためには、熱延鋼板の表層の平均結晶粒径は3.0μm未満とすることが好ましい。そのため、本実施形態では、表層の平均結晶粒径を3.0μm未満としてもよい。表層の平均結晶粒径は、より好ましくは2.5μm以下である。表層領域の平均結晶粒径の下限は特に規定しないが、0.5μmとしてもよい。
 なお、本実施形態において表層とは、熱延鋼板の表面~表面から深さ50μm位置の領域である。
 表層の結晶粒径は、EBSP-OIM(Electron Back Scatter Diffraction Pattern-Orientation Image Microscopy)法を用いて測定する。EBSP-OIM法は、走査型電子顕微鏡とEBSP解析装置とを組み合わせた装置及びAMETEK社製のOIM Analysis(登録商標)を用いて行う。EBSP-OIM法の分析可能エリアは、SEMで観察できる領域である。SEMの分解能にもよるが、EBSP-OIM法によれば、最小20nmの分解能で分析できる。
 熱延鋼板の圧延方向に平行な断面における、熱延鋼板の表面~表面から深さ50μm位置且つ板幅方向中央位置の領域において、1200倍の倍率、40μm×30μmの領域で、少なくとも5視野において解析を行い、隣接する測定点の角度差が5°以上の場所を結晶粒界と定義し、面積平均の結晶粒径を算出する。得られた面積平均の結晶粒径を、表層の平均結晶粒径とする。
3.引張強度特性
 熱延鋼板の機械的性質のうち引張強度特性(引張強さ、全伸び)は、JIS Z 2241:2011に準拠して評価する。試験片はJIS Z 2241:2011の5号試験片とする。引張試験片の採取位置は、板幅方向の端部から1/4部分とし、圧延方向に垂直な方向を長手方向とすればよい。
 本実施形態に係る熱延鋼板は、引張(最大)強さが980MPa以上である。好ましくは1000MPa以上である。引張強さが980MPa未満であると、適用部品が限定され、車体軽量化の寄与が小さい。上限は特に限定する必要は無いが、金型摩耗抑制の観点から、1780MPaとしてもよい。
 また、全伸びは12.0%以上とすることが好ましく、引張強さと全伸びとの積(TS×El)は15000MPa・%以上とすることが好ましい。全伸びは13.0%以上とすることがより好ましく、14.0%以上とすることがより一層好ましい。また、引張強さと全伸びとの積は15500MPa・%以上とすることがより好ましく、16000MPa・%MPa以上とすることがより一層好ましい。全伸びを12.0%以上且つ引張強さと全伸びとの積を15000MPa・%以上とすることで、適用部品が限定されることなく、車体軽量化に大きく寄与することができる。
4.板厚
 本実施形態に係る熱延鋼板の板厚は特に限定されないが、1.2~8.0mmとしてもよい。熱延鋼板の板厚が1.2mm未満では、圧延完了温度の確保が困難になるとともに圧延荷重が過大となって、熱間圧延が困難となる場合がある。したがって、本実施形態に係る熱延鋼板の板厚は1.2mm以上としてもよい。好ましくは1.4mm以上である。一方、板厚が8.0mm超では、金属組織の微細化が困難となり、上述した金属組織を得ることが困難となる場合がある。したがって、板厚は8.0mm以下としてもよい。好ましくは6.0mm以下である。
5.その他
(5-1)めっき層
 上述した化学組成および金属組織を有する本実施形態に係る熱延鋼板は、表面に耐食性の向上等を目的としてめっき層を備えさせて表面処理鋼板としてもよい。めっき層は電気めっき層であってもよく溶融めっき層であってもよい。電気めっき層としては、電気亜鉛めっき、電気Zn-Ni合金めっき等が例示される。溶融めっき層としては、溶融亜鉛めっき、合金化溶融亜鉛めっき、溶融アルミニウムめっき、溶融Zn-Al合金めっき、溶融Zn-Al-Mg合金めっき、溶融Zn-Al-Mg-Si合金めっき等が例示される。めっき付着量は特に制限されず、従来と同様としてよい。また、めっき後に適当な化成処理(例えば、シリケート系のクロムフリー化成処理液の塗布と乾燥)を施して、耐食性をさらに高めることも可能である。
6.製造条件
 上述した化学組成および金属組織を有する本実施形態に係る熱延鋼板の好適な製造方法は、以下の通りである。
 本実施形態に係る熱延鋼板を得るためには、所定の条件でスラブの加熱を行った後に熱間圧延を行い、所定の温度域まで加速冷却し、その後緩冷却し、巻き取るまでの冷却履歴を制御することが効果的である。
 本実施形態に係る熱延鋼板の好適な製造方法では、以下の工程(1)~(9)を順次行う。なお、本実施形態におけるスラブの温度および鋼板の温度は、スラブの表面温度および鋼板の表面温度のことをいう。また、応力は鋼板の圧延方向に負荷する応力のことをいう。
(1)スラブを700~850℃の温度域で900秒以上保持した後、更に加熱し、1100℃以上の温度域で6000秒以上保持する。
(2)850~1100℃の温度域で合計90%以上の板厚減となるような熱間圧延を行う。
(3)熱間圧延の最終段から1段前の圧延後、且つ最終段の圧延前に、170kPa以上の応力を鋼板に負荷する。
(4)熱間圧延の最終段における圧下率を8%以上とし、圧延完了温度Tfが900℃以上かつ1010℃未満となるように熱間圧延を完了する。
(5)熱間圧延の最終段の圧延後、且つ鋼板が800℃に冷却されるまでに鋼板に負荷する応力を200kPa未満とする。
(6)熱間圧延完了後1秒以内に、熱間圧延完了温度Tf-50℃以下の温度域まで冷却した後、50℃/秒以上の平均冷却速度で600~730℃の温度域まで加速冷却する。ただし、熱間圧延完了後1秒以内に、熱間圧延完了温度Tf-50℃以下の温度域まで冷却することは、より好ましい冷却条件である。
(7)600~730℃の温度域で、平均冷却速度が5℃/s未満である緩冷却を2.0秒以上行う。
(8)50℃/s以上の平均冷却速度で600℃未満の温度域まで冷却する。
(9)400℃以上600℃未満の温度域で巻き取る。
 上記製造方法を採用することにより、強度、延性およびせん断加工性に優れる金属組織を有する熱延鋼板を安定して製造することができる。すなわち、スラブ加熱条件と熱延条件とを適正に制御することによって、Mn偏析の低減と変態前オーステナイトの等軸化とが図られ、後述する熱間圧延後の冷却条件と相俟って、所望の金属組織を有する熱延鋼板を安定して製造することができる。
(6-1)スラブ、熱間圧延に供する際のスラブ温度および保持時間
 熱間圧延に供するスラブは、連続鋳造により得られたスラブや鋳造・分塊により得られたスラブなどを用いることができ、必要によってはそれらに熱間加工または冷間加工を加えたものを用いることができる。熱間圧延に供するスラブは、スラブ加熱時に、700~850℃の温度域で900秒以上保持した後、更に加熱し、1100℃以上の温度域で6000秒以上保持することが好ましい。なお、700~850℃の温度域での保持時には、鋼板温度をこの温度域で変動させてもよく、一定としてもよい。また、1100℃以上での保持時には、鋼板温度を1100℃以上の温度域で変動させてもよく、一定としてもよい。700~850℃の温度域におけるオーステナイト変態において、Mnがフェライトとオーステナイトとの間で分配し、その変態時間を長くすることによって、Mnがフェライト領域内を拡散することができる。これにより、スラブに偏在するMnミクロ偏析を解消し、Mn濃度の標準偏差を著しく減ずることができる。また、1100℃以上の温度域で6000秒以上保持することで、スラブ加熱時のオーステナイト粒を均一にすることができる。
 熱間圧延は、多パス圧延としてレバースミルまたはタンデムミルを用いることが好ましい。特に工業的生産性の観点および圧延中の鋼板への応力負荷の観点から、少なくとも最終の2段はタンデムミルを用いた熱間圧延とすることがより好ましい。
(6-2)熱間圧延の圧下率:850~1100℃の温度域で合計90%以上の板厚減
 850~1100℃の温度域で合計90%以上の板厚減となるような熱間圧延を行うことにより、主に再結晶オーステナイト粒の微細化が図られるとともに、未再結晶オーステナイト粒内へのひずみエネルギーの蓄積が促進される。そして、オーステナイトの再結晶が促進されるとともにMnの原子拡散が促進され、Mn濃度の標準偏差を小さくすることができる。したがって、850~1100℃の温度域で合計90%以上の板厚減となるような熱間圧延を行うことが好ましい。
 なお、850~1100℃の温度域の板厚減とは、この温度域の圧延における最初の圧延前の入口板厚をtとし、この温度域の圧延における最終段の圧延後の出口板厚をtとしたとき、{(t-t)/t}×100(%)で表すことができる。
(6-3)熱間圧延の最終段から1段前の圧延後、且つ最終段の圧延前の応力:170kPa以上
 熱間圧延の最終段から1段前の圧延後、且つ最終段の圧延前の鋼板に負荷する応力を170kPa以上とすることが好ましい。これにより、最終段から1段前の圧延後の再結晶オーステナイトのうち、{110}<001>の結晶方位を有する結晶粒の数を低減することができる。{110}<001>は再結晶し難い結晶方位であるため、この結晶方位の形成を抑制することで最終段の圧下による再結晶を効果的に促進することができる。結果として、熱延鋼板のバンド状組織が改善され、金属組織の周期性が低減し、E値が上昇する。鋼板に負荷する応力が170kPa未満の場合、10.7以上のE値を達成することができない場合がある。鋼板に負荷する応力は、より好ましくは190kPa以上である。鋼板に負荷する応力は、タンデム圧延中のロール回転速度の調整により制御可能である。
(6-4)熱間圧延の最終段における圧下率:8%以上、熱間圧延完了温度Tf:900℃以上1010℃未満
 熱間圧延の最終段における圧下率は8%以上とし、熱間圧延完了温度Tfは900℃以上とすることが好ましい。熱間圧延の最終段における圧下率を8%以上とすることで、最終段の圧下による再結晶を促進することができる。結果として熱延鋼板のバンド状組織が改善され、金属組織の周期性が低減し、E値が上昇する。熱間圧延完了温度Tfを900℃以上とすることで、オーステナイト中のフェライト核生成サイト数の過剰な増大を抑制することができる。その結果、最終組織(製造後の熱延鋼板の金属組織)におけるフェライトの生成を抑えられ、高強度の熱延鋼板を得ることができる。また、Tfを1010℃未満とすることで、オーステナイト粒径の粗大化を抑制でき、金属組織の周期性を低減してE値を10.7以上とすることができる。
(6-5)熱間圧延の最終段の圧延後、且つ鋼板が800℃に冷却されるまでの応力:200kPa未満
 熱間圧延の最終段の圧延後、且つ鋼板が800℃に冷却されるまでの鋼板に負荷する応力は200kPa未満とすることが好ましい。鋼板に負荷する応力を200kPa未満とすることで、オーステナイトの再結晶が圧延方向に優先的に進み、金属組織の周期性の増大を抑制できる。その結果、E値を10.7以上とすることができる。鋼板に負荷する応力は、より好ましくは180MPa以下である。
(6-6)熱間圧延完了後1秒以内に、熱間圧延完了温度Tf-50℃以下の温度域まで冷却した後、50℃/秒以上の平均冷却速度で600~730℃の温度域まで加速冷却
 熱間圧延により細粒化したオーステナイト結晶粒の成長を抑制するため、熱間圧延完了後1秒以内に、50℃以上冷却することがより好ましい。熱間圧延完了後1秒以内に熱間圧延完了温度Tf-50℃以下の温度域まで冷却するためには、熱間圧延完了直後に平均冷却速度の大きい冷却を行う、例えば冷却水を鋼板表面に噴射すればよい。熱間圧延完了後1秒以内にTf-50℃以下の温度域まで冷却することにより、表層の結晶粒径を微細化でき、耐曲げ内割れ性を高めることができる。
 また、前記冷却後に50℃/秒以上の平均冷却速度で730℃以下の温度域まで加速冷却を行うことで、析出強化量が少ないフェライトおよびパーライトの生成を抑制できる。これにより、熱延鋼板の強度が向上する。なお、ここでいう平均冷却速度とは、加速冷却開始時(冷却設備への鋼板の導入時)から加速冷却完了時(冷却設備から鋼板の導出時)までの鋼板の温度降下幅を、加速冷却開始時から加速冷却完了時までの所要時間で除した値のことをいう。
 冷却速度の上限値は特に規定しないが、冷却速度を速くすると冷却設備が大掛かりとなり、設備コストが高くなる。このため、設備コストを考えると、300℃/秒以下が好ましい。また、加速冷却の冷却停止温度は600℃以上とするとよい。
(6-7)600~730℃の温度域で、平均冷却速度が5℃/s未満である緩冷却を2.0秒以上行う
 600~730℃の温度域で、平均冷却速度が5℃/s未満である緩冷却を2.0秒以上行うことにより、析出強化したフェライトを十分に析出させることができる。これにより、熱延鋼板の強度と延性とを両立することができる。なお、ここでいう平均冷却速度とは、加速冷却の冷却停止温度から緩冷却の停止温度までの鋼板の温度降下幅を、加速冷却の停止時から緩冷却の停止時までの所要時間で除した値のことをいう。
 緩冷却を行う時間は、好ましくは3.0秒以上である。緩冷却を行う時間の上限は、設備レイアウトによって決定されるが、おおむね10.0秒未満とすればよい。また、緩冷却の平均冷却速度の下限は特に設けないが、冷却させずに昇温させることは設備上大きな投資を伴うため、0℃/s以上としてもよい。
(6-8)巻取り温度までの平均冷却速度:50℃/秒以上
 パーライトの面積分率を抑え、980MPa以上の引張強さを得るために、緩冷却の冷却停止温度から巻取り温度までの平均冷却速度を50℃/秒以上とすることが好ましい。これにより、母相組織を硬質にすることができる。なお、ここでいう平均冷却速度とは、平均冷却速度が5℃/s未満である緩冷却の冷却停止温度から巻取り温度までの鋼板の温度降下幅を、平均冷却速度が5℃/s未満である緩冷却の停止時から巻取りまでの所要時間で除した値のことをいう。
(6-9)巻取り温度:400℃以上600℃未満
 巻取り温度は400℃以上600℃未満の温度域とする。巻取り温度をこの温度域とすることで、鉄炭化物の析出量を増加させ、且つ硬質相内の硬度分布のばらつきを向上できる。その結果、I値を低減することができ、優れたせん断加工性を得ることができる。
 次に、実施例により本発明の一態様の効果を更に具体的に説明するが、実施例での条件は、本発明の実施可能性および効果を確認するために採用した一条件例であり、本発明はこの一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 表1および表2に示す化学組成を有する鋼を溶製し、連続鋳造により厚みが240~300mmのスラブを製造した。得られたスラブを用いて、表3A~表4Bに示す製造条件により、表5A~表6Bに示す熱延鋼板を得た。なお、緩冷却の平均冷却速度は5℃/s未満とした。
 得られた熱延鋼板に対し、上述の方法により、金属組織の面積分率、E値、I値、Mn濃度の標準偏差、表層の平均結晶粒径、引張強さTSおよび全伸びElを求めた。得られた測定結果を表5A~表6Bに示す。
 なお、残部組織はベイナイト、マルテンサイトおよび焼き戻しマルテンサイトの1種または2種以上であった。
 熱延鋼板の特性の評価方法
 (1)引張強度特性
 引張強さTSが980MPa以上、かつ全伸びElが12.0%以上、かつ引張強さTS×全伸びElが15000MPa・%以上であった場合、強度および延性に優れた熱延鋼板であるとして合格と判定した。いずれか一つでも満たさなかった場合、強度および延性に優れた熱延鋼板でないとして不合格と判定した。
(2)せん断加工性
 熱延鋼板のせん断加工性は、打ち抜き試験によりせん断面比率を求めることで評価した。板幅中央位置に、穴直径10mm、クリアランス15%、打ち抜き速度3m/sで5個の打ち抜き穴を作製した。次に、5個の打ち抜き穴について、10箇所の圧延方向に平行な端面(1個の打ち抜き穴につき2箇所の端面)の様子を光学顕微鏡観で撮影した。得られた観察写真では、図1(a)に示すような端面を観察することができる。図1(a)および(b)に示すように、打ち抜き後の端面では、ダレ、せん断面、破断面およびバリが観察される。なお、図1(a)は打ち抜き穴の圧延方向に平行な端面の概略図であり、図1(b)は、打ち抜き穴の側面の概略図である。ダレとはR状の滑らかな面であり、せん断面とはせん断変形により分離した打ち抜き端面であり、破断面とはせん断変形終了後、刃先近傍から発生したき裂によって分離した打ち抜き端面であり、バリとは熱延鋼板の下面からはみ出した突起を有する面である。5個の端面から得られた10個の端面の観察写真において、端面に占めるせん断面比率を測定し、得られたせん断面比率(%)の最小値を最大値で除した値(せん断面比率の最小値/せん断面比率の最大値)を算出した。この値が0.70以上であった場合、せん断加工性に優れた熱延鋼板であるとして、合格と判定した。一方、この値が0.70未満であった場合、せん断加工性に劣る熱延鋼板であるとして、不合格と判定した。
 なお、端面に占めるせん断面の比率(せん断面比率)は、図1(a)に示すように、端面の観察写真において熱延鋼板の上面および下面に直角な直線1を引き、その直線1におけるダレの長さd1、せん断面の長さd2、破断面の長さd3およびバリの長さd4の合計に対する、せん断面の長さd2の比率(=d2/(d1+d2+d3+d4)×100)を算出することで得られる。
(3)耐曲げ内割れ性
 以下の曲げ試験により、耐曲げ内割れ性を評価した。
 熱延鋼板の幅方向1/2位置から、100mm×30mmの短冊形状の試験片を切り出して曲げ試験片を得た。曲げ稜線が圧延方向(L方向)に平行である曲げ(L軸曲げ)と、曲げ稜線が圧延方向に垂直な方向(C方向)に平行である曲げ(C軸曲げ)の両者について、JIS Z 2248:2014(Vブロック90°曲げ試験)に準拠して耐曲げ内割れ性を調査し、亀裂の発生しない最小曲げ半径を求めた。L軸とC軸との最小曲げ半径の平均値を板厚で除した値を限界曲げR/tとして耐曲げ内割れ性の指標値とした。R/tが2.5以下であった場合、耐曲げ内割れ性に優れた熱延鋼板であると判断した。
 ただし、亀裂の有無は、Vブロック90°曲げ試験後の試験片を曲げ方向と平行でかつ板面に垂直な面で切断した断面を鏡面研磨後、光学顕微鏡で亀裂を観察し、試験片の曲げ内側に観察される亀裂長さが30μmを超える場合に亀裂有と判断した。
 得られた結果を表6Aおよび表6Bに示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 表5A~表6Bを見ると、本発明例に係る熱延鋼板は、優れた強度、延性およびせん断加工性を有することが分かる。また、本発明例のうち、表層の平均結晶粒径が3.0μm未満である熱延鋼板は、上記諸特性を有した上で更に、優れた耐曲げ内割れ性を有することが分かる。
 一方、比較例に係る熱延鋼板は、優れた強度、延性およびせん断加工性のいずれか1つ以上を有さないことが分かる。
 本発明に係る上記態様によれば、優れた強度、延性およびせん断加工性を有する熱延鋼板を提供することができる。また、本発明に係る上記の好ましい態様によれば、上記諸特性を有した上で更に、曲げ内割れの発生が抑制された、すなわち耐曲げ内割れ性に優れた熱延鋼板を得ることができる。
 本発明に係る熱延鋼板は、自動車部材、機械構造部材さらには建築部材に用いられる工業用素材として好適である。

Claims (3)

  1.  化学組成が、質量%で、
    C:0.050~0.250%、
    Si:0.05~3.00%、
    Mn:1.00~4.00%、
    Ti、NbおよびVのうち1種または2種以上:合計で0.060~0.500%、
    sol.Al:0.001~2.000%、
    P:0.100%以下、
    S:0.0300%以下、
    N:0.1000%以下、
    O:0.0100%以下、
    Cu:0~2.00%、
    Cr:0~2.00%、
    Mo:0~1.00%、
    Ni:0~2.00%、
    B:0~0.0100%、
    Ca:0~0.0200%、
    Mg:0~0.0200%、
    REM:0~0.1000%、
    Bi:0~0.020%、
    Zr、Co、ZnおよびWのうち1種または2種以上:合計で0~1.00%、並びに
    Sn:0~0.05%を含有し、
     残部がFeおよび不純物からなり、
     金属組織が、
      面積%で、残留オーステナイトが3.0%未満であり、フェライトが15.0%以上60.0%未満であり、パーライトが5.0%未満であり、
      前記金属組織の周期性を示すE値が10.7以上であり、前記金属組織の均一性を示すI値が1.020未満であり、
      Mn濃度の標準偏差が0.60質量%以下であり、
     引張強さが980MPa以上である
    ことを特徴とする熱延鋼板。
  2.  表層の平均結晶粒径が3.0μm未満であることを特徴とする請求項1に記載の熱延鋼板。
  3.  前記化学組成が、質量%で、
    Cu:0.01~2.00%、
    Cr:0.01~2.00%、
    Mo:0.01~1.00%、
    Ni:0.02~2.00%、
    B:0.0001~0.0100%、
    Ca:0.0005~0.0200%、
    Mg:0.0005~0.0200%、
    REM:0.0005~0.1000%、および
    Bi:0.0005~0.020%
    からなる群から選択される1種または2種以上を含有する
    ことを特徴とする請求項1または2に記載の熱延鋼板。
PCT/JP2021/022677 2020-08-27 2021-06-15 熱延鋼板 WO2022044495A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020237004372A KR20230035624A (ko) 2020-08-27 2021-06-15 열연 강판
JP2022545468A JP7495641B2 (ja) 2020-08-27 2021-06-15 熱延鋼板
MX2023001627A MX2023001627A (es) 2020-08-27 2021-06-15 Lamina de acero laminada en caliente.
CN202180056206.4A CN116113508A (zh) 2020-08-27 2021-06-15 热轧钢板
US18/016,141 US20230257845A1 (en) 2020-08-27 2021-06-15 Hot-rolled steel sheet
EP21860926.1A EP4206344A4 (en) 2020-08-27 2021-06-15 HOT ROLLED STEEL SHEET

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020143743 2020-08-27
JP2020-143743 2020-08-27

Publications (1)

Publication Number Publication Date
WO2022044495A1 true WO2022044495A1 (ja) 2022-03-03

Family

ID=80353091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022677 WO2022044495A1 (ja) 2020-08-27 2021-06-15 熱延鋼板

Country Status (7)

Country Link
US (1) US20230257845A1 (ja)
EP (1) EP4206344A4 (ja)
JP (1) JP7495641B2 (ja)
KR (1) KR20230035624A (ja)
CN (1) CN116113508A (ja)
MX (1) MX2023001627A (ja)
WO (1) WO2022044495A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149374A1 (ja) * 2022-02-02 2023-08-10 日本製鉄株式会社 熱延鋼板

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57160509A (en) * 1981-03-31 1982-10-02 Nippon Steel Corp Hot finish rolling method and its device
JPH1016A (ja) 1996-06-14 1998-01-06 Kubota Corp コンバインの排ワラ搬送装置
JP2005179703A (ja) 2003-12-16 2005-07-07 Kobe Steel Ltd 伸び、及び伸びフランジ性に優れた高強度鋼板
JP2005298924A (ja) 2004-04-13 2005-10-27 Nippon Steel Corp 打ち抜き加工性に優れた高強度熱延鋼板及びその製造方法
JP2007070661A (ja) * 2005-09-05 2007-03-22 Nippon Steel Corp 伸びと穴拡げ性に優れた高強度薄鋼板およびその製造方法
WO2017017933A1 (ja) * 2015-07-27 2017-02-02 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
WO2019009410A1 (ja) * 2017-07-07 2019-01-10 新日鐵住金株式会社 熱延鋼板及びその製造方法
JP2020143743A (ja) 2019-03-07 2020-09-10 Thk株式会社 ボールスプライン
WO2021065346A1 (ja) * 2019-10-01 2021-04-08 日本製鉄株式会社 熱延鋼板

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161326A (ja) 1997-08-06 1999-03-05 Nippon Steel Corp 耐衝突安全性及び成形性に優れた自動車用高強度鋼板とその製造方法
JP3355970B2 (ja) 1996-12-10 2002-12-09 日本鋼管株式会社 打ち抜き性に優れる冷延鋼板の製造方法
JP5223360B2 (ja) * 2007-03-22 2013-06-26 Jfeスチール株式会社 成形性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5838796B2 (ja) * 2011-12-27 2016-01-06 Jfeスチール株式会社 伸びフランジ性に優れた高強度熱延鋼板およびその製造方法
JP6275510B2 (ja) * 2014-02-27 2018-02-07 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
CN106661689B (zh) * 2014-07-14 2018-09-04 新日铁住金株式会社 热轧钢板
JP6610113B2 (ja) * 2015-09-16 2019-11-27 日本製鉄株式会社 高強度合金化溶融亜鉛めっき鋼板と該鋼板用熱延鋼板及びそれらの製造方法
JP6455461B2 (ja) * 2016-02-26 2019-01-23 Jfeスチール株式会社 曲げ性に優れた高強度鋼板およびその製造方法
JP6762798B2 (ja) * 2016-08-03 2020-09-30 株式会社神戸製鋼所 高強度鋼板およびその製造方法
JP6414246B2 (ja) * 2017-02-15 2018-10-31 Jfeスチール株式会社 高強度鋼板およびその製造方法
CN110506134A (zh) * 2017-03-31 2019-11-26 日本制铁株式会社 热轧钢板
CN112805395B (zh) * 2018-10-19 2023-03-28 日本制铁株式会社 热轧钢板及其制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57160509A (en) * 1981-03-31 1982-10-02 Nippon Steel Corp Hot finish rolling method and its device
JPH1016A (ja) 1996-06-14 1998-01-06 Kubota Corp コンバインの排ワラ搬送装置
JP2005179703A (ja) 2003-12-16 2005-07-07 Kobe Steel Ltd 伸び、及び伸びフランジ性に優れた高強度鋼板
JP2005298924A (ja) 2004-04-13 2005-10-27 Nippon Steel Corp 打ち抜き加工性に優れた高強度熱延鋼板及びその製造方法
JP2007070661A (ja) * 2005-09-05 2007-03-22 Nippon Steel Corp 伸びと穴拡げ性に優れた高強度薄鋼板およびその製造方法
WO2017017933A1 (ja) * 2015-07-27 2017-02-02 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
WO2019009410A1 (ja) * 2017-07-07 2019-01-10 新日鐵住金株式会社 熱延鋼板及びその製造方法
JP2020143743A (ja) 2019-03-07 2020-09-10 Thk株式会社 ボールスプライン
WO2021065346A1 (ja) * 2019-10-01 2021-04-08 日本製鉄株式会社 熱延鋼板

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
D. L. NAIKH. U. SAJIDR. KIRAN, METALS, vol. 9, 2019, pages 546
J. WEBELJ. GOLAD. BRITZF. MUCKLICH, MATERIALS CHARACTERIZATION, vol. 144, 2018, pages 584 - 596
K. ZUIDERVELD: "Contrast Limited Adaptive Histogram Equalization", 1994, ACADEMIC PRESS, pages: 474 - 485
See also references of EP4206344A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149374A1 (ja) * 2022-02-02 2023-08-10 日本製鉄株式会社 熱延鋼板

Also Published As

Publication number Publication date
JP7495641B2 (ja) 2024-06-05
JPWO2022044495A1 (ja) 2022-03-03
EP4206344A4 (en) 2023-12-13
US20230257845A1 (en) 2023-08-17
EP4206344A1 (en) 2023-07-05
MX2023001627A (es) 2023-03-09
CN116113508A (zh) 2023-05-12
KR20230035624A (ko) 2023-03-14

Similar Documents

Publication Publication Date Title
WO2021065346A1 (ja) 熱延鋼板
WO2022044493A1 (ja) 熱延鋼板
JP6784344B1 (ja) 熱延鋼板
JP6784343B1 (ja) 熱延鋼板
WO2023063010A1 (ja) 熱間圧延鋼板
WO2022044492A1 (ja) 熱延鋼板
WO2022044495A1 (ja) 熱延鋼板
WO2023149374A1 (ja) 熱延鋼板
WO2023063014A1 (ja) 熱間圧延鋼板
WO2022044494A1 (ja) 熱延鋼板
WO2021153037A1 (ja) 熱延鋼板
WO2021182395A1 (ja) 熱延鋼板
WO2022091489A1 (ja) 熱間圧延鋼板
WO2024053701A1 (ja) 熱延鋼板
WO2021153036A1 (ja) 熱延鋼板
US12123064B2 (en) Hot-rolled steel sheet
WO2024095809A1 (ja) 熱延鋼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860926

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202317006532

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20237004372

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022545468

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021860926

Country of ref document: EP

Effective date: 20230327