WO2023167148A1 - リン含有(メタ)アクリロイル化合物、その製造方法、及びリン含有(メタ)アクリロイル化合物を含む難燃性樹脂組成物、硬化物、並びに電子回路基板用積層板 - Google Patents

リン含有(メタ)アクリロイル化合物、その製造方法、及びリン含有(メタ)アクリロイル化合物を含む難燃性樹脂組成物、硬化物、並びに電子回路基板用積層板 Download PDF

Info

Publication number
WO2023167148A1
WO2023167148A1 PCT/JP2023/007119 JP2023007119W WO2023167148A1 WO 2023167148 A1 WO2023167148 A1 WO 2023167148A1 JP 2023007119 W JP2023007119 W JP 2023007119W WO 2023167148 A1 WO2023167148 A1 WO 2023167148A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphorus
meth
compound
general formula
acryloyl
Prior art date
Application number
PCT/JP2023/007119
Other languages
English (en)
French (fr)
Inventor
次俊 和佐野
Original Assignee
日鉄ケミカル&マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ケミカル&マテリアル株式会社 filed Critical 日鉄ケミカル&マテリアル株式会社
Publication of WO2023167148A1 publication Critical patent/WO2023167148A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • C08F283/08Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals on to polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F30/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F30/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen

Definitions

  • the present invention relates to a reactive phosphorus compound, particularly a phosphorus-containing (meth)acryloyl compound, which is suitably used as a reactive flame retardant for plastic materials.
  • plastic materials Due to their excellent mechanical properties and moldability, plastic materials are used in a wide range of applications, from building materials to electrical and electronic equipment. However, since most plastic materials are flammable, they must be made flame-retardant for safety against heat generation, ignition, and fire in the applications where they are used, such as electrical/electronic products, OA equipment, and communication equipment.
  • additive-type flame retardants such as halogen-based flame retardants, inorganic flame-retardants, phosphorus-based flame retardants and the like is common regardless of resin type and application.
  • halogen-based flame retardants mainly brominated
  • Inorganic flame retardants such as magnesium hydroxide and aluminum hydroxide have a flame retardant effect by absorbing heat, but they must be added in large amounts to achieve sufficient flame retardancy. This causes deterioration of the characteristics. Therefore, many phosphorus-based flame retardants that do not generate harmful substances and can be flame retarded with a relatively small amount of addition are often used. , the effect on the characteristics is inevitable.
  • reactive flame retardants containing phosphorus atoms which are flame-retardant components, and having reactive groups have been developed and have been widely used.
  • reactive flame retardants applicable to epoxy resin compositions that are frequently used in the electronic and electrical fields include, for example, Patent Document 1, as a curing agent for epoxy resins, reacting bisphenol A and formaldehyde to obtain hydroxymethylbisphenol.
  • a phenolic resin obtained by reacting A after obtaining 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (hereinafter abbreviated as "DOPO") is disclosed, and patent documents 2 discloses a phosphorus-containing epoxy resin obtained by reacting DOPO with quinones and then with an epoxy resin.
  • DOPO 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide
  • patent documents 2 discloses a phosphorus-containing epoxy resin obtained by reacting DOPO with quinones and then with an epoxy resin.
  • the resin composition used for circuit boards is required to be soluble in solvents because it is used by impregnating base materials such as glass cloth. It is preferable to use a non-polar solvent such as toluene because of its influence on the reaction, and it is essential that no precipitation is observed even in these solvents.
  • Patent Document 3 discloses a vinyl benzyl ether compound obtained from DOPO and chloromethylstyrene. However, since it is a monofunctional vinyl compound, there is room for improvement in terms of heat resistance. Patent Document 4 describes a polyfunctional vinyl benzyl ether compound using an adduct of DOPO and quinones, Patent Document 5, and Non-Patent Document 1 describes a polyfunctional (meth) Acryloyl compounds are disclosed. These compounds have excellent properties in terms of heat resistance and dielectric properties, but have problems in handling such as strong crystallinity and precipitation in low-polarity solvents.
  • JP 2013-166938 Japanese Patent Laid-Open No. 11-279258 JP 2004-277322 JP 2004-331537 JP 2014-156426
  • the problem to be solved by the present invention is useful as a reactive phosphorus-based flame retardant, excellent solvent solubility, phosphorus-containing (meth) acryloyl compound excellent in heat resistance and dielectric properties in the cured product, flame retardant
  • An object of the present invention is to provide a resin composition, a cured product, and a laminate for an electronic circuit board.
  • a cured product obtained by curing a phosphorus-containing (meth)acryloyl compound having a specific structure and a composition containing the same has solubility, flame retardancy, and heat resistance. and excellent dielectric properties, and have completed the present invention.
  • the present invention is a phosphorus-containing (meth)acryloyl compound represented by the following general formula (1).
  • R1 and R2 are hydrogen, a hydroxyl group, a group represented by -OR or -R, and R is a hydrocarbon group having 2 to 40 carbon atoms.
  • R1 and R2 may be the same or different, and R1 and R2 may form a ring structure together with the phosphorus atom.
  • X in the formula represents a trivalent aromatic hydrocarbon group having 6 to 20 carbon atoms
  • Y is a substituent represented by the following general formula (2) or (3). However, at least one of Y contains a substituent represented by the following general formula (3).
  • R3 is hydrogen or a methyl group.
  • R4 is hydrogen or a methyl group
  • R5 is a C1-C20 hydrocarbon group.
  • R1, R2, R3 and X have the same definitions as in general formulas (1) and (3).
  • R1, R2 and X have the same definitions as in general formula (1).
  • a flame-retardant resin composition comprising the phosphorus-containing (meth)acryloyl compound or the phosphorus-containing composition and one or more thermosetting resins or thermoplastic resins.
  • a laminate for an electronic circuit board comprising the flame-retardant resin composition as an essential component.
  • the phosphorus-containing (meth)acryloyl compound of the present invention has excellent solubility, and a cured product obtained by curing a composition containing this compound as an essential component exhibits a low dielectric constant and dielectric loss tangent, and a decrease in heat resistance. It is very useful as a reactive phosphorus-based flame retardant because it can reduce transmission loss at high frequencies accompanying the increase in the amount of information processing in electronic equipment.
  • FIG. 1 shows a GPC chart of hydroxyl group-containing phosphorus compound A obtained in Synthesis Example 2.
  • FIG. 1 shows a GPC chart of hydroxyl group-containing phosphorus compound B obtained in Synthesis Example 3.
  • FIG. 1 shows a GPC chart of a hydroxyl group-containing phosphorus compound C obtained in Synthesis Example 4.
  • FIG. 1 shows a GPC chart of a hydroxyl group-containing phosphorus compound D obtained in Synthesis Example 5.
  • FIG. 1 shows a GPC chart of the phosphorus-containing methacryloyl compound A obtained in Example 1.
  • FIG. 2 shows a GPC chart of the phosphorus-containing methacryloyl compound B obtained in Example 2.
  • FIG. 2 shows a GPC chart of the phosphorus-containing methacryloyl compound C obtained in Example 3.
  • FIG. 4 shows a GPC chart of the phosphorus-containing methacryloyl compound D obtained in Example 4.
  • a hydroxyl group-containing phosphorus compound or a phosphorus-containing (meth)acryloyl compound includes not only a single compound but also a mixture (resin).
  • the phosphorus-containing (meth)acryloyl compound of the present invention is represented by the following general formula (1).
  • R1 and R2 are hydrogen, a hydroxyl group, a group represented by -OR or -R, and R is a hydrocarbon group having 2 to 40 carbon atoms.
  • R1 and R2 may be the same or different, and R1 and R2 may form a ring structure together with the phosphorus atom.
  • R is a benzene ring group, and the benzene ring may be substituted with an alkyl group having 1 to 3 carbon atoms.
  • X is a trivalent aromatic hydrocarbon group having 6 to 20 carbon atoms.
  • Aromatic hydrocarbon groups include benzene ring groups, naphthalene ring groups, biphenyl ring groups, terphenyl ring groups and the like.
  • the aromatic hydrocarbon group is unsubstituted or substituted with an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an aryl group having 6 to 10 carbon atoms. It may have an aryloxy group, an aralkyl group having 7 to 12 carbon atoms, or an aralkyloxy group having 7 to 12 carbon atoms.
  • X is preferably a benzene ring group, a naphthalene ring group, or an aromatic substituent obtained by substituting these with a methyl group or a 1-phenylethyl group.
  • Y is a substituent represented by Formula (2) or Formula (3) below. However, at least one of them contains a substituent represented by the following general formula (3).
  • R3 is hydrogen or a methyl group.
  • R4 is hydrogen or a methyl group
  • R5 is a C1-C20 hydrocarbon group.
  • the C1-C20 hydrocarbon group includes an aliphatic hydrocarbon group having a linear or branched structure, an alicyclic hydrocarbon group, or an aromatic hydrocarbon group having 6-20 carbon atoms. Examples of aliphatic hydrocarbon groups include alkyl groups having 1 to 20 carbon atoms, and examples of aromatic hydrocarbon groups include phenyl, naphthyl, biphenyl and anthranyl groups.
  • R5 contains an aromatic hydrocarbon group, it may or may not have a substituent on the aromatic ring.
  • substituent include a carboxy group, an aliphatic hydrocarbon group, an acyl group, an alkoxy group, a cyano group, a hydroxyl group, a methacryloyloxy group, a vinylbenzyl ether group, and groups in which these substituents are linked.
  • the aromatic hydrocarbon group has a substituent, the carbon number of the substituent is not included in the number of carbon atoms.
  • At least one of Y includes a substituent represented by general formula (3).
  • both Y are a phosphorus-containing (meth)acryloyl compound (disubstituted) in which both Y are substituents represented by general formula (3), and only one of the two Y is represented by general formula (3).
  • It is a mixture with a phosphorus-containing (meth)acryloyl compound (1-substituent) which is the represented substituent.
  • the abundance of the disubstituted compound is preferably 10 to 99 mol%, more preferably 20 to 95 mol%.
  • An unsubstituted compound may be contained, but its content is preferably less than 50 mol %.
  • the composition of the phosphorus-containing (meth)acryloyl compound of the present invention comprises a phosphorus-containing (meth)acryloyl compound represented by the above general formula (1) and a (meth)acryloyl compound represented by the following general formula (4).
  • a phosphorus-containing composition comprising: In contrast to the compound of general formula (1), the compound represented by general formula (4) is included.
  • the composition of the phosphorus-containing (meth)acryloyl compound of the present invention comprises 95 to 5 parts by mass of the compound represented by the general formula (1) and 5 to 95 parts by mass of the (meth)acryloyl compound represented by the following general formula (4). It is preferable to include parts by mass.
  • the phosphorus-containing (meth)acryloyl compound composition of the present invention preferably has a phosphorus content of 1.0 to 10.0% by weight, more preferably 2.0 to 8.0% by weight, and still more preferably 3.0% by weight. 0 to 6.0% by weight.
  • the resin composition containing the compound represented by the general formula (1) and the compounds represented by the general formula (1) and the general formula (4) includes a hydroxyl group-containing phosphorus compound represented by the following general formula (5), After reacting with a compound containing one glycidyl group, (meth)acrylic acid, (meth)acrylic anhydride, or (meth)acryloyl halide It can be obtained by (meth)acryloylation.
  • R1, R2 and X have the same definitions as in general formula (1).
  • the hydroxyl group-containing phosphorus compound represented by the general formula (5) is obtained from the reaction between an organic phosphorus compound having an active hydrogen directly attached to a phosphorus atom and a quinone compound, as described in JP-A-61-236787 and JP-A-05-331179. It can be synthesized by a known method disclosed in Japanese Patent Application Laid-Open No. 05-39345.
  • organic phosphorus compounds include dimethylphosphine, diethylphosphine, diphenylphosphine and the like.
  • Phosphine oxides include dimethylphosphine oxide, diethylphosphine oxide, diphenylphosphine oxide, menthylphenylphosphinate, tert-butylphenylphosphine oxide and the like.
  • phosphate esters examples include diethyl hydrogen phosphite, bis(2-ethylhexyl) hydrogen phosphite, dilauryl hydrogen phosphite, dioleyl hydrogen phosphite, diphenyl hydrogen phosphite, 9,10-dihydro-9-oxa -10-Phosphaphenanthrene-10-oxide (HCA manufactured by Sanko) and the like, but are not limited to these, and two or more kinds may be used.
  • quinone compounds include 1,4-benzoquinone, 1,2-benzoquinone and 1,4-naphthoquinone. These quinones may be used alone or in combination of two or more, and are not limited to these.
  • the hydroxyl group-containing phosphorus compound represented by the general formula (5) can be synthesized from the reaction between an organic phosphorus compound having an active hydrogen directly attached to a phosphorus atom and a quinone compound.
  • a structure in which two phosphorus atoms are added to the quinone compound represented by the general formula (6) may be produced as a by-product, but it is not a compound that hinders the effects of the present invention, and there is no problem if it is included.
  • hydroxyl group-containing phosphorus compound represented by the above general formula (5) a commercially available product can also be used, such as diphenylphosphinylhydroquinone (PPQ Hokko Chemical Industry), 10-(2,5-dihydroxyphenyl)-10H- 9-oxa-10-phosphaphenanthrene-10-oxide (HCA-HQ Sanko Kagaku), 10-(2,5-dihydroxynaphthyl)-10H-9-oxa-10-phosphaphenanthrene-10-oxide, 1, 4-Cyclooctylenephosphonylhydroquinone, 1,5-cyclooctylenephosphonylhydroquinone (CPHO-HQ) and the like are commercially available.
  • PPQ Hokko Chemical Industry 10-(2,5-dihydroxyphenyl)-10H- 9-oxa-10-phosphaphenanthrene-10-oxide
  • HCA-HQ Sanko Kagaku 10-(2,5-dihydroxynap
  • Examples of compounds containing one glycidyl ether group include ethyl glycidyl ether, butyl glycidyl ether, tert-butyl glycidyl ether, glycidyl isopropyl ether, 2-ethylhexyl glycidyl ether, lauryl glycidyl ether, lauryl alcohol (EO) 15 glycidyl ether, C12-13 mixed alcohol glycidyl ether, 3-glycidyloxypropyl(dimethoxy)methylsilane, glycidyl acrylate, allyl glycidyl ether, glycidyl methacrylate, 1,1,1,3,5,5,5-heptamethyl-3-(3- glycidyloxypropyl)trisiloxane, 1,2-epoxydecane glycidyl guaiacol ether, phenyl glycidy
  • 2-ethylhexyl glycidyl ether can be 2-ethylhexyl glycidyl ether, phenyl glycidyl ether, cresyl glycidyl ether, and 4-tert-butylphenyl glycidyl ether are preferred because of their easy availability.
  • the reaction between the phosphorus-containing phenol compound represented by the general formula (5) and epoxy resins containing one glycidyl group can be carried out by a known method. That is, an epoxy resin is added to a hydroxyl group-containing phosphorus compound, and the reaction is carried out with stirring at a reaction temperature of 100°C to 200°C, more preferably 120°C to 180°C. If the rate of this reaction is slow, a catalyst can be used to improve productivity if desired.
  • catalysts include tertiary amines such as benzyldimethylamine; quaternary ammonium salts such as tetramethylammonium chloride; phosphines such as triphenylphosphine and tris(2,6-dimethoxyphenyl)phosphine; Various catalysts such as phosphonium salts such as phenylphosphonium bromide and imidazoles such as 2-methylimidazole and 2-ethyl-4-methylimidazole can be used.
  • the reaction molar ratio of the phosphorus-containing phenol compound represented by the above general formula (5) and the epoxy resin containing one glycidyl group is 0.05 to 1 glycidyl group per 1 mole of the hydroxyl group of the hydroxyl group-containing phosphorus compound. 0.00 mol, preferably 0.10 to 0.95 mol, more preferably 0.20 to 0.80 mol. If it is less than 0.05, the amount of the compound represented by the general formula (4) increases and the solubility becomes insufficient, which is not preferable.
  • the phosphorus-containing compound represented by the general formula (5) and a phosphorus-containing compound containing an alcoholic hydroxyl group obtained from the reaction of an epoxy resin containing one glycidyl group (hereinafter referred to as a hydroxyl-containing phosphorus compound) and (
  • the reaction of meth)acrylic acid, (meth)acryloyl halide, or (meth)acrylic anhydride is not particularly limited, and can be carried out in the same manner as the usual (meth)acryloyl reaction of alcohol compounds and phenol compounds.
  • a hydroxyl group-containing phosphorus compound is added to the hydroxyl group in the presence of a strong acid catalyst such as sulfuric acid, p-toluenesulfonic acid, methanesulfonic acid, etc.
  • a strong acid catalyst such as sulfuric acid, p-toluenesulfonic acid, methanesulfonic acid, etc.
  • (meth) It can be produced by a condensation reaction with acrylic acid. Since this reaction must proceed while removing by-product condensed water out of the system, a hydrocarbon-based solvent such as toluene that is azeotropic with water is used as the reaction solvent. It is carried out by heating to about °C.
  • the phosphorus-containing (meth)acryloyl compound of the present invention can be obtained by reacting a hydroxyl group-containing phosphorus compound with a (meth)acryloyl halide or (meth)acrylic anhydride.
  • (Meth)acryloyl halides that can be used include acryloyl halides such as acryloyl fluoride, acryloyl chloride, acryloyl bromide and acryloyl iodide; Methacryloyl halides can be mentioned.
  • the (meth)acryloyl halide and (meth)acrylic anhydride may be used singly or as a mixture of two or more. In the present invention, among others, it is preferable to use (meth)acrylic chloride and/or (meth)acrylic anhydride from the viewpoint of easy availability.
  • the amount of (meth)acryloyl halide and/or (meth)acrylic anhydride to be used is 0.8 to 5 mol, preferably 0.95 to 1 mol, per 1 mol of the hydroxyl group of the phosphorus-containing phenol compound used as a raw material. 4 moles. If the amount of (meth)acrylic acid halide and/or (meth)acrylic anhydride used is less than the above range, the heat resistance of the obtained phosphorus-containing (meth)acryloyl compound is lowered and the amount of residual hydroxyl groups is increased. It is not preferable because the dielectric properties deteriorate, and if the amount used exceeds the above range, the pot efficiency decreases and the cost increases, which is not preferable.
  • the hydrogen halide corresponding to the (meth)acrylic acid halide used is generated as a by-product, so a basic compound is used in combination to remove the generated hydrogen halide. It is preferable to carry out the reaction while trapping.
  • the basic compound is not particularly limited, and trimethylamine, triethylamine, diisopropylethylamine, tri-n-propylamine, triisopropylamine, tributylamine, N-methyl-diethylamine, N-ethyl-dimethylamine, N-ethyl-diamylamine, etc.
  • aromatic amines such as N,N-dimethylaniline and diethylaniline; alicyclic amines such as N,N-dimethyl-cyclohexylamine and N,N-diethyl-cyclohexylamine; N,N-dimethylamino heterocyclic amines such as pyridine, N-methylmorpholine, diazabicycloundecene (DBU), diazabicyclononene (DBN), N-methylpyridine and N-methylpyrrolidine; diamines such as tetramethylethylenediamine and triethylenediamine; can be mentioned.
  • aliphatic amines such as trimethylamine and triethylamine, and pyridine are preferred because of their easy availability.
  • the amount of the basic compound used is, for example, 0.8 to 7 mol, preferably about 0.95 to 5 mol, per 1 mol of the hydroxyl group of the phosphorus-containing phenol compound used as a raw material. If the amount of the tertiary amine used is below the above range, the hydrogen halide cannot be completely trapped, causing corrosion of the reactor.
  • ester catalysts include alkali metal salts of lower carboxylic acids such as sodium and potassium, such as sodium acetate, potassium propionate and sodium (meth)acrylate.
  • Examples of acid catalysts include inorganic acids such as sulfuric acid and boric acid; organic acids such as methanesulfonic acid and p-toluenesulfonic acid;
  • Examples of the basic catalyst include organic bases such as nitrogen-containing aliphatic compounds such as triethylamine and triethylenediamine, and nitrogen-containing aromatic heterocyclic compounds such as pyridine and 4-(dimethylamino)pyridine.
  • Examples of Lewis acid catalysts include aluminum chloride and zinc chloride.
  • the amount of the catalyst used is preferably 10% or less, more preferably 5% or less, relative to the (meth)acrylic anhydride used. When the above range is exceeded when a catalyst is used, it takes a long time to remove the catalyst, and the catalyst tends to remain in the product, resulting in deterioration of properties.
  • solvents that can be used are not particularly limited as long as they do not have reactivity with phenol compounds and (meth)acrylic acid halides and/or (meth)acrylic anhydrides, and include tetrahydrofuran, dioxane, and acetic acid.
  • Solvents such as ethyl, acetonitrile, benzene, toluene, xylene, dichloromethane, chloroform, carbon tetrachloride, dimethylformamide, dimethylacetamide, dimethylsulfoxide, hexamethylphosphoric acid triamide, water, etc., may be used in combination if necessary. can be done.
  • the reaction temperature is preferably -50 to 150°C, and a polymerization reaction may occur if the reaction is carried out at a high temperature.
  • a temperature of -25 to 100° C. is more preferable since the temperature increases.
  • the reaction time is appropriately set according to the set reaction temperature, but is preferably set within the range of 1 to 48 hours.
  • the reaction between the hydroxyl group-containing phosphorus compound and (meth)acrylic acid, (meth)acryloyl halide or (meth)acrylic anhydride may be carried out in the presence of a polymerization inhibitor.
  • a polymerization inhibitor By adding a polymerization inhibitor, the (meth)acrylic acid, (meth)acryloyl halide or (meth)acrylic anhydride to be subjected to the reaction and the (meth)acrylic acid ester as the target product are polymerized to form an oligomer. can be prevented from being produced as a by-product.
  • Any known polymerization inhibitor can be used without limitation, and organic compounds such as hydroquinone, hydroxymonomethyl ether, t-butylcatechol, t-butylhydroquinone, 4-methoxyphenol, 4-methoxy-1-naphthol, and phenothiazine.
  • organic compounds such as hydroquinone, hydroxymonomethyl ether, t-butylcatechol, t-butylhydroquinone, 4-methoxyphenol, 4-methoxy-1-naphthol, and phenothiazine.
  • copper compounds such as copper chloride and copper sulfide, and these may be used in combination.
  • reaction mixture After completion of this reaction, the resulting reaction solution (reaction mixture) is subjected, if necessary, to distillation of the reaction solvent, solvent replacement, etc., washing with water, etc., treatment with activated carbon, silica gel chromatography, etc.
  • the (meth)acryloyl compound of the present invention which is the target product, can be isolated by purifying the reaction mixture with a
  • the mixing ratio is not particularly limited.
  • the total amount of the curable resin and the thermoplastic resin is 100 parts by weight, and It is preferable to add 10 to 300 parts by weight of the composition of the phosphorus-containing (meth)acryloyl compound. It is preferably 20 to 200 parts by weight, more preferably 50 to 150 parts by weight.
  • curable resins include unsaturated polyester resins, curable maleimide resins, epoxy resins, polycyanate resins, phenol resins, and one or more vinyl compounds having one or more polymerizable unsaturated hydrocarbon groups in the molecule. etc., preferably epoxy resins and one or more vinyl compounds having one or more polymerizable unsaturated hydrocarbon groups in the molecule.
  • the curable resin is an epoxy resin
  • it is preferably one or more epoxy resins selected from epoxy resins having two or more epoxy groups in one molecule.
  • epoxy resins include cresol novolak type epoxy resins, triphenylmethane type epoxy resins, biphenyl epoxy resins, naphthalene type epoxy resins, bisphenol A type epoxy resins and bisphenol F type epoxy resins. These may be used alone or in combination of two or more.
  • a curing agent may be used in addition to the epoxy resin.
  • the curing agent is not particularly limited, and includes, for example, phenol-based curing agents, amine-based compounds, amide-based compounds, acid anhydride-based compounds, naphthol-based curing agents, active ester-based curing agents, benzoxazine-based curing agents, A cyanate ester-based curing agent and the like are included. These may be used singly or in combination of two or more.
  • a curing accelerator when blending an epoxy resin, a curing accelerator can be used as necessary.
  • examples include amines, imidazoles, organic phosphines, and Lewis acids.
  • the amount added is usually in the range of 0.2 to 5 parts by weight per 100 parts by weight of the epoxy resin.
  • the type is not particularly limited. That is, any vinyl compound may be used as long as it can be cured by forming crosslinks by reacting with the phosphorus-containing (meth)acryloyl compound of the present invention. More preferably, the polymerizable unsaturated hydrocarbon group is a carbon-carbon unsaturated double bond, more preferably a compound having two or more carbon-carbon unsaturated double bonds in the molecule.
  • the average number of carbon-carbon unsaturated double bonds (the number of vinyl groups (including substituted vinyl groups); also referred to as the number of terminal double bonds) per molecule of vinyl compounds as curable resins is For example, it is preferably 1 to 20, more preferably 2 to 18, depending on the Mw of the class. If the number of terminal double bonds is too small, it tends to be difficult to obtain a cured product with sufficient heat resistance. On the other hand, if the number of terminal double bonds is too large, the reactivity becomes too high, for example, the storage stability of the curable resin composition is lowered, the fluidity of the curable resin composition is lowered, and the like. Failure to do so may result in malfunction.
  • vinyl compounds examples include triallyl isocyanurate (TAIC) and other trialkenyl isocyanurate compounds, modified polyphenylene ethers (PPE) whose terminals are modified with (meth)acryloyl groups or styryl groups, and (meth)acryloyl in the molecule.
  • TAIC triallyl isocyanurate
  • PPE modified polyphenylene ethers
  • polyfunctional (meth)acrylate compounds having two or more groups vinyl compounds (polyfunctional vinyl compounds) having two or more vinyl groups in the molecule such as polybutadiene, and vinylbenzyl compounds such as styrene and divinylbenzene. mentioned.
  • those having two or more carbon-carbon double bonds in the molecule are preferred, and specific examples include TAIC, polyfunctional (meth)acrylate compounds, modified PPE resins, polyfunctional vinyl compounds, divinylbenzene compounds, and the like. is mentioned. It is believed that the use of these compounds will more favorably form crosslinks through the curing reaction, and the heat resistance of the cured product of the curable resin composition can be further enhanced. Moreover, these may be used independently and may be used in combination of 2 or more type. A compound having one carbon-carbon unsaturated double bond in the molecule may also be used in combination. Compounds having one carbon-carbon unsaturated double bond in the molecule include compounds having one vinyl group in the molecule (monovinyl compounds).
  • thermoplastic resins include polystyrene, polyphenylene ether resins, polyetherimide resins, polyether sulfone resins, PPS resins, polycyclopentadiene resins, polycycloolefin resins, and known thermoplastic elastomers (e.g., styrene- ethylene-propylene copolymer, styrene-ethylene-butylene copolymer, styrene-butadiene copolymer, styrene-isoprene copolymer, hydrogenated styrene-butadiene copolymer, hydrogenated styrene-isoprene copolymer, etc.) and , or rubbers (eg, polybutadiene, polyisoprene).
  • Preferred are unmodified or modified polyphenylene ether resins and hydrogenated styrene-butadiene copolymers.
  • the flame-retardant resin composition of the present invention may contain a radical polymerization initiator (polymerization catalyst or cross-linking agent) that generates radicals by light or/and heat.
  • a radical polymerization initiator polymerization catalyst or cross-linking agent
  • photopolymerization initiators include benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, and benzoin isobutyl ether; acetophenone, 2,2- Diethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 2-hydroxy-2-methyl-phenylpropan-1-one, diethoxyacetophenone, 1-hydroxycyclohexyl Acetophenones such as phenyl ketone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one; 2-ethylanthr
  • Thermal radical initiators include benzoyl peroxide, cumene hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, 2,5-dimethyl-2,5-di(t-butylperoxy) Hexyne-3, di-t-butyl peroxide, t-butyl cumyl peroxide, 1,3-bis(butylperoxyisopropyl)benzene, ⁇ , ⁇ '-bis(t-butylperoxy-m-isopropyl)benzene , 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, dicumyl peroxide, di-t-butylperoxyisophthalate, t-butylperoxybenzoate, 2,2-bis(t -butylperoxy)butane, 2,2-bis(t-butylperoxy)octane, 2,5-dimethyl-2,5-di(benzo
  • 2,3-dimethyl-2,3-diphenylbutane can also be used as a radical polymerization initiator.
  • the blending amount of the radical polymerization initiator is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, per 100 parts by weight of the resin component.
  • the flame-retardant resin composition of the present invention essentially contains a phosphorus-containing (meth)acryloyl compound represented by the general formula (1) as a reactive flame retardant, and the phosphorus content of the composition is preferably is 0.5 to 5.0% by weight, more preferably 1.0 to 4.0% by weight.
  • a filler can be added to the flame-retardant resin composition of the present invention.
  • fillers include those added to improve heat resistance and flame retardancy, and known fillers can be used, but are not particularly limited.
  • heat resistance, dimensional stability, flame retardancy, etc. can be further improved by incorporating a filler.
  • silica such as spherical silica, metal oxides such as alumina, titanium oxide and mica, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, talc, aluminum borate, barium sulfate, and calcium carbonate etc.
  • a metal hydroxide such as aluminum hydroxide or magnesium hydroxide
  • it acts as a flame retardant aid, and flame retardancy can be ensured even if the phosphorus content is low.
  • silica, mica, and talc are preferred, and spherical silica is more preferred.
  • these 1 type may be used independently and may be used in combination of 2 or more type.
  • the filler may be used as it is, or may be surface-treated with a silane coupling agent such as epoxysilane type or aminosilane type.
  • a silane coupling agent such as epoxysilane type or aminosilane type.
  • vinylsilane-type, methacryloxysilane-type, acryloxysilane-type, and styrylsilane-type silane coupling agents are preferable as the silane coupling agent.
  • the silane coupling agent may be added by an integral blend method instead of the method of surface-treating the filler in advance.
  • the content of the filler is preferably 10 to 200 parts by mass with respect to a total of 100 parts by mass of the solid content excluding the filler (including organic components such as monomers and flame retardants, excluding solvents). It is preferably 30 to 150 parts by mass.
  • the flame-retardant resin composition of the present invention may further contain additives other than the above.
  • additives include antifoaming agents such as silicone antifoaming agents and acrylic acid ester antifoaming agents, heat stabilizers, antistatic agents, ultraviolet absorbers, dyes and pigments, lubricants, dispersants such as wetting and dispersing agents. agents and the like.
  • the cured product obtained by curing the flame-retardant resin composition of the present invention can be used as moldings, laminates, castings, adhesives, coatings, and films.
  • a cured product of a semiconductor encapsulating material is a cast or molded product, and methods for obtaining a cured product for such applications include casting a curable resin composition, or using a transfer molding machine, an injection molding machine, or the like.
  • a cured product can be obtained by molding using the resin and heating at 80 to 230° C. for 0.5 to 10 hours.
  • the flame-retardant resin composition of the present invention can also be used as a prepreg.
  • a prepreg When producing a prepreg, it is prepared in the form of a varnish for the purpose of impregnating a base material (fibrous base material) for forming a prepreg, or for the purpose of being used as a circuit board material for forming a circuit board, and then mixed with a resin varnish. can do.
  • This resin varnish is suitable for circuit boards and can be used as a varnish for circuit board materials.
  • the use of the circuit board material here specifically includes a printed wiring board, a printed circuit board, a flexible printed wiring board, a build-up wiring board, and the like.
  • the organic solvent used for the above resin varnish is not particularly limited as long as it does not inhibit the curing reaction.
  • ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; esters such as ethyl acetate, propyl acetate and butyl acetate; polar solvents such as dimethylacetamide and dimethylformamide; aromatic hydrocarbon solvents such as toluene and xylene. It is also possible to use these alone or in combination of two or more. From the viewpoint of dielectric properties, aromatic hydrocarbons such as benzene, toluene and xylene are preferred.
  • the amount of the organic solvent used is preferably 5 to 900 parts by weight, more preferably 10 to 700 parts by weight, and particularly preferably 100 parts by weight of the curable resin composition of the present invention. is 20 to 500 parts by weight.
  • base materials such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc. Used in conjunction with more than one species.
  • a coupling agent can be used for these base materials for the purpose of improving the adhesiveness at the interface between the resin and the base material, if necessary.
  • Common coupling agents such as silane coupling agents, titanate coupling agents, aluminum coupling agents and zircoaluminate coupling agents can be used as the coupling agent.
  • the prepreg As a method for obtaining the prepreg, there is a method of impregnating the base material with the above resin varnish and then drying it. Impregnation is performed by immersion (dipping), coating, or the like. The impregnation can be repeated multiple times as necessary, and at this time, the impregnation can be repeated using a plurality of solutions with different compositions and concentrations to finally adjust the desired resin composition and resin amount. It is possible. After impregnation, a prepreg can be obtained by drying by heating at 100 to 180° C. for 1 to 30 minutes.
  • the resin content in the prepreg is preferably 30 to 80% by weight.
  • the curable resin composition of the present invention can also be used as a laminate.
  • a laminate using prepreg one or more prepregs are laminated, metal foil is placed on one side or both sides to form a laminate, and this laminate is heated and pressed to be laminated and integrated.
  • the metal foil copper, aluminum, brass, nickel, or the like can be used alone, as an alloy, or as a composite metal foil.
  • the conditions for heating and pressurizing the laminate may be appropriately adjusted so as to cure the curable resin composition, but if the pressurization pressure is too low, air bubbles may form inside the resulting laminate. Since it may remain and the electrical characteristics may deteriorate, it is preferable to apply pressure under conditions that satisfy moldability.
  • the temperature can be set to 180 to 250° C., the pressure to 49.0 to 490.3 N/cm 2 (5 to 50 kgf/cm 2 ), and the heating/pressurizing time to 40 to 240 minutes.
  • a multi-layer board can be produced by using the single-layer laminate board thus obtained as an inner layer material.
  • a circuit is formed on the laminate by an additive method, a subtractive method, or the like, and the surface of the formed circuit is treated with an acid solution to be blackened to obtain an inner layer material.
  • An insulating layer is formed on one or both sides of the inner layer material with a resin sheet, a resin-coated metal foil, or a prepreg, and a conductor layer is formed on the surface of the insulating layer to form a multilayer board. It is.
  • the curable composition of the present invention can also be used for build-up films.
  • a method for producing a build-up film from the resin composition of the present invention includes, for example, a method of applying the above resin varnish onto a support film and drying to form a film-like insulating layer.
  • the film-like insulating layer thus formed can be used as a build-up film for multilayer printed wiring boards.
  • the pressure was reduced to 1 kPa with a vacuum pump, toluene was distilled off, and hydroxyl group-containing phosphorus compound A was removed. 233 copies were obtained. As a result of measuring the phosphorus content, it was 4.7%.
  • the hydroxyl group-containing phosphorus compound A is a compound (the following structural formula) in which 2 mol of phenylglycidyl ether reacts with 1 mol of DOPO-NQ. 91%, 9% 1 mol reacted compound and no DOPO-NQ.
  • the reaction GPC chart is shown in FIG.
  • the hydroxyl group-containing phosphorus compound C is a compound in which 2 mol of 4-tert-butylphenyl glycidyl ether reacts with 1 mol of DOPO-NQ (structural formula below) It was found to contain 32%, 1 mol reacted compound at 35% and DOPO-NQ at 31%.
  • a GPC chart is shown in FIG.
  • the hydroxyl group-containing phosphorus compound D is a compound (the following structural formula) in which 2 mol of 2-ethylhexyl glycidyl ether reacts with 1 mol of DOPO-NQ. , 32% of 1 mol reacted compound, and 37% of DOPO-NQ.
  • the reaction GPC chart is shown in FIG.
  • Example 1 Synthesis of phosphorus-containing methacryloyl compound A 100 parts of hydroxyl group-containing phosphorus compound A, 100 parts of tetrahydrofuran, and 51 parts of triethylamine were charged into a separable glass flask equipped with a stirrer, thermometer, condenser, and dropping funnel. , and after dissolution, cooled to 5°C or less in an ice bath. In a nitrogen atmosphere, methacryloyl chloride of the following structural formula 35 parts was added dropwise over 1 hour, the reaction was continued for 2 hours, and it was confirmed by GPC that the peak of the raw material had disappeared.
  • phosphorus-containing methacryloyl compound A is a methacryloyl compound (the following structural formula) derived from a compound obtained by reacting 1 mol of DOPO-NQ with 2 mol of phenylglycidyl ether. 92%, 8% of the methacryloyl compound derived from 1 mol reacted compound, and no methacryloyl compound derived from DOPO-NQ.
  • a GPC chart is shown in FIG.
  • Example 2 Synthesis of phosphorus-containing methacryloyl compound B 100 parts of hydroxyl group-containing phosphorus compound B, 100 parts of tetrahydrofuran, and 48 parts of triethylamine were charged into a glass separable flask equipped with a stirrer, thermometer, condenser, and dropping funnel. , and after dissolution, cooled to 5°C or less in an ice bath. In a nitrogen atmosphere, 45 parts of methacryloyl chloride was added dropwise over 1 hour, the reaction was continued for 2 hours, and it was confirmed by GPC that the peak of the raw material disappeared.
  • the reaction solution was concentrated, dissolved in 294 parts of toluene, washed and concentrated in the same manner as in Example 1 to obtain 214 parts of a toluene solution of phosphorus-containing methacryloyl compound B with a solid concentration of 50%.
  • the solid concentration was 50% and the phosphorus content was 5.1%.
  • the phosphorus-containing methacryloyl compound B is a methacryloyl compound (the following structural formula) derived from a compound obtained by reacting 1 mol of DOPO-NQ with 2 mol of phenylglycidyl ether. 37%, 28% of the methacryloyl compound derived from 1 mol of the reacted compound, and 32% of the methacryloyl compound derived from DOPO-NQ.
  • a GPC chart is shown in FIG.
  • Example 3 Synthesis of phosphorus-containing methacryloyl compound C 100 parts of phosphorus-containing phenol compound C, 100 parts of tetrahydrofuran, 33 parts of triethylamine, 4- 2.4 parts of dimethylaminopyridine was charged and dissolved at room temperature. In a nitrogen atmosphere, methacrylic anhydride of the following structural formula 61 parts was added dropwise over 1 hour, the reaction was continued at 50°C for 6 hours, and it was confirmed by GPC that the peak of the raw material had disappeared.
  • the reaction solution was concentrated, dissolved in 210 parts of toluene, washed and concentrated in the same manner as in Example 1 to obtain 220 parts of a toluene solution of phosphorus-containing methacryloyl compound C with a solid concentration of 50%.
  • the phosphorus content was 4.4%.
  • the phosphorus-containing methacryloyl compound C is a methacryloyl compound (the following structural formula) derived from a compound obtained by reacting 1 mol of DOPO-NQ with 2 mol of 4-tert-butylphenyl glycidyl ether. 34%, 37% of the methacryloyl compound derived from 1 mol of the reacted compound, and 27% of the methacryloyl compound derived from DOPO-NQ.
  • a GPC chart is shown in FIG.
  • Example 4 Synthesis of phosphorus-containing methacryloyl compound D 100 parts of hydroxyl group-containing phosphorus compound D, 100 parts of tetrahydrofuran, and 47 parts of triethylamine were charged into a separable glass flask equipped with a stirrer, thermometer, condenser, and dropping funnel. , and after dissolution, cooled to 5°C or less in an ice bath. In a nitrogen atmosphere, 45 parts of methacryloyl chloride was added dropwise over 1 hour, the reaction was continued for 2 hours, and it was confirmed by GPC that the peak of the raw material disappeared.
  • the reaction solution was concentrated, dissolved in 305 parts of toluene, washed and concentrated in the same manner as in Example 1 to obtain 235 parts of a toluene solution of phosphorus-containing methacryloyl compound D with a solid concentration of 50%.
  • the phosphorus content was 4.4%.
  • the phosphorus-containing methacryloyl compound D is a methacryloyl compound (the following structural formula) derived from a compound obtained by reacting 2 mols of 2-ethylhexyl glycidyl ether with 1 mol of DOPO-NQ. 33%, 29% of methacryloyl compound derived from 1 mol reacted compound, and 35% of methacryloyl compound derived from DOPO-NQ.
  • a GPC chart is shown in FIG.
  • reaction solution was concentrated, dissolved in 318 parts of toluene, washed and concentrated in the same manner as in Example 1, adjusted to a toluene solution with a solid concentration of 50%, and phosphorus-containing methacryloyl compound E (the following structural formula ) 235 parts of a solution of The phosphorus content was 6.2%.
  • Examples 5-12, Comparative Examples 4-8 ⁇ Adjustment of curable resin composition and preparation of cured product> A varnish was prepared by blending various components in the proportions shown in Tables 2 and 3, applied on a PET film, and dried in an oven at 130°C for 5 minutes to prepare a film of the resin composition. Next, this film was pulverized to obtain a resin composition powder. Further, this powder was sandwiched between mirror plates made of stainless steel together with a spacer, and molded in a vacuum oven at 210° C. for 90 minutes to obtain a sample of a cured product. Using the cured product sample, the glass transition temperature and dielectric properties were evaluated, and the results are shown in Tables 2 and 3.
  • a varnish was prepared by blending various components in the proportions shown in Tables 2 and 3, and this resin varnish was impregnated into a glass cloth (manufactured by Nitto Boseki Co., Ltd.; 7628 type; product number H258), and then at 130 ° C. for 5 minutes. It was dried by heating to obtain a prepreg.
  • the obtained 8 sheets of prepreg and copper foil (manufactured by Mitsui Kinzoku Mining Co., Ltd., 3EC-III, thickness 35 ⁇ m) are stacked on top and bottom, and vacuum pressed at 2 MPa under temperature conditions of 130 ° C. x 15 minutes + 190 ° C. x 80 minutes. , a laminate having a thickness of 1.6 mm was obtained.
  • a flame retardant test piece was obtained by etching and cutting the copper foil. Using the flame retardant test piece, flame retardancy was evaluated, and the results are shown in Tables 2 and 3.
  • the phosphorus-containing (meth)acryloyl compound of the present invention can be used in a wide range of applications from building materials to electrical and electronic equipment, and is particularly useful as a reactive phosphorus-based flame retardant in electrical and electronic products, OA equipment, communication equipment, etc. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

反応型リン系難燃剤として有用であり、溶剤溶解性に優れ、硬化物における耐熱性と誘電特性に優れるリン含有化合物、これを含む硬化性樹脂組成物、およびその硬化物を提供することにある。 下記一般式(1)で表されるリン含有(メタ)アクリロイル化合物。 Yは下記一般式(2)または(3)で表される置換基である。ただし、Yの少なくとも一方は、下記一般式(3)で表される置換基を含む。

Description

リン含有(メタ)アクリロイル化合物、その製造方法、及びリン含有(メタ)アクリロイル化合物を含む難燃性樹脂組成物、硬化物、並びに電子回路基板用積層板
 本発明は反応型リン化合物、特にリン含有(メタ)アクリロイル化合物に関し、プラスチック材料の反応型難燃剤として好適に使用される。
 プラスチック材料は、優れた機械的特性、成形加工性から、建材や電気電子機器まで幅広い用途に使用されている。しかしながら、大抵のプラスチック材料は、燃えやすいため、使用される用途、例えば電気・電子製品やOA機器、通信機器等では、発熱発火、火災に対する安全性のため難燃化が必須となっている。
 プラスチック材料の難燃化技術としては、ハロゲン系難燃剤、無機系難燃剤、リン系難燃剤等の添加型難燃剤の添加が樹脂種、用途に限らず一般的となっている。しかしながら、これらの中で臭素系を主とするハロゲン系難燃剤は、発がん性の高いダイオキシンの発生源となる可能性が指摘されており、昨今の環境負荷物質低減の動きに対応して使用を制限する方向に進んでいる。また、水酸化マグネシウム、水酸化アルミニウム等無機系難燃剤は、吸熱による難燃化効果があるものの、十分な難燃化を達成するためには大量に添加する必要があり、プラスチック成形品の各種特性を低下させる原因となっている。
 そのため、有害物質を発生させず、比較的少量の添加で難燃化が可能なリン系難燃剤が多く使用されているが、それでもブリードアウト等による加工性の低下や、ガラス転移温度の低下等、特性への影響は避けられない。
 これら添加型難燃剤の問題を解決するために、難燃成分であるリン原子を含み、且つ反応性基を持つ反応型難燃剤が開発され、広く使用されてきた。電子・電機分野で多用されるエポキシ樹脂組成物に適用可能な反応型難燃剤としては、例えば、特許文献1には、エポキシ樹脂用の硬化剤として、ビスフェノールAとホルムアルデヒドを反応させ、ヒドロキシメチルビスフェノールAを得た後に9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド(以下、「DOPO」と略記する。)を反応させる事で得られるフェノール樹脂が開示され、特許文献2には、DOPOとキノン類を反応させた後にエポキシ樹脂と反応する事で得られるリン含有エポキシ樹脂が開示されている。これらの樹脂では、難燃剤のブリードアウト等加工性の問題は解決され、耐熱性等熱特性の悪化は見られない。この様に、添加型難燃剤に比較し、反応性の難燃剤を使用することで、一般的に添加型難燃剤の欠点を補うことが可能となることから、多くの難燃性エポキシ樹脂等が開発されている。
 しかしながら、近年、難燃性が必須となる電子・電気材料分野では、スマートフォンに代表される電子機器の急激な進化により、難燃剤を含む樹脂成分に対する要求は高度なものへと変化している。特に情報・通信分野では情報処理量の増大に伴い信号の高周波化が進行、伝送損失低減のために、この分野に使用される樹脂成分には低誘電率、低誘電正接が強く求められている。そこで、回路基板に代表される電子・電気材料分野では、エポキシ樹脂に変わって、より低誘電率・低誘電正接化が可能なラジカル重合性の樹脂が広く使用されるようになっている。そのため、反応性基がエポキシ基やエポキシ樹脂と反応性を有する難燃剤だけでなく、ラジカル重合性の樹脂と反応が可能な低誘電率・低誘電正接なハロゲンフリー難燃剤が求められている。
 また、回路基板に使用される樹脂組成物は、ガラスクロス等の基材に含侵して使用されることから、溶剤に可溶である事が求められるが、低誘電が求められる分野では誘電特性への影響からトルエン等の非極性溶媒の使用が好ましく、これら溶媒中でも析出が見られない事が必須となる。
 ラジカル重合性の官能基を持つハロゲンフリー難燃剤としては、特許文献3に、DOPOとクロロメチルスチレンから得られるビニルベンジルエーテル化合物が開示されている。しかしながら、単官能ビニル化合物であるため耐熱性の点で改善の余地がある。特許文献4には、DOPOとキノン類の付加物を使用した多官能ビニルベンジルエーテル化合物が、特許文献5、非特許文献1には、DOPOとキノン類の付加物を使用した多官能(メタ)アクリロイル化合物が開示されている。これら化合物は、耐熱性、誘電特性の点で優れた特性を有するが、結晶性が強く、低極性溶媒中で析出が見られる等、ハンドリング性に問題がある。
特開2013-166938 特開平11-279258 特開2004-277322 特開2004-331537 特開2014-156426
Ind. Eng. Chem. Res. 2013, 52, 12855-12864
 従って、本発明が解決しようとする課題は、反応型リン系難燃剤として有用であり、溶剤溶解性に優れ、硬化物における耐熱性と誘電特性に優れるリン含有(メタ)アクリロイル化合物、難燃性樹脂組成物、硬化物、並びに電子回路基板用積層板を提供することにある。 
 本発明者は前記課題を鋭意検討した結果、特定の構造を持ったリン含有(メタ)アクリロイル化合物およびこれを含む組成物を硬化して得られる硬化物が、溶解性、難燃性、耐熱性および誘電特性に優れることを見出し、本発明に至った。
 すなわち、本発明は、下記一般式(1)で示されることを特徴とするリン含有(メタ)アクリロイル化合物である。
Figure JPOXMLDOC01-appb-C000006

 一般式(1)において、R1, R2は水素、水酸基、-ORまたは-Rで表される基であり、Rは炭素数2~40の炭化水素基である。R1, R2は同一であっても異なっていても良く、リン原子と共にR1, R2が環状構造を形成していても良い。式中のXは3価の炭素数6~20の芳香族炭化水素基を示し、Yは下記一般式(2)または(3)で表される置換基である。ただし、Yの少なくとも一方は、下記一般式(3)で表される置換基を含む。
Figure JPOXMLDOC01-appb-C000007

 一般式(2)において、R3は水素又はメチル基である。
Figure JPOXMLDOC01-appb-C000008

 一般式(3)において、R4は水素又はメチル基であり、R5は、C1~C20の炭化水素基である。
 上記リン含有(メタ)アクリロイル化合物を5~95質量部、下記一般式(4)で表される(メタ)アクリロイル化合物を5~95質量部含むリン含有組成物である。
Figure JPOXMLDOC01-appb-C000009

 一般式(4)において、R1、R2、R3およびXは一般式(1)、一般式(3)における規定と同義である。
 下記一般式(5)で表される化合物と、グリシジルエーテル基とを1つ含む化合物を反応させた後に、(メタ)アクリル酸、(メタ)アクリル酸無水物、またはハロゲン化(メタ)アクリロイル化合物で(メタ)アクリロイル化することを特徴とする上記リン含有組成物の製造方法である。
Figure JPOXMLDOC01-appb-C000010

 一般式(5)において、R1、R2およびXは、一般式(1)における規定と同義である。
 上記リン含有(メタ)アクリロイル化合物またはリン含有組成物に、熱硬化性樹脂又は熱可塑性樹脂の一種以上を配合してなることを特徴とする難燃性樹脂組成物である。
 上記難燃性樹脂組成物を必須成分とする電子回路基板用積層板である。
 本発明のリン含有(メタ)アクリロイル化合物は、溶解性に優れ、また、この化合物を必須成分として含む組成物を硬化して得られる硬化物は低い誘電率・誘電正接を示し、耐熱性の低下が少なく、電子機器の情報処理量増大に伴う高周波化における伝送損失を低減することができるため、反応型リン系難燃剤として非常に有用である。
合成例2で得られた水酸基含有リン化合物AのGPCチャートを示す。 合成例3で得られた水酸基含有リン化合物BのGPCチャートを示す。 合成例4で得られた水酸基含有リン化合物CのGPCチャートを示す。 合成例5で得られた水酸基含有リン化合物DのGPCチャートを示す。 実施例1で得られたリン含有メタクリロイル化合物AのGPCチャートを示す。 実施例2で得られたリン含有メタクリロイル化合物BのGPCチャートを示す。 実施例3で得られたリン含有メタクリロイル化合物CのGPCチャートを示す。 実施例4で得られたリン含有メタクリロイル化合物DのGPCチャートを示す。
 以下、本発明を詳細に説明する。
 本発明の説明においては、アクリル樹脂や、アクリル化合物、アクリレート化合物等の呼称に関し、通例に従って、例えば「アクリロイル」と「メタクリロイル」の両者を総称して「(メタ)アクリロイル」と云い、「アクリル」と「メタクリル」の両者を総称して「(メタ)アクリル」と云い、「アクリレート」と「メタクリレート」の両者を総称して「(メタ)アクリレート」と云うことがある。
 水酸基含有リン化合物又はリン含有(メタ)アクリロイル化合物は、単一化合物だけでなく、混合物(樹脂)を包含する。
 本発明のリン含有(メタ)アクリロイル化合物は、下記一般式(1)で表される。
Figure JPOXMLDOC01-appb-C000011

 式(1)において、R1、R2は水素、水酸基、-ORまたは-Rで表される基であり、Rは炭素数2~40の炭化水素基である。R1, R2は同一であっても異なっていても良く、リン原子と共にR1, R2が環状構造を形成していても良い。好ましくは、Rがベンゼン環基であり、ベンゼン環が炭素数1~3のアルキル基で置換されていてもよい。
 式(1)において、Xは3価の炭素数6~20の芳香族炭化水素基である。芳香族炭化水素基は、ベンゼン環基、ナフタレン環基、ビフェニル環基、ターフェニル環基などが挙げられる。芳香族炭化水素基は、未置換であるか、置換基として、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数6~10のアリール基、炭素数6~10のアリールオキシ基、炭素数7~12のアラルキル基、又は炭素数7~12のアラルキルオキシ基を有してもよい。上記Xとしては、ベンゼン環基、ナフタレン環基、又はこれらにメチル基、もしくは1-フェニルエチル基が置換した芳香族置換基が好ましい。
 式(1)において、Yは下記式(2)または下記式(3)で表される置換基である。しかし、少なくとも一方は、下記一般式(3)で表される置換基を含む。
Figure JPOXMLDOC01-appb-C000012

 一般式(2)において、R3は水素又はメチル基である。
Figure JPOXMLDOC01-appb-C000013

 一般式(3)において、R4は水素又はメチル基であり、R5は、C1~C20の炭化水素基である。C1~C20の炭化水素基としては、直鎖または分岐構造を有する脂肪族炭化水素基、脂環式炭化水素基、又は炭素数6~20の芳香族炭化水素基が挙げられる。脂肪族炭化水素基としては、炭素数1~20のアルキル基、芳香族炭化水素基としては、フェニル基、ナフチル基、ビフェニル基、アントラニル基等が挙げられる。R5が芳香族炭化水素基を含む場合、その芳香環上に置換基を有していてもよく、置換基を有していなくてもよい。該置換基としては、カルボキシ基、脂肪族炭化水素基、アシル基、アルコキシ基、シアノ基、水酸基、メタクリロイルオキシ基、ビニルベンジルエーテル基、これらの置換基が連結した基等が挙げられる。芳香族炭化水素基が置換基を有する場合、上記炭素数には置換基の炭素数は含まれない。
 式(1)において、Yの少なくとも一方は、一般式(3)で表される置換基を含む。好ましくは2つのYがいずれも一般式(3)で表される置換基であるリン含有(メタ)アクリロイル化合物(2置換体)と、2つのYのうち1つだけが一般式(3)で表される置換基であるリン含有(メタ)アクリロイル化合物(1置換体)との混合物である。この混合物において、2置換体の存在割合は、好ましくは10~99モル%、より好ましくは20~95モル%である。なお、未置換体を含有してもよいが、その含有量は、好ましくは50モル%未満である。 
 本発明のリン含有(メタ)アクリロイル化合物の組成物は、上記一般式(1)で表されるリン含有(メタ)アクリロイル化合物と、下記一般式(4)で表される(メタ)アクリロイル化合物を含むリン含有組成物である。一般式(1)の化合物に対し、一般式(4)で表される化合物を含む。
 本発明のリン含有(メタ)アクリロイル化合物の組成物は、一般式(1)で表される化合物95~5質量部、下記一般式(4)で表される(メタ)アクリロイル化合物を5~95質量部含むことが好ましい。下記一般式(4)で表される(メタ)アクリロイル化合物をこの範囲で含むことにより、溶解性に優れ、更なる耐熱性の向上が可能である。
Figure JPOXMLDOC01-appb-C000014

 一般式(4)において、R1、R2、R3およびXは一般式(1)、一般式(3)における規定と同義である。
 本発明のリン含有(メタ)アクリロイル化合物の組成物は、リン含有率が、好ましくは1.0~10.0重量%、より好ましくは2.0~8.0重量%、さらに好ましくは3.0~6.0重量%である。
 前記一般式(1)で表される化合物および前記一般式(1)と前記一般式(4)の化合物を含む樹脂組成物は、下記一般式(5)で表される水酸基含有リン化合物と、グリシジル基を1つ含む化合物とを反応させた後に、(メタ)アクリル酸、(メタ)アクリル酸無水物、またはハロゲン化(メタ)アクリロイル化合物で(メタ)アクリロイル化することで得ることができる。
Figure JPOXMLDOC01-appb-C000015

 一般式(5)において、R1、R2およびXは、一般式(1)における規定と同義である。一般式(5)で表される水酸基含有リン化合物は、リン原子に直結した活性水素を持つ有機リン化合物とキノン化合物との反応から、特開昭61-236787号公報、特開平05-331179号公報、特開平05-39345号公報等で示される公知の方法により合成することができる。有機リン化合物の例としては、ジメチルホスフィン、ジエチルホスフィン、ジフェニルホスフィン等、ホスフィンオキサイド類としては、ジメチルホスフィンオキサイド、ジエチルホスフィンオキサイド、ジフェニルホスフィンオキサイド、メンチルフェニルホスフィナート、tert-ブチルフェニルホスフィンオキサイド等が挙げられ、リン酸エステル類としてはジエチルハイドロゲンホスファイト、ビス(2-エチルヘキシル)ハイドロゲンホスファイト、ジラウリルハイドロゲンホスファイト、ジオレイルハイドロゲンホスファイト、ジフェニルハイドロゲンホスファイト、9、10-ジヒドロ-9-オキサ-10-フォスファフェナントレン-10-オキサイド(HCA 三光製)等が挙げられるが、これらに限定されるものではなく、2種類以上使用しても良い。キノン化合物の具体例としては1,4-ベンゾキノン、1,2-ベンゾキノン、1,4-ナフトキノン等が挙げられる。これらキノン類は単独でも2種類以上混合して使用しても良く、また、これらに限定されるものではない。
 一般式(5)で表される水酸基含有リン化合物は、上記の通り、リン原子に直結した活性水素を持つ有機リン化合物とキノン化合物との反応から合成する事ができるが、この反応により、下記一般式(6)で表されるリン原子がキノン化合物に2つ付加した構造が副生する事があるが、本発明の効果を妨げる化合物では無く、含まれても問題ない。
Figure JPOXMLDOC01-appb-C000016
 上記一般式(5)で表される水酸基含有リン化合物は、市販品を使用することもでき、ジフェニルホスフィニルハイドロキノン(PPQ 北興化学工業)、10-(2,5-ジヒドロキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキサイド(HCA-HQ 三光化学)、10-(2,5-ジヒドロキシナフチル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキサイド、1,4-シクロオクチレンホスホニルハイドロキノン、1,5-シクロオクチレンホスホニルハイドロキノン(CPHO-HQ)等が購入可能である。
 グリシジルエーテル基を1つ含む化合物の例としては、エチルグリシジルエーテル、ブチルグリシジルエーテル、tert-ブチルグリシジルエーテル、グリシジルイソプロピルエーテル、2-エチルヘキシルグリシジルエーテル、ラウリルグリシジルエーテル、ラウリルアルコール(EO)15グリシジルエーテル、C12~13混合アルコールグリシジルエーテル、3-グリシジルオキシプロピル(ジメトキシ)メチルシラン、グリシジルアクリレート、アリルグリシジルエーテル、メタクリル酸グリシジル、1,1,1,3,5,5,5-ヘプタメチル-3-(3-グリシジルオキシプロピル)トリシロキサン、1,2-エポキシデカングリシジルグアヤコールエーテル、フェニルグリシジルエーテル、o-クレジルグリシジルエーテル、m-クレジルグリシジルエーテル、p-クレジルグリシジルエーテル等のクレジルグリシジルエーテル、4-tert-ブチルフェニルグリシジルエーテル、ベンジルグリシジルエーテル、フェノール(EO)5グリシジルエーテル4-グリシジルオキシカルバゾール、4-tert-ブチル安息香酸グリシジル等が挙げられるが、これらに限定されず、2種以上を併用しても良い。入手が容易な事から、2-エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、クレジルグリシジルエーテル、4-tert-ブチルフェニルグリシジルエーテルが好ましい。
 上記一般式(5)で表されるリン含有フェノール化合物と、グリシジル基を一つ含むエポキシ樹脂類との反応は公知の方法で行うことが可能である。すなわち、水酸基含有リン化合物にエポキシ樹脂類を添加し、反応温度として100℃~200℃、より好ましくは120℃~180℃で攪拌下、反応を行う。この反応の速度が遅い場合、必要に応じて触媒を使用して生産性の改善を計ることができる。具体的な触媒としてはベンジルジメチルアミン等の第3級アミン類、テトラメチルアンモニウムクロライド等の第4級アンモニウム塩類、トリフェニルホスフィン、トリス(2,6-ジメトキシフェニル)ホスフィン等のホスフィン類、エチルトリフェニルホスホニウムブロマイド等のホスホニウム塩類、2メチルイミダゾール、2エチル4メチルイミダゾール等のイミダゾール類等各種触媒が使用可能である。
 上記一般式(5)で表されるリン含有フェノール化合物と、グリシジル基を1つ含むエポキシ樹脂類の反応モル比は、水酸基含有リン化合物の水酸基1モルに対し、グリシジル基が0.05~1.00モルであり、好ましくは0.10~0.95モルであり、更に好ましくは0.20~0.80モルである。0.05以下で、上記一般式(4)の化合物が増え、溶解性が不足するので好ましくない。
 前記一般式(5)で表されるリン含有化合物と、グリシジル基を1つ含むエポキシ樹脂類の反応から得られたアルコール性水酸基を含むリン含有化合物(以後、水酸基含有リン化合物と呼ぶ)と(メタ)アクリル酸、ハロゲン化(メタ)アクリロイルまたは(メタ)アクリル酸無水物の反応は、特に制約は無く、アルコール化合物やフェノール化合物の通常の(メタ)アクリロイル化反応と同様に実施できる。
 例えば、(メタ)アクリル酸を使用する場合は、水酸基含有リン化合物を、硫酸、p-トルエンスルホン酸、メタンスルホン酸等の強酸触媒の存在下、水酸基に対して1~10倍の(メタ)アクリル酸と縮合反応することで製造することができる。この反応は、副生する縮合水を系外に除去しながら進める必要があることから、反応溶媒にはトルエン等の水と共沸する炭化水素系の溶剤を使用し、反応液を70~140℃程度に加熱することで行う。
 水酸基含有リン化合物とハロゲン化(メタ)アクリロイルまたは(メタ)アクリル酸無水物との反応で本発明のリン含有(メタ)アクリロイル化合物を得ることができる。使用することができるハロゲン化(メタ)アクリロイルとしては、フッ化アクリロイル、塩化アクリロイル、臭化アクリロイル、ヨウ化アクリロイル等のハロゲン化アクリロイル、フッ化メタクリロイル、塩化メタクリロイル、臭化メタクリロイル、ヨウ化メタクリロイル等のハロゲン化メタクリロイルが挙げられる。
 本発明の実施においては、ハロゲン化(メタ)アクリロイル、(メタ)アクリル酸無水物として、1種または2種以上の混合物を使用してもよい。本発明においては、なかでも、入手が容易な点から、塩化(メタ)アクリルまたは/および(メタ)アクリル酸無水物を使用することが好ましい。
 ハロゲン化(メタ)アクリロイルまたは/および(メタ)アクリル酸無水物の使用量としては、原料として用いるリン含有フェノール化合物の水酸基1モルに対して、0.8~5モル、好ましくは0.95~4モルである。(メタ)アクリル酸ハライドまたは/および(メタ)アクリル酸無水物の使用量が上記範囲を下回ると、得られるリン含有(メタ)アクリロイル化合物の耐熱性が低下し、また水酸基の残存量が増えるため誘電特性が悪化するため好ましくなく、使用量が上記範囲を上まわると釜効率が下がりコストが高くなるため好ましくない。
 ハロゲン化(メタ)アクリロイルを使用する場合においては、使用する(メタ)アクリル酸ハライドに対応したハロゲン化水素が副生物として生成することから、塩基性化合物を併用して、発生したハロゲン化水素をトラップしつつ反応を行うことが好ましい。塩基性化合物としては特に限定されず、トリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、トリ-n-プロピルアミン、トリイソプロピルアミン、トリブチルアミン、N-メチル-ジエチルアミン、N-エチル-ジメチルアミン、N-エチル-ジアミルアミン等の脂肪族アミン;N,N-ジメチルアニリン、ジエチルアニリン等の芳香族アミン;N,N-ジメチル-シクロヘキシルアミン、N,N-ジエチル-シクロヘキシルアミン等の脂環式アミン;N,N-ジメチルアミノピリジン、N-メチルモルホリン、ジアザビシクロウンデセン(DBU)、ジアザビシクロノネン(DBN)、N-メチルピリジン、N-メチルピロリジン等の複素環アミン;テトラメチルエチレンジアミン、トリエチレンジアミン等のジアミン等を挙げることができる。特に、トリメチルアミン、トリエチルアミン等の脂肪族アミン、ピリジンが、入手の容易さから好ましい。
 塩基性化合物の使用量としては、原料として用いるリン含有フェノール化合物の水酸基1モルに対して、例えば0.8~7モル、好ましくは0.95~5モル程度である。第3級アミンの使用量が上記範囲を下回ると、ハロゲン化水素を完全にトラップすることができず、反応装置の腐食が起こってしまい、上記範囲を上回ると、コスト高となる傾向がある。
 (メタ)アクリル酸無水物で反応を行う際には、触媒を使用しなくても良いが、反応が進み難い場合には、エステル触媒、酸触媒、塩基触媒、ルイス酸触媒を用いることができる。ここで、エステル触媒としては、酢酸ナトリウム、プロピオン酸カリウム、(メタ)アクリル酸ナトリウム等の、低級カルボン酸のナトリウム、カリウム等のアルカリ金属塩が例示できる。また、酸触媒としては、硫酸、ホウ酸等の無機酸;メタンスルホン酸、パラトルエンスルホン酸等の有機酸等が例示できる。また、塩基触媒としては、有機塩基であれば、トリエチルアミン、トリエチレンジアミン等の含窒素脂肪族化合物、ピリジン、4-(ジメチルアミノ)ピリジン、等の含窒素芳香族複素環化合物等が例示できる。また、ルイス酸触媒としては、塩化アルミニウム、塩化亜鉛等が例示できる。
 触媒の使用量としては、使用する(メタ)アクリル酸無水物に対して、10%以下が好ましく、5%以下が更に好ましい。触媒を使用する場合に上記範囲を上回ると、触媒の除去に時間がかかり、また製品中に触媒が残存しやすく、特性の悪化を招く。
 水酸基含有リン化合物とハロゲン化(メタ)アクリロイルまたは/および(メタ)アクリル酸無水物の反応においては、反応溶媒として有機溶媒を使用し、溶液中での反応を行うことが好ましい。使用することができる溶媒としては、フェノール化合物および(メタ)アクリル酸ハライドまたは/および(メタ)アクリル酸無水物との反応性を有さないものであれば特に限定されず、テトラヒドロフラン、ジオキサン、酢酸エチル、アセトニトリル、ベンゼン、トルエン、キシレン、ジクロロメタン、クロロホルム、四塩化炭素、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルリン酸トリアミド、水等の溶剤が挙げられ、必要によりこれらを組み合わせて使用することができる。
 水酸基含有リン化合物と(メタ)アクリル酸ハライドまたは/および(メタ)アクリル酸無水物の反応においては、反応温度は-50~150℃であることが好ましく、高温で反応させると重合反応が生じる可能性が高くなるので、-25~100℃であることがより好ましい。また、反応時間は、設定した反応温度に応じて適宜設定されるが、1~48時間の範囲に設定することが好ましい。
 水酸基含有リン化合物と(メタ)アクリル酸、ハロゲン化(メタ)アクリロイルまたは(メタ)アクリル酸無水物の反応は、重合禁止剤の存在下で行ってもよい。重合禁止剤を添加することにより、反応に供する(メタ)アクリル酸、ハロゲン化(メタ)アクリロイルまたは(メタ)アクリル酸無水物や、目的生成物である(メタ)アクリル酸エステルが重合してオリゴマーを副生することを防止することができる。 重合禁止剤には公知のものを制限なく用いることができ、ヒドロキノン、ヒドロキシモノメチルエーテル、t-ブチルカテコール、t-ブチルハイドロキノン、4-メトキシフェノール、4-メトキシ-1-ナフトール、フェノチアジン等の有機化合物の他、塩化銅、硫化銅等の銅化合物等が挙げられ、これらを組み合わせて使用してもよい。
 この反応の終了後、得られた反応液(反応混合物)を必要により、反応溶媒の留去、溶媒置換等を実施し、水等による洗浄や、活性炭処理、シリカゲルクロマトグラフィー等の手段を利用して精製し、目的物である本発明の(メタ)アクリロイル化合物を取り出すことができる。
 次に、本発明のリン含有(メタ)アクリロイル化合物またはリン含有(メタ)アクリロイル化合物の組成物を必須成分とし、硬化性樹脂又は熱可塑性樹脂を配合してなる難燃性樹脂組成物について説明する。
 本発明の難燃性樹脂組成物において、配合割合は特に限定されるものではないが、例えば、硬化性樹脂及び熱可塑性樹脂の合計量100重量部に対して、リン含有(メタ)アクリロイル化合物またはリン含有(メタ)アクリロイル化合物の組成物を10~300重量部配合するとよい。好ましくは20~200重量部、より好ましくは50~150重量部である。
 硬化性樹脂としては、例えば、不飽和ポリエステル樹脂、硬化型マレイミド樹脂、エポキシ樹脂、ポリシアナート樹脂、フェノール樹脂、分子中に1個以上の重合性不飽和炭化水素基を有する1種以上のビニル化合物類等を挙げることができ、好ましくは、エポキシ樹脂、分子中に1個以上の重合性不飽和炭化水素基を有する1種以上のビニル化合物類である。
 硬化性樹脂がエポキシ樹脂である場合、1分子中に2以上のエポキシ基を有するエポキシ樹脂から選ばれる1種以上のエポキシ樹脂であることが好ましい。かかるエポキシ樹脂としては、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、ビフェニルエポキシ樹脂、ナフタレン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂及びビスフェノールF型エポキシ樹脂等が挙げられる。これらは、単独で用いても、2種以上を組み合わせて用いてもよい。このようなエポキシ樹脂を用いることによって、本発明の硬化性樹脂組成物の有する、優れた誘電特性と流動性への影響を最小限に留め、硬化物の耐熱性と密着性を充分に高められると考えられる。
 エポキシ樹脂を含む場合には、エポキシ樹脂の他に硬化剤を使用しても良い。硬化剤としては、特に制限されるものではなく、例えばフェノール系硬化剤、アミン系化合物、アミド系化合物、酸無水物系化合物、ナフトール系硬化剤、活性エステル系硬化剤、ベンゾオキサジン系硬化剤、シアネートエステル系硬化剤等が挙げられる。これらは1種又は2種以上組み合わせて使用してもよい。
 更に、エポキシ樹脂を配合する場合には、必要に応じて硬化促進剤を用いることができる。例えば、アミン類、イミダゾール類、有機ホスフィン類、ルイス酸等である。添加量は、通常、エポキシ樹脂100重量部に対して、0.2~5重量部の範囲である。
 硬化性樹脂として、分子中に1個以上の重合性不飽和炭化水素基を有する1種以上のビニル化合物類(以下、ビニル化合物類ともいう。)である場合、その種類は特に限定されない。すなわち、ビニル化合物類は、本発明のリン含有(メタ)アクリロイル化合物と反応させることによって、架橋を形成させて、硬化させることができるものであればよい。重合性不飽和炭化水素基が炭素-炭素不飽和二重結合であるものがより好ましく、炭素-炭素不飽和二重結合を分子中に2個以上有する化合物がより好ましい。
 硬化性樹脂としてのビニル化合物類の1分子当たりの炭素-炭素不飽和二重結合の平均個数(ビニル基(置換ビニル基を含む)の数。末端二重結合数ともいう。)は、ビニル化合物類のMwによって異なるが、例えば、1~20個であることが好ましく、2~18個であることがより好ましい。この末端二重結合数が少なすぎると、硬化物の耐熱性としては充分なものが得られにくい傾向がある。また、末端二重結合数が多すぎると、反応性が高くなりすぎ、例えば、硬化性樹脂組成物の保存安定性が低下したり、硬化性樹脂組成物の流動性が低下したりする等の不具合が発生するおそれがある。
 上記ビニル化合物類としては、トリアリルイソシアヌレート(TAIC)等のトリアルケニルイソシアヌレート化合物、末端が(メタ)アクリロイル基やスチリル基で変性された変性ポリフェニレンエーテル(PPE)、分子中に(メタ)アクリロイル基を2個以上有する多官能(メタ)アクリレート化合物、ポリブタジエン等のように分子中にビニル基を2個以上有するビニル化合物(多官能ビニル化合物)、及びスチレン、ジビニルベンゼン等のビニルベンジル化合物等が挙げられる。この中でも、炭素-炭素二重結合を分子中に2個以上有するものが好ましく、具体的には、TAIC、多官能(メタ)アクリレート化合物、変性PPE樹脂、多官能ビニル化合物、及びジビニルベンゼン化合物等が挙げられる。これらを用いると、硬化反応により架橋がより好適に形成されると考えられ、硬化性樹脂組成物の硬化物の耐熱性をより高めることができる。また、これらを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、炭素-炭素不飽和二重結合を分子中に1個有する化合物を併用してもよい。炭素-炭素不飽和二重結合を分子中に1個有する化合物としては、分子中にビニル基を1個有する化合物(モノビニル化合物)等が挙げられる。
 熱可塑性樹脂としては、例えば、ポリスチレン、ポリフェニレンエーテル樹脂、ポリエーテルイミド樹脂、ポリエーテルサルホン樹脂、PPS樹脂、ポリシクロペンタジエン樹脂、ポリシクロオレフィン樹脂等や、既知の熱可塑性エラストマー(例えば、スチレン-エチレン-プロピレン共重合体、スチレン-エチレン-ブチレン共重合体、スチレン-ブタジエン共重合体、スチレン‐イソプレン共重合体、水添スチレン-ブタジエン共重合体、水添スチレン-イソプレン共重合体等)や、あるいはゴム類(例えばポリブタジエン、ポリイソプレン)を挙げることができる。好ましくは、未変性または変性ポリフェニレンエーテル樹脂、水添スチレン-ブタジエン共重合体を挙げることができる。
 本発明の難燃性樹脂組成物には、光または/および熱でラジカルを生じるラジカル重合開始剤(重合触媒ないし架橋剤)を配合しても良い。光重合開始剤としては、例えばべンゾイン、べンゾインメチルエーテル、べンゾインエチルエーテル、べンゾインプロピルエーテル、べンゾインイソブチルエーテル等のべンゾイン類;アセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、2-ヒドロキシ-2-メチル-フェニルプロパン-1-オン、ジエトキシアセトフェノン、1-ヒドロキシシクロへキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オンなどのアセトフェノン類;2-エチルアントラキノン、2-ターシャリーブチルアントラキノン、2-クロロアントラキノン、2-アミルアントラキノンなどのアントラキノン類;2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン、2-クロロチオキサントンなどのチオキサントン類;アセトフェノンジメチルケタール、べンジルジメチルケタールなどのケタール類;べンゾフエノン、4-べンゾイル-4’-メチルジフェニルサルファイド、4,4’-ビスメチルアミノべンゾフェノンなどのべンゾフェノン類;2,4,6-トリメチルべンゾイルジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルべンゾイル)-フェニルホスフィンオキサイド等のホスフィンオキサイド類等が挙げられる。熱ラジカル開始剤としては、ベンゾイルパーオキサイド、クメンハイドロパーオキサイド、2,5-ジメチルヘキサン-2,5-ジハイドロパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、1,3-ビス(ブチルパーオキシイソプロピル)ベンゼン、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、ジクミルパーオキサイド、ジ-t-ブチルパーオキシイソフタレート、t-ブチルパーオキシベンゾエート、2,2-ビス(t-ブチルパーオキシ)ブタン、2,2-ビス(t-ブチルパーオキシ)オクタン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、ジ(トリメチルシリル)パーオキサイド、トリメチルシリルトリフェニルシリルパーオキサイド等の過酸化物があるがこれらに限定されない。また過酸化物ではないが、2,3-ジメチル-2,3-ジフェニルブタンも、ラジカル重合開始剤として使用できる。しかし、これらの例に限定されるものではなく、ラジカル開始剤2種以上を組み合わせて用いてもよい。
 ラジカル重合開始剤の配合量は、樹脂成分100重量部に対して、好ましくは0.01~10重量部、より好ましくは0.1~5重量部である。
 本発明の難燃性樹脂組成物は、反応型難燃剤として一般式(1)で表されるリン含有(メタ)アクリロイル化合物を含有することを必須とし、組成物としてのリン含有率が、好ましくは0.5~5.0重量%、より好ましくは1.0~4.0重量%である。
 本発明の難燃性樹脂組成物には、充填剤を配合することができる。充填剤としては、耐熱性や難燃性を高めるために添加するもの等が挙げられ、公知の充填剤を使用することができるが、特に限定されない。また、充填剤を含有させることによって、耐熱性、寸法安定性や難燃性等をさらに高めることができる。具体的には、球状シリカ等のシリカ、アルミナ、酸化チタン、及びマイカ等の金属酸化物、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物、タルク、ホウ酸アルミニウム、硫酸バリウム、及び炭酸カルシウム等が挙げられる。水酸化アルミニウム、水酸化マグネシウムなどの金属水酸化物を用いた場合、難燃助剤として作用し、リン含有率が少なくても難燃性を確保することが出来る。この中でも、シリカ、マイカ、及びタルクが好ましく、球状シリカがより好ましい。また、これらの1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 充填剤は、そのまま用いてもよいが、エポキシシランタイプ、又はアミノシランタイプ等のシランカップリング剤で表面処理したものを用いてもよい。このシランカップリング剤としては、ラジカル重合開始剤との反応性との観点から、ビニルシランタイプ、メタクリロキシシランタイプ、アクリロキシシランタイプ、及びスチリルシランタイプのシランカップリング剤が好ましい。これにより、金属箔との接着強度や樹脂同士の層間接着強度が高まる。また、充填剤に予め表面処理する方法でなく、上記シランカップリング剤をインテグラルブレンド法で添加して用いてもよい。
 充填剤の含有量は、充填剤を除く固形分(モノマー等の有機成分と難燃剤を含み、溶剤を除く。)の合計100質量部に対して、10~200質量部であることが好ましく、30~150質量部であることが好ましい。
 本発明の難燃性樹脂組成物には、上記以外の添加剤をさらに含有してもよい。添加剤としては、例えば、シリコーン系消泡剤及びアクリル酸エステル系消泡剤等の消泡剤、熱安定剤、帯電防止剤、紫外線吸収剤、染料や顔料、滑剤、湿潤分散剤等の分散剤等が挙げられる。
 本発明の難燃性樹脂組成物を硬化させて得られる硬化物は、成型物、積層物、注型物、接着剤、塗膜、フィルムとして使用できる。例えば、半導体封止材料の硬化物は注型物又は成型物であり、かかる用途の硬化物を得る方法としては、硬化性樹脂組成物を注型、或いはトランスファ-成形機、射出成形機などを用いて成形し、さらに80~230℃で0.5~10時間に加熱することにより硬化物を得ることができる。
 本発明の難燃性樹脂組成物は、プリプレグとして使用することもできる。プリプレグを製造する際には、プリプレグを形成するための基材(繊維質基材)に含浸する目的、あるいは回路基板を形成する回路基板材料とする目的でワニス状に調製して、樹脂ワニスとすることができる。この樹脂ワニスは、回路基板用に適し、回路基板材料用ワニスとして使用できる。なお、ここでいう回路基板材料の用途は、具体的には、プリント配線基板、プリント回路板、フレキシブルプリント配線板、ビルドアップ配線板等が挙げられる。
 上記の樹脂ワニスに用いられる有機溶媒としては、硬化反応を阻害しないものであれば、特に限定されない。例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル類;ジメチルアセトアミド、ジメチルホルムアミド等の極性溶剤類;トルエン、キシレン等の芳香族炭化水素溶剤類等が挙げられ、これらを1種または2種以上を混合して使用することも可能である。誘電特性の観点から、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類が好ましい。
 樹脂ワニスを作成する際に、使用する有機溶剤の量は、本発明の硬化性樹脂組成物100重量部に対して、好ましくは5~900重量部、より好ましくは10~700重量部、特に好ましくは20~500重量部である。
 プリプレグを作成するのに用いられる基材としては、公知の材料が用いられるが、例えば、ガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材がそれぞれ単独で、あるいは2種以上併せて用いられる。これら基材には、必要に応じて樹脂と基材の界面における接着性を改善する目的でカップリング剤を用いることができる。カップリング剤としては、シランカップリング剤、チタネートカップリング剤、アルミニウム系カップリング剤、ジルコアルミネートカップリング剤など一般のものが使用できる。
 プリプレグを得る方法としては、上記樹脂ワニスを基材に含浸させた後、乾燥する方法が挙げられる。含浸は浸漬(ディッピング)、塗布等によって行われる。含浸は必要に応じて複数回繰り返すことも可能であり、またこの際、組成や濃度の異なる複数の溶液を用いて含浸を繰り返し、最終的に希望とする樹脂組成及び樹脂量に調整することも可能である。含浸後に、100~180℃で1~30分加熱乾燥することでプリプレグを得ることができる。ここで、プリプレグ中の樹脂量は、樹脂分30~80重量%とすることが好ましい。
 本発明の硬化性樹脂組成物は、積層板としても使用することもできる。プリプレグを用いて積層板を形成する場合は、プリプレグを一又は複数枚積層し、片側又は両側に金属箔を配置して積層物を構成し、この積層物を加熱・加圧して積層一体化する。ここで金属箔としては、銅、アルミニウム、真鍮、ニッケル等の単独、合金、複合の金属箔を用いることができる。積層物を加熱加圧する条件としては、硬化性樹脂組成物が硬化する条件で適宜調整して加熱加圧すればよいが、加圧の圧力があまり低いと、得られる積層板の内部に気泡が残留し、電気的特性が低下する場合があるため、成形性を満足する条件で加圧することが好ましい。例えば温度を180~250℃、圧力を49.0~490.3N/cm2(5~50kgf/cm2)、加熱加圧時間を40~240分間にそれぞれ設定することができる。更にこのようにして得られた単層の積層板を内層材として、多層板を作製することができる。この場合、まず積層板にアディティブ法やサブトラクティブ法等にて回路形成を施し、形成された回路表面を酸溶液で処理して黒化処理を施して、内層材を得る。この内層材の、片側又は両側の回路形成面に、樹脂シート、樹脂付き金属箔、又はプリプレグにて絶縁層を形成すると共に、絶縁層の表面に導体層を形成して、多層板を形成するものである。
 本発明の硬化性組成物をビルドアップフィルムに使用することもできる。本発明の樹脂組成物からビルドアップフィルムを製造する方法は、例えば、上記樹脂ワニスを、支持フィルム上に塗布、乾燥させてフィルム状の絶縁層を形成する方法が挙げられる。このようにして形成させたフィルム状の絶縁層は、多層プリント配線板用のビルドアップフィルムとして使用できる。
 次に、実施例により本発明を説明するが、本発明はこれらにより限定されるものではない。各例中の部はいずれも重量部である。
 合成例、実施例中の物性測定は、以下に示す方法により行った。
(1)リン含有率:試料に硫酸、塩酸、過塩素酸を加え、加熱して湿式灰化し、全てのリン原子をオルトリン酸とした。硫酸酸性溶液中でメタバナジン酸塩及びモリブデン酸塩を反応させ、生じたリンバナードモリブデン酸錯体の420nmにおける吸光度を測定し、予めリン酸二水素カリウムを用いて作成した検量線により、求めたリン原子含有率を%で表した。
(2)溶剤溶解性:トルエンを溶媒として、固形分50質量%に調整したワニス中で、1週間経過後に析出の無いものを〇、析出が見られるものを×と判定した。
(3)ガラス転移温度:示差走査熱量測定を用いて10℃/分の昇温速度で、ベースラインシフトから求めた。  
(4)比誘電率及び誘電正接:IPC-TM-6502.5.5.9規格に準じてマテリアルアナライザー(AGILENTTechnologies社製)を用い、容量法により周波数1GHzにおける誘電率及び誘電正接を求めた。
(5)難燃性:UL94に準じ、垂直法により評価した。評価はV-0、V-1、V-2で記した。
(合成例1)
 攪拌装置、温度計、冷却管、窒素ガス導入装置を備えたガラス製セパラブルフラスコに9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド340部、トルエン660部を仕込み80℃で溶解した。1,4-ナフトキノン245部を反応発熱に注意しながら、分割投入した。反応を続け、温度を110℃に上げて更に反応を行った。3時間後暗褐色結晶が析出したスラリー溶液を得た。濾過により結晶を分離し、メタノール500部に結晶を分散した。この操作を3回行った後熱風循環オーブンにて乾燥を行い、淡黄色粉末のリン含有フェノール化合物10-(2,5-ジヒドロキシナフチル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキサイド(DOPO-NQ、下記構造式)を得た。
Figure JPOXMLDOC01-appb-C000017
(合成例2)水酸基含有リン化合物Aの合成
 DOPO-NQを130部、溶媒としてトルエン121部、下記構造式のフェニルグリシジルエーテル
Figure JPOXMLDOC01-appb-C000018

105部を、攪拌装置、温度計、ディーンスターク装置、窒素ガス導入装置を備えたガラス製セパラブルフラスコに仕込、110℃で溶解した。トリフェニルホスフィン0.47部を加え、トルエンを除去しながら更に160℃まで加熱し、反応を5時間行った。GPCにて反応の終点を確認し、原料のDOPO-NQおよびフェニルグリシジルエーテルのピークが消失したことを確認後、真空ポンプで1kPaまで減圧を加え、トルエンを留去し、水酸基含有リン化合物Aを233部得た。リン含有率を測定した結果、4.7%であった。GPC分析の結果から、水酸基含有リン化合物Aは、DOPO-NQ1モルに対しフェニルグリシジルエーテルが2モル反応した化合物(下記構造式)
Figure JPOXMLDOC01-appb-C000019

を91%、1モル反応した化合物を9%含み、DOPO-NQは含まれなかった。反応GPCチャートは図1に示した。
(合成例3)水酸基含有リン化合物Bの合成
 フェニルグリシジルエーテルの使用量を52部、トリフェニルホスフィンの使用量を0.36部に変えたこと以外は合成例2と同様な操作を行い、水酸基含有リン化合物Bを180部得た。リン含有率を測定した結果、6.1%であった。GPC分析の結果から、水酸基含有リン化合物Bは、DOPO-NQ1モルに対しフェニルグリシジルエーテルが2モル反応した化合物(下記構造式)
Figure JPOXMLDOC01-appb-C000020

を36%、1モル反応した化合物を31%、DOPO-NQを32%含むことを確認した。反応GPCチャートは図2に示した。
(合成例4)水酸基含有リン化合物Cの合成
 フェニルグリシジルエーテルに代えて、下記構造式の4-tert-ブチルフェニルグリシジルエーテル
Figure JPOXMLDOC01-appb-C000021

72部を使用し、トリフェニルホスフィンの使用量を0.40部に変えたこと以外は合成例2と同様な操作を行い、水酸基含有リン化合物Cを200部得た。リン含有率を測定した結果、5.4%であった。GPC分析の結果から、水酸基含有リン化合物Cは、DOPO-NQ1モルに対し4-tert-ブチルフェニルグリシジルエーテルが2モル反応した化合物(下記構造式)
Figure JPOXMLDOC01-appb-C000022

32%、1モル反応した化合物を35%、DOPO-NQを31%含むことを確認した。GPCチャートは図3に示した。
(合成例5)水酸基含有リン化合物Dの合成
 フェニルグリシジルエーテルに代えて、下記構造式の2-エチルヘキシルグリシジルエーテル
Figure JPOXMLDOC01-appb-C000023

65部を使用し、トリフェニルホスフィンの使用量を0.39部に変えたこと以外は合成例2と同様な操作を行い、水酸基含有リン化合物Dを193部得た。リン含有率を測定した結果、5.9%であった。GPC分析の結果から、水酸基含有リン化合物Dは、DOPO-NQ1モルに対し2-エチルヘキシルグリシジルエーテルが2モル反応した化合物(下記構造式)
Figure JPOXMLDOC01-appb-C000024

を32%、1モル反応した化合物を32%、DOPO-NQを37%含むことを確認した。反応GPCチャートは図4に示した。
(実施例1)リン含有メタクリロイル化合物Aの合成
 攪拌装置、温度計、冷却管、滴下ロートを備えたガラス製セパラブルフラスコに、水酸基含有リン化合物A100部、テトラヒドロフラン100部、トリエチルアミン51部、を仕込み、溶解後に5℃以下に氷浴で冷却した。窒素雰囲気化で、下記構造式の塩化メタクリロイル
Figure JPOXMLDOC01-appb-C000025

35部を1時間かけて滴下し、更に2時間反応を継続し、GPCにて原料のピークが消失したことを確認した。
 続いて、反応液を濃縮し、トルエン271部に溶解後、炭酸ナトリウム水溶液、水の順で洗浄した。水による洗浄後、脱水して、ろ過、更に溶媒を濃縮することで、固形分濃度を50%に調整し、リン含有メタクリロイル化合物Aのトルエン溶液205部を得た。リン含有率は4.1%であった。GPC分析の結果から、リン含有メタクリロイル化合物Aは、DOPO-NQ1モルに対しフェニルグリシジルエーテルが2モル反応した化合物に由来するメタクリロイル化合物(下記構造式)
Figure JPOXMLDOC01-appb-C000026

を92%、1モル反応した化合物に由来するメタクリロイル化合物を8%、DOPO-NQに由来するメタクリロイル化合物は含まないことを確認した。GPCチャートは図5に示した。
(実施例2)リン含有メタクリロイル化合物Bの合成
 攪拌装置、温度計、冷却管、滴下ロートを備えたガラス製セパラブルフラスコに、水酸基含有リン化合物B100部、テトラヒドロフラン100部、トリエチルアミン48部、を仕込み、溶解後に5℃以下に氷浴で冷却した。窒素雰囲気化で、塩化メタクリロイル45部を1時間かけて滴下し、更に2時間反応を継続し、GPCにて原料のピークが消失したことを確認した。
 続いて、反応液を濃縮し、トルエン294部に溶解後、実施例1と同様に洗浄、濃縮を行い、固形分濃度50%のリン含有メタクリロイル化合物Bのトルエン溶液214部を得た。固形分濃度は50%、リン含有率は5.1%であった。GPC分析の結果から、リン含有メタクリロイル化合物Bは、DOPO-NQ1モルに対しフェニルグリシジルエーテルが2モル反応した化合物に由来するメタクリロイル化合物(下記構造式)
Figure JPOXMLDOC01-appb-C000027

を37%、1モル反応した化合物に由来するメタクリロイル化合物を28%、DOPO-NQに由来するメタクリロイル化合物を32%含むことを確認した。GPCチャートは図6に示した。
(実施例3)リン含有メタクリロイル化合物Cの合成
 攪拌装置、温度計、冷却管、滴下ロートを備えたガラス製セパラブルフラスコに、リン含有フェノール化合物C100部、テトラヒドロフラン100部、トリエチルアミン33部、4-ジメチルアミノピリジン2.4部を仕込み、室温で溶解した。窒素雰囲気化で、下記構造式のメタクリル酸無水物
Figure JPOXMLDOC01-appb-C000028

61部を1時間かけて滴下し、更に50℃で6時間反応を継続し、GPCにて原料のピークが消失したことを確認した。
 続いて、反応液を濃縮し、トルエン210部に溶解後、実施例1と同様に洗浄、濃縮を行い、固形分濃度50%のリン含有メタクリロイル化合物Cのトルエン溶液220部を得た。リン含有率は4.4%であった。GPC分析の結果から、リン含有メタクリロイル化合物Cは、DOPO-NQ1モルに対し4-tert-ブチルフェニルグリシジルエーテルが2モル反応した化合物に由来するメタクリロイル化合物(下記構造式)
Figure JPOXMLDOC01-appb-C000029

を34%、1モル反応した化合物に由来するメタクリロイル化合物を37%、DOPO-NQに由来するメタクリロイル化合物を27%含むことを確認した。GPCチャートは図7に示した。
(実施例4)リン含有メタクリロイル化合物Dの合成
 攪拌装置、温度計、冷却管、滴下ロートを備えたガラス製セパラブルフラスコに、水酸基含有リン化合物D100部、テトラヒドロフラン100部、トリエチルアミン47部、を仕込み、溶解後に5℃以下に氷浴で冷却した。窒素雰囲気化で、塩化メタクリロイル45部を1時間かけて滴下し、更に2時間反応を継続し、GPCにて原料のピークが消失したことを確認した。
 続いて、反応液を濃縮し、トルエン305部に溶解後、実施例1と同様に洗浄、濃縮を行い、固形分濃度が50%のリン含有メタクリロイル化合物Dのトルエン溶液235部を得た。リン含有率は4.4%であった。GPC分析の結果から、リン含有メタクリロイル化合物Dは、DOPO-NQ1モルに対し2-エチルヘキシルグリシジルエーテルが2モル反応した化合物に由来するメタクリロイル化合物(下記構造式)
Figure JPOXMLDOC01-appb-C000030

を33%、1モル反応した化合物に由来するメタクリロイル化合物を29%、DOPO-NQに由来するメタクリロイル化合物を35%含むことを確認した。GPCチャートは図8に示した。
(比較例1)
 攪拌装置、温度計、冷却管、滴下ロートを備えたガラス製セパラブルフラスコに、DOPO-NQ100部、テトラヒドロフラン233部、トリエチルアミン72部、を仕込み、溶解後に5℃以下に氷浴で冷却した。窒素雰囲気化で、塩化メタクリロイル62部を1時間かけて滴下し、更に2時間反応を継続した。
 続いて、反応液を濃縮し、トルエン318部に溶解後、実施例1と同様に洗浄、濃縮を行い、固形分濃度が50%のトルエン溶液に調整し、リン含有メタクリロイル化合物E(下記構造式)
Figure JPOXMLDOC01-appb-C000031

の溶液235部を得た。リン含有率は6.2%であった。
(比較例2)
 特許文献3の合成例1に従って合成した。具体的には、攪拌装置、温度計、冷却管、酸素ガス導入装置を備えたガラス製セパラブルフラスコに、リン化合物として9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド150部、反応溶媒としてトルエン70部、イソプロピルアルコール20部、ビニルベンジルハライドとしてCMS-P120部、触媒としてテトラメチルアンモニウムクロライド2.7部を仕込み、加熱して溶解した。その後、アルカリ金属として48.5%水酸化ナトリウム水溶液127部を反応発熱による温度上昇に注意しながら分割投入した。70℃~80℃に保持して反応を行いガスクロマトグラフィーによりCMS-Pの残存量を追跡した。CMS-Pの残存量が減少し、十分反応したことを確認して、トルエンで希釈した。塩酸により中和を行い、濾過して生成した塩化ナトリウムを除去した。更に水洗を行いイオン性不純物を除去した。加熱減圧により脱水、溶剤除去を行い、固形分濃度が50%のトルエン溶液に調整し、リン含有ビニルベンジル化合物A(下記構造式)
Figure JPOXMLDOC01-appb-C000032

の溶液を得た。得られた化合物のリン含有率を測定した結果、9.3%だった。
(比較例3)
 特許文献3の合成例1に従い、さらに1,4ナフトキノンを使用し、合成を行った。具体的には、攪拌装置、温度計、冷却管、酸素ガス導入装置を備えたガラス製セパラブルフラスコに9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド340部、トルエン660部を仕込み80℃で溶解した。1,4-ナフトキノン245部を反応発熱に注意しながら、分割投入した。反応を続け、温度を110℃に上げて更に反応を行った。3時間後暗褐色結晶が析出したスラリー溶液を得た。濾過により結晶を分離し、メタノール500部に結晶を分散した。この操作を3回行った後熱風循環オーブンにて乾燥を行った。得られた淡黄色粉末のリン含有フェノール化合物10-(2,5-ジヒドロキシナフチル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキサイドを93.5部、溶媒としてジメチルスルホキシド140.5部、メチルイソブチルケトン93.5部、ビニルベンジルハライドとしてCMS-Pを77.8部、触媒としてテトラメチルアンモニウムクロライド0.20部、アルカリ金属として48.5%水酸化ナトリウム水溶液74.2部、重合禁止剤としてトリメチルハイドロキノンを0.16部部加え35%塩酸で、pHが5~6になるまで中和し、下層水層を分離除去した。燐酸2水素ナトリウム水溶液でpHが7~6になる様にしながら、水洗洗浄、水層分離除去を3~5回繰り返した。還流脱水を行い、溶液濾過を行って溶剤回収を行い、固形分濃度が50%のトルエン溶液に調整し、リン含有ビニルベンジルエーテル化合物B(下記構造式)
Figure JPOXMLDOC01-appb-C000033

の溶液を得た。得られた化合物のリン含有率は、4.2%であった。
<溶解性試験>
 実施例1~4、比較例1~3で調整した50%トルエン溶液を用いて、溶解性試験を実施した。その結果を表1に示した。
Figure JPOXMLDOC01-appb-T000034
実施例5~12、比較例4~8
<硬化性樹脂組成物の調整及び硬化物の作成>
 各種成分を表2、表3の割合で配合することでワニスを作成し、ペットフィルム上に塗布、130℃オーブンで5分乾燥させ樹脂組成物のフィルムを作成した。次に、このフィルムを粉砕することで、樹脂組成物の粉末を得た。更に、この粉末をステンレス製の鏡面板にスペーサーと伴に挟み、真空オーブンを用いて210℃90分間で成形することで硬化物のサンプルを得た。その硬化物サンプルを用いてガラス転移温度や誘電性を評価し、表2、表3に示した。
<難燃試験片の作成>
 各種成分を表2、表3の割合で配合することでワニスを作成し、この樹脂ワニスをガラスクロス(日東紡績株式会社製;7628タイプ;品番H258)に含浸させた後、130℃で5分間加熱することにより乾燥し、プリプレグを得た。
 得られたプリプレグ8枚と、上下に銅箔(三井金属鉱業株式会社製、3EC-III、厚み35μm)を重ね、130℃×15分+190℃×80分の温度条件で2MPaの真空プレスを行い、1.6mm厚の積層板を得た。銅箔をエッチングし、カットすることで、難燃性試験片を得た。その難燃性試験片を用いて難燃性を評価し、表2、表3に示した。
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
OPE-2St:三菱ガス化学製株式会社製 末端スチリル変性ポリフェニレンエーテル樹脂
PX-200:大八化学工業株式会社製 芳香族縮合リン酸エステル、リン含有率9.0%
パーブチルP:日油社製1,3-ビス(ブチルパーオキシイソプロピル)ベンゼン
 本発明のリン含有(メタ)アクリロイル化合物は、建材や電気電子機器まで幅広い用途に利用でき、特に電気・電子製品やOA機器、通信機器等において、反応型リン系難燃剤として非常に有用である。

Claims (6)

  1.  下記一般式(1)で表されるリン含有(メタ)アクリロイル化合物。
    Figure JPOXMLDOC01-appb-C000001

     一般式(1)において、R1, R2は水素、水酸基、-ORまたは-Rで表される基であり、Rは炭素数2~40の炭化水素基である。R1, R2は同一であっても異なっていても良く、リン原子と共にR1, R2が環状構造を形成していても良い。式中のXは3価の炭素数6~20の芳香族炭化水素基を示し、Yは下記一般式(2)または(3)で表される置換基である。ただし、Yの少なくとも一方は、下記一般式(3)で表される置換基を含む。
    Figure JPOXMLDOC01-appb-C000002

     一般式(2)において、R3は水素又はメチル基である。
    Figure JPOXMLDOC01-appb-C000003

     一般式(3)において、R4は水素又はメチル基であり、R5は、C1~C20の炭化水素基である。
  2.  請求項1に記載のリン含有(メタ)アクリロイル化合物と、
     下記一般式(4)で表されるリン含有(メタ)アクリロイル化合物を含むことを特徴とするリン含有(メタ)アクリロイル化合物の組成物。
    Figure JPOXMLDOC01-appb-C000004

     一般式(4)において、R1、R2、R3およびXは一般式(1)、一般式(3)における規定と同義である。
  3.  下記一般式(5)で表される化合物と、グリシジルエーテル基を1つ含む化合物とを反応させた後に、(メタ)アクリル酸、(メタ)アクリル酸無水物、またはハロゲン化(メタ)アクリロイル化合物で(メタ)アクリロイル化することを特徴とする請求項1に記載の化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000005

     一般式(5)において、R1、R2およびXは、一般式(1)における規定と同義である。
  4.  請求項1に記載のリン含有化合物に、熱硬化性樹脂又は熱可塑性樹脂の一種以上を配合してなることを特徴とする難燃性樹脂組成物。
  5.  請求項4に記載の難燃性樹脂組成物を硬化してなる硬化物。
  6.  請求項4に記載の難燃性樹脂組成物を必須成分とする電子回路基板用積層板。
PCT/JP2023/007119 2022-03-03 2023-02-27 リン含有(メタ)アクリロイル化合物、その製造方法、及びリン含有(メタ)アクリロイル化合物を含む難燃性樹脂組成物、硬化物、並びに電子回路基板用積層板 WO2023167148A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022032679 2022-03-03
JP2022-032679 2022-03-03

Publications (1)

Publication Number Publication Date
WO2023167148A1 true WO2023167148A1 (ja) 2023-09-07

Family

ID=87883732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007119 WO2023167148A1 (ja) 2022-03-03 2023-02-27 リン含有(メタ)アクリロイル化合物、その製造方法、及びリン含有(メタ)アクリロイル化合物を含む難燃性樹脂組成物、硬化物、並びに電子回路基板用積層板

Country Status (2)

Country Link
TW (1) TW202402776A (ja)
WO (1) WO2023167148A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220435A (ja) * 2001-01-26 2002-08-09 Matsushita Electric Works Ltd リン含有エポキシ樹脂組成物、プリプレグ、樹脂付き金属箔、接着シート、積層板、多層板、塗工用リン含有エポキシ樹脂ワニス、リン含有エポキシ樹脂封止材、リン含有エポキシ樹脂注型材、含浸用リン含有エポキシ樹脂ワニス
JP2004522845A (ja) * 2001-03-07 2004-07-29 ユ セ ベ ソシエテ アノニム リン含有材料、それらの製造及び使用
WO2008123474A1 (ja) * 2007-03-26 2008-10-16 Tohto Kasei Co., Ltd. 新規熱可塑性ポリヒドロキシポリエーテル樹脂及び、それを配合した樹脂組成物
JP2011099019A (ja) * 2009-11-05 2011-05-19 Nippon Steel Chem Co Ltd リン含有エポキシ樹脂、樹脂組成物、およびその難燃性硬化物
JP2021088656A (ja) * 2019-12-04 2021-06-10 日鉄ケミカル&マテリアル株式会社 エポキシ樹脂組成物、それを使用した積層板及びプリント回路基板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220435A (ja) * 2001-01-26 2002-08-09 Matsushita Electric Works Ltd リン含有エポキシ樹脂組成物、プリプレグ、樹脂付き金属箔、接着シート、積層板、多層板、塗工用リン含有エポキシ樹脂ワニス、リン含有エポキシ樹脂封止材、リン含有エポキシ樹脂注型材、含浸用リン含有エポキシ樹脂ワニス
JP2004522845A (ja) * 2001-03-07 2004-07-29 ユ セ ベ ソシエテ アノニム リン含有材料、それらの製造及び使用
WO2008123474A1 (ja) * 2007-03-26 2008-10-16 Tohto Kasei Co., Ltd. 新規熱可塑性ポリヒドロキシポリエーテル樹脂及び、それを配合した樹脂組成物
JP2011099019A (ja) * 2009-11-05 2011-05-19 Nippon Steel Chem Co Ltd リン含有エポキシ樹脂、樹脂組成物、およびその難燃性硬化物
JP2021088656A (ja) * 2019-12-04 2021-06-10 日鉄ケミカル&マテリアル株式会社 エポキシ樹脂組成物、それを使用した積層板及びプリント回路基板

Also Published As

Publication number Publication date
TW202402776A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
CN112313265B (zh) 树脂组合物和其应用
US11365274B2 (en) Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board each obtained using said resin composition
JPWO2018181842A1 (ja) 可溶性多官能ビニル芳香族共重合体、その製造方法並びに硬化性樹脂組成物及びその硬化物
JP5176336B2 (ja) ポリビニルベンジルエーテル化合物およびそれを含む硬化性樹脂組成物および硬化性フィルム
WO2007080998A1 (ja) シアナト基含有環状ホスファゼン化合物およびその製造方法
JP2015086330A (ja) 樹脂組成物、プリプレグ、金属張積層板、及びプリント配線板
JPWO2018074278A1 (ja) 樹脂組成物、樹脂組成物の製造方法、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
JP2020105352A (ja) 硬化性樹脂組成物、プリプレグ、金属張積層板、及びプリント配線板
CN113121981B (zh) 一种树脂组合物以及使用其的预浸片和绝缘板
TW201942237A (zh) 硬化性樹脂組合物、預浸料、硬化物、層疊板與增層膜
TW201723020A (zh) 酚芴改質的聚苯醚
TW202212347A (zh) 含有磷的酚化合物、含其之硬化性樹脂組成物及其硬化物
JP2022016422A (ja) リン含有(メタ)アクリロイル化合物、その製造方法、これを含む難燃性樹脂組成物および電子回路基板用積層板
WO2019044154A1 (ja) ポリフェニレンエーテル樹脂組成物、並びに、それを用いたプリプレグ、金属張積層板及び配線基板
JP2022016423A (ja) リン含有ビニルベンジルエーテル化合物、その製造方法、これを含む難燃性樹脂組成物および電子回路基板用積層板
TW201410645A (zh) 芳香族乙烯基苄基醚化合物、含有其的硬化性組成物以及這些的應用
WO2023167148A1 (ja) リン含有(メタ)アクリロイル化合物、その製造方法、及びリン含有(メタ)アクリロイル化合物を含む難燃性樹脂組成物、硬化物、並びに電子回路基板用積層板
WO2023167019A1 (ja) リン含有(メタ)アクリロイル化合物、その製造方法、これを含む難燃性術組成物および電子回路基板用積層板
TW202219022A (zh) 含乙烯基的芳香族醚化合物的製造方法、樹脂組成物的製造方法、芳香族醚系樹脂的製造方法、預浸料的製造方法、樹脂片的製造方法、積層板的製造方法
WO2021166649A1 (ja) 硬化性樹脂組成物、プリプレグ、金属張積層板、及びプリント配線板
JP2024121407A (ja) リン含有(メタ)アクリロイル化合物、その製造方法、これを含む難燃性樹脂組成物および電子回路基板用積層板
WO2024181111A1 (ja) リン含有(メタ)アクリロイル化合物、リン含有ビニルベンジル化合物、その製造方法、これを含む難燃性樹脂組成物および電子回路基板用積層板
JP2024115162A (ja) リン含有(メタ)アクリロイル化合物、その製造方法、これを含む難燃性樹脂組成物および電子回路基板用積層板
JP2024121511A (ja) リン含有ビニルベンジル化合物、その製造方法、これを含む難燃性樹脂組成物および電子回路基板用積層板
WO2024171871A1 (ja) リン含有(メタ)アクリロイル化合物、リン含有ビニルベンジル化合物、その製造方法、これを含む難燃性樹脂組成物および電子回路基板用積層板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763406

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024504680

Country of ref document: JP

Kind code of ref document: A