WO2023166948A1 - 末端(メタ)アクリレートポリフェニレンエーテルオリゴマー、及びこれを含む樹脂組成物、ワニス、プリプレグ、硬化物 - Google Patents
末端(メタ)アクリレートポリフェニレンエーテルオリゴマー、及びこれを含む樹脂組成物、ワニス、プリプレグ、硬化物 Download PDFInfo
- Publication number
- WO2023166948A1 WO2023166948A1 PCT/JP2023/004525 JP2023004525W WO2023166948A1 WO 2023166948 A1 WO2023166948 A1 WO 2023166948A1 JP 2023004525 W JP2023004525 W JP 2023004525W WO 2023166948 A1 WO2023166948 A1 WO 2023166948A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- carbon atoms
- polyphenylene ether
- independently
- meth
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/06—Polymers provided for in subclass C08G
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/34—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
- C08G65/38—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/34—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
- C08G65/48—Polymers modified by chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
Definitions
- the present invention relates to terminal (meth)acrylate polyphenylene ether oligomers, and resin compositions, varnishes, prepregs, and cured products containing the same.
- polyphenylene ether has a low dielectric constant and a low dielectric loss tangent, it is known to be suitable as a material for electronic devices such as printed wiring boards.
- As a substrate material for printed wiring boards in addition to properties such as flame retardancy, heat resistance, and peel strength with silver foil, which have been conventionally required, low dielectric constant and low dielectric loss tangent are also required. Improvement of polyphenylene ether (PPE), which is used as a substrate material for printed wiring boards and the like, has also been investigated. In this field, poly(2,6-dimethylphenylene ether)-terminated polyphenylene ether (PPE) modified with methacrylic groups is one of the widely used materials.
- Poly(2,5-dialkyl-substituted phenylene ether) obtained by polymerization of phenol substituted with alkyl groups at the 2- and 5-positions of phenol is also known.
- Crystalline poly(2,5-disubstituted phenylene oxide) obtained by polymerizing disubstituted phenol has excellent solvent resistance to general organic solvents and high heat resistance, and is suitable for melt molding materials and film materials. stated to be useful.
- the present invention aims to provide a terminal (meth)acrylate polyphenylene ether oligomer capable of providing a cured product having superior heat resistance to a cured product based on a conventional polyphenylene ether resin. aim.
- the present inventors have made intensive studies to solve the above problems, and found that the terminal represented by the general formula (1) and / or (2) composed of 2,5-xylenol and bifunctional biphenols
- the inventors have found that a (meth)acrylate polyphenylene ether oligomer can provide a cured product having excellent heat resistance, and completed the present invention.
- each R 1 independently represents a hydrogen atom or a methyl group
- each R 2 independently represents a chain or branched alkyl group having 1 to 6 carbon atoms
- each n is independently an integer of 1 or more
- each m is independently 0, 1, 2 or 3
- each X is independently a single bond, an oxygen atom, a sulfur atom, a sulfonyl group, a carbonyl group, or a divalent group represented by general formula (1a), (1b) or (1c).
- R 3 and R 4 are each independently a hydrogen atom, a chain or branched al
- R 5 each independently represent a hydrogen atom or a chain or branched alkyl group having 1 to 6 carbon atoms
- Ar 1 and Ar 2 each independently represent an aryl group having 6 to 12 carbon atoms.
- * indicates the binding position, respectively.
- component (C) containing a reaction initiator;2.
- component (D) containing a filler;3.
- each R 2 is independently a chain or branched alkyl group having 1 to 6 carbon atoms, a cyclic alkyl group having 5 or 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms.
- n is each independently an integer of 1 or more
- X is each independently a single bond, an oxygen atom, a sulfur atom, a sulfonyl group, a carbonyl group, or general formula (1a), (1b) or (1c ) represents a divalent group.
- R 3 and R 4 are each independently a hydrogen atom, a chain or branched alkyl group having 1 to 10 carbon atoms, and 1 10 to 10 halogenated alkyl groups or 6 to 12 carbon atom aryl groups, and R 3 and R 4 may be combined with each other to form a cycloalkylidene group having 5 to 20 carbon atoms as a whole.
- R 5 each independently represent a hydrogen atom or a chain or branched alkyl group having 1 to 6 carbon atoms
- Ar 1 and Ar 2 each independently represent an aryl group having 6 to 12 carbon atoms.
- * indicates the binding position, respectively.
- the terminal (meth)acrylate polyphenylene ether oligomer and the resin composition, varnish, and prepreg containing the same according to the present invention exhibit a high glass transition temperature (Tg) and are cured products based on polyphenylene ether resins having excellent heat resistance. can be obtained. Therefore, the terminal (meth)acrylate polyphenylene ether oligomer of the present invention, and the resin composition, varnish, prepreg, and cured product containing the same are ideal for applications such as substrate materials, laminates, and heat resistance modifiers for resins. .
- FIG. 1 is a diagram showing a spectrum of Fourier transform infrared spectroscopy (FT-IR) analysis of a polyphenylene ether oligomer obtained in Example 1.
- FIG. 1 is a diagram showing a spectrum of NMR analysis of a polyphenylene ether oligomer obtained in Example 1.
- FIG. 2 is a spectrum of Fourier transform infrared spectroscopy (FT-IR) analysis of the terminal (meth)acrylate polyphenylene ether oligomer obtained in Example 2.
- FIG. 4 is a diagram showing the spectrum of NMR analysis of the terminal (meth)acrylate polyphenylene ether oligomer obtained in Example 2.
- FIG. 1 is a diagram showing a spectrum of Fourier transform infrared spectroscopy (FT-IR) analysis of a polyphenylene ether oligomer obtained in Example 1.
- FIG. 1 is a diagram showing a spectrum of NMR analysis of a polyphenylene ether oligomer obtained in Example 1.
- the terminal (meth)acrylate polyphenylene ether oligomer of the present invention is described in detail below.
- the terminal (meth)acrylate polyphenylene ether oligomer of the present invention is represented by general formulas (1) and/or (2), and has a weight average molecular weight (Mw) of 700 or more and 30,000 or less. .
- R 1 in general formulas (1) and (2) independently represents a hydrogen atom or a methyl group, preferably a methyl group.
- R 2 in general formulas (1) and (2) and general formulas (A) and (B) each independently represents a chain or branched alkyl group having 1 to 6 carbon atoms and 5 carbon atoms.
- m in the general formulas (1) and (2) is each independently 0, 1, 2 or 3, preferably 0, 2 or 3, more preferably 2 or 3, and 2 is particularly preferred.
- the position where R2 is attached to the benzene ring is the branched structure resulting from polyphenylene etherification (step I) in the terminal (meth)acrylate polyphenylene ether oligomer of the present invention. It is preferably ortho-positioned with respect to the oxygen atom because the amount of When m is 2, the positions where R 2 is bonded to the benzene ring are preferably bonded to the 2- and 6-positions or the 2- and 5-positions with respect to the oxygen atom; It is particularly preferred that it is attached to the 6- and 6-positions. When m is 3, the positions where R 2 is bonded to the benzene ring are preferably 2-, 3- and 6-positions relative to the oxygen atom.
- n in general formulas (1) and (2) and general formulas (A) and (B) is each independently an integer of 1 or more.
- X in general formulas (1), (2) and general formulas (A), (B) is a single bond, a sulfonyl group, a divalent group represented by general formula (1a), or represented by (1b) It is preferably a divalent group, more preferably a single bond or a divalent group represented by the general formula (1a), and a divalent group represented by the general formula (1a) is particularly preferred.
- Preferred R 3 and R 4 when X in general formulas (1) and (2) and general formulas (A) and (B) is general formula (1a) are each independently hydrogen and a carbon atom.
- R 3 and R 4 may combine with each other to form a cycloalkylidene group having 5 to 20 carbon atoms as a whole.
- the cycloalkylidene group having 5 to 20 carbon atoms may contain an alkyl group as a branched chain.
- the cycloalkylidene group preferably has 5 to 15 carbon atoms, more preferably 6 to 12 carbon atoms, and particularly preferably 6 to 9 carbon atoms.
- cycloalkylidene group examples include a cyclopentylidene group (having 5 carbon atoms), a cyclohexylidene group (having 6 carbon atoms), a 3-methylcyclohexylidene group (having 7 carbon atoms), 4 -methylcyclohexylidene group (7 carbon atoms), 3,3,5-trimethylcyclohexylidene group (9 carbon atoms), cycloheptylidene group (7 carbon atoms), bicyclo [2.2.1 ]heptane-2,2-diyl group (7 carbon atoms), 1,7,7-trimethylbicyclo[2.2.1]heptane-2,2-diyl group (10 carbon atoms), 4,7, 7-trimethylbicyclo[2.2.1]heptane-2,2-diyl group (10 carbon atoms), tricyclo[5.2.1.02,6]decane-8,8-diyl group (number of carbon atoms 10),
- cyclohexylidene group (6 carbon atoms), 3-methylcyclohexylidene group (7 carbon atoms), 4-methylcyclohexylidene group (7 carbon atoms), 3,3,5-trimethylcyclohexyl
- a den group (having 9 carbon atoms) and a cyclododecanylidene group (having 12 carbon atoms) more preferably a cyclohexylidene group (having 6 carbon atoms) and a 3,3,5-trimethylcyclohexylidene group (having 9 atoms) and a cyclododecanylidene group (12 carbon atoms), particularly preferably a cyclohexylidene group (6 carbon atoms) and a 3,3,5-trimethylcyclohexylidene group (9 carbon atoms).
- Ar 1 and Ar 2 each independently include a benzene ring, naphthalene is a ring, and both Ar 1 and Ar 2 are more preferably benzene rings.
- the group represented by formula (1b) is a fluorenylidene group.
- each R 5 is independently a hydrogen atom or a C 1-6 A chain or branched alkyl group, preferably a hydrogen atom or a chain or branched alkyl group having 1 to 4 carbon atoms, more preferably a hydrogen atom, a methyl group or an ethyl group.
- a hydrogen atom or a methyl group is more preferred, and a methyl group is particularly preferred.
- the bonding position to the benzene ring is preferably the meta position or the para position.
- terminal (meth)acrylate polyphenylene ether oligomer represented by the general formula (1) of the present invention include the following compounds.
- terminal (meth)acrylate polyphenylene ether oligomer represented by the general formula (2) of the present invention include the following compounds.
- the terminal (meth)acrylate polyphenylene ether oligomer of the present invention has methyl groups at the 2- and 5-positions in the repeating structure of the phenylene ether, so conventional terminal (meth)acrylates having methyl groups at the 2- and 6-positions It has excellent heat resistance compared to polyphenylene ether oligomers and is very useful.
- the weight average molecular weight (Mw) of the terminal (meth)acrylate polyphenylene ether oligomer of the present invention is in the range of 700 or more and 30,000 or less.
- the range of 5,000 to 20,000 is more preferable, and the range of 5,000 to 15,000 is particularly preferable.
- the (meth)acrylate-terminated polyphenylene ether oligomer of the present invention is, for example, as shown in the following reaction formula, polyphenylene etherification (step I) in which 2,5-xylenol and bisphenols represented by general formula (i) are reacted.
- step II) of reacting the polyphenylene ether oligomer represented by the general formula (ii) obtained in step I with the (meth)acrylic anhydride represented by the general formula (iii) It is possible to manufacture it, and it is not limited to this manufacturing method. (Wherein, R 1 , R 2 , X, m, and n are synonymous with general formulas (1) and (2).)
- the polyphenylene etherification (Step I) is preferably catalyzed.
- the catalyst to be used includes a copper compound and an organic base, and it is preferable to use these together to form a copper-organic base complex compound.
- Copper compounds include copper (I) chloride, copper (I) bromide, copper (I) iodide, copper (I) sulfate, copper (I) nitrate, copper (II) chloride, copper (II) bromide, copper (II) iodide, copper (II) sulfate, copper (II) nitrate, and the like.
- Organic bases include tetramethylethylenediamine (TMEDA), trimethylamine, diazabicycloundecene (DBU), pyridine, 2-methylpyridine, 1,4,7-triazacyclononane, quinuclidine, tetraphenylethylenediamine. Among these, tetramethylethylenediamine (TMEDA) is preferred.
- the copper-organic base complex compound is preferably a complex compound of monovalent copper halide such as copper(I) chloride, copper(I) bromide, copper(I) iodide, and tetramethylethylenediamine (TMEDA).
- a complex compound of copper(I) chloride and tetramethylethylenediamine (TMEDA) is more preferred.
- a copper-organic base complex compound can be obtained by mixing a copper compound and an organic base compound that can serve as a ligand in the presence of an inert organic solvent. Complex formation can be confirmed by complete dissolution of the copper compound, which is insoluble in the organic solvent, in the organic solvent.
- the amount of the catalyst used is within a range that does not cause quality problems of the produced oligomer due to the catalyst residue. i) It is usually in the range of 0.1 to 100 mol %, preferably in the range of 0.1 to 5 mol %, more preferably in the range of 0.1 to 1 mol %, per 1 mol.
- the catalyst may be added as it is, or may be added after being dissolved in a solvent. As the solvent, those that do not affect the reaction are preferred.
- Polyphenylene etherification (step I) is preferably carried out in an environment with an oxygen concentration of 20 to 100% by volume, more preferably in an environment of pure oxygen (99% by volume or more).
- the solvent used may be any solvent that can uniformly mix the raw materials of 2,5-xylenol and bisphenols (i) used and the catalyst used.
- aromatic hydrocarbon solvents such as toluene, xylene, ethylbenzene, diethylbenzene, mesitylene, and tetralin; aliphatic alkyl solvents such as cyclohexane, methylcyclohexane, n-pentane, n-hexane, n-heptane, and n-octane.
- chlorobenzene, dichlorobenzene and the like are preferred, and among these, aromatic chlorine solvents are more preferred.
- aromatic chlorinated solvents chlorobenzene and dichlorobenzene are preferred, and dichlorobenzene is more preferred.
- the amount of solvent used is preferably in the range of 100 to 10,000 parts by weight, more preferably in the range of 1,000 to 5,000 parts by weight, and in the range of 1,000 to 2,000 parts by weight with respect to 100 parts by weight of 2,5-xylenol used as a raw material. is more preferred.
- the temperature is usually in the range of 30 to 100°C, preferably in the range of 40 to 80°C, more preferably in the range of 40 to 60°C. If the reaction temperature is too low, the reaction will not proceed, and if the reaction temperature is too high, side reactions such as decomposition reactions will proceed, which is not preferable. Under such reaction conditions, the reaction is usually completed in about 0.5 to 10 hours.
- the weight average molecular weight (Mw) of the polyphenylene ether oligomer represented by the general formula (ii) obtained by the polyphenylene etherification (step I) is in the range of 700 to 30,000. ,000 or less, more preferably 4,000 or more and 20,000 or less, even more preferably 5,000 or more and 20,000 or less, and particularly preferably 5,000 or more and 15,000 or less. Setting the weight average molecular weight (Mw) within the above range is preferable from the viewpoint that the polyphenylene ether oligomer represented by general formula (ii) has improved heat resistance.
- the cured product using the polyphenylene ether oligomer represented by the general formula (ii) or using the polyphenylene ether oligomer chemically modified by (meth)acrylation described later is improved. It is suitable in that it has a high heat resistance.
- the polyphenylene ether oligomers the polyphenylene ether oligomer having the chemical structure represented by the general formula (A) or the general formula (B) has two substituents R 2 at the ortho position with respect to the oxygen atom, This is preferable in terms of reaction selectivity because the amount of branched structures generated in the polyphenylene etherification (step I) is reduced.
- each R 2 is independently a chain or branched alkyl group having 1 to 6 carbon atoms, a cyclic alkyl group having 5 or 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms.
- n is each independently an integer of 1 or more
- X is a single bond, an oxygen atom, a sulfur atom, a sulfonyl group, a carbonyl group, or represented by general formula (1a), (1b) or (1c) indicates a divalent group.
- R 3 and R 4 are each independently a hydrogen atom, a chain or branched alkyl group having 1 to 10 carbon atoms, and 1 10 to 10 halogenated alkyl groups or 6 to 12 carbon atom aryl groups, and R 3 and R 4 may be combined with each other to form a cycloalkylidene group having 5 to 20 carbon atoms as a whole.
- R 5 each independently represent a hydrogen atom or a chain or branched alkyl group having 1 to 6 carbon atoms
- Ar 1 and Ar 2 each independently represent an aryl group having 6 to 12 carbon atoms.
- * indicates the binding position, respectively.
- polyphenylene ether oligomer represented by formula (A) of the present invention include the following compounds.
- polyphenylene ether oligomer represented by formula (B) of the present invention include the following compounds.
- the terminal (meth)acrylate polyphenylene ether oligomer represented by the general formula (1) and/or (2) of the present invention is a polyphenylene ether oligomer represented by the general formula (ii). , obtained by reaction with a (meth)acrylating agent such as (meth)acrylic anhydride.
- a (meth)acrylating agent such as (meth)acrylic anhydride.
- Specific examples of (meth)acrylating agents include acrylic acid chloride, methacrylic acid chloride, acrylic acid, methacrylic acid, acrylic acid anhydride, and methacrylic acid anhydride.
- the amount of the (meth)acrylating agent used is, when obtaining a double-ended (meth)acrylate polyphenylene ether oligomer represented by the general formula (1), all the ends of the polyphenylene ether oligomer represented by the general formula (ii)
- the (meth)acrylating agent is usually used in an amount of 1.0 to 2.5 mol-fold, preferably 1.1 to 2.0 mol-fold, more preferably 1.15 to 1.5 mol-fold relative to the hydroxyl group. .
- all terminal hydroxyl groups of the polyphenylene ether oligomer represented by the general formula (ii) are (meth)acrylated
- the agent is usually used in an amount of 0.5 to 1.5 mol, preferably 0.55 to 1.25 mol, more preferably 0.6 to 1.0 mol.
- (meth)acrylating agent As the (meth)acrylating agent, (meth)acrylic anhydride is used to (meth)acrylate the polyphenylene ether oligomer represented by the general formula (ii). , in the range of 1 to 20 hours.
- the reaction solvent any solvent can be used as long as it can uniformly mix the raw materials used.
- halogenated hydrocarbon solvents such as methylene chloride, toluene, xylene, aromatic hydrocarbon solvents.
- the amount of the solvent used is not particularly limited, but it is usually 0.5 to 10 times the weight of the polyphenylene ether oligomer represented by general formula (ii).
- a catalyst is preferably used in the reaction, for example, an organic base compound such as triethylamine, 4-dimethylaminopyridine (DMAP), pyridine, 1,8-diazabicyclo[5.4.0]undecen-7-ene (DBU). can be used, of which 4-dimethylaminopyridine is preferred.
- DMAP 4-dimethylaminopyridine
- DBU 1,8-diazabicyclo[5.4.0]undecen-7-ene
- the amount of the catalyst used can be arbitrarily determined depending on the amount of the solvent used, the reaction temperature, etc., but it is usually 0.01 to 0.5 times the weight of the polyphenylene ether oligomer represented by the general formula (ii). is.
- tertiary amines include trimethylamine, triethylamine, tri-n-propylamine, triisopropylamine, tributylamine, N-methyl-diethylamine, N-ethyl-dimethylamine, N-ethyl-diamylamine, N,N- Aliphatic amines such as diisopropylethylamine, N,N-dimethyl-cyclohexylamine, N,N-diethyl-cyclohexylamine; aromatic amines such as N,N-dimethylaniline and N,N-diethylaniline; pyridine, picoline, N , N-dimethylaminopyridine and other heterocyclic amines; 1,8-diazabicyclo[5.4.0]undec-7-ene and 1,5-diazabicyclo[4.3.0]non-5-ene Cyclic amines and the like can be mentioned.
- the amount of the hydrogen chloride scavenger to be used is 0.8 to 10-fold mol, preferably 0.9 to 8-fold mol, particularly preferably 0.8 to 10-fold mol, relative to the number of mol of the (meth)acrylating agent normally used. is about 1.0 to 7 times the molar amount. If the hydrogen chloride scavenger is less than 0.8 times the number of moles of the (meth)acrylating agent, the generated hydrogen chloride cannot be captured completely, and the polyphenylene ether oligomer represented by the raw material general formula (ii), The terminal (meth)acrylate polyphenylene ether oligomer represented by the general formula (1) or (2), which is the target product, may be decomposed and the purity of the target product may be lowered. Further, if the amount of hydrogen chloride scavenger exceeds 10 times the number of moles of the (meth)acrylating agent, the removal of the hydrogen chloride scavenger is complicated and not economical, which is not preferable.
- Any solvent can be used as long as it can uniformly mix the raw materials used, and specific examples thereof include halogenated hydrocarbons such as methylene chloride, tetrahydrofuran, dioxane, and chlorobenzene.
- the amount of the solvent used is not particularly limited, but is usually in the range of 0.5 to 100 times the weight of the polyphenylene ether oligomer represented by the general formula (ii), preferably in the range of 1 to 50 times the weight, Especially preferably, it is in the range of 2 to 10 times the weight.
- the reaction is carried out at a relatively low temperature, usually in the range of -50 to 100°C, preferably in the range of -30 to 80°C, more preferably in the range of -15 to 60°C.
- the reaction temperature exceeds 100°C, side reactions occur, leading to a decrease in the yield of the desired product. On the other hand, if the temperature is less than -50°C, the reaction rate becomes slow and the required time is too long, which is not economical.
- the polyphenylene ether oligomer represented by the general formula (ii) and the (meth)acrylating agent are mixed in advance in a solvent, and a hydrogen chloride scavenger is added thereto.
- a method of mixing the polyphenylene ether oligomer represented by the formula (ii) and a hydrogen chloride scavenger in a solvent and then adding the (meth)acrylating agent.
- the hydrogen chloride scavenger and (meth)acrylating agent to be added later may be used after being diluted with a solvent.
- a polymerization inhibitor for the (meth)acrylation agent during the reaction for example, hydroquinone, hydroquinone monomethyl ether, phenothiazine, 2,6-di-tert-butyl-4-methylphenol (BHT) etc. may be added.
- BHT 2,6-di-tert-butyl-4-methylphenol
- a method of obtaining as Specific examples of the poor solvent to be used include aliphatic alcohol solvents having 1 to 6 carbon atoms such as methanol, ethanol and propanol, and mixtures of the above aliphatic alcohol solvents and water.
- the deposited precipitate is separated by filtration, and the obtained solid content is dried by heating in the range of 40 to 100 ° C. under reduced pressure to obtain the desired product of general formula (1) and / or ( A terminal (meth)acrylate polyphenylene ether oligomer represented by 2) can be obtained.
- the resin composition of the present invention comprises at least a polyphenylene ether component (A) containing terminal (meth)acrylate polyphenylene ether oligomers represented by general formulas (1) and/or (2), and a cross-linking agent component. It contains (B).
- the resin composition of the present invention contains, as component (A), at least one terminal (meth)acrylate polyphenylene ether oligomer represented by general formulas (1) and/or (2), two of which The above may be included.
- a polyphenylene ether other than the terminal (meth)acrylate polyphenylene ether oligomer represented by the general formulas (1) and/or (2) may be used in combination as the component (A).
- polyphenylene ether examples include poly(2,6-dimethyl-1,4-phenylene ether), poly(2-methyl-6-ethyl-1,4-phenylene ether), poly(2-methyl- 6-phenyl-1,4-phenylene ether), poly(2,6-dichloro-1,4-phenylene ether), 2,6-dimethylphenol and other phenols (e.g.
- polyphenylene ether copolymers obtained by coupling 2,6-dimethylphenol with biphenols, bisphenols or trisphenols, 2,6-dimethylphenol and polyphenylene ether copolymers obtained by coupling other phenols with biphenols, bisphenols or trisphenols.
- polyphenylene ethers in which the terminal hydroxy groups of these polyphenylene ethers are modified with functional groups having unsaturated double bonds such as allyl ether, acryloyl, methacryloyl, vinyl ether, etc.
- functional groups having unsaturated double bonds such as allyl ether, acryloyl, methacryloyl, vinyl ether, etc.
- 2,6 - Acrylate of polyphenylene ether which is a copolymer of dimethylphenol and 2,2-bis(4-hydroxy-3,5-dimethylphenyl)propane, is preferred.
- the weight ratio of the former/latter is from 10/90 to It is preferably 90/10, more preferably 20/80 to 90/10, even more preferably 30/70 to 90/10, and particularly preferably 40/60 to 90/10. .
- a cross-link is formed by reacting with a terminal (meth)acrylate polyphenylene ether oligomer represented by general formulas (1) and/or (2). It is not particularly limited as long as it can be cured by heating. Specific examples include compounds having two or more unsaturated double bonds in the molecule.
- trialkenyl isocyanurate compounds such as triallyl isocyanurate, polyfunctional allyl ether compounds having two or more allyl ether groups in the molecule, polyfunctional methacrylate compounds having two or more methacrylic groups in the molecule, Polyfunctional acrylate compounds having two or more acrylic groups in the molecule, vinyl compounds (multifunctional vinyl compounds) having two or more vinyl groups in the molecule such as polybutadiene, and two or more vinylbenzyl groups in the molecule vinylbenzyl compounds having Among them, trialkenyl isocyanurate compounds, polyfunctional allyl ether compounds having two or more allyl ether groups in the molecule, polyfunctional acrylate compounds having two or more acrylic groups in the molecule, polyfunctional methacrylate compounds, and polyfunctional vinyl Compounds are preferred.
- thermosetting curing agent the exemplified thermosetting curing agents may be used alone, or two or more thereof may be used in combination.
- thermosetting curing agent the compound having two or more unsaturated double bonds in the molecule and the compound having one unsaturated double bond in the molecule may be used in combination.
- Specific examples of compounds having one unsaturated double bond in the molecule include compounds having one vinyl group in the molecule (monovinyl compounds).
- the resin composition of the present invention comprises component (B) with respect to 100 parts by weight of component (A) comprising terminal (meth)acrylate polyphenylene ether oligomers represented by general formulas (1) and/or (2).
- the cross-linking agent is preferably in the range of 1 to 50 parts by weight, more preferably in the range of 1 to 30 parts by weight, and even more preferably in the range of 1 to 25 parts by weight.
- the resin composition of the present invention preferably contains a reaction initiator as component (C) in addition to components (A) and (B).
- Component (C) is added to promote the cross-linking reaction of the resin composition containing component (A) and component (B).
- Component (C) is not particularly limited as long as it promotes the cross-linking reaction. Examples include imidazoles, tertiary amines, quaternary ammonium salts, boron trifluoride amine complexes, and organophosphines.
- ionic catalysts such as organophosphonium salts, organic peroxides, hydroperoxides, radical polymerization initiators such as azoisobutyronitrile, and the like.
- organic peroxides include di-t-butyl peroxide, dilauroyl peroxide, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, 2,2-bis(t-butylperoxy).
- Fats such as oxy)butane, 2,2-bis(t-butylperoxy)octane, 2,5-dimethyl-2,5-bis(t-butylperoxy)hexyne, di-n-propylperoxydicarbonate Group organic peroxides, dibenzoyl peroxide, dicumyl peroxide, t-butyl peroxybenzoate, t-amyl peroxybenzoate, t-butyl cumyl peroxide, bis(1-t-butylperoxy-1-methylethyl ) benzene, 2-phenyl-2-[(2-phenylpropan-2-yl)peroxy]propane, ⁇ , ⁇ '-di(t-butylperoxy)diisopropylbenzene, ⁇ , ⁇ '-bis(t-butyl Aromatic organic peroxides containing an aromatic ring such as peroxy-m-isopropyl)benzene and di-t
- Aromatic organic peroxides include dicumyl peroxide, t-butyl cumyl peroxide, bis(1-t-butylperoxy-1-methylethyl)benzene, 2-phenyl-2-[(2-phenylpropane- 2-yl)peroxy]propane is more preferred, and 2-phenyl-2-[(2-phenylpropan-2-yl)peroxy]propane is particularly preferred.
- the resin composition of the present invention preferably contains component (C) in the range of 0.05 to 0.9% by weight with respect to the total amount of the resin composition, and in the range of 0.15 to 0.8% by weight. More preferably, it is contained in the range of 0.3 to 0.7% by weight, and particularly preferably in the range of 0.35 to 0.6% by weight. Component (C) may be used alone or in combination of two or more.
- the resin composition of the present invention can contain a filler as component (D) in addition to component (A), component (B), and optionally component (C).
- Component (D) is preferably contained in the range of 10 to 150 parts by weight, more preferably in the range of 10 to 100 parts by weight, based on 100 parts by weight of the resin composition of the present invention.
- Component (D) is not particularly limited as long as it is a filler that is usually used in resin compositions. Examples include silicon oxide, aluminum oxide, magnesium oxide, boron nitride, aluminum nitride, silicon nitride, and silicon carbide. , hexagonal boron nitride and other inorganic fillers can be mixed and used.
- the resin composition of the present invention may contain a solvent as component (E), and is preferably in the form of a varnish dissolved or dispersed in component (E).
- Component (E) is not particularly limited as long as it dissolves or disperses the resin composition of the present invention. Examples include aromatic compounds such as toluene and xylene; compounds, and chlorinated organic solvents such as chloroform. Among them, aromatic compounds such as toluene and xylene, and ketone compounds such as methyl ethyl ketone, cyclopentanone and cyclohexanone are preferred, aromatic compounds such as toluene and xylene are more preferred, and toluene is particularly preferred.
- Component (E) is preferably contained in the range of 50 to 200 parts by weight, more preferably in the range of 70 to 150 parts by weight, based on 100 parts by weight of the resin composition of the present invention.
- the method of preparing the resin composition of the present invention is not particularly limited, and examples thereof include a method of mixing the above components and mixing and dispersing with a stirrer.
- the prepreg of the present invention is prepared by mixing a resin composition containing components (A) and (B), optionally further components (C) and (D), and reinforcing fibers as component (F). , can be prepreg.
- a method of mixing for example, a method of applying or impregnating a varnish to the reinforcing fiber as the component (F) can be used.
- the component (F) in the present invention is not particularly limited as long as it is a reinforcing fiber that is commonly used in prepregs.
- Examples include carbon fiber, aramid fiber, nylon fiber, high-strength polyester fiber, glass fiber, boron fiber, Various inorganic fibers or organic fibers such as alumina fibers and silicon nitride fibers can be used.
- carbon fiber, aramid fiber, glass fiber, boron fiber, alumina fiber, and silicon nitride fiber are mentioned from the viewpoint of specific strength and specific elasticity.
- carbon fiber is preferable from the viewpoint of mechanical properties and weight reduction.
- carbon fibers When carbon fibers are used as reinforcing fibers, they may be surface-treated with a metal.
- the thickness of the fiber base material is preferably 0.3 mm or less, more preferably 0.15 mm or less, and even more preferably 0.1 mm or less.
- Component (F) may be used alone or in combination of two or more.
- the cured product in the present invention can be obtained by curing the resin composition or prepreg of the present invention.
- the method for producing the cured product of the present invention include a method of heating the prepreg to a predetermined temperature to cure it, filling a mold with the resin composition of the present invention, or heating the resin composition of the present invention.
- Examples include a method of melting and injecting into a mold or the like, followed by curing by heating to a predetermined temperature.
- the heat-curing temperature can be appropriately determined within the range of 100 to 300°C.
- Measurement sample 10 mg of polyphenylene ether compound-containing composition diluted 30-fold with tetrahydrofuran Injection volume: 10 ⁇ L [Column] (from upstream) Guard Column HXL-L + G4000HXL + G3000HXL + G2000HXL x 2 (7.8 mm ID x 30 cm, manufactured by Tosoh Corporation) [Molecular weight calculation method] It was calculated as a standard polystyrene equivalent molecular weight using a calibration curve of a cubic approximation curve using the following polystyrene standard sample. As for the measurement conditions, only the injection volume was changed to 10 ⁇ L, and the other measurement conditions were the same as those described above.
- TSKgel Standard Polystyrene F-2 Nominal Mol. Wt. 1.74 ⁇ 10 4 Mw/Mn 1.01 (0005208/manufactured by Tosoh Corporation)
- TSKgel Standard Polystyrene F-4 Nominal Mol. Wt. 3.79 ⁇ 10 4 Mw/Mn 1.01 (0005209/manufactured by Tosoh Corporation)
- Tg Glass Transition Temperature
- NMR analysis Measurement device Fourier transform nuclear magnetic resonance AVANCE III HD 400 (manufactured by BRUKER) A measurement sample was dissolved in deuterated chloroform, and 1 H-NMR spectrum was measured.
- step I A 1 L four-necked flask equipped with a thermometer, stirrer and condenser was charged with 832 g of 1,2-dichlorobenzene, 0.206 g (2.10 mmol) of copper (I) chloride, and tetramethylethylenediamine (TMEDA). After adding 0.667 g (5.74 mmol) and stirring for 1 hour, 40 g (327 mmol) of 2,5-xylenol and 1,1-bis(4-hydroxy-3,5-dimethylphenyl)ethane were added. 24.9 g (87.7 mmol) were added.
- the reaction system was depressurized to remove air, and pure oxygen was blown into the system to replace the atmosphere with oxygen, which was repeated three times. After that, the temperature was raised to 40° C. and the mixture was stirred for 4 hours. As a result of analyzing the reaction liquid by liquid chromatography, since raw materials remained, the temperature was raised to 60° C. and the mixture was stirred for 2 hours. After confirming that no raw material remained by liquid chromatography, the temperature was lowered to 25° C., and the reaction mixture was added to a methanol solution (8578 g) containing 1.5% by weight of 36% hydrochloric acid and stirred for 1 hour. did Stirring was stopped after that, and it left still for 20 hours.
- a methanol solution 8578 g
- a peak of stretching vibration and an OH stretching vibration peak of the aromatic hydroxyl group were confirmed near 3200 to 3400 cm ⁇ 1 although the absorption intensity was extremely small.
- the spectrum of FT-IR analysis is shown in FIG.
- peaks derived from the methyl group of the polyphenylene ether oligomer were observed near 1.2 to 1.5 ppm and 1.7 to 2.6 ppm, and 6.0 to 7.0 ppm.
- a peak derived from the protons of the aromatic ring was confirmed around 5 ppm.
- a peak derived from a hydroxyl group was confirmed at 4.4 to 4.6 ppm.
- a spectrum of 1 H-NMR analysis is shown in FIG. When the glass transition temperature (Tg) of the obtained polyphenylene ether oligomer was measured by DSC, Tg was 174°C.
- step II Synthesis of terminal (meth)acrylate polyphenylene ether oligomer: (meth)acrylation step (step II) A 1 L four-necked flask equipped with a thermometer, a stirrer and a condenser was charged with 35 g of the polyphenylene ether oligomer obtained in Example 1, 187 g of toluene, and 0.35 g (2.87 mmol) of 4-dimethylaminopyridine (DMAP). ) was added and the temperature was raised to 80° C., 8.75 g (56.76 mmol) of methacrylic anhydride and 26 g of toluene were added to a 100 mL dropping funnel and added dropwise over 20 minutes.
- DMAP 4-dimethylaminopyridine
- the recovered solid content was dried under reduced pressure at 60° C. using an evaporator to obtain 22 g of the dried solid content.
- FT-IR analysis of the resulting solid content a peak derived from the carbonyl site of the methacrylic group was observed near 1700 cm ⁇ 1 , confirming that a methacrylated polyphenylene ether oligomer was obtained.
- the spectrum of FT-IR analysis is shown in FIG.
- 1 H-NMR analysis of the obtained solid the disappearance of the hydroxyl group peak at 4.5 ppm was confirmed, and the appearance of peaks derived from methacrylic acid was confirmed at around 4.3 to 4.5 and 5.6 ppm. .
- a spectrum of 1 H-NMR analysis is shown in FIG.
- Example 3 Preparation of resin composition and varnish and production of cured product (film)
- 1.5 g of the oligomer obtained in Example 2 was 1.5 g of acrylated product of polyphenylene ether oligomer which is a copolymer of 3,5-dimethylphenyl)propane, 6.0 g of toluene, 0.6 g of triallyl isocyanurate as component (B), dicumyl peroxide ( 0.03 g of component (C) of NOF Co., Ltd.: product name "Percumyl D" was placed in a vial and allowed to stand until completely dissolved.
- the completely dissolved polyphenylene ether oligomer solution was applied to a polyimide film and dried in a vacuum dryer at 105° C. for 2 hours. After that, it is cured under the conditions of 105 ° C./30 minutes, 150 ° C./1 hour, 200 ° C./1 hour, 250 ° C./1 hour, and 270 ° C./1 hour at 10 MPa with a heat press tester to form a thermosetting film. Obtained. The resulting film was brown and transparent, and it was found to be amorphous due to its transparency. When the glass transition temperature (Tg) of the obtained film was measured by TMA, Tg was 247°C.
- thermosetting film After that, it is cured under the conditions of 105 ° C./30 minutes, 150 ° C./1 hour, 200 ° C./1 hour, 250 ° C./1 hour, and 270 ° C./1 hour at 10 MPa in a heat press tester to form a thermosetting film. Obtained.
- Tg glass transition temperature
- the glass transition temperature of the cured product obtained in Example 3 using the terminal (meth)acrylate polyphenylene ether oligomer represented by the general formulas (1) and/or (2) of the present invention is 247°C.
- the glass transition temperature of the cured product obtained in Comparative Example 1 was 220 ° C.
- the terminal (meth) acrylate polyphenylene ether oligomer represented by the general formula (1) and / or (2) of the present invention It was found that the cured product obtained by curing the resin composition containing the compound has excellent heat resistance.
- terminal (meth)acrylate polyphenylene ether oligomer represented by the general formulas (1) and/or (2) of the present invention can improve the heat resistance of a cured product based on a polyphenylene ether resin. It was revealed.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Macromonomer-Based Addition Polymer (AREA)
Abstract
耐熱性に優れる硬化物を提供できる、末端(メタ)アクリレートポリフェニレンエーテルオリゴマーを提供することを課題とする。解決手段として、一般式(1)及び/又は(2)で表され、重量平均分子量(Mw)が700以上30,000以下の範囲であることを特徴とする末端(メタ)アクリレートポリフェニレンエーテルオリゴマーを提供する。
Description
本発明は、末端(メタ)アクリレートポリフェニレンエーテルオリゴマー、及びこれを含む樹脂組成物、ワニス、プリプレグ、硬化物に関する。
ポリフェニレンエーテル(PPE)は低い誘電率及び低い誘電正接を有するため、プリント配線板など電子機器の材料として好適であることが知られている。プリント配線板用の基板材料としては、従来から求められていた難燃性、耐熱性、銀箔とのピール強度等の特性に加えて、低誘電率化、低誘電正接化も求められているため、プリント配線板等の基板材料に用いられるポリフェニレンエーテル(PPE)についても改良が検討されている。かかる分野において、ポリ(2,6-ジメチルフェニレンエーテル)末端をメタクリル基変性したポリフェニレンエーテル(PPE)は、汎用される材料の1つである。
フェノールの2位と5位がアルキル基で置換されたフェノールの重合により得られる、ポリ(2,5-ジアルキル置換フェニレンエーテル)も知られており、例えば、特許文献1には、2,5-ジ置換フェノールを重合して得られる、結晶性を有するポリ(2,5-ジ置換フェニレンオキサイド)は、一般有機溶媒に対する耐溶剤性に優れ、耐熱性も高く、溶融成形材料やフィルム材料などに有用であることが記載されている。
フェノールの2位と5位がアルキル基で置換されたフェノールの重合により得られる、ポリ(2,5-ジアルキル置換フェニレンエーテル)も知られており、例えば、特許文献1には、2,5-ジ置換フェノールを重合して得られる、結晶性を有するポリ(2,5-ジ置換フェニレンオキサイド)は、一般有機溶媒に対する耐溶剤性に優れ、耐熱性も高く、溶融成形材料やフィルム材料などに有用であることが記載されている。
本発明は、上述した事情を背景として、従来のポリフェニレンエーテル樹脂を基材とする硬化物より、優れた耐熱性を有する硬化物を提供できる、末端(メタ)アクリレートポリフェニレンエーテルオリゴマーを提供することを目的とする。
本発明者らは、上述の課題解決のために鋭意検討した結果、2,5-キシレノールと二官能性ビフェノール類より構成される、一般式(1)及び/又は(2)で表される末端(メタ)アクリレートポリフェニレンエーテルオリゴマーが、優れた耐熱性を有する硬化物を提供できることを見出し、本発明を完成した。
本発明は以下のとおりである。
1.一般式(1)及び/又は(2)で表され、重量平均分子量(Mw)が700以上30,000以下の範囲であることを特徴とする末端(メタ)アクリレートポリフェニレンエーテルオリゴマー。
(式中、R1は各々独立して水素原子又はメチル基を示し、R2は各々独立して炭素原子数1~6の鎖状又は分岐鎖状のアルキル基、炭素原子数5又は6の環状のアルキル基、若しくは炭素原子数2~6のアルケニル基を示し、nは各々独立して1以上の整数であり、mは各々独立して0、1、2又は3であり、Xは各々独立して単結合、酸素原子、硫黄原子、スルホニル基、カルボニル基、又は一般式(1a)、(1b)若しくは(1c)で表される2価の基を示す。)
(一般式(1a)、(1b)、(1c)中、R3及びR4は各々独立して水素原子、炭素原子数1~10の鎖状又は分岐鎖状のアルキル基、炭素原子数1~10のハロゲン化アルキル基又は炭素原子数6~12のアリール基を示し、R3及びR4はそれぞれ互いに結合して、全体として炭素原子数5~20のシクロアルキリデン基を形成してもよく、R5は各々独立して水素原子又は炭素原子数1~6の鎖状若しくは分岐鎖状のアルキル基を示し、Ar1及びAr2は各々独立して炭素数6~12のアリール基を示し、*はそれぞれ結合位置を示す。)
2.成分(A):少なくとも1.に記載の末端(メタ)アクリレートポリフェニレンエーテルオリゴマーを含むポリフェニレンエーテルと、成分(B):架橋剤を含有する樹脂組成物。
3.成分(C):反応開始剤を含有する、2.に記載の樹脂組成物。
4.さらに、成分(D):充填剤を含有する、3.に記載の樹脂組成物。
5.2.~4.の何れか1項に記載の樹脂組成物と、成分(E):溶剤を含有するワニス。
6.2.~4.の何れか1項に記載の樹脂組成物と、成分(F):強化繊維を含有するプリプレグ。
7.2.~4.の何れか1項に記載の樹脂組成物を硬化させた硬化物。
8.6.に記載のプリプレグを硬化させた硬化物。
9.一般式(A)又は一般式(B)で表され、重量平均分子量(Mw)が700以上30,000以下の範囲であることを特徴とするポリフェニレンエーテルオリゴマー。
(式中、R2は各々独立して炭素原子数1~6の鎖状又は分岐鎖状のアルキル基、炭素原子数5又は6の環状のアルキル基、若しくは炭素原子数2~6のアルケニル基を示し、nは各々独立して1以上の整数であり、Xは各々独立して単結合、酸素原子、硫黄原子、スルホニル基、カルボニル基、又は一般式(1a)、(1b)若しくは(1c)で表される2価の基を示す。)
(一般式(1a)、(1b)、(1c)中、R3及びR4は各々独立して水素原子、炭素原子数1~10の鎖状又は分岐鎖状のアルキル基、炭素原子数1~10のハロゲン化アルキル基又は炭素原子数6~12のアリール基を示し、R3及びR4はそれぞれ互いに結合して、全体として炭素原子数5~20のシクロアルキリデン基を形成してもよく、R5は各々独立して水素原子又は炭素原子数1~6の鎖状若しくは分岐鎖状のアルキル基を示し、Ar1及びAr2は各々独立して炭素数6~12のアリール基を示し、*はそれぞれ結合位置を示す。)
1.一般式(1)及び/又は(2)で表され、重量平均分子量(Mw)が700以上30,000以下の範囲であることを特徴とする末端(メタ)アクリレートポリフェニレンエーテルオリゴマー。
2.成分(A):少なくとも1.に記載の末端(メタ)アクリレートポリフェニレンエーテルオリゴマーを含むポリフェニレンエーテルと、成分(B):架橋剤を含有する樹脂組成物。
3.成分(C):反応開始剤を含有する、2.に記載の樹脂組成物。
4.さらに、成分(D):充填剤を含有する、3.に記載の樹脂組成物。
5.2.~4.の何れか1項に記載の樹脂組成物と、成分(E):溶剤を含有するワニス。
6.2.~4.の何れか1項に記載の樹脂組成物と、成分(F):強化繊維を含有するプリプレグ。
7.2.~4.の何れか1項に記載の樹脂組成物を硬化させた硬化物。
8.6.に記載のプリプレグを硬化させた硬化物。
9.一般式(A)又は一般式(B)で表され、重量平均分子量(Mw)が700以上30,000以下の範囲であることを特徴とするポリフェニレンエーテルオリゴマー。
本発明による末端(メタ)アクリレートポリフェニレンエーテルオリゴマー及び、これを含む樹脂組成物、ワニス、プリプレグは、高いガラス転移温度(Tg)を示し、耐熱性に優れたポリフェニレンエーテル樹脂を基材とする硬化物を得ることができる。
そのため、本発明の末端(メタ)アクリレートポリフェニレンエーテルオリゴマー、及びそれを含む樹脂組成物、ワニス、プリプレグ並びに硬化物は、基板材料、積層板、樹脂の耐熱性改質剤などの用途に最適である。
そのため、本発明の末端(メタ)アクリレートポリフェニレンエーテルオリゴマー、及びそれを含む樹脂組成物、ワニス、プリプレグ並びに硬化物は、基板材料、積層板、樹脂の耐熱性改質剤などの用途に最適である。
以下、本発明の末端(メタ)アクリレートポリフェニレンエーテルオリゴマーについて詳細に説明する。
本発明の末端(メタ)アクリレートポリフェニレンエーテルオリゴマーは、一般式(1)及び/又は(2)で表され、重量平均分子量(Mw)が700以上30,000以下の範囲であることを特徴とする。
本発明の末端(メタ)アクリレートポリフェニレンエーテルオリゴマーは、一般式(1)及び/又は(2)で表され、重量平均分子量(Mw)が700以上30,000以下の範囲であることを特徴とする。
一般式(1)、(2)中のR1は、各々独立して水素原子又はメチル基を示し、中でも、メチル基であることが好ましい。
一般式(1)、(2)及び一般式(A)、(B)中のR2は、各々独立して炭素原子数1~6の鎖状又は分岐鎖状のアルキル基、炭素原子数5又は6の環状のアルキル基、若しくは炭素原子数2~6のアルケニル基を示し、炭素原子数1~4の鎖状又は分岐鎖状のアルキル基、シクロヘキシル基、若しくは炭素原子数2~4のアルケニル基であることが好ましく、メチル基、t-ブチル基、シクロヘキシル基、ビニル基又はアリル基であることがより好ましく、メチル基であることが特に好ましい。
一般式(1)、(2)中のmは、各々独立して0、1、2又は3であり、0、2又は3であることが好ましく、2又は3であることがより好ましく、2であることが特に好ましい。
mが1、2又は3である場合、R2がベンゼン環に結合する位置は、本発明の末端(メタ)アクリレートポリフェニレンエーテルオリゴマーに、ポリフェニレンエーテル化(工程I)で生じる分岐鎖状構造が含まれる量が少なくなることから、酸素原子に対してオルソ位にあることが好ましい。mが2である場合、R2がベンゼン環に結合する位置は、酸素原子に対して2位及び6位に結合していること若しくは2位及び5位に結合していることが好ましく、2位及び6位に結合していることが特に好ましい。mが3である場合、R2がベンゼン環に結合する位置は、酸素原子に対して2位、3位及び6位に結合していることが好ましい。
一般式(1)、(2)及び一般式(A)、(B)中のnは、各々独立して1以上の整数である。
一般式(1)、(2)及び一般式(A)、(B)中のR2は、各々独立して炭素原子数1~6の鎖状又は分岐鎖状のアルキル基、炭素原子数5又は6の環状のアルキル基、若しくは炭素原子数2~6のアルケニル基を示し、炭素原子数1~4の鎖状又は分岐鎖状のアルキル基、シクロヘキシル基、若しくは炭素原子数2~4のアルケニル基であることが好ましく、メチル基、t-ブチル基、シクロヘキシル基、ビニル基又はアリル基であることがより好ましく、メチル基であることが特に好ましい。
一般式(1)、(2)中のmは、各々独立して0、1、2又は3であり、0、2又は3であることが好ましく、2又は3であることがより好ましく、2であることが特に好ましい。
mが1、2又は3である場合、R2がベンゼン環に結合する位置は、本発明の末端(メタ)アクリレートポリフェニレンエーテルオリゴマーに、ポリフェニレンエーテル化(工程I)で生じる分岐鎖状構造が含まれる量が少なくなることから、酸素原子に対してオルソ位にあることが好ましい。mが2である場合、R2がベンゼン環に結合する位置は、酸素原子に対して2位及び6位に結合していること若しくは2位及び5位に結合していることが好ましく、2位及び6位に結合していることが特に好ましい。mが3である場合、R2がベンゼン環に結合する位置は、酸素原子に対して2位、3位及び6位に結合していることが好ましい。
一般式(1)、(2)及び一般式(A)、(B)中のnは、各々独立して1以上の整数である。
一般式(1)、(2)及び一般式(A)、(B)中のXは、単結合、スルホニル基、一般式(1a)で表される2価の基又は(1b)で表される2価の基であることが好ましく、単結合又は一般式(1a)で表される2価の基であることがより好ましく、一般式(1a)で表される2価の基であることが特に好ましい。
一般式(1)、(2)及び一般式(A)、(B)中のXが、一般式(1a)である場合の好ましいR3及びR4としては、各々独立して水素、炭素原子数1~6のアルキル基、炭素原子数1~6のハロゲン化アルキル基又は炭素数6~12のアリール基であり、より好ましくは各々独立して水素、炭素原子数1~4のアルキル基、トリフルオロメチル基又は炭素数6~8のアリール基であり、さらに好ましくは各々独立して水素、炭素原子数1~4のアルキル基又はフェニル基であり、特に好ましくはメチル基である。
また、R3及びR4はそれぞれ互いに結合して、全体として炭素原子数5~20のシクロアルキリデン基を形成してもよい。炭素原子数5~20のシクロアルキリデン基は、分岐鎖としてのアルキル基を含んでいてもよい。シクロアルキリデン基は炭素原子数5~15であることが好ましく、炭素原子数6~12であることがより好ましく、炭素原子数6~9であることが特に好ましい。シクロアルキリデン基としては、具体的には、例えば、シクロペンチリデン基(炭素原子数5)、シクロヘキシリデン基(炭素原子数6)、3-メチルシクロヘキシリデン基(炭素原子数7)、4-メチルシクロヘキシリデン基(炭素原子数7)、3,3,5-トリメチルシクロヘキシリデン基(炭素原子数9)、シクロヘプチリデン基(炭素原子数7)、ビシクロ[2.2.1]ヘプタン-2,2-ジイル基(炭素原子数7)、1,7,7-トリメチルビシクロ[2.2.1]ヘプタン-2,2-ジイル基(炭素原子数10)、4,7,7-トリメチルビシクロ[2.2.1]ヘプタン-2,2-ジイル基(炭素原子数10)、トリシクロ[5.2.1.02,6]デカン-8,8-ジイル基(炭素原子数10)、2,2-アダマンチリデン基(炭素原子数10)、シクロドデカニリデン基(炭素原子数12)等が挙げられる。好ましくはシクロヘキシリデン基(炭素原子数6)、3-メチルシクロヘキシリデン基(炭素原子数7)、4-メチルシクロヘキシリデン基(炭素原子数7)、3,3,5-トリメチルシクロヘキシリデン基(炭素原子数9)、シクロドデカニリデン基(炭素原子数12)であり、より好ましくはシクロヘキシリデン基(炭素原子数6)、3,3,5-トリメチルシクロヘキシリデン基(炭素原子数9)、シクロドデカニリデン基(炭素原子数12)であり、特に好ましくはシクロヘキシリデン基(炭素原子数6)、3,3,5-トリメチルシクロヘキシリデン基(炭素原子数9)が挙げられる。
一般式(1)、(2)及び一般式(A)、(B)中のXが、一般式(1b)である場合の好ましいAr1及びAr2としては、各々独立してベンゼン環、ナフタレン環であり、Ar1及びAr2が共にベンゼン環であることがより好ましい。例えば、Ar1及びAr2が共にベンゼン環である場合、式(1b)で表される基はフルオレニリデン基である。
一般式(1)、(2)及び一般式(A)、(B)中のXが、一般式(1c)である場合、R5は各々独立して水素原子又は炭素原子数1~6の鎖状若しくは分岐鎖状のアルキル基であり、水素原子又は炭素原子数1~4の鎖状若しくは分岐鎖状のアルキル基であることが好ましく、水素原子、メチル基又はエチル基であることがより好ましく、水素原子又はメチル基であることがさらに好ましく、メチル基であることが特に好ましい。一般式(1c)における、ベンゼン環に対する結合位置としては、メタ位又はパラ位であることが好ましい。
一般式(1)、(2)及び一般式(A)、(B)中のXが、一般式(1a)である場合の好ましいR3及びR4としては、各々独立して水素、炭素原子数1~6のアルキル基、炭素原子数1~6のハロゲン化アルキル基又は炭素数6~12のアリール基であり、より好ましくは各々独立して水素、炭素原子数1~4のアルキル基、トリフルオロメチル基又は炭素数6~8のアリール基であり、さらに好ましくは各々独立して水素、炭素原子数1~4のアルキル基又はフェニル基であり、特に好ましくはメチル基である。
また、R3及びR4はそれぞれ互いに結合して、全体として炭素原子数5~20のシクロアルキリデン基を形成してもよい。炭素原子数5~20のシクロアルキリデン基は、分岐鎖としてのアルキル基を含んでいてもよい。シクロアルキリデン基は炭素原子数5~15であることが好ましく、炭素原子数6~12であることがより好ましく、炭素原子数6~9であることが特に好ましい。シクロアルキリデン基としては、具体的には、例えば、シクロペンチリデン基(炭素原子数5)、シクロヘキシリデン基(炭素原子数6)、3-メチルシクロヘキシリデン基(炭素原子数7)、4-メチルシクロヘキシリデン基(炭素原子数7)、3,3,5-トリメチルシクロヘキシリデン基(炭素原子数9)、シクロヘプチリデン基(炭素原子数7)、ビシクロ[2.2.1]ヘプタン-2,2-ジイル基(炭素原子数7)、1,7,7-トリメチルビシクロ[2.2.1]ヘプタン-2,2-ジイル基(炭素原子数10)、4,7,7-トリメチルビシクロ[2.2.1]ヘプタン-2,2-ジイル基(炭素原子数10)、トリシクロ[5.2.1.02,6]デカン-8,8-ジイル基(炭素原子数10)、2,2-アダマンチリデン基(炭素原子数10)、シクロドデカニリデン基(炭素原子数12)等が挙げられる。好ましくはシクロヘキシリデン基(炭素原子数6)、3-メチルシクロヘキシリデン基(炭素原子数7)、4-メチルシクロヘキシリデン基(炭素原子数7)、3,3,5-トリメチルシクロヘキシリデン基(炭素原子数9)、シクロドデカニリデン基(炭素原子数12)であり、より好ましくはシクロヘキシリデン基(炭素原子数6)、3,3,5-トリメチルシクロヘキシリデン基(炭素原子数9)、シクロドデカニリデン基(炭素原子数12)であり、特に好ましくはシクロヘキシリデン基(炭素原子数6)、3,3,5-トリメチルシクロヘキシリデン基(炭素原子数9)が挙げられる。
一般式(1)、(2)及び一般式(A)、(B)中のXが、一般式(1b)である場合の好ましいAr1及びAr2としては、各々独立してベンゼン環、ナフタレン環であり、Ar1及びAr2が共にベンゼン環であることがより好ましい。例えば、Ar1及びAr2が共にベンゼン環である場合、式(1b)で表される基はフルオレニリデン基である。
一般式(1)、(2)及び一般式(A)、(B)中のXが、一般式(1c)である場合、R5は各々独立して水素原子又は炭素原子数1~6の鎖状若しくは分岐鎖状のアルキル基であり、水素原子又は炭素原子数1~4の鎖状若しくは分岐鎖状のアルキル基であることが好ましく、水素原子、メチル基又はエチル基であることがより好ましく、水素原子又はメチル基であることがさらに好ましく、メチル基であることが特に好ましい。一般式(1c)における、ベンゼン環に対する結合位置としては、メタ位又はパラ位であることが好ましい。
本発明の一般式(1)で表される末端(メタ)アクリレートポリフェニレンエーテルオリゴマーの具体例として、以下の化合物が挙げられる。
本発明の一般式(2)で表される末端(メタ)アクリレートポリフェニレンエーテルオリゴマーの具体例として、以下の化合物が挙げられる。
本発明の末端(メタ)アクリレートポリフェニレンエーテルオリゴマーは、フェニレンエーテルの繰り返し構造において、2位と5位にメチル基を有することから、2位と6位にメチル基を有する従来の末端(メタ)アクリレートポリフェニレンエーテルオリゴマーと比べて耐熱性に優れ、非常に有用である。
本発明の末端(メタ)アクリレートポリフェニレンエーテルオリゴマーの重量平均分子量(Mw)は、700以上30,000以下の範囲であるが、中でも、3,000以上30,000以下の範囲が好ましく、4,000以上20,000以下の範囲がより好ましく、5,000以上20,000以下の範囲がさらに好ましく、5,000以上15,000以下の範囲が特に好ましい。
本発明の末端(メタ)アクリレートポリフェニレンエーテルオリゴマーは、例えば、下記反応式に示すように、2,5-キシレノールと一般式(i)で表されるビスフェノール類を反応させるポリフェニレンエーテル化(工程I)と、工程Iにより得られた一般式(ii)で表されるポリフェニレンエーテルオリゴマーと一般式(iii)で表される(メタ)アクリル酸無水物を反応させる(メタ)アクリレート化(工程II)により製造することが可能であり、この製造方法に限定されるものではない。
(式中、R1、R2、X、m、nは、一般式(1)、(2)と同義である。)
<ポリフェニレンエーテル化(工程I)>
ポリフェニレンエーテル化(工程I)において、2,5-キシレノールと反応させるビスフェノール類(i)としては、具体的には、例えば、4,4’-ジヒドロキシ-3,3’,5,5’-テトラメチルビフェニル、4,4’-ジヒドロキシ-2,2’,3,3’,5,5’-ヘキサメチルビフェニル、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)メタン、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)エタン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)ブタン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)-4-メチルペンタン、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)ヘキサン、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)シクロドデカン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)アダマンタン、9,9-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)フルオレン、ビス(4-ヒドロキシ-3,5-ジメチルフェニル)スルホン等が挙げられる。
反応に際し、このようなビスフェノール類(i)は単独でも、2種以上を任意の割合で混合して用いても良い。
ポリフェニレンエーテル化(工程I)において、2,5-キシレノールと反応させるビスフェノール類(i)としては、具体的には、例えば、4,4’-ジヒドロキシ-3,3’,5,5’-テトラメチルビフェニル、4,4’-ジヒドロキシ-2,2’,3,3’,5,5’-ヘキサメチルビフェニル、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)メタン、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)エタン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)ブタン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)-4-メチルペンタン、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)ヘキサン、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)シクロドデカン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)アダマンタン、9,9-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)フルオレン、ビス(4-ヒドロキシ-3,5-ジメチルフェニル)スルホン等が挙げられる。
反応に際し、このようなビスフェノール類(i)は単独でも、2種以上を任意の割合で混合して用いても良い。
ポリフェニレンエーテル化(工程I)は、触媒を使用することが好ましい。使用する触媒としては、銅化合物、有機塩基が挙げられ、これらを併用して銅-有機塩基錯体化合物とすることが好ましい。銅化合物としては、塩化銅(I)、臭化銅(I)、ヨウ化銅(I)、硫酸銅(I)、硝酸銅(I)、塩化銅(II)、臭化銅(II)、ヨウ化銅(II)、硫酸銅(II)、硝酸銅(II)などが挙げられる。これらの中でも塩化銅(I)、臭化銅(I)、ヨウ化銅(I)等の1価のハロゲン化銅が好ましく、塩化銅(I)がより好ましい。有機塩基としては、テトラメチルエチレンジアミン(TMEDA)、トリメチルアミン、ジアザビシクロウンデセン(DBU)、ピリジン、2-メチルピリジン、1,4,7-トリアザシクロノナン、キヌクリジン、テトラフェニルエチレンジアミンが挙げられる。これらの中でも、テトラメチルエチレンジアミン(TMEDA)が好ましい。銅-有機塩基錯体化合物は、塩化銅(I)、臭化銅(I)、ヨウ化銅(I)等の1価のハロゲン化銅とテトラメチルエチレンジアミン(TMEDA)による錯体化合物が好ましく、その中でも塩化銅(I)とテトラメチルエチレンジアミン(TMEDA)による錯体化合物がより好ましい。銅-有機塩基錯体化合物は、銅化合物と配位子となり得る有機塩基化合物を、不活性有機溶媒存在下において混合することにより得ることができる。錯体形成は、有機溶媒に不溶な銅化合物が有機溶媒に完溶することにより確認することが可能である。
触媒の使用量は、触媒残留物による生成オリゴマーの品質上の問題が生じない範囲で用いられ、触媒の種類により好適な添加量が異なるので一概には言えないが、概略、例えば、ビスフェノール類(i)1モルに対して通常0.1~100モル%の範囲であり、0.1~5モル%の範囲が好ましく、0.1~1モル%の範囲がより好ましい。触媒はそのままで添加してもよいし、溶媒に溶解して添加してもよく、溶媒としては、反応に影響しないものが好ましい。
また、ポリフェニレンエーテル化(工程I)は、酸素濃度が20~100体積%の範囲の環境下で行うことが好ましく、純酸素(99体積%以上)の環境下で行うことがより好ましい。
触媒の使用量は、触媒残留物による生成オリゴマーの品質上の問題が生じない範囲で用いられ、触媒の種類により好適な添加量が異なるので一概には言えないが、概略、例えば、ビスフェノール類(i)1モルに対して通常0.1~100モル%の範囲であり、0.1~5モル%の範囲が好ましく、0.1~1モル%の範囲がより好ましい。触媒はそのままで添加してもよいし、溶媒に溶解して添加してもよく、溶媒としては、反応に影響しないものが好ましい。
また、ポリフェニレンエーテル化(工程I)は、酸素濃度が20~100体積%の範囲の環境下で行うことが好ましく、純酸素(99体積%以上)の環境下で行うことがより好ましい。
このポリフェニレンエーテル化(工程I)において、使用される溶媒は、使用される2,5-キシレノールやビスフェノール類(i)の原料や使用する触媒を均一に混合できる溶媒であれば良く、具体的には、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、メシチレン、テトラリン等の芳香族炭化水素系溶媒、シクロヘキサン、メチルシクロヘキサン、n-ペンタン、n-ヘキサン、n-へプタン、n-オクタン等の脂肪族アルキル系溶媒、クロロベンゼン、ジクロロベンゼン等の芳香族塩素系溶媒が好ましく、この中でも芳香族塩素系溶媒がより好ましい。芳香族塩素系溶媒の中でも、クロロベンゼン、ジクロロベンゼンが好ましく、ジクロロベンゼンがより好ましい。
溶媒の使用量は、原料として使用する2,5-キシレノール100重量部に対して、100~10000重量部の範囲が好ましく、1000~5000重量部の範囲がより好ましく、1000~2000重量部の範囲がさらに好ましい。
ポリフェニレンエーテル化(工程I)の反応条件は、温度は通常30~100℃の範囲であり、40~80℃の範囲が好ましく、40~60℃の範囲がさらに好ましい。反応温度が低すぎると反応が進行せず、反応温度が高いと分解反応等の副反応が進行するので好ましくない。このような反応条件において、反応は通常0.5~10時間程度で完結する。
溶媒の使用量は、原料として使用する2,5-キシレノール100重量部に対して、100~10000重量部の範囲が好ましく、1000~5000重量部の範囲がより好ましく、1000~2000重量部の範囲がさらに好ましい。
ポリフェニレンエーテル化(工程I)の反応条件は、温度は通常30~100℃の範囲であり、40~80℃の範囲が好ましく、40~60℃の範囲がさらに好ましい。反応温度が低すぎると反応が進行せず、反応温度が高いと分解反応等の副反応が進行するので好ましくない。このような反応条件において、反応は通常0.5~10時間程度で完結する。
ポリフェニレンエーテル化(工程I)により得られる、一般式(ii)で表されるポリフェニレンエーテルオリゴマーの重量平均分子量(Mw)は700以上30,000以下の範囲であるが、中でも、3,000以上30,000以下の範囲が好ましく、4,000以上20,000以下の範囲がより好ましく、5,000以上20,000以下の範囲がさらに好ましく、5,000以上15,000以下の範囲が特に好ましい。重量平均分子量(Mw)を上記範囲とすることは、一般式(ii)で表されるポリフェニレンエーテルオリゴマーが、向上した耐熱性を有する観点から好適である。また、このことから、一般式(ii)で表されるポリフェニレンエーテルオリゴマーを用いた、若しくは、それを後述する(メタ)アクリル化等により化学修飾をしたポリフェニレンエーテルオリゴマーを用いた、硬化物が向上した耐熱性を有する得る点において好適である。
そのポリフェニレンエーテルオリゴマーの中でも、一般式(A)又は一般式(B)で表される化学構造を有するポリフェニレンエーテルオリゴマーは、置換基R2を酸素原子に対してオルソ位に2つ有することから、ポリフェニレンエーテル化(工程I)で生じる分岐鎖状構造が含まれる量が少なくなり、反応選択率の点において好ましい。また、フェニレンエーテルの繰り返し構造において、2位と5位にメチル基を有することから、2位と6位にメチル基を有する従来のポリフェニレンエーテルオリゴマーを用いる場合と比べて、耐熱性に優れるため好ましい。
(式中、R2は各々独立して炭素原子数1~6の鎖状又は分岐鎖状のアルキル基、炭素原子数5又は6の環状のアルキル基、若しくは炭素原子数2~6のアルケニル基を示し、nは各々独立して1以上の整数であり、Xは単結合、酸素原子、硫黄原子、スルホニル基、カルボニル基、又は一般式(1a)、(1b)若しくは(1c)で表される2価の基を示す。)
(一般式(1a)、(1b)、(1c)中、R3及びR4は各々独立して水素原子、炭素原子数1~10の鎖状又は分岐鎖状のアルキル基、炭素原子数1~10のハロゲン化アルキル基又は炭素原子数6~12のアリール基を示し、R3及びR4はそれぞれ互いに結合して、全体として炭素原子数5~20のシクロアルキリデン基を形成してもよく、R5は各々独立して水素原子又は炭素原子数1~6の鎖状若しくは分岐鎖状のアルキル基を示し、Ar1及びAr2は各々独立して炭素数6~12のアリール基を示し、*はそれぞれ結合位置を示す。)
そのポリフェニレンエーテルオリゴマーの中でも、一般式(A)又は一般式(B)で表される化学構造を有するポリフェニレンエーテルオリゴマーは、置換基R2を酸素原子に対してオルソ位に2つ有することから、ポリフェニレンエーテル化(工程I)で生じる分岐鎖状構造が含まれる量が少なくなり、反応選択率の点において好ましい。また、フェニレンエーテルの繰り返し構造において、2位と5位にメチル基を有することから、2位と6位にメチル基を有する従来のポリフェニレンエーテルオリゴマーを用いる場合と比べて、耐熱性に優れるため好ましい。
本発明の一般式(A)で表されるポリフェニレンエーテルオリゴマーの具体例として、以下の化合物が挙げられる。
本発明の一般式(B)で表されるポリフェニレンエーテルオリゴマーの具体例として、以下の化合物が挙げられる。
<(メタ)アクリル化工程(工程II)>
上記反応式において例示するように、本発明の一般式(1)及び/又は(2)で表される末端(メタ)アクリレートポリフェニレンエーテルオリゴマーは、一般式(ii)で表されるポリフェニレンエーテルオリゴマーと、(メタ)アクリル酸無水物のような(メタ)アクリル化剤との反応により得られる。
(メタ)アクリル化剤としては、具体的には、例えば、アクリル酸クロライド、メタクリル酸クロライド、アクリル酸、メタクリル酸、アクリル酸無水物、メタクリル酸無水物等が挙げられる。
(メタ)アクリル化剤の使用量は、一般式(1)で表される両末端(メタ)アクリレートポリフェニレンエーテルオリゴマーを得る場合には、一般式(ii)で表されるポリフェニレンエーテルオリゴマーの全末端ヒドロキシル基に対して、(メタ)アクリル化剤を、通常1.0~2.5モル倍、好ましくは1.1~2.0モル倍、さらに好ましくは1.15~1.5モル倍用いる。
一般式(2)で表される片末端(メタ)アクリレートポリフェニレンエーテルオリゴマーを得る場合には、一般式(ii)で表されるポリフェニレンエーテルオリゴマーの全末端ヒドロキシル基に対して、(メタ)アクリル化剤を、通常0.5~1.5モル倍、好ましくは0.55~1.25モル倍、さらに好ましくは0.6~1.0モル倍用いる。
上記反応式において例示するように、本発明の一般式(1)及び/又は(2)で表される末端(メタ)アクリレートポリフェニレンエーテルオリゴマーは、一般式(ii)で表されるポリフェニレンエーテルオリゴマーと、(メタ)アクリル酸無水物のような(メタ)アクリル化剤との反応により得られる。
(メタ)アクリル化剤としては、具体的には、例えば、アクリル酸クロライド、メタクリル酸クロライド、アクリル酸、メタクリル酸、アクリル酸無水物、メタクリル酸無水物等が挙げられる。
(メタ)アクリル化剤の使用量は、一般式(1)で表される両末端(メタ)アクリレートポリフェニレンエーテルオリゴマーを得る場合には、一般式(ii)で表されるポリフェニレンエーテルオリゴマーの全末端ヒドロキシル基に対して、(メタ)アクリル化剤を、通常1.0~2.5モル倍、好ましくは1.1~2.0モル倍、さらに好ましくは1.15~1.5モル倍用いる。
一般式(2)で表される片末端(メタ)アクリレートポリフェニレンエーテルオリゴマーを得る場合には、一般式(ii)で表されるポリフェニレンエーテルオリゴマーの全末端ヒドロキシル基に対して、(メタ)アクリル化剤を、通常0.5~1.5モル倍、好ましくは0.55~1.25モル倍、さらに好ましくは0.6~1.0モル倍用いる。
(メタ)アクリル化剤として、(メタ)アクリル酸無水物を用いて、一般式(ii)で表されるポリフェニレンエーテルオリゴマーを(メタ)アクリル化する場合、反応は通常50~100℃の範囲で、1~20時間の範囲で行う。
使用できる反応溶媒としては、使用される溶媒は使用される原料等を均一に混合できる溶媒であれば良く、具体的には、塩化メチレンのようなハロゲン化炭化水素系溶媒やトルエン、キシレンのような芳香族炭化水素系溶媒が挙げられる。
溶媒の使用量は特に限定されないが、通常、一般式(ii)で表されるポリフェニレンエーテルオリゴマーに対して、0.5~10重量倍である。
反応において触媒は使用することが好ましく、例えば、トリエチルアミン、4-ジメチルアミノピリジン(DMAP)、ピリジン、1,8-ジアザビシクロ[5.4.0]ウンデセン-7-エン(DBU)などの有機塩基化合物を使用することができ、その中でも4-ジメチルアミノピリジンが好ましい。
触媒の使用量は、使用する溶媒量、反応温度などにより任意に決めることができるが、通常、一般式(ii)で表されるポリフェニレンエーテルオリゴマーに対して、0.01~0.5重量倍である。
使用できる反応溶媒としては、使用される溶媒は使用される原料等を均一に混合できる溶媒であれば良く、具体的には、塩化メチレンのようなハロゲン化炭化水素系溶媒やトルエン、キシレンのような芳香族炭化水素系溶媒が挙げられる。
溶媒の使用量は特に限定されないが、通常、一般式(ii)で表されるポリフェニレンエーテルオリゴマーに対して、0.5~10重量倍である。
反応において触媒は使用することが好ましく、例えば、トリエチルアミン、4-ジメチルアミノピリジン(DMAP)、ピリジン、1,8-ジアザビシクロ[5.4.0]ウンデセン-7-エン(DBU)などの有機塩基化合物を使用することができ、その中でも4-ジメチルアミノピリジンが好ましい。
触媒の使用量は、使用する溶媒量、反応温度などにより任意に決めることができるが、通常、一般式(ii)で表されるポリフェニレンエーテルオリゴマーに対して、0.01~0.5重量倍である。
(メタ)アクリル化剤として、(メタ)アクリル酸クロライドを用いて、一般式(ii)で表されるポリフェニレンエーテルオリゴマーを(メタ)アクリル化する場合について、以下説明する。
かかる場合、反応によりクロライドイオンが塩化水素の形で発生するので、塩化水素補足剤を併用することが好ましい。塩化水素補足剤としては、塩基性物質であれば使用できる。無機塩基性物質としては、アルカリ金属の炭酸塩や炭酸水素塩などが使用できる。有機塩基性物質としては3級アミン類が使用できる。3級アミン類としては、例えば、トリメチルアミン、トリエチルアミン、トリ-n-プロピルアミン、トリイソプロピルアミン、トリブチルアミン、N-メチル-ジエチルアミン、N-エチル-ジメチルアミン、N-エチル-ジアミルアミン、N,N-ジイソプロピルエチルアミン、N,N-ジメチル-シクロヘキシルアミン、N,N-ジエチル-シクロヘキシルアミン等の脂肪族アミン;N,N-ジメチルアニリン、N,N-ジエチルアニリン等の芳香族アミン;ピリジン、ピコリン、N,N-ジメチルアミノピリジン等の複素環アミン;1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノン-5-エン等の脂環式アミン等が挙げられる。
塩化水素補足剤の使用量としては、通常は使用される(メタ)アクリル化剤のモル数に対して、0.8~10倍モルであり、好ましくは0.9~8倍モル、特に好ましくは、1.0~7倍モル程度である。塩化水素補足剤が(メタ)アクリル化剤のモル数に対して0.8倍モル未満では、発生する塩化水素を捕捉しきれず、原料の一般式(ii)で表されるポリフェニレンエーテルオリゴマーや、目的物である一般式(1)又は(2)で表される末端(メタ)アクリレートポリフェニレンエーテルオリゴマーを分解してしまい、目的物の純度低下を起こす恐れがある。また、塩化水素補足剤が(メタ)アクリル化剤のモル数に対して10倍モルを超えると、塩化水素補足剤の除去が煩雑となるだけでなく経済的ではないため好ましくない。
かかる場合、反応によりクロライドイオンが塩化水素の形で発生するので、塩化水素補足剤を併用することが好ましい。塩化水素補足剤としては、塩基性物質であれば使用できる。無機塩基性物質としては、アルカリ金属の炭酸塩や炭酸水素塩などが使用できる。有機塩基性物質としては3級アミン類が使用できる。3級アミン類としては、例えば、トリメチルアミン、トリエチルアミン、トリ-n-プロピルアミン、トリイソプロピルアミン、トリブチルアミン、N-メチル-ジエチルアミン、N-エチル-ジメチルアミン、N-エチル-ジアミルアミン、N,N-ジイソプロピルエチルアミン、N,N-ジメチル-シクロヘキシルアミン、N,N-ジエチル-シクロヘキシルアミン等の脂肪族アミン;N,N-ジメチルアニリン、N,N-ジエチルアニリン等の芳香族アミン;ピリジン、ピコリン、N,N-ジメチルアミノピリジン等の複素環アミン;1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノン-5-エン等の脂環式アミン等が挙げられる。
塩化水素補足剤の使用量としては、通常は使用される(メタ)アクリル化剤のモル数に対して、0.8~10倍モルであり、好ましくは0.9~8倍モル、特に好ましくは、1.0~7倍モル程度である。塩化水素補足剤が(メタ)アクリル化剤のモル数に対して0.8倍モル未満では、発生する塩化水素を捕捉しきれず、原料の一般式(ii)で表されるポリフェニレンエーテルオリゴマーや、目的物である一般式(1)又は(2)で表される末端(メタ)アクリレートポリフェニレンエーテルオリゴマーを分解してしまい、目的物の純度低下を起こす恐れがある。また、塩化水素補足剤が(メタ)アクリル化剤のモル数に対して10倍モルを超えると、塩化水素補足剤の除去が煩雑となるだけでなく経済的ではないため好ましくない。
使用される溶媒は使用される原料等を均一に混合できる溶媒であれば良く、具体的には、塩化メチレンのようなハロゲン化炭化水素やテトラヒドロフラン、ジオキサン、クロロベンゼン等が挙げられる。溶媒の使用量は特に限定されないが、通常、一般式(ii)で表されるポリフェニレンエーテルオリゴマーに対して、0.5~100重量倍の範囲であり、好ましくは1~50重量倍の範囲、特に好ましくは2~10重量倍の範囲である。
反応は比較的低温度で実施され、通常は-50~100℃の範囲であり、-30~80℃の範囲が好ましく、-15~60℃の範囲がより好ましい。反応温度が100℃を超えると副反応が起こり、目的物の収率低下につながる。また、-50℃未満では反応速度が遅くなり所要時間がかかりすぎて経済的でない。
反応手順としては、あらかじめ、一般式(ii)で表されるポリフェニレンエーテルオリゴマーと(メタ)アクリル化剤とを溶媒中で混合し、そこに塩化水素補足剤を添加する方法や、先に、一般式(ii)で表されるポリフェニレンエーテルオリゴマーと塩化水素補足剤とを溶媒中で混合し、そこに(メタ)アクリル化剤を添加する方法がある。これらの方法において、後で添加する塩化水素補足剤や(メタ)アクリル化剤は、溶媒に希釈した状態で使用しても良い。
反応は比較的低温度で実施され、通常は-50~100℃の範囲であり、-30~80℃の範囲が好ましく、-15~60℃の範囲がより好ましい。反応温度が100℃を超えると副反応が起こり、目的物の収率低下につながる。また、-50℃未満では反応速度が遅くなり所要時間がかかりすぎて経済的でない。
反応手順としては、あらかじめ、一般式(ii)で表されるポリフェニレンエーテルオリゴマーと(メタ)アクリル化剤とを溶媒中で混合し、そこに塩化水素補足剤を添加する方法や、先に、一般式(ii)で表されるポリフェニレンエーテルオリゴマーと塩化水素補足剤とを溶媒中で混合し、そこに(メタ)アクリル化剤を添加する方法がある。これらの方法において、後で添加する塩化水素補足剤や(メタ)アクリル化剤は、溶媒に希釈した状態で使用しても良い。
(メタ)アクリル化反応工程において、反応時に(メタ)アクリル化剤の重合禁止剤として、例えば、ハイドロキノン、ハイドロキノンモノメチルエーテル、フェノチアジン、2,6-ジ-tert-ブチル-4-メチルフェノール(BHT)等を添加しても良い。
<(メタ)アクリル化工程(工程II)の後処理と精製について>
(メタ)アクリル化反応で使用した触媒などが、目的物である一般式(1)及び/又は(2)で表される末端(メタ)アクリレートポリフェニレンエーテルオリゴマーと一緒に有機溶媒中に残存すると、着色・分解等の好ましくない現象を引き起こしやすいので、反応後水洗等の洗浄操作を行い、除去することが好ましい。
得られた一般式(1)及び/又は(2)で表される末端(メタ)アクリレートポリフェニレンエーテルオリゴマーを単離する方法としては、溶解している溶液と貧溶媒を混合することで、沈殿物として得る方法が挙げられる。用いる貧溶媒としては、具体的には、例えば、メタノール、エタノール、プロパノール等の炭素数1~6の脂肪族アルコール溶媒又は上記脂肪族アルコール溶媒と水の混合物が挙げられる。
析出した沈殿物は、ろ過により分離して、得られた固形分を減圧下に40~100℃の範囲で加熱して乾燥を行うことで、目的物である一般式(1)及び/又は(2)で表される末端(メタ)アクリレートポリフェニレンエーテルオリゴマーを得ることができる。
(メタ)アクリル化反応で使用した触媒などが、目的物である一般式(1)及び/又は(2)で表される末端(メタ)アクリレートポリフェニレンエーテルオリゴマーと一緒に有機溶媒中に残存すると、着色・分解等の好ましくない現象を引き起こしやすいので、反応後水洗等の洗浄操作を行い、除去することが好ましい。
得られた一般式(1)及び/又は(2)で表される末端(メタ)アクリレートポリフェニレンエーテルオリゴマーを単離する方法としては、溶解している溶液と貧溶媒を混合することで、沈殿物として得る方法が挙げられる。用いる貧溶媒としては、具体的には、例えば、メタノール、エタノール、プロパノール等の炭素数1~6の脂肪族アルコール溶媒又は上記脂肪族アルコール溶媒と水の混合物が挙げられる。
析出した沈殿物は、ろ過により分離して、得られた固形分を減圧下に40~100℃の範囲で加熱して乾燥を行うことで、目的物である一般式(1)及び/又は(2)で表される末端(メタ)アクリレートポリフェニレンエーテルオリゴマーを得ることができる。
<本発明の樹脂組成物>
本発明の樹脂組成物は、少なくとも一般式(1)及び/又は(2)で表される末端(メタ)アクリレートポリフェニレンエーテルオリゴマーを含む、ポリフェニレンエーテルである成分(A)と、架橋剤である成分(B)を含有するものである。
本発明の樹脂組成物は、成分(A)として、一般式(1)及び/又は(2)で表される末端(メタ)アクリレートポリフェニレンエーテルオリゴマーのうち、少なくとも1種を含み、このうち2種以上を含むものであってもよい。
また、本発明の樹脂組成物は、成分(A)として、一般式(1)及び/又は(2)で表される末端(メタ)アクリレートポリフェニレンエーテルオリゴマー以外のポリフェニレンエーテルを併用しても良い。
併用できるポリフェニレンエーテルの具体例としては、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-エチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-フェニル-1,4-フェニレンエーテル)、ポリ(2,6-ジクロロ-1,4-フェニレンエーテル)、2,6-ジメチルフェノールと他のフェノール類(例えば、2,3,6-トリメチルフェノール、2-メチル-6-ブチルフェノール等)の共重合体、2,6-ジメチルフェノールとビフェノール類、ビスフェノール類又はトリスフェノール類をカップリングさせて得られるポリフェニレンエーテル共重合体、2,6-ジメチルフェノール及び他のフェノール類と、ビフェノール類、ビスフェノール類又はトリスフェノール類をカップリングさせて得られるポリフェニレンエーテル共重合体などが挙げられる。また、これらのポリフェニレンエーテルの末端のヒドロキシ基が、アリルエーテル、アクリロイル、メタクリロイル、ビニルエーテルなどの不飽和二重結合を有する官能基で修飾されたポリフェニレンエーテルも挙げられ、その中でも、例えば、2,6-ジメチルフェノールと2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパンの共重合体であるポリフェニレンエーテルのアクリレート化物が好適である。
一般式(1)及び/又は(2)で表される末端(メタ)アクリレートポリフェニレンエーテルオリゴマーと、それ以外のポリフェニレンエーテルを併用する場合の使用重量の比は、前者/後者として、10/90~90/10であることが好ましく、20/80~90/10であることがより好ましく、30/70~90/10であることがさらに好ましく、40/60~90/10であることが特に好ましい。
本発明の樹脂組成物は、少なくとも一般式(1)及び/又は(2)で表される末端(メタ)アクリレートポリフェニレンエーテルオリゴマーを含む、ポリフェニレンエーテルである成分(A)と、架橋剤である成分(B)を含有するものである。
本発明の樹脂組成物は、成分(A)として、一般式(1)及び/又は(2)で表される末端(メタ)アクリレートポリフェニレンエーテルオリゴマーのうち、少なくとも1種を含み、このうち2種以上を含むものであってもよい。
また、本発明の樹脂組成物は、成分(A)として、一般式(1)及び/又は(2)で表される末端(メタ)アクリレートポリフェニレンエーテルオリゴマー以外のポリフェニレンエーテルを併用しても良い。
併用できるポリフェニレンエーテルの具体例としては、ポリ(2,6-ジメチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-エチル-1,4-フェニレンエーテル)、ポリ(2-メチル-6-フェニル-1,4-フェニレンエーテル)、ポリ(2,6-ジクロロ-1,4-フェニレンエーテル)、2,6-ジメチルフェノールと他のフェノール類(例えば、2,3,6-トリメチルフェノール、2-メチル-6-ブチルフェノール等)の共重合体、2,6-ジメチルフェノールとビフェノール類、ビスフェノール類又はトリスフェノール類をカップリングさせて得られるポリフェニレンエーテル共重合体、2,6-ジメチルフェノール及び他のフェノール類と、ビフェノール類、ビスフェノール類又はトリスフェノール類をカップリングさせて得られるポリフェニレンエーテル共重合体などが挙げられる。また、これらのポリフェニレンエーテルの末端のヒドロキシ基が、アリルエーテル、アクリロイル、メタクリロイル、ビニルエーテルなどの不飽和二重結合を有する官能基で修飾されたポリフェニレンエーテルも挙げられ、その中でも、例えば、2,6-ジメチルフェノールと2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパンの共重合体であるポリフェニレンエーテルのアクリレート化物が好適である。
一般式(1)及び/又は(2)で表される末端(メタ)アクリレートポリフェニレンエーテルオリゴマーと、それ以外のポリフェニレンエーテルを併用する場合の使用重量の比は、前者/後者として、10/90~90/10であることが好ましく、20/80~90/10であることがより好ましく、30/70~90/10であることがさらに好ましく、40/60~90/10であることが特に好ましい。
<成分(B):架橋剤>
本発明の樹脂組成物における成分(B)の架橋剤としては、一般式(1)及び/又は(2)で表される末端(メタ)アクリレートポリフェニレンエーテルオリゴマーと反応させることにより、架橋を形成させて硬化させることができるものであれば、特に限定されない。
具体的には、例えば、分子中に不飽和二重結合を2個以上有する化合物等が挙げられる。より具体的には、トリアリルイソシアヌレート等のトリアルケニルイソシアヌレート化合物、分子中にアリルエーテル基を2個以上有する多官能アリルエーテル化合物、分子中にメタクリル基を2個以上有する多官能メタクリレート化合物、分子中にアクリル基を2個以上有する多官能アクリレート化合物、ポリブタジエン等のように分子中にビニル基を2個以上有するビニル化合物(多官能ビニル化合物)、及び分子中にビニルベンジル基を2個以上有するビニルベンジル化合物等が挙げられる。この中でも、トリアルケニルイソシアヌレート化合物、分子中にアリルエーテル基を2個以上有する多官能アリルエーテル化合物、分子中にアクリル基を2個以上有する多官能アクリレート化合物、多官能メタクリレート化合物、及び多官能ビニル化合物が好ましい。これらを用いると、硬化反応により架橋がより好適に形成されると考えられ、本発明の末端(メタ)アクリレートポリフェニレンエーテルオリゴマーを含む樹脂組成物の硬化物の耐熱性をより高めることができる。また、熱硬化型硬化剤は、例示した熱硬化型硬化剤を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、熱硬化型硬化剤としては、上記した分子中に不飽和二重結合を2個以上有する化合物と、分子中に不飽和二重結合を1個有する化合物とを併用してもよい。分子中に不飽和二重結合を1個有する化合物としては、具体的には、分子中にビニル基を1個有する化合物(モノビニル化合物)等が挙げられる。
本発明の樹脂組成物は、一般式(1)及び/又は(2)で表される末端(メタ)アクリレートポリフェニレンエーテルオリゴマーからなる成分(A)100重量部に対して、成分(B)からなる架橋剤を、1~50重量部の範囲とすることが好ましく、1~30重量部の範囲とすることがより好ましく、1~25重量部の範囲とすることがさらに好ましい。
本発明の樹脂組成物における成分(B)の架橋剤としては、一般式(1)及び/又は(2)で表される末端(メタ)アクリレートポリフェニレンエーテルオリゴマーと反応させることにより、架橋を形成させて硬化させることができるものであれば、特に限定されない。
具体的には、例えば、分子中に不飽和二重結合を2個以上有する化合物等が挙げられる。より具体的には、トリアリルイソシアヌレート等のトリアルケニルイソシアヌレート化合物、分子中にアリルエーテル基を2個以上有する多官能アリルエーテル化合物、分子中にメタクリル基を2個以上有する多官能メタクリレート化合物、分子中にアクリル基を2個以上有する多官能アクリレート化合物、ポリブタジエン等のように分子中にビニル基を2個以上有するビニル化合物(多官能ビニル化合物)、及び分子中にビニルベンジル基を2個以上有するビニルベンジル化合物等が挙げられる。この中でも、トリアルケニルイソシアヌレート化合物、分子中にアリルエーテル基を2個以上有する多官能アリルエーテル化合物、分子中にアクリル基を2個以上有する多官能アクリレート化合物、多官能メタクリレート化合物、及び多官能ビニル化合物が好ましい。これらを用いると、硬化反応により架橋がより好適に形成されると考えられ、本発明の末端(メタ)アクリレートポリフェニレンエーテルオリゴマーを含む樹脂組成物の硬化物の耐熱性をより高めることができる。また、熱硬化型硬化剤は、例示した熱硬化型硬化剤を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、熱硬化型硬化剤としては、上記した分子中に不飽和二重結合を2個以上有する化合物と、分子中に不飽和二重結合を1個有する化合物とを併用してもよい。分子中に不飽和二重結合を1個有する化合物としては、具体的には、分子中にビニル基を1個有する化合物(モノビニル化合物)等が挙げられる。
本発明の樹脂組成物は、一般式(1)及び/又は(2)で表される末端(メタ)アクリレートポリフェニレンエーテルオリゴマーからなる成分(A)100重量部に対して、成分(B)からなる架橋剤を、1~50重量部の範囲とすることが好ましく、1~30重量部の範囲とすることがより好ましく、1~25重量部の範囲とすることがさらに好ましい。
<成分(C):反応開始剤>
本発明の樹脂組成物は、成分(A)と成分(B)に加えて成分(C)として反応開始剤を含有することが好ましい。成分(C)は、成分(A)と成分(B)を含有する樹脂組成物の架橋反応を促進するために添加するものである。
成分(C)としては、架橋反応を促進するものであれば特に制限されるものではなく、例えば、イミダゾール類、第3級アミン類、第4級アンモニウム塩類、三フッ化ホウ素アミン錯体、オルガノホスフィン類、オルガノホスホニウム塩等のイオン触媒、有機過酸化物、ヒドロペルオキシド、アゾイソブチロニトリル等のラジカル重合開始剤などが挙げられる。これらの中でも、有機過酸化物を用いることが好ましい。
有機過酸化物としては、ジ-t-ブチルパーオキサイド、ジラウロイルパーオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,2-ビス(t-ブチルパーオキシ)ブタン、2,2-ビス(t-ブチルパーオキシ)オクタン、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン、ジ-n-プロピルパーオキシジカルボネート等の脂肪族有機過酸化物、ジベンゾイルパーオキシド、ジクミルパーオキシド、t-ブチルパーオキシベンゾエート、t-アミルパーオキシベンゾエート、t-ブチルクミルパーオキサイド、ビス(1-t-ブチルペルオキシ-1-メチルエチル)ベンゼン、2-フェニル-2-[(2-フェニルプロパン-2-イル)ペルオキシ]プロパン、α,α’-ジ(t-ブチルパーオキシ)ジイソプロピルベンゼン、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、ジ-t-ブチルパーオキシイソフタレートなど、芳香環を含む芳香族有機過酸化物が挙げられる。これらの中でも、芳香族有機過酸化物を用いることが好ましい。
芳香族有機過酸化物としては、ジクミルパーオキシド、t-ブチルクミルパーオキサイド、ビス(1-t-ブチルペルオキシ-1-メチルエチル)ベンゼン、2-フェニル-2-[(2-フェニルプロパン-2-イル)ペルオキシ]プロパンがより好ましく、2-フェニル-2-[(2-フェニルプロパン-2-イル)ペルオキシ]プロパンが特に好ましい。
本発明の樹脂組成物は、成分(C)を樹脂組成物全量に対して0.05~0.9重量%の範囲で含有することが好ましく、0.15~0.8重量%の範囲で含有することがより好ましく、0.3~0.7重量%の範囲で含有することがさらに好ましく、0.35~0.6重量%の範囲で含有することが特に好ましい。
成分(C)は、1種単独で用いてもよいし、2種以上を併用してもよい。
本発明の樹脂組成物は、成分(A)と成分(B)に加えて成分(C)として反応開始剤を含有することが好ましい。成分(C)は、成分(A)と成分(B)を含有する樹脂組成物の架橋反応を促進するために添加するものである。
成分(C)としては、架橋反応を促進するものであれば特に制限されるものではなく、例えば、イミダゾール類、第3級アミン類、第4級アンモニウム塩類、三フッ化ホウ素アミン錯体、オルガノホスフィン類、オルガノホスホニウム塩等のイオン触媒、有機過酸化物、ヒドロペルオキシド、アゾイソブチロニトリル等のラジカル重合開始剤などが挙げられる。これらの中でも、有機過酸化物を用いることが好ましい。
有機過酸化物としては、ジ-t-ブチルパーオキサイド、ジラウロイルパーオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,2-ビス(t-ブチルパーオキシ)ブタン、2,2-ビス(t-ブチルパーオキシ)オクタン、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン、ジ-n-プロピルパーオキシジカルボネート等の脂肪族有機過酸化物、ジベンゾイルパーオキシド、ジクミルパーオキシド、t-ブチルパーオキシベンゾエート、t-アミルパーオキシベンゾエート、t-ブチルクミルパーオキサイド、ビス(1-t-ブチルペルオキシ-1-メチルエチル)ベンゼン、2-フェニル-2-[(2-フェニルプロパン-2-イル)ペルオキシ]プロパン、α,α’-ジ(t-ブチルパーオキシ)ジイソプロピルベンゼン、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、ジ-t-ブチルパーオキシイソフタレートなど、芳香環を含む芳香族有機過酸化物が挙げられる。これらの中でも、芳香族有機過酸化物を用いることが好ましい。
芳香族有機過酸化物としては、ジクミルパーオキシド、t-ブチルクミルパーオキサイド、ビス(1-t-ブチルペルオキシ-1-メチルエチル)ベンゼン、2-フェニル-2-[(2-フェニルプロパン-2-イル)ペルオキシ]プロパンがより好ましく、2-フェニル-2-[(2-フェニルプロパン-2-イル)ペルオキシ]プロパンが特に好ましい。
本発明の樹脂組成物は、成分(C)を樹脂組成物全量に対して0.05~0.9重量%の範囲で含有することが好ましく、0.15~0.8重量%の範囲で含有することがより好ましく、0.3~0.7重量%の範囲で含有することがさらに好ましく、0.35~0.6重量%の範囲で含有することが特に好ましい。
成分(C)は、1種単独で用いてもよいし、2種以上を併用してもよい。
<成分(D):充填剤>
本発明の樹脂組成物は、成分(A)と成分(B)及び必要に応じて成分(C)に加えて、成分(D)として充填剤を含有することができる。
本発明の樹脂組成物100重量部に対して、成分(D)を10~150重量部の範囲で含有することが好ましく、10~100重量部の範囲で含有することがさらに好ましい。
成分(D)としては、通常、樹脂組成物に用いられる充填剤であれば特に制限されるものではなく、例えば、酸化珪素、酸化アルミニウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、窒化珪素、炭化珪素、六方晶窒化ホウ素等の無機フィラーを混合して使用することができる。
本発明の樹脂組成物は、成分(A)と成分(B)及び必要に応じて成分(C)に加えて、成分(D)として充填剤を含有することができる。
本発明の樹脂組成物100重量部に対して、成分(D)を10~150重量部の範囲で含有することが好ましく、10~100重量部の範囲で含有することがさらに好ましい。
成分(D)としては、通常、樹脂組成物に用いられる充填剤であれば特に制限されるものではなく、例えば、酸化珪素、酸化アルミニウム、酸化マグネシウム、窒化ホウ素、窒化アルミニウム、窒化珪素、炭化珪素、六方晶窒化ホウ素等の無機フィラーを混合して使用することができる。
<成分(E):溶剤>
本発明の樹脂組成物は、成分(E)として溶剤を含有してもよく、特に、成分(E)に溶解若しくは分散させたワニスの形態とすることが好ましい。
成分(E)としては、本発明の樹脂組成物を溶解若しくは分散させるものであれば特に制限はなく、例えば、トルエン、キシレン等の芳香族系化合物、メチルエチルケトン、シクロペンタノン、シクロヘキサノン等のケトン系化合物、及びクロロホルムなどの塩素系有機溶媒が挙げられる。
中でも、トルエン、キシレン等の芳香族系化合物、メチルエチルケトン、シクロペンタノン、シクロヘキサノン等のケトン系化合物が好ましく、トルエン、キシレン等の芳香族系化合物がより好ましく、特にトルエンが好適である。
本発明の樹脂組成物100重量部に対して、成分(E)を50~200重量部の範囲で含有することが好ましく、70~150重量部の範囲で含有することがより好ましい。
本発明の樹脂組成物は、成分(E)として溶剤を含有してもよく、特に、成分(E)に溶解若しくは分散させたワニスの形態とすることが好ましい。
成分(E)としては、本発明の樹脂組成物を溶解若しくは分散させるものであれば特に制限はなく、例えば、トルエン、キシレン等の芳香族系化合物、メチルエチルケトン、シクロペンタノン、シクロヘキサノン等のケトン系化合物、及びクロロホルムなどの塩素系有機溶媒が挙げられる。
中でも、トルエン、キシレン等の芳香族系化合物、メチルエチルケトン、シクロペンタノン、シクロヘキサノン等のケトン系化合物が好ましく、トルエン、キシレン等の芳香族系化合物がより好ましく、特にトルエンが好適である。
本発明の樹脂組成物100重量部に対して、成分(E)を50~200重量部の範囲で含有することが好ましく、70~150重量部の範囲で含有することがより好ましい。
本発明の樹脂組成物の調製方法は特に限定されるものではなく、例えば、上述の成分を混合し、撹拌機によって混合や分散する方法が挙げられる。
<プリプレグ>
本発明のプリプレグは、成分(A)及び成分(B)、必要に応じてさらに成分(C)並びに成分(D)を含む樹脂組成物と、成分(F)である強化繊維とを混合させて、プリプレグとすることができる。混合する方法としては、例えば、成分(F)である強化繊維にワニスを塗布又は含浸する方法などが挙げられる。
本発明のプリプレグは、成分(A)及び成分(B)、必要に応じてさらに成分(C)並びに成分(D)を含む樹脂組成物と、成分(F)である強化繊維とを混合させて、プリプレグとすることができる。混合する方法としては、例えば、成分(F)である強化繊維にワニスを塗布又は含浸する方法などが挙げられる。
<成分(F):強化繊維>
本発明における成分(F)としては、通常プリプレグに用いられる強化繊維であれば特に制限されるものではなく、例えば、炭素繊維、アラミド繊維、ナイロン繊維、高強度ポリエステル繊維、ガラス繊維、ボロン繊維、アルミナ繊維、窒化珪素繊維等の各種の無機繊維または有機繊維を用いることができる。これらの中でも、比強度、比弾性の観点から、炭素繊維、アラミド繊維、ガラス繊維、ボロン繊維、アルミナ繊維、窒化珪素繊維が挙げられる。中でも、機械物性や軽量化の観点から炭素繊維が好ましい。強化繊維として炭素繊維を用いる場合、金属による表面処理を施してもよい。
繊維基材の厚みとしては、0.3mm以下が好ましく、0.15mm以下がより好ましく、0.1mm以下がさらに好ましい。
成分(F)は、1種を単独で用いてもよく、2種以上を組み合わせて併用してもよい。
本発明における成分(F)としては、通常プリプレグに用いられる強化繊維であれば特に制限されるものではなく、例えば、炭素繊維、アラミド繊維、ナイロン繊維、高強度ポリエステル繊維、ガラス繊維、ボロン繊維、アルミナ繊維、窒化珪素繊維等の各種の無機繊維または有機繊維を用いることができる。これらの中でも、比強度、比弾性の観点から、炭素繊維、アラミド繊維、ガラス繊維、ボロン繊維、アルミナ繊維、窒化珪素繊維が挙げられる。中でも、機械物性や軽量化の観点から炭素繊維が好ましい。強化繊維として炭素繊維を用いる場合、金属による表面処理を施してもよい。
繊維基材の厚みとしては、0.3mm以下が好ましく、0.15mm以下がより好ましく、0.1mm以下がさらに好ましい。
成分(F)は、1種を単独で用いてもよく、2種以上を組み合わせて併用してもよい。
<硬化物の製造方法>
本発明における硬化物は、本発明の樹脂組成物又はプリプレグを硬化させて得ることができる。
本発明の硬化物の製造方法としては、例えば、上記プリプレグを所定の温度まで加熱して硬化させる方法、本発明の樹脂組成物を金型などに充填するか、本発明の樹脂組成物を加熱融解させて金型等に注入するなどした後、所定の温度まで加熱して硬化させる方法等を挙げることができる。
加熱硬化温度としては、100~300℃の範囲で適宜決定することが出来る。
本発明における硬化物は、本発明の樹脂組成物又はプリプレグを硬化させて得ることができる。
本発明の硬化物の製造方法としては、例えば、上記プリプレグを所定の温度まで加熱して硬化させる方法、本発明の樹脂組成物を金型などに充填するか、本発明の樹脂組成物を加熱融解させて金型等に注入するなどした後、所定の温度まで加熱して硬化させる方法等を挙げることができる。
加熱硬化温度としては、100~300℃の範囲で適宜決定することが出来る。
以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。
なお、以下の例における重量平均分子量(Mw)はゲル浸透クロマトグラフィーにより測定した。その分析方法は以下のとおりである。
<分析方法>
1.高速液体クロマトグラフィー(HPLC)測定
測定装置:高速液体クロマトグラフィー分析装置(UFLC)(株式会社島津製作所製)
ポンプ:LC-20AD
カラムオーブン:CTO-20A
検出器:SPD-20A(UFLC)、セル長5mm
カラム:HALO-C18(カラム3.0×75mm、粒子径2.7μm、advanced materials technology社製)
[測定条件]
オーブン温度:50℃
流量:0.7mL/min
移動相:(A)0.2vol%酢酸水溶液、(B)メタノール
グラジエント条件:(B)体積%(分析開始からの時間)20%(0分)→40%(10分)→60%(20分)→100%(37分)→100%(40分)
検出波長:280nm
試料濃度:5.0mg/mL
試料注入量:10μL
なお、以下の例における重量平均分子量(Mw)はゲル浸透クロマトグラフィーにより測定した。その分析方法は以下のとおりである。
<分析方法>
1.高速液体クロマトグラフィー(HPLC)測定
測定装置:高速液体クロマトグラフィー分析装置(UFLC)(株式会社島津製作所製)
ポンプ:LC-20AD
カラムオーブン:CTO-20A
検出器:SPD-20A(UFLC)、セル長5mm
カラム:HALO-C18(カラム3.0×75mm、粒子径2.7μm、advanced materials technology社製)
[測定条件]
オーブン温度:50℃
流量:0.7mL/min
移動相:(A)0.2vol%酢酸水溶液、(B)メタノール
グラジエント条件:(B)体積%(分析開始からの時間)20%(0分)→40%(10分)→60%(20分)→100%(37分)→100%(40分)
検出波長:280nm
試料濃度:5.0mg/mL
試料注入量:10μL
2.ゲル浸透クロマトグラフィー測定(分子量測定)
装置:東ソー株式会社製 HLC-8320GPC
検出器:RI(示差屈折計)
[測定条件]
流量:1mL/min.
溶出液:テトラヒドロフラン
温度:40℃
波長:254nm
サンプリングピッチ:100msec.
測定試料:ポリフェニレンエーテル化合物含有組成物10mgをテトラヒドロフランで30倍に希釈した溶液
注入量:10μL
[カラム](上流から)
Guard ColumnHXL-L+G4000HXL+G3000HXL+G2000HXL×2本(7.8mmID×30cm、東ソー(株)製)
[分子量算出法]
下記のポリスチレン標準試料を用いた3次近似曲線の検量線を利用した、標準ポリスチレン換算分子量として算出した。
測定条件は、注入量のみ10μLに変更し、それ以外は上記測定条件と同様に測定した。
(ポリスチレン標準試料)
・TSKgel Standard Polystyrene A-500:Nominal Mol.Wt. 5.9×102 Mw/Mn 1.19(0005203/東ソー(株)製)
・TSKgel Standard Polystyrene A-2500:Nominal Mol.Wt. 2.63×103 Mw/Mn 1.05(0005205/東ソー(株)製)
・TSKgel Standard Polystyrene A-5000:Nominal Mol.Wt. 5.06×103 Mw/Mn 1.02(0005206/東ソー(株)製)
・TSKgel Standard Polystyrene F-1:Nominal Mol.Wt. 1.02×104 Mw/Mn 1.02(0005207/東ソー(株)製)
・TSKgel Standard Polystyrene F-2:Nominal Mol.Wt. 1.74×104 Mw/Mn 1.01(0005208/東ソー(株)製)
・TSKgel Standard Polystyrene F-4:Nominal Mol.Wt. 3.79×104 Mw/Mn 1.01(0005209/東ソー(株)製)
装置:東ソー株式会社製 HLC-8320GPC
検出器:RI(示差屈折計)
[測定条件]
流量:1mL/min.
溶出液:テトラヒドロフラン
温度:40℃
波長:254nm
サンプリングピッチ:100msec.
測定試料:ポリフェニレンエーテル化合物含有組成物10mgをテトラヒドロフランで30倍に希釈した溶液
注入量:10μL
[カラム](上流から)
Guard ColumnHXL-L+G4000HXL+G3000HXL+G2000HXL×2本(7.8mmID×30cm、東ソー(株)製)
[分子量算出法]
下記のポリスチレン標準試料を用いた3次近似曲線の検量線を利用した、標準ポリスチレン換算分子量として算出した。
測定条件は、注入量のみ10μLに変更し、それ以外は上記測定条件と同様に測定した。
(ポリスチレン標準試料)
・TSKgel Standard Polystyrene A-500:Nominal Mol.Wt. 5.9×102 Mw/Mn 1.19(0005203/東ソー(株)製)
・TSKgel Standard Polystyrene A-2500:Nominal Mol.Wt. 2.63×103 Mw/Mn 1.05(0005205/東ソー(株)製)
・TSKgel Standard Polystyrene A-5000:Nominal Mol.Wt. 5.06×103 Mw/Mn 1.02(0005206/東ソー(株)製)
・TSKgel Standard Polystyrene F-1:Nominal Mol.Wt. 1.02×104 Mw/Mn 1.02(0005207/東ソー(株)製)
・TSKgel Standard Polystyrene F-2:Nominal Mol.Wt. 1.74×104 Mw/Mn 1.01(0005208/東ソー(株)製)
・TSKgel Standard Polystyrene F-4:Nominal Mol.Wt. 3.79×104 Mw/Mn 1.01(0005209/東ソー(株)製)
3.フーリエ変換赤外分光(FT-IR)分析
装置:IRPrestinge-21
[測定条件]
測定波数範囲:4000~750cm-1
積算回数:40回
装置:IRPrestinge-21
[測定条件]
測定波数範囲:4000~750cm-1
積算回数:40回
4.ガラス転移温度(Tg)の測定
下記装置を用いて、下記測定条件により試料の分析を行った。熱機械分析(TMA)によるTgは、TMA曲線より外挿点として求めた。
[熱機械分析(TMA)装置]TMA 7100((株)日立ハイテクサイエンス製)
[測定条件]
条件:荷重20mN
温度範囲:30℃~400℃
昇温速度:5℃/min.
測定モード:引張
サンプルサイズ:幅5mm、長さ15mm
[示差走査熱量測定(DSC)装置]:DSC7020/(株)日立ハイテクサイエンス製
[測定条件]
昇温速度 :10℃/min.
測定温度範囲:30~350℃
測定雰囲気 :窒素50mL/min.
測定試料 :3mg
下記装置を用いて、下記測定条件により試料の分析を行った。熱機械分析(TMA)によるTgは、TMA曲線より外挿点として求めた。
[熱機械分析(TMA)装置]TMA 7100((株)日立ハイテクサイエンス製)
[測定条件]
条件:荷重20mN
温度範囲:30℃~400℃
昇温速度:5℃/min.
測定モード:引張
サンプルサイズ:幅5mm、長さ15mm
[示差走査熱量測定(DSC)装置]:DSC7020/(株)日立ハイテクサイエンス製
[測定条件]
昇温速度 :10℃/min.
測定温度範囲:30~350℃
測定雰囲気 :窒素50mL/min.
測定試料 :3mg
5.NMR分析
測定装置:フーリエ変換核磁気共鳴AVANCE III HD 400(BRUKER製)
測定サンプルを重水素化クロロホルムに溶解し、1H-NMRスペクトルを測定した。
測定装置:フーリエ変換核磁気共鳴AVANCE III HD 400(BRUKER製)
測定サンプルを重水素化クロロホルムに溶解し、1H-NMRスペクトルを測定した。
<実施例1>ポリフェニレンエーテルオリゴマーの合成:ポリフェニレンエーテル化(工程I)
温度計、撹拌機、冷却器を備えた1Lの4つ口フラスコに、1,2-ジクロロベンゼンを832g、塩化銅(I)を0.206g(2.10mmol)、テトラメチルエチレンジアミン(TMEDA)を0.667g(5.74mmol)加えた後、1時間撹拌を行った後に、2,5-キシレノールを40g(327mmol)、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)エタンを24.9g(87.7mmol)添加した。添加終了後、反応系中を減圧して空気を除去し、純酸素を吹き込んで系中を酸素雰囲気下に置換する作業を3回行った。その後40℃に昇温し、4時間撹拌を行い、液体クロマトグラフィーにて反応液を分析した結果、原料が残存していたため60℃に昇温し、2時間撹拌を行った。液体クロマトグラフィーにて原料の残存がない事を確認した後、25℃まで降温を行い、反応液に36%塩酸を1.5重量%含有したメタノール溶液(8578g)に添加して、1時間撹拌を行った。その後撹拌を停止し、20時間静置した。固形分が生じた事を確認した後に、減圧濾過を行い、固形分を回収した。回収した固形分をエバポレーターにて60℃で減圧乾燥を行い、乾燥した固形分を47.0g得た(収率:72%)。
得られた固形分を、ゲル浸透クロマトグラフィー及び液体クロマトグラフィーにて分析を行った結果、重量平均分子量が13,000であるポリフェニレンエーテルオリゴマーであることが確認された。
得られた固形分のFT-IR分析の結果、800cm-1、1400cm-1及び3000cm-1付近に芳香族化合物に由来する伸縮振動のピークが、1200cm-1付近にエーテル結合を示すC-O伸縮振動のピークが、また吸収強度は極めて小さいが、3200~3400cm-1付近に芳香族水酸基のOH伸縮振動のピークが確認された。FT-IR分析のスペクトルを図1に示す。
得られた固形分の1H-NMR分析の結果、1.2~1.5ppm及び1.7~2.6ppm付近にポリフェニレンエーテルオリゴマーのメチル基由来のピークが観測され、6.0~7.5ppm付近に芳香環のプロトン由来のピークが確認された。また、4.4~4.6ppmに水酸基由来のピークが確認された。1H-NMR分析のスペクトルを図2に示す。
得られたポリフェニレンエーテルオリゴマーのガラス転移温度(Tg)をDSCにより測定したところ、Tgが174℃であった。
得られた固形分を、ゲル浸透クロマトグラフィー及び液体クロマトグラフィーにて分析を行った結果、重量平均分子量が13,000であるポリフェニレンエーテルオリゴマーであることが確認された。
得られた固形分のFT-IR分析の結果、800cm-1、1400cm-1及び3000cm-1付近に芳香族化合物に由来する伸縮振動のピークが、1200cm-1付近にエーテル結合を示すC-O伸縮振動のピークが、また吸収強度は極めて小さいが、3200~3400cm-1付近に芳香族水酸基のOH伸縮振動のピークが確認された。FT-IR分析のスペクトルを図1に示す。
得られた固形分の1H-NMR分析の結果、1.2~1.5ppm及び1.7~2.6ppm付近にポリフェニレンエーテルオリゴマーのメチル基由来のピークが観測され、6.0~7.5ppm付近に芳香環のプロトン由来のピークが確認された。また、4.4~4.6ppmに水酸基由来のピークが確認された。1H-NMR分析のスペクトルを図2に示す。
得られたポリフェニレンエーテルオリゴマーのガラス転移温度(Tg)をDSCにより測定したところ、Tgが174℃であった。
<実施例2>末端(メタ)アクリレートポリフェニレンエーテルオリゴマーの合成:(メタ)アクリル化工程(工程II)
温度計、撹拌機、冷却器を備えた1Lの4つ口フラスコに、実施例1で得られたポリフェニレンエーテルオリゴマーを35g、トルエン187g、4-ジメチルアミノピリジン(DMAP)0.35g(2.87mmol)を加え、80℃まで昇温した後に、滴下ロート100mLに無水メタクリル酸8.75g(56.76mmol)とトルエン26gを加えて、これを20分かけて滴下した。この際に発熱は見られなかった。その後、反応温度を90℃に昇温し4時間撹拌を行った。反応液を一部取り出し、乾燥した後に固形分についてFT-IR分析をしたところ、3200~3400cm-1付近の芳香族水酸基の消失と1700cm-1付近のメタクリル基のカルボニル部位に由来のピークを確認できた。この結果より、反応が終結したと判断し、25℃まで降温を行った。その後メタノール1285gに反応液を添加した後に1時間撹拌を行い、20時間静置した。沈殿物が生じた事を確認した後、減圧濾過にて固形分を回収した。回収した固形分はエバポレーターにて60℃で減圧乾燥を行い、乾燥した固形分を22g得た。
得られた固形分のFT-IR分析の結果、1700cm-1付近にメタクリル基のカルボニル部位由来のピークが観測されたことから、メタクリル化されたポリフェニレンエーテルオリゴマーが得られたことを確認した。FT-IR分析のスペクトルを図3に示す。
得られた固形分の1H-NMR分析の結果、4.5ppmの水酸基ピークの消失が確認され、4.3~4.5及び5.6ppm付近にメタクリル酸由来のピークの出現が確認された。1H-NMR分析のスペクトルを図4に示す。
得られた固形分のFT-IR分析の結果、1700cm-1付近にメタクリル基のカルボニル部位由来のピークが観測されたことから、メタクリル化されたポリフェニレンエーテルオリゴマーが得られたことを確認した。FT-IR分析のスペクトルを図3に示す。
得られた固形分の1H-NMR分析の結果、4.5ppmの水酸基ピークの消失が確認され、4.3~4.5及び5.6ppm付近にメタクリル酸由来のピークの出現が確認された。1H-NMR分析のスペクトルを図4に示す。
<実施例3>樹脂組成物・ワニスの調製及び硬化物(フィルム)の作成
実施例2で得られたオリゴマーを1.5g、2,6-ジメチルフェノールと2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパンの共重合体であるポリフェニレンエーテルオリゴマーのアクリレート化物を1.5g、トルエンを6.0g、トリアリルイソシアヌレートを成分(B)として0.6g、ジクミルパーオキサイド(日本油脂株式会社製:商品名「パークミルD」)を成分(C)として0.03gをバイアル瓶に入れて、完全に溶解するまで静置した。完溶したポリフェニレンエーテルオリゴマー溶液をポリイミドフィルムに塗布し、真空乾燥機で105℃、2時間乾燥を行った。その後熱プレス試験機にて10MPaで105℃/30分、150℃/1時間、200℃/1時間、250℃/1時間、270℃/1時間の条件で硬化を行い、熱硬化型フィルムを得た。
得られたフィルムは褐色透明であり、透明性であることから非晶質性であることが明らかになった。
得られたフィルムのガラス転移温度(Tg)をTMAにより測定したところ、Tgが247℃であった。
実施例2で得られたオリゴマーを1.5g、2,6-ジメチルフェノールと2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパンの共重合体であるポリフェニレンエーテルオリゴマーのアクリレート化物を1.5g、トルエンを6.0g、トリアリルイソシアヌレートを成分(B)として0.6g、ジクミルパーオキサイド(日本油脂株式会社製:商品名「パークミルD」)を成分(C)として0.03gをバイアル瓶に入れて、完全に溶解するまで静置した。完溶したポリフェニレンエーテルオリゴマー溶液をポリイミドフィルムに塗布し、真空乾燥機で105℃、2時間乾燥を行った。その後熱プレス試験機にて10MPaで105℃/30分、150℃/1時間、200℃/1時間、250℃/1時間、270℃/1時間の条件で硬化を行い、熱硬化型フィルムを得た。
得られたフィルムは褐色透明であり、透明性であることから非晶質性であることが明らかになった。
得られたフィルムのガラス転移温度(Tg)をTMAにより測定したところ、Tgが247℃であった。
<比較例1>
2,6-ジメチルフェノールと2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパンの共重合体であるポリフェニレンエーテルオリゴマーのアクリレート化物を3.0g、トルエンを6.0g、トリアリルイソシアヌレートを0.6g、ジクミルパーオキサイドを0.03g、それぞれをバイアル瓶に入れた後、完全に溶解するまで静置した。完溶したポリフェニレンエーテルオリゴマー溶液をポリイミドフィルムに塗布し、真空乾燥機で105℃、2時間乾燥を行った。その後熱プレス試験機にて10MPaで105℃/30分、150℃/1時間、200℃/1時間、250℃/1時間、270℃/1時間の条件で硬化を行い、熱硬化型フィルムを得た。
得られたフィルムのガラス転移温度(Tg)をTMAにより測定したところ、Tgが220℃であった。
2,6-ジメチルフェノールと2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパンの共重合体であるポリフェニレンエーテルオリゴマーのアクリレート化物を3.0g、トルエンを6.0g、トリアリルイソシアヌレートを0.6g、ジクミルパーオキサイドを0.03g、それぞれをバイアル瓶に入れた後、完全に溶解するまで静置した。完溶したポリフェニレンエーテルオリゴマー溶液をポリイミドフィルムに塗布し、真空乾燥機で105℃、2時間乾燥を行った。その後熱プレス試験機にて10MPaで105℃/30分、150℃/1時間、200℃/1時間、250℃/1時間、270℃/1時間の条件で硬化を行い、熱硬化型フィルムを得た。
得られたフィルムのガラス転移温度(Tg)をTMAにより測定したところ、Tgが220℃であった。
本発明の一般式(1)及び/又は(2)で表される末端(メタ)アクリレートポリフェニレンエーテルオリゴマーを使用した実施例3で得られた硬化物のガラス転移温度が247℃であるのに対し、比較例1において得られた硬化物のガラス転移温度が220℃であったことから、本発明の一般式(1)及び/又は(2)で表される末端(メタ)アクリレートポリフェニレンエーテルオリゴマーを含有する樹脂組成物を硬化させた硬化物は、耐熱性が優れることが明らかになった。
また、本発明の一般式(1)及び/又は(2)で表される末端(メタ)アクリレートポリフェニレンエーテルオリゴマーは、ポリフェニレンエーテル樹脂を基材とする硬化物の耐熱性を向上させることができることが明らかになった。
また、本発明の一般式(1)及び/又は(2)で表される末端(メタ)アクリレートポリフェニレンエーテルオリゴマーは、ポリフェニレンエーテル樹脂を基材とする硬化物の耐熱性を向上させることができることが明らかになった。
Claims (9)
- 一般式(1)及び/又は(2)で表され、重量平均分子量(Mw)が700以上30,000以下の範囲であることを特徴とする末端(メタ)アクリレートポリフェニレンエーテルオリゴマー。
- 成分(A):少なくとも請求項1に記載の末端(メタ)アクリレートポリフェニレンエーテルオリゴマーを含むポリフェニレンエーテルと、成分(B):架橋剤を含有する樹脂組成物。
- 成分(C):反応開始剤を含有する、請求項2に記載の樹脂組成物。
- さらに、成分(D):充填剤を含有する、請求項3に記載の樹脂組成物。
- 請求項2~4の何れか1項に記載の樹脂組成物と、成分(E):溶剤を含有するワニス。
- 請求項2~4の何れか1項に記載の樹脂組成物と、成分(F):強化繊維を含有するプリプレグ。
- 請求項2~4の何れか1項に記載の樹脂組成物を硬化させた硬化物。
- 請求項6に記載のプリプレグを硬化させた硬化物。
- 一般式(A)又は一般式(B)で表され、重量平均分子量(Mw)が700以上30,000以下の範囲であることを特徴とするポリフェニレンエーテルオリゴマー。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-031753 | 2022-03-02 | ||
JP2022031753 | 2022-03-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023166948A1 true WO2023166948A1 (ja) | 2023-09-07 |
Family
ID=87883372
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/004525 WO2023166948A1 (ja) | 2022-03-02 | 2023-02-10 | 末端(メタ)アクリレートポリフェニレンエーテルオリゴマー、及びこれを含む樹脂組成物、ワニス、プリプレグ、硬化物 |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202402854A (ja) |
WO (1) | WO2023166948A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004115619A (ja) * | 2002-09-25 | 2004-04-15 | Mitsubishi Gas Chem Co Inc | 2官能性フェニレンエーテルオリゴマー体の製造法 |
JP2004231729A (ja) * | 2003-01-29 | 2004-08-19 | Mitsubishi Gas Chem Co Inc | 硬化性樹脂組成物およびその硬化物 |
WO2010119885A1 (ja) * | 2009-04-17 | 2010-10-21 | 三菱エンジニアリングプラスチックス株式会社 | ポリフェニレンエーテル共重合体及びその製造方法 |
CN102604075A (zh) * | 2012-03-02 | 2012-07-25 | 浙江大学 | 一种水介质中制备双端羟基聚苯醚的方法及其产物与应用 |
JP2020143263A (ja) * | 2019-02-28 | 2020-09-10 | 太陽ホールディングス株式会社 | ポリフェニレンエーテル、硬化性組成物、ドライフィルム、プリプレグ、硬化物、積層板、および電子部品 |
JP2021077786A (ja) * | 2019-11-11 | 2021-05-20 | 旭化成株式会社 | ポリフェニレンエーテル含有プリント配線板 |
-
2023
- 2023-02-10 WO PCT/JP2023/004525 patent/WO2023166948A1/ja unknown
- 2023-02-24 TW TW112107100A patent/TW202402854A/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004115619A (ja) * | 2002-09-25 | 2004-04-15 | Mitsubishi Gas Chem Co Inc | 2官能性フェニレンエーテルオリゴマー体の製造法 |
JP2004231729A (ja) * | 2003-01-29 | 2004-08-19 | Mitsubishi Gas Chem Co Inc | 硬化性樹脂組成物およびその硬化物 |
WO2010119885A1 (ja) * | 2009-04-17 | 2010-10-21 | 三菱エンジニアリングプラスチックス株式会社 | ポリフェニレンエーテル共重合体及びその製造方法 |
CN102604075A (zh) * | 2012-03-02 | 2012-07-25 | 浙江大学 | 一种水介质中制备双端羟基聚苯醚的方法及其产物与应用 |
JP2020143263A (ja) * | 2019-02-28 | 2020-09-10 | 太陽ホールディングス株式会社 | ポリフェニレンエーテル、硬化性組成物、ドライフィルム、プリプレグ、硬化物、積層板、および電子部品 |
JP2021077786A (ja) * | 2019-11-11 | 2021-05-20 | 旭化成株式会社 | ポリフェニレンエーテル含有プリント配線板 |
Also Published As
Publication number | Publication date |
---|---|
TW202402854A (zh) | 2024-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5147397B2 (ja) | 官能化ポリ(アリーレンエーテル)組成物及び方法 | |
KR101603177B1 (ko) | 비스말레아믹 산, 비스말레이미드 및 그 경화물 | |
TWI332516B (en) | Curable resin composition, curable film and cured film | |
JP5176336B2 (ja) | ポリビニルベンジルエーテル化合物およびそれを含む硬化性樹脂組成物および硬化性フィルム | |
JP2019210451A (ja) | ジシクロペンタジエンを有する官能化ポリ(2,6−ジメチルフェニレンオキシド)オリゴマー及びその製造方法、並びにその用途 | |
EP3436428A1 (en) | Bisphenol m diphthalonitrile ether resin, bisphenol p diphthalonitrile ether resin, methods of making same, resin blends, and two component systems | |
TW200906905A (en) | Curable resin composition, curable film and their cured products | |
CN109867590B (zh) | 以改进固化动力学制备稳定且可热聚合的乙烯基、氨基或低聚苯氧基苯并环丁烯单体的方法 | |
JP7375144B2 (ja) | ポリフェニレンエーテル、ポリフェニレンエーテルを含む硬化性組成物、ドライフィルム、プリプレグ、硬化物、積層板、および電子部品 | |
KR20190004131A (ko) | 다관능성 라디칼 경화형 폴리 페닐렌 에테르 수지 및 이의 제조 방법 | |
JP7505873B2 (ja) | ポリ(アリーレンエーテル)コポリマー | |
WO2021060418A1 (ja) | 環状ポリマー水素化物及びその製造方法、並びに、樹脂組成物 | |
Wu et al. | Multifunctional polyimides by direct silyl ether reaction of pendant hydroxy groups: Toward low dielectric constant, high optical transparency and fluorescence | |
WO2023166948A1 (ja) | 末端(メタ)アクリレートポリフェニレンエーテルオリゴマー、及びこれを含む樹脂組成物、ワニス、プリプレグ、硬化物 | |
JP5439700B2 (ja) | 多官能フェニレンエーテルオリゴマー体、エポキシ樹脂、及び樹脂組成物 | |
Sugane et al. | Self-healing epoxy networks based on cyclodextrin–adamantane host–guest interactions | |
Hannoda et al. | Bio-based thermosetting bismaleimide resins using cardany linolenate and allyl cardanyl ether | |
JP6993922B2 (ja) | 特定のフェノールユニットを含むポリフェニレンエーテルおよびその製造方法。 | |
JP7488635B2 (ja) | ポリフェニレンエーテル、硬化性組成物、ドライフィルム、プリプレグ、硬化物、積層板、および電子部品 | |
Chen et al. | High-performance thermosets derived from acetovanillone-based reactive polyethers | |
JP7350548B2 (ja) | ポリフェニレンエーテル、硬化性組成物、ドライフィルム、硬化物、および電子部品 | |
JPH0751625B2 (ja) | 末端官能化ポリフェニレンエーテル樹脂およびこれを用いた硬化性樹脂組成物 | |
JP5797147B2 (ja) | 芳香族ジヒドロキシ化合物、ビニルベンジルエーテル系化合物、及びこれを含有する硬化性組成物 | |
WO2023181838A1 (ja) | 樹脂原料用組成物、有機溶媒溶液、硬化性樹脂組成物、ワニス、プリプレグ、硬化物 | |
JPH05155935A (ja) | 重合性化合物、その製造方法、及び重合性化合物を含む硬化性組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23763210 Country of ref document: EP Kind code of ref document: A1 |