WO2023165639A1 - 一种医用可降解ZnFeMn中熵合金及其制备方法和应用 - Google Patents

一种医用可降解ZnFeMn中熵合金及其制备方法和应用 Download PDF

Info

Publication number
WO2023165639A1
WO2023165639A1 PCT/CN2023/098469 CN2023098469W WO2023165639A1 WO 2023165639 A1 WO2023165639 A1 WO 2023165639A1 CN 2023098469 W CN2023098469 W CN 2023098469W WO 2023165639 A1 WO2023165639 A1 WO 2023165639A1
Authority
WO
WIPO (PCT)
Prior art keywords
entropy alloy
medium
zinc
furnace
znfemn
Prior art date
Application number
PCT/CN2023/098469
Other languages
English (en)
French (fr)
Inventor
郭浦山
张竞丹
刘雅玄
张屹
郭昶
Original Assignee
常州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州大学 filed Critical 常州大学
Publication of WO2023165639A1 publication Critical patent/WO2023165639A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/03Press-moulding apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/06Alloys containing less than 50% by weight of each constituent containing zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon

Definitions

  • the invention relates to the technical field of medical degradable metal materials, in particular to a medical degradable ZnFeMn medium entropy alloy and its preparation method and application.
  • High-entropy alloys have broken through the design ideas of traditional alloys.
  • the development of components in the phase diagram of high-principal-element alloys has extended from the past terminal solid solution alloys to the center of the phase diagram.
  • medium-entropy alloys are developed on the basis of high-entropy alloys.
  • Medium-entropy alloys also have all the four major effects of high-entropy alloys, namely high-entropy effects, lattice distortion effects, slow diffusion effects, and cocktail effects. Therefore, medium-entropy alloys have a series of excellent mechanical and physical properties like high-entropy alloys. , has broad application prospects.
  • degradable zinc-based alloy As a potential medical degradable metal material, degradable zinc-based alloy has become a research hotspot in this field in the past ten years. However, because the atoms in the zinc lattice are easy to deviate from the equilibrium position, lattice migration and diffusion occur, resulting in poor mechanical stability, which becomes a hidden danger in the storage and service process of zinc-based implanted devices.
  • iron element and manganese element are preferably used as the other two main elements, and the medical degradable ZnFeMn mestropic alloy is prepared to improve the stability of its mechanical strength and meet the requirements of medical standards.
  • the present invention has developed a new type of medical degradable zinc-based medium entropy alloy with simple phase structure, excellent strength and toughness through designing element ratios and experimental techniques. And it provides new ideas and methods for the application of medium entropy alloys in the field of medical degradability.
  • the present invention provides a A medical degradable ZnFeMn medium entropy alloy with simple phase structure, excellent strength and toughness, and its preparation method and application.
  • the technical solution adopted by the present invention to solve the technical problem is: a medical degradable ZnFeMn medium-entropy alloy, the degradable zinc-based medium-entropy alloy contains three alloying elements of zinc, iron and manganese, and the content by atomic percentage is : 50at.% ⁇ Zn ⁇ 75at.%, 20at.% ⁇ Fe ⁇ 45at.%, 0at.% ⁇ Mn ⁇ 5at.%.
  • a kind of preparation method of above-mentioned medical degradable ZnFeMn entropy alloy has the following steps:
  • the powder obtained by mixing step (1) is sealed in a ball mill jar under an inert gas environment, and high-energy ball milling is carried out in a planetary ball mill to obtain zinc-based medium-entropy alloy powder, and the particle size of each component is 0.5 to 1.5 ⁇ m;
  • step (3) put the medium-entropy alloy powder obtained in step (2) into the graphite abrasive tool, after compacting with a hydraulic press, place the graphite abrasive tool in the furnace cavity of the vacuum hot-pressing sintering furnace and fix it, and carry out vacuum hot pressing Sintering, after the sintering is completed, a bulk zinc-based medium-entropy alloy is finally obtained.
  • the present invention also provides a method for preparing a medical degradable ZnFeMn entropy alloy with higher density, which has the following steps:
  • S1 weigh zinc powder, iron powder, manganese powder respectively according to atomic percentage, and mix uniformly;
  • step S2 Put the powder mixed in step S1 into a vacuum smelting furnace, evacuate to 1 ⁇ 10 -3 ⁇ 3 ⁇ 10 -3 Pa, fill with argon until the pressure in the furnace is 0.04 ⁇ 0.05MPa, and then smelt , the melting current is 200-350A; after the ingot is melted and cast, the alloy is turned over, and the casting is repeated for 3 to 5 times. After the melting is completed, it is cooled with the furnace, and the obtained as-cast ZnFeMn medium entropy alloy is descaled and high-temperature homogenized. Finally, a ZnFeMn medium entropy alloy ingot with uniform composition is obtained;
  • step S3 Perform cold deformation treatment on the homogenized cast ingot obtained in step S2, and then perform solid solution and aging treatment on the cold deformed medium-entropy alloy to obtain a zinc-based medium-entropy alloy material with higher density.
  • the present invention also provides the use of the above-mentioned medical degradable ZnFeMn mesotropic alloy in preparing medical orthopedic metal materials.
  • the degradable zinc-based medium-entropy alloy provided by the present invention contains alloying element iron, the iron content is in the range of greater than or equal to 20 at.% and less than or equal to 45 at.%, and contains alloying elements manganese, manganese In the range of greater than 0 at.% and less than or equal to 5 at.%, the iron and manganese elements can stabilize the crystal structure and improve the mechanical stability in the medium entropy alloy system.
  • the degradable zinc-based medium-entropy alloy provided by the present invention can adjust the composition and proportion of each phase in the zinc-based medium-entropy alloy by adjusting the ratio of elements, thereby regulating its degradation rate and adapting to implanting materials in different parts Degradation requirements, showing good biocompatibility.
  • the preparation method of the degradable zinc-based medium-entropy alloy provided by the present invention-vacuum hot-pressing sintering method is conducive to reducing the oxidation of the particle interface, improving shrinkage and the microstructure of the medium-entropy alloy in the vacuum hot-pressing sintering process, and has It has the advantages of low cost, low energy consumption, low sintering temperature and good sintering quality.
  • the vacuum smelting-deformation-heat treatment technology provided by the present invention can obtain a dense matrix through the deformation process, and change the phase size through heat treatment, thereby realizing the regulation of mechanical properties.
  • the preparation process is reasonable and simple, and the preparation process is repeatable Strong, can realize industrialized batch production.
  • Fig. 1 is a morphological diagram of the ZnFeMn alloy prepared in Example 1 of the present invention.
  • Fig. 2 is an element distribution diagram of the ZnFeMn alloy prepared in Example 1 of the present invention.
  • Fig. 3 is an X-ray diffraction diagram of the ZnFeMn alloy prepared in Examples 1 and 2 of the present invention.
  • Fig. 4 is the hardness of the ZnFeMn alloy prepared in Examples 1 and 2 of the present invention.
  • Fig. 5 is a morphological diagram of the ZnFeMn alloy prepared in Example 2 of the present invention.
  • Fig. 6 is a nanoindentation diagram of the ZnFeMn alloy prepared in Examples 4 and 5 of the present invention.
  • Fig. 7 is a sample diagram of the ZnFeMn alloy prepared in Example 4 of the present invention.
  • Fig. 8 is a sample diagram of the ZnFeMn alloy prepared in Example 5 of the present invention.
  • a medical degradable ZnFeMn medium entropy alloy contains 50at.% ⁇ Zn ⁇ 75at.%, 20at.% ⁇ Fe ⁇ 45at.%, 0at.% ⁇ Mn ⁇ 5at.%.
  • the atomic radii of iron atoms and manganese atoms are different from those of zinc atoms, and the migration and diffusion of zinc atoms in the formed medium-entropy alloy phase will be inhibited, thereby improving the poor stability of the mechanical properties of zinc-based alloys.
  • a preparation method of a degradable zinc-based medium entropy alloy comprising the following steps:
  • the powder obtained by mixing step (1) is sealed in a ball mill jar under an inert gas environment, and high-energy ball milling is carried out in a planetary ball mill, the ball mill speed is 200-500r/min, the ball milling time is 50-80h, the ball-to-material ratio 10:1, during the ball milling process, the rotation direction of the ball mill is changed every 30 minutes to obtain zinc-based medium-entropy alloy powder, and the particle size of each component is 0.5-1.5 ⁇ m;
  • step (3) Put the medium-entropy alloy powder obtained in step (2) into a graphite abrasive tool, use a hydraulic press to densify the powder with a pressure of 10-15MPa, and place the graphite abrasive tool in the furnace cavity of a vacuum hot-press sintering furnace Inside and fixed, vacuum hot pressing sintering is carried out.
  • the steps of vacuum hot pressing sintering are: keep the vacuum degree in the furnace below 100Pa, start heating at a heating rate of 10-15°C/min, until the temperature in the furnace is 500-700 °C, and keep it warm for 1 ⁇ 3h; then fill the furnace with nitrogen, and continue to increase the temperature at a rate of 10 ⁇ 15°C/min to 800 ⁇ 1000°C, and finally cooled and depressurized.
  • the cooling rate is 8-20°C/min; at the same time, the pressure of the furnace body is reduced from 30-40MPa to 0, and the pressure-reducing rate is 1MPa/min ; Then cool down to room temperature with the furnace, take out the mold, and finally obtain a sintered degradable zinc-based medium-entropy alloy.
  • the present invention also provides a method for preparing a medical degradable ZnFeMn entropy alloy with higher density, which has the following steps:
  • S1 weigh zinc powder, iron powder, manganese powder respectively according to atomic percentage, and mix uniformly;
  • step S2 Put the powder mixed in step S1 into a vacuum smelting furnace, evacuate to 1 ⁇ 10 -3 ⁇ 3 ⁇ 10 -3 Pa, fill with argon until the pressure in the furnace is 0.04 ⁇ 0.05MPa, and then smelt , the melting current is 200-350A; after the ingot is melted and cast, the alloy is turned over, and the casting is repeated for 3 to 5 times. After the melting is completed, it is cooled with the furnace, and the obtained as-cast ZnFeMn medium entropy alloy is descaled and high-temperature homogenized. Finally, a ZnFeMn medium entropy alloy ingot with uniform composition is obtained;
  • step S3 Perform cold deformation treatment on the homogenized cast ingot obtained in step S2, and then perform solid solution and aging treatment on the cold deformed medium-entropy alloy to obtain a zinc-based medium-entropy alloy material with higher density.
  • step S2 the as-cast ZnFeMn medium-entropy alloy is turned to remove the surface scale. After removing the scale, the diameter difference of the as-cast ZnFeMn medium-entropy alloy bar is ⁇ 0.1mm, and the surface roughness Ra ⁇ 1.4 ⁇ m.
  • step S2 the medium-entropy alloy ingot is subjected to high-temperature homogenization treatment in a heat treatment furnace, and the treatment parameters are: 1200° C. for 24-30 hours, water quenching.
  • the cold deformation treatment process in step S3 is: rolling the medium-entropy alloy homogenized at high temperature at room temperature, The total amount of rolling is 40% to 90%; the solution treatment is: treat the cold-processed medium-entropy alloy in the temperature zone of 1000-1200°C for 20-60 minutes, and water quench; the aging treatment is: the solution-treated medium-entropy alloy is 700 ⁇ 800°C temperature zone treatment for 5 ⁇ 100h, water quenching.
  • the present invention also provides the application of the medical degradable ZnFeMn mesotropic alloy in the preparation of medical orthopedic metal materials.
  • the medically degradable ZnFeMn mid-entropy alloy can be used in the preparation of orthopedic intervertebral fusion devices.
  • pure zinc, pure iron, and pure manganese are used as raw materials, and the pure zinc, pure iron, and pure manganese are mixed according to an atomic ratio of 73:23:4. It is alloyed, homogenized and solidified into a bulk alloy by mechanical alloying method and vacuum hot pressing sintering method. Specific steps are as follows:
  • pure zinc, pure manganese, and pure iron are used as raw materials, and the pure zinc, pure manganese, and pure iron are mixed according to an atomic ratio of 61:35:4. It is alloyed, homogenized and solidified into a bulk alloy by mechanical alloying method and vacuum hot pressing sintering method. Specific steps are as follows:
  • step (3) the dry powder that step (2) obtains is filled in the graphite mould, adopts hydraulic press 10MPa to Powder compaction. Put the graphite mold into the vacuum hot pressing sintering furnace to fix the graphite mold;
  • Fig. 3 is the X-ray diffraction diagram of the medium entropy alloy sample obtained in this embodiment
  • Fig. 4 is the Vickers hardness diagram of the sample
  • Fig. 5 is the surface topography diagram of the sample.
  • pure zinc, pure iron, and pure manganese are used as raw materials, and the pure zinc, pure iron, and pure manganese are mixed according to an atomic ratio of 50:45:5. It is alloyed, homogenized and solidified into a bulk alloy by mechanical alloying method and vacuum hot pressing sintering method. Specific steps are as follows:
  • pure zinc, pure manganese, and pure iron are used as raw materials, and the pure zinc, pure iron, and pure manganese are mixed according to an atomic ratio of 73:23:4. It is alloyed by vacuum melting-deformation-heat treatment method, and the specific steps are as follows:
  • step (2) Put the powder mixed in step (1) into a vacuum smelting furnace, evacuate to 3 ⁇ 10 -3 Pa, fill with argon until the pressure in the furnace is 0.05MPa, and smelt at 300A for about 30s. After the ingot is melted and cast, the alloy is turned over, and the cast is repeated 5 times until the composition is uniform. After the smelting is completed, it is cooled with the furnace to obtain a ZnFeMn medium-entropy alloy ingot with a uniform composition;
  • step (3) the homogenized ingot obtained in step (2) is turned to remove scale, and then multi-pass room temperature rolling is carried out to ensure that the total reduction is 80%;
  • the medium entropy alloy in the rolling state obtained in step (3) is solution treated in a temperature zone of 1000 ° C for 40 minutes, and then water quenched;
  • step (3) Perform aging treatment at 700° C. for 10 h on the solid-solution medium-entropy alloy obtained in step (3), and then perform water quenching to obtain the Zn 73 Fe 23 Mn 4 medium-entropy alloy.
  • pure zinc, pure manganese and pure iron are used as raw materials, and the pure zinc, pure iron and pure manganese are mixed according to the atomic ratio of 65:30:5. It is alloyed by vacuum melting-deformation-heat treatment method, and the specific steps are as follows:
  • step (2) Put the powder mixed in step (1) into a vacuum smelting furnace, evacuate to 1 ⁇ 10 -3 Pa, fill with argon until the pressure in the furnace is 0.05 MPa, and smelt at 350A for about 30s. After the ingot is melted and cast, the alloy is turned over, and the cast is repeated 4 times until the composition is uniform. After the smelting is completed, it is cooled with the furnace to obtain a ZnFeMn medium-entropy alloy ingot with a uniform composition;
  • step (3) the homogenized ingot obtained in step (2) is turned to remove scale, and then multi-pass room temperature rolling is carried out to ensure that the total reduction is 85%;
  • step (3) solid solution treating the rolled medium entropy alloy obtained in step (3) at a temperature zone of 1200° C. for 1 hour, followed by water quenching;
  • step (3) Perform aging treatment at 800° C. for 50 h on the solid-solution medium-entropy alloy obtained in step (3), and then perform water quenching to obtain the Zn 65 Fe 30 Mn 5 medium-entropy alloy.
  • Fig. 6 is a nanoindentation diagram of the sample obtained in this embodiment
  • Fig. 8 is a sample diagram of a medium-entropy alloy obtained in this embodiment.
  • the novel degradable zinc-based medium-entropy alloy prepared by the vacuum hot-pressing sintering method provided by the present invention adjusts the composition and proportion of each phase in the alloy by adjusting the ratio of elements, thereby achieving the regulation and control of degradation For rate purposes, exhibit good biocompatibility.
  • the proposed optimized preparation method vacuum melting-deformation-heat treatment technology, obtains a dense zinc-based medium-entropy alloy matrix, and changes the phase size through heat treatment, thereby realizing the regulation of mechanical properties.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明涉及一种医用可降解ZnFeMn中熵合金及其制备方法和应用,所述可降解锌基中熵合金按照原子百分比,其组成为:50at.%≤Zn≤75at.%,20at.%≤Fe≤45at.%,0at.%<Mn≤5at.%。所述可降解锌基中熵合金的制备方法包括:将混合均匀的纯锌、纯铁和纯锰粉末在行星式球磨罐中进行高能球磨;再采用真空热压烧结法制备块体状的锌基中熵合金。本发明方法克服了上述三种元素熔点差异过大不易形成致密样品的不足,有利于形成结构简单的中熵合金固溶体相,所获得的中熵合金相结构简单,塑性及韧性优异,并可通过熔炼-变形-热处理技术进一步制备致密度更高、相成分更优的中熵合金,可用于骨科植入器件制备,特别是椎间融合器的制备,拓展中熵合金的应用范围。

Description

一种医用可降解ZnFeMn中熵合金及其制备方法和应用 技术领域
本发明涉及医用可降解金属材料技术领域,尤其是一种医用可降解ZnFeMn中熵合金及其制备方法和应用。
背景技术
高熵合金突破了传统合金的设计思路,对于高主元合金相图中成分的开发从过去端际固溶体合金向相图中心的区域延伸,其中中熵合金是在高熵合金基础上发展出的新型合金,具有2~4种主要元素或1~1.5R的混合熵。中熵合金同样具有高熵合金所有的四大效应,即高熵效应、晶格畸变效应、缓慢扩散效应以及鸡尾酒效应,因而中熵合金同高熵合金一样具有一系列优异的力学和物理性能潜力,具有广泛的应用前景。
可降解锌基合金作为潜在医用可降解金属材料,成为近十年来该领域的研究热点。然而由于锌晶格中原子容易偏离平衡位置而发生晶格迁移扩散,从而导致力学稳定性差,进而成为锌基植入器件储存及服役过程的隐患。
本发明优选铁元素和锰元素作为另两种主元素,制备医用可降解ZnFeMn中熵合金,用以提高其力学强度稳定性进而满足医学标准的要求。
铁元素和锰元素作为人体中含有的营养元素,具备天然的生物安全性保证。同时,本发明基于ZnFeMn中熵合金材料的组分多样性和复杂性,通过设计元素比例和实验工艺,开发了一种相结构简单、强度及韧性优异的新型医用可降解锌基中熵合金,并为中熵合金在医用可降解领域的应用提供了新思路和新方法。
发明内容
本发明要解决的技术问题是:为了克服现有技术中之不足,本发明提供一 种相结构简单、强度及韧性优异的医用可降解ZnFeMn中熵合金、及其制备方法和应用。
本发明解决其技术问题所采用的技术方案是:一种医用可降解ZnFeMn中熵合金,所述可降解锌基中熵合金包含有锌、铁、锰三种合金元素,按原子百分含量为:50at.%≤Zn≤75at.%,20at.%≤Fe≤45at.%,0at.%<Mn≤5at.%。
一种上述医用可降解ZnFeMn中熵合金的制备方法,具有以下步骤:
(1)、按照原子百分比分别称取锌粉、铁粉、锰粉,并混合均匀;
(2)、将步骤(1)混合得到的粉末在惰性气体环境下密封进球磨罐内,在行星式球磨机中进行高能球磨,获得锌基中熵合金粉末,各组分粒径为0.5~1.5μm;
(3)、将步骤(2)所获中熵合金粉末装入石墨磨具中,采用液压机压实后,将石墨磨具放置于真空热压烧结炉的炉腔内并固定,进行真空热压烧结,烧结完成后最终获得块体锌基中熵合金。
本发明还提供一种可获得更高致密度的医用可降解ZnFeMn中熵合金的制备方法,具有以下步骤:
S1、按照原子百分比分别称取锌粉、铁粉、锰粉,并混合均匀;
S2、将步骤S1中混合得到的粉末放入真空熔炼炉中,抽真空至1×10-3~3×10-3Pa,充入氩气直到炉内压力为0.04~0.05MPa,然后进行熔炼,熔炼电流为200~350A;熔铸成锭后将合金翻转,如此反复熔铸3~5次,待熔炼完成后,随炉冷却,对所获铸态ZnFeMn中熵合金去除氧化皮和高温均匀化处理后,得到成分均匀的ZnFeMn中熵合金铸锭;
S3、将步骤S2中所获均匀化铸锭进行冷变形处理,然后将冷变形的中熵合金进行固溶和时效处理,获得致密度更高的锌基中熵合金材料。
本发明还提供了上述医用可降解ZnFeMn中熵合金在制备医用骨科金属材料中的用途。
本发明的有益效果是:
(1)、本发明提供的可降解锌基中熵合金,其含有合金元素铁,铁的含量在大于或等于20at.%且小于或等于45at.%的范围内,且含有合金元素锰,锰的含量在大于0at.%且小于或等于5at.%的范围内,铁元素和锰元素在中熵合金体系中可起到稳定晶体结构进而改善力学稳定性的问题。
(2)、本发明提供的可降解锌基中熵合金,通过调整元素的比例,能够调节锌基中熵合金中各相的成分和占比,从而调控其降解速率,适应不同部位植入材料的降解要求,表现出良好的生物相容性。
(3)、本发明提供的可降解锌基中熵合金的制备方法-真空热压烧结法,有利于减少颗粒界面的氧化,改善真空热压烧结过程中收缩和中熵合金微观组织结构,具有成本低、能耗小、烧结温度低、烧结质量好等优点。
(4)、本发明提供的真空熔炼-变形-热处理技术,可以通过变形过程获得致密基体,并通过热处理改变相尺寸,从而实现对力学性能的调控,其制备工艺合理简单,制备过程可重复性强,可实现工业化批量生产。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明实施例1制备的ZnFeMn合金的形貌图。
图2是本发明实施例1制备的ZnFeMn合金的元素分布图。
图3是本发明实施例1、2制备的ZnFeMn合金的X射线衍射图。
图4是本发明实施例1、2制备的ZnFeMn合金的硬度。
图5是本发明实施例2制备的ZnFeMn合金的形貌图。
图6是本发明实施例4、5制备的ZnFeMn合金的纳米压痕图。
图7是本发明实施例4制备的ZnFeMn合金的样品图。
图8是本发明实施例5制备的ZnFeMn合金的样品图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例对该技术方案、其实施过程及原理等进行进一步的详细说明。
下述实施例所用的百分含量,如无特殊说明,均为原子百分含量,且原料纯锌、纯铁和纯锰均为单质粉,纯度为99.99%。
一种医用可降解ZnFeMn中熵合金,所述医用可降解ZnFeMn中熵合金包含50at.%≤Zn≤75at.%,20at.%≤Fe≤45at.%,0at.%<Mn≤5at.%。
铁原子和锰原子的原子半径均与锌原子存在差异,形成的中熵合金相中的锌原子迁移扩散将受到抑制,从而改善锌基合金的力学性能稳定差的问题。
一种可降解锌基中熵合金的制备方法,包括以下步骤:
(1)、按照原子百分比分别称取锌粉、铁粉、锰粉,并混合均匀;
(2)、将步骤(1)混合得到的粉末在惰性气体环境下密封进球磨罐内,在行星式球磨机中进行高能球磨,球磨机转速200~500r/min,球磨时间50~80h,球料比10:1,球磨过程中,每30min改变球磨机的旋转方向,获得锌基中熵合金粉末,各组分粒径为0.5~1.5μm;
(3)、将步骤(2)所获中熵合金粉末装入石墨磨具中,采用液压机以10~15MPa压力将粉体致密化后,将石墨磨具放置于真空热压烧结炉的炉腔内并固定,进行真空热压烧结,抽真空热压烧结的步骤为:将炉体内真空度保持在100Pa以下,以10~15℃/min的升温速度开始加热,至炉内温度为500~700℃,并保温1~3h;随后向炉内充入氮气,继续以10~15℃/min的升温速度至800~ 1000℃,最后冷却降压。
其中,当温度升高至500~700℃时,保温1~3h;温度升至800~1000℃时,向炉内充氮气使得炉体压力增加至30~40MPa,随后保温3~6h,然后冷却,降压。
冷却降压时,当温度从800~1000℃降至500~700℃,降温速率为8~20℃/min;同时,将炉体压力从30~40MPa降至0,降压速率为1MPa/min;随后随炉冷却至室温,取出模具,最终获得烧结好的可降解锌基中熵合金。
本发明还提供一种可获得更高致密度的医用可降解ZnFeMn中熵合金的制备方法,具有以下步骤:
S1、按照原子百分比分别称取锌粉、铁粉、锰粉,并混合均匀;
S2、将步骤S1中混合得到的粉末放入真空熔炼炉中,抽真空至1×10-3~3×10-3Pa,充入氩气直到炉内压力为0.04~0.05MPa,然后进行熔炼,熔炼电流为200~350A;熔铸成锭后将合金翻转,如此反复熔铸3~5次,待熔炼完成后,随炉冷却,对所获铸态ZnFeMn中熵合金去除氧化皮和高温均匀化处理后,得到成分均匀的ZnFeMn中熵合金铸锭;
S3、将步骤S2中所获均匀化铸锭进行冷变形处理,然后将冷变形的中熵合金进行固溶和时效处理,获得致密度更高的锌基中熵合金材料。
其中步骤S2中对所获铸态ZnFeMn中熵合金采用车削方式去除表面氧化皮,去除氧化皮后,所述铸态ZnFeMn中熵合金棒材直径差≤0.1mm,表面粗糙度Ra≤1.4μm。
步骤S2中,将中熵合金铸锭在热处理炉中进行高温均匀化处理,处理参数为:1200℃保温24~30h,水淬。
步骤S3中的冷变形处理过程为:将高温均匀化后的中熵合金进行室温轧制, 轧制总量为40%~90%;固溶处理为:将冷加工的中熵合金在1000~1200℃温区处理20~60min,水淬;时效处理为:将固溶处理的中熵合金在700~800℃温区处理5~100h,水淬。
本发明还提供了所述的医用可降解ZnFeMn中熵合金在制备医用骨科金属材料中的用途。
在一些具体实施例中,所述医用可降解ZnFeMn中熵合金可以用于骨科椎间融合器的制备。
实施例1:
本实施例以纯锌、纯铁、纯锰作为原料,且按照原子比为73:23:4混合纯锌、纯铁与纯锰。采用机械合金化法和真空热压烧结法将其合金化、均匀化并固化为块体合金。具体步骤如下:
(1)、选择平均直径为5μm的粉末,按照原子百分比为73:23:4分别称取锌粉、锰粉、铁粉,并混合均匀;
(2)、将原料置于真空手套箱内,在惰性气体环境下将粉末密封进球磨罐内,然后使用行星式球磨机进行球磨;加入直径为5mm和10mm的不锈钢球作为研磨球,以400r/min的转速球磨70h,每30min改变一次球磨机的旋转方向,球磨完成后取出粉末干燥保存;
(3)、将研磨干燥好的粉末填入石墨模具中,采用液压机10MPa将粉体压实。将石墨模具放入真空热压烧结炉的颅腔内,固定石墨模具。
(4)、随后开始抽真空,当真空度达到100Pa时,向炉内通入高纯氮气至0.1MPa,随后继续进行抽真空操作,重复上述步骤3次。再次将炉内抽至100Pa以下时开始加热。以升温速率为10℃/min将炉内从室温温度升至500℃,保温2h;随后向炉内充入氮气,使炉体压力升高至30MPa;继续以10℃/min的升温 速率升温至800℃,并保温5h。
(5)、完成热压烧结后,先以10℃/min的降温速率降至600℃,同时将炉内压力降至0;接着随炉冷却至室温,取出模具,获得固化的块体Zn73Fe23Mn4中熵合金。
采用SEM观察本实施例所得ZnMnFe中熵合金微观形貌,得到图1,图1中存在腐蚀降解速率不同的相。图2的面扫描结果显示了锌、铁、锰的元素分布,可判断其相的排列分布。
同时,进行了材料的X射线衍射分析,通过图3的XRD的分析表明,扫描下观察到的相,它们的相结构分别是面心立方结构(FCC)和体心立方结构(BCC)。
并对样品测试其维氏硬度,对样品抛光之后,在无水乙醇中超声清洗5min,采用维氏硬度计测试其维氏硬度,采用100g的加载力,保载时间10s,图4是其测量的硬度数值图。
实施例2
本实施例以纯锌、纯锰、纯铁作为原料,且按照原子比为61:35:4混合纯锌、纯锰与纯铁。采用机械合金化法和真空热压烧结法将其合金化、均匀化并固化为块体合金。具体步骤如下:
(1)、选择平均直径为3μm的粉末,按照原子百分比分别为61:35:4称取锌粉、锰粉、铁粉,并混合均匀;
(2)、将原料在真空手套箱内,惰性气体环境下密封进球磨罐中,然后使用行星式球磨机进行球磨,加入直径为5mm和8mm的不锈钢球作为研磨球,以450r/min的转速球磨75h,每30min改变一次球磨机的旋转方向,球磨完成后取出粉末干燥保存;
(3)、将步骤(2)获得的干燥粉末填入石墨模具中,采用液压机10MPa将 粉末压实。将石墨模具放入真空热压烧结炉内,固定石墨模具;
(4)、对炉体抽真空至真空度为100Pa以下,向炉内通入高纯氮气至0.1MPa,随后继续进行抽真空操作,重复上述步骤4次。再次将炉内抽至100Pa以下时开始加热,以升温速率为10℃/min将炉内从室温温度升至600℃,保温3h;随后向炉内充入氮气,使炉体压力升高至35MPa;继续以15℃/min的升温速率升温至850℃,并保温6h。
(5)、完成热压烧结后,先以15℃/min的降温速率降至600℃,同时将炉体压力降至0;接着随炉冷却至室温,取出模具,获得固化的块体Zn61Fe35Mn4中熵合金。
图3是本实施例所得中熵合金样品的X射线衍射图,图4是样品的维氏硬度图,图5是样品的表面形貌图。
实施例3
本实施例以纯锌、纯铁、纯锰作为原料,且按照原子比为50:45:5混合纯锌、纯铁与纯锰。采用机械合金化法和真空热压烧结法将其合金化、均匀化并固化为块体合金。具体步骤如下:
(1)、选择平均直径为3μm的粉末,按照原子百分比为50:45:5分别称取锌粉、锰粉、铁粉,并混合均匀;
(2)、将原料置于真空手套箱内,在惰性气体环境下将粉末密封进球磨罐内,然后使用行星式球磨机进行球磨;加入直径为5mm和1mm的不锈钢球作为研磨球,以500r/min的转速球磨80h,每30min改变一次球磨机的旋转方向,球磨完成后取出粉末干燥保存;
(3)、将研磨干燥好的粉末填入石墨模具中,采用液压机15MPa将粉体压实;将石墨模具放入真空热压烧结炉的颅腔内,固定石墨模具。
(4)、随后开始抽真空,当真空度达到100Pa时,向炉内通入高纯氮气至0.1MPa,随后继续进行抽真空操作,重复上述步骤4次。再次将炉内抽至100Pa以下时开始加热。以升温速率为15℃/min将炉内从室温温度升至700℃,保温3h;随后向炉内充入氮气,使炉体压力升高至30MPa;继续以10℃/min的升温速率升温至900℃,并保温6h。
(5)、完成热压烧结后,先以15℃/min的降温速率降至700℃,同时将炉体压力降至0;接着随炉冷却至室温,取出模具,获得固化的块体Zn50Fe45Mn5中熵合金。
实施例4
本实施例以纯锌、纯锰、纯铁作为原料,且按照原子比为73:23:4混合纯锌、纯铁与纯锰。采用真空熔炼-变形-热处理法将其合金化,具体步骤如下:
(1)、按照原子百分比为73:23:4分别称取锌粉、铁粉、锰粉,并混合均匀;
(2)、将步骤(1)混合得到的粉末放入真空熔炼炉中,抽真空至3×10-3Pa,充入氩气直到炉内压力为0.05MPa,在300A电流下熔炼约30s,熔铸成锭后将合金翻转,如此反复熔铸5次至成分均匀,待熔炼完成后,随炉冷却,得到成分均匀的ZnFeMn中熵合金铸锭;
(3)、将步骤(2)所获均匀化铸锭进行车削去除氧化皮,然后进行多道次室温轧制,确保总的压下量为80%;
(4)、将步骤(3)所获轧制态的中熵合金在1000℃温区固溶处理40min,随后进行水淬;
(5)、将步骤(3)所获固溶态中熵合金在700℃进行10h时效处理,随后进行水淬,即可获得Zn73Fe23Mn4中熵合金。
对样品测试其纳米硬度,对样品抛光之后,在无水乙醇中超声清洗5min,采用纳米压痕仪测试其纳米硬度以及弹性模量,图6是本实施例所得中熵合金的纳米压痕的数据分析图,其致密度相比真空热压更高,本实施例的样品如图7所示。
实施例5
本实施例以纯锌、纯锰、纯铁作为原料,且按照原子比为65:30:5混合纯锌、纯铁纯锰与。采用真空熔炼-变形-热处理法将其合金化,具体步骤如下:
(1)、按照原子百分比为65:30:5分别称取锌粉、铁粉、锰粉,并混合均匀;
(2)、将步骤(1)混合得到的粉末放入真空熔炼炉中,抽真空至1×10-3Pa,充入氩气直到炉内压力为0.05MPa,在350A电流下熔炼约30s,熔铸成锭后将合金翻转,如此反复熔铸4次至成分均匀,待熔炼完成后,随炉冷却,得到成分均匀的ZnFeMn中熵合金铸锭;
(3)、将步骤(2)所获均匀化铸锭进行车削去除氧化皮,然后进行多道次室温轧制,确保总的压下量为85%;
(4)、将步骤(3)所获轧制态的中熵合金在1200℃温区固溶处理1h,随后进行水淬;
(5)、将步骤(3)所获固溶态中熵合金在800℃进行50h时效处理,随后进行水淬,即可获得Zn65Fe30Mn5中熵合金。
图6是本实施例所得样品的纳米压痕图,图8是本实施例所得中熵合金的样品图。
综上所述,本发明提供的真空热压烧结法制备的新型可降解锌基中熵合金,通过调整元素的比例,调节了合金中各相的成分和占比,从而达到了调控降解 速率的目的,表现出良好的生物相容性。同时,提出的优化制备方法真空熔炼-变形-热处理技术,获得致密锌基中熵合金基体,并通过热处理改变相尺寸,从而实现对力学性能的调控。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (9)

  1. 一种医用可降解ZnFeMn中熵合金,其特征是:所述的锌基中熵合金含有锌、铁、锰三种合金元素,按原子百分含量为:50at.%≤Zn≤75at.%,20at.%≤Fe≤45at.%,0at.%<Mn≤5at.%。
  2. 如权利要求1所述的医用可降解ZnFeMn中熵合金,其特征是:所述的中熵合金混合焓介于1~1.5R之间,R=8.314J/mol·K。
  3. 一种如权利要求1所述的医用可降解ZnFeMn中熵合金的制备方法,其特征是:具有以下步骤:
    (1)、按照原子百分比分别称取锌粉、铁粉、锰粉,并混合均匀;
    (2)、将步骤(1)混合得到的粉末在惰性气体环境下密封进球磨罐内,在行星式球磨机中进行高能球磨,获得锌基中熵合金粉末,各组分粒径为0.5~1.5μm;
    (3)、将步骤(2)所获中熵合金粉末装入石墨磨具中,采用液压机压实后,将石墨磨具放置于真空热压烧结炉的炉腔内并固定,进行真空热压烧结,烧结完成后最终获得块体锌基中熵合金。
  4. 根据权利要求3所述的制备方法,其特征是:步骤(2)中,球磨开始前,对不锈钢球磨罐抽真空,随后充入纯度为99.99wt.%的氩气作为保护气体;球磨时的转速为200~500r/min,球磨时间为50~80h,球料比为10:1。
  5. 根据权利要求3所述的制备方法,其特征在于,所述步骤(3)中,真空热压烧结时,炉体内真空度保持在100Pa以下,以10~15℃/min的升温速度开始加热至炉内温度为500~700℃,并保温1~3h;继续以10~15℃/min的升温速度至800~1000℃,随后向炉内充入氮气使得炉体压力增加至30~40MPa,保温3~6h,然后冷却降压;当温度从800~1000℃降至500~700℃,降温速率为8~20℃/min;同时,将炉内压力从30~40MPa降至0,降压速率为1MPa/min; 最后随炉冷却至室温,取出模具,获得烧结好的可降解锌基中熵合金。
  6. 一种如权利要求1所述的医用可降解ZnFeMn中熵合金的制备方法,其特征是:具有以下步骤:
    S1、按照原子百分比分别称取锌粉、铁粉、锰粉,并混合均匀;
    S2、将步骤S1中混合得到的粉末放入真空熔炼炉中,抽真空至1×10-3~3×10-3Pa,充入氩气直到炉内压力为0.04~0.05MPa,然后进行熔炼,熔炼电流为200~350A;熔铸成锭后将合金翻转,如此反复熔铸3~5次,待熔炼完成后,随炉冷却,对所获铸态ZnFeMn中熵合金去除氧化皮和高温均匀化处理后,得到成分均匀的ZnFeMn中熵合金铸锭;
    S3、将步骤S2中所获均匀化铸锭进行冷变形处理,然后将冷变形的中熵合金进行固溶和时效处理,获得致密度更高的锌基中熵合金材料。
  7. 根据权利要求6所述的制备方法,其特征在于,所述步骤S2中对所获铸态ZnFeMn中熵合金铸锭采用车削方式去除氧化皮,除氧化皮后的中熵合金棒材直径差≤0.1mm,表面粗糙度Ra≤1.4μm;然后将中熵合金铸锭在热处理炉中进行高温均匀化处理,处理参数为:1200℃保温24~30小时,水淬。
  8. 根据权利要求6所述的制备方法,其特征是:所述步骤S3的冷变形处理为:将均匀化的中熵合金进行室温轧制,轧制总量为40%~90%;所述的固溶处理为:将冷加工的中熵合金在1000~1200℃温区处理20~60min,水淬;所述的时效处理为:将固溶处理的中熵合金在700~800℃温区处理5~100小时,水淬。
  9. 如权利要求1或2中任一项所述的医用可降解ZnFeMn中熵合金,其特征是:所述中熵合金在制备医用骨科金属材料中的用途。
PCT/CN2023/098469 2022-11-25 2023-06-06 一种医用可降解ZnFeMn中熵合金及其制备方法和应用 WO2023165639A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211496886.4 2022-11-25
CN202211496886.4A CN115874104B (zh) 2022-11-25 2022-11-25 一种医用可降解ZnFeMn中熵合金及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023165639A1 true WO2023165639A1 (zh) 2023-09-07

Family

ID=85764190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098469 WO2023165639A1 (zh) 2022-11-25 2023-06-06 一种医用可降解ZnFeMn中熵合金及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN115874104B (zh)
WO (1) WO2023165639A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115874104B (zh) * 2022-11-25 2024-05-03 常州大学 一种医用可降解ZnFeMn中熵合金及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1334253C (en) * 1988-06-17 1995-02-07 Serge Dallaire Coating material containing zinc-based alloys for producing thermal-sprayed coatings having improved corrosion resistance and adherence
CN105088048A (zh) * 2015-09-06 2015-11-25 北京科技大学 一种用于污水降解的高熵合金及其制备方法
CN107829007A (zh) * 2017-10-26 2018-03-23 福建工程学院 一种高熵合金和粉末冶金法制备高熵合金块体的方法
US20190083685A1 (en) * 2016-03-10 2019-03-21 Shandong Rientech Medical Tech Co., Ltd. Degradable zinc base alloy implant material and preparation method and use thereof
CN113122763A (zh) * 2021-04-14 2021-07-16 中北大学 一种高强韧性高熵合金制备方法
CN115874104A (zh) * 2022-11-25 2023-03-31 常州大学 一种医用可降解ZnFeMn中熵合金及其制备方法和应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB638733A (en) * 1947-04-10 1950-06-14 British Thomson Houston Co Ltd Improvements in and relating to zinc casting alloys
JP4655366B2 (ja) * 2000-12-05 2011-03-23 Jfeスチール株式会社 めっき密着性及び耐食性に優れた高強度合金化溶融亜鉛めっき鋼板及びその製造方法
CN104689369B (zh) * 2015-03-13 2017-06-30 西安爱德万思医疗科技有限公司 一种人体可降解的耐蚀高强韧Zn‐Fe 系锌合金及其应用
CN104805331B (zh) * 2015-04-22 2017-03-15 山东省科学院新材料研究所 一种工程机械用高强高韧耐磨挤压锌合金u型材及其制备方法
CN107460372B (zh) * 2016-06-02 2019-06-25 北京大学 一种Zn-Mn系锌合金及其制备方法与应用
CN105925848B (zh) * 2016-06-28 2017-07-11 东北大学 一种生物医用可降解锌合金内植入材料及其板材制备方法
CN109763004B (zh) * 2019-01-03 2020-07-24 北京科技大学 一种显著改善含Fe可降解锌合金组织和性能的方法
CN110273084B (zh) * 2019-07-24 2020-09-08 西安交通大学 一种可生物降解锌合金的制备方法
CN111961946B (zh) * 2020-07-29 2022-01-18 西北工业大学 一种低成本高强高韧中熵合金及制备方法
CN114480940B (zh) * 2021-12-29 2022-12-09 常州大学 一种l12纳米析出强化多主元合金及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1334253C (en) * 1988-06-17 1995-02-07 Serge Dallaire Coating material containing zinc-based alloys for producing thermal-sprayed coatings having improved corrosion resistance and adherence
CN105088048A (zh) * 2015-09-06 2015-11-25 北京科技大学 一种用于污水降解的高熵合金及其制备方法
US20190083685A1 (en) * 2016-03-10 2019-03-21 Shandong Rientech Medical Tech Co., Ltd. Degradable zinc base alloy implant material and preparation method and use thereof
CN107829007A (zh) * 2017-10-26 2018-03-23 福建工程学院 一种高熵合金和粉末冶金法制备高熵合金块体的方法
CN113122763A (zh) * 2021-04-14 2021-07-16 中北大学 一种高强韧性高熵合金制备方法
CN115874104A (zh) * 2022-11-25 2023-03-31 常州大学 一种医用可降解ZnFeMn中熵合金及其制备方法和应用

Also Published As

Publication number Publication date
CN115874104A (zh) 2023-03-31
CN115874104B (zh) 2024-05-03

Similar Documents

Publication Publication Date Title
CN106077656B (zh) 一种制备具有纳米结构钛制品的方法
CN109252081A (zh) 一种高熵合金粘结相超细碳化钨硬质合金及其制备方法
CN107829007A (zh) 一种高熵合金和粉末冶金法制备高熵合金块体的方法
WO2023165639A1 (zh) 一种医用可降解ZnFeMn中熵合金及其制备方法和应用
CN104232995B (zh) 一种高强韧超细晶复合结构钛合金及其制备方法与应用
CN111118325B (zh) 一种细晶铌钛合金的制备方法
CN113981261B (zh) 一种粉末冶金及挤压制备Ti-Zr合金的方法
CN115198162B (zh) 高强韧异质多相“核壳”组织结构中熵合金及其制备方法
CN115233071B (zh) 一种Ni-Fe基高温中熵合金及其制备方法
CN107142407B (zh) 一种表面自润滑Ti(C,N)基金属陶瓷耐磨材料的制备方法
WO2023232158A1 (zh) 一种医用可降解ZnMgCa中熵合金及其制备方法和应用
CN113637861B (zh) 一种Zn-Se合金及其制备方法和应用
CN112251659B (zh) 一种AlCrFe2Ni2C0.24高熵合金及其制备方法
CN106834774A (zh) 一种新型牙科用铌银合金及其制备方法
CN106011592B (zh) 一种超强超高热稳定性块体纳米晶钢的制备方法
CN111411248B (zh) 一种多尺度结构合金材料、制备方法及其用途
CN113210613A (zh) 一种锌基复合材料的真空热压烧结制备方法
CN112143925A (zh) 一种高强度高塑性钛镁复合材料的制备方法
CN111411249B (zh) VNbMoTaW高熵合金的制备方法
CN115572849A (zh) 一种超细晶镍钛基合金及其制备方法与应用
CN113249632A (zh) 一种高性能TiZrNb合金及其制备方法和应用
CN106148903A (zh) 钼钛靶材的制造方法
JP3551355B2 (ja) Ruターゲットおよびその製造方法
CN111349835B (zh) 合金及其制备方法与应用
CN117568642B (zh) 一种粉末冶金钛锆合金的氧含量调控方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763037

Country of ref document: EP

Kind code of ref document: A1