WO2023165101A1 - 用于193nm水浸式光刻的聚合物树脂、抗水涂层组合物、抗水涂层及其制备方法 - Google Patents

用于193nm水浸式光刻的聚合物树脂、抗水涂层组合物、抗水涂层及其制备方法 Download PDF

Info

Publication number
WO2023165101A1
WO2023165101A1 PCT/CN2022/114783 CN2022114783W WO2023165101A1 WO 2023165101 A1 WO2023165101 A1 WO 2023165101A1 CN 2022114783 W CN2022114783 W CN 2022114783W WO 2023165101 A1 WO2023165101 A1 WO 2023165101A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
resistant coating
polymer resin
acrylate
perfluoropolyether
Prior art date
Application number
PCT/CN2022/114783
Other languages
English (en)
French (fr)
Inventor
李永斌
何龙龙
Original Assignee
甘肃华隆芯材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 甘肃华隆芯材料科技有限公司 filed Critical 甘肃华隆芯材料科技有限公司
Priority to KR1020237012928A priority Critical patent/KR20230131172A/ko
Publication of WO2023165101A1 publication Critical patent/WO2023165101A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/38Esters containing sulfur
    • C08F220/382Esters containing sulfur and containing oxygen, e.g. 2-sulfoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/22Esters containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/285Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/38Esters containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/04Azo-compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/08Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/162Coating on a rotating support, e.g. using a whirler or a spinner
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/168Finishing the coated layer, e.g. drying, baking, soaking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light

Definitions

  • the invention relates to the technical field of integrated circuit manufacturing, in particular to photolithography technology in integrated circuit manufacturing, and in particular to a polymer resin used for 193nm water immersion photolithography, and a water-resistant coating combination prepared by using the polymer resin
  • the invention also relates to the polymer resin, the water-resistant coating composition and the preparation method of the water-resistant coating.
  • Photolithography technology is a process technology that uses optical-chemical reaction principles and chemical and physical etching methods in integrated circuit manufacturing to transfer circuit patterns to single crystal surfaces or dielectric layers to form effective pattern windows or functional patterns.
  • Dry lithography especially 193nm dry lithography, has formed a mature technical process and equipment.
  • 157nm F2 lithography was once considered to be a new generation of lithography after 193nm dry lithography, but due to optical
  • the inherent reflection spots of lens materials, mask and protective film materials, resists, and technical obstacles in pollution control have hindered the development of dry lithography technology.
  • Research on lithography technology has turned to methods that can overcome the technical obstacles Immersion lithography technology, immersion lithography has thus become the mainstream technology in the development of lithography technology in the future.
  • pure water is considered as the best immersion medium because it can make the numerical aperture (NA value) of the optical lens as high as 1.35; Contact will penetrate into the film, resulting in the dissolution of polar substances contained in the photoresist, such as photoacid generators (PAG), acids generated after exposure, and organic amine additives, resulting in defects in the photoresist pattern and also It will pollute the water itself, and it will pollute or even corrode the lens that comes into contact with it. Therefore, the 193nm photolithography using pure water as the immersion liquid needs to be improved by coating a layer of top coating on the surface of the photoresist.
  • PAG photoacid generators
  • HFA hexafluoro-tert-butanol base
  • MVP 2-acrylamide- 2-Propyl sulfonic acid monomer
  • the first object of the present invention is to provide a kind of polymer resin for 193nm water immersion photoresist in order to overcome the above-mentioned defect that existing 193nm water immersion photoresist top coating material exists, to meet the requirements of 193nm water immersion photoresist. Requirements of photolithography technology for alkali solubility and contact angle of photoresist top coating.
  • a second object of the present invention is to provide a method for preparing the above-mentioned polymer resin.
  • the third object of the present invention is to provide a water-resistant coating composition prepared by using the above-mentioned polymer resin.
  • the fourth object of the present invention is to provide a method for preparing the above water-resistant coating composition.
  • the fifth object of the present invention is to provide a method for preparing a water-resistant coating using the above-mentioned water-resistant coating composition.
  • the sixth object of the present invention is to provide a water-resistant coating prepared by the above-mentioned preparation method.
  • a polymer resin for 193nm water immersion lithography which is a combination of acrylate monomers containing hexafluoro-tert-butanol groups, monomers containing perfluorochain acrylates, and trifluoromethylsulfonamide groups
  • the acrylate monomer is obtained by ternary copolymerization, and its general structural formula is as follows:
  • R is a hydrogen atom or a methyl group
  • R 1 and R3 are both C1-C6 chain divalent hydrocarbon groups
  • R 2 is a C1-C18 perfluoropolyether alkyl group
  • R 4 is a C1-C6 perfluoroalkane base
  • R 2 is a C1-C6 perfluoropolyether alkyl group.
  • the synthesis method of the monomer containing perfluorinated chain acrylate comprises:
  • perfluoropolyetheryl fluoride in a constant pressure funnel, take 1.2 to 2 times the molar amount of methanol in a three-necked flask, slowly add perfluoropolyetheryl fluoride into the three-necked flask, and raise the temperature to 30-45°C after the addition. React for 2-6 hours, then add deionized water to wash, shake, let stand to separate layers, remove the upper layer solution, and obtain methyl esterification product, the reaction formula is as follows:
  • Step 4 the synthesis of perfluoropolyether acrylate
  • the present invention is used for the preparation method of the polymer resin of 193nm water immersion lithography, comprises the following steps:
  • Step 1 With the total weight of acrylate monomers containing hexafluoro-tert-butanol groups, acrylate monomers containing perfluorochains and acrylate monomers containing trifluoromethanesulfonamide as 100 parts by weight, add 150 to 250 1 part of water, 0.3-0.5 parts of water-soluble initiator, 2-5 parts of water-soluble emulsifier, after magnetic stirring for 30-45 minutes, ultrasonic emulsification for 20-30 minutes to obtain a white emulsion; the acrylic acid containing hexafluoro-tert-butanol group
  • the molar ratio of the ester monomer, the monomer containing perfluorinated chain acrylate, and the monomer containing trifluoromethanesulfonamide acrylate is 10-30:30-40:30-60;
  • Step 2 Add the white emulsion in step 1 into a three-necked flask equipped with a stirrer, a reflux condenser and a nitrogen conduit, stir and feed nitrogen, and raise the temperature to 60-75°C to initiate polymerization. After the white emulsion turns into a blue phase, Continue the reaction for 2-2.5 hours, then raise the temperature to 85°C and mature for 1-1.5 hours, cool down to room temperature and filter out the material, break the emulsification with acetone and dry in a vacuum oven for 2 hours to obtain the polymer resin.
  • the water-soluble initiator described in step 1 is one or more of ammonium persulfate, potassium persulfate or azobisisobutyronitrile.
  • the water-soluble emulsifier in step 1 is formed by mixing an anionic emulsifier and a nonionic emulsifier; the anionic emulsifier is sodium lauryl sulfate, and the nonionic emulsifier is Triton X-100.
  • a water-resistant coating composition for 193nm water immersion lithography is to dissolve the polymer resin in 4-methyl-2-pentanol, diisoamyl ether, ethanol, propylene glycol methyl One or several solvents in ether acetate and filtered through a 0.2 ⁇ m PTFE filter to obtain a water-resistant coating composition.
  • the mass fraction of the polymer resin is 1-5%.
  • a method for preparing a water-resistant coating for 193nm water immersion lithography is to first coat a 193nm photoresist on a substrate, bake at 110°C for 60s, and then apply the The above water-repellent coating composition was spin-coated on the photoresist surface layer (spin-coating at 3000 rpm for 60 s), and then baked at 90° C. for 60 s to obtain a water-repellent coating.
  • the present invention Compared with the existing 193nm water immersion photoresist top coating material, the present invention has the following beneficial effects:
  • the acrylate monomer containing hexafluoro-tert-butanol group, the acrylate monomer containing perfluorochain and the acrylate monomer containing trifluoromethanesulfonamide group are subjected to ternary copolymerization, and various properties are obtained.
  • Excellent polymer resin wherein the introduction of perfluoroalkyl chains improves the hydrophobicity and increases the contact angle performance and etching resistance of the resin, and the trifluoromethanesulfonamide group and hexafluoro-tert-butanol group
  • the introduction makes the resin have better alkali solubility, which meets the requirements for the use of 193nm water-immersion photoresist top coating materials.
  • the water-resistant coating composition prepared by using the polymer resin of the present invention can not only match different 193nm photoresists by changing the ratio of copolymer monomers to change the material properties, but also can obtain patterns with good lines.
  • the water-resistant coating prepared by using the coating resin composition of the present invention has good hydrophobic properties, and can effectively avoid the leaching of acidic substances in the photoresist in the immersion photolithography process.
  • the water-resistant coating prepared by using the coating resin of the present invention has good etching resistance due to the introduction of perfluorinated chains to increase the fluorine content, and can perform multiple exposures to obtain high-resolution patterns.
  • the water-resistant coating prepared by using the coating resin of the present invention has a good alkali dissolution rate and can be automatically removed during development without additional removal process, thereby simplifying the photolithography process.
  • Fig. 1 is the FT-IR analytical spectrum of perfluoropolyether acyl fluoride methylation product in the synthesis of perfluoropolyether acrylate in Example 1 of the present invention
  • Fig. 2 is the FT-IR analysis spectrum of perfluoropolyether acrylate in the synthesis of perfluoropolyether acrylate in Example 1 of the present invention
  • Figure 3 is a scanning electron microscope pattern developed in 0.26N tetramethylammonium hydroxide aqueous solution by optical magnifying glue AZ 40 XT without waterproof coating;
  • Fig. 4 is a scanning electron microscope pattern of the water-resistant coating sample developed in 0.26N tetramethylammonium hydroxide aqueous solution in Example 5 of the present invention.
  • monomer sources are as follows:
  • the acrylate monomer containing hexafluoro-tert-butanol group in the examples listed in the present invention is 1,1,1-trifluoro-2-trifluoromethyl-2-hydroxy-4-pentyl methacrylate, refer to Document US2005/165249 A1, synthesized in 2005, specifically:
  • the resulting organic layer was dried over 30 g of magnesium sulfate, and filtered to remove magnesium sulfate. Add 0.7g of phenothiazine (polymerization inhibitor) to the obtained filtrate, then distill off the solvent, collect the fraction at 80-82°C under reduced pressure to obtain 1,1,1-trifluoro-2-trifluoromethyl-2-hydroxyl - 4-Pentyl methacrylate monomer.
  • the acrylate monomer containing trifluoromethylsulfonamide group in the examples listed in the present invention is 2-methyl-2-(trifluoromethylsulfonamide) propyl methacrylate, purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. Ltd.
  • the monomer containing perfluorochain acrylate is perfluoropolyether acrylate, which is synthesized by the following method:
  • the performance test of the water-resistant coating sample in the embodiment of the present invention is to spin-coat the AZ 40 XT photoresist on the silicon wafer, bake at 110°C for 60s, then spin-coat the water-resistant coating sample, and bake at 90°C Bake for 60s, then perform dynamic contact angle test, photoresist leachable substance test and alkali solubility test, and use AZ 40 XT photoresist silicon wafer without spin-coated water-resistant coating as a comparison example:
  • Alkali solubility test measure the scanning electron microscope pattern developed by the water-resistant coating sample in 0.26N tetramethylammonium hydroxide aqueous solution, and the dissolution rate (nm/s).
  • a method for preparing a polymer resin for 193nm water immersion lithography comprises the following steps:
  • Step 1 with 1,1,1-trifluoro-2-trifluoromethyl-2-hydroxyl-4-pentyl methacrylate, perfluoropolyether acrylate and 2-methyl-2-(trifluoromethyl Sulfonamide) propyl methacrylate gross weight is 100 parts by weight, add 150 parts of water, 0.3 part of water-soluble initiator (ammonium persulfate), 2 parts of water-soluble emulsifier (sodium lauryl sulfate and triton Mass ratio 1; 1), after magnetic stirring for 30 minutes, ultrasonic emulsification for 20 minutes to obtain a white emulsion; the acrylate monomer containing hexafluoro-tert-butanol group, the monomer containing perfluorochain acrylate, the monomer containing trifluoroform
  • the molar ratio of sulfonamide acrylate monomer is 30:40:30;
  • Step 2 Add the white emulsion in step 1 into a three-necked flask equipped with a stirrer, a reflux condenser and a nitrogen conduit, stir and feed nitrogen, and raise the temperature to 60°C to initiate polymerization. After the white emulsion turns into a blue phase, continue the reaction After 2 hours, the temperature was raised to 85° C. and matured for 1 hour, cooled to room temperature, filtered and discharged, demulsified with acetone, and then dried in a vacuum oven for 2 hours to obtain a polymer resin.
  • the pSt (polystyrene) conversion molecular weight measured by GPC gel permeation chromatography
  • Mw weight average molecular weight
  • Step 1 add 200 parts of water, 0.4 parts of ammonium persulfate, and 3 parts of water-soluble emulsifier, stir magnetically for 35 minutes, and ultrasonically emulsify for 25 minutes.
  • the molar ratio of the chain acrylate monomer to the acrylate monomer containing trifluoromethanesulfonamide is 10:50:40;
  • step 2 the temperature is raised to 65° C. to initiate polymerization, and other conditions are the same as in Example 1 to obtain a polymer resin.
  • Step 1 Add 250 parts of water, 0.5 parts of ammonium persulfate, and 5 parts of water-soluble emulsifier, stir magnetically for 45 minutes, and ultrasonically emulsify for 30 minutes.
  • the molar ratio of the chain acrylate monomer to the acrylate monomer containing trifluoromethanesulfonamide is 30:40:30;
  • step 2 the temperature was raised to 75°C to initiate polymerization, and after the white emulsion turned into a blue phase, the reaction was continued for 2.5 hours, and then the temperature was raised to 85°C for aging for 1.5 hours, and other conditions were the same as in Example 1 to obtain a polymer resin.
  • step 1 the water-soluble initiator is azobisisobutyronitrile; the water-soluble emulsifier is a mixture of sodium lauryl sulfate and octylphenyl polyoxyethylene ether at a mass ratio of 1:1.
  • a method for preparing a water-resistant coating for 193nm water immersion lithography provided in this example, 1% of the resin in Example 1 is dissolved in 65% of 4-methyl-2-pentanol and 34% of di In the mixture of isopentyl ether, the water-resistant coating composition is obtained; first, the photoresist AZ 40 XT is coated on the substrate, and after baking for 60s at 110°C, the water-resistant coating composition is spin-coated on the photoresist For the surface layer of glue, after baking at 90°C for 60s, a water-resistant coating is obtained, marked as FS-01. Its performance testing data are shown in Table 1.
  • the water-resistant coating has a good alkali dissolution rate (all over 200nm/s, up to 846nm/s) and no acidic substance leaching in water.
  • the rear contact angles are all greater than 70°, and the front contact angles are all Greater than 95°, good contact.
  • the present invention does not use the optical magnifying glue AZ 40 XT of waterproof coating in the scanning electron microscope pattern that develops in 0.26N tetramethylammonium hydroxide aqueous solution as shown in Figure 3;
  • the FS-01 water-resistant coating sample that embodiment 5 obtains The scanning electron microscope pattern developed in 0.26N tetramethylammonium hydroxide aqueous solution is shown in Figure 4. It can be seen from the figure that in 193nm water immersion lithography, the half-pitch pattern of the optical magnification glue AZ 40 XT The edges are rough ( Figure 3), while the FS-01 water-resistant coating obtained a 45nm half-pitch pattern with good lines in 193nm water immersion lithography ( Figure 4), and the effect is remarkable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Materials For Photolithography (AREA)

Abstract

本发明公开了一种用于193nm水浸式光刻的聚合物树脂、抗水涂层组合物、抗水涂层及其制备方法,所述聚合物树脂是将含六氟叔丁醇基团的丙烯酸酯单体、含全氟链丙烯酸酯的单体以及含三氟甲基磺酰胺基团的丙烯酸酯单体三元共聚得到。全氟烷基链的引入提高疏水性的同时增加了树脂的接触角性能和抗刻蚀能力,三氟甲基磺酰胺基团和六氟叔丁醇基的引入使树脂有了更好的碱溶性;采用本发明聚合物树脂制备的抗水涂层组合物,不仅可以通过改变共聚物单体比例来匹配不同的193nm光刻胶,而且能得到线条良好的图案;采用本发明涂层树脂组合物制备的抗水涂层可有效避免浸没式光刻工艺中光刻胶中酸性物质的浸出,并在显影时自动去除,有利于简化光刻工艺。

Description

用于193nm水浸式光刻的聚合物树脂、抗水涂层组合物、抗水涂层及其制备方法 技术领域
本发明涉及集成电路制造技术领域,特别涉及集成电路制造中的光刻技术,具体涉及一种用于193nm水浸式光刻的聚合物树脂,采用所述聚合物树脂制备的抗水涂层组合物及抗水涂层,本发明同时还涉及所述聚合物树脂、抗水涂层组合物及抗水涂层的制备方法。
背景技术
光刻技术是集成电路制造中利用光学-化学反应原理和化学、物理刻蚀方法,将电路图形传递到单晶表面或介质层上,形成有效图形窗口或功能图形的工艺技术。干法光刻,尤其是193nm干法光刻,目前已形成了成熟的技术工艺及设备,157nm F2光刻也一度被认为是继193nm干法光刻之后的新一代光刻技术,但由于光学镜头材料固有的反射光斑、掩模及保护膜材料、抗蚀剂以及污染控制等方面的技术障碍,导致干法光刻技术发展受阻,对光刻技术的研究转向了能克服所述技术障碍的浸没式光刻技术,浸没式光刻也由此成为了未来光刻技术发展的主流技术。
在对浸没式光刻技术的研究中发现,如果将水(193nm下折射率n=1.44)作为浸没介质填充到193nm干法光刻设备的原空气空间,就可以使193nm深紫外光刻技术达到65nm以下分辨率的要求。基于此,研究人员设想,若使用更高折射率的液体并对光刻工艺进行改进,即可使193nm ArF光刻技术延伸到45nm乃至32nm节点。
在193nm浸没式光刻中,纯水由于可使光学镜头的数值孔径(NA值)高达1.35,而被视为首选的最佳浸没介质;但是在光刻工艺中,由于水直接与光 刻胶接触会渗入胶膜内,导致光刻胶中所含极性物质如光致产酸剂(PAG)、曝光后产生的酸以及有机胺类添加剂等溶出,造成光刻胶图案产生缺陷的同时也会使水本身受到污染,还会污染甚至腐蚀与之接触的镜头。因此,纯水作为浸没液体的193nm光刻需在光刻胶表层再涂布一层顶部涂料等方法进行改进。D.P.Sanders等人用六氟叔丁醇基(HFA)材料作为聚合物树脂,但其单独使用无法满足193nm水浸式光刻技术对碱溶性的要求;M.Khojasteh等人选用2-丙烯酰胺-2-丙基磺酸单体(MVP)与含HFA基团的单体共聚得到了MVP系列顶部涂层材料,强酸性的磺酸基团虽然能明显增强材料在显影液中的碱溶性,但也减小了与水的接触角故而应用效果不佳。
发明内容
本发明的第一个目的是为了克服现有193nm水浸式光刻胶顶部涂层材料存在的上述缺陷,提供一种用于193nm水浸式光刻的聚合物树脂,以满足193nm水浸式光刻技术对光刻胶顶部涂层碱溶性、接触角的要求。
本发明的第二个目的是提供上述聚合物树脂的制备方法。
本发明的第三个目的是提供一种采用上述聚合物树脂制备的抗水涂层组合物。
本发明的第四个目的是提供一种上述抗水涂层组合物的制备方法。
本发明的第五个目的是提供一种采用上述抗水涂层组合物制备抗水涂层的方法。
本发明的第六个目的是提供一种采用上述制备方法制备的抗水涂层。
为实现其目的,本发明采用如下技术方案:
一种用于193nm水浸式光刻的聚合物树脂,是将含六氟叔丁醇基团的丙烯酸酯单体、含全氟链丙烯酸酯的单体以及含三氟甲基磺酰胺基团的丙烯酸酯单 体进行三元共聚得到,其结构通式如下:
Figure PCTCN2022114783-appb-000001
其中,R为氢原子或甲基;R 1、R3均为C1-C6链状二价的烃基;R 2为C1-C18的全氟聚醚烷基;R 4为C1-C6的全氟烷基;m、n、p为各单体的摩尔占比,m:n:p=10-30:30-40:30-60。
作为本发明技术方案的优选,上述R 2为C1-C6的全氟聚醚烷基。
进一步地,所述含全氟链丙烯酸酯的单体的合成方法包括:
步骤一、全氟聚醚酰氟合成
六氟环氧丙烷(HFPO)开环聚合,得到全氟聚醚酰氟;反应式如下:
Figure PCTCN2022114783-appb-000002
步骤二、全氟聚醚酰氟甲酯化
取全氟聚醚酰氟置于恒压漏斗,取1.2~2倍摩尔量甲醇置于三口烧瓶,缓慢滴加全氟聚醚酰氟于三口烧瓶中,滴加完毕升温至30-45℃,反应2-6h,然后加入去离子水洗涤,摇晃后静置分层,去除上层溶液,得到甲酯化产物,反应式如下:
Figure PCTCN2022114783-appb-000003
步骤三、全氟聚醚醇的合成
取步骤三中甲酯化产物于三口烧瓶中,乙醇作溶剂,加入1.5-2倍摩尔量的硼氢化钠,室温下回流反应4-6h,用去离子水水洗,除去上层溶液,将下层产物在80℃下真空旋蒸除去甲醇和乙醇,得到全氟聚醚醇,反应式如下:
Figure PCTCN2022114783-appb-000004
步骤四、全氟聚醚丙烯酸酯的合成
取全氟聚醚醇置于三口烧瓶,加入3倍摩尔量的三氟三氯乙烷和1.2-1.5倍摩尔量的三乙胺,在冰水浴条件下缓慢滴加1.2-1.5倍摩尔量的丙烯酰氯,滴加完毕升温至25-40℃,继续反应4-6h,反应完毕后加入去离子水洗涤,静置分层,用无水硫酸镁除去体系中残留水分得到全氟聚醚丙烯酸酯,反应式如下:
Figure PCTCN2022114783-appb-000005
上述各步骤中,0<n≤4。
本发明用于193nm水浸式光刻的聚合物树脂的制备方法,包括以下步骤:
步骤一、以含六氟叔丁醇基团的丙烯酸酯单体、含全氟链丙烯酸酯的单体 和含三氟甲基磺酰胺丙烯酸酯单体总重为100重量份,加入150~250份水,0.3~0.5份水溶性引发剂、2~5份水溶性乳化剂,磁力搅拌30-45min后,超声乳化20-30min,得到白色乳液;所述含六氟叔丁醇基团的丙烯酸酯单体、含全氟链丙烯酸酯的单体、含三氟甲基磺酰胺丙烯酸酯单体的摩尔比为10-30:30-40:30-60;
步骤二、将步骤一中白色乳液加入装有搅拌器、回流冷凝管和氮气导管的三口烧瓶中,搅拌并通入氮气,升温至60-75℃引发聚合,待白色乳液变成蓝相后,持续反应2-2.5h,然后升温至85℃熟化1-1.5h,降至室温过滤出料,用丙酮破乳后在真空烘箱干燥2h即得聚合物树脂。
进一步地,步骤一中所述水溶性引发剂为过硫酸铵、过硫酸钾或偶氮二异丁腈中一种或几种。
进一步地,步骤一中所述水溶性乳化剂由阴离子乳化剂与非离子乳化剂混合而成;所述阴离子乳化剂为十二烷基硫酸钠,非离子乳化剂为曲拉通X-100。
本发明提供的一种用于193nm水浸式光刻的抗水涂层组合物,是将所述聚合物树脂溶解于4-甲基-2-戊醇、二异戊醚、乙醇、丙二醇甲醚醋酸酯中的一种或几种溶剂中并经0.2μm PTFE过滤器过滤制得抗水涂层组合物。
优选地,所述抗水涂层组合物中,聚合物树脂的质量分数为1-5%。
本发明提供的一种用于193nm水浸式光刻的抗水涂层的制备方法,是先将193nm光刻胶涂覆在基片上,在110℃下烘烤60s后,将权利要求7所述抗水涂层组合物旋涂于光刻胶表层(在3000rpm下旋涂60s),随后在90℃烘烤60s即得抗水涂层。
与现有193nm水浸式光刻胶顶部涂层材料相比,本发明具有以下有益效果:
1、本发明将含六氟叔丁醇基团丙烯酸酯单体、含全氟链丙烯酸酯单体以及含三氟甲基磺酰胺基团丙烯酸酯单体进行三元共聚,得到了各方面性能俱佳的 聚合物树脂,其中,全氟烷基链的引入提高疏水性的同时增加了树脂的接触角性能和抗刻蚀能力,三氟甲基磺酰胺基团和六氟叔丁醇基的引入使树脂有了更好的碱溶性,满足193nm水浸式光刻胶顶部涂层材料的使用要求。
2、采用本发明聚合物树脂制备的抗水涂层组合物,不仅可以通过改变共聚物单体比例以改变材料性能,来匹配不同的193nm光刻胶,而且能得到线条良好的图案。
3、采用本发明涂层树脂组合物制备的抗水涂层有良好的疏水性能,可有效避免浸没式光刻工艺中光刻胶中酸性物质的浸出。
4、采用本发明涂层树脂制备的抗水涂层由于全氟链的引入使含氟量提高而具有良好的抗刻蚀能力,能进行多重曝光得到高分辨率图案。
5、采用本发明涂层树脂制备的抗水涂层具有良好碱溶速率,能在显影时自动去除,不增加额外去除工艺,从而简化光刻工艺。
附图说明
图1为本发明实施例1全氟聚醚丙烯酸酯合成中全氟聚醚酰氟甲酯化产物的FT-IR分析图谱;
图2为本发明实施例1全氟聚醚丙烯酸酯合成中全氟聚醚丙烯酸酯的FT-IR分析图谱;
图3为未使用防水涂层的光学放大胶AZ 40 XT在0.26N四甲基氢氧化铵水溶液中显影的扫描电子显微镜图案;
图4为本发明实施例5中抗水涂层样品在0.26N四甲基氢氧化铵水溶液中显影的扫描电子显微镜图案。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
本发明实施例中单体来源如下:
一、含六氟叔丁醇基团的丙烯酸酯单体
本发明所列举实施例中含六氟叔丁醇基团的丙烯酸酯单体为1,1,1-三氟-2-三氟甲基-2-羟基-4-甲基丙烯酸戊酯,参考文献US2005/165249 A1,2005合成,具体为:
向500ml三口烧瓶中加入搅拌磁子,加入50.0g(0.22mol)1,1,1-三氟-2-三氟甲基-2,4-戊二醇、150g甲苯,25g(0.24mol)甲基丙烯酸酐、19g吡啶、0.5g吩噻嗪,然后在油浴中搅拌加热,使其温度为95-100℃。6h后,停止反应。冷却反应液后,过滤除去副产物不溶物。所得滤液用10%盐酸水溶液(体积百分数)洗涤。然后用10%碳酸钠水溶液(wt%)洗涤两次。所得有机层用30g硫酸镁干燥,然后过滤除去硫酸镁。向所得滤液中加入0.7g吩噻嗪(阻聚剂),然后蒸馏出溶剂,减压收集80-82℃馏分,得到1,1,1-三氟-2-三氟甲基-2-羟基-4-甲基丙烯酸戊酯单体。
二、含三氟甲基磺酰胺基团的丙烯酸酯单体
本发明所列举实施例中含三氟甲基磺酰胺基团丙烯酸酯单体为2-甲基-2-(三氟甲基磺酰胺)甲基丙烯酸丙酯,购自上海阿拉丁生化科技股份有限公司。
三、含全氟链丙烯酸酯的单体
本发明实施例中含全氟链丙烯酸酯的单体为全氟聚醚丙烯酸酯,通过以下方法合成:
(1)全氟聚醚酰氟的合成
在500ml微型高压反应釜中加入100ml二乙二醇二甲醚和50ml乙腈,加入5g氟化钾为催化剂,用氮气置换釜内气体后真空抽至负压,开启搅拌,30min后持续通入六氟环氧丙烷(HFPO),用流量计控制釜内压力小于0.5Mpa,温度 控制在10℃~30℃进行聚合反应;累计通入800gHPFO后将反应釜温度调整至室温,反应液静置分层,回收下层物质,即得全氟聚醚酰氟。
(2)全氟聚醚酰氟甲酯化
用量筒分别量取全氟聚醚酰氟5mL,甲醇10mL,置于100mL三口烧瓶中,温度设置为30℃,当温度上升至30℃,维持反应温度反应3h,反应完成后,将产物移至250mL分液漏斗中,加入30mL去离子水,摇晃后静置分层,上层为去离子水,下层为粘稠产物,去除上层溶液,留下层产物,重复去离子水洗两次。取下层产物进行傅里叶变换红外光谱FT-IR分析,分析结果如图1。
从图1中结果可以看出,990cm -1处出现又尖又强的峰,对应为-C-O-C-的伸缩振动峰;1221cm -1、1195cm -1和1289cm -1处出现的吸收峰对应为-CF-、-CF 2-、-CF 3-的伸缩振动峰。1788cm -1左右出现的的吸收峰是-COO的伸缩振动峰,2970cm -1出现的吸收峰是脂肪族化合物中甲基吸收的不对称伸缩振动峰,说明了甲基的存在。以上结果表明,全氟聚醚酰氟发生了甲酯化反应,并且全部转化成为了全氟聚醚甲酯化产物。根据反应前后IR分析,产物正确。
(3)全氟聚醚醇的合成
向100mL三口烧瓶中加入5g全氟聚醚酯化产物,加入10mL乙醇,2g NaBH4,温度设置为25℃,当温度升高至25℃后维持温度不变,在大气压下回流反应4h,反应结束后,将产物移至250mL分液漏斗中,向里面加入30mL去离子水,摇晃后置于250mL分液漏斗中,静置分层,去掉上层溶液,将下层产物在80℃下真空旋转蒸发仪旋转1h,去掉甲醇和乙醇,得到全氟聚醚醇。
(4)全氟聚醚丙烯酸酯的合成
将40g全氟聚醚醇加入三口瓶中,加入150ml三氟三氯乙烷,加入3g三乙 胺后,在冰水浴的条件下缓慢滴加丙烯酰氯5g,半小时滴加完毕,缓慢升温至25℃,继续搅拌反应6h后,加入大量去离子水洗涤,静置分层,反复三次,用无水硫酸镁除去体系中残留水分得到全氟聚醚丙烯酸酯产物36g,产率90%。产物FT-IR分析结果如图2。
图2结果显示,全氟聚醚醇羟基峰消失,证明全氟聚醚丙烯酸酯产物反应完全。
本发明实施例中抗水涂层样品的性能测试,是将AZ 40 XT光刻胶旋涂于硅片,在110℃下烘烤60s,然后旋涂抗水涂层样品,在90℃下烘烤60s,然后进行动态接触角测试、光刻胶溶出物检测和碱溶性检测,并以未旋涂抗水涂层的AZ 40 XT光刻胶硅片作为对比例:
(1)动态接触角测试:将水滴于硅片上的抗水涂层样品表面,进行倾斜角度测试。
(2)光刻胶溶出物检测:将整张硅片浸入水中,用液相检测水中化学物质。
(3)碱溶性测试:测定抗水涂层样品在0.26N四甲基氢氧化铵水溶液中显影的扫描电子显微镜图案,以及溶解速率(nm/s)。
实施例1
本实施例提供的一种用于193nm水浸式光刻的聚合物树脂的制备方法,包括以下步骤:
步骤一、以1,1,1-三氟-2-三氟甲基-2-羟基-4-甲基丙烯酸戊酯、全氟聚醚丙烯酸酯和2-甲基-2-(三氟甲基磺酰胺)甲基丙烯酸丙酯总重为100重量份,加入150份水,0.3份水溶性引发剂(过硫酸铵)、2份水溶性乳化剂(十二烷基硫酸钠与曲拉通质量比1;1),磁力搅拌30min后,超声乳化20min,得到白色乳液;所述含六氟叔丁醇基团的丙烯酸酯单体、含全氟链丙烯酸酯的单体、含三氟甲 基磺酰胺丙烯酸酯单体的摩尔比为30:40:30;
步骤二、将步骤一中白色乳液加入装有搅拌器、回流冷凝管和氮气导管的三口烧瓶中,搅拌并通入氮气,升温至60℃引发聚合,待白色乳液变成蓝相后,持续反应2h,然后升温至85℃熟化1h,降至室温过滤出料,用丙酮破乳后在真空烘箱干燥2h即得聚合物树脂。
采用THF作为溶剂,通过GPC(凝胶渗透色谱法)测定的pSt(聚苯乙烯)换算分子量,即重均分子量(Mw)为18200g/mol,通过 19F-NMR及 1H-NMR检测结构正确。
19F-NMR及 1H-NMR检测数据如下:
1H NMR(溶剂:CdCl 3;标准物质:TMS);6.16(q,j=0.98Hz,1H),5.96(bs,1H),5.66(q,j=46Hz,1H),5.13-5.20(m,1H),2.24-2.36(m,2H),94(dd,j=46Hz,0.98Hz,3H),44(d,j=6.34Hz,3H);
19F NMR(溶剂:CdCl3;标准物质:CCL 3f);-77.03(q,j=9.67Hz,3f),-79.25(q,j=9.67Hz,3F)。
实施例2
本实施例提供的一种用于193nm水浸式光刻的聚合物树脂的制备方法,
步骤一中:加入200份水,0.4份过硫酸铵、3份水溶性乳化剂,磁力搅拌35min后,超声乳化25min,所述含六氟叔丁醇基团的丙烯酸酯单体、含全氟链丙烯酸酯的单体、含三氟甲基磺酰胺丙烯酸酯单体的摩尔比为10:50:40;
步骤二中:升温至65℃引发聚合,其他条件同实施例1,得到聚合物树脂。 通过GPC(凝胶渗透色谱法)测定的pSt(聚苯乙烯)换算分子量,即重均分子量(Mw)为9000g/mol。
实施例3
本实施例提供的一种用于193nm水浸式光刻的聚合物树脂的制备方法,
步骤一中:加入250份水,0.5份过硫酸铵、5份水溶性乳化剂,磁力搅拌45min后,超声乳化30min,所述含六氟叔丁醇基团的丙烯酸酯单体、含全氟链丙烯酸酯的单体、含三氟甲基磺酰胺丙烯酸酯单体的摩尔比为30:40:30;
步骤二中:升温至75℃引发聚合,待白色乳液变成蓝相后,持续反应2.5h,然后升温至85℃熟化1.5h,其他条件同实施例1,得到聚合物树脂。通过GPC(凝胶渗透色谱法)测定的pSt(聚苯乙烯)换算分子量,即重均分子量(Mw)为11000g/mol。
实施例4
本实施例提供的一种用于193nm水浸式光刻的聚合物树脂的制备方法,
步骤一中:水溶性引发剂为偶氮二异丁腈;水溶性乳化剂为十二烷基硫酸钠与辛基苯基聚氧乙烯醚以质量比1:1形成的混合物。
其他反应条件同实施例1,得到聚合物树脂。通过GPC(凝胶渗透色谱法)测定的pSt(聚苯乙烯)换算分子量,即重均分子量(Mw)为16000g/mol。
实施例5
本实施例提供的一种用于193nm水浸式光刻的抗水涂层的制备方法,将1%实施例1中树脂溶解于65%的4-甲基-2-戊醇和34%的二异戊醚的混合物中,得到抗水涂层组合物;先将光刻胶AZ 40 XT涂覆在基片上,在110℃下烘烤60s后,将所述抗水涂层组合物旋涂于光刻胶表层,在90℃烘烤60s后即得抗水涂层,标记为FS-01。其性能检测数据见表1。
实施例6
本实施例提供的一种用于193nm水浸式光刻的抗水涂层的制备方法中,是将5%的实施例2中树脂溶解于65%的4-甲基-2-戊醇和30%的二异戊醚的混合物中;在110℃下烘烤60s后,将所述抗水涂层组合物旋涂于光刻胶表层,在90℃烘烤60s后即得到的抗水涂层,标记为FS-02。其性能检测数据见表1。
实施例7
本实施例提供的一种用于193nm水浸式光刻的抗水涂层的制备方法中,是将1%的实施例3中树脂溶解于99%的PGMEA中;在110℃下烘烤60s后,将所述抗水涂层组合物旋涂于光刻胶表层,在90℃烘烤60s后即得到的抗水涂层,标记为FS-03。其性能检测数据见表1。
表1 抗水涂层样品性能检测结果
Figure PCTCN2022114783-appb-000006
根据表1数据,该抗水涂层有良好的碱溶速率(均超过200nm/s,最高可达846nm/s)且在水中无酸性物质浸出,后接触角均大于70°,前接触角均大于95°,接触性良好。
本发明未使用防水涂层的光学放大胶AZ 40 XT在0.26N四甲基氢氧化铵水溶液中显影的扫描电子显微镜图案如图3所示;实施例5得到的FS-01抗水涂层样品在0.26N四甲基氢氧化铵水溶液中显影的扫描电子显微镜图案如图4所 示,从图中可以看出,在193nm水浸式光刻中,光学放大胶AZ 40 XT的半节距图案边缘粗糙(图3),而FS-01抗水涂层在193nm水浸式光刻中得到了线条良好的45nm半节距图案(图4),效果显著。

Claims (9)

  1. 一种用于193nm水浸式光刻的聚合物树脂,其特征在于,所述聚合物树脂是将含六氟叔丁醇基团的丙烯酸酯单体、含全氟链丙烯酸酯的单体以及含三氟甲基磺酰胺基团的丙烯酸酯单体进行三元共聚得到,其结构通式如下:
    Figure PCTCN2022114783-appb-100001
    其中,R为氢原子或甲基;R 1、R 3均为C1-C6链状二价的烃基;R 2为C1-C18的全氟聚醚烷基;R 4为C1-C6的全氟烷基;m、n、p为各单体的摩尔占比,m:n:p=10-30:30-40:30-60;
    所述含全氟链丙烯酸酯的单体的合成方法包括以下步骤:
    步骤一、全氟聚醚酰氟合成
    六氟环氧丙烷(HFPO)开环聚合,得到全氟聚醚酰氟;
    步骤二、全氟聚醚酰氟甲酯化
    取全氟聚醚酰氟置于恒压漏斗,取1.2~2倍摩尔量甲醇置于三口烧瓶,缓慢滴加全氟聚醚酰氟于三口烧瓶中,滴加完毕升温至30-45℃,反应2-6h,然后加入去离子水洗涤,摇晃后静置分层,去除上层溶液,得到甲酯化产物;
    步骤三、全氟聚醚醇的合成
    取步骤二中甲酯化产物于三口烧瓶中,无水乙醇作溶剂,加入1.5-2倍摩尔量的硼氢化钠,室温下回流反应4-6h,用去离子水水洗,除去上层溶液,将下层产物在80℃下真空旋蒸除去甲醇和无水乙醇,得到全氟聚醚醇;
    步骤四、全氟聚醚丙烯酸酯的合成
    取全氟聚醚醇置于三口烧瓶,加入3倍摩尔量的三氟三氯乙烷和1.2-1.5倍摩尔量的三乙胺,在冰水浴条件下缓慢滴加1.2-1.5倍摩尔量的丙烯酰氯,滴加完毕升温至25-40℃,继续反应4-6h,反应完毕后加入去离子水洗涤,静置分层,除去体系中残留水分得到全氟聚醚丙烯酸酯。
  2. 如权利要求1所述的一种用于193nm水浸式光刻的聚合物树脂,其特征在于,所述R 2为C1-C6的全氟聚醚烷基。
  3. 如权利要求1或2所述的一种用于193nm水浸式光刻的聚合物树脂的制备方法,其特征在于,包括以下步骤:
    步骤一、以含六氟叔丁醇基团的丙烯酸酯单体、含全氟链丙烯酸酯的单体和含三氟甲基磺酰胺丙烯酸酯单体总重为100重量份,加入150~250份水,0.3~0.5份水溶性引发剂、2~5份水溶性乳化剂,磁力搅拌30-45min后,超声乳化20-30min,得到白色乳液;所述含六氟叔丁醇基团的丙烯酸酯单体、含全氟链丙烯酸酯的单体、含三氟甲基磺酰胺丙烯酸酯单体的摩尔比为10-30:30-40:30-60;
    步骤二、将步骤一中白色乳液加入装有搅拌器、回流冷凝管和氮气导管的三口烧瓶中,搅拌并通入氮气,升温至60-75℃引发聚合,待白色乳液变成蓝相后,持续反应2-2.5h,然后升温至85℃熟化1-1.5h,降至室温过滤出料,用丙酮破乳后在真空烘箱干燥2h即得聚合物树脂。
  4. 如权利要求3所述的一种用于193nm水浸式光刻的聚合物树脂的制备方法,其特征在于,步骤一中所述水溶性引发剂为过硫酸铵、过硫酸钾或偶氮二异丁腈中一种或几种。
  5. 如权利要求3所述的一种用于193nm水浸式光刻的聚合物树脂的制备方法,其特征在于,步骤一中所述水溶性乳化剂由阴离子乳化剂与非离子乳化剂混合而成;所述阴离子乳化剂为十二烷基硫酸钠,非离子乳化剂为曲拉通X-100。
  6. 一种用于193nm水浸式光刻的抗水涂层组合物,其特征在于,是将权利要求1所述聚合物树脂溶解于4-甲基-2-戊醇、二异戊醚、乙醇、丙二醇甲醚醋酸酯中的一种或几种溶剂中,过 滤得到。
  7. 如权利要求6所述的一种用于193nm水浸式光刻的抗水涂层组合物,其特征在于,所述抗水涂层组合物中聚合物树脂的质量分数为1-5%。
  8. 一种用于193nm水浸式光刻的抗水涂层的制备方法,其特征在于,先将193nm光刻胶涂覆在基片上,在110℃下烘烤60s后,将权利要求6所述抗水涂层组合物旋涂于光刻胶表层,随后在90℃烘烤60s即得抗水涂层。
  9. 一种采用如权利要求8所述制备方法制备的抗水涂层。
PCT/CN2022/114783 2022-03-03 2022-08-25 用于193nm水浸式光刻的聚合物树脂、抗水涂层组合物、抗水涂层及其制备方法 WO2023165101A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020237012928A KR20230131172A (ko) 2022-03-03 2022-08-25 193nm 물 액침 리소그래피용 중합체 수지, 내수성 코팅층 조성물, 내수성 코팅층 및 이의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210200842.6A CN114262416B (zh) 2022-03-03 2022-03-03 用于193nm水浸式光刻的聚合物树脂、抗水涂层组合物、抗水涂层及其制备方法
CN202210200842.6 2022-03-03

Publications (1)

Publication Number Publication Date
WO2023165101A1 true WO2023165101A1 (zh) 2023-09-07

Family

ID=80833882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114783 WO2023165101A1 (zh) 2022-03-03 2022-08-25 用于193nm水浸式光刻的聚合物树脂、抗水涂层组合物、抗水涂层及其制备方法

Country Status (3)

Country Link
KR (1) KR20230131172A (zh)
CN (1) CN114262416B (zh)
WO (1) WO2023165101A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114262416B (zh) * 2022-03-03 2022-05-20 甘肃华隆芯材料科技有限公司 用于193nm水浸式光刻的聚合物树脂、抗水涂层组合物、抗水涂层及其制备方法
CN116003681B (zh) * 2022-12-20 2024-01-30 中节能万润股份有限公司 一种用于193nm水浸式光刻胶顶层涂层的聚合物及其制备方法和顶层涂层组合物
CN117304395B (zh) * 2023-11-23 2024-01-30 甘肃华隆芯材料科技有限公司 一种用于光刻防水涂层的三元共聚物及其制备方法与用途

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1537124A (zh) * 2001-05-11 2004-10-13 科莱恩金融(Bvi)有限公司 适于光刻胶组合物的聚合物
JP2006011373A (ja) * 2004-05-27 2006-01-12 Matsushita Electric Ind Co Ltd レジスト材料及びパターン形成方法
CN104403048A (zh) * 2014-11-25 2015-03-11 昆山西迪光电材料有限公司 含倍半萜内酯的成膜树脂及其正性浸没式曝光193nm光刻胶
US20150177613A1 (en) * 2013-12-19 2015-06-25 Rohm And Haas Electronic Materials Llc Photoacid-generating copolymer and associated photoresist composition, coated substrate, and method of forming an electronic device
CN112521552A (zh) * 2018-12-13 2021-03-19 儒芯微电子材料(上海)有限公司 一种聚合物树脂及其制备方法和金属剥离胶组合物
CN112679653A (zh) * 2020-12-28 2021-04-20 甘肃华隆芯材料科技有限公司 光刻胶成膜树脂及其光刻胶组合物的制备方法
CN114262416A (zh) * 2022-03-03 2022-04-01 甘肃华隆芯材料科技有限公司 用于193nm水浸式光刻的聚合物树脂、抗水涂层组合物、抗水涂层及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6737215B2 (en) * 2001-05-11 2004-05-18 Clariant Finance (Bvi) Ltd Photoresist composition for deep ultraviolet lithography
US8034534B2 (en) * 2006-08-14 2011-10-11 E.I. Du Pont De Nemours And Company Fluorinated polymers for use in immersion lithography

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1537124A (zh) * 2001-05-11 2004-10-13 科莱恩金融(Bvi)有限公司 适于光刻胶组合物的聚合物
JP2006011373A (ja) * 2004-05-27 2006-01-12 Matsushita Electric Ind Co Ltd レジスト材料及びパターン形成方法
US20150177613A1 (en) * 2013-12-19 2015-06-25 Rohm And Haas Electronic Materials Llc Photoacid-generating copolymer and associated photoresist composition, coated substrate, and method of forming an electronic device
CN104403048A (zh) * 2014-11-25 2015-03-11 昆山西迪光电材料有限公司 含倍半萜内酯的成膜树脂及其正性浸没式曝光193nm光刻胶
CN112521552A (zh) * 2018-12-13 2021-03-19 儒芯微电子材料(上海)有限公司 一种聚合物树脂及其制备方法和金属剥离胶组合物
CN112679653A (zh) * 2020-12-28 2021-04-20 甘肃华隆芯材料科技有限公司 光刻胶成膜树脂及其光刻胶组合物的制备方法
CN114262416A (zh) * 2022-03-03 2022-04-01 甘肃华隆芯材料科技有限公司 用于193nm水浸式光刻的聚合物树脂、抗水涂层组合物、抗水涂层及其制备方法

Also Published As

Publication number Publication date
KR20230131172A (ko) 2023-09-12
TW202336054A (zh) 2023-09-16
CN114262416B (zh) 2022-05-20
CN114262416A (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
WO2023165101A1 (zh) 用于193nm水浸式光刻的聚合物树脂、抗水涂层组合物、抗水涂层及其制备方法
JP4484603B2 (ja) トップコート組成物
TWI448819B (zh) 氟化氬浸潤式曝光用化學增幅正型光阻材料及圖案形成方法
JP5018743B2 (ja) 含フッ素化合物とその高分子化合物
TWI514080B (zh) 正型光阻組成物,光阻圖型之形成方法
JP4410508B2 (ja) 含フッ素化合物とその高分子化合物
KR101343962B1 (ko) 함불소 중합성 단량체, 함불소 중합체, 레지스트 재료 및 패턴 형성 방법 그리고 반도체 장치
TW201044112A (en) Resist protective coating composition and patterning process
JP5867522B2 (ja) 含フッ素エステル型高分子化合物
TWI525389B (zh) A radiation-sensitive resin composition, a resist pattern forming method, a polymer, and a compound
TW201100965A (en) Positive resist composition and method of forming resist pattern
KR101738725B1 (ko) 레지스트 재료, 이것을 이용한 패턴 형성 방법 및 고분자 화합물
TW200912539A (en) Positive resist composition for immersion exposure, method of forming resist pattern, and fluorine-containing polymeric compound
JP5556160B2 (ja) トップコート組成物
KR100790478B1 (ko) 리소그라피용 최상층 코팅 필름 제조 방법
TW200521622A (en) Novel photosensitive bilayer composition
TWI504619B (zh) 用於形成光阻保護膜之聚合物、用於形成光阻保護膜之組成物以及使用該組成物形成半導體元件之圖案的方法
JP4520245B2 (ja) リソグラフィー用トップコート膜の製造方法
TW201727367A (zh) 聚合性單體、高分子化合物、光阻材料及圖案形成方法
TWI835341B (zh) 用於193nm水浸式光刻的聚合物樹脂、抗水塗層組合物、抗水塗層及其製備方法
JP5416889B2 (ja) レジスト用重合体、レジスト組成物、およびパターンが形成された基板の製造方法
JP2018044034A (ja) 含フッ素単量体およびその含フッ素重合体、それを用いたレジストおよびパターン形成方法
JPWO2007119803A1 (ja) イマージョンリソグラフィー用レジスト材料
JP5682363B2 (ja) トップコート用組成物およびそれを用いたパターン形成方法
JP6908816B2 (ja) 含フッ素単量体、それを用いた含フッ素重合体、それを用いた化学増幅型レジストおよびそれを用いたパターン形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22929532

Country of ref document: EP

Kind code of ref document: A1