WO2023155730A1 - 用于电池单体的底托、电池单体、电池和用电设备 - Google Patents

用于电池单体的底托、电池单体、电池和用电设备 Download PDF

Info

Publication number
WO2023155730A1
WO2023155730A1 PCT/CN2023/075186 CN2023075186W WO2023155730A1 WO 2023155730 A1 WO2023155730 A1 WO 2023155730A1 CN 2023075186 W CN2023075186 W CN 2023075186W WO 2023155730 A1 WO2023155730 A1 WO 2023155730A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
hollowed out
hollowed
winding core
central
Prior art date
Application number
PCT/CN2023/075186
Other languages
English (en)
French (fr)
Inventor
曾超
李志强
陈庆荣
王升威
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP23755733.5A priority Critical patent/EP4401198A1/en
Publication of WO2023155730A1 publication Critical patent/WO2023155730A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/654Means for temperature control structurally associated with the cells located inside the innermost case of the cells, e.g. mandrels, electrodes or electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of batteries, in particular to a base for a battery cell, a battery cell, a battery and electrical equipment.
  • batteries and their battery cells have been widely used in electrical equipment as a new type of energy storage structure, such as battery cars, electric vehicles, electric aircraft, electric ships, electric toy cars, electric toys Ships, electric toy airplanes and electric tools, etc.
  • the battery includes multiple battery cells stacked on each other, and the multiple battery cells are electrically connected, so as to realize the output of battery electric energy and supply power to electric equipment.
  • Traditional battery cells are prone to thermal runaway. Therefore, how to reduce the probability of thermal runaway of battery cells has become an urgent problem to be solved.
  • the present application provides a bottom support for a battery cell, a battery cell, a battery, and an electrical device that reduce the probability of thermal runaway of the battery cell.
  • the present application provides a bottom bracket for supporting a winding core.
  • the bottom bracket includes a bottom plate, and the bottom plate includes a central area and a peripheral area surrounding the central area; wherein, the bottom plate is configured to form at least one set of The hollowed out group, the hollowed out area of each hollowed out group increases sequentially from the peripheral area to the central area of the bottom plate.
  • the larger the hollow area of the hollow group the greater the liquid absorption capacity of the liquid absorption area corresponding to the position of the hollow group on the bottom surface of the winding core. Due to the direction from the peripheral area of the bottom plate to the central area, the hollow area of each group of hollowed out groups increases sequentially, and the liquid absorption capacity of the liquid absorption areas arranged in sequence from the outer layer to the central layer on the bottom surface of the core also increases sequentially.
  • the greater the liquid absorption capacity, the greater the liquid absorption, so the more heat is taken away by the electrolyte the temperature difference between the inner layer and the outer layer of the core in the direction from the outer layer to the center layer on the bottom surface of the core Both are small. Therefore, the heat distribution on the bottom surface of the entire winding core is relatively uniform, and the temperature difference between various places is small, so that the probability of thermal runaway of the battery cells can be reduced.
  • each set of hollowed out groups includes several hollowed out parts arranged in sequence from the peripheral area to the central area, defining all the hollowed out parts in the same surrounding direction in each set of hollowed out groups as a row, and the number of all the hollowed out parts in the same row The sum of the areas is the sub-hollow area;
  • the sum of the sub-cutout areas of all rows is the hollow-out area of each group, and the sub-cutout areas of all rows are along the base plate From the peripheral area to the central area, it increases sequentially.
  • the liquid absorption capacity also gradually increases from the peripheral area to the central area, and its heat dissipation capacity also gradually increases, so that the temperature of each part of the winding core The distribution is also relatively uniform and the temperature difference is small.
  • the central area of the bottom plate is configured to form a central hollow, and the hollow area of the central hollow is larger than the largest sub-hollow area in each set of hollow groups.
  • the hollow area of the central hollow part is larger than the largest sub-hollow area in each hollow group, and the central layer on the bottom of the core has the largest liquid absorption capacity. Therefore, the central layer on the bottom of the core can also dissipate heat in a timely and efficient manner. Therefore, the central layer on the bottom surface of the winding core can be prevented from being damaged due to excessive temperature. Moreover, the combination of the central hollow part and other hollow groups can also improve the heat dissipation capacity of the bottom surface of the entire winding core.
  • the hollowed out groups are at least two groups arranged sequentially along the enclosing direction of the peripheral area; any two groups of hollowed out groups located on opposite sides of the central hollowed out part are distributed axially symmetrically with respect to the central line of the central hollowed out part.
  • any two liquid-absorbing regions located on opposite sides of the central layer are distributed axially symmetrically with respect to the central axis of the winding core.
  • Any two groups of hollows located on opposite sides of the central hollow are symmetrically distributed with respect to the center line of the central hollow, and in the direction from the outer layer of the core to the central layer, each liquid-absorbing area has the same liquid-absorbing capacity , so that the heat dissipation of the winding core is more stable, and the temperature difference between each place is smaller.
  • two adjacent hollowed out parts located in the same enclosing direction of the peripheral area in two adjacent groups of hollowed out groups communicate with each other correspondingly.
  • the bottom plate has a larger hollow area, and accordingly, the liquid absorption capacity of the bottom surface of the core is also increased, so that the core has better heat dissipation performance.
  • it further includes a side plate matched with the bottom plate, the side plate is continuously arranged along the enclosing direction of the peripheral area and encloses with the bottom plate to form a limiting space for limiting the winding core.
  • the side plate is configured to form a first communicating hole communicating with the limiting space.
  • the electrolyte in the casing can enter into the limited space through the first communication hole and contact with the winding core, so as to maintain the liquid absorption capacity of the winding core; on the other hand, the setting of the first communication hole can also reduce the The contact area between the winding core and the side plate is small, and the friction force between the winding core and the side plate is small, so that the winding core can be easily loaded or removed.
  • a post is also included, the post is coupled to the base plate and is configured for winding the core.
  • the design of the column can not only support the winding core to facilitate the forming of the winding core, but also improve the assembly reliability between the winding core and the bottom bracket to prevent the winding core from shifting relative to the bottom plate. Therefore, the winding core always has better absorption. Liquid capacity, and the heat dissipation process is also more stable.
  • the column is a hollow structure, and a second communication hole communicating with the interior of the column is opened on the outer wall of the column.
  • the column in order to reduce the weight of the bottom bracket, can be set as a hollow structure. Furthermore, the outer wall of the column is provided with a second communication hole communicating with the interior of the column, then during the operation of the battery cell, the temperature on the core layer can diffuse to the interior of the column through the second communication hole, thereby The heat dissipation performance of the winding core can be further improved.
  • the present application provides a battery cell, including: a housing; a winding core; between the inner bottom wall of the housing.
  • the present application provides a battery, which includes: a box body; and the battery cell according to any one of the above embodiments, the battery cell is accommodated in the box body.
  • the present application provides an electric device, which includes the battery in any one of the above embodiments, and the battery is used to provide electric energy.
  • FIG. 1 is a schematic structural view of a vehicle in some embodiments of the present application.
  • FIG. 2 is a schematic diagram of an exploded structure of a battery in some embodiments of the present application.
  • FIG. 3 is an exploded view of a battery cell in an embodiment of the present application.
  • FIG. 4 is a schematic structural view of the bottom support in the battery cell shown in FIG. 1;
  • Fig. 5 is a structural schematic diagram of a bottom bracket in another embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of a bottom bracket in another embodiment of the present application.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • a first feature being "on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are indirect through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • the battery 100 is formed by connecting several battery cells 20 in series and/or in parallel.
  • the battery cell 20 includes a casing 22 , a winding core 23 and a bottom bracket 24 , and the winding core 23 and the bottom bracket 24 are both disposed on the winding core 23 inside the casing 22 .
  • the bottom support 24 includes a bottom plate 241 clamped between the bottom surface of the winding core 23 and the inner bottom wall of the housing 22 , the winding core 23 is used for energy storage, and the bottom plate 241 is used for bearing.
  • a hollowed out area is also provided on the bottom plate 241.
  • the electrolyte can flow from the peripheral area to the central area of the bottom plate 241 , and penetrate the hollow area of the bottom plate 241 to be absorbed by the bottom surface of the winding core 23 .
  • the outer layer of the bottom surface of the winding core 23 has a large contact area with the electrolyte, and the inner layer of the bottom surface of the winding core 23 has a small chance of contacting the electrolyte, and the contact area between the outer layer and the center layer is small.
  • the drying degree of the bottom surface of the winding core 23 is deepened, correspondingly, the impedance is also increased, and the heat released during operation is also gradually increased.
  • the temperature difference between the inner layer (including the central layer) and the outer layer gradually increases along the direction from the outer layer on the bottom surface of the winding core 23 to the central layer, which makes the battery cell 20 prone to thermal runaway.
  • each hollow part 24111 on the bottom plate 241 is consistent from the peripheral area to the central area of the bottom plate 241 . In this way, in the direction from the outer layer on the bottom surface of the core 23 to the central layer, the liquid absorption capacity of the core 23 is also consistent.
  • the bottom plate 241 can be designed to be structured to form at least one set of hollowed out groups 2411, and the hollowed out area of each group of hollowed out groups 2411 extends from the peripheral area of the bottom plate 241 to the center. The area increases sequentially. In this way, the liquid absorption capacity of the electrolyte absorbed by the bottom surface of the winding core 23 in the direction from the outer layer to the central layer also gradually increases, and the heat absorbed by the electrolyte on the bottom surface of the winding core 23 in this direction also gradually increases, so the temperature will tend to increase. in the same.
  • the heat released from the bottom surface of the winding core 23 will also tend to be the same, so that the temperature difference between the inner layer and the outer layer of the bottom surface of the winding core 23 is smaller, therefore, The battery cells 20 also have a longer service life.
  • the embodiment of the present application provides an electric device using a battery 100 or a battery cell 20 as a power source.
  • the electric device may be, but not limited to, electric toys, electric tools, battery cars, electric vehicles, ships, spacecraft, and the like.
  • electric toys may include stationary or mobile electric toys, for example, electric car toys, electric boat toys, electric airplane toys, etc.
  • spacecraft may include airplanes, rockets, space shuttles, spaceships, and the like.
  • a vehicle 1000 as an electric device according to an embodiment of the present application is taken as an example.
  • FIG. 1 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • the vehicle 1000 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle.
  • the interior of the vehicle 1000 is provided with a battery 100 , and the battery 100 may be provided at the bottom, head or tail of the vehicle 1000 .
  • the battery 100 can be used for power supply of the vehicle 1000 , for example, the battery 100 can be used as an operating power source of the vehicle 1000 .
  • the vehicle 1000 may further include a controller 200 and a motor 300 , the controller 200 is used to control the battery 100 to supply power to the motor 300 , for example, for starting, navigating and running the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but can also be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel oil or natural gas to provide driving power for the vehicle 1000 .
  • FIG. 2 is an exploded view of the battery 100 provided by some embodiments of the present application.
  • the battery 100 includes a box body 10 and a battery cell 20 , and the battery cell 20 is housed in the box body 10 and used to provide electric energy.
  • the box body 10 is used to provide accommodating space for the battery cells 20 , and the box body 10 may adopt various structures.
  • the box body 10 may include a first part 11 and a second part 12, the first part 11 and the second part 12 cover each other, the first part 11 and the second part 12 jointly define a of accommodation space.
  • the second part 12 can be a hollow structure with one end open, the first part 11 can be a plate-shaped structure, and the first part 11 covers the opening side of the second part 12, so that the first part 11 and the second part 12 jointly define an accommodation space ;
  • the first part 11 and the second part 12 can also be hollow structures with one side opening, and the opening side of the first part 11 is covered by the opening side of the second part 12 .
  • the box body 10 formed by the first part 11 and the second part 12 can be in various shapes, such as a cylinder, a cuboid and the like.
  • the battery 100 there may be multiple battery cells 20 , and the multiple battery cells 20 may be connected in series, in parallel or in parallel.
  • the mixed connection means that the multiple battery cells 20 are connected in series and in parallel.
  • a plurality of battery cells 20 can be directly connected in series, in parallel or mixed together, and then the whole composed of a plurality of battery cells 20 is housed in the box 10; of course, the battery 100 can also be a plurality of battery cells 20
  • the battery modules are firstly connected in series or parallel or in combination, and then multiple battery modules are connected in series or in parallel or in combination to form a whole, which is accommodated in the case 10 .
  • the battery 100 may also include other structures, for example, the battery 100 may also include a bus component for realizing electrical connection between multiple battery cells 20 .
  • each battery cell 20 may be a secondary battery or a primary battery; it may also be a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, but not limited thereto.
  • the battery cell 20 may be in the form of a cylinder, a flat body, a cuboid or other shapes.
  • FIG. 3 is a schematic diagram of an exploded structure of a battery cell 20 provided in some embodiments of the present application.
  • the battery cell 20 refers to the smallest unit constituting a battery.
  • the battery cell 20 includes an end cover 21 , a casing 22 , a winding core 23 , a base 24 and other functional components.
  • the end cap 21 refers to a component that covers the opening of the casing 22 to isolate the internal environment of the battery cell 20 from the external environment.
  • the shape of the end cap 21 can be adapted to the shape of the housing 22 to fit the housing 22 .
  • the end cap 21 can be made of a material (such as aluminum alloy) with a certain hardness and strength, so that the end cap 21 is not easy to deform when being squeezed and collided, so that the battery cell 20 can have more With high structural strength, safety performance can also be improved.
  • Functional components such as electrode terminals may be provided on the end cap 21 . The electrode terminals may be used to electrically connect with the roll 23 for outputting or inputting electric energy of the battery cell 20 .
  • the end cover 21 may also be provided with a pressure relief mechanism for releasing the internal pressure when the internal pressure or temperature of the battery cell 20 reaches a threshold value.
  • the material of the end cap 21 can also be various, for example, copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which is not particularly limited in this embodiment of the present application.
  • an insulator can be provided inside the end cover 21 , and the insulator can be used to isolate the electrical connection components in the housing 22 from the end cover 21 to reduce the risk of short circuit.
  • the insulating member may be plastic, rubber or the like.
  • the casing 22 is a component used to cooperate with the end cap 21 to form the internal environment of the battery cell 20 , wherein the formed internal environment can be used to accommodate the winding core 23 , electrolyte and other components.
  • the housing 22 and the end cover 21 can be independent components, and an opening can be provided on the housing 22 , and the internal environment of the battery cell 20 can be formed by making the end cover 21 cover the opening at the opening.
  • the end cover 21 and the housing 22 can also be integrated. Specifically, the end cover 21 and the housing 22 can form a common connection surface before other components are inserted into the housing. When the inside of the housing 22 needs to be encapsulated , then make the end cover 21 cover the housing 22.
  • the housing 22 can be in various shapes and sizes, such as cuboid, cylinder, hexagonal prism and so on. Specifically, the shape of the housing 22 can be determined according to the specific shape and size of the battery cell assembly.
  • the housing 22 can be made of various materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which is not particularly limited in this embodiment of the present application.
  • the winding core 23 is also called a cell assembly or an electrode assembly, which is a component in the battery cell 20 where the electrochemical reaction occurs.
  • One or more winding cores 23 may be contained within the housing 22 .
  • the winding core 23 is mainly formed by winding or stacking the positive electrode sheet and the negative electrode sheet, and usually a separator is provided between the positive electrode sheet and the negative electrode sheet.
  • the part of the positive electrode sheet and the negative electrode sheet with the active material constitutes the main body of the cell assembly, and the parts of the positive electrode sheet and the negative electrode sheet without the active material respectively constitute tabs.
  • the positive pole tab and the negative pole tab can be located at one end of the main body together or at two ends of the main body respectively.
  • the bottom bracket 24 is disposed in the casing 22 and used to support the winding core 23 of the battery cell 20 .
  • the bottom bracket 24 includes a bottom plate 241 clamped between the bottom surface of the winding core 23 and the inner bottom wall of the housing 22 , and the bottom plate 241 includes a central area and a peripheral area surrounding the central area.
  • the bottom plate 241 is configured with at least one set of hollowed out groups 2411 , and the hollowed out area of each set of hollowed out groups 2411 increases sequentially from the peripheral area to the central area of the bottom plate 241 .
  • the central layer on the bottom surface of the winding core 23 corresponds to the central region
  • the inner layer on the bottom surface of the winding core 23 except the central layer corresponds to the peripheral region.
  • the direction from the outer layer on the bottom surface of the core 23 to the central layer is parallel to or coincides with the direction from the peripheral area to the central area of the bottom plate 241 .
  • the hollowed out area of each set of hollowed out groups 2411 increases sequentially, and the liquid absorption capacity of the liquid-absorbed areas arranged sequentially from the outer layer to the central layer on the bottom surface of the winding core 23 also increases sequentially.
  • the greater the liquid absorption capacity the more liquid absorption, so the heat taken away by the electrolyte is also more, and the heat absorbed by the electrolyte on the bottom surface of the core 23 is also gradually increased, so the heat from the outer layer to the center of the bottom surface of the core 23 The temperature in the direction of the layer will tend to be the same.
  • the greater the liquid absorption capacity the smaller the impedance, so the less heat is released.
  • the bottom bracket 24 may only include the bottom plate 241 , but the bottom plate 241 needs to be an insulating plate to prevent the winding core 23 from contacting the casing 22 to conduct electricity.
  • the base 24 may also include an insulating film, which is stacked between the bottom plate 241 and the bottom surface of the winding core 23, and the insulating properties of the insulating film block the electrical conduction between the winding core 23 and the casing 22. Pass.
  • the bottom plate 241 can be an insulating plate or a conductive plate, which can be specifically set according to requirements.
  • each group of hollowed out groups 2411 includes a number of hollowed out parts 24111 arranged sequentially from the peripheral area to the central area, defining all the hollowed out parts 24111 in the same surrounding direction in each group of hollowed out groups 2411 as a row, and in the same row
  • the sum of the areas of all the hollowed out parts 24111 is the sub-hollowed out area.
  • the sum of the sub-cutout areas of all rows is the hollow-out area of each group of hollow-out groups 2411 , and the sub-cutout areas of all rows increase sequentially from the peripheral area to the central area of the base plate 241 .
  • one hollow part 24111 or at least two hollow parts 24111 can be provided in each row, and each group of hollow parts 2411 can have one row or at least two rows, which can be specifically set according to requirements.
  • each row arranged along the direction from the peripheral area to the central area is named as the first row, the first row, and the second row.
  • the second row and the third row, and the two hollowed-out parts 24111 arranged along the same enclosing direction in the first row are respectively named the first hollowed-out part 24111a and the second hollowed-out part 24111b, and the two hollowed-out parts 24111b arranged along the same enclosing direction in the second row
  • the two hollowed out parts 24111 are named as the third hollowed out part 24111c and the fourth hollowed out part 24111d respectively, and the two hollowed out parts 24111 arranged in the same enclosing direction in the third row are named as the fifth hollowed out part 24111e and the sixth hollowed out part 24111e respectively.
  • the hollowed out part 24111g the sum of the hollowed out areas of the first hollowed out part 24111a and the second hollowed out part 24111b forms the first sub-hollowed out area
  • the sum of the hollowed out areas of the third hollowed out part 24111c and the fourth hollowed out part 24111d forms the second sub-hollowed out area
  • the sum of the hollowed out areas of the fifth hollowed out portion 24111e and the sixth hollowed out portion 24111g forms a third sub hollowed out area.
  • the area of the first sub-hollowout ⁇ the area of the second sub-hollowout ⁇ the area of the third sub-hollowout.
  • each row arranged along the direction from the peripheral area to the central area is named as the first row in turn , the second row and the third row
  • the hollow part 24111 in the first row is named the seventh hollow part 24111h
  • the hollow part 24111 in the second row is named the eighth hollow part 24111j
  • the hollow part 24111 in the third row is named
  • the ninth hollowed out part 24111k the hollowed out area of the seventh hollowed out part 24111h in the first row forms the fourth sub-hollowed out area
  • the hollowed out area of the eighth hollowed out part 24111j in the second row forms the fifth sub-hollowed out area
  • the hollowed out area of the ninth hollowed out part 24111k forms the sixth sub hollowed out area.
  • the liquid absorption capacity gradually increases in the direction from the peripheral area to the central area, and the heat dissipation capacity also increases gradually, so that the winding core 23 everywhere The temperature distribution is also relatively uniform and the temperature difference is small.
  • any two adjacent hollow parts 24111 can be arranged at intervals or continuously. It can be set as interval or continuously.
  • the central area of the bottom plate 241 is structured to form a central hollow part 2412, and the central hollow part 2412
  • the hollowed out area is greater than the largest sub-hollowed out area in each group of hollowed out groups 2411 .
  • the central hollow portion 2412 corresponds to the central layer of the bottom surface of the winding core 23 .
  • the hollow area of the central hollow part 2412 is greater than the maximum sub-hollow area in each group of hollow groups 2411, then the central layer of the bottom surface of the winding core 23 has the maximum liquid absorption capacity, therefore, the central layer of the bottom surface of the winding core 23 can also be timely and Efficient heat dissipation can prevent the central layer on the bottom surface of the winding core 23 from being damaged due to excessive temperature.
  • the combination of the central hollow part 2412 and other hollow groups 2411 can also improve the heat dissipation capability of the bottom surface of the entire winding core 23 .
  • the hollowed-out groups 2411 are at least two groups sequentially arranged along the enclosing direction of the peripheral area. Any two groups of hollowed out groups 2411 located on opposite sides of the central hollowed out portion 2412 are distributed axially symmetrically with respect to the central line of the central hollowed out portion 2412 .
  • the bottom surface of the winding core 23 has a plurality of liquid-absorbing regions corresponding to all the hollow groups 2411 one-to-one, and any two liquid-absorbing regions located on opposite sides of the central layer are distributed axially symmetrically with respect to the central axis of the winding core 23 .
  • any two groups of hollowed out groups 2411 located on the opposite sides of the central hollowed out part 2412 are distributed axisymmetrically with respect to the central line of the central hollowed out part 2412, and in the direction from the outer layer to the central layer of the winding core 23, each liquid-absorbing area has the same Excellent liquid absorption capacity, so that the heat dissipation of the winding core 23 is more stable, and the temperature difference between the various places is smaller.
  • each group has three rows, in any adjacent two groups, one group has two hollowed out parts 24111 in each row, and the other group has one hollowed out part 24111 in each row as an example , wherein the first row of one group of hollowed out groups 2411 is located in the same surrounding direction as the first row of another group of hollowed out groups 2411, and the second row of one group of hollowed out groups 2411 is in the same direction as the second row of another group of hollowed out groups 2411 Located in the same surrounding direction, the third row of one group of hollowed out groups 2411 is located in the same surrounding direction as the third row of the other group of hollowed out groups 2411 .
  • the adjacent two hollowed-out parts 24111 in the same enclosing direction of the peripheral area in two adjacent groups of hollowed-out groups 2411 are correspondingly connected, specifically referring to: the second hollowed-out part 24111 in the first row in one group of hollowed-out groups 2411 is connected to the The seventh hollow part 24111h in the other group is adjacent and connected, and/or, the fourth hollow part 24111 in the second row in one set of hollow group 2411 is adjacent to the eighth hollow part 24111j in the other group and communicated, and/or, the sixth hollow part 24111 in the third row in one group of hollowed out groups 2411 is adjacent to and communicated with the ninth hollowed out part 24111k in the other group.
  • the bottom plate 241 has a larger hollow area, and correspondingly, the liquid absorption capacity of the bottom surface of the core 23 is also increased, so that the core 23 has better heat dissipation performance.
  • the bottom bracket 24 further includes a side plate 242 that is connected to the bottom plate 241.
  • the side plate 242 is continuously arranged along the enclosing direction of the peripheral area and surrounds with the bottom plate 241 to form a limit roll.
  • the limiting space 243 of the core 23 that is to say, the winding core 23 is limited in the limiting space 243 .
  • a first communicating hole 2421 communicating with the limiting space 243 is formed on the side plate 242 .
  • the electrolyte in the casing 22 can enter into the limiting space 243 through the first communication hole 2421 and contact with the winding core 23, so as to maintain the liquid absorption capacity of the winding core 23; on the other hand, the first communication hole
  • the setting of 2421 can also reduce the contact area between the winding core 23 and the side plate 242, and then, the frictional force between the winding core 23 and the side plate 242 is small, so that the rolling core 23 and the side plate 242 can be easily rolled
  • the core 23 is loaded or removed.
  • first communication holes 2421 there are multiple first communication holes 2421 , and all the first communication holes 2421 are arranged at intervals along the circumference of the side plate 242 , so as to facilitate loading and unloading of the winding core 23 and allow the winding core 23 to fully contact with the electrolyte.
  • the bottom support 24 further includes a column 244 , which is matched with the bottom plate 241 and configured to wind the winding core 23 . That is to say, the winding core 23 is formed by being wound on the column 244 .
  • the design of the column 244 can not only support the winding core 23 to facilitate the forming of the winding core 23, but also improve the assembly reliability between the winding core 23 and the bottom support 24, so as to prevent the winding core 23 from shifting relative to the bottom plate 241.
  • the core 23 always has better liquid absorption capacity, and the heat dissipation process is also more stable.
  • the column 244 may be configured as a hollow structure. Furthermore, a second communication hole 2441 communicating with the interior of the column 244 is opened on the outer wall of the column 244, so that during the operation of the battery cell 20, the temperature on the center layer of the winding core 23 can pass through the second communication hole 2441 to the The interior of the column 244 is diffused, so as to further improve the heat dissipation performance of the winding core 23 .
  • the above-mentioned base 24 for the battery cell 20, the battery cell 20, the battery 100, and the electrical equipment the larger the hollow area of the hollow group 2411, the larger the area of the liquid absorption area corresponding to the bottom surface of the winding core 23 and the position of the hollow group 2411.
  • the greater the liquid absorption capacity Due to the direction from the peripheral area to the central area of the bottom plate 241 , the hollowed out area of each set of hollowed out groups 2411 increases sequentially, and the liquid absorption capacity of the liquid-absorbed areas arranged sequentially from the outer layer to the central layer on the bottom surface of the winding core 23 also increases sequentially. The greater the liquid absorption capacity, the more the liquid absorption, so the more heat will be taken away by the electrolyte.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

本申请涉及一种电池单体的底托、电池单体、电池和用电设备,底托用于承托卷芯,底托包括底板,底板包括中心区域及围设于中心区域外的外围区域。其中,底板被构造形成有至少一组镂空组,每组镂空组的镂空面积沿底板的外围区域至中心区域依次增大。本申请中提供的电池单体的底托、电池单体、电池和用电设备降低电池单体发生热失控的几率。

Description

用于电池单体的底托、电池单体、电池和用电设备
交叉引用
本申请引用于2022年02月18日递交的名称为“用于电池单体的底托、电池单体、电池和用电设备”的第2022203347466号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请涉及电池领域,特别是涉及一种用于电池单体的底托、电池单体、电池和用电设备。
背景技术
随着电池技术的发展,电池及其电池单体均作为一种新型的储能结构已被广泛的应用于用电设备,例如电瓶车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具等等。
电池包括多个相互堆叠的电池单体,且多个电池单体电连接,从而实现电池电能的输出,并为用电设备供电。传统的电池单体容易发生热失控,因此,如何降低电池单体发生热失控的几率成为亟待解决的一项问题。
发明内容
基于上述问题,本申请提供一种降低电池单体发生热失控的几率的用于电池单体的底托、电池单体、电池和用电设备。
第一方面,本申请提供了一种底托,用于承托卷芯,底托包括底板,底板包括中心区域及围设于中心区域外的外围区域;其中,底板被构造形成有至少一组镂空组,每组镂空组的镂空面积沿底板的外围区域至中心区域依次增大。
本申请实施例的技术方案中,镂空组的镂空面积越大,则卷芯底面与该镂空组位置对应的吸液区域的吸液能力越大。由于底板的外围区域至中心区域的方向,每组镂空组的镂空面积依次增大,则卷芯底面外层至中心层方向依次布置的吸液区域的吸液能力也依次增加。吸液能力越大,则吸液量越多,故被电解液带走的热量也越多,则在卷芯底面外层至中心层的方向上,卷芯内层与外层之间的温差均较小。因此,整个卷芯底面的热量分布较为均匀,且各处之间温差均较小,从而能够减小电池单体发生热失控的几率。
在一些实施例中,每组镂空组包括沿外围区域向中心区域依次布设的若干镂空部,定义每组镂空组中位于同一围设方向上的全部镂空部为一行,且同行中全部镂空部的面积之和为子镂空面积;
所有行的子镂空面积之和为每组镂空组的镂空面积,且所有行的子镂空面积沿底板 的外围区域至中心区域依次增大。
由于所有的子镂空面积是依次增大的,因此,在外围区域至中心区域的方向上,吸液能力也是逐渐升高的,且其散热能力也是逐渐提升的,故使得卷芯各处的温度分布也较为均匀且温差较小。
在一些实施例中,底板的中心区域构造形成有一中心镂空部,中心镂空部的镂空面积大于每组镂空组中的最大子镂空面积。
中心镂空部的镂空面积大于每组镂空组中的最大子镂空面积,则在卷芯底面的中心层处具有最大的吸液能力,因此,卷芯底面的中心层也能及时且高效的散热,从而可防止卷芯底面的中心层温度过高而毁损。而且,中心镂空部与其他镂空组结合,还可提升整个卷芯底面的散热能力。
在一些实施例中,镂空组为沿外围区域的围设方向依次布设的至少两组;位于中心镂空部相对两侧的任意两组镂空组均关于中心镂空部的中心线呈轴对称分布。
具体地,卷芯底面上具有多个与所有镂空组一一对应的吸液区域,且位于中心层相对两侧的任意两个吸液区域关于卷芯的中心轴线呈轴对称分布。位于中心镂空部相对两侧的任意两组镂空组均关于中心镂空部的中心线呈轴对称分布,则在卷芯外层至中心层的方向上,每个吸液区域具有相同的吸液能力,从而使得卷芯的散热更稳定,且各处的温差更小。
在一些实施例中,相邻两组镂空组中位于外围区域的同一围设方向上的相邻两个镂空部对应连通。
在该种设计下,底板具有更大的镂空面积,相应地,卷芯底面的吸液能力也增加,从而使得卷芯具有更好的散热性能。
在一些实施例中,还包括配接于底板的侧板,侧板沿外围区域的围设方向连续设置并与底板围设形成限位卷芯的限位空间。
这样,即使电池单体受外界环境影响而振动,底板与卷芯之间仍具有较优的接触效果,以防止卷芯相对底板发生偏移,从而能够保证卷芯始终具有较优的吸液能力,则散热过程也更稳定。
在一些实施例中,侧板上被构造形成有与限位空间连通的第一连通孔。
一方面,壳体内的电解液可通过第一连通孔进入至限位空间内并与卷芯接触,以便于维持卷芯的吸液能力,另一方面,第一连通孔的设置,还可减小卷芯与侧板之间的接触面积,进而,卷芯与侧板之间的摩擦力较小,从而可方便将卷芯装入或拆出。
在一些实施例中,还包括立柱,立柱配接于底板并被构造为用于卷绕卷芯。
立柱的设计,既可支撑卷芯,以方便卷芯成型,又可提升卷芯与底托之间的装配牢靠性,以防止卷芯相对底板偏移,因此,卷芯始终具有较优的吸液能力,且散热过程也更稳定。
在一些实施例中,立柱为中空结构,且立柱的外壁上开设有与立柱的内部连通的第二连通孔。
在一些实施例中,为了实现底托的轻量化,可以设置立柱为中空结构。进一步地,立柱的外壁上开设有与立柱的内部连通的第二连通孔,则在电池单体工作的过程中,卷芯中心层上的温度能够通过第二连通孔向立柱的内部扩散,从而可进一步提升卷芯的散热性能。
第二方面,本申请提供了一种电池单体,包括:壳体;卷芯;以及如上述底托,卷芯及底托均设于壳体内,且底托的底板夹持于卷芯与壳体的内底壁之间。
第三方面,本申请提供了一种电池,其包括:箱体;以及上述任意一项实施例的电池单体,电池单体容纳于箱体。
第四方面,本申请提供了一种用电设备,其包括上述任意一项实施例的电池,电池用于提供电能。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本申请一些实施例的车辆的结构示意图;
图2为本申请一些实施例的电池的分解结构示意图;
图3为本申请一实施例中电池单体的爆炸图;
图4为图1所示的电池单体中底托的结构示意图;
图5为本申请另一实施例中底托的结构示意图;
图6为本申请又一实施例中底托的结构示意图。
具体实施方式中的附图标号如下:
1000、车辆;
100、电池;200、控制器;300、马达;
10、箱体;11、第一部分;12、第二部分;
20、电池单体;21、端盖;22、壳体;23、卷芯;24、底托;241、底板;2411、镂空组;24111、镂空部;24111a、第一镂空部;24111b、第二镂空部;24111c、第三镂空部;24111d、第四镂空部;24111e、第五镂空部;24111g、第六镂空部;24111h、第七镂空部;24111j、第八镂空部;24111k、第九镂空部;2412、中心镂空部;242、侧板;2421、第一连 通孔;243、限位空间;244、立柱;2441、第二连通孔。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
请一并参阅图2及图3,电池100由若干个电池单体20串联和/或并联形成。其中,电池单体20包括壳体22、卷芯23及底托24,卷芯23及底托24均设于壳体22内的卷芯23。底托24包括夹持于卷芯23底面与壳体22内底壁之间的底板241,卷芯23用于储能,底板241用于承载。
为方便壳体22内的电解液能够浸润卷芯23,通常,在底板241上还开设有镂空区 域,在毛细管原理的作用下,电解液能够由底板241的外围区域至中心区域流动,并穿透底板241的镂空区域而被卷芯23的底面吸收。
具体地,卷芯23设于壳体22内时,卷芯23底面的外层与电解液接触面积大,卷芯23底面的内层与电解液接触的机会小,则在外层至中心层的方向上,卷芯23底面的干燥程度加深,相应地,阻抗也随之增大,则工作时释放的热量也逐渐增加。如此,在卷芯23底面外层至中心层的方向上,内层(包括中心层)与外层之间的温差逐渐增大,进而导致电池单体20容易发生热失控。
申请人注意到,虽然,卷芯23的底面在吸收流经底板241的电解液的过程中温度有所下降,但是并不能缓解卷芯23底面存在温差而导致电池单体20容易发生热失控的问题。其主要原因在于,底板241上的每个镂空部24111在底板241的外围区域至中心区域的镂空面积是保持一致的。这样,在卷芯23底面的外层至中心层的方向上,卷芯23的吸液能力也是一致的。而由于卷芯23底面的外层至中心层的方向依次布设的各个吸液区域释放的热量是逐渐增加的,故单纯的仅通过在底板241上设置镂空区域并不能解决卷芯23温差大的问题。
为了缓解卷芯23底面存在温差较大的问题,申请人研究发现,可以设计底板241被构造形成有至少一组镂空组2411,且每组镂空组2411的镂空面积沿底板241的外围区域至中心区域依次增大。如此,卷芯23底面吸收的电解液在外层至中心层的方向上的吸液能力也逐渐增大,则在该方向上卷芯23底面被电解液吸收的热量也逐渐增多,故温度将趋于相同。此外,吸液能力越大,阻抗则越小,故释放的热量也越少。这样一来,在卷芯23外层至中间层的方向上,卷芯23底面释放的热量也将趋于相同,从而使得卷芯23底面内层与外层之间的温差较小,因此,电池单体20也具有更长的使用寿命。
本申请实施例提供一种使用电池100或者电池单体20作为电源的用电设备,用电设备可以为但不限于电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电设备为车辆1000为例进行说明。
请参阅图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请再次参阅图2,图2为本申请一些实施例提供的电池100的爆炸图。电池100包括箱体10和电池单体20,电池单体20容纳于箱体10内并用于提供电能。其中,箱体10用于为电池单体20提供容纳空间,箱体10可以采用多种结构。在一些实施例中,箱体10可以包括第一部分11和第二部分12,第一部分11与第二部分12相互盖合,第一部分11和第二部分12共同限定出用于容纳电池单体20的容纳空间。第二部分12可以为一端开口的空心结构,第一部分11可以为板状结构,第一部分11盖合于第二部分12的开口侧,以使第一部分11与第二部分12共同限定出容纳空间;第一部分11和第二部分12也可以是均为一侧开口的空心结构,第一部分11的开口侧盖合于第二部分12的开口侧。当然,第一部分11和第二部分12形成的箱体10可以是多种形状,比如,圆柱体、长方体等。
在电池100中,电池单体20可以是多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多个电池单体20构成的整体容纳于箱体10内;当然,电池100也可以是多个电池单体20先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体10内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件,用于实现多个电池单体20之间的电连接。
其中,每个电池单体20可以为二次电池或一次电池;还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。电池单体20可呈圆柱体、扁平体、长方体或其它形状等。
请再次参阅图3,图3为本申请一些实施例提供的电池单体20的分解结构示意图。电池单体20是指组成电池的最小单元。如图3,电池单体20包括有端盖21、壳体22、卷芯23、底托24以及其他的功能性部件。
端盖21是指盖合于壳体22的开口处以将电池单体20的内部环境隔绝于外部环境的部件。不限地,端盖21的形状可以与壳体22的形状相适应以配合壳体22。在一些实施例中,端盖21可以由具有一定硬度和强度的材质(如铝合金)制成,这样,端盖21在受挤压碰撞时就不易发生形变,使电池单体20能够具备更高的结构强度,安全性能也可以有所提高。端盖21上可以设置有如电极端子等的功能性部件。电极端子可以用于与卷形23电连接,以用于输出或输入电池单体20的电能。在一些实施例中,端盖21上还可以设置有用于在电池单体20的内部压力或温度达到阈值时泄放内部压力的泄压机构。端盖21的材质也可以是多种的,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。在一些实施例中,在端盖21的内侧还可以设置有绝缘件,绝缘件可以用于隔离壳体22内的电连接部件与端盖21,以降低短路的风险。示例性的,绝缘件可以是塑料、橡胶等。
壳体22是用于配合端盖21以形成电池单体20的内部环境的组件,其中,形成的内部环境可以用于容纳卷芯23、电解液以及其他部件。壳体22和端盖21可以是独立的部件,可以于壳体22上设置开口,通过在开口处使端盖21盖合开口以形成电池单体20的内部环境。不限地,也可以使端盖21和壳体22一体化,具体地,端盖21和壳体22可以在其他部件入壳前先形成一个共同的连接面,当需要封装壳体22的内部时,再使端盖21盖合壳体22。壳体22可以是多种形状和多种尺寸的,例如长方体形、圆柱体形、六棱柱形等。具体地,壳体22的形状可以根据电芯组件的具体形状和尺寸大小来确定。壳体22的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
卷芯23又称电芯组件或电极组件,其是电池单体20中发生电化学反应的部件。壳体22内可以包含一个或更多个卷芯23。卷芯23主要由正极片和负极片卷绕或层叠放置形成,并且通常在正极片与负极片之间设有隔膜。正极片和负极片具有活性物质的部分构成电芯组件的主体部,正极片和负极片不具有活性物质的部分各自构成极耳。正极极耳和负极极耳可以共同位于主体部的一端或是分别位于主体部的两端。在电池100的充放电过程中,正极活性物质和负极活性物质与电解液发生反应,极耳连接电极端子以形成电流回路。
请一并参阅图4,底托24设于壳体22内并用于承托电池单体20的卷芯23。其中,底托24包括夹持于卷芯23的底面与壳体22的内底壁之间的底板241,底板241包括中心区域及围设于中心区域外的外围区域。其中,底板241被构造形成有至少一组镂空组2411,每组镂空组2411的镂空面积沿底板241的外围区域至中心区域依次增大。
具体地,卷芯23底面的中心层与中心区域对应,卷芯23底面除中心层之外的内层与外围区域对应。卷芯23底面外层至中心层的方向与底板241外围区域至中心区域的方向平行或重合。镂空组2411的镂空面积越大,则卷芯23底面与该镂空组2411位置对应的吸液区域的吸液能力也越大。由于底板241的外围区域至中心区域的方向,每组镂空组2411的镂空面积依次增大,则卷芯23底面外层至中心层方向依次布置的吸液区域的吸液能力也依次增加。吸液能力越大,则吸液量越多,故被电解液带走的热量也越多,则卷芯23底面被电解液吸收的热量也逐渐增多,故在卷芯23底面外层至中心层的方向上的温度将趋于相同。此外,吸液能力越大,阻抗则越小,故释放的热量也越少。这样一来,在卷芯23外层至中间层的方向上,卷芯23底面释放的热量也将趋于相同,因此,整个卷芯23底面的热量分布较为均匀,且各处之间温差均较小,从而能够减小电池单体20发生热失控的概率,且具有较长的使用寿命。
在一实施例中,底托24可以仅包括底板241,但底板241需为绝缘板,以防止卷芯23与壳体22接触而导电。在另一实施例中,底托24还可以包括绝缘膜,绝缘膜层叠设置于底板241与卷芯23的底面之间,绝缘膜的绝缘特性阻断卷芯23与壳体22之间的电导通。在该实施例中,底板241可以为绝缘板或者导电板,其具体可以根据需求进行设置。
在一实施例中,每组镂空组2411包括沿外围区域向中心区域依次布设的若干镂空部24111,定义每组镂空组2411中位于同一围设方向上的全部镂空部24111为一行,且同行中全部镂空部24111的面积之和为子镂空面积。所有行的子镂空面积之和为每组镂空组2411的镂空面积,且所有行的子镂空面积沿底板241的外围区域至中心区域依次增大。也就是说,在底板241的外围区域至中心区域的方向上,相邻的两个子镂空面积中下一个子镂空面积大于上一个子镂空面积。其中,每行中可以设置一个镂空部24111或者至少两个镂空部24111,此外,每组镂空组2411中可以具有一行或者至少两行,其具体可根据需求进行设置。
以每组镂空组2411具有三行,且每行具有两个镂空部24111为例,定义在同一组镂空组2411中,沿外围区域至中心区域方向布设的每行依次命名为第一行、第二行及第三行,且第一行中沿同一围设方向上设置的两个镂空部24111分别命名为第一镂空部24111a及第二镂空部24111b,第二行中沿同一围设方向上设置的两个镂空部24111分别命名为第三镂空部24111c及第四镂空部24111d,第三行中沿同一围设方向上设置的两个镂空部24111分别命名为第五镂空部24111e及第六镂空部24111g,第一镂空部24111a及第二镂空部24111b的镂空面积之和形成第一个子镂空面积,第三镂空部24111c及第四镂空部24111d的镂空面积之和形成第二个子镂空面积,第五镂空部24111e及第六镂空部24111g的镂空面积之和形成第三个子镂空面积。在底板241外围区域至中心区域的方向上,第一个子镂空面积<第二个子镂空面积<第三个子镂空面积。
又例如,以每组镂空组2411具有三行,且每行具有一个镂空部24111为例,定义在同一组镂空组2411中,沿外围区域向中心区域方向布设的每行依次命名为第一行、第二行及第三行,第一行中的镂空部24111命名为第七镂空部24111h,第二行中的镂空部24111命名为第八镂空部24111j,第三行中的镂空部24111命名为第九镂空部24111k,第一行中的第七镂空部24111h的镂空面积形成第四个子镂空面积,第二行中的第八镂空部24111j的镂空面积形成第五个子镂空面积,第三行中的第九镂空部24111k的镂空面积形成第六个子镂空面积。在底板241的外围区域至中心区域的方向上,第四个子镂空面积<第五个子镂空面积<第六个子镂空面积。
由于所有的子镂空面积是依次增大的,因此,在外围区域至中心区域的方向上,吸液能力也是逐渐升高的,且其散热能力也是逐渐提升的,故使得卷芯23各处的温度分布也较为均匀且温差较小。
在一些实施例中,在同一行中,任意相邻的两个镂空部24111之间可以为间隔设置或者连续设置,在底板241外围区域至中心区域的方向上,相邻两行的镂空部24111之间可以为间隔设置或者连续设置。
进一步地,底板241的中心区域构造形成有一中心镂空部2412,中心镂空部2412的 镂空面积大于每组镂空组2411中的最大子镂空面积。具体地,中心镂空部2412对应卷芯23底面的中心层。中心镂空部2412的镂空面积大于每组镂空组2411中的最大子镂空面积,则在卷芯23底面的中心层处具有最大的吸液能力,因此,卷芯23底面的中心层也能及时且高效的散热,从而可防止卷芯23底面的中心层温度过高而毁损。而且,中心镂空部2412与其他镂空组2411结合,还可提升整个卷芯23底面的散热能力。
在一实施例中,镂空组2411为沿外围区域的围设方向依次布设的至少两组。位于中心镂空部2412相对两侧的任意两组镂空组2411均关于中心镂空部2412的中心线呈轴对称分布。具体地,卷芯23底面上具有多个与所有镂空组2411一一对应的吸液区域,且位于中心层相对两侧的任意两个吸液区域关于卷芯23的中心轴线呈轴对称分布。位于中心镂空部2412相对两侧的任意两组镂空组2411均关于中心镂空部2412的中心线呈轴对称分布,则在卷芯23外层至中心层的方向上,每个吸液区域具有相同的吸液能力,从而使得卷芯23的散热更稳定,且各处的温差更小。
更进一步地,相邻两组镂空组2411中位于外围区域的同一围设方向上的相邻两个镂空部24111对应连通。具体地,以镂空组2411为四组,每组均具有三行,任意相邻的两组中,其中一组每行具有两个镂空部24111,另一组每行具有一个镂空部24111为例,其中一组镂空组2411的第一行与另一组镂空组2411的第一行位于同一围设方向上,其中一组镂空组2411的第二行与另一组镂空组2411的第二行位于同一围设方向上,其中一组镂空组2411的第三行与另一组镂空组2411的第三行位于同一围设方向上。相邻两组镂空组2411中位于外围区域的同一围设方向上的相邻两个镂空部24111对应连通,具体是指:其中一组镂空组2411中第一行的第二个镂空部24111与另一组中的第七镂空部24111h相邻且连通,和/或,其中一组镂空组2411中第二行的第四个镂空部24111与另一组中的第八镂空部24111j相邻且连通,和/或,其中一组镂空组2411中第三行的第六个镂空部24111与另一组中的第九镂空部24111k相邻且连通。在该种设计下,底板241具有更大的镂空面积,相应地,卷芯23底面的吸液能力也增加,从而使得卷芯23具有更好的散热性能。
请一并参阅图5,在一实施例中,底托24还包括配接于底板241的侧板242,侧板242沿外围区域的围设方向连续设置并与底板241围设形成限位卷芯23的限位空间243。也就是说,卷芯23限位于限位空间243内。这样,即使电池单体20受外界环境影响而振动,底板241与卷芯23之间仍具有较优的接触效果,以防止卷芯23相对底板241发生偏移,从而能够保证卷芯23始终具有较优的吸液能力,则散热过程也更稳定。
进一步地,侧板242上被构造形成有与限位空间243连通的第一连通孔2421。一方面,壳体22内的电解液可通过第一连通孔2421进入至限位空间243内并与卷芯23接触,以便于维持卷芯23的吸液能力,另一方面,第一连通孔2421的设置,还可减小卷芯23与侧板242之间的接触面积,进而,卷芯23与侧板242之间的摩擦力较小,从而可方便将卷 芯23装入或拆出。
在一些实施例中,第一连通孔2421为多个,所有第一连通孔2421沿侧板242的周向间隔设置,以便于装卸卷芯23,且使得卷芯23能够与电解液充分接触。
请一并参阅图6,在一些实施例中,底托24还包括立柱244,立柱244配接于底板241并被构造为用于卷绕卷芯23。也就是说,卷芯23通过卷绕于立柱244成型。立柱244的设计,既可支撑卷芯23,以方便卷芯23成型,又可提升卷芯23与底托24之间的装配牢靠性,以防止卷芯23相对底板241偏移,因此,卷芯23始终具有较优的吸液能力,且散热过程也更稳定。
在一些实施例中,为了实现底托24的轻量化,可以设置立柱244为中空结构。进一步地,立柱244的外壁上开设有与立柱244的内部连通的第二连通孔2441,则在电池单体20工作的过程中,卷芯23中心层上的温度能够通过第二连通孔2441向立柱244的内部扩散,从而可进一步提升卷芯23的散热性能。
在一些实施例中,第二连通孔2441为多个,所有第二连通孔2441沿立柱244的周向间隔设置,故能够进一步提升卷芯23的散热性能。
上述用于电池单体20的底托24、电池单体20、电池100和用电设备,镂空组2411的镂空面积越大,则卷芯23底面与该镂空组2411位置对应的吸液区域的吸液能力越大。由于底板241的外围区域至中心区域的方向,每组镂空组2411的镂空面积依次增大,则卷芯23底面外层至中心层方向依次布置的吸液区域的吸液能力也依次增加。吸液能力越大,则吸液量越多,故被电解液带走的热量也越多,则在卷芯23底面外层至中心层的方向上,卷芯23内层与外层之间的温差均较小。因此,整个卷芯23底面的热量分布较为均匀,且各处之间温差均较小,从而能够减小电池单体20发生热失控的几率。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这都属于本申请的保护范围。

Claims (12)

  1. 一种底托(24),用于承托电池单体(20)的卷芯(23),所述底托(24)包括底板(241),所述底板(241)包括中心区域及围设于所述中心区域外的外围区域;
    其中,所述底板(241)被构造形成有至少一组镂空组(2411),每组所述镂空组(2411)的镂空面积沿所述底板(241)的所述外围区域至所述中心区域依次增大。
  2. 根据权利要求1所述的底托(24),其中,每组所述镂空组(2411)包括沿所述外围区域向所述中心区域依次布设的若干镂空部(2412),定义每组所述镂空组(2411)中位于同一围设方向上的全部所述镂空部(2412)为一行,且同行中全部所述镂空部(2412)的面积之和为子镂空面积;
    所有行的所述子镂空面积之和为每组所述镂空组(2411)的镂空面积,且所有行的所述子镂空面积沿所述底板(241)的外围区域至所述中心区域依次增大。
  3. 根据权利要求2所述的底托(24),其中,所述底板(241)的所述中心区域构造形成有一中心镂空部(2412),所述中心镂空部(2412)的镂空面积大于每组所述镂空组中的最大子镂空面积。
  4. 根据权利要求3所述的底托(24),其中,所述镂空组(2411)为沿所述外围区域的围设方向依次布设的至少两组;
    位于所述中心镂空部(2412)相对两侧的任意两组所述镂空组(2411)均关于所述中心镂空部(2412)的中心线呈轴对称分布。
  5. 根据权利要求4所述的底托(24),其中,相邻两组所述镂空组(2411)中位于所述外围区域的同一围设方向上的相邻两个所述镂空部(2412)对应连通。
  6. 根据权利要求1至5任意一项所述的底托(24),其中,还包括配接于所述底板(241)的侧板(242),所述侧板(242)沿所述外围区域的围设方向连续设置并与所述底板(241)围设形成限位卷芯(23)的限位空间(243)。
  7. 根据权利要求6所述的底托(24),其中,所述侧板(242)上被构造形成有与所述限位空间(243)连通的第一连通孔(2421)。
  8. 根据权利要求1至7任意一项所述的底托(24),其中,还包括立柱(244),所述立柱(244)配接于所述底板(241)并被构造为用于卷绕卷芯(23)。
  9. 根据权利要求8所述的底托(24),其中,所述立柱(244)为中空结构,且所述立柱(244)的外壁上开设有与所述立柱(244)的内部连通的第二连通孔(2441)。
  10. 一种电池单体(20),其中,包括:
    壳体(22);
    卷芯(23);以及
    如上述权利要求1至9任意一项所述的底托(24),所述卷芯(23)及所述底托(24)均设于所述壳体(22)内,且所述底托(24)的所述底板(241)夹持于所述卷芯(23)与所述壳体(22)的内底壁之间。
  11. 一种电池(100),其中,包括:
    箱体(10);以及
    如权利要求1至10任意一项所述的电池单体(20),所述电池单体(20)容纳于所述箱体(10)。
  12. 一种用电设备,其中,包括如权利要求11所述的电池(100),所述电池(100)用于提供电能。
PCT/CN2023/075186 2022-02-18 2023-02-09 用于电池单体的底托、电池单体、电池和用电设备 WO2023155730A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP23755733.5A EP4401198A1 (en) 2022-02-18 2023-02-09 Holder for battery cell, and battery cell, battery and electric device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202220334746.6U CN216872110U (zh) 2022-02-18 2022-02-18 用于电池单体的底托、电池单体、电池和用电设备
CN202220334746.6 2022-02-18

Publications (1)

Publication Number Publication Date
WO2023155730A1 true WO2023155730A1 (zh) 2023-08-24

Family

ID=82155350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075186 WO2023155730A1 (zh) 2022-02-18 2023-02-09 用于电池单体的底托、电池单体、电池和用电设备

Country Status (3)

Country Link
EP (1) EP4401198A1 (zh)
CN (1) CN216872110U (zh)
WO (1) WO2023155730A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216872110U (zh) * 2022-02-18 2022-07-01 宁德时代新能源科技股份有限公司 用于电池单体的底托、电池单体、电池和用电设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308204A (ja) * 1997-05-08 1998-11-17 Mitsubishi Cable Ind Ltd 非水有機電解液電池用の電気絶縁板
JP2013225431A (ja) * 2012-04-23 2013-10-31 Toyota Motor Corp 電池モジュール
CN203617373U (zh) * 2013-12-20 2014-05-28 山东精工电子科技有限公司 多孔圆柱型锂离子电池下垫片
CN203617350U (zh) * 2013-12-20 2014-05-28 山东精工电子科技有限公司 圆柱型锂离子电池上垫片
CN107394063A (zh) * 2016-05-16 2017-11-24 宁德时代新能源科技股份有限公司 二次电池
CN110828885A (zh) * 2019-11-11 2020-02-21 中山市众旺德新能源科技有限公司 一种扣式柱状锂离子电池及制造方法
CN214280015U (zh) * 2021-01-28 2021-09-24 江苏智泰新能源科技有限公司 一种促进电解液浸润的开孔箔材
CN216872110U (zh) * 2022-02-18 2022-07-01 宁德时代新能源科技股份有限公司 用于电池单体的底托、电池单体、电池和用电设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308204A (ja) * 1997-05-08 1998-11-17 Mitsubishi Cable Ind Ltd 非水有機電解液電池用の電気絶縁板
JP2013225431A (ja) * 2012-04-23 2013-10-31 Toyota Motor Corp 電池モジュール
CN203617373U (zh) * 2013-12-20 2014-05-28 山东精工电子科技有限公司 多孔圆柱型锂离子电池下垫片
CN203617350U (zh) * 2013-12-20 2014-05-28 山东精工电子科技有限公司 圆柱型锂离子电池上垫片
CN107394063A (zh) * 2016-05-16 2017-11-24 宁德时代新能源科技股份有限公司 二次电池
CN110828885A (zh) * 2019-11-11 2020-02-21 中山市众旺德新能源科技有限公司 一种扣式柱状锂离子电池及制造方法
CN214280015U (zh) * 2021-01-28 2021-09-24 江苏智泰新能源科技有限公司 一种促进电解液浸润的开孔箔材
CN216872110U (zh) * 2022-02-18 2022-07-01 宁德时代新能源科技股份有限公司 用于电池单体的底托、电池单体、电池和用电设备

Also Published As

Publication number Publication date
CN216872110U (zh) 2022-07-01
EP4401198A1 (en) 2024-07-17

Similar Documents

Publication Publication Date Title
WO2023174266A1 (zh) 壳体、电池单体、电池及用电设备
WO2023155730A1 (zh) 用于电池单体的底托、电池单体、电池和用电设备
US20230361356A1 (en) Battery unit, and battery, power consuming device and preparation apparatus associated therewith
WO2023207402A1 (zh) 顶盖组件、电池单体、电池及用电设备
WO2024060618A1 (zh) 电极组件、电池单体、电池及用电设备
US20240097143A1 (en) Battery unit, battery, and power consuming device
US20240014502A1 (en) Battery, battery module, and electrically powered device
WO2021191921A1 (en) Battery case structure
WO2023245841A1 (zh) 电池壳、电池单体、电池及用电装置
WO2023134480A1 (zh) 电极组件、电池单体、电池及用电设备
WO2023050972A1 (zh) 电池单体、电池和用电装置
WO2023184709A1 (zh) 电池热管理系统、电池及用电装置
WO2023159847A1 (zh) 电池单体、电池及用电装置
CN217182266U (zh) 电池单体、电池和用电装置
WO2023087217A1 (zh) 电池单体及其制造方法、制造设备、电池和用电装置
WO2023155208A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2024060194A1 (zh) 电池及用电装置
US11830996B1 (en) Battery, power consuming apparatus, and method and apparatus for manufacturing battery
WO2023151413A1 (zh) 用电设备、电池、电池单体及其制造方法
WO2024098257A1 (zh) 电池单体、电池及用电装置
WO2023245673A1 (zh) 电池单体、电池及用电装置
WO2022226965A1 (zh) 电池单体、电池、用电设备及电池的制造方法和设备
US20240128538A1 (en) Electrode assembly, battery cell, battery, and electrical device
CN220692248U (zh) 电池单体、电池以及用电装置
WO2024040392A1 (zh) 电池及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23755733

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023755733

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023755733

Country of ref document: EP

Effective date: 20240408