WO2023134480A1 - 电极组件、电池单体、电池及用电设备 - Google Patents

电极组件、电池单体、电池及用电设备 Download PDF

Info

Publication number
WO2023134480A1
WO2023134480A1 PCT/CN2022/144193 CN2022144193W WO2023134480A1 WO 2023134480 A1 WO2023134480 A1 WO 2023134480A1 CN 2022144193 W CN2022144193 W CN 2022144193W WO 2023134480 A1 WO2023134480 A1 WO 2023134480A1
Authority
WO
WIPO (PCT)
Prior art keywords
tab
sub
negative
positive
width
Prior art date
Application number
PCT/CN2022/144193
Other languages
English (en)
French (fr)
Inventor
余志远
夏青
王国宝
王红
刘江
刘晓梅
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2023134480A1 publication Critical patent/WO2023134480A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of batteries, in particular, to an electrode assembly, a battery cell, a battery and an electrical device.
  • the purpose of the present application is to provide an electrode assembly, a battery cell, a battery and an electrical device.
  • the battery cell formed by the electrode assembly has a relatively high overcurrent capability, and the performance of the battery cell is relatively high.
  • the present application provides an electrode assembly, including: a positive electrode sheet, including a positive electrode sheet body and a positive electrode ear, and the positive electrode ear protrudes from the positive electrode sheet body; a negative electrode sheet, including a negative electrode sheet body and a negative electrode ear, The negative tab protrudes from the negative plate body; wherein, the width of the negative tab is greater than the width of the positive tab.
  • the width of the negative lug of the negative electrode sheet is the same as that of the positive lug of the positive electrode sheet.
  • the negative lug has insufficient flow capacity, while the positive lug has a good flow capacity and has a surplus.
  • the overall overcurrent of the battery cell The capacity depends on the over-current capacity of the negative lug with lower over-current capacity.
  • the width of the negative tab is larger than the width of the positive tab, which increases the flow area of the negative tab and improves the The current flow capacity of the negative tab further improves the overall flow capacity of the battery cells assembled with the electrode assembly.
  • the negative tab includes a plurality of sub-tabs, and the sum of the widths of the multiple sub-tabs is greater than the width of the positive tab.
  • the sum of the widths of multiple sub-tabs is greater than the width of the positive tab, and the width of the negative tab is increased by arranging multiple sub-tabs, so as to improve the flow capacity of the negative tab and facilitate manufacturing.
  • the plurality of sub-tabs include a first sub-tab and a second sub-tab, the first sub-tab protrudes from the first edge of the negative electrode sheet body, and the first sub-tab protrudes from the first edge of the negative electrode sheet body.
  • the two sub-tabs protrude from the second edge of the negative plate body.
  • the first sub-tab protrudes from the first edge of the negative electrode body
  • the second sub-tab protrudes from the second edge of the negative electrode body
  • the first edge and the second edge are the two sides of the negative electrode body. different edges, and the layout is reasonable to avoid interference between components.
  • the first edge and the second edge are two opposite edges of the negative electrode body.
  • the first edge and the second edge are arranged opposite to each other, which is convenient for rationally allocating the assembly space, reducing space occupation, ensuring a compact structure of the battery cell assembled with the electrode assembly, and ensuring a high energy density of the battery cell.
  • the first sub-tab is located at one end of the electrode assembly, and the second sub-tab and the positive tab are located at the other end of the electrode assembly.
  • the second sub-tab and the positive tab are located at the same end of the electrode assembly, rationally utilizing the assembly space, reducing space occupation, making the battery cell assembled by the electrode assembly compact in structure, and ensuring that the battery cell has a high energy density .
  • the width of the first sub-tab is larger than the width of the second sub-tab.
  • the width of the first sub-tab is greater than the width of the second sub-tab, so that the first sub-tab can have a longer extension width at the first edge, and even the width of the first sub-tab can be the same as the width of the second sub-tab.
  • the length of one edge is consistent, on the one hand, it ensures that the negative tab has a larger flow area, and on the other hand, it facilitates processing.
  • the width of the first sub-tab is greater than the width of the positive tab.
  • the width of the first sub-tab is greater than that of the positive tab, ensuring that the negative tab has a larger flow capacity, and even the flow capacity of the negative tab can be greater than that of the positive tab, improving the assembly of the electrode assembly.
  • the overall overcurrent capability of the battery cell is greater than that of the positive tab, ensuring that the negative tab has a larger flow capacity, and even the flow capacity of the negative tab can be greater than that of the positive tab, improving the assembly of the electrode assembly.
  • the width of the positive tab is greater than the width of the second sub-tab.
  • the width of the positive tab is larger than the width of the second sub-tab, so as to ensure that the positive tab has a wider width and ensure that the positive tab has a higher flow capacity.
  • the electrode assembly is a laminated electrode assembly.
  • the laminated electrode assembly has convenient tab processing, high assembly precision, and good heat dissipation.
  • the present application provides a battery cell, including: a casing; and the electrode assembly described in the above embodiment, the electrode assembly is disposed in the casing.
  • the electrode assembly is arranged in the casing, the width of the negative tab is larger than the width of the positive tab, and the flow capacity of the negative tab is increased, so that the overall flow capacity of the battery cell is improved, ensuring that the battery The monomer has a large flow capacity.
  • the present application provides a battery cell, including: a housing; a positive terminal disposed on the housing; a first negative terminal and a second negative terminal disposed on the housing; An electrode assembly, the electrode assembly is arranged in the casing, the positive tab is electrically connected to the positive terminal, the first sub-tab is electrically connected to the first negative terminal, and the second sub-tab electrically connected with the second negative terminal.
  • the width of the negative tab is greater than the width of the positive tab, and the positive tab is electrically connected to the positive terminal, the first sub-tab is electrically connected to the first negative terminal, and the second sub-tab is connected to the second
  • the negative terminal is electrically connected, the positive electric energy is derived through the positive terminal, and the negative electric energy is derived through the first negative terminal and the second negative terminal.
  • the width of the negative tab is larger than the width of the positive tab, and the overcurrent capacity of the negative tab increases, making the battery cell
  • the body has a high flow capacity.
  • the present application provides a battery cell, including: a housing; a positive terminal disposed on the housing and insulated from the housing; a negative terminal disposed on the housing and electrically connected to the housing;
  • the electrode assembly is arranged in the casing, the positive tab is electrically connected to the positive terminal, and the first sub-tab and the second sub-tab are One is electrically connected to the negative terminal, and the other is electrically connected to the casing.
  • the negative tab since the negative tab includes a first sub-tab and a second sub-tab, the first sub-tab and the second sub-tab are respectively electrically connected to the negative terminal and the casing, and the negative terminal It is electrically connected with the casing, and the negative electric energy of the electrode assembly is gathered to the negative terminal to be exported, so as to facilitate the electrical connection with other components (such as battery cells). Large, so that the battery cell has a high over-current capacity.
  • the present application provides a battery, including the battery cell as described in the above embodiment.
  • the present application provides an electric device, including the battery as described in the foregoing embodiments.
  • the present application provides a method for manufacturing a battery cell, including: providing a casing; providing an electrode assembly, the electrode assembly includes a positive electrode sheet and a negative electrode sheet, and the positive electrode sheet includes a positive electrode sheet body and a positive electrode ear.
  • the positive tab protrudes from the positive tab body
  • the negative tab includes a negative tab body and a negative tab, the negative tab protrudes from the negative tab body, and the width of the negative tab is greater than the width of the positive tab ; Put the electrode assembly into the shell.
  • the present application provides a battery cell manufacturing equipment, including: providing a module for providing a casing and providing an electrode assembly, the electrode assembly includes a positive electrode sheet and a negative electrode sheet, and the positive electrode sheet includes a positive electrode sheet body and a positive tab, the positive tab protrudes from the positive tab body, the negative tab includes a negative tab body and a negative tab, the negative tab protrudes from the negative tab body, and the width of the negative tab is greater than the The width of the positive tab; an assembly module for putting the electrode assembly into the casing.
  • Fig. 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • FIG. 2 is a schematic diagram of an exploded structure of a battery provided in some embodiments of the present application.
  • FIG. 3 is a schematic diagram of an exploded structure of a battery cell provided in some embodiments of the present application.
  • Fig. 4 is a schematic structural diagram of an electrode assembly provided by some embodiments of the present application.
  • Fig. 5 is a schematic structural view of the negative electrode sheet of the electrode assembly provided by some embodiments of the present application.
  • Fig. 6 is a schematic structural diagram of the positive electrode sheet of the electrode assembly provided by some embodiments of the present application.
  • Fig. 7 is a schematic structural diagram of electrode assemblies provided by other embodiments of the present application.
  • Fig. 8 is a schematic diagram of an exploded structure of a battery cell provided by another embodiment of the present application.
  • FIG. 9 is a schematic diagram of an exploded structure of a battery cell provided in some other embodiments of the present application.
  • FIG. 10 is a schematic diagram of an exploded structure of a battery cell provided in some further embodiments of the present application.
  • FIG. 11 is a schematic flowchart of a method for manufacturing a battery cell according to some embodiments of the present application.
  • Fig. 12 shows a schematic block diagram of the manufacturing equipment of the battery cell according to some embodiments of the present application.
  • Marking description 100-battery; 10-box; 101-first part; 102-second part; 1-battery unit; 11-shell; 111-housing; 112-end cover; ; 1122-second sub-end cover; 12-electrode assembly; 121-positive plate; Two edges; 1222-negative tab; 1222a-first sub-tab; 1222b-second sub-tab; 13-electrode terminal; 131-positive terminal; 132-negative terminal; 132a-first negative terminal; 132b-second 14-connection part; 141-first sub-connection part; 142-second sub-connection part; 143-third sub-connection part; 200-controller; 300-motor; 1000-vehicle.
  • connection In the description of this application, it should be noted that, unless otherwise clearly stipulated and limited, the terms “installation”, “connection”, “connection” and “attachment” should be understood in a broad sense, for example, it may be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediary, and it can be internal communication between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
  • Multiple appearing in this application refers to more than two (including two), similarly, “multiple groups” refers to more than two groups (including two groups), and “multi-piece” refers to more than two (Includes two pieces).
  • a battery refers to a single physical module comprising one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack, and the like.
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, which are not limited in the embodiments of the present application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack, and the like.
  • Batteries generally include a case for enclosing one or more battery cells. The box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive electrode sheet, a negative electrode sheet, and a separator.
  • a battery cell works primarily by moving metal ions between the positive and negative plates.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the current collector not coated with the positive electrode active material layer protrudes from the current collector coated with the positive electrode active material layer.
  • the current collector coated with the positive active material layer serves as the positive tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the current collector without the negative electrode active material layer protrudes from the current collector coated with the negative electrode active material layer.
  • the current collector coated with the negative electrode active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material may be carbon or silicon.
  • the material of the isolation film may be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene).
  • the over-current capacity of the battery cell depends on the lower one of the positive and negative tabs of the electrode assembly. The capacity determines the overall over-current capacity of the battery cell.
  • the material of the negative electrode current collector is usually copper, the flow capacity of copper is 8A/mm2, the thickness of the negative electrode current collector is generally 4.5-10 ⁇ m, and the material of the positive electrode current collector is usually Aluminum, the flow capacity of aluminum is 5A/mm2, the thickness of the positive current collector is generally 10-20 ⁇ m, and the thickness of the negative current collector is usually lower than that of the positive current collector.
  • the width of the negative lug of the negative electrode sheet is the same as that of the positive lug of the positive electrode sheet. There may be a problem that the negative lug has insufficient flow capacity, while the positive lug has a good flow capacity and has a surplus.
  • the overall overcurrent of the battery cell The capacity depends on the over-current capacity of the negative lug with lower over-current capacity. Insufficient overcurrent capacity of the negative tab will limit the use of the battery cell and cause a series of safety problems. For example, if the overcurrent capacity of the battery cell is insufficient, it will affect the charge and discharge rate of the battery cell, making the charge and discharge rate of the battery cell low; The lower the capacity, the lower the output power of the battery cell. For another example, when the overcurrent capacity of the battery cell is low, when the charging and discharging current is too large, the battery cell is likely to generate excessive heat, causing the battery cell to rupture, leak, smoke, or even explode. raise security issues. Therefore, the insufficient overcurrent capability of the battery cell affects the performance of the battery cell (such as charge and discharge rate, safety, output power, etc.).
  • the inventor has designed an electrode assembly after in-depth research.
  • the width of the negative tab is greater than the width of the positive tab, which improves the negative electrode.
  • the current flow capacity of the ear thereby improving the overall flow capacity of the battery cell assembled from the electrode assembly.
  • the width of the negative tab is increased, and the width of the negative tab is larger than the width of the positive tab, so that the flow area of the negative tab increases, improving the The overcurrent capacity of the negative tab, when the current capacity of the original positive tab remains unchanged or slightly decreases, the difference between the overcurrent capacity of the negative tab and the overcurrent capacity of the positive tab decreases, and the overcurrent in the electrode assembly
  • the flow-through capacity of the negative tab with weaker capacity is improved, thereby improving the overall flow-through capacity of the battery cell assembled from the electrode assembly.
  • the battery cells disclosed in the embodiments of the present application can be used, but not limited to, in electrical equipment such as vehicles, ships, or aircrafts.
  • the power supply system of the electrical equipment can be composed of the battery cells and batteries disclosed in this application.
  • the embodiment of the present application provides an electric device that uses a battery as a power source.
  • the electric device can be, but not limited to, a mobile phone, a tablet computer, a notebook computer, an electric toy, an electric tool, an electric bicycle, an electric motorcycle, an electric car, a ship, Spacecraft and more.
  • electric toys may include fixed or mobile electric toys, such as game consoles, electric car toys, electric boat toys, electric airplane toys, etc.
  • spacecraft may include airplanes, rockets, space shuttles, spaceships, etc.
  • a vehicle is used as an example of an electric device according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • the vehicle 1000 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle.
  • the interior of the vehicle 1000 is provided with a battery 100 , and the battery 100 may be provided at the bottom, head or tail of the vehicle 1000 .
  • the battery 100 can be used for power supply of the vehicle 1000 , for example, the battery 100 can be used as an operating power source of the vehicle 1000 , used for the circuit system of the vehicle 1000 , for example, used for starting, navigating, and operating power requirements of the vehicle 1000 .
  • the vehicle 1000 may further include a controller 200 and a motor 300 , the controller 200 is used to control the battery 100 to supply power to the motor 300 , for example, for starting, navigating and running the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but can also be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel oil or natural gas to provide driving power for the vehicle 1000 .
  • FIG. 2 is a schematic diagram of an exploded structure of a battery 100 provided in some embodiments of the present application.
  • the battery 100 includes a case 10 and a battery cell 1 , and the battery cell 1 is accommodated in the case 10 .
  • the box body 10 is used to provide accommodating space for the battery cells 1 , and the box body 10 can adopt various structures.
  • the box body 10 may include a first part 101 and a second part 102, the first part 101 and the second part 102 cover each other, the first part 101 and the second part 102 jointly define a of accommodation space.
  • the second part 102 can be a hollow structure with one end open, the first part 101 can be a plate-shaped structure, and the first part 101 covers the opening side of the second part 102, so that the first part 101 and the second part 102 jointly define an accommodation space ;
  • the first part 101 and the second part 102 can also be hollow structures with one side opening, and the opening side of the first part 101 is covered by the opening side of the second part 102 .
  • the box body 10 formed by the first part 101 and the second part 102 may be in various shapes, such as a cylinder, a cuboid, and the like.
  • the battery 100 there may be multiple battery cells 1 , and the multiple battery cells 1 may be connected in series or in parallel or mixed.
  • the mixed connection means that the multiple battery cells 1 are connected in series and in parallel.
  • a plurality of battery cells 1 can be directly connected in series, in parallel or mixed together, and then the whole of the plurality of battery cells 1 is accommodated in the box 10; of course, the battery 100 can also be a plurality of battery cells 1
  • the battery modules are firstly connected in series or in parallel or mixed to form a battery module, and then a plurality of battery 100 modules are connected in series or in parallel or mixed to form a whole and accommodated in the box body 10 .
  • the battery 100 may also include other structures, for example, the battery 100 may also include a current flow component for realizing electrical connection between multiple battery cells 1 .
  • each battery cell 1 can be a secondary battery or a primary battery.
  • the battery cell 1 can be in the shape of a cylinder, a flat body, a cuboid or other shapes, etc. In the embodiment of the present application, the battery cell 1 is a cuboid as an example for introduction.
  • FIG. 3 is a schematic diagram of an exploded structure of a battery cell 1 provided in some embodiments of the present application.
  • the battery cell 1 refers to the smallest unit constituting the battery 100 .
  • the battery cell 1 includes a casing 11 , an electrode assembly 12 and other functional components.
  • the casing 11 is a component used to form the internal environment of the battery cell 1 , and the formed internal environment can be used to accommodate the electrode assembly 12 , electrolyte and other components.
  • the casing 11 may include a housing 111 and an end cover 112.
  • the housing 111 and the end cover 112 may be independent parts, or an opening may be provided on the housing 111, and the end cover 112 may cover the opening at the opening to form a battery cell.
  • the end cover 112 and the housing 111 can also be integrated. Specifically, the end cover 112 and the housing 111 can form a common connection surface before other components are inserted into the housing.
  • the housing 111 may be in the shape of a cuboid. Specifically, the shape of the casing 111 can be determined according to the specific shape and size of the electrode assembly 12 .
  • the housing 111 can be made of various materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, etc., which are not particularly limited in this embodiment of the present application.
  • the housing in the embodiment of the present application is a conductive component.
  • the end cover 112 refers to a component that covers the opening of the casing 111 to isolate the internal environment of the battery cell 1 from the external environment.
  • the shape of the end cap 112 can be adapted to the shape of the housing 111 to fit the housing 111 .
  • the end cap 112 can be made of a material (such as aluminum alloy) with a certain hardness and strength, so that the end cap 112 is not easily deformed when being squeezed and collided, so that the battery cell 1 can have a higher Structural strength and safety performance can also be improved.
  • Functional components such as electrode terminals 13 may be provided on the end cap 112 .
  • the electrode terminal 13 can be used to electrically connect with the electrode assembly 12 for outputting or inputting electric energy of the battery cell 1 .
  • the end cover 112 may also be provided with a pressure relief mechanism for releasing the internal pressure when the internal pressure or temperature of the battery cell 1 reaches a threshold value.
  • the end cap 112 can also be made of various materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, and the like.
  • an insulator can be provided inside the end cover 112 , and the insulator can be used to isolate the electrical connection components in the housing 111 from the end cover 112 to reduce the risk of short circuit.
  • the insulating member may be plastic, rubber or the like.
  • the electrode assembly 12 is a part where the electrochemical reaction occurs in the battery cell 1 .
  • the casing 111 may contain one or more electrode assemblies 12 .
  • the electrode assembly 12 is mainly formed by winding or laminating the positive electrode sheet and the negative electrode sheet, and usually a diaphragm is provided between the positive electrode sheet and the negative electrode sheet.
  • the portion of the sheet and the negative electrode sheet without the active material each constitutes a tab.
  • the positive tab and the negative tab can be respectively located at two ends of the body.
  • the electrode terminal 13 is disposed on the housing 11 , and the electrode terminal 13 is electrically connected to the electrode assembly 12 through the connecting member 14 for outputting or inputting electric energy of the battery cell 1 .
  • the electrode terminal 13 generally includes a positive terminal and a negative terminal, the positive terminal is electrically connected to the positive tab, and the negative terminal is electrically connected to the negative tab.
  • the embodiment of the present application is introduced by taking the battery cell 1 as a square battery cell as an example.
  • FIG. 4 is a schematic structural diagram of the electrode assembly 12 provided by some embodiments of the present application, in which the positive tab 1212 and the negative tab 1222 are in an unfolded state.
  • the present application provides an electrode assembly 12 .
  • the electrode assembly 12 includes a positive electrode sheet 121 and a negative electrode sheet 122 .
  • the positive electrode sheet 121 includes a positive electrode sheet body 1211 and a positive electrode ear 1212 , and the positive electrode ear 1212 protrudes from the positive electrode sheet body 1211 .
  • the negative electrode sheet 122 includes a negative electrode sheet body 1221 and a negative electrode tab 1222 , and the negative electrode tab 1222 protrudes from the negative electrode sheet body 1221 .
  • the width L1 of the negative tab 1222 is greater than the width L2 of the positive tab 1212 .
  • the material of the positive electrode sheet 121 may be aluminum, and the material of the negative electrode sheet 122 may be copper.
  • the positive tab 1212 is a part of the positive tab 121 for electrical connection with the positive terminal 131
  • the negative tab 1222 is a part of the negative tab 122 for electrical connection with the negative terminal 132 .
  • the letter L1 indicates the width of the negative tab 1222
  • the letter L2 indicates the width of the positive tab 1212
  • the width of the tab refers to the length dimension of the tab protruding from the edge of the pole piece body, that is, the dimension of the tab in the extending direction of the edge. For example, if the tab protrudes from the edge in the width direction of the pole piece, the width of the tab refers to the size of the tab in the length direction of the pole piece; or, if the tab protrudes from the edge in the length direction of the pole piece , then the width of the tab refers to the size of the tab in the width direction of the pole piece.
  • the tab protrudes from the edge of the length direction of the pole piece, and the width direction of the pole piece is in line with the pole piece.
  • the width direction of the tab is consistent, and the width of the tab is the size of the tab in the width direction of the pole piece.
  • the width L1 of the negative tab 1222 is greater than the width L2 of the positive tab 1212, which means that the length of the negative tab 1222 protruding from the edge of the negative plate body 1221 along the extending direction of the edge is L1, and the positive tab 1212 protrudes
  • the length dimension along the extending direction of the edge on the edge of the positive electrode body 1211 is L2, which satisfies L1>L2.
  • the width of the negative electrode ear 1222 is increased, and the width of the negative electrode ear 1222 is larger than that of the positive electrode ear 1212
  • the width increases the flow area of the negative tab 1222 and improves the flow capacity of the negative tab 1222.
  • the negative tab 1222 includes multiple sub-tabs, and the sum of the widths of the multiple sub-tabs is greater than the width of the positive tab 1212 .
  • the negative tab 1222 includes multiple sub-tabs, and the sum of the widths of the multiple sub-tabs constitutes the width of the negative tab 1222 .
  • the sum of the electrical energy of the multiple sub-tabs is the electrical energy of the negative tab 1222 , and the export or import of negative electrical energy is realized through the multiple sub-tabs.
  • the sum of the widths of the multiple sub-tabs is greater than the width of the positive tab 1212, and the width of the negative tab 1222 is increased by arranging multiple sub-tabs to improve the flow capacity of the negative tab 1222 and facilitate manufacturing.
  • the number of positive tabs 1212 may be multiple, the sum of the widths of multiple positive tabs 1212 constitutes the width of the positive tab 1212, and the sum of the widths of multiple sub-tabs is greater than that of multiple positive tabs The sum of the widths of the ears 1212.
  • the number of positive tabs 1212 is multiple to meet the requirement of the flow capacity of the positive tabs 1212, and it is convenient to set the positive tabs 1212 at different positions to avoid interference between components.
  • FIG. 5 is a schematic structural diagram of the negative electrode sheet of the electrode assembly provided by some embodiments of the present application
  • FIG. 6 is a schematic structural diagram of the positive electrode sheet of the electrode assembly provided by some embodiments of the present application.
  • the multiple sub-tabs include a first sub-tab 1222a and a second sub-tab 1222b, and the first sub-tab 1222a protrudes from the negative plate body 1221
  • the first edge 1221a of the negative electrode sheet body 1221 protrudes from the second edge 1221b of the second sub-tab 1222b.
  • the first sub-tab 1222a protrudes from the first edge 1221a of the negative electrode body 1221
  • the second sub-tab 1222b protrudes from the second edge 1221b of the negative electrode body 1221, in other words, the first sub-tab 1222a and the second sub-tab 1222a
  • the two sub-tabs 1222b respectively protrude from two edges of the negative plate body 1221 .
  • the letter L11 indicates the width of the first sub-tab 1222a
  • the letter L12 indicates the width of the second sub-tab 1222b
  • the width L11 of the first sub-tab 1222a is the length dimension of the first sub-tab 1222a in the extending direction of the first edge 1221a
  • the width L12 of the second sub-tab 1222b is the length of the second sub-tab 1222b on the second edge 1221b
  • the length dimension in the direction of extension can be two opposite edges of the negative electrode sheet body 1221, and both the first edge 1221a and the second edge 1221b extend along the width direction of the negative electrode sheet 122.
  • the width L11 of a sub-tab 1222a is the length dimension of the first sub-tab 1222a in the width direction of the negative electrode sheet 122
  • the width L12 of the second sub-tab 1222b is the length dimension of the second sub-tab 1222b in the width direction of the negative electrode sheet 122 above the length dimension.
  • first edge 1221a and the second edge 1221b can be two adjacent edges of the negative electrode sheet body 1221, the first edge 1221a extends along the width direction of the negative electrode sheet 122, and the second edge 1221b extends along the length direction of the negative electrode sheet 122
  • the width L11 of the first sub-tab 1222a is the length dimension of the first sub-tab 1222a in the width direction of the negative electrode sheet 122
  • the width L12 of the second sub-tab 1222b is the length of the second sub-tab 1222b on the negative electrode sheet 122.
  • the sum of the width L11 of the first sub-tab 1222a and the width L12 of the second sub-tab 1222b is greater than the width L2 of the positive tab 1212 (see FIG. 6 ), that is, L11+L12>L2.
  • the first sub-tab 1222a protrudes from the first edge 1221a of the negative electrode body 1221
  • the second sub-tab 1222b protrudes from the second edge 1221b of the negative electrode body 1221
  • the first edge 1221a and the second edge 1221b are negative electrodes.
  • the two different edges of the body 1221 make the layout of the first sub-tab 1222a and the second sub-tab 1222b reasonable and avoid interference between components.
  • the first sub-tab 1222a When the first sub-tab 1222a protrudes from the first edge 1221a and the second sub-tab 1222b protrudes from the second edge 1221b, on the premise that the negative tab 1222 does not interfere with the positive tab 1212, the first sub-tab 1222a
  • the width L11 of the first sub-tab 1221a may be the same as the length of the first edge 1221a, or the width L12 of the second sub-tab 1222b may be the same as the length of the second edge 1221b, or the width L11 of the first sub-tab 1222a may be the same as the first
  • the length of the edge 1221a is the same and the width L12 of the second sub-tab 1222b may be the same as the length of the second edge 1221b.
  • the first edge 1221 a and the second edge 1221 b are two opposite edges of the negative plate body 1221 .
  • the first edge 1221a and the second edge 1221b are two opposite edges of the negative plate body 1221 along a first direction, and the first direction may be a direction in which the electrode assembly 12 enters the casing when the electrode assembly 12 is assembled with the casing.
  • the first edge 1221a is set opposite to the second edge 1221b, which is convenient for rationally allocating assembly space, reducing space occupation, ensuring that the battery cell 1 assembled with the electrode assembly 12 has a compact structure, and ensures that the battery cell 1 has a high energy density.
  • FIG. 7 is a schematic structural diagram of an electrode assembly 12 provided in another embodiment of the present application.
  • the first sub-tab 1222a is located at one end of the electrode assembly 12
  • the second sub-tab 1222b and the positive tab 1212 are located at the other end of the electrode assembly 12 .
  • the first sub-tab 1222a and the positive tab 1212 are respectively located at opposite ends of the electrode assembly 12, the width L11 of the first sub-tab 1222a can be set wider, for example, the width L11 of the first sub-tab 1222a can be A length of edge 1221a.
  • the second sub-tab 1222b and the positive tab 1212 are located at the other end of the electrode assembly 12 , that is, the second sub-tab 1222b and the positive tab 1212 are located at the same end of the electrode assembly 12 . Since the tab is a multi-layer structure, the multi-layer second sub-tab 1222b does not interfere with the multi-layer positive tab 1212 to avoid internal short circuit.
  • the second sub-tab 1222b and the positive tab 1212 can be located on both sides of the thickness direction of the electrode assembly 12 (that is, the stacking direction of the tabs), respectively.
  • the projection of the second sub-tab 1222b and the projection of the positive tab 1212 may or may not overlap, as long as the second sub-tab 1222b and the positive tab 1212 are not in contact.
  • the electrode assembly 12 is a laminated electrode assembly, as shown in FIG. The second sub-tab 1222b is in contact with the positive tab 1212 and is short-circuited.
  • the second sub-tab 1222b and the positive tab 1212 are located at the same end of the electrode assembly 12, rationally utilizing the assembly space and reducing space occupation, so that the battery cell assembled with the electrode assembly 12 has a compact structure and ensures a high energy density of the battery cell.
  • the width L11 of the first sub-tab 1222a is greater than the width L12 of the second sub-tab 1222b.
  • the first sub-tab 1222a and the second sub-tab 1222b respectively protrude from the two edges of the negative plate body 1221, and the length of the first sub-tab 1222a on the first edge 1221a can be determined according to the length of the first edge 1221a , in a limit case, the width L11 of the first sub-tab 1222a is the same as the length of the first edge 1221a.
  • the width L11 of the first sub-tab 1222a is greater than the width L12 of the second sub-tab 1222b, ensuring that the second sub-tab 1222b
  • increasing the width L11 of the first sub-tab 1222a can ensure that the sum of the widths of the first sub-tab 1222a and the second sub-tab 1222b is greater than the width L2 of the positive tab 1212.
  • the width L11 of the first sub-tab 1222a is greater than the width L12 of the second sub-tab 1222b, so that the first sub-tab 1222a can have a longer extension width at the first edge 1221a, even the width L11 of the first sub-tab 1222a It may be consistent with the length of the first edge 1221a. On the one hand, it is convenient to realize that the negative tab 1222 has a larger flow area, and on the other hand, it is convenient to process.
  • the width L11 of the first sub-tab 1222a is greater than the width L2 of the positive tab 1212 .
  • the width L11 of the first sub-tab 1222a is greater than the width L2 of the positive tab 1212, then the sum of the widths of the first sub-tab 1222a and the second sub-tab 1222b must be greater than the width L2 of the positive tab 1212, and the second sub-tab 1222b
  • the width L12 of may be determined according to the assembly space of the electrode assembly 12 .
  • the width L12 of the second sub-tab 1222b can be larger, so that the negative tab 1222 has a larger width, increasing the flow area of the negative tab 1222, and improving the negative electrode capacity.
  • the overcurrent capability of ear 1222 can be larger.
  • the width L11 of the first sub-tab 1222a is greater than the width L2 of the positive tab 1212, ensuring that the sum of the widths of the first sub-tab 1222a and the second sub-tab 1222b is greater than the width L2 of the positive tab 1212, ensuring that the negative tab 1222 has a larger Even the current flow capacity of the negative tab 1222 can be greater than that of the positive tab 1212, improving the overall current flow capacity of the battery cells assembled with the electrode assembly 12.
  • the width L2 of the positive tab 1212 is greater than the width L12 of the second sub-tab 1222b.
  • the width L2 of the positive tab 1212 is greater than the width L12 of the second sub-tab 1222b, ensuring that the positive tab 1212 has a wider width, and the positive tab 1212 has a larger flow area, so as to ensure that the positive tab 1212 has a larger flow capacity .
  • the second sub-tab 1222b protrudes from the second edge 1221b of the negative electrode sheet 122 , and the positive tab 1212 and the second sub-tab 1222b may be located at the same end of the electrode assembly 12 or at different ends of the electrode assembly 12 .
  • the first sub-tab 1222a and the second sub-tab 1222b and the positive tab 1212 are located at the other end of the electrode assembly 12, as shown in FIG. 7, the first sub-tab 1222a and the positive The lugs 1212 are located at both ends of the electrode assembly 12, and the width L2 of the positive lug 1212 is greater than the width L12 of the second sub-tab 1222b, so that the width L11 of the first sub-tab 1222a can be wider to meet the requirements of the first sub-tab 1222a. and the width of the second sub-tab 1222b is greater than the width L2 of the positive tab 1212 .
  • the electrode assembly 12 is a laminated electrode assembly.
  • the laminated electrode assembly has the advantages of relatively uniform current density distribution and excellent internal heat dissipation.
  • the width of the pole piece at the edge of the corresponding pole piece body may be the same as the length of the edge.
  • the width L11 of the first sub-tab 1222a may be the same as the length of the first edge 1221a; or, the first sub-tab
  • the width L11 of the ear 1222a may be the same as the length of the first edge 1221a
  • the width L12 of the second sub-tab 1222b may be the same as the length of the second edge 1221b.
  • the width L2 of the positive tab 1212 may be the same as the length of the edge of the positive tab body 1211 .
  • the width L11 of the first sub-tab 1222a is the same as the length of the first edge 1221a.
  • Laminated electrode assembly easy processing of tabs, high assembly precision, and good heat dissipation.
  • FIG. 8 is a schematic diagram of an exploded structure of a battery cell 1 provided in another embodiment of the present application
  • FIG. 9 is a schematic diagram of an exploded structure of a battery cell 1 provided in another embodiment of the present application
  • FIG. 10 A schematic diagram of an exploded structure of a battery cell 1 provided for some further embodiments of the present application.
  • the present application also provides a battery cell 1, including a casing 11 and the electrode assembly 12 described in the above solution, and the electrode assembly 12 is arranged in the casing 11 .
  • the casing 11 is a part for protecting the electrode assembly 12 , and has a space inside for accommodating the electrode assembly 12 .
  • the shell 11 usually has high strength, which improves the safety performance of the battery cell 1 .
  • the electrode assembly 12 is arranged in the casing 11, the width of the negative tab 1222 is greater than the width of the positive tab 1212, and the flow capacity of the negative tab 1222 is increased, so that the overall flow of the battery cell 1
  • the current capacity is improved to ensure that the battery cell 1 has a relatively large over-current capacity.
  • the present application also provides a battery cell 1, including a casing 11, a positive terminal 131, a first negative terminal 132a and a second negative terminal 132b, and The electrode assembly 12 described above.
  • the positive terminal 131 is disposed on the housing 11
  • the first negative terminal 132 a and the second negative terminal 132 b are disposed on the housing 11 .
  • the electrode assembly 12 is disposed in the casing 11, the positive tab 1212 is electrically connected to the positive terminal 131, the first sub-tab 1222a is electrically connected to the first negative terminal 132a, and the second sub-tab 1222b is electrically connected to the second negative terminal 132b.
  • the housing 11 may include a housing 111 and an end cover 112.
  • the housing 111 may be a structure with openings at both ends, and the number of end covers 112 may be two.
  • the two end covers 112 cover the two openings of the housing 111 respectively.
  • the end cover 112 is in sealing connection with the casing 111 .
  • two openings are located at opposite ends of the casing 111 , and two end covers 112 are oppositely disposed.
  • the first negative terminal 132 a may be disposed on one end cap 112
  • the second negative terminal 132 b and the positive terminal 131 may be disposed on the other end cap 112
  • the end cover 112 and the housing 111 may be connected electrically or insulated.
  • the two end caps 112 are respectively a first sub-end cap 1121 and a second sub-end cap 1122, the first negative terminal 132a is arranged on the first sub-end cap 1121, and the second negative terminal 132b and the positive terminal 131 are arranged on the second sub-end cover 1122, the first sub-tab 1222a is electrically connected to the first negative terminal 132a through the first sub-connecting member 141, and the second sub-tab 1222b is connected to the second negative terminal 132b through the second The sub-connection part 142 is electrically connected, and the positive electrode tab 1212 is electrically connected to the positive terminal 131 through the third sub-connection part 143 .
  • the width of the negative tab 1222 is greater than the width of the positive tab 1212, and the positive tab 1212 is electrically connected to the positive terminal 131, the first sub-tab 1222a is electrically connected to the first negative terminal 132a, and the second The two-sub-pole tab 1222b is electrically connected to the second negative pole terminal 132b, the positive pole electric energy is derived through the positive pole terminal 131, and the negative pole electric energy is derived through the first negative pole terminal 132a and the second negative pole terminal 132b.
  • width, the over-current capacity of the negative tab 1222 is increased, so that the battery cell 1 has a higher over-current capacity.
  • the present application also provides a battery cell 1 , as shown in FIG. 9 and FIG. 10 , including a casing 11 , a positive terminal 131 , a negative terminal 132 and the electrode assembly 12 described in the above solution.
  • the positive terminal 131 is disposed on the casing 11 and insulated from the casing 11 .
  • the negative terminal 132 is disposed on the casing 11 and electrically connected to the casing 11 .
  • the electrode assembly 12 is arranged in the casing 11, the positive tab 1212 is electrically connected to the positive terminal 131, one of the first sub-tab 1222a and the second sub-tab 1222b is electrically connected to the negative terminal 132, and the other is electrically connected to the casing 11. connect.
  • the housing 11 may include a housing 111 and an end cover 112.
  • the housing 111 may be a structure with openings at both ends, and the number of end covers 112 may be two.
  • the two end covers 112 cover the two openings of the housing 111 respectively.
  • the end cover 112 is in sealing connection with the casing 111 .
  • two openings are located at opposite ends of the housing 111 , and two end caps 112 are disposed opposite to each other.
  • the end cover 112 is electrically connected to the housing 111 .
  • the positive terminal 131 is arranged on the casing 11 and is insulated from the casing 11.
  • the positive terminal 131 may be arranged on an end cover 112, and the positive terminal 131 and the end cover 112 are insulated from each other, so that the positive terminal 131 and the positive electric energy are exported or introduced. .
  • One of the first sub-tab 1222a and the second sub-tab 1222b is electrically connected to the negative terminal 132, and the other is electrically connected to the casing 11, which can be that the first sub-tab 1222a is electrically connected to the negative terminal 132, and the second The sub-tab 1222b is electrically connected to the casing 11 , or, the first sub-tab 1222a is electrically connected to the casing 11 , and the second sub-tab 1222b is electrically connected to the negative terminal 132 . Since the negative terminal 132 is disposed on the casing 11 and is electrically connected to the casing 11 , the first sub-tab 1222 a is connected in series with the second sub-tab 1222 b.
  • the two end caps 112 are respectively a first sub-end cap 1121 and a second sub-end cap 1122, and the first sub-tab 1222a is connected to the first sub-end cap through the first sub-connecting part 141.
  • 1121 is electrically connected
  • the negative terminal 132 and the positive terminal 131 are arranged on the second terminal end cover 1122
  • the second terminal tab 1222b is electrically connected to the negative terminal 132 through the second terminal connecting part 142
  • the positive terminal 1212 is connected through the third sub connecting part 143 It is electrically connected to the positive terminal 131 .
  • the two end caps 112 are respectively a first sub-end cap 1121 and a second sub-end cap 1122
  • the negative terminal 132 is arranged on the first sub-end cap 1121 and connected to the first sub-end cap 1121 Electrically connected
  • the positive terminal 131 is arranged on the second sub-end cover 1122 and is insulated from the second sub-end cover 1122
  • the first sub-tab 1222a is electrically connected to the negative terminal 132 through the first sub-connection part 141
  • the second sub-tab 1222b is electrically connected to the second sub-end cover 1122 through the second sub-connection part 142
  • the positive tab 1212 is electrically connected to the positive terminal 131 through the third sub-connection part 143 .
  • the negative tab 1222 since the negative tab 1222 includes a first sub-tab 1222a and a second sub-tab 1222b, the first sub-tab 1222a and the second sub-tab 1222b are connected to the negative terminal 132 and the second sub-tab respectively.
  • the casing 11 is electrically connected, and the negative terminal 132 is electrically connected to the casing 11.
  • the negative electric energy of the electrode assembly 12 is gathered to the negative terminal 132 and exported to facilitate the electrical connection with other components (such as the battery cell 1).
  • the negative electrode ear 1222 The width is larger than the width of the positive tab 1212 , and the flow capacity of the negative tab 1222 is increased, so that the battery cell 1 has a higher flow capacity.
  • the present application also provides a battery 100, including the battery cell 1 described in the above solution.
  • the present application also provides an electric device, including the battery 100 described in the above solution, and the battery 100 is used to provide electric energy for the electric device.
  • the powered device may be any of the aforementioned devices or systems using the battery 100 .
  • the present application provides a battery cell 1 , the battery cell 1 includes a casing 11 and an electrode assembly 12 , and the electrode assembly 12 is disposed in the casing 11 .
  • the electrode assembly 12 is a laminated electrode assembly.
  • the electrode assembly 12 includes a positive electrode sheet 121 and a negative electrode sheet 122.
  • the positive electrode sheet 121 includes a positive electrode sheet body 1211 and a positive electrode ear 1212.
  • the positive electrode ear 1212 protrudes from the positive electrode sheet body 1211
  • the negative electrode sheet 122 includes The negative electrode sheet body 1221 and the negative electrode tab 1222 , the negative electrode tab 1222 protrudes from the negative electrode sheet body 1221 .
  • the negative tab 1222 includes a first sub-tab 1222a and a second sub-tab 1222b, the first sub-tab 1222a protrudes from the first edge 1221a of the negative plate body 1221, and the second sub-tab 1222b protrudes from the negative plate body 1221 The second edge 1221b.
  • the first sub-tab 1222a is located at one end of the electrode assembly 12
  • the second sub-tab 1222b and the positive tab 1212 are located at the other end of the electrode assembly 12, and the sum of the widths of the first sub-tab 1222a and the second sub-tab 1222b is greater than that of the positive electrode
  • the width of the first sub-tab 1222a is the same as the length of the first edge 1221a.
  • the width of the negative tab 1222 is increased, so that the negative tab 1222 has a larger flow area, and the flow capacity of the negative tab 1222 is improved, so that the battery cell 1 has a higher flow capacity.
  • FIG. 11 shows a schematic flow chart of a method for manufacturing a battery cell 1 according to some embodiments of the present application. According to some embodiments of the present application, as shown in FIG. 11 , the present application also provides a method for manufacturing a battery cell 1, and the method for manufacturing the battery cell 1 includes:
  • the electrode assembly 12 includes a positive electrode sheet 121 and a negative electrode sheet 122
  • the positive electrode sheet 121 includes a positive electrode sheet body 1211 and a positive electrode tab 1212
  • the positive electrode tab 1212 protrudes from the positive electrode sheet body 1211
  • the negative electrode sheet 122 includes a negative electrode sheet body 1221 and negative tab 1222, the negative tab 1222 protrudes from the negative plate body 1221, the width of the negative tab 1222 is greater than the width of the positive tab 1212;
  • step “S401, providing the casing 11” and step “S402, providing the electrode assembly 12” is not limited, step “S401, providing the casing 11” can be performed first, and then step “S402, providing the electrode assembly 12" can be performed “, or, step “S402, providing the electrode assembly 12" can be performed first, and then step “S401, providing the shell 11" can be performed.
  • Fig. 12 shows a schematic block diagram of a battery cell manufacturing device 500 according to some embodiments of the present application.
  • the present application also provides a battery cell manufacturing device 500 , and the battery cell manufacturing device 500 includes: a providing module 501 and an assembling module 502 .
  • the providing module 501 is used to provide the casing 11 and the electrode assembly 12.
  • the electrode assembly 12 includes a positive electrode sheet 121 and a negative electrode sheet 122.
  • the positive electrode sheet 121 includes a positive electrode sheet body 1211 and a positive electrode ear 1212.
  • the positive electrode ear 1212 protrudes from the positive electrode sheet body 1211.
  • the negative electrode sheet 122 includes a negative electrode sheet body 1221 and a negative electrode ear 1222 , the negative electrode ear 1222 protrudes from the negative electrode sheet body 1221 , and the width of the negative electrode ear 1222 is greater than that of the positive electrode ear 1212 .
  • the assembly module 502 is used to put the electrode assembly 12 into the casing 11 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请涉及一种电极组件、电池单体、电池及用电设备,属于电池技术领域。该电极组件包括:正极片,包括正极片本体和正极耳,正极耳凸出于正极片本体;负极片,包括负极片本体和负极耳,负极耳凸出于负极片本体;其中,负极耳的宽度大于正极耳的宽度。该电极组件构成的电池单体,具有较高的过流能力,电池单体的性能较高。

Description

电极组件、电池单体、电池及用电设备
相关申请的交叉引用
本申请要求享有于2022年01月12日提交的名称为“电极组件、电池单体、电池及用电设备”的中国专利申请CN202210033841.7的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,具体而言,涉及一种电极组件、电池单体、电池及用电设备。
背景技术
节能减排是汽车产业可持续发展的关键,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
电池制造过程中,除了考虑能量密度外,电池单体的过流能力也是重要的因素。因此,提高电池单体的过流能力是电池技术亟需解决的问题。
发明内容
本申请的目的在于提供一种电极组件、电池单体、电池及用电设备。该电极组件构成的电池单体,具有较高的过流能力,电池单体的性能较高。
本申请是通过如下技术方案实现的:
第一方面,本申请提供了一种电极组件,包括:正极片,包括正极片本体和正极耳,所述正极耳凸出于所述正极片本体;负极片,包括负极片本体和负极耳,所述负极耳凸出于所述负极片本体;其中,所述负极耳的宽度大于所述正极耳的宽度。
通常情况下,负极片的负极耳的宽度与正极片的正极耳的宽度相同,可能存在负极耳过流能力不足,而正极耳过流能力良好且有富余的问题,电池单体的整体过流能力取决于过流能力较低的负极耳的过流能力。
根据本申请实施例的电极组件,相对于等宽度的负极耳和正极耳构成的电极组件,本申请中,负极耳的宽度大于正极耳的宽度,增大了负极耳的过流面积,提高了负极耳的过流能力,进而提高了该电极组件装配的电池单体的整体过流能力。
根据本申请的一些实施例,所述负极耳包括多个子极耳,所述多个子极耳的宽度之和大于所述正极耳的宽度。
在上述方案中,多个子极耳的宽度之和大于正极耳的宽度,通过设置多个子极 耳的方式提高负极耳的宽度,以实现提高负极耳的过流能力,便于加工制造。
根据本申请的一些实施例,所述多个子极耳包括第一子极耳和第二子极耳,所述第一子极耳凸出于所述负极片本体的第一边缘,所述第二子极耳凸出于所述负极片本体的第二边缘。
在上述方案中,第一子极耳凸出于负极片本体的第一边缘,第二子极耳凸出于负极片本体的第二边缘,第一边缘与第二边缘为负极片本体的两个不同边缘,布局合理,避免部件之间的干涉。
根据本申请的一些实施例,所述第一边缘和所述第二边缘为所述负极片本体的两个相对的边缘。
在上述方案中,第一边缘和第二边缘相对设置,便于合理分配装配空间,减少空间占用,保证电极组件装配的电池单体结构紧凑,保证电池单体具有较高的能量密度。
根据本申请的一些实施例,所述第一子极耳位于所述电极组件的一端,所述第二子极耳和所述正极耳位于所述电极组件的另一端。
在上述方案中,第二子极耳和正极耳位于电极组件的同一端,合理利用装配空间,减少空间占用,使得电极组件装配的电池单体结构紧凑,保证电池单体具有较高的能量密度。
根据本申请的一些实施例,所述第一子极耳的宽度大于所述第二子极耳的宽度。
在上述方案中,第一子极耳的宽度大于第二子极耳的宽度,使得第一子极耳可以在第一边缘具有较长的延伸宽度,甚至第一子极耳的宽度可以与第一边缘的长度一致,一方面,保证负极耳具有较大的过流面积,另一方面,便于加工。
根据本申请的一些实施例,所述第一子极耳的宽度大于所述正极耳的宽度。
在上述方案中,第一子极耳的宽度大于正极耳的宽度,保证负极耳具有较大的过流能力,甚至负极耳的过流能力可以大于正极耳的过流能力,提高该电极组件装配的电池单体的整体过流能力。
根据本申请的一些实施例,所述正极耳的宽度大于所述第二子极耳的宽度。
在上述方案中,正极耳的宽度大于第二子极耳的宽度,保证正极耳具有较宽的宽度,保证正极耳具有较高的过流能力。
根据本申请的一些实施例,所述电极组件为叠片式电极组件。
在上述方案中,叠片式电极组件,极耳加工方便,装配精度高,散热性好。
第二方面,本申请提供了一种电池单体,包括:外壳;以及上述实施例所述的电极组件,所述电极组件设置在所述外壳内。
根据本申请实施例的电池单体,电极组件设置于外壳内,负极耳的宽度大于正极耳的宽度,负极耳的过流能力增大,使得电池单体的整体过流能力得到提高,保证电池单体具有较大的过流能力。
第三方面,本申请提供了一种电池单体,包括:外壳;正极端子,设置于所述外壳;第一负极端子和第二负极端子,设置于所述外壳;以及上述实施例所述的电极组件,所述电极组件设置于所述外壳内,所述正极耳与所述正极端子电连接,所述第 一子极耳与所述第一负极端子电连接,所述第二子极耳与所述第二负极端子电连接。
根据本申请实施例的电池单体,负极耳的宽度大于正极耳的宽度,通过正极耳与正极端子电连接、第一子极耳与第一负极端子电连接及第二子极耳与第二负极端子电连接,正极电能通过正极端子导出,负极电能通过第一负极端子和第二负极端子导出,同时,负极耳的宽度大于正极耳的宽度,负极耳的过流能力增大,使得电池单体具有较高的过流能力。
第四方面,本申请提供了一种电池单体,包括:外壳;正极端子,设置于所述外壳且与所述外壳相互绝缘;负极端子,设置于所述外壳且与所述外壳电连接;以及上述实施例所述的电极组件,所述电极组件设置于所述外壳内,所述正极耳与所述正极端子电连接,所述第一子极耳和所述第二子极耳中的一者与所述负极端子电连接,另一者与所述外壳电连接。
根据本申请实施例的电池单体,由于负极耳包括第一子极耳和第二子极耳,通过第一子极耳和第二子极耳分别与负极端子和外壳电连接、以及负极端子与外壳电连接,电极组件的负极电能汇聚至负极端子导出,以便于与其他部件(如电池单体)的电连接,同时,负极耳的宽度大于正极耳的宽度,负极耳的过流能力增大,使得电池单体具有较高的过流能力。
第五方面,本申请提供了一种电池,包括如上述实施例所述的电池单体。
第六方面,本申请提供了一种用电设备,包括如上述实施例所述的电池。
第七方面,本申请提供了一种电池单体的制造方法,包括:提供外壳;提供电极组件,所述电极组件包括正极片和负极片,所述正极片包括正极片本体和正极耳,所述正极耳凸出于所述正极片本体,所述负极片包括负极片本体和负极耳,所述负极耳凸出于所述负极片本体,所述负极耳的宽度大于所述正极耳的宽度;将所述电极组件放入所述外壳内。
第八方面,本申请提供了一种电池单体的制造设备,包括:提供模块,用于提供外壳及提供电极组件,所述电极组件包括正极片和负极片,所述正极片包括正极片本体和正极耳,所述正极耳凸出于所述正极片本体,所述负极片包括负极片本体和负极耳,所述负极耳凸出于所述负极片本体,所述负极耳的宽度大于所述正极耳的宽度;组装模块,用于将所述电极组件放入所述外壳内。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的分解结构示意图;
图3为本申请一些实施例提供的电池单体的分解结构示意图;
图4为本申请一些实施例提供的电极组件的结构示意图;
图5为本申请一些实施例提供的电极组件的负极片的结构示意图;
图6为本申请一些实施例提供的电极组件的正极片的结构示意图;
图7为本申请另一些实施例提供的电极组件的结构示意图;
图8为本申请另一些实施例提供的电池单体的分解结构示意图;
图9为本申请又一些实施例提供的电池单体的分解结构示意图;
图10为本申请再一些实施例提供的电池单体的分解结构示意图;
图11为本申请一些实施例的电池单体的制造方法的示意性流程图;
图12示出了本申请一些实施例的电池单体的制造设备的示意性框图;
在附图中,附图并未按照实际的比例绘制。
标记说明:100-电池;10-箱体;101-第一部分;102-第二部分;1-电池单体;11-外壳;111-壳体;112-端盖;1121-第一子端盖;1122-第二子端盖;12-电极组件;121-正极片;1211-正极片本体;1212-正极耳;122-负极片;1221-负极片本体;1221a-第一边缘;1221b-第二边缘;1222-负极耳;1222a-第一子极耳;1222b-第二子极耳;13-电极端子;131-正极端子;132-负极端子;132a-第一负极端子;132b-第二负极端子;14-连接部件;141-第一子连接部件;142-第二子连接部件;143-第三子连接部件;200-控制器;300-马达;1000-车辆。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限定本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安 装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:存在A,同时存在A和B,存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请中出现的“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请中,所提及的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提及的电池可以包括电池模块或电池包等。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极耳的数量为多个且层叠在一起,负极耳的数量为多个且层叠在一起。隔离膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。
电池单体的过流能力取决于电极组件的正极耳和负极耳中过流能力较低的一者,例如,正极耳和负极耳中负极耳的过流能力较低,则负极耳的过流能力决定了电池单体的整体过流能力。
电池制造过程中,基于成本及材料性能的考虑,负极集流体的材料通常为铜,铜的过流能力为8A/mm2,负极集流体的厚度一般为4.5~10μm,正极集流体的材料通常为铝,铝的过流能力为5A/mm2,正极集流体的厚度一般为10~20μm,负极集流体的厚度常低于正极集流体的厚度。通常情况下,负极片的负极耳的宽度与正极片的正极耳的宽度相同,可能存在负极耳过流能力不足,而正极耳过流能力良好且有富余的问题,电池单体的整体过流能力取决于过流能力较低的负极耳的过流能力。而负极耳的过流能力不足则会限制电池单体的使用且会产生一系列安全问题。例如,电池单体 的过流能力不足,则会影响电池单体的充放电倍率,使得电池单体的充放电倍率较低;在电池单体的容量额定的情况下,电池单体的过流能力较低,则电池单体的输出功率较低。又例如,在电池单体过流能力较低的情况下,当充放电电流过大时,电池单体容易引发产生过多的热量,使得电池单体破裂、漏液、冒烟、甚至爆炸,引发安全问题。因此,电池单体的过流能力不足影响电池单体的性能(如充放电倍率、安全性、输出功率等)。
鉴于此,为了解决电池单体的过流能力不足的问题,发明人经过深入研究,设计了一种电极组件,通过增加负极耳的宽度,使得负极耳的宽度大于正极耳的宽度,提高了负极耳的过流能力,进而提高了该电极组件装配成的电池单体的整体过流能力。
相对于同等宽度的正极耳和负极耳构成的电极组件,本申请的电极组件中,负极耳的宽度增加,并且负极耳的宽度大于正极耳的宽度,使得负极耳的过流面积增加,提高了负极耳的过流能力,在原有的正极耳的过流能力不变或者稍有下降的情况下,负极耳的过流能力和正极耳的过流能力的差值减小,电极组件中过流能力较弱的负极耳的过流能力得以提高,进而提高了该电极组件装配成的电池单体的整体过流能力。
本申请实施例公开的电池单体可以但不限于用于车辆、船舶或飞行器等用电设备中。可以使用具备本申请公开的电池单体、电池等组成该用电设备的电源系统。
本申请实施例提供一种使用电池作为电源的用电设备,用电设备可以为但不限于手机、平板电脑、笔记本电脑、电动玩具、电动工具、电动自行车、电动摩托车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电设备为车辆为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源,用于车辆1000的电路系统,例如用于车辆1000的启动、导航和运行时的工作用电需求。
车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2,图2为本申请一些实施例提供的电池100的分解结构示意图。电池100包括箱体10和电池单体1,电池单体1容纳于箱体10内。其中,箱体10用于为电池单体1提供容纳空间,箱体10可以采用多种结构。在一些实施例中,箱体10可以包括第一部分101和第二部分102,第一部分101与第二部分102相互盖合,第一 部分101和第二部分102共同限定出用于容纳电池单体1的容纳空间。第二部分102可以为一端开口的空心结构,第一部分101可以为板状结构,第一部分101盖合于第二部分102的开口侧,以使第一部分101与第二部分102共同限定出容纳空间;第一部分101和第二部分102也可以是均为一侧开口的空心结构,第一部分101的开口侧盖合于第二部分102的开口侧。当然,第一部分101和第二部分102形成的箱体10可以是多种形状,比如,圆柱体、长方体等。
在电池100中,电池单体1可以是多个,多个电池单体1之间可串联或并联或混联,混联是指多个电池单体1中既有串联又有并联。多个电池单体1之间可直接串联或并联或混联在一起,再将多个电池单体1构成的整体容纳于箱体10内;当然,电池100也可以是多个电池单体1先串联或并联或混联组成电池模块形式,多个电池100模块再串联或并联或混联形成一个整体,并容纳于箱体10内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件,用于实现多个电池单体1之间的电连接。
其中,每个电池单体1可以为二次电池或一次电池。电池单体1可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例以电池单体1呈长方体为例介绍。
请参照图3,图3为本申请一些实施例提供的电池单体1的分解结构示意图。电池单体1是指组成电池100的最小单元。如图3,电池单体1包括有外壳11、电极组件12以及其他的功能性部件。
外壳11是用于形成电池单体1的内部环境的组件,形成的内部环境可以用于容纳电极组件12、电解液以及其他部件。外壳11可以包括壳体111和端盖112,壳体111和端盖112可以是独立的部件,也可以于壳体111上设置开口,通过在开口处使端盖112盖合开口以形成电池单体1的内部环境。不限地,也可以使端盖112和壳体111一体化,具体地,端盖112和壳体111可以在其他部件入壳前先形成一个共同的连接面,当需要封装壳体111的内部时,再使端盖112盖合壳体111。壳体111可以是长方体形。具体地,壳体111的形状可以根据电极组件12的具体形状和尺寸大小来确定。壳体111的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金等,本申请实施例对此不作特殊限制。本申请实施例的壳体为导电部件。
端盖112是指盖合于壳体111的开口处以将电池单体1的内部环境隔绝于外部环境的部件。不限地,端盖112的形状可以与壳体111的形状相适应以配合壳体111。可选地,端盖112可以由具有一定硬度和强度的材质(如铝合金)制成,这样,端盖112在受挤压碰撞时就不易发生形变,使电池单体1能够具备更高的结构强度,安全性能也可以有所提高。端盖112上可以设置有如电极端子13等的功能性部件。电极端子13可以用于与电极组件12电连接,以用于输出或输入电池单体1的电能。在一些实施例中,端盖112上还可以设置有用于在电池单体1的内部压力或温度达到阈值时泄放内部压力的泄压机构。端盖112的材质也可以是多种的,比如,铜、铁、铝、不锈钢、铝合金、塑胶等。在一些实施例中,在端盖112的内侧还可以设置有绝缘件,绝缘件可以用于隔离壳体111内的电连接部件与端盖112,以降低短路的风险。示例性的,绝缘件可以是塑料、橡胶等。
电极组件12是电池单体1中发生电化学反应的部件。壳体111内可以包含一个或多个电极组件12。电极组件12主要由正极片和负极片卷绕或层叠放置形成,并且通常在正极片与负极片之间设有隔膜,电极组件的本体包括正极片和负极片具有活性物质的部分以及隔膜,正极片和负极片不具有活性物质的部分各自构成极耳。正极耳和负极耳可以分别位于本体的两端。在电池100的充放电过程中,正极活性物质和负极活性物质与电解液发生反应,极耳通过连接部件14连接电极端子13以形成电流回路。
电极端子13设置于外壳11,电极端子13通过连接部件14与电极组件12电连接,以用于输出或输入电池单体1的电能。电极端子13通常包括正极端子和负极端子,正极端子与正极耳电连接,负极端子与负极耳电连接。
本申请实施例以电池单体1为方形电池单体为例进行介绍。
请参见图4,图4为本申请一些实施例提供的电极组件12的结构示意图,图中正极耳1212和负极耳1222为展开状态。
根据本申请的一些实施例,如图4所示,本申请提供了一种电极组件12。电极组件12包括正极片121和负极片122。正极片121包括正极片本体1211和正极耳1212,正极耳1212凸出于正极片本体1211。负极片122包括负极片本体1221和负极耳1222,负极耳1222凸出于负极片本体1221。其中,负极耳1222的宽度L1大于正极耳1212的宽度L2。
本申请实施例中,正极片121的材质可以为铝,负极片122的材质可以为铜。
正极耳1212为正极片121的用于与正极端子131电连接的部位,负极耳1222为负极片122的用于与负极端子132电连接的部位。
图中,字母L1指示负极耳1222的宽度,字母L2指示正极耳1212的宽度。极耳的宽度是指,极耳的在凸出于极片本体的边缘的长度尺寸,也即在该边缘的延伸方向上极耳的尺寸。例如,极耳凸出于极片的宽度方向上的边缘,则极耳的宽度是指极耳在极片的长度方向上的尺寸;或者,极耳凸出于极片的长度方向上的边缘,则极耳的宽度是指极耳在极片的宽度方向上的尺寸。如图4所示,以电极组件12为叠片式电极组件为例,为了满足电池单体1的能量密度,极耳凸出于极片的长度方向的边缘,极耳的宽度方向与极片的宽度方向一致,极耳的宽度为极耳在极片的宽度方向上的尺寸。
负极耳1222的宽度L1大于正极耳1212的宽度L2是指,负极耳1222在凸出于负极片本体1221的边缘上的、沿该边缘的延伸方向的长度尺寸为L1,正极耳1212在凸出于正极片本体1211的边缘上的、沿该边缘的延伸方向的长度尺寸为L2,满足L1>L2。
根据本申请实施例的电极组件12,相对于等宽度的负极耳1222和正极耳1212构成的电极组件12,本申请中,负极耳1222的宽度增加,并且负极耳1222的宽度大于正极耳1212的宽度,使得负极耳1222的过流面积增加,提高了负极耳1222的过流能力,在原有的正极耳1212的过流能力不变或者稍有下降的情况下,负极耳1222的过流能力和正极耳1212的过流能力差值减小,电极组件12中过流能力较弱的负极耳 1222的过流能力得以提高,进而提高了该电极组件12装配成的电池单体的整体过流能力。
根据本申请的一些实施例,可选地,负极耳1222包括多个子极耳,多个子极耳的宽度之和大于正极耳1212的宽度。
负极耳1222包括多个子极耳,多个子极耳的宽度之和构成负极耳1222的宽度。换句话说,多个子极耳的电能之和为负极耳1222的电能,通过多个子极耳来实现负极电能的导出或者导入。
多个子极耳的宽度之和大于正极耳1212的宽度,通过设置多个子极耳的方式提高负极耳1222的宽度,以实现提高负极耳1222的过流能力,便于加工制造。
根据本申请的一些实施例,可选地,正极耳1212的数量可以为多个,多个正极耳1212的宽度之和构成正极耳1212的宽度,多个子极耳的宽度之和大于多个正极耳1212的宽度之和。
正极耳1212的数量为多个,以满足正极耳1212的过流能力需求,并且便于实现不同位置设置正极耳1212,避免部件之间的干涉。
请参见图5和图6,图5为本申请一些实施例提供的电极组件的负极片的结构示意图,图6为本申请一些实施例提供的电极组件的正极片的结构示意图。
根据本申请的一些实施例,可选地,如图5所示,多个子极耳包括第一子极耳1222a和第二子极耳1222b,第一子极耳1222a凸出于负极片本体1221的第一边缘1221a,第二子极耳1222b凸出于负极片本体1221的第二边缘1221b。
第一子极耳1222a凸出于负极片本体1221的第一边缘1221a、第二子极耳1222b凸出于负极片本体1221的第二边缘1221b,换句话说,第一子极耳1222a和第二子极耳1222b分别凸出于负极片本体1221的两个边缘。
图中,字母L11指示第一子极耳1222a的宽度,字母L12指示第二子极耳1222b的宽度。第一子极耳1222a的宽度L11为第一子极耳1222a在第一边缘1221a的延伸方向上的长度尺寸,第二子极耳1222b的宽度L12为第二子极耳1222b在第二边缘1221b的延伸方向上的长度尺寸。例如,如图5所示,第一边缘1221a和第二边缘1221b可以为负极片本体1221的相对的两个边缘,第一边缘1221a和第二边缘1221b均沿负极片122的宽度方向延伸,第一子极耳1222a的宽度L11为第一子极耳1222a在负极片122的宽度方向上的长度尺寸,第二子极耳1222b的宽度L12为第二子极耳1222b在负极片122的宽度方向上的长度尺寸。又例如,第一边缘1221a和第二边缘1221b可以为负极片本体1221的相邻的两个边缘,第一边缘1221a沿负极片122的宽度方向延伸,第二边缘1221b沿负极片122的长度方向延伸,第一子极耳1222a的宽度L11为第一子极耳1222a在负极片122的宽度方向上的长度尺寸,第二子极耳1222b的宽度L12为第二子极耳1222b在负极片122的长度方向上的长度尺寸。
第一子极耳1222a的宽度L11和第二子极耳1222b的宽度L12之和大于正极耳1212的宽度L2(请参见图6),也即,L11+L12>L2。
第一子极耳1222a凸出于负极片本体1221的第一边缘1221a、第二子极耳1222b凸出于负极片本体1221的第二边缘1221b,第一边缘1221a和第二边缘1221b为 负极片本体1221的两个不同边缘,使得第一子极耳1222a和第二子极耳1222b布局合理,避免部件之间的干涉。
在第一子极耳1222a凸出于第一边缘1221a、第二子极耳1222b凸出于第二边缘1221b时,在负极耳1222与正极耳1212不干涉的前提下,第一子极耳1222a的宽度L11可以与第一边缘1221a的长度相同,或者,第二子极耳1222b的宽度L12可以与第二边缘1221b的长度相同,又或者,第一子极耳1222a的宽度L11可以与第一边缘1221a的长度相同且第二子极耳1222b的宽度L12可以与第二边缘1221b的长度相同。
根据本申请的一些实施例,可选地,如图5所示,第一边缘1221a和第二边缘1221b为负极片本体1221的两个相对的边缘。
第一边缘1221a和第二边缘1221b为负极片本体1221的沿第一方向的两个相对的边缘,第一方向可以为电极组件12与外壳装配时电极组件12进入外壳的方向。
第一边缘1221a与第二边缘1221b相对设置,便于合理分配装配空间,减少空间占用,保证电极组件12装配的电池单体1结构紧凑,保证电池单体1具有较高的能量密度。
请参见图7,图7为本申请另一些实施例提供的电极组件12的结构示意图。根据本申请的一些实施例,可选地,如图7所示,第一子极耳1222a位于电极组件12的一端,第二子极耳1222b和正极耳1212位于电极组件12的另一端。
第一子极耳1222a和正极耳1212分别位于电极组件12的相对的两端,第一子极耳1222a的宽度L11可以设置地较宽,例如,第一子极耳1222a的宽度L11可以为第一边缘1221a的长度。
第二子极耳1222b和正极耳1212位于电极组件12的另一端,也即,第二子极耳1222b和正极耳1212位于电极组件12的同一端。由于极耳是多层结构,多层的第二子极耳1222b与多层的正极耳1212互不干涉,以避免内部短路。
在电极组件12为卷绕式电极组件的实施例中,第二子极耳1222b和正极耳1212可以分别位于电极组件12的厚度方向(也即极耳的层叠方向)的两侧,在电极组件12的厚度方向上,第二子极耳1222b的投影和正极耳1212的投影可以重叠也可以不重叠,只要保证第二子极耳1222b和正极耳1212不接触即可。在电极组件12为叠片式电极组件的实施例中,如图7所示,在电极组件12的厚度方向上,第二子极耳1222b的投影与正极耳1212的投影不重叠,以避免第二子极耳1222b与正极耳1212接触短路。
第二子极耳1222b和正极耳1212位于电极组件12的同一端,合理利用装配空间,减少空间占用,使得电极组件12装配的电池单体结构紧凑,保证电池单体具有较高的能量密度。
根据本申请的一些实施例,可选地,第一子极耳1222a的宽度L11大于第二子极耳1222b的宽度L12。
第一子极耳1222a和第二子极耳1222b分别凸出于负极片本体1221的两个边缘,第一子极耳1222a在第一边缘1221a上的长度可以依据第一边缘1221a的长度来确定,极限情况下,第一子极耳1222a的宽度L11与第一边缘1221a的长度相同。
在第二子极耳1222b和正极耳1212位于电极组件12的同一端的实施例中,第一子极耳1222a的宽度L11大于第二子极耳1222b的宽度L12,在保证第二子极耳1222b与正极耳1212不干涉的前提下,增加第一子极耳1222a的宽度L11,能够保证第一子极耳1222a和第二子极耳1222b的宽度之和大于正极耳1212的宽度L2。
第一子极耳1222a的宽度L11大于第二子极耳1222b的宽度L12,使得第一子极耳1222a可以在第一边缘1221a具有较长的延伸宽度,甚至第一子极耳1222a的宽度L11可以与第一边缘1221a的长度一致,一方面,便于实现负极耳1222具有较大的过流面积,另一方面,便于加工。
根据本申请的一些实施例,可选地,如图7所示,第一子极耳1222a的宽度L11大于正极耳1212的宽度L2。
第一子极耳1222a的宽度L11大于正极耳1212的宽度L2,则第一子极耳1222a和第二子极耳1222b的宽度之和必然大于正极耳1212的宽度L2,第二子极耳1222b的宽度L12可以根据电极组件12的装配空间确定。
在负极耳1222需要较大的过流能力的情况下,第二子极耳1222b的宽度L12可以较大,以使得负极耳1222具有较大的宽度,增加负极耳1222的过流面积,提高负极耳1222的过流能力。
第一子极耳1222a的宽度L11大于正极耳1212的宽度L2,保证第一子极耳1222a和第二子极耳1222b的宽度之和大于正极耳1212的宽度L2,保证负极耳1222具有较大的过流能力,甚至负极耳1222的过流能力可以大于正极耳1212的过流能力,提高该电极组件12装配的电池单体的整体过流能力。
根据本申请的一些实施例,可选地,如图7所示,正极耳1212的宽度L2大于第二子极耳1222b的宽度L12。
正极耳1212的宽度L2大于第二子极耳1222b的宽度L12,保证正极耳1212具有较宽的宽度,正极耳1212具有较大的过流面积,以保证正极耳1212具有较大的过流能力。
第二子极耳1222b凸出于负极片122的第二边缘1221b,正极耳1212与第二子极耳1222b可以位于电极组件12的同一端,可以位于电极组件12的不同端。
在第一子极耳1222a位于电极组件12的一端、第二子极耳1222b和正极耳1212位于电极组件12的另一端的实施例中,如图7所示,第一子极耳1222a和正极耳1212分别位于电极组件12的两端,正极耳1212的宽度L2大于第二子极耳1222b的宽度L12,使得第一子极耳1222a的宽度L11可以较宽,以满足第一子极耳1222a和第二子极耳1222b的宽度之和大于正极耳1212的宽度L2。
根据本申请的一些实施例,可选地,电极组件12为叠片式电极组件。
叠片式电极组件具有较为均匀的电流密度分布,优良的内部散热性等优点。
当电极组件12为叠片式电极组件时,极片在对应的极片本体的边缘的宽度可以跟该边缘的长度相同。例如,在负极耳1222包括第一子极耳1222a和第二子极耳1222b的实施例中,第一子极耳1222a的宽度L11可以与第一边缘1221a的长度相同;或者,第一子极耳1222a的宽度L11可以与第一边缘1221a的长度相同,且第二子极 耳1222b的宽度L12可以与第二边缘1221b的长度相同。同理,正极耳1212的宽度L2可以与正极片本体1211的边缘的长度相同。
可选地,如图5所示,第一子极耳1222a的宽度L11与第一边缘1221a的长度相同。
叠片式电极组件,极耳加工方便,装配精度高,散热性好。
请参见图8至图10,图8为本申请另一些实施例提供的电池单体1的分解结构示意图,图9为本申请又一些实施例提供的电池单体1的分解结构示意图,图10为本申请再一些实施例提供的电池单体1的分解结构示意图。
根据本申请的一些实施例,如图8至图10所示,本申请还提供了一种电池单体1,包括外壳11以及上述方案所述的电极组件12,电极组件12设置在外壳11内。
外壳11为用于保护电极组件12的部件,其内部具有用于容纳电极组件12的空间。外壳11通常具有较高的强度,提高电池单体1的安全性能。
根据本申请实施例的电池单体1,电极组件12设置于外壳11内,负极耳1222的宽度大于正极耳1212的宽度,负极耳1222的过流能力增大,使得电池单体1的整体过流能力得到提高,保证电池单体1具有较大的过流能力。
根据本申请的一些实施例,如图8所示,本申请还提供了一种电池单体1,包括外壳11、正极端子131、第一负极端子132a和第二负极端子132b、以及上述方案所述的电极组件12。正极端子131设置于外壳11,第一负极端子132a和第二负极端子132b设置于外壳11。电极组件12设置于外壳11内,正极耳1212与正极端子131电连接,第一子极耳1222a与第一负极端子132a电连接,第二子极耳1222b与第二负极端子132b电连接。
外壳11可以包括壳体111和端盖112,壳体111可以为两端开口的结构,端盖112的数量可以为两个,两个端盖112分别覆盖于壳体111的两个开口处,且端盖112与壳体111密封连接。例如,如图8所示,两个开口位于壳体111的相对的两端,两个端盖112相对设置。
第一负极端子132a可以设置于一个端盖112,第二负极端子132b和正极端子131可以设置于另一个端盖112。端盖112与壳体111可以电连接,也可以绝缘连接。
可选地,如图8所示,两个端盖112分别为第一子端盖1121和第二子端盖1122,第一负极端子132a设置于第一子端盖1121,第二负极端子132b和正极端子131设置于第二子端盖1122,第一子极耳1222a与第一负极端子132a通过第一子连接部件141电连接,第二子极耳1222b与第二负极端子132b通过第二子连接部件142电连接,正极耳1212与正极端子131通过第三子连接部件143电连接。
根据本申请实施例的电池单体1,负极耳1222的宽度大于正极耳1212的宽度,通过正极耳1212与正极端子131电连接、第一子极耳1222a与第一负极端子132a电连接及第二子极耳1222b与第二负极端子132b电连接,正极电能通过正极端子131导出,负极电能通过第一负极端子132a和第二负极端子132b导出,同时,负极耳1222的宽度大于正极耳1212的宽度,负极耳1222的过流能力增大,使得电池单体1具有较高的过流能力。
根据本申请的一些实施例,本申请还提供了一种电池单体1,如图9和图10所示,包括外壳11、正极端子131、负极端子132以及上述方案所述的电极组件12。正极端子131设置于外壳11且与外壳11相互绝缘。负极端子132设置于外壳11且与外壳11电连接。电极组件12设置于外壳11内,正极耳1212与正极端子131电连接,第一子极耳1222a和第二子极耳1222b中的一者与负极端子132电连接,另一者与外壳11电连接。
外壳11可以包括壳体111和端盖112,壳体111可以为两端开口的结构,端盖112的数量可以为两个,两个端盖112分别覆盖于壳体111的两个开口处,且端盖112与壳体111密封连接。例如,如图9和图10所示,两个开口位于壳体111的相对的两端,两个端盖112相对于设置。端盖112与壳体111电连接。
正极端子131设置于外壳11且与外壳11相互绝缘,可以为正极端子131设置于一个端盖112,并且正极端子131与该端盖112相互绝缘,以便于正极端子131与将正极电能导出或导入。
第一子极耳1222a和第二子极耳1222b中的一者与负极端子132电连接、另一者与外壳11电连接,可以为第一子极耳1222a与负极端子132电连接、第二子极耳1222b与外壳11电连接,或者,也可以为第一子极耳1222a与外壳11电连接、第二子极耳1222b与负极端子132电连接。由于负极端子132设置于外壳11且与外壳11电连接,所以,第一子极耳1222a与第二子极耳1222b串联。
可选地,如图9所示,两个端盖112分别为第一子端盖1121和第二子端盖1122,第一子极耳1222a通过第一子连接部件141与第一子端盖1121电连接,负极端子132和正极端子131设置于第二子端盖1122,第二子极耳1222b通过第二子连接部件142与负极端子132电连接,正极耳1212通过第三子连接部件143与正极端子131电连接。
可选地,如图10所示,两个端盖112分别为第一子端盖1121和第二子端盖1122,负极端子132设置于第一子端盖1121且与第一子端盖1121电连接,正极端子131设置于第二子端盖1122且与第二子端盖1122相互绝缘,第一子极耳1222a与负极端子132通过第一子连接部件141电连接,第二子极耳1222b与第二子端盖1122通过第二子连接部件142电连接,正极耳1212与正极端子131通过第三子连接部件143电连接。
根据本申请实施例的电池单体1,由于负极耳1222包括第一子极耳1222a和第二子极耳1222b,通过第一子极耳1222a和第二子极耳1222b分别与负极端子132和外壳11电连接、以及负极端子132与外壳11电连接,电极组件12的负极电能汇聚至负极端子132导出,以便于与其他部件(如电池单体1)的电连接,同时,负极耳1222的宽度大于正极耳1212的宽度,负极耳1222的过流能力增大,使得电池单体1具有较高的过流能力。
根据本申请的一些实施例,本申请还提供了一种电池100,包括上述方案所述的电池单体1。
根据本申请的一些实施例,本申请还提供了一种用电设备,包括上述方案 所述的电池100,并且电池100用于为用电设备提供电能。
用电设备可以是前述任一应用电池100的设备或系统。
根据本申请的一些实施例,参见图3至图10,本申请提供了一种电池单体1,该电池单体1包括外壳11和电极组件12,电极组件12设置于外壳11内。电极组件12为叠片式电极组件,电极组件12包括正极片121和负极片122,正极片121包括正极片本体1211和正极耳1212,正极耳1212凸出于正极片本体1211,负极片122包括负极片本体1221和负极耳1222,负极耳1222凸出于负极片本体1221。负极耳1222包括第一子极耳1222a和第二子极耳1222b,第一子极耳1222a凸出于负极片本体1221的第一边缘1221a,第二子极耳1222b凸出于负极片本体1221的第二边缘1221b。第一子极耳1222a位于电极组件12的一端,第二子极耳1222b和正极耳1212位于电极组件12的另一端,第一子极耳1222a和第二子极耳1222b的宽度之和大于正极耳1212的宽度。第一子极耳1222a的宽度与第一边缘1221a的长度相同。
根据本申请实施例的电池单体1,负极耳1222的宽度增大,使得负极耳1222具有较大的过流面积,提高了负极耳1222的过流能力,进而使得电池单体1具有较高的过流能力。
图11示出了本申请一些实施例的电池单体1的制造方法的示意性流程图。根据本申请的一些实施例,如图11所示,本申请还提供了一种电池单体1的制造方法,该电池单体1的制造方法包括:
S401,提供外壳11;
S402,提供电极组件12,电极组件12包括正极片121和负极片122,正极片121包括正极片本体1211和正极耳1212,正极耳1212凸出于正极片本体1211,负极片122包括负极片本体1221和负极耳1222,负极耳1222凸出于负极片本体1221,负极耳1222的宽度大于正极耳1212的宽度;
S403,将电极组件12放入外壳11内。
上述步骤中,步骤“S401,提供外壳11”与步骤“S402,提供电极组件12”的顺序并不限定,可以先执行步骤“S401,提供外壳11”,再执行步骤“S402,提供电极组件12”,或者,可以先执行步骤“S402,提供电极组件12”,再执行步骤“S401,提供外壳11”。
图12示出了本申请一些实施例的电池单体的制造设备500的示意性框图。根据本申请的一些实施例,如图12所示,本申请还提供了一种电池单体的制造设备500,该电池单体的制造设备500包括:提供模块501和组装模块502。提供模块501用于提供外壳11及提供电极组件12,电极组件12包括正极片121和负极片122,正极片121包括正极片本体1211和正极耳1212,正极耳1212凸出于正极片本体1211,负极片122包括负极片本体1221和负极耳1222,负极耳1222凸出于负极片本体1221,负极耳1222的宽度大于正极耳1212的宽度。组装模块502用于将电极组件12放入外壳11内。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要 不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (16)

  1. 一种电极组件,包括:
    正极片,包括正极片本体和正极耳,所述正极耳凸出于所述正极片本体;
    负极片,包括负极片本体和负极耳,所述负极耳凸出于所述负极片本体;
    其中,所述负极耳的宽度大于所述正极耳的宽度。
  2. 根据权利要求1所述的电极组件,其中,所述负极耳包括多个子极耳,所述多个子极耳的宽度之和大于所述正极耳的宽度。
  3. 根据权利要求2所述的电极组件,其中,所述多个子极耳包括第一子极耳和第二子极耳,所述第一子极耳凸出于所述负极片本体的第一边缘,所述第二子极耳凸出于所述负极片本体的第二边缘。
  4. 根据权利要求3所述的电极组件,其中,所述第一边缘和所述第二边缘为所述负极片本体的两个相对的边缘。
  5. 根据权利要求3或4所述的电极组件,其中,所述第一子极耳位于所述电极组件的一端,所述第二子极耳和所述正极耳位于所述电极组件的另一端。
  6. 根据权利要求3-5中任一项所述的电极组件,其中,所述第一子极耳的宽度大于所述第二子极耳的宽度。
  7. 根据权利要求3-6中任一项所述的电极组件,其中,所述第一子极耳的宽度大于所述正极耳的宽度。
  8. 根据权利要求3-7中任一项所述的电极组件,其中,所述正极耳的宽度大于所述第二子极耳的宽度。
  9. 根据权利要求1-8中任一项所述的电极组件,其中,所述电极组件为叠片式电极组件。
  10. 一种电池单体,包括:
    外壳;以及
    如权利要求1-9中任一项所述的电极组件,所述电极组件设置在所述外壳内。
  11. 一种电池单体,包括:
    外壳;
    正极端子,设置于所述外壳;
    第一负极端子和第二负极端子,设置于所述外壳;以及
    如权利要求3-8中任一项所述的电极组件,所述电极组件设置于所述外壳内,所述正极耳与所述正极端子电连接,所述第一子极耳与所述第一负极端子电连接,所述第二子极耳与所述第二负极端子电连接。
  12. 一种电池单体,包括:
    外壳;
    正极端子,设置于所述外壳且与所述外壳相互绝缘;
    负极端子,设置于所述外壳且与所述外壳电连接;以及
    如权利要求3-8中任一项所述的电极组件,所述电极组件设置于所述外壳内,所述 正极耳与所述正极端子电连接,所述第一子极耳和所述第二子极耳中的一者与所述负极端子电连接,另一者与所述外壳电连接。
  13. 一种电池,包括如权利要求10-12中任一项所述的电池单体。
  14. 一种用电设备,包括如权利要求13所述的电池。
  15. 一种电池单体的制造方法,包括:
    提供外壳;
    提供电极组件,所述电极组件包括正极片和负极片,所述正极片包括正极片本体和正极耳,所述正极耳凸出于所述正极片本体,所述负极片包括负极片本体和负极耳,所述负极耳凸出于所述负极片本体,所述负极耳的宽度大于所述正极耳的宽度;
    将所述电极组件放入所述外壳内。
  16. 一种电池单体的制造设备,包括:
    提供模块,用于提供外壳及提供电极组件,所述电极组件包括正极片和负极片,所述正极片包括正极片本体和正极耳,所述正极耳凸出于所述正极片本体,所述负极片包括负极片本体和负极耳,所述负极耳凸出于所述负极片本体,所述负极耳的宽度大于所述正极耳的宽度;
    组装模块,用于将所述电极组件放入所述外壳内。
PCT/CN2022/144193 2022-01-12 2022-12-30 电极组件、电池单体、电池及用电设备 WO2023134480A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210033841.7A CN116470241A (zh) 2022-01-12 2022-01-12 电极组件、电池单体、电池及用电设备
CN202210033841.7 2022-01-12

Publications (1)

Publication Number Publication Date
WO2023134480A1 true WO2023134480A1 (zh) 2023-07-20

Family

ID=87179415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/144193 WO2023134480A1 (zh) 2022-01-12 2022-12-30 电极组件、电池单体、电池及用电设备

Country Status (2)

Country Link
CN (1) CN116470241A (zh)
WO (1) WO2023134480A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116936953A (zh) * 2023-09-14 2023-10-24 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池及用电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201946701U (zh) * 2011-01-11 2011-08-24 东莞市西特新能源科技有限公司 聚合物锂离子电池
CN204407427U (zh) * 2014-12-26 2015-06-17 山东精工电子科技有限公司 一种动力储能软包锂离子电池
JP2017216105A (ja) * 2016-05-31 2017-12-07 株式会社豊田自動織機 蓄電装置
CN112687963A (zh) * 2021-03-12 2021-04-20 苏州宇量电池有限公司 一种叠片式锂离子电池极芯及包括该极芯的电池
WO2021179216A1 (zh) * 2020-03-11 2021-09-16 东莞新能德科技有限公司 电芯结构及电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201946701U (zh) * 2011-01-11 2011-08-24 东莞市西特新能源科技有限公司 聚合物锂离子电池
CN204407427U (zh) * 2014-12-26 2015-06-17 山东精工电子科技有限公司 一种动力储能软包锂离子电池
JP2017216105A (ja) * 2016-05-31 2017-12-07 株式会社豊田自動織機 蓄電装置
WO2021179216A1 (zh) * 2020-03-11 2021-09-16 东莞新能德科技有限公司 电芯结构及电池
CN112687963A (zh) * 2021-03-12 2021-04-20 苏州宇量电池有限公司 一种叠片式锂离子电池极芯及包括该极芯的电池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116936953A (zh) * 2023-09-14 2023-10-24 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池及用电装置
CN116936953B (zh) * 2023-09-14 2024-02-23 宁德时代新能源科技股份有限公司 电极组件、电池单体、电池及用电装置

Also Published As

Publication number Publication date
CN116470241A (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
WO2023137950A1 (zh) 卷绕式电极组件、电池单体、电池及用电设备
US11757161B2 (en) Battery cell, battery and electricity consuming device
EP4131631A1 (en) Electrode assembly, battery cell, battery and power-consuming apparatus
WO2023174266A1 (zh) 壳体、电池单体、电池及用电设备
WO2023221598A1 (zh) 连接组件、电池单体、电池及用电设备
US20230395952A1 (en) Battery cell, battery and electrical device
US20230087166A1 (en) Electrode assembly, battery cell, battery and electrical device
WO2023240749A1 (zh) 电极组件、电池单体、电池和用电设备
WO2023020119A1 (zh) 电极组件、电池单体、电池及用电设备
WO2023134480A1 (zh) 电极组件、电池单体、电池及用电设备
US20220311056A1 (en) Electrode assembly, battery cell, battery, manufacturing method and device for electrode assembly
US20240145785A1 (en) Electrode assembly, battery cell, battery, and electric apparatus
US20240055705A1 (en) Battery cell, battery, power consuming apparatus, and method and apparatus for manufacturing battery cell
WO2023216829A1 (zh) 电池单体、电池及用电装置
WO2023159847A1 (zh) 电池单体、电池及用电装置
WO2023082155A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023245673A1 (zh) 电池单体、电池及用电装置
CN220963648U (zh) 电池单体、电池及用电设备
WO2024103201A1 (zh) 端盖组件、电池单体、电池和用电装置
WO2023178483A1 (zh) 电池单体及其制造方法和制造设备、电池及用电装置
WO2023133854A1 (zh) 电池单体、电池、用电设备、电池单体的制造方法及设备
WO2023221606A1 (zh) 集流体、极片、电极组件、电池单体、电池及用电装置
WO2023178600A1 (zh) 集流构件、电池单体、电池及用电设备
WO2023133848A1 (zh) 电池、用电设备、电池的制造方法及设备
WO2023050388A1 (zh) 电池单体、电池、用电设备及电池单体的制造方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920110

Country of ref document: EP

Kind code of ref document: A1