WO2024098257A1 - 电池单体、电池及用电装置 - Google Patents

电池单体、电池及用电装置 Download PDF

Info

Publication number
WO2024098257A1
WO2024098257A1 PCT/CN2022/130664 CN2022130664W WO2024098257A1 WO 2024098257 A1 WO2024098257 A1 WO 2024098257A1 CN 2022130664 W CN2022130664 W CN 2022130664W WO 2024098257 A1 WO2024098257 A1 WO 2024098257A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
bottom wall
groove
along
pole
Prior art date
Application number
PCT/CN2022/130664
Other languages
English (en)
French (fr)
Inventor
周文林
吴宁生
陈龙
李全坤
王鹏
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/130664 priority Critical patent/WO2024098257A1/zh
Publication of WO2024098257A1 publication Critical patent/WO2024098257A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular to a battery cell, a battery and an electrical device.
  • the embodiments of the present application provide a battery cell, a battery, and an electrical device, which can effectively improve the service life and safety of the battery cell.
  • an embodiment of the present application provides a battery cell, comprising a shell, an end cover, an electrode assembly and a pole;
  • the shell comprises an integrally formed bottom wall and side wall, the side wall is arranged around the bottom wall, along a first direction, the bottom wall is arranged at one end of the side wall, and the other end of the side wall forms an opening;
  • the end cover covers the opening, and the end cover and the bottom wall are arranged opposite to each other along the first direction;
  • the electrode assembly is accommodated in the shell, and along the first direction, the bottom wall is configured to support the electrode assembly;
  • the pole is arranged on the bottom wall, and the pole is electrically connected to the electrode assembly.
  • the pole of the battery cell is arranged on the bottom wall of the shell that is arranged opposite to the end cover in the first direction, the bottom wall and the side wall are an integrated structure, and the bottom wall is used to support the electrode assembly, that is, the battery cell is inverted, so that the bottom wall of the battery cell with the pole is arranged downward, and the end cover of the electrode assembly is arranged upward.
  • the battery cell adopting this structure can, on the one hand, alleviate the phenomenon that the force is transmitted to the shell and the end cover through the pole when the battery's current collecting component pulls or twists the pole during use, so as to alleviate the pulling between the end cover and the shell, thereby effectively reducing the risk of connection failure between the end cover and the shell, which is beneficial to improving the safety and service life of the battery cell.
  • the pole and the end cover are respectively located at the two ends of the battery cell in the first direction, and the end cover is located on the top of the battery cell, it can alleviate the phenomenon that the battery cell leaks when the connection between the end cover and the shell fails or deforms, thereby improving the safety of the battery cell.
  • the electrode assembly includes a main body and a pole ear protruding from the main body, and the pole ear is electrically connected to the pole;
  • the battery cell also includes a support member, and along the first direction, at least a portion of the support member is arranged between the bottom wall and the main body, and the bottom wall supports the main body through the support member.
  • the battery cell is provided with a support member located between the bottom wall of the shell and the main body of the electrode assembly in the first direction, so that the bottom wall can support the main body of the electrode assembly through the support member.
  • the battery cell adopting this structure can increase the force-bearing area of the main body of the electrode assembly, which is beneficial to alleviate the phenomenon that the local stress of the main body of the electrode assembly is excessive due to the force on the local area of the main body, and thus can effectively reduce the risk of the main body of the electrode assembly being damaged during use, so as to improve the service life of the electrode assembly.
  • the pole tab protrudes from one end of the main body facing the bottom wall, and the pole tab is bent around the support member.
  • the pole ear is connected to the end of the main body facing the bottom wall in the first direction, and the pole ear is bent around the support member and then electrically connected to the pole post, so that the part of the pole ear connected to the pole post is located on the side of the support member away from the main body, thereby effectively alleviating the phenomenon of the pole ear being invertedly inserted into the main body of the electrode assembly during assembly or use, which is beneficial to reduce the short circuit risk of the battery cell and improve the safety of the battery cell.
  • the pole ear includes a first connecting segment, a second connecting segment, and a third connecting segment connected in sequence, the first connecting segment is connected to the main body, and the third connecting segment is connected to the pole; along the first direction, the first connecting segment is located on the side of the support member facing the main body, and the third connecting segment is located on the side of the support member facing the bottom wall; along the second direction, the second connecting segment is located at one end of the support member, and the second direction is perpendicular to the first direction.
  • the pole ear has a first connecting section, a second connecting section and a third connecting section which are connected in sequence, the first connecting section and the third connecting section are respectively located on both sides of the support member, the second connecting section is located at one end of the support member in the second direction, and the first connecting section and the third connecting section are respectively connected to the main body and the pole, so as to realize a structure in which the pole ear is bent around the support member, so that the pole ear can be formed with a third connecting section which is located on the side of the support member facing the bottom wall in the first direction and is used to be connected to the pole.
  • the battery cell includes two electrode assemblies; along the second direction, the main bodies of the two electrode assemblies are stacked along the second direction, and the tabs of the two electrode assemblies are respectively bent around the two ends of the support member, and the second direction is perpendicular to the first direction.
  • the battery cell is provided with two electrode assemblies stacked along the second direction, and the pole ears of the two electrode assemblies are bent around the two ends of the support member in the second direction, so that the pole ears of the two electrode assemblies can be connected to the poles after bypassing the support member, so as to alleviate the phenomenon that the pole ears of the two electrode assemblies are invertedly inserted into the main body of the electrode assembly during assembly or use, which is beneficial to further reduce the safety hazards of the battery cell during use.
  • the battery cell further includes a current collecting member; along the first direction, at least a portion of the current collecting member is disposed between the support member and the bottom wall, and the current collecting member connects the electrode tab and the electrode column.
  • the battery cell is also provided with a current collecting component located between the support member and the bottom wall in the first direction, so that the current collecting component can connect the pole lug and the pole column to achieve electrical connection between the pole lug and the pole column.
  • a current collecting component located between the support member and the bottom wall in the first direction, so that the current collecting component can connect the pole lug and the pole column to achieve electrical connection between the pole lug and the pole column.
  • the battery cell further includes a first insulating member; along the first direction, at least a portion of the first insulating member is disposed between the current collecting member and the bottom wall to insulate and isolate the current collecting member from the bottom wall.
  • the battery cell is also provided with a first insulating member located between the current collecting member and the bottom wall in the first direction.
  • the first insulating member can play a role of insulating and isolating the current collecting member and the bottom wall to reduce the risk of short circuit between the current collecting member and the bottom wall, thereby helping to improve the safety of the battery cell during use and reduce the risk of using the battery cell.
  • the bottom wall has a first surface facing away from the electrode assembly, the first surface is provided with a groove, the bottom wall of the groove forms a pressure relief portion, and the pressure relief portion is configured to release the internal pressure of the battery cell.
  • a groove recessed toward the interior of the battery cell is provided on the first surface of the bottom wall, and the bottom wall of the groove forms a pressure relief portion for releasing the internal pressure of the battery cell, so as to release the pressure inside the battery cell when the battery cell thermally runs away.
  • This structure enables the pressure relief portion to be spaced apart from the first surface of the bottom wall, and closer to the electrode assembly than the first surface. On the one hand, it can provide a certain degree of protection for the pressure relief portion, so as to reduce the risk of wear or damage of the pressure relief portion by the external environment, thereby reducing the phenomenon of premature valve opening of the pressure relief portion.
  • a distance H between the pressure relief portion and the first surface satisfies 1 mm ⁇ H ⁇ 5 mm.
  • the bottom wall has a second surface facing the electrode assembly, and a protrusion is formed on the bottom wall at a position corresponding to the groove, and the protrusion protrudes from the second surface.
  • a protrusion protruding from the second surface is formed at a position of the bottom wall corresponding to the groove, so that the pressure relief portion protrudes from the second surface toward the electrode assembly.
  • This structure is convenient for forming a groove on the bottom wall that is recessed toward the electrode assembly, and can also enhance the structural strength between the pressure relief portion and the bottom wall.
  • the groove includes a first groove and a second groove continuously arranged along the first direction, the first groove is arranged on the first surface, and the groove side surface of the first groove is connected to the groove side surface of the second groove through the groove bottom surface of the first groove.
  • the groove is provided with a first groove and a second groove which are continuously arranged in a first direction toward the direction facing the electrode assembly, and the groove side surface of the first groove is connected with the groove side surface of the second groove through the groove bottom surface of the first groove, that is, the second groove is arranged on the groove bottom surface of the first groove, so that a step structure is formed between the pressure relief part and the bottom wall, which is beneficial to further enhance the structural strength between the pressure relief part and the bottom wall.
  • the outer peripheral surface of the protrusion is set at an obtuse angle to the second surface, and along the first direction, the protrusion has a third surface facing the electrode assembly, and the projection of the edge of the third surface in the first direction is located within the bottom surface of the first groove.
  • the distance between the outer peripheral surface of the protrusion and the bottom surface of the first groove in the first direction gradually decreases from the edge of the third surface to the second surface, so that the thickness of the protrusion in the first direction gradually decreases, thereby realizing that the protrusion is formed with a region with stronger strength and a region with gradually reduced strength, so as to realize that the region between the pressure relief part and the bottom wall has a structure from strong to weak, thereby ensuring the structural strength of the pressure relief part connected to the bottom wall while absorbing the stress and energy transmitted from the bottom wall through the region with weakened strength, so as to reduce the influence of the stress and energy on the bottom wall on the pressure relief part, thereby reducing the risk of deformation of the pressure relief part due to the influence of the bottom
  • a bottom wall of the second groove forms the pressure relief portion.
  • the bottom wall of the second groove is set as a pressure relief portion for releasing the internal pressure of the battery cell, that is, the groove is only provided with the first groove and the second groove.
  • a blocking portion is protruded from the first surface, and the blocking portion surrounds the outer side of the groove.
  • a blocking portion is protruding from the first surface and surrounding the outer side of the groove, that is, the blocking portion is an annular structure surrounding the outer side of the groove.
  • the battery cell of this structure can block the electrolyte through the blocking portion to reduce the phenomenon of the electrolyte flowing from the first surface into the groove, thereby reducing the influence of the electrolyte on the pressure relief portion.
  • the thickness of the bottom wall is greater than the thickness of the side wall.
  • the thickness of the bottom wall is set to be greater than the thickness of the side wall to improve the structural strength of the bottom wall, thereby ensuring the structural stability of the pole installed on the bottom wall and improving the bearing capacity of the bottom wall for the electrode assembly to alleviate the deformation of the bottom wall during use.
  • the thickness of the bottom wall is equal to the thickness of the side wall.
  • the bottom wall and side wall of the integrated structure can be directly formed by stamping and other processes without adding other processing techniques, which is conducive to reducing the manufacturing difficulty of the shell.
  • the thickness of the sidewall is greater than the thickness of the end cap.
  • the thickness of the side wall is set to be greater than the thickness of the end cover, since no pole or other components are provided on the end cover, it is helpful to reduce the space occupied by the end cover, so as to improve the energy density and capacity of the battery cell.
  • the battery cell includes two poles with opposite polarities, both poles are disposed on the bottom wall, and both poles are electrically connected to the electrode assembly.
  • the battery cell is provided with two poles, and the two poles are both arranged on the bottom wall of the shell, thereby reducing the phenomenon that the force is transmitted to the shell and the end cover through the poles when the battery's busbar component pulls or twists the two poles with opposite polarities, so as to alleviate the pulling between the end cover and the shell, thereby further reducing the risk of connection failure between the end cover and the shell, and further alleviating the phenomenon of battery cell leakage due to connection failure or deformation between the end cover and the shell.
  • an embodiment of the present application further provides a battery, comprising a box body and the above-mentioned battery cell; the battery cell is accommodated in the box body, and along the first direction, the bottom wall is arranged facing the bottom of the box body.
  • the end cover is connected to the top of the box body so that the battery cell is suspended in the box body.
  • the end cover of the battery cell is arranged to face the top of the box
  • the bottom wall of the shell is arranged to face the bottom of the box
  • the end cover of the battery cell is connected to the top of the box to realize the battery cell being suspended in the box.
  • This structure can realize the spacing between the bottom wall with the pole and the bottom of the box, so as to facilitate the arrangement of a busbar component connected to the pole in the box, and can reduce the influence of other components on the end cover, so as to reduce the phenomenon of deformation of the end cover and resulting in connection failure between the end cover and the shell, which is beneficial to reduce the risk of leakage of the battery cell.
  • an embodiment of the present application further provides an electrical device, comprising the above-mentioned battery.
  • FIG1 is a schematic diagram of the structure of a vehicle provided in some embodiments of the present application.
  • FIG2 is a cross-sectional view of a battery provided in some embodiments of the present application.
  • FIG3 is a schematic diagram of the structure of a battery cell provided in some embodiments of the present application.
  • FIG4 is an exploded view of the structure of a battery cell provided in some embodiments of the present application.
  • FIG5 is a cross-sectional view of a battery cell provided in some embodiments of the present application.
  • FIG6 is a partial enlarged view of the battery cell A shown in FIG5;
  • FIG. 7 is a schematic structural diagram of a housing of a battery cell provided in some embodiments of the present application.
  • FIG8 is a partial enlarged view of a portion B of the housing shown in FIG7 ;
  • FIG9 is a cross-sectional view of a housing of a battery cell provided in some embodiments of the present application.
  • FIG. 10 is a partial enlarged view of a portion C of the housing shown in FIG. 9 .
  • Icon 1000-vehicle; 100-battery; 10-box; 11-first box body; 12-second box body; 20-battery cell; 21-shell; 211-bottom wall; 2111-lead hole; 2112-first surface; 2113-second surface; 2114-blocking part; 212-side wall; 213-opening; 214-accommodating chamber; 215-groove; 2151-first groove; 2151a-bottom surface of the first groove; 2152-second groove; 216-pressure relief part ; 2161- notched groove; 217- protrusion; 2171- outer peripheral surface of the protrusion; 2172- third surface; 22- end cap; 23- electrode assembly; 231- main body; 232- pole ear; 2321- first connecting section; 2322- second connecting section; 2323- third connecting section; 24- pole; 25- support member; 251- through hole; 26- current collecting member; 27- first insulating member; 200- controller; 300- motor; X- first direction; Y- second
  • the terms “installed”, “connected”, “connected”, and “attached” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
  • installed should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a direct connection, or an indirect connection through an intermediate medium, or it can be the internal communication of two elements.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this application generally indicates that the associated objects before and after are in an "or" relationship.
  • the battery cell may include a lithium-ion secondary battery, a lithium-ion primary battery, a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, etc., and the embodiments of the present application do not limit this.
  • the battery cell may be cylindrical, flat, rectangular or other shapes, etc., and the embodiments of the present application do not limit this.
  • Battery cells are generally divided into three types according to the packaging method: cylindrical battery cells, square battery cells and soft-pack battery cells, and the embodiments of the present application do not limit this.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in the present application may include a battery module or a battery pack.
  • the battery generally includes a box for encapsulating one or more battery cells or multiple battery modules. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte.
  • the electrode assembly is composed of a positive electrode sheet, a negative electrode sheet and a separator.
  • the battery cell mainly relies on the movement of metal ions between the positive electrode sheet and the negative electrode sheet to work.
  • the positive electrode sheet includes a positive electrode collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode collector. The part of the positive electrode collector that is not coated with the positive electrode active material layer serves as a positive electrode tab to realize the input or output of electric energy of the positive electrode sheet through the positive electrode tab.
  • the material of the positive electrode collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganese oxide, etc.
  • the negative electrode sheet includes a negative electrode collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode collector.
  • the part of the negative electrode collector that is not coated with the negative electrode active material layer serves as a negative electrode tab to realize the input or output of electric energy of the negative electrode sheet through the negative electrode tab.
  • the material of the negative electrode collector can be copper, and the negative electrode active material can be carbon or silicon, etc. In order to ensure that a large current can pass without melting, there are multiple positive electrode tabs stacked together, and there are multiple negative electrode tabs stacked together.
  • the material of the isolation film may be polypropylene (PP) or polyethylene (PE), etc.
  • the electrode assembly may be a winding structure or a stacked structure, but the embodiments of the present application are not limited thereto.
  • Batteries have outstanding advantages such as high energy density, low environmental pollution, high power density, long service life, wide adaptability, and low self-discharge coefficient. They are an important part of the development of new energy today.
  • the battery cell is usually assembled into an electrode assembly (bare cell) by winding or stacking the positive electrode sheet, the negative electrode sheet, and the isolation film, which is then loaded into the shell, covered with the end cover, and finally injected with electrolyte.
  • electrode assembly bare cell
  • the end caps of the battery cells are usually covered with the openings of the shells.
  • poles are usually arranged on the end caps of the battery cells, so that when the end caps are covered with the shells, the poles can be first welded to the pole ears of the electrode assembly through the current collecting components arranged in the shells to achieve electrical connection between the poles and the electrode assembly, so that the poles are used as the output poles of the battery cells to achieve the input or output of electrical energy of the battery cells, and finally the end caps are connected to the shells.
  • the battery cells in the battery are usually arranged inverted in the box, that is, the side of the battery cell with the pole is arranged facing the bottom of the box, and a busbar component is arranged between the battery cell and the bottom of the box.
  • a busbar component is arranged between the battery cell and the bottom of the box.
  • the force of the busbar component acting on the pole will be transmitted to the end cover through the pole, so as to cause a certain pulling or torsional effect on the end cover, thereby causing the end cover and the shell to easily suffer from connection failure such as weld cracking due to long-term fatigue stress, which in turn easily leads to a short service life of the battery cell and causes the battery cell to have safety hazards such as leakage, which is not conducive to use by consumers.
  • the battery cell includes a shell, an end cover, an electrode assembly and a pole.
  • the shell includes an integrally formed bottom wall and side wall, the side wall is arranged around the bottom wall, along a first direction, the bottom wall is arranged at one end of the side wall, and the other end of the side wall forms an opening.
  • the end cover covers the opening, and the end cover and the bottom wall are arranged opposite to each other along the first direction.
  • the electrode assembly is accommodated in the shell, and along the first direction, the bottom wall is configured to support the electrode assembly.
  • the pole is arranged on the bottom wall, and the pole is electrically connected to the electrode assembly.
  • the pole of the battery cell is arranged on a bottom wall of the shell that is arranged opposite to the end cover in the first direction, the bottom wall and the side wall are an integrated structure, and the bottom wall is used to support the electrode assembly, that is, the battery cell is inverted, so that the bottom wall of the battery cell with the pole is arranged downward, and the end cover of the electrode assembly is arranged upward.
  • the battery cell adopting this structure can alleviate the phenomenon that the force is transmitted to the shell and the end cover through the pole when the battery's current collecting component pulls or twists the pole during use, so as to alleviate the pulling between the end cover and the shell, thereby effectively reducing the risk of connection failure between the end cover and the shell, which is beneficial to improving the safety of use and service life of the battery cell.
  • the pole and the end cover are respectively located at the two ends of the battery cell in the first direction, and the end cover is located on the top of the battery cell, it can alleviate the phenomenon that the battery cell leaks when the connection between the end cover and the shell fails or deforms, thereby improving the safety of use of the battery cell.
  • the battery cells disclosed in the embodiments of the present application can be used, but not limited to, in electrical devices such as vehicles, ships or aircraft.
  • a power supply system comprising the battery cells and batteries disclosed in the present application can be used to form the electrical device, which is conducive to effectively alleviating the problems of leakage of the battery cells during use, thereby improving the service life and safety of the battery cells.
  • the embodiment of the present application provides an electric device using a battery as a power source
  • the electric device may be, but is not limited to, a mobile phone, a tablet, a laptop, an electric toy, an electric tool, a battery car, an electric car, a ship, a spacecraft, etc.
  • the electric toy may include a fixed or mobile electric toy, for example, a game console, an electric car toy, an electric ship toy, an electric airplane toy, etc.
  • the spacecraft may include an airplane, a rocket, a space shuttle, a spacecraft, etc.
  • FIG. 1 is a schematic diagram of the structure of a vehicle 1000 provided in some embodiments of the present application.
  • the vehicle 1000 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • a battery 100 is provided inside the vehicle 1000, and the battery 100 may be provided at the bottom, head or tail of the vehicle 1000.
  • the battery 100 may be used to power the vehicle 1000, for example, the battery 100 may be used as an operating power source for the vehicle 1000.
  • the vehicle 1000 may also include a controller 200 and a motor 300, and the controller 200 is used to control the battery 100 to power the motor 300, for example, for the starting, navigation and working power requirements of the vehicle 1000 during driving.
  • the battery 100 can not only serve as an operating power source for the vehicle 1000, but also serve as a driving power source for the vehicle 1000, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000.
  • FIG. 2 is a cross-sectional view of a battery 100 provided in some embodiments of the present application
  • FIG. 3 is a schematic diagram of the structure of a battery cell 20 provided in some embodiments of the present application.
  • the battery 100 includes a box body 10 and a battery cell 20, and the battery cell 20 is used to be accommodated in the box body 10.
  • the box body 10 is used to provide an assembly space for the battery cell 20, and the box body 10 can adopt a variety of structures.
  • the box body 10 may include a first box body 11 and a second box body 12, and the first box body 11 and the second box body 12 cover each other, and the first box body 11 and the second box body 12 jointly define an assembly space for accommodating the battery cell 20.
  • the first box body 11 may be a hollow structure with one end open, and the second box body 12 may be a plate-like structure, and the second box body 12 covers the open side of the first box body 11, so that the first box body 11 and the second box body 12 jointly define an assembly space; the first box body 11 and the second box body 12 may also be hollow structures with one side open, and the open side of the first box body 11 covers the open side of the second box body 12.
  • the box body 10 formed by the first box body 11 and the second box body 12 can be in various shapes, such as a cylinder, a cuboid, etc.
  • the battery 100 there may be multiple battery cells 20, and the multiple battery cells 20 may be connected in series, in parallel, or in a mixed connection.
  • a mixed connection means that the multiple battery cells 20 are both connected in series and in parallel.
  • the multiple battery cells 20 may be directly connected in series, in parallel, or in a mixed connection, and then the whole formed by the multiple battery cells 20 is accommodated in the box 10; of course, the battery 100 may also be a battery module formed by connecting multiple battery cells 20 in series, in parallel, or in a mixed connection, and then the multiple battery modules are connected in series, in parallel, or in a mixed connection to form a whole, and accommodated in the box 10.
  • the battery 100 may also include other structures, for example, the battery 100 may also include a busbar component for realizing electrical connection between the multiple battery cells 20.
  • Each battery cell 20 may be a secondary battery or a primary battery; it may also be a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, but is not limited thereto.
  • the battery cell 20 may be cylindrical, flat, rectangular or other shapes. For example, in FIG3 , the battery cell 20 is a rectangular structure.
  • FIG. 4 is a structural exploded view of a battery cell 20 provided in some embodiments of the present application
  • FIG. 5 is a cross-sectional view of a battery cell 20 provided in some embodiments of the present application
  • FIG. 6 is a partial enlarged view of A of the battery cell 20 shown in FIG. 5.
  • the present application provides a battery cell 20, and the battery cell 20 includes a shell 21, an end cover 22, an electrode assembly 23 and a pole 24.
  • the shell 21 includes an integrally formed bottom wall 211 and a side wall 212, and the side wall 212 is arranged around the bottom wall 211.
  • the bottom wall 211 is arranged at one end of the side wall 212, and the other end of the side wall 212 forms an opening 213.
  • the end cover 22 covers the opening 213, and the end cover 22 and the bottom wall 211 are arranged opposite to each other along the first direction X.
  • the electrode assembly 23 is accommodated in the shell 21, and along the first direction X, the bottom wall 211 is configured to support the electrode assembly 23.
  • the pole 24 is disposed on the bottom wall 211 , and the pole 24 is electrically connected to the electrode assembly 23 .
  • the bottom wall 211 and the side wall 212 are integrally formed, that is, the shell 21 is made by an integral molding process, so that the bottom wall 211 and the side wall 212 are an integral structure.
  • the shell 21 can be made by stamping, casting and other processes.
  • the housing 21 can also be used to contain electrolytes, such as electrolytes.
  • the housing 21 can be in various structural forms.
  • the housing 21 can also be made of various materials, such as copper, iron, aluminum, steel, aluminum alloy, etc.
  • the bottom wall 211 is arranged at one end of the side wall 212, and the other end of the side wall 212 forms an opening 213, that is, a accommodating cavity 214 for accommodating the electrode assembly 23 is formed inside the shell 21, and the accommodating cavity 214 has an opening 213, that is, the shell 21 is a hollow structure with one end open in the first direction X, and the end cover 22 covers the opening 213 of the shell 21 and forms a sealed connection, so that the bottom wall 211 of the shell 21 and the end cover 22 are arranged opposite to each other along the first direction X to form a sealed space for accommodating the electrode assembly 23 and the electrolyte, that is, the bottom wall 211 is a wall of the shell 21 arranged opposite to the end cover 22 in the first direction X, that is, the first direction X is the thickness direction of the end cover 22, and also the thickness direction of the bottom wall 211.
  • the electrode assembly 23 When assembling the battery cell 20 , the electrode assembly 23 may be placed in the housing 21 first, and the housing 21 may be filled with electrolyte, and then the end cap 22 may be closed on the opening 213 of the housing 21 .
  • the shell 21 can be in various shapes, such as a cylinder, a cuboid, etc.
  • the shape of the shell 21 can be determined according to the specific shape of the electrode assembly 23.
  • the shell 21 can be a cylindrical structure; if the electrode assembly 23 is a cuboid structure, the shell 21 can be a cuboid structure.
  • the end cap 22 can also be a variety of structures, such as the end cap 22 is a plate-like structure or a hollow structure with one end open.
  • the shell 21 is a cuboid structure and the end cap 22 is a plate-like structure.
  • the electrode assembly 23 is accommodated in the shell 21, that is, the electrode assembly 23 is accommodated in the accommodating cavity 214 formed by the bottom wall 211 and the side wall 212. It should be noted that the electrode assembly 23 is a component in the battery cell 20 where an electrochemical reaction occurs.
  • the main body 231 of the electrode assembly 23 may include a positive electrode sheet, a negative electrode sheet and a separator.
  • the main body 231 of the electrode assembly 23 may be a wound structure formed by winding a positive electrode sheet, a separator and a negative electrode sheet, or may be a stacked structure formed by stacking a positive electrode sheet, a separator and a negative electrode sheet.
  • the electrode assembly 23 contained in the housing may be one or more.
  • the electrode assemblies 23 contained in the housing may also be stacked in three, four, five or six layers.
  • the bottom wall 211 is configured to support the electrode assembly 23. That is, as shown in Figure 2, the battery cell 20 is placed upside down in the box body 10, so that the bottom wall 211 can support the electrode assembly 23 in the first direction X, that is, one end of the battery cell 20 provided with the pole 24 is arranged toward the bottom of the box body 10 in the first direction X, and the end cover 22 of the battery cell 20 is arranged facing the top of the box body 10, or in actual use, one end of the battery cell 20 provided with the pole 24 is arranged toward the ground or downward, so that the first direction X is an up and down direction.
  • the end cap 22 of the battery cell 20 is connected to the top of the box body 10 so that the battery cell 20 is inverted and suspended in the box body 10.
  • the end cap 22 and the box body 10 can be connected in various ways, such as bonding, clamping, etc.
  • the pole 24 is disposed on the bottom wall 211, and the pole 24 serves to connect the electrode assembly 23, so that the pole 24 can input or output the electric energy of the battery cell 20.
  • the pole 24 can be made of various materials, such as copper, iron, aluminum, steel, aluminum alloy, etc.
  • both poles 24 are mounted on the bottom wall 211 of the housing 21, and the two poles 24 are respectively used to output or input the positive electrode and the negative electrode of the battery cell 20.
  • one pole 24 may be mounted on the bottom wall 211 of the housing 21, and the other pole 24 may be mounted on the side wall 212 of the housing 21.
  • FIG. 4 is a schematic diagram of the structure of the housing 21 of the battery cell 20 provided in some embodiments of the present application.
  • Two lead-out holes 2111 are provided on the bottom wall 211, and the lead-out holes 2111 are provided one-to-one with the poles 24.
  • the lead-out holes 2111 penetrate both sides of the bottom wall 211, and the poles 24 are penetrated in the lead-out holes 2111 and installed on the bottom wall 211, so as to realize the input or output of the electric energy of the battery cell 20 through the poles 24.
  • the pole 24 is insulated and installed on the bottom wall 211 , that is, the pole 24 and the bottom wall 211 are not electrically connected.
  • the pole 24 of the battery cell 20 is arranged on the bottom wall 211 of the shell 21 opposite to the end cover 22 in the first direction X.
  • the bottom wall 211 and the side wall 212 are an integrated structure, and the bottom wall 211 is used to support the electrode assembly 23, that is, the battery cell 20 is inverted, so that the bottom wall 211 of the battery cell 20 with the pole 24 is arranged downward, and the end cover 22 of the electrode assembly 23 is arranged upward.
  • the battery cell 20 with this structure can, on the one hand, alleviate the pulling or twisting of the current collecting component of the battery 100 on the pole 24 during use, and transmit the force to the pole 24 through the pole 24.
  • the phenomenon on the shell 21 and the end cover 22 can alleviate the pulling between the end cover 22 and the shell 21, thereby effectively reducing the risk of connection failure between the end cover 22 and the shell 21, which is beneficial to improving the safety of use and service life of the battery cell 20.
  • the pole 24 and the end cover 22 are respectively located at the two ends of the battery cell 20 in the first direction X, and the end cover 22 is located at the top of the battery cell 20, the battery cell 20 can be alleviated from leaking when the connection between the end cover 22 and the shell 21 fails or is deformed, thereby improving the safety of use of the battery cell 20.
  • the electrode assembly 23 includes a main body 231 and a tab 232 protruding from the main body 231 , and the tab 232 is electrically connected to the pole 24 .
  • the battery cell 20 further includes a support member 25 , along the first direction X, at least a portion of the support member 25 is disposed between the bottom wall 211 and the main body 231 , and the bottom wall 211 supports the main body 231 through the support member 25 .
  • the main body 231 is a component of the electrode assembly 23 for electrochemical reaction, and the tabs 232 play a role in outputting or inputting electric energy of the electrode assembly 23.
  • the electrode assembly 23 has two tabs 232, which are respectively used to output or input the positive electrode and the negative electrode of the electrode assembly 23, and the two tabs 232 are respectively electrically connected to the two poles 24.
  • At least part of the support member 25 is disposed between the bottom wall 211 and the main body 231, that is, in the first direction X, the support member 25 may be entirely located between the bottom wall 211 and the main body 231, or may be partially located between the bottom wall 211 and the main body 231. Exemplarily, in FIG5 , the support member 25 is entirely located between the bottom wall 211 and the main body 231.
  • the bottom wall 211 supports the main body 231 through the support member 25, that is, the support member 25 is arranged between the bottom wall 211 and the main body 231 in the first direction X, so that the supporting force provided by the bottom wall 211 to the main body 231 is transmitted to the main body 231 through the support member 25, that is, the main body 231 is placed on the bottom wall 211 through the support member 25.
  • the support member 25 is made of insulating material.
  • the support member 25 may be made of plastic, rubber or silicone.
  • the battery cell 20 is provided with a support member 25 located between the bottom wall 211 of the shell 21 and the main body 231 of the electrode assembly 23 in the first direction X, so that the bottom wall 211 can support the main body 231 of the electrode assembly 23 through the support member 25.
  • the battery cell 20 adopting this structure can increase the force-bearing area of the main body 231 of the electrode assembly 23, which is beneficial to alleviate the phenomenon that the local stress of the main body 231 of the electrode assembly 23 is excessive due to the force on the local area, and thus can effectively reduce the risk of the main body 231 of the electrode assembly 23 being damaged during use, so as to improve the service life of the electrode assembly 23.
  • the pole ear 232 protrudes from one end of the main body 231 facing the bottom wall 211 , and the pole ear 232 is bent around the support member 25 .
  • the tab 232 protrudes from one end of the main body 231 facing the bottom wall 211 , that is, the tab 232 is connected to one end of the main body 231 in the first direction X close to the bottom wall 211 .
  • the pole tab 232 is bent around the support member 25 , that is, in the first direction X, the pole tab 232 is bent around the support member 25 from the side of the support member 25 facing the main body 231 and connected to the pole 24 on the side of the support member 25 away from the main body 231 .
  • the pole ear 232 By connecting the pole ear 232 to the end of the main body 231 facing the bottom wall 211 in the first direction X, and the pole ear 232 is bent around the support member 25 and then electrically connected to the pole post 24, so that the portion of the pole ear 232 connected to the pole post 24 is located on the side of the support member 25 away from the main body 231, the phenomenon of the pole ear 232 being upside down inserted into the main body 231 of the electrode assembly 23 during assembly or use can be effectively alleviated, which is beneficial to reduce the short circuit risk of the battery cell 20, thereby improving the safety of the battery cell 20.
  • the pole ear 232 includes a first connecting segment 2321, a second connecting segment 2322, and a third connecting segment 2323 connected in sequence, the first connecting segment 2321 is connected to the main body 231, and the third connecting segment 2323 is connected to the pole 24.
  • the first connecting segment 2321 is located on the side of the support member 25 facing the main body 231, and the third connecting segment 2323 is located on the side of the support member 25 facing the bottom wall 211.
  • the second connecting segment 2322 is located at one end of the support member 25, and the second direction Y is perpendicular to the first direction X.
  • the third connection section 2323 of the pole lug 232 abuts against a side of the support member 25 facing the bottom wall 211 , so that the third connection section 2323 is connected to the pole 24 .
  • the second direction Y is a direction perpendicular to the first direction X, that is, the second direction Y is a direction perpendicular to the thickness direction of the bottom wall 211, and the second direction Y can be the length direction of the support member 25 or the width direction of the support member 25.
  • the second direction Y is the width direction of the support member 25, that is, the second direction Y is the same as the thickness direction of the main body 231 of the electrode assembly 23.
  • the pole lug 232 has a first connecting segment 2321, a second connecting segment 2322 and a third connecting segment 2323 which are connected in sequence, the first connecting segment 2321 and the third connecting segment 2323 are respectively located on both sides of the support member 25, the second connecting segment 2322 is located at one end of the support member 25 in the second direction Y, and the first connecting segment 2321 and the third connecting segment 2323 are respectively connected to the main body 231 and the pole 24 to realize a structure in which the pole lug 232 is bent around the support member 25, so that the pole lug 232 can be formed with a third connecting segment 2323 which is located on the side of the support member 25 facing the bottom wall 211 in the first direction X and is used to connect to the pole 24.
  • the battery cell 20 includes two electrode assemblies 23, and the main bodies 231 of the two electrode assemblies 23 are stacked along the second direction Y, and the pole ears 232 of the two electrode assemblies 23 are respectively bent around the two ends of the support member 25, and the second direction Y is perpendicular to the first direction X.
  • the main bodies 231 of the two electrode assemblies 23 are stacked along the second direction Y, that is, the main bodies 231 of the two electrode assemblies 23 are stacked along the thickness direction of the main bodies 231 .
  • the pole ears 232 of the two electrode assemblies 23 are respectively bent around the two ends of the support member 25, that is, the pole ears 232 of the two electrode assemblies 23 are respectively bent from the two ends of the support member 25 in the second direction Y to the side of the support member 25 facing the bottom wall 211, that is, the second connecting sections 2322 of the pole ears 232 of the two electrode assemblies 23 are respectively located at the two ends of the support member 25 in the second direction Y, so that the second connecting sections 2322 of the pole ears 232 of the two electrode assemblies 23 are arranged facing each other in the second direction Y.
  • the battery cell 20 is provided with two electrode assemblies 23 stacked along the second direction Y, and the pole ears 232 of the two electrode assemblies 23 are respectively bent around the two ends of the support member 25 in the second direction Y, so that the pole ears 232 of the two electrode assemblies 23 can be connected to the pole 24 after bypassing the support member 25, so as to alleviate the phenomenon that the pole ears 232 of the two electrode assemblies 23 are invertedly inserted into the main body 231 of the electrode assembly 23 during assembly or use, which is beneficial to further reduce the safety hazards of the battery cell 20 during use.
  • the battery cell 20 further includes a current collecting member 26 , at least a portion of which is disposed between the support member 25 and the bottom wall 211 along the first direction X, and the current collecting member 26 connects the pole lug 232 and the pole column 24 .
  • the current collecting member 26 is disposed between the support member 25 and the bottom wall 211, that is, in the first direction X, the current collecting member 26 may be entirely located between the bottom wall 211 and the support member 25, or may be partially located between the bottom wall 211 and the support member 25. Exemplarily, in FIG5 , the current collecting member 26 is entirely located between the bottom wall 211 and the support member 25.
  • the current collecting member 26 connects the third connecting section 2323 of the pole tab 232 and the pole 24 to achieve electrical connection between the pole tab 232 and the pole 24.
  • the current collecting member 26 can be made of various materials, such as copper, iron, aluminum, steel, aluminum alloy, etc.
  • the current collecting components 26 are arranged in a one-to-one correspondence with the poles 24, that is, the third connecting segment 2323 of one pole ear 232 of the electrode assembly 23 is connected to one pole 24 through one current collecting component 26, and the third connecting segment 2323 of another pole ear 232 of the electrode assembly 23 is connected to another pole 24 through another current collecting component 26.
  • the battery cell 20 is also provided with a current collecting component 26 located between the support member 25 and the bottom wall 211 in the first direction X, so that the current collecting component 26 can connect the pole ear 232 and the pole 24 to achieve electrical connection between the pole ear 232 and the pole 24.
  • the use of this structure is beneficial to reducing the difficulty of connecting the pole ear 232 and the pole 24, so as to improve the production efficiency of the battery cell 20.
  • the battery cell 20 further includes a first insulating member 27 , along the first direction X, at least a portion of the first insulating member 27 is disposed between the current collecting member 26 and the bottom wall 211 to insulate and isolate the current collecting member 26 and the bottom wall 211 .
  • the first insulating member 27 is disposed between the current collecting member 26 and the bottom wall 211, that is, in the first direction X, the first insulating member 27 may be entirely located between the bottom wall 211 and the current collecting member 26, or may be partially located between the bottom wall 211 and the current collecting member 26. Exemplarily, in FIGS. 5 and 6 , the first insulating member 27 is partially located between the bottom wall 211 and the current collecting member 26.
  • the first insulating member 27 serves to insulate and isolate the current collecting member 26 and the bottom wall 211 to reduce the risk of short circuit.
  • the first insulating member 27 can be made of various materials, such as rubber, silicone or plastic.
  • the battery cell 20 is also provided with a first insulating member 27 located between the current collecting member 26 and the bottom wall 211 in the first direction X.
  • the first insulating member 27 can insulate and isolate the current collecting member 26 and the bottom wall 211 to reduce the risk of short circuit between the current collecting member 26 and the bottom wall 211, thereby helping to improve the safety of the battery cell 20 during use and reduce the risk of using the battery cell 20.
  • FIG. 8 is a partial enlarged view of the B portion of the housing 21 shown in FIG. 7
  • FIG. 9 is a cross-sectional view of the housing 21 of the battery cell 20 provided in some embodiments of the present application
  • FIG. 10 is a partial enlarged view of the C portion of the housing 21 shown in FIG. 9.
  • the bottom wall 211 has a first surface 2112 facing away from the electrode assembly 23, and the first surface 2112 is provided with a groove 215, and the groove bottom wall 211 of the groove 215 forms a pressure relief portion 216, and the pressure relief portion 216 is configured to release the internal pressure of the battery cell 20.
  • the first surface 2112 is provided with a groove 215, and the bottom wall 211 of the groove 215 forms a pressure relief portion 216, that is, in the first direction X, the first surface 2112 of the bottom wall 211 is recessed in the direction facing the electrode assembly 23 to form a groove 215, and the bottom wall 211 of the groove 215 forms a pressure relief portion 216 for releasing the internal pressure of the battery cell 20, that is, the bottom wall 211 of the groove 215 can rupture when the battery cell 20 has thermal runaway to release the internal pressure of the battery cell 20.
  • a notch groove 2161 is formed on the pressure relief portion 216, so that the pressure relief portion 216 forms a relatively weak structure in the area where the notch groove 2161 is provided, so that when the battery cell 20 has thermal runaway, the pressure relief portion 216 can be ruptured along the notch groove 2161 to release the internal pressure of the battery cell 20.
  • the structure of the pressure relief portion 216 is not limited thereto, and in other embodiments, the pressure relief portion 216 can also be a structure with a partially thinned thickness, so that the pressure relief portion 216 forms a relatively weak structure in the area with the thinned thickness, so that when the battery cell 20 has thermal runaway, the pressure relief portion 216 can be ruptured along the area with the thinned thickness to release the internal pressure of the battery cell 20.
  • the pressure relief portion 216 and the bottom wall 211 can be an integrated structure or a split structure. If the pressure relief portion 216 and the bottom wall 211 are an integrated structure, they can be made by stamping or extrusion molding; if the pressure relief portion 216 and the bottom wall 211 are a split structure, a mounting hole that penetrates the bottom wall 211 along the first direction X can be first provided on the bottom wall 211, and then the pressure relief portion 216 can be welded to the bottom wall 211 and the mounting hole can be blocked.
  • a support member 25 is provided on a battery cell 20
  • a plurality of through holes 251 are provided on the support member 25 at positions corresponding to the pressure relief portion 216 in the first direction X, and the through holes 251 penetrate both sides of the support member 25 along the first direction X.
  • a support member 25 with such a structure can reduce the influence of the support member 25 on the pressure relief portion 216 when the battery cell 20 is relieved of pressure through the pressure relief portion 216, so as to ensure that the battery cell 20 can relieve pressure normally.
  • a groove 215 recessed toward the interior of the battery cell 20 is provided on the first surface 2112 of the bottom wall 211, and a pressure relief portion 216 for releasing the internal pressure of the battery cell 20 is formed on the bottom wall 211 of the groove 215, so as to release the internal pressure of the battery cell 20 when the battery cell 20 is in thermal runaway.
  • This structure enables the pressure relief portion 216 to be spaced apart from the first surface 2112 of the bottom wall 211, and to be closer to the electrode assembly 23 than the first surface 2112.
  • the pressure relief portion 216 can be protected to a certain extent, so as to reduce the risk of the pressure relief portion 216 being worn or damaged by the external environment, thereby reducing the phenomenon of the pressure relief portion 216 opening prematurely.
  • the phenomenon of the pressure relief portion 216 being blocked by other components and causing the pressure relief pressure required by the pressure relief portion 216 to increase can be alleviated, so as to ensure the normal use of the pressure relief portion 216, thereby facilitating the reduction of the potential safety hazards of the battery cell 20 during use.
  • the distance between the pressure relief portion 216 and the first surface 2112 is H, satisfying 1 mm ⁇ H ⁇ 5 mm.
  • the phenomenon that the protection effect of the pressure relief portion 216 is poor and it is easy to be blocked by other components due to the small distance between the pressure relief portion 216 and the first surface 2112 can be alleviated to ensure the normal use of the pressure relief portion 216.
  • the phenomenon that the distance between the pressure relief portion 216 and the first surface 2112 is too large, resulting in excessive space occupation and greater processing difficulty can be alleviated.
  • the bottom wall 211 has a second surface 2113 facing the electrode assembly 23, and the bottom wall 211 has a protrusion 217 formed at a position corresponding to the groove 215, and the protrusion 217 protrudes from the second surface 2113.
  • the bottom wall 211 has a second surface 2113 facing the electrode assembly 23, that is, the bottom wall 211 has a second surface 2113 arranged opposite to the first surface 2112 in the first direction X, that is, the first surface 2112 is the outer surface of the bottom wall 211 away from the interior of the battery cell 20, and the second surface 2113 is the inner surface of the bottom wall 211 facing the interior of the battery cell 20.
  • a protrusion 217 is formed on the bottom wall 211 at a position corresponding to the groove 215, and the protrusion 217 protrudes from the second surface 2113, that is, the bottom wall 211 is formed with a protrusion 217 in the area where the groove 215 is provided, which protrudes toward the inside of the battery cell 20, and the protrusion 217 extends out of the second surface 2113 in the first direction X, so that the pressure relief portion 216 can be connected to the bottom wall 211 through the protrusion 217.
  • the pressure relief portion 216 protrudes from the second surface 2113 in a direction facing the electrode assembly 23.
  • This structure is convenient for forming the groove 215 recessed in a direction facing the electrode assembly 23 on the bottom wall 211, and can also enhance the structural strength between the pressure relief portion 216 and the bottom wall 211.
  • the groove 215 includes a first groove 2151 and a second groove 2152 continuously arranged along the first direction X, the first groove 2151 is arranged on the first surface 2112, and the groove side surface of the first groove 2151 is connected to the groove side surface of the second groove 2152 through the groove bottom surface 2151a of the first groove.
  • the groove 215 includes a first groove 2151 and a second groove 2152 continuously arranged along the first direction X, that is, the groove 215 includes at least two continuously arranged groove sections, namely the first groove 2151 and the second groove 2152, and the first groove 2151 and the second groove 2152 are arranged along the first direction X.
  • the first groove 2151 is disposed on the first surface 2112 , that is, the groove sidewall 212 of the first groove 2151 is connected to the first surface 2112 .
  • the groove side surface of the first groove 2151 is connected to the groove side surface of the second groove 2152 through the groove bottom surface 2151a of the first groove, that is, the second groove 2152 is arranged on the groove bottom surface 2151a of the first groove, so that the groove side surface of the second groove 2152 is connected to the groove bottom surface 2151a of the first groove.
  • the groove 215 is provided with a first groove 2151 and a second groove 2152 which are continuously arranged in the first direction X toward the direction facing the electrode assembly 23, and the groove side surface of the first groove 2151 is connected to the groove side surface of the second groove 2152 through the groove bottom surface 2151a of the first groove, that is, the second groove 2152 is arranged on the groove bottom surface 2151a of the first groove, so that a step structure is formed between the pressure relief part 216 and the bottom wall 211, which is beneficial to further improve the structural strength between the pressure relief part 216 and the bottom wall 211.
  • the outer peripheral surface 2171 of the protrusion is arranged at an obtuse angle with the second surface 2113, and along the first direction X, the protrusion 217 has a third surface 2172 facing the electrode assembly 23, and the projection of the edge of the third surface 2172 in the first direction X is located within the groove bottom surface 2151a of the first groove.
  • the outer circumferential surface 2171 of the protrusion is a surface in the circumferential direction of the protrusion 217 , that is, the outer circumferential surface 2171 of the protrusion is arranged around the protrusion 217 , and the outer circumferential surface 2171 of the protrusion is connected between the second surface 2113 and the third surface 2172 .
  • the outer circumferential surface 2171 of the protrusion is set at an obtuse angle with the second surface 2113, that is, the outer circumferential surface 2171 of the protrusion is an inclined structure, so that the end of the outer circumferential surface 2171 of the protrusion connected to the second surface 2113 is farther away from the pressure relief portion 216 in the radial direction of the pressure relief portion 216 than the end of the outer circumferential surface 2171 of the protrusion connected to the third surface 2172, so that the second surface 2113 and the third surface 2172 are arranged in a spaced-apart structure in the radial direction of the pressure relief portion 216, so that after being connected by the outer circumferential surface 2171 of the protrusion, the outer circumferential surface 2171 of the protrusion is set at an obtuse angle with the second surface 2113.
  • the radial direction of the pressure relief portion 216 is perpendicular to the first direction X, and the radial direction of the pressure relief portion 216 is the direction from the edge of the pressure relief portion 216 to the center of the pressure relief portion 216 or the center of the pressure relief portion 216 to the edge of the pressure relief portion 216.
  • the projection of the edge of the third surface 2172 in the first direction X is located within the groove bottom surface 2151a of the first groove, that is, the projection of the intersection position of the third surface 2172 and the outer peripheral surface 2171 of the protrusion in the first direction X falls within the groove bottom surface 2151a of the first groove, that is, in the radial direction of the pressure relief portion 216 away from the pressure relief portion 216, the distance between the outer peripheral surface 2171 of the protrusion and the groove bottom surface 2151a of the first groove in the first direction X gradually decreases, so that the thickness of the protrusion 217 in the first direction X presents a gradually decreasing structure.
  • the distance between the outer peripheral surface 2171 of the protrusion and the groove bottom surface 2151a of the first groove in the first direction X gradually decreases from the edge of the third surface 2172 to the second surface 2113, so that the thickness of the protrusion 217 in the first direction X gradually decreases, thereby achieving
  • the protrusion 217 is formed with an area with relatively strong strength and an area with gradually decreasing strength, so as to realize a structure in which the area between the pressure relief portion 216 and the bottom wall 211 is from strong to weak.
  • the groove bottom wall 211 of the second groove 2152 forms a pressure relief portion 216 .
  • the groove bottom wall 211 of the second groove 2152 forms a pressure relief portion 216, that is, the groove 215 is only provided with a first groove 2151 and a second groove 2152 continuously arranged along the first direction X, the first groove 2151 is arranged on the first surface 2112, and the groove bottom wall 211 of the second groove 2152 is the pressure relief portion 216.
  • the groove 215 may also include a first groove 2151, a second groove 2152, a third groove or a fourth groove, etc., which are continuously arranged along the first direction X.
  • the groove 215 is only provided with the first groove 2151 and the second groove 2152. This structure facilitates the processing of the bottom wall 211 and helps to reduce the processing difficulty.
  • a blocking portion 2114 is protruded from the first surface 2112 , and the blocking portion 2114 surrounds the outer side of the groove 215 .
  • the blocking portion 2114 surrounds the outer side of the groove 215 , that is, the blocking portion 2114 is an annular structure disposed around the outer side of the groove 215 , so that the blocking portion 2114 is disposed around the groove 215 .
  • the battery cell 20 with this structure can block the electrolyte through the blocking portion 2114 during the assembly process of the battery cell 20, so as to reduce the phenomenon of the electrolyte flowing from the first surface 2112 into the groove 215, thereby reducing the influence of the electrolyte on the pressure relief portion 216.
  • the thickness of the bottom wall 211 is greater than the thickness of the side wall 212. That is, the thickness of the bottom wall 211 in the first direction X is greater than the thickness of the side wall 212 in the second direction Y.
  • the thickness of the bottom wall 211 By setting the thickness of the bottom wall 211 to be greater than the thickness of the side wall 212, the structural strength of the bottom wall 211 is improved, thereby ensuring the structural stability of the pole 24 installed on the bottom wall 211, and improving the bearing capacity of the bottom wall 211 for the electrode assembly 23, thereby alleviating the deformation of the bottom wall 211 during use.
  • the thickness of the bottom wall 211 may also be set equal to the thickness of the side wall 212. That is, the thickness of the bottom wall 211 in the first direction X is equal to the thickness of the side wall 212 in the second direction Y.
  • the bottom wall 211 and the side wall 212 of the integrated structure can be directly formed by a process such as stamping, without adding other processing techniques, which helps to reduce the manufacturing difficulty of the shell 21 .
  • the thickness of the side wall 212 is greater than the thickness of the end cap 22.
  • the thickness of the side wall 212 in the second direction Y is greater than the thickness of the end cap 22 in the first direction X.
  • the thickness of the side wall 212 is greater than the thickness of the end cover 22 , since components such as the pole 24 are not provided on the end cover 22 , it is helpful to reduce the space occupied by the end cover 22 , thereby improving the energy density and capacity of the battery cell 20 .
  • the battery cell 20 includes two poles 24 with opposite polarities, both poles 24 are disposed on the bottom wall 211 , and both poles 24 are electrically connected to the electrode assembly 23 .
  • the two poles 24 are both insulated and installed on the bottom wall 211 , so that the two poles 24 are not electrically connected to the bottom wall 211 .
  • the two poles 24 are both electrically connected to the electrode assembly 23 , that is, the two poles 24 are respectively connected to two pole ears 232 of the electrode assembly 23 with opposite polarities.
  • the battery cell 20 is provided with two poles 24, and the two poles 24 are both arranged on the bottom wall 211 of the shell 21, thereby reducing the phenomenon that the force is transmitted to the shell 21 and the end cover 22 through the poles 24 when the current collecting component of the battery 100 pulls or twists the two poles 24 with opposite polarities, so as to alleviate the pulling between the end cover 22 and the shell 21, thereby further reducing the risk of connection failure between the end cover 22 and the shell 21, and further alleviating the phenomenon of leakage of the battery cell 20 due to connection failure or deformation between the end cover 22 and the shell 21.
  • the present application further provides a battery 100, comprising a box 10 and a battery cell 20 of any of the above solutions.
  • the battery cell 20 is accommodated in the box 10, and along the first direction X, the bottom wall 211 is arranged facing the bottom of the box 10.
  • the bottom wall 211 is arranged facing the bottom of the box body 10, that is, the end of the battery cell 20 provided with the pole 24 is closer to the bottom of the box body 10 than the end cover 22 in the first direction X, that is, the end of the battery cell 20 provided with the pole 24 is arranged downward.
  • the number of battery cells 20 disposed in the box body 10 may be one or more.
  • the number of battery cells 20 disposed in the box body 10 may be one or more.
  • the end cover 22 is connected to the top of the box body 10 so that the battery cell 20 is suspended in the box body 10 .
  • the end cover 22 is connected to the top of the box body 10 so that the battery cell 20 is suspended in the box body 10, that is, one end of the battery cell 20 provided with the end cover 22 in the first direction X is connected to the top of the box body 10, so that the end of the battery cell 20 provided with the pole 24 in the first direction X is spaced apart from the bottom of the box body 10, so that the battery cell 20 is suspended in the box body 10.
  • the end cover 22 may be connected to the top of the box body 10 in various ways, such as bonding, snap-fitting, etc.
  • the battery cell 20 can be suspended in the box body 10.
  • This structure can realize that the bottom wall 211 provided with the pole 24 is spaced apart from the bottom of the box body 10, so as to facilitate the arrangement of a busbar component connected to the pole 24 in the box body 10, and can reduce the influence of other components on the end cover 22, so as to reduce the phenomenon of deformation of the end cover 22 causing connection failure between the end cover 22 and the shell body 21, which is beneficial to reduce the risk of leakage of the battery cell 20.
  • the present application further provides an electrical device, comprising a battery 100 according to any of the above schemes, and the battery 100 is used to provide electrical energy to the electrical device.
  • the power-consuming device may be any of the aforementioned devices or systems using the battery 100 .
  • the present application provides a battery cell 20, which includes a housing 21, an end cover 22, an electrode assembly 23, a pole 24, a support 25, a current collecting member 26 and a first insulating member 27.
  • the housing 21 includes an integrally formed bottom wall 211 and a side wall 212, the side wall 212 is arranged around the bottom wall 211, along the first direction X, the bottom wall 211 is arranged at one end of the side wall 212, the other end of the side wall 212 forms an opening 213, and the pole 24 is insulated and installed on the bottom wall 211.
  • the end cover 22 covers the opening 213, and the end cover 22 and the bottom wall 211 are arranged opposite to each other along the first direction X.
  • the electrode assembly 23 is accommodated in the housing 21, and the electrode assembly 23 includes a main body 231 and a pole ear 232, along the first direction X, the pole ear 232 protrudes from one end of the main body 231 facing the bottom wall 211, and the pole ear 232 is used to connect with the pole 24.
  • the support member 25 is disposed between the bottom wall 211 and the main body 231, and the bottom wall 211 supports the main body 231 through the support member 25.
  • the pole tab 232 is bent around the support member 25, and the pole tab 232 includes a first connecting section 2321, a second connecting section 2322, and a third connecting section 2323 connected in sequence, the first connecting section 2321 is connected to the main body 231, and the third connecting section 2323 is connected to the pole 24.
  • the first connecting section 2321 is located on the side of the support member 25 facing the main body 231, and the third connecting section 2323 is located on the side of the support member 25 facing the bottom wall 211.
  • the second connecting section 2322 is located at one end of the support member 25, and the second direction Y is perpendicular to the first direction X.
  • the current collecting member 26 is disposed between the support member 25 and the bottom wall 211, and the current collecting member 26 connects the third connecting section 2323 and the pole 24.
  • the first insulating member 27 is disposed between the current collecting member 26 and the bottom wall 211 to insulate and isolate the current collecting member 26 from the bottom wall 211 .
  • the bottom wall 211 has a first surface 2112 away from the electrode assembly 23, the first surface 2112 is provided with a groove 215, the bottom wall 211 has a second surface 2113 facing the electrode assembly 23, and the bottom wall 211 is formed with a protrusion 217 at a position corresponding to the groove 215, and the protrusion 217 protrudes from the second surface 2113.
  • the groove 215 includes a first groove 2151 and a second groove 2152 that are continuously arranged along the first direction X, the first groove 2151 is arranged on the first surface 2112, the groove side surface of the first groove 2151 is connected with the groove side surface of the second groove 2152 through the groove bottom surface 2151a of the first groove, and the groove bottom wall 211 of the second groove 2152 forms a pressure relief portion 216, and the pressure relief portion 216 is configured to release the internal pressure of the battery cell 20.
  • the outer peripheral surface 2171 of the protrusion is set at an obtuse angle to the second surface 2113.
  • the protrusion 217 has a third surface 2172 facing the electrode assembly 23, and the projection of the edge of the third surface 2172 in the first direction X is located within the bottom surface 2151a of the first groove.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本申请提供了一种电池单体、电池及用电装置,属于电池技术领域。其中,电池单体包括壳体、端盖、电极组件和极柱。壳体包括一体成型的底壁和侧壁,沿第一方向,侧壁的一端设置有底壁,另一端形成开口,端盖盖合于开口。电极组件容纳于壳体内,沿第一方向,底壁被配置为支撑电极组件。极柱设置于底壁上,极柱与电极组件电连接。这种结构的电池单体一方面能够缓解电池的汇流部件对极柱造成的拉扯时将力通过极柱传递至壳体和端盖上的现象,以降低端盖与壳体出现连接失效的风险,另一方面由于极柱与端盖分别在第一方向上位于电池单体的两端,且端盖位于电池单体的顶部,从而能够缓解电池单体因端盖与壳体出现连接失效或发生变形时出现漏液的现象。

Description

电池单体、电池及用电装置 技术领域
本申请涉及电池技术领域,具体而言,涉及一种电池单体、电池及用电装置。
背景技术
近些年,新能源汽车有了飞跃式的发展,在电动汽车领域,动力电池作为电动汽车的动力源,起着不可替代的重要作用。随着新能源汽车的大力推广,对动力电池产品的需求也日益增长,电池作为新能源汽车核心零部件在使用安全方面和使用寿命方面均有着较高的要求。电池的电池单体通常是由正极极片、负极极片和隔膜通过卷绕或者叠片等方式组装成电极组件(裸电芯),之后装入壳体,再盖上端盖,最后注入电解液后得到的。但是,现有技术中的电池单体在使用过程中常常会出现漏液或短路等现象,从而导致电池单体的使用寿命较短,且存在较大的使用安全隐患。
发明内容
本申请实施例提供一种电池单体、电池及用电装置,能够有效提升电池单体的使用寿命和使用安全性。
第一方面,本申请实施例提供一种电池单体,包括壳体、端盖、电极组件和极柱;所述壳体包括一体成型的底壁和侧壁,所述侧壁围设于所述底壁的周围,沿第一方向,所述底壁设置于所述侧壁的一端,所述侧壁的另一端形成开口;所述端盖盖合于所述开口,所述端盖与所述底壁沿所述第一方向相对设置;所述电极组件容纳于所述壳体内,沿所述第一方向,所述底壁被配置为支撑所述电极组件;所述极柱设置于所述底壁上,所述极柱与所述电极组件电连接。
在上述技术方案中,电池单体的极柱设置于壳体在第一方向上与端盖相对设置的底壁上,底壁与侧壁为一体式结构,且底壁用于对电极组件起到支撑作用,即电池单体为倒置设置,使得电池单体设置有极柱的底壁朝下设置,且电极组件的端盖朝上设置,采用这种结构的电池单体一方面在使用过程中能够缓解电池的汇流部件对极柱造成的拉扯或扭转时将力通过极柱传递至壳体和端盖上的现象,以缓解端盖与壳体之间出现拉扯的情况,从而能够有效降低端盖与壳体之间出现连接失效的风险,有利于提升电池单体的使用安全性和使用寿命,另一方面由于极柱与端盖分别在第一方向上位于电池单体的两端,且端盖位于电池单体的顶部,从而能够缓解电池单体因端盖与壳体出现连接失效或发生变形时出现漏液的现象,以提升电池单体的使用安全性。
在一些实施例中,所述电极组件包括主体部和凸出于所述主体部上的极耳,所述极耳与所述极柱电连接;所述电池单体还包括支撑件,沿所述第一方向,所述支撑件的至少部分设置于所述底壁和主体部之间,所述底壁通过所述支撑件支撑所述主体部。
在上述技术方案中,电池单体设置有在第一方向上位于壳体的底壁和电极组件的主体部之间的支撑件,使得底壁能够通过支撑件对电极组件的主体部起到支撑作用,采用这种结构的电池单体能够增加电极组件的主体部的受力面积,从而有利于缓解电极组件的主体部因局部区域受力导致主体部的局部应力过大的现象,进而能够有效降低电极组件的主体部在使用过程中被损坏的风险,以提升电极组件的使用寿命。
在一些实施例中,沿所述第一方向,所述极耳凸出于所述主体部面向所述底壁的一端,所述极耳绕着所述支撑件弯折。
在上述技术方案中,通过将极耳在第一方向上连接于主体部面向底壁的一端上,且极耳为绕着支撑件弯折后再与极柱电连接,使得极耳与极柱相连的部分位于支撑件背离主体部的一侧,从而能够有效缓解极耳在装配或使用过程中出现倒插至电极组件的主体部内的现象,进而有利于降低电池单体的短路风险,以提升电池单体的使用安全性。
在一些实施例中,所述极耳包括依次连接的第一连接段、第二连接段和第三连接段,所述第一连接段连接于所述主体部,所述第三连接段连接于所述极柱;沿所述第一方向,所述第一连接段位于所述支撑件面向所述主体部的一侧,所述第三连接段位于所述支撑件面向所述底壁的一侧;沿第二方向,所述第二连接段位于所述支撑件的一端,所述第二方向垂直于所述第一方向。
在上述技术方案中,极耳具有依次连接的第一连接段、第二连接段和第三连接段,第一连接段和第三连接段分别位于支撑件的两侧,第二连接段位于支撑件在第二方向上的一端,且第一连接段和第三连接段分别连接于主体部和极柱,以实现极耳绕着支撑件弯折的结构,从而能够实现极耳形成有在第一方向上位于支撑件面向底壁的一侧且用于与极柱相连的第三连接段。
在一些实施例中,所述电池单体包括两个所述电极组件;沿第二方向,两个所述电极组件的所述主体部沿第二方向层叠设置,且两个所述电极组件的所述极耳分别绕所述支撑件的两端弯折,所述第二方向垂直于所述第一方向。
在上述技术方案中,电池单体设置有沿第二方向层叠设置的两个电极组件,且两个电极组件的极耳分别在第二方向上绕着支撑件的两端弯折,从而能够实现两个电极组件的极耳均为绕过支撑件后再与极柱连接的结构,以缓解两个电极组件的极耳在装配或使用过程中出现倒插至电极组件的主体部内的现象,进而有利于进一步降低电池单体在使用过程中的安全隐患。
在一些实施例中,所述电池单体还包括集流构件;沿所述第一方向,所述集流构件的至少部分设置于所述支撑件与所述底壁之间,所述集流构件连接所述极耳和所述极柱。
在上述技术方案中,电池单体还设置有在第一方向上位于支撑件和底壁之间的集流构件,使得集流构件 能够连接极耳和极柱,以实现极耳与极柱之间的电连接,采用这种结构有利于降低极耳与极柱之间的连接难度,以提升电池单体的生产效率。
在一些实施例中,所述电池单体还包括第一绝缘件;沿所述第一方向,所述第一绝缘件的至少部分设置于所述集流构件与所述底壁之间,以绝缘隔离所述集流构件和所述底壁。
在上述技术方案中,电池单体还设置有在第一方向上位于集流构件和底壁之间的第一绝缘件,通过第一绝缘件能够对集流构件和底壁起到绝缘隔离的作用,以降低集流构件与底壁出现短接的风险,从而有利于提升电池单体在使用过程中的安全性,以降低电池单体的使用风险。
在一些实施例中,沿所述第一方向,所述底壁具有背离所述电极组件的第一表面,所述第一表面设置有凹槽,所述凹槽的槽底壁形成泄压部,所述泄压部被配置为泄放所述电池单体的内部压力。
在上述技术方案中,通过在底壁的第一表面设置往电池单体的内部凹陷的凹槽,且凹槽的槽底壁形成用于泄放电池单体的内部压力的泄压部,以在电池单体热失控时泄放电池单体内部的压力,采用这种结构能够实现泄压部与底壁的第一表面间隔设置,且相较于第一表面更靠近电极组件,从而一方面能够对泄压部起到一定的保护作用,以降低泄压部受外部环境磨损或损坏的风险,进而能够降低泄压部出现提前开阀的现象,另一方面能够缓解泄压部被其他部件遮挡而造成泄压部所需的泄压压力上升的现象,以保证泄压部的正常使用,进而有利于降低电池单体在使用过程中的安全隐患。
在一些实施例中,沿所述第一方向,所述泄压部与所述第一表面之间的距离为H,满足,1mm≤H≤5mm。
在上述技术方案中,通过将泄压部与第一表面在第一方向上距离设置为1mm到5mm,一方面能够缓解泄压部与第一表面之间的间距过小而造成对泄压部的保护效果较差,且容易被其他部件遮挡的现象,以保证泄压部的正常使用,另一方面能够缓解泄压部与第一表面之间的间距过大而导致占用空间过大且加工难度较大的现象。
在一些实施例中,沿所述第一方向,所述底壁具有面向所述电极组件的第二表面,所述底壁在与所述凹槽对应的位置形成有凸出部,所述凸出部凸出于所述第二表面。
在上述技术方案中,通过在底壁对应凹槽的位置形成凸出于第二表面的凸出部,使得泄压部往面向电极组件的方向凸出于第二表面,采用这种结构一方面便于在底壁上加工形成往面向电极组件的方向凹陷的凹槽,另一方面能够加强泄压部与底壁之间的结构强度。
在一些实施例中,所述凹槽包括沿所述第一方向连续设置的第一槽和第二槽,所述第一槽设置于所述第一表面,所述第一槽的槽侧面与所述第二槽的槽侧面通过所述第一槽的槽底面连接。
在上述技术方案中,凹槽设置有在第一方向上往面向电极组件的方向连续设置的第一槽和第二槽,且第一槽的槽侧面与第二槽的槽侧面通过第一槽的槽底面相连,即第二槽设置于第一槽的槽底面上,从而使得泄压部与底壁之间形成有阶梯结构,有利于进一步提升泄压部与底壁之间的结构强度。
在一些实施例中,所述凸出部的外周面与第二表面呈钝角设置,沿所述第一方向,所述凸出部具有面向所述电极组件的第三表面,所述第三表面的边缘在所述第一方向上的投影位于所述第一槽的槽底面内。
在上述技术方案中,通过将凸出部的外周面设置为与第二表面呈钝角设置,并将凸出部面向电极组件的第三表面的边缘设置为在第一方向上的投影落入第一槽的槽底面内,使得凸出部的外周面与第一槽的槽底面在第一方向上的距离从第三表面的边缘到第二表面逐渐减小,以使凸出部在第一方向上的厚度逐渐减小,从而实现凸出部形成有强度较强的区域和强度逐渐减小的区域,以实现泄压部连接底壁之间的区域为由强到弱的结构,从而在保证泄压部连接在底壁上的结构强度的同时通过强度减弱的区域能够吸收底壁传递过来的应力和能量,以降低底壁上的应力和能量对泄压部造成的影响,进而能够降低泄压部在使用过程中受到底壁的影响而发生变形的风险。
在一些实施例中,所述第二槽的槽底壁形成所述泄压部。
在上述技术方案中,通过将第二槽的槽底壁设置为用于泄放电池单体的内部压力的泄压部,也就是说,凹槽只设置有第一槽和第二槽,这种结构便于对底壁进行加工,有利于降低加工难度。
在一些实施例中,所述第一表面凸设有阻挡部,所述阻挡部环绕于所述凹槽的外侧。
在上述技术方案中,通过在第一表面上凸设环绕于凹槽的外侧的阻挡部,即阻挡部为环绕于凹槽的外侧的环形结构,这种结构的电池单体在电池单体的装配过程中通过阻挡部能够对电解液起到阻挡作用,以减少电解液从第一表面流入凹槽内的现象,从而能够降低电解液对泄压部的影响。
在一些实施例中,所述底壁的厚度大于所述侧壁的厚度。
在上述技术方案中,通过将底壁的厚度设置为大于侧壁的厚度,以提升底壁的结构强度,从而能够保证极柱安装于底壁上的结构稳定性,且能够提升底壁对电极组件的承载能力,以缓解底壁在使用过程中出现变形的现象。
在一些实施例中,所述底壁的厚度等于所述侧壁的厚度。
在上述技术方案中,通过将底壁的厚度设置为与侧壁的厚度相等,从而使得一体式结构的底壁和侧壁可以直接通过冲压等工艺形成,无需在增加其他加工工艺,有利于降低壳体的制造难度。
在一些实施例中,所述侧壁的厚度大于所述端盖的厚度。
在上述技术方案中,通过将侧壁的厚度设置为大于端盖的厚度,由于端盖上未设置极柱等部件,从而有利于降低端盖占用的空间,以提升电池单体的能量密度和容量。
在一些实施例中,所述电池单体包括极性相反的两个所述极柱,两个所述极柱均设置于所述底壁上,且两个所述极柱均与所述电极组件电连接。
在上述技术方案中,电池单体设置有两个极柱,且两个极柱均设置于壳体的底壁上,从而能够减少电池的汇流部件对极性相反的两个极柱造成的拉扯或扭转时将力通过极柱传递至壳体和端盖上的现象,以缓解端盖与壳 体之间出现拉扯的情况,从而能够进一步降低端盖与壳体之间出现连接失效的风险,且能够进一步缓解电池单体因端盖与壳体出现连接失效或发生变形时出现漏液的现象。
第二方面,本申请实施例还提供一种电池,包括箱体和上述的电池单体;所述电池单体容纳于所述箱体内,沿所述第一方向,所述底壁面向所述箱体的底部设置。
在一些实施例中,沿所述第一方向,所述端盖连接于所述箱体的顶部,以使所述电池单体悬挂于所述箱体内。
在上述技术方案中,通过将电池单体的端盖面向箱体的顶部设置,壳体的底壁面向箱体的底部设置,且将电池单体的端盖连接于箱体的顶部上,以实现电池单体悬挂于箱体内,采用这种结构能够实现设置有极柱的底壁与箱体的底部间隔设置,从而便于在箱体内设置用于与极柱相连的汇流部件等,且能够减少其它部件对端盖造成的影响,以降低端盖出现变形而导致端盖与壳体出现连接失效的现象,进而有利于降低电池单体的漏液风险。
第三方面,本申请实施例还提供一种用电装置,包括上述的电池。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的剖视图;
图3为本申请一些实施例提供的电池单体的结构示意图;
图4为本申请一些实施例提供的电池单体的结构爆炸图;
图5为本申请一些实施例提供的电池单体的剖视图;
图6为图5所示的电池单体的A处的局部放大图;
图7为本申请一些实施例提供的电池单体的壳体的结构示意图;
图8为图7所示的壳体的B处的局部放大图;
图9为本申请一些实施例提供的电池单体的壳体的剖视图;
图10为图9所示的壳体的C处的局部放大图。
图标:1000-车辆;100-电池;10-箱体;11-第一箱本体;12-第二箱本体;20-电池单体;21-壳体;211-底壁;2111-引出孔;2112-第一表面;2113-第二表面;2114-阻挡部;212-侧壁;213-开口;214-容纳腔;215-凹槽;2151-第一槽;2151a-第一槽的槽底面;2152-第二槽;216-泄压部;2161-刻痕槽;217-凸出部;2171-凸出部的外周面;2172-第三表面;22-端盖;23-电极组件;231-主体部;232-极耳;2321-第一连接段;2322-第二连接段;2323-第三连接段;24-极柱;25-支撑件;251-通孔;26-集流构件;27-第一绝缘件;200-控制器;300-马达;X-第一方向;Y-第二方向。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限 定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体或多个电池模块的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体的部分作为正极极耳,以通过正极极耳实现正极极片的电能输入或输出。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体的部分作为负极极耳,以通过负极极耳实现负极极片的电能输入或输出。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。
隔离膜的材质可以为聚丙烯(polypropylene,PP)或聚乙烯(polyethylene,PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池具有能量密度高、环境污染小、功率密度大、使用寿命长、适应范围广、自放电系数小等突出的优点,是现今新能源发展的重要组成部分。电池的电池单体通常是由正极极片、负极极片和隔离膜通过卷绕或者叠片等方式组装成电极组件(裸电芯),之后装入壳体,再盖上端盖,最后注入电解液后得到的。但是,随着电池技术的不断发展,对电池的安全性能和使用寿命等也提出了更高的要求。
对于一般的电池单体而言,电池单体的端盖通常盖合于壳体的开口,为了便于电池单体的装配,通常在电池单体的端盖上设置极柱,使得在端盖与壳体盖合时能够先将极柱通过设置于壳体内的集流构件与电极组件的极耳相互焊接,以实现极柱与电极组件的电连接,从而通过极柱作为电池单体的输出极,以实现电池单体的电能的输入或输出,最后再将端盖与壳体相连。
发明人发现,电池内的电池单体通常为倒置设置于箱体内,即电池单体设置有极柱的一侧面向箱体的底部设置,且电池单体与箱体的底部之间设置有汇流部件,通过汇流部件与电池单体的极柱相连能够实现多个电池单体之间的串联、并联或混联,这种结构的电池在后期使用过程中,由于电池单体存在晃动或移动等使用工况,使得连接于电池单体的极柱上的汇流部件会对极柱产生一定的拉扯力或扭转力,由于极柱安装于端盖上,使得汇流部件作用在极柱上的力会通过极柱传递至端盖上,以对端盖造成一定的拉扯或扭转作用,从而导致端盖与壳体极容易因长期疲劳受力而出现焊缝开裂等连接失效的现象,进而极容易造成电池单体的使用寿命较短,且使得电池单体存在漏液等使用安全隐患,不利于消费者的使用。
基于以上考虑,为了解决电池单体的使用寿命较短且使用安全性较低的问题,发明人经过深入研究,设计了一种电池单体,电池单体包括壳体、端盖、电极组件和极柱。壳体包括一体成型的底壁和侧壁,侧壁围设于底壁的周围,沿第一方向,底壁设置于侧壁的一端,侧壁的另一端形成开口。端盖盖合于开口,端盖与底壁沿第一方向相对设置。电极组件容纳于壳体内,沿第一方向,底壁被配置为支撑电极组件。极柱设置于底壁上,极柱与电极组件电连接。
在这种结构的电池单体中,电池单体的极柱设置于壳体在第一方向上与端盖相对设置的底壁上,底壁与侧壁为一体式结构,且底壁用于对电极组件起到支撑作用,即电池单体为倒置设置,使得电池单体设置有极柱的底壁朝下设置,且电极组件的端盖朝上设置,采用这种结构的电池单体一方面在使用过程中能够缓解电池的汇流部件对极柱造成的拉扯或扭转时将力通过极柱传递至壳体和端盖上的现象,以缓解端盖与壳体之间出现拉扯的情况,从而能够有效降低端盖与壳体之间出现连接失效的风险,有利于提升电池单体的使用安全性和使用寿命,另一方面由于极柱与端盖分别在第一方向上位于电池单体的两端,且端盖位于电池单体的顶部,从而能够缓解电池单体因端盖与壳体出现连接失效或发生变形时出现漏液的现象,以提升电池单体的使用安全性。
本申请实施例公开的电池单体可以但不限用于车辆、船舶或飞行器等用电装置中。可以使用具备本申请公开的电池单体、电池等组成该用电装置的电源系统,这样,有利于有效缓解电池单体在使用过程中出现漏液等问题,以提高电池单体的使用寿命和使用安全性。
本申请实施例提供一种使用电池作为电源的用电装置,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电装置为车辆1000为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2和图3,图2为本申请一些实施例提供的电池100的剖视图,图3为本申请一些实施例提供的电池单体20的结构示意图。电池100包括箱体10和电池单体20,电池单体20用于容纳于箱体10内。其中,箱 体10用于为电池单体20提供装配空间,箱体10可以采用多种结构。在一些实施例中,箱体10可以包括第一箱本体11和第二箱本体12,第一箱本体11与第二箱本体12相互盖合,第一箱本体11和第二箱本体12共同限定出用于容纳电池单体20的装配空间。第一箱本体11可以为一端开放的空心结构,第二箱本体12可以为板状结构,第二箱本体12盖合于第一箱本体11的开放侧,以使第一箱本体11与第二箱本体12共同限定出装配空间;第一箱本体11和第二箱本体12也可以是均为一侧开放的空心结构,第一箱本体11的开放侧盖合于第二箱本体12的开放侧。当然,第一箱本体11和第二箱本体12形成的箱体10可以是多种形状,比如,圆柱体、长方体等。
在电池100中,电池单体20可以是多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多个电池单体20构成的整体容纳于箱体10内;当然,电池100也可以是多个电池单体20先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体10内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件,用于实现多个电池单体20之间的电连接。
其中,每个电池单体20可以为二次电池或一次电池;还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。电池单体20可呈圆柱体、扁平体、长方体或其它形状等。示例性的,在图3中,电池单体20为长方体结构。
根据本申请的一些实施例,参照图3,并请进一步参照图4、图5和图6,图4为本申请一些实施例提供的电池单体20的结构爆炸图,图5为本申请一些实施例提供的电池单体20的剖视图,图6为图5所示的电池单体20的A处的局部放大图。本申请提供了一种电池单体20,电池单体20包括壳体21、端盖22、电极组件23和极柱24。壳体21包括一体成型的底壁211和侧壁212,侧壁212围设于底壁211的周围,沿第一方向X,底壁211设置于侧壁212的一端,侧壁212的另一端形成开口213。端盖22盖合于开口213,端盖22与底壁211沿第一方向X相对设置。电极组件23容纳于壳体21内,沿第一方向X,底壁211被配置为支撑电极组件23。极柱24设置于底壁211上,极柱24与电极组件23电连接。
其中,底壁211与侧壁212为一体成型,即壳体21为采用一体成型工艺制成,以使底壁211与侧壁212为一体式结构,示例性的,壳体21可以采用冲压、铸造等工艺制成。
壳体21还可以用于容纳电解质,例如电解液。壳体21可以是多种结构形式。壳体21的材质也可以是多种,比如,铜、铁、铝、钢、铝合金等。
沿第一方向X,底壁211设置于侧壁212的一端,侧壁212的另一端形成开口213,即壳体21的内部形成有用于容纳电极组件23的容纳腔214,且容纳腔214具有开口213,也就是说,壳体21为在第一方向X上的一端开放的空心结构,端盖22盖合于壳体21的开口213处并形成密封连接,使得壳体21的底壁211与端盖22沿第一方向X相对设置,以形成用于容纳电极组件23和电解质的密封空间,即底壁211为壳体21在第一方向X上与端盖22相对设置的一个壁,也就是说,第一方向X为端盖22的厚度方向,也为底壁211的厚度方向。
在组装电池单体20时,可先将电极组件23放入壳体21内,并向壳体21内填充电解质,再将端盖22盖合于壳体21的开口213。
壳体21可以是多种形状,比如,圆柱体、长方体等。壳体21的形状可根据电极组件23的具体形状来确定。比如,若电极组件23为圆柱体结构,则壳体21可选用圆柱体结构;若电极组件23为长方体结构,则壳体21可选用长方体结构。当然,端盖22也可以是多种结构,比如,端盖22为板状结构或一端开放的空心结构等。示例性的,在图3和图4中,壳体21为长方体结构,端盖22为板状结构。
电极组件23容纳于壳体21内,即电极组件23容纳于底壁211和侧壁212围合形成的容纳腔214内。需要说明的是,电极组件23是电池单体20中发生电化学反应的部件。电极组件23的主体部231可以包括正极极片、负极极片和隔离膜。电极组件23的主体部231可以是由正极极片、隔离膜和负极极片通过卷绕形成的卷绕式结构,也可以是由正极极片、隔离膜和负极极片通过层叠布置形成的层叠式结构。
可选地,容纳于外壳内的电极组件23可以是一个,也可以是多个。示例性的,在图4中,电极组件23为两个,两个电极组件23沿其厚度方向层叠设置,即两个电极组件23沿电池单体20的厚度方向层叠设置。当然,在其他实施例中,容纳于外壳内的电极组件23也可以为三个、四个、五个或六个等层叠设置。
沿第一方向X,底壁211被配置为支撑电极组件23,也就是说,参见图2所示,电池单体20倒置放置于箱体10内,使得底壁211能够在第一方向X上对电极组件23起到支撑作用,即电池单体20设置有极柱24的一端在第一方向X上朝向箱体10的底部设置,电池单体20的端盖22面向箱体10的顶部设置,或在实际使用过程中,电池单体20设置有极柱24的一端朝向地面设置或朝下设置,使得第一方向X为上下方向。
可选地,电池单体20的端盖22与箱体10的顶部相连,以使电池单体20倒置并悬空于箱体10内,端盖22与箱体10的连接方式可以是多种,比如,粘接、卡接等。
极柱24设置于底壁211上,极柱24起到连接电极组件23的作用,以使极柱24能够输入或输出电池单体20的电能。极柱24的材质可以是多种,比如,铜、铁、铝、钢、铝合金等。
示例性的,在图3中,极柱24为两个,且两个极柱24均安装于壳体21的底壁211上,两个极柱24分别用于输出或输入电池单体20的正极和负极。需要说明的是,在其他实施例中,也可以是一个极柱24安装于壳体21的底壁211上,另一个极柱24安装于壳体21的侧壁212上。
在一些实施例中,参照图4,并请进一步参照图7,图7为本申请一些实施例提供的电池单体20的壳体21的结构示意图。底壁211上设置有两个引出孔2111,引出孔2111与极柱24一一对应设置,沿第一方向X,引出孔2111贯穿底壁211的两侧,极柱24穿设于引出孔2111内并安装于底壁211上,以通过极柱24实现电池单体20的电能的输入或输出。
示例性的,极柱24绝缘安装于底壁211上,即极柱24与底壁211未形成电连接。
电池单体20的极柱24设置于壳体21在第一方向X上与端盖22相对设置的底壁211上,底壁211与侧壁212为一体式结构,且底壁211用于对电极组件23起到支撑作用,即电池单体20为倒置设置,使得电池单体20设置有极柱24的底壁211朝下设置,且电极组件23的端盖22朝上设置,采用这种结构的电池单体20一方面在使用过程中能够缓解电池100的汇流部件对极柱24造成的拉扯或扭转时将力通过极柱24传递至壳体21和端盖22上的现象,以缓解端盖22与壳体21之间出现拉扯的情况,从而能够有效降低端盖22与壳体21之间出现连接失效的风险,有利于提升电池单体20的使用安全性和使用寿命,另一方面由于极柱24与端盖22分别在第一方向X上位于电池单体20的两端,且端盖22位于电池单体20的顶部,从而能够缓解电池单体20因端盖22与壳体21出现连接失效或发生变形时出现漏液的现象,以提升电池单体20的使用安全性。
根据本申请的一些实施例,请参见图4、图5和图6所示,电极组件23包括主体部231和凸出于主体部231上的极耳232,极耳232与极柱24电连接。电池单体20还包括支撑件25,沿第一方向X,支撑件25的至少部分设置于底壁211和主体部231之间,底壁211通过支撑件25支撑主体部231。
其中,主体部231为电极组件23发生电化学反应的部件,极耳232起到输出或输入电极组件23的电能的作用。示例性的,在图4中,电极组件23具有两个极耳232,两个极耳232分别用于输出或输入电极组件23的正极和负极,且两个极耳232分别与两个极柱24电连接。
支撑件25的至少部分设置于底壁211和主体部231之间,即在第一方向X上,支撑件25可以是整体均位于底壁211和主体部231之间,也可以是部分位于底壁211和主体部231之间。示例性的,在图5中,支撑件25为整体均位于底壁211和主体部231之间。
底壁211通过支撑件25支撑主体部231,即支撑件25在第一方向X上设置于底壁211与主体部231之间,使得底壁211为主体部231提供的支撑力通过支撑件25传递至主体部231,也就是说,主体部231通过支撑件25放置于底壁211上。
其中,支撑件25为绝缘材质,示例性的,支撑件25的材质可以为塑胶、橡胶或硅胶等。
电池单体20设置有在第一方向X上位于壳体21的底壁211和电极组件23的主体部231之间的支撑件25,使得底壁211能够通过支撑件25对电极组件23的主体部231起到支撑作用,采用这种结构的电池单体20能够增加电极组件23的主体部231的受力面积,从而有利于缓解电极组件23的主体部231因局部区域受力导致主体部231的局部应力过大的现象,进而能够有效降低电极组件23的主体部231在使用过程中被损坏的风险,以提升电极组件23的使用寿命。
根据本申请的一些实施例,参见图5和图6所示,沿第一方向X,极耳232凸出于主体部231面向底壁211的一端,极耳232绕着支撑件25弯折。
其中,极耳232凸出于主体部231面向底壁211的一端,即极耳232连接于主体部231在第一方向X上靠近底壁211的一端。
极耳232绕着支撑件25弯折,即在第一方向X上,极耳232从支撑件25面向主体部231的一侧绕着支撑件25弯折后与支撑件25背离主体部231一侧的极柱24相连。
通过将极耳232在第一方向X上连接于主体部231面向底壁211的一端上,且极耳232为绕着支撑件25弯折后再与极柱24电连接,使得极耳232与极柱24相连的部分位于支撑件25背离主体部231的一侧,从而能够有效缓解极耳232在装配或使用过程中出现倒插至电极组件23的主体部231内的现象,进而有利于降低电池单体20的短路风险,以提升电池单体20的使用安全性。
在一些实施例中,请继续参见图5和图6所示,极耳232包括依次连接的第一连接段2321、第二连接段2322和第三连接段2323,第一连接段2321连接于主体部231,第三连接段2323连接于极柱24。沿第一方向X,第一连接段2321位于支撑件25面向主体部231的一侧,第三连接段2323位于支撑件25面向底壁211的一侧。沿第二方向Y,第二连接段2322位于支撑件25的一端,第二方向Y垂直于第一方向X。
示例性的,极耳232的第三连接段2323抵靠于支撑件25面向底壁211的一侧,以便于第三连接段2323与极柱24相连。
需要说明的是,第二方向Y为垂直于第一方向X的方向,即第二方向Y为与底壁211的厚度方向相互垂直的方向,第二方向Y可以是支撑件25的长度方向,也可以是支撑件25的宽度方向。示例性的,在图5和图6中,第二方向Y为支撑件25的宽度方向,即第二方向Y与电极组件23的主体部231的厚度方向相同。
极耳232具有依次连接的第一连接段2321、第二连接段2322和第三连接段2323,第一连接段2321和第三连接段2323分别位于支撑件25的两侧,第二连接段2322位于支撑件25在第二方向Y上的一端,且第一连接段2321和第三连接段2323分别连接于主体部231和极柱24,以实现极耳232绕着支撑件25弯折的结构,从而能够实现极耳232形成有在第一方向X上位于支撑件25面向底壁211的一侧且用于与极柱24相连的第三连接段2323。
根据本申请的一些实施例,参见图4、图5和图6所示,电池单体20包括两个电极组件23,沿第二方向Y,两个电极组件23的主体部231沿第二方向Y层叠设置,且两个电极组件23的极耳232分别绕支撑件25的两端弯折,第二方向Y垂直于第一方向X。
其中,两个电极组件23的主体部231沿第二方向Y层叠设置,即两个电极组件23的主体部231沿主体部231的厚度方向层叠设置。
两个电极组件23的极耳232分别绕支撑件25的两端弯折,即两个电极组件23的极耳232分别从支撑件25在第二方向Y上的两端弯折至支撑件25面向底壁211的一侧,也就是说,两个电极组件23的极耳232的第二连接段2322在第二方向Y上分别位于支撑件25的两端,以使两个电极组件23的极耳232的第二连接段2322在第二方向Y上面向设置。
电池单体20设置有沿第二方向Y层叠设置的两个电极组件23,且两个电极组件23的极耳232分别在第 二方向Y上绕着支撑件25的两端弯折,从而能够实现两个电极组件23的极耳232均为绕过支撑件25后再与极柱24连接的结构,以缓解两个电极组件23的极耳232在装配或使用过程中出现倒插至电极组件23的主体部231内的现象,进而有利于进一步降低电池单体20在使用过程中的安全隐患。
根据本申请的一些实施例,参见图4、图5和图6所示,电池单体20还包括集流构件26,沿第一方向X,集流构件26的至少部分设置于支撑件25与底壁211之间,集流构件26连接极耳232和极柱24。
其中,集流构件26的至少部分设置于支撑件25与底壁211之间,即在第一方向X上,集流构件26可以是整体均位于底壁211和支撑件25之间,也可以是部分位于底壁211和支撑件25之间。示例性的,在图5中,集流构件26为整体均位于底壁211和支撑件25之间。
集流构件26起到连接极耳232的第三连接段2323和极柱24的作用,以实现极耳232与极柱24之间的电连接。集流构件26的材质可以是多种,比如,铜、铁、铝、钢、铝合金等。
示例性的,集流构件26为两个,集流构件26与极柱24一一对应设置,即电极组件23的一个极耳232的第三连接段2323通过一个集流构件26与一个极柱24相连,电极组件23的另一个极耳232的第三连接段2323通过另一个集流构件26与另一个极柱24相连。
电池单体20还设置有在第一方向X上位于支撑件25和底壁211之间的集流构件26,使得集流构件26能够连接极耳232和极柱24,以实现极耳232与极柱24之间的电连接,采用这种结构有利于降低极耳232与极柱24之间的连接难度,以提升电池单体20的生产效率。
根据本申请的一些实施例,参见图5和图6所示,电池单体20还包括第一绝缘件27,沿第一方向X,第一绝缘件27的至少部分设置于集流构件26与底壁211之间,以绝缘隔离集流构件26和底壁211。
其中,第一绝缘件27的至少部分设置于集流构件26与底壁211之间,即在第一方向X上,第一绝缘件27可以是整体均位于底壁211和集流构件26之间,也可以是部分位于底壁211和集流构件26之间。示例性的,在图5和图6中,第一绝缘件27为部分位于底壁211和集流构件26之间。
第一绝缘件27起到绝缘隔离集流构件26和底壁211的作用,以降低短路风险,第一绝缘件27的材质可以是多种,比如,橡胶、硅胶或塑胶等。
电池单体20还设置有在第一方向X上位于集流构件26和底壁211之间的第一绝缘件27,通过第一绝缘件27能够对集流构件26和底壁211起到绝缘隔离的作用,以降低集流构件26与底壁211出现短接的风险,从而有利于提升电池单体20在使用过程中的安全性,以降低电池单体20的使用风险。
根据本申请的一些实施例,参照图7,并请进一步参照图8、图9和图10,图8为图7所示的壳体21的B处的局部放大图,图9为本申请一些实施例提供的电池单体20的壳体21的剖视图,图10为图9所示的壳体21的C处的局部放大图。沿第一方向X,底壁211具有背离电极组件23的第一表面2112,第一表面2112设置有凹槽215,凹槽215的槽底壁211形成泄压部216,泄压部216被配置为泄放电池单体20的内部压力。
其中,第一表面2112设置有凹槽215,凹槽215的槽底壁211形成泄压部216,即在第一方向X上,底壁211的第一表面2112向面向电极组件23的方向凹陷形成有凹槽215,且凹槽215的槽底壁211形成用于泄放电池单体20的内部压力的泄压部216,也就是说,凹槽215的槽底壁211能够在电池单体20发生热失控时破裂,以泄放电池单体20的内部压力。
示例性的,在图10中,泄压部216上形成有刻痕槽2161,以使泄压部216在设置有刻痕槽2161的区域形成较为薄弱的结构,从而在电池单体20发生热失控时泄压部216能够沿着刻痕槽2161裂开,以泄放电池单体20的内部压力。当然,泄压部216的结构并不局限于此,在其他实施例中,泄压部216也可以为局部厚度减薄的结构,以使泄压部216在厚度减薄的区域形成较为薄弱的结构,从而在电池单体20发生热失控时泄压部216能够沿着厚度减薄的区域裂开,以泄放电池单体20的内部压力。
需要说明的是,泄压部216与底壁211可以是一体式结构,也可以是分体式结构。若泄压部216与底壁211为一体式结构,则可以采用冲压或挤出成型等工艺制成;若泄压部216与底壁211为分体式结构,则可以先在底壁211上设置沿第一方向X贯穿底壁211的安装孔,之后再将泄压部216焊接于底壁211并封堵安装孔。
在一些实施例中,参见图4所示,在电池单体20设置有支撑件25的实施例中,支撑件25在第一方向X上对应泄压部216的位置设置有多个通孔251,且通孔251沿第一方向X贯穿支撑件25的两侧,采用这种结构的支撑件25能够在电池单体20通过泄压部216泄压时减少支撑件25对泄压部216的影响,以保证电池单体20能够正常泄压。
通过在底壁211的第一表面2112设置往电池单体20的内部凹陷的凹槽215,且凹槽215的槽底壁211形成用于泄放电池单体20的内部压力的泄压部216,以在电池单体20热失控时泄放电池单体20内部的压力,采用这种结构能够实现泄压部216与底壁211的第一表面2112间隔设置,且相较于第一表面2112更靠近电极组件23,从而一方面能够对泄压部216起到一定的保护作用,以降低泄压部216受外部环境磨损或损坏的风险,进而能够降低泄压部216出现提前开阀的现象,另一方面能够缓解泄压部216被其他部件遮挡而造成泄压部216所需的泄压压力上升的现象,以保证泄压部216的正常使用,进而有利于降低电池单体20在使用过程中的安全隐患。
在一些实施例中,参见图10所示,沿第一方向X,泄压部216与第一表面2112之间的距离为H,满足,1mm≤H≤5mm。
通过将泄压部216与第一表面2112在第一方向X上距离设置为1mm到5mm,一方面能够缓解泄压部216与第一表面2112之间的间距过小而造成对泄压部216的保护效果较差,且容易被其他部件遮挡的现象,以保证泄压部216的正常使用,另一方面能够缓解泄压部216与第一表面2112之间的间距过大而导致占用空间过大且加工难度较大的现象。
根据本申请的一些实施例,请参见图9和图10所示,沿第一方向X,底壁211具有面向电极组件23的 第二表面2113,底壁211在与凹槽215对应的位置形成有凸出部217,凸出部217凸出于第二表面2113。
其中,沿第一方向X,底壁211具有面向电极组件23的第二表面2113,即底壁211在第一方向X上具有与第一表面2112相对设置的第二表面2113,也就是说,第一表面2112为底壁211背离电池单体20内部的外表面,第二表面2113为底壁211面向电池单体20内部的内表面。
底壁211在与凹槽215对应的位置形成有凸出部217,凸出部217凸出于第二表面2113,即底壁211在设置有凹槽215的区域往面向电池单体20的内部凸起形成有凸出部217,且凸出部217在第一方向X上延伸出第二表面2113,以使泄压部216能够通过凸出部217与底壁211相连。
通过在底壁211对应凹槽215的位置形成凸出于第二表面2113的凸出部217,使得泄压部216往面向电极组件23的方向凸出于第二表面2113,采用这种结构一方面便于在底壁211上加工形成往面向电极组件23的方向凹陷的凹槽215,另一方面能够加强泄压部216与底壁211之间的结构强度。
根据本申请的一些实施例,请继续参见图9和图10所示,凹槽215包括沿第一方向X连续设置的第一槽2151和第二槽2152,第一槽2151设置于第一表面2112,第一槽2151的槽侧面与第二槽2152的槽侧面通过第一槽的槽底面2151a连接。
其中,凹槽215包括沿第一方向X连续设置的第一槽2151和第二槽2152,即凹槽215包括连续设置的至少两个槽段,分别为第一槽2151和第二槽2152,且第一槽2151和第二槽2152沿第一方向X排布。
第一槽2151设置于第一表面2112,即第一槽2151的槽侧壁212与第一表面2112相连。
第一槽2151的槽侧面与第二槽2152的槽侧面通过第一槽的槽底面2151a连接,即第二槽2152设置于第一槽的槽底面2151a上,使得第二槽2152的槽侧面与第一槽的槽底面2151a相连。
凹槽215设置有在第一方向X上往面向电极组件23的方向连续设置的第一槽2151和第二槽2152,且第一槽2151的槽侧面与第二槽2152的槽侧面通过第一槽的槽底面2151a相连,即第二槽2152设置于第一槽的槽底面2151a上,从而使得泄压部216与底壁211之间形成有阶梯结构,有利于进一步提升泄压部216与底壁211之间的结构强度。
根据本申请的一些实施例,参见图10所示,凸出部的外周面2171与第二表面2113呈钝角设置,沿第一方向X,凸出部217具有面向电极组件23的第三表面2172,第三表面2172的边缘在第一方向X上的投影位于第一槽的槽底面2151a内。
其中,凸出部的外周面2171为在凸出部217的周向上的表面,即凸出部的外周面2171环绕凸出部217设置,且凸出部的外周面2171连接于第二表面2113和第三表面2172之间。
凸出部的外周面2171与第二表面2113呈钝角设置,即凸出部的外周面2171为倾斜的结构,使得凸出部的外周面2171连接于第二表面2113的一端相较于凸出部的外周面2171连接于第三表面2172的一端在泄压部216的径向上更远离泄压部216,以使第二表面2113和第三表面2172在泄压部216的径向上为间隔设置的结构,从而通过凸出部的外周面2171相连后使得凸出部的外周面2171与第二表面2113呈钝角设置。需要说明的是,泄压部216的径向与第一方向X相互垂直,泄压部216的径向为泄压部216的边缘指向泄压部216的中心位置或泄压部216的中心位置指向泄压部216的边缘的方向。
第三表面2172的边缘在第一方向X上的投影位于第一槽的槽底面2151a内,即第三表面2172与凸出部的外周面2171的相交位置在第一方向X上的投影落入第一槽的槽底面2151a内,也就是说,在泄压部216的径向往远离泄压部216的方向上,凸出部的外周面2171与第一槽的槽底面2151a在第一方向X上的距离逐渐减小,以使凸出部217在第一方向X上的厚度呈现逐渐减小的结构。
通过将凸出部的外周面2171设置为与第二表面2113呈钝角设置,并将凸出部217面向电极组件23的第三表面2172的边缘设置为在第一方向X上的投影落入第一槽的槽底面2151a内,使得凸出部的外周面2171与第一槽的槽底面2151a在第一方向X上的距离从第三表面2172的边缘到第二表面2113逐渐减小,以使凸出部217在第一方向X上的厚度逐渐减小,从而实现凸出部217形成有强度较强的区域和强度逐渐减小的区域,以实现泄压部216连接底壁211之间的区域为由强到弱的结构,从而在保证泄压部216连接在底壁211上的结构强度的同时通过强度减弱的区域能够吸收底壁211传递过来的应力和能量,以降低底壁211上的应力和能量对泄压部216造成的影响,进而能够降低泄压部216在使用过程中受到底壁211的影响而发生变形的风险。
根据本申请的一些实施例,请继续参见图10所示,第二槽2152的槽底壁211形成泄压部216。
其中,第二槽2152的槽底壁211形成泄压部216,即凹槽215只设置有沿第一方向X连续设置的第一槽2151和第二槽2152,第一槽2151设置于第一表面2112,第二槽2152的槽底壁211为泄压部216。当然,在其他实施例中,凹槽215也可以包括沿第一方向X连续设置的第一槽2151、第二槽2152、第三槽或第四槽等。
通过将第二槽2152的槽底壁211设置为用于泄放电池单体20的内部压力的泄压部216,使得凹槽215只设置有第一槽2151和第二槽2152,这种结构便于对底壁211进行加工,有利于降低加工难度。
根据本申请的一些实施例,参见图8、图9和图10所示,第一表面2112凸设有阻挡部2114,阻挡部2114环绕于凹槽215的外侧。
其中,阻挡部2114环绕于凹槽215的外侧,即阻挡部2114为环绕设置于凹槽215的外侧的环形结构,以使阻挡部2114环绕凹槽215设置。
通过在第一表面2112上凸设环绕于凹槽215的外侧的阻挡部2114,这种结构的电池单体20在电池单体20的装配过程中通过阻挡部2114能够对电解液起到阻挡作用,以减少电解液从第一表面2112流入凹槽215内的现象,从而能够降低电解液对泄压部216的影响。
根据本申请的一些实施例,参见图5所示,底壁211的厚度大于侧壁212的厚度。也就是说,底壁211在第一方向X上的壁厚大于侧壁212在第二方向Y上的壁厚。
通过将底壁211的厚度设置为大于侧壁212的厚度,以提升底壁211的结构强度,从而能够保证极柱24安装于底壁211上的结构稳定性,且能够提升底壁211对电极组件23的承载能力,以缓解底壁211在使用过程中出现变形的现象。
当然,电池单体20的结构并局限于此,在一些实施例中,底壁211的厚度也可以设置为等于侧壁212的厚度。也就是说,底壁211在第一方向X上的壁厚与侧壁212在第二方向Y上的壁厚相等。
通过将底壁211的厚度设置为与侧壁212的厚度相等,从而使得一体式结构的底壁211和侧壁212可以直接通过冲压等工艺形成,无需在增加其他加工工艺,有利于降低壳体21的制造难度。
根据本申请的一些实施例,请继续参见图5所示,侧壁212的厚度大于端盖22的厚度。也就是说,侧壁212在第二方向Y上的壁厚大于端盖22在第一方向X上的壁厚。
通过将侧壁212的厚度设置为大于端盖22的厚度,由于端盖22上未设置极柱24等部件,从而有利于降低端盖22占用的空间,以提升电池单体20的能量密度和容量。
根据本申请的一些实施例,参见图3和图4所示,电池单体20包括极性相反的两个极柱24,两个极柱24均设置于底壁211上,且两个极柱24均与电极组件23电连接。
其中,两个极柱24均绝缘安装于底壁211上,以使两个极柱24均未与底壁211形成电连接。
两个极柱24均与电极组件23电连接,即两个极柱24分别与电极组件23的极性相反的两个极耳232相连。
电池单体20设置有两个极柱24,且两个极柱24均设置于壳体21的底壁211上,从而能够减少电池100的汇流部件对极性相反的两个极柱24造成的拉扯或扭转时将力通过极柱24传递至壳体21和端盖22上的现象,以缓解端盖22与壳体21之间出现拉扯的情况,从而能够进一步降低端盖22与壳体21之间出现连接失效的风险,且能够进一步缓解电池单体20因端盖22与壳体21出现连接失效或发生变形时出现漏液的现象。
根据本申请的一些实施例,参见图2,本申请还提供了一种电池100,包括箱体10和以上任一方案的电池单体20。电池单体20容纳于箱体10内,沿第一方向X,底壁211面向箱体10的底部设置。
其中,沿第一方向X,底壁211面向箱体10的底部设置,即电池单体20设置有极柱24的一端相较于端盖22在第一方向X上更靠近箱体10的底部,也就是说,电池单体20设置有极柱24的一端朝下设置。
可选地,设置于箱体10内的电池单体20可以是一个,也可以是多个,示例性的,在图2中,电池单体20为多个。
在一些实施例中,请继续参见图2所示,沿第一方向X,端盖22连接于箱体10的顶部,以使电池单体20悬挂于箱体10内。
其中,端盖22连接于箱体10的顶部,以使电池单体20悬挂于箱体10内,即电池单体20在第一方向X上设置有端盖22的一端与箱体10的顶部相连,从而使得电池单体20在第一方向X上设置有极柱24的一端与箱体10的底部间隔设置,以将电池单体20悬挂于箱体10内。
示例性的,端盖22连接于箱体10的顶部的方式可以是多种,比如,粘接、卡接等。
通过将电池单体20的端盖22面向箱体10的顶部设置,壳体21的底壁211面向箱体10的底部设置,且将电池单体20的端盖22连接于箱体10的顶部上,以实现电池单体20悬挂于箱体10内,采用这种结构能够实现设置有极柱24的底壁211与箱体10的底部间隔设置,从而便于在箱体10内设置用于与极柱24相连的汇流部件等,且能够减少其它部件对端盖22造成的影响,以降低端盖22出现变形而导致端盖22与壳体21出现连接失效的现象,进而有利于降低电池单体20的漏液风险。
根据本申请的一些实施例,本申请还提供了一种用电装置,包括以上任一方案的电池100,并且电池100用于为用电装置提供电能。
用电装置可以是前述任一应用电池100的设备或系统。
根据本申请的一些实施例,参见图2至图10所示,本申请提供了一种电池单体20,电池单体20包括壳体21、端盖22、电极组件23、极柱24、支撑件25、集流构件26和第一绝缘件27。壳体21包括一体成型的底壁211和侧壁212,侧壁212围设于底壁211的周围,沿第一方向X,底壁211设置于侧壁212的一端,侧壁212的另一端形成开口213,极柱24绝缘安装于底壁211上。端盖22盖合于开口213,端盖22与底壁211沿第一方向X相对设置。电极组件23容纳于壳体21内,电极组件23包括主体部231和极耳232,沿第一方向X,极耳232凸出于主体部231面向底壁211的一端,极耳232用于与极柱24相连。沿第一方向X,支撑件25的至少部分设置于底壁211和主体部231之间,底壁211通过支撑件25支撑主体部231。极耳232绕着支撑件25弯折,极耳232包括依次连接的第一连接段2321、第二连接段2322和第三连接段2323,第一连接段2321连接于主体部231,第三连接段2323连接于极柱24,沿第一方向X,第一连接段2321位于支撑件25面向主体部231的一侧,第三连接段2323位于支撑件25面向底壁211的一侧,沿第二方向Y,第二连接段2322位于支撑件25的一端,第二方向Y垂直于第一方向X。沿第一方向X,集流构件26的至少部分设置于支撑件25与底壁211之间,集流构件26连接第三连接段2323和极柱24。沿第一方向X,第一绝缘件27的至少部分设置于集流构件26与底壁211之间,以绝缘隔离集流构件26和底壁211。
其中,沿第一方向X,底壁211具有背离电极组件23的第一表面2112,第一表面2112设置有凹槽215,底壁211具有面向电极组件23的第二表面2113,底壁211在与凹槽215对应的位置形成有凸出部217,凸出部217凸出于第二表面2113。凹槽215包括沿第一方向X连续设置的第一槽2151和第二槽2152,第一槽2151设置于第一表面2112,第一槽2151的槽侧面与第二槽2152的槽侧面通过第一槽的槽底面2151a连接,第二槽2152的槽底壁211形成泄压部216,泄压部216被配置为泄放电池单体20的内部压力。凸出部的外周面2171与第二表面2113呈钝角设置,沿第一方向X,凸出部217具有面向电极组件23的第三表面2172,第三表面2172的边缘在 第一方向X上的投影位于第一槽的槽底面2151a内。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (21)

  1. 一种电池单体,包括:
    壳体,包括一体成型的底壁和侧壁,所述侧壁围设于所述底壁的周围,沿第一方向,所述底壁设置于所述侧壁的一端,所述侧壁的另一端形成开口;
    端盖,盖合于所述开口,所述端盖与所述底壁沿所述第一方向相对设置;
    电极组件,容纳于所述壳体内,沿所述第一方向,所述底壁被配置为支撑所述电极组件;以及
    极柱,设置于所述底壁上,所述极柱与所述电极组件电连接。
  2. 根据权利要求1所述的电池单体,其中,所述电极组件包括主体部和凸出于所述主体部上的极耳,所述极耳与所述极柱电连接;
    所述电池单体还包括支撑件,沿所述第一方向,所述支撑件的至少部分设置于所述底壁和主体部之间,所述底壁通过所述支撑件支撑所述主体部。
  3. 根据权利要求2所述的电池单体,其中,沿所述第一方向,所述极耳凸出于所述主体部面向所述底壁的一端,所述极耳绕着所述支撑件弯折。
  4. 根据权利要求3所述的电池单体,其中,所述极耳包括依次连接的第一连接段、第二连接段和第三连接段,所述第一连接段连接于所述主体部,所述第三连接段连接于所述极柱;
    沿所述第一方向,所述第一连接段位于所述支撑件面向所述主体部的一侧,所述第三连接段位于所述支撑件面向所述底壁的一侧;
    沿第二方向,所述第二连接段位于所述支撑件的一端,所述第二方向垂直于所述第一方向。
  5. 根据权利要求3或4所述的电池单体,其中,所述电池单体包括:
    两个所述电极组件,沿第二方向,两个所述电极组件的所述主体部沿第二方向层叠设置,且两个所述电极组件的所述极耳分别绕所述支撑件的两端弯折,所述第二方向垂直于所述第一方向。
  6. 根据权利要求3-5任一项所述的电池单体,其中,所述电池单体还包括:
    集流构件,沿所述第一方向,所述集流构件的至少部分设置于所述支撑件与所述底壁之间,所述集流构件连接所述极耳和所述极柱。
  7. 根据权利要求6所述的电池单体,其中,所述电池单体还包括:
    第一绝缘件,沿所述第一方向,所述第一绝缘件的至少部分设置于所述集流构件与所述底壁之间,以绝缘隔离所述集流构件和所述底壁。
  8. 根据权利要求1-7任一项所述的电池单体,其中,沿所述第一方向,所述底壁具有背离所述电极组件的第一表面,所述第一表面设置有凹槽,所述凹槽的槽底壁形成泄压部,所述泄压部被配置为泄放所述电池单体的内部压力。
  9. 根据权利要求8所述的电池单体,其中,沿所述第一方向,所述泄压部与所述第一表面之间的距离为H,满足,1mm≤H≤5mm。
  10. 根据权利要求8或9所述的电池单体,其中,沿所述第一方向,所述底壁具有面向所述电极组件的第二表面,所述底壁在与所述凹槽对应的位置形成有凸出部,所述凸出部凸出于所述第二表面。
  11. 根据权利要求10所述的电池单体,其中,所述凹槽包括沿所述第一方向连续设置的第一槽和第二槽,所述第一槽设置于所述第一表面,所述第一槽的槽侧面与所述第二槽的槽侧面通过所述第一槽的槽底面连接。
  12. 根据权利要求11所述的电池单体,其中,所述凸出部的外周面与第二表面呈钝角设置,沿所述第一方向,所述凸出部具有面向所述电极组件的第三表面,所述第三表面的边缘在所述第一方向上的投影位于所述第一槽的槽底面内。
  13. 根据权利要求11或12所述的电池单体,其中,所述第二槽的槽底壁形成所述泄压部。
  14. 根据权利要求8-13任一项所述的电池单体,其中,所述第一表面凸设有阻挡部,所述阻挡部环绕于所述凹槽的外侧。
  15. 根据权利要求1-14任一项所述的电池单体,其中,所述底壁的厚度大于所述侧壁的厚度。
  16. 根据权利要求1-14任一项所述的电池单体,其中,所述底壁的厚度等于所述侧壁的厚度。
  17. 根据权利要求1-16任一项所述的电池单体,其中,所述侧壁的厚度大于所述端盖的厚度。
  18. 根据权利要求1-17任一项所述的电池单体,其中,所述电池单体包括极性相反的两个所述极柱,两个所述极柱均设置于所述底壁上,且两个所述极柱均与所述电极组件电连接。
  19. 一种电池,包括:
    箱体;以及
    如权利要求1-18任一项所述的电池单体,所述电池单体容纳于所述箱体内,沿所述第一方向,所述底壁面向所述箱体的底部设置。
  20. 根据权利要求19所述的电池,其中,沿所述第一方向,所述端盖连接于所述箱体的顶部,以使所述电池单体悬挂于所述箱体内。
  21. 一种用电装置,包括如权利要求19或20所述的电池。
PCT/CN2022/130664 2022-11-08 2022-11-08 电池单体、电池及用电装置 WO2024098257A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/130664 WO2024098257A1 (zh) 2022-11-08 2022-11-08 电池单体、电池及用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/130664 WO2024098257A1 (zh) 2022-11-08 2022-11-08 电池单体、电池及用电装置

Publications (1)

Publication Number Publication Date
WO2024098257A1 true WO2024098257A1 (zh) 2024-05-16

Family

ID=91031770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130664 WO2024098257A1 (zh) 2022-11-08 2022-11-08 电池单体、电池及用电装置

Country Status (1)

Country Link
WO (1) WO2024098257A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101257097A (zh) * 2007-03-02 2008-09-03 深圳市比克电池有限公司 一种改进的电池封口组件及电池
JP2015056357A (ja) * 2013-09-13 2015-03-23 株式会社豊田自動織機 蓄電装置
CN217035800U (zh) * 2022-03-28 2022-07-22 蓝京新能源(嘉兴)有限公司 一种多极耳圆柱电池
CN217158556U (zh) * 2022-04-29 2022-08-09 宁德时代新能源科技股份有限公司 电池单体、电池及用电设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101257097A (zh) * 2007-03-02 2008-09-03 深圳市比克电池有限公司 一种改进的电池封口组件及电池
JP2015056357A (ja) * 2013-09-13 2015-03-23 株式会社豊田自動織機 蓄電装置
CN217035800U (zh) * 2022-03-28 2022-07-22 蓝京新能源(嘉兴)有限公司 一种多极耳圆柱电池
CN217158556U (zh) * 2022-04-29 2022-08-09 宁德时代新能源科技股份有限公司 电池单体、电池及用电设备

Similar Documents

Publication Publication Date Title
JP2022543185A (ja) 電池、その関連装置、製造方法及び製造機器
WO2024027034A1 (zh) 端盖组件、电池单体、电池以及用电装置
WO2023092758A1 (zh) 电池单体及其制造方法和制造设备、电池以及用电设备
WO2023025104A1 (zh) 电池单体、电池以及用电装置
EP4425674A1 (en) Battery cell, battery, and electrical apparatus
US20230411746A1 (en) Battery cell, method and system for manufacturing same, battery, and electrical device
CN218867177U (zh) 电池单体、电池及用电装置
US20230344047A1 (en) End cover assembly, battery cell, battery, and electric apparatus
US20230207984A1 (en) Battery cell, method and system for manufacturing same, battery, and electrical device
CN216720087U (zh) 电池单体、电池及用电装置
WO2024098257A1 (zh) 电池单体、电池及用电装置
WO2024148468A1 (zh) 电池单体、电池及用电装置
WO2024082096A1 (zh) 电池单体、电池、储能装置及用电装置
WO2024103201A1 (zh) 端盖组件、电池单体、电池和用电装置
WO2024145827A1 (zh) 电池单体、电池及用电装置
CN218602480U (zh) 集流构件、电池单体、电池及用电装置
WO2024086981A1 (zh) 电池单体及其制造方法、电池及用电装置
WO2024055257A1 (zh) 电池单体、电池及用电装置
WO2024130675A1 (zh) 电池单体、电池、用电装置和电池单体的制备方法及装置
WO2024007115A1 (zh) 电池单体、电池以及用电装置
WO2024178553A1 (zh) 电池单体、电池及用电装置
WO2024159410A1 (zh) 电池单体、电池及用电装置
WO2024159409A1 (zh) 电池单体、电池及用电装置
WO2023178483A1 (zh) 电池单体及其制造方法和制造设备、电池及用电装置
WO2024148507A1 (zh) 电池单体、电池及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22964732

Country of ref document: EP

Kind code of ref document: A1