WO2023153506A1 - 二酸化炭素の発生方法 - Google Patents

二酸化炭素の発生方法 Download PDF

Info

Publication number
WO2023153506A1
WO2023153506A1 PCT/JP2023/004697 JP2023004697W WO2023153506A1 WO 2023153506 A1 WO2023153506 A1 WO 2023153506A1 JP 2023004697 W JP2023004697 W JP 2023004697W WO 2023153506 A1 WO2023153506 A1 WO 2023153506A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon dioxide
optionally substituted
bicarbonate
aralkylamine
Prior art date
Application number
PCT/JP2023/004697
Other languages
English (en)
French (fr)
Inventor
冬彦 稲垣
遼 村上
里彩 大塚
彩花 内田
Original Assignee
学校法人神戸学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人神戸学院 filed Critical 学校法人神戸学院
Publication of WO2023153506A1 publication Critical patent/WO2023153506A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide

Definitions

  • the present invention relates to a method for releasing (generating) carbon dioxide with low energy from amines that have absorbed and fixed carbon dioxide.
  • Non-Patent Document 1 A method of absorbing carbon dioxide using amines and then releasing and concentrating carbon dioxide by heating is called a temperature swing method (Non-Patent Document 1). Since amines are hydrophilic substances and carbon dioxide is water-soluble, amines have generally been used as absorbents in the form of an aqueous solution. On the other hand, when an aqueous solution is used, energy for heating the water is also required for heat release, so the high separation energy has been regarded as a problem from the viewpoint of efficiency.
  • Patent Documents 1 to 3 The present inventors have recently discovered that carbon dioxide selectivity is expressed by introducing a hydrophobic functional group in the vicinity of an amino group. This eliminates the need to use amines as an aqueous solution, making it possible to save energy for heating water.
  • Carbon dioxide release processes using chemical absorbents after carbon dioxide fixation are currently diversifying, and include the pressure swing method (Non-Patent Document 2), the light swing method (Non-Patent Document 3), and the electric swing method. method (Patent Document 4) and the like are known.
  • All the swing methods have in common that they use energy to release carbon dioxide, and in order to improve the efficiency of the carbon dioxide release process, there is an urgent need to reduce energy consumption.
  • An object of the present invention is to provide a method for releasing (generating) carbon dioxide absorbed and fixed by amines under mild conditions while reducing the separation energy as much as possible.
  • the present inventors have made intensive studies and found that amines that absorb and fix carbon dioxide, particularly optionally substituted N—C 7-14 aralkylcarbamic acids or salts thereof, and/or an optionally substituted C 7-14 aralkylamine bicarbonate, or a carbon dioxide generating agent containing a hydrate thereof (hereinafter sometimes referred to as "the carbon dioxide generating agent of the present invention” ), by adding a solvent, carbon dioxide can be efficiently released at room temperature without any physicochemical treatment such as pressure, heating, electric power, light irradiation, etc., and completed the present invention. came to.
  • the present invention is as follows.
  • [1] Contains an optionally substituted N—C 7-14 aralkylcarbamic acid or a salt thereof and/or an optionally substituted C 7-14 aralkylamine bicarbonate, or a hydrate thereof
  • a method for generating carbon dioxide characterized in that carbon dioxide is generated at normal temperature and pressure by adding a solvent to the carbon dioxide generating agent.
  • [2] The above [ 1].
  • [3] The method according to [1] above, wherein the solvent is a halogenated hydrocarbon or an alcohol.
  • the amount of solvent added is optionally substituted N—C 7-14 aralkylcarbamic acid or a salt thereof, and/or optionally substituted C 7-14 aralkylamine bicarbonate, or The method according to any one of [1] to [3] above, wherein the amount is 0.1 mL to 50 L per 1 mol of the hydrate of.
  • the carbon dioxide generating agent is a halogen atom, nitro group, cyano group, C 1-4 alkyl group, C 1-4 alkoxy group, halo C 1-4 alkyl group, halo C 1-4 alkoxy group, C 1 -4 alkylenedioxy group, C 6-10 aryl group, C 7-14 aralkyl group and N—C 7-14 aralkylcarbamine optionally substituted with a substituent selected from the group consisting of aminomethyl group.
  • NC 7-14 aralkylcarbamic acid or a salt thereof, and/or a bicarbonate of C 7-14 aralkylamine, or a hydrate thereof is benzylamine, 2-methylbenzylamine, 2-methoxy benzylamine, 4-methoxybenzylamine, piperonylamine, 2-chlorobenzylamine, 2,4-dichlorobenzylamine, 4-trifluoromethylbenzylamine, phenethylamine, 2-methoxyphenethylamine, 4-chlorophenethylamine, 2,4-dichloro N-aralkylcarbamines derived from aralkylamines selected from the group consisting of phenethylamine, benzhydrylamine, 1,2,3,4-tetrahydro-1-naphthylamine, 1-(1-naphthyl)ethylamine and 1,2-diphenylethylamine
  • aralkylamines selected from
  • a substituent selected from the group consisting of a halogen atom, a C 1-4 alkyl group, a C 1-4 alkoxy group, a halo C 1-4 alkyl group and a halo C 1-4 alkoxy group for the carbon dioxide generating agent; Benzylcarbamic acid or a salt thereof, and/or a bicarbonate of benzylamine, or a hydrate thereof, each optionally substituted with, according to any one of [1] to [4] above.
  • carbon dioxide-absorbing and immobilizing amines especially optionally substituted N—C 7-14 aralkylcarbamic acids or salts thereof, and/or optionally substituted C 7 -14
  • Any physicochemical treatment such as pressure, heating, electric power, light irradiation, etc. is performed only by adding a solvent to a carbon dioxide generating agent containing a bicarbonate of aralkylamine or a hydrate thereof. It is possible to provide a simple method for efficiently releasing carbon dioxide under normal temperature and normal pressure. Since the present invention does not use any external energy (heating, pressurization, applied voltage, light irradiation, stirring, etc.), it is a novel carbon dioxide generation method that is friendly to the global environment and can make separation energy substantially zero. be.
  • FIG. 1 shows that various solvents (water (H 2 O), methanol (MeOH), ethanol (EtOH ), N,N-dimethylformamide (DMF), acetone, tetrahydrofuran (THF), diethyl ether (Et 2 O), dichloromethane (DCM) or toluene) over time (ppm) represents a change in FIG. 2 shows that different volumes of dichloromethane (1 mL, 3 mL, 5 mL, 10 mL, 30 mL, 50 mL) were added to N-benzylcarbamic acid or its salt and/or benzylamine bicarbonate hydrate under normal temperature and pressure.
  • dichloromethane 1 mL, 3 mL, 5 mL, 10 mL, 30 mL, 50 mL
  • FIG. 3 shows the change in carbon dioxide concentration over time after adding various aralkylamines (5 mmol) to a petri dish in a desiccator adjusted to an initial carbon dioxide concentration of about 600-700 ppm and closing the door.
  • FIG. 4 shows the concentration of carbon dioxide released over time when dichloromethane (DCM) is added to various N-aralkylcarbamic acids or their salts and/or aralkylamine bicarbonate hydrates at normal temperature and pressure. (ppm) change.
  • DCM dichloromethane
  • halogen atom is a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
  • alkyl (group) includes linear or branched alkyl groups having 1 or more carbon atoms, preferably C 1- 10 alkyl group, more preferably a C 1-6 alkyl group, particularly preferably a C 1-4 alkyl group.
  • Preferable specific examples when the carbon number range is not limited include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl and the like.
  • haloalkyl (group) means a group in which one or more hydrogen atoms in the alkyl group is substituted with halogen. Specifically, for example, difluoromethyl, trifluoromethyl, 2-chloroethyl, 2-bromoethyl, 2-iodoethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, pentafluoro ethyl, 2,2,3,3-tetrafluoropropyl, 3,3,3-trifluoropropyl, 4,4,4-trifluorobutyl, 5,5,5-trifluoropentyl, 6,6,6- and trifluorohexyl. Among them, “haloC 1-6 alkyl” is preferred, and “haloC 1-4 alkyl” is more preferred.
  • alkoxy (group) includes an alkoxy group having 1 or more carbon atoms, preferably a C 1-10 alkoxy group, more preferably a C 1-10 alkoxy group, particularly when there is no limitation on the carbon number range. is a C 1-6 alkoxy group.
  • the carbon number range is not limited include methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy, pentyloxy, hexyloxy and the like.
  • haloalkoxy (group) means a group in which one or more hydrogen atoms in the alkoxy group are substituted with halogen.
  • haloC 1-6 alkoxy is preferred, and “haloC 1-4 alkoxy” is more preferred.
  • aryl (group) means a monocyclic or polycyclic monovalent hydrocarbon group exhibiting aromaticity, and specifically includes, for example, phenyl, 1-naphthyl, 2 -C 6-14 aryl groups such as naphthyl, biphenylyl, 2-anthryl and the like. Among them, a C 6-10 aryl group is more preferred, and phenyl is particularly preferred.
  • aralkyl (group) means a group in which the aryl group is bonded to the alkyl group, and specific examples thereof include C 7-20 aralkyl groups, preferably C 7 -14 aralkyl group (C 6-10 aryl-C 1-4 alkyl group). Preferred specific examples include benzyl, 1-phenylethyl, 2-phenylethyl, 1-phenylpropyl, naphthylmethyl, 1-naphthylethyl, 1-naphthylpropyl and the like, with benzyl being particularly preferred.
  • aryloxy (group) means a group in which the aryl group is bonded to an oxygen atom, and specific examples include phenyloxy, 1-naphthyloxy, 2-naphthyloxy, biphenylyloxy, 2-anthryloxy and the like. Among them, a C 6-14 aryloxy group is preferred, and a phenyloxy group is particularly preferred.
  • aralkyloxy (group) means a group in which the aralkyl group is bonded to an oxygen atom, and specific examples include benzyloxy, phenethyloxy, naphthylmethyloxy, biphenylylmethyl oxy and the like. Among them, a C 7-14 aralkyloxy group is preferred, and a benzyloxy group is particularly preferred.
  • alkenyl (group) is preferably a linear or branched C 2-6 alkenyl group, such as vinyl, 1-propenyl, allyl, isopropenyl, butenyl, isobutenyl, and the like. mentioned. Among them, a C 2-4 alkenyl group is preferred.
  • alkynyl (group) is preferably a C 2-6 alkynyl group, such as ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1- pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl and the like.
  • a C 2-4 alkynyl group is preferred.
  • cycloalkyl (group) means a cyclic alkyl group such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl and the like. Among them, C 3-6 cycloalkyl groups such as cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl are preferred.
  • acyl (group) means an alkanoyl group or an aroyl group, and although the carbon number range is not particularly limited, it is preferably a C 1-7 alkanoyl group or a C 7-11 aroyl group.
  • C 1-7 alkanoyl (group) means a formyl group or a straight or branched chain alkylcarbonyl having 2 to 7 carbon atoms (that is, a C 1-6 alkyl-carbonyl group). Examples include formyl, acetyl, propionyl, butyryl, isobutyryl, pentanoyl, tert-butylcarbonyl (pivaloyl), hexanoyl, heptanoyl and the like. Among them, a C 1-5 alkanoyl group (ie, a C 1-4 alkyl-carbonyl group) is preferred.
  • C 7-11 aroyl (group) means arylcarbonyl having 7 to 11 carbon atoms (that is, C 6-10 aryl-carbonyl), benzoyl, 1-naphthoyl, 2-naphthoyl etc. Among them, benzoyl is preferred.
  • acyloxy (group) means a group in which the above alkanoyl group or aroyl group is bonded to an oxygen atom, preferably a C 1-5 alkanoyloxy group or a C 7-11 aroyloxy group.
  • C 1-5 alkanoyloxy (group) includes, for example, formyloxy, acetoxy, ethylcarbonyloxy, propylcarbonyloxy, isopropylcarbonyloxy, butylcarbonyloxy, isobutylcarbonyloxy, sec-butylcarbonyl oxy, tert-butylcarbonyloxy (pivaloyloxy) and the like, preferably acetoxy.
  • C 7-11 aroyloxy (group) includes, for example, benzoyloxy, 1-naphthoyloxy, 2-naphthoyloxy and the like, preferably benzoyloxy.
  • alkoxy-carbonyl (group) means a group in which the alkoxy group is bonded to a carbonyl group, and the carbon number range is not particularly limited, but preferably a C 1-6 alkoxy-carbonyl group and more preferably a C 1-4 alkoxy-carbonyl group.
  • amino C 1-6 alkyl (group) means a group in which one hydrogen atom in the above C 1-6 alkyl group is substituted with an amino group.
  • An amino C 1-4 alkyl group is preferred, and an aminomethyl group or 2-aminoethyl group is more preferred.
  • hydroxy C 1-6 alkyl (group) means a group in which one hydrogen atom in the above C 1-6 alkyl group is substituted with a hydroxy group.
  • a hydroxy C 1-4 alkyl group is preferred, and a hydroxymethyl group or 2-hydroxyethyl group is more preferred.
  • N—C 7-14 aralkylcarbamic acid refers to a compound in which one hydrogen atom of the amino group in C 7-14 aralkylamine is substituted with a carboxy group (—CO 2 H). means Among them, N-benzylcarbamic acid or N-phenethylcarbamic acid is preferred, and N-benzylcarbamic acid is more preferred.
  • N-benzylcarbamic acid may form a salt with the corresponding C 7-14 aralkylamine.
  • the salt of NC 7-14 aralkylcarbamic acid is preferably N-benzylcarbamic acid benzylammonium salt (benzylammonium N-benzylcarbamate) or N-phenethylcarbamic acid phenethylammonium salt (phenethylammonium N-phenethylcarbamate) and more preferably N-benzylcarbamic acid benzylammonium salt.
  • C 7-14 aralkylamine bicarbonate means C 7-14 aralkylammonium bicarbonate (HCO 3 ⁇ ).
  • Bicarbonates of C 7-14 aralkylamines are produced by the reaction of C 7-14 aralkylamines with carbon dioxide in the presence of water (moisture).
  • N—C 7-14 aralkylcarbamic acid or salt thereof and/or bicarbonate of C 7-14 aralkylamine, or hydrate thereof means N—C 7-14 aralkyl carbamic acid or its salt, or C 7-14 aralkylamine bicarbonate, or a hydrate thereof; It means that both the salt (or its hydrate) and the C 7-14 aralkylamine bicarbonate (or its hydrate) may be present in the form of a mixture containing in any ratio. .
  • the term "optionally substituted” means unsubstituted or having one or more substituents, and the "substituent" in the case of having a substituent includes (1) a halogen atom , (2) hydroxy group, (3) carboxy group, (4) nitro group, (5) cyano group, (6) C 1-6 alkyl group, (7) halo C 1-6 alkyl group, (8) C 3-8 cycloalkyl group, (9) C 1-6 alkoxy group, (10) halo C 1-6 alkoxy group, (11) C 1-6 alkoxy-carbonyl group, (12) C 2-6 alkenyl group, (13) C 2-6 alkynyl group, (14) acyl group, (15) acyloxy group, (16) C 6-14 aryl group, (17) C 6-14 aryloxy group, (18) C 7-14 aralkyloxy group, (19) amino C 1-6 alkyl group, (20) hydroxy C 1-6 alkyl group and the like.
  • a halogen atom, a nitro group, a cyano group, a C 1-4 alkyl group, a C 1-4 alkoxy group, a halo C 1-4 alkyl group, a halo C 1-4 alkoxy group, an aminomethyl group and the like are preferable.
  • each substituent may be the same or different.
  • the above substituent may be further substituted with the above substituent.
  • the number of substituents is not particularly limited as long as it is a substitutable number. When multiple substituents are present, each substituent may be the same or different.
  • optionally substituted N—C 7-14 aralkylcarbamic acid or salt thereof and “optionally substituted C 7-14 aralkylamine bicarbonate” refer to the above “N - C 6-10 aryl group and/or C 1-4 , which constitute a C 7-14 aralkyl group in "C 7-14 aralkylcarbamic acid or salt thereof” or "bicarbonate of C 7-14 aralkylamine” It means that one or more hydrogen atoms in the alkyl group may be substituted with the above substituent.
  • the hydrate of “optionally substituted N—C 7-14 aralkylcarbamic acid or salt thereof and/or bicarbonate of optionally substituted C 7-14 aralkylamine” corresponds to the corresponding It means a compound in which both carbon dioxide and water molecules (moisture in the air) are absorbed and fixed in C 7-14 aralkylamine.
  • normal temperature refers to normal temperature (15°C to 25°C) as defined in the 16th revision of the Japanese Pharmacopoeia General Rules.
  • normal pressure usually means a pressure equal to the atmospheric pressure.
  • Carbon dioxide generating agent of the present invention an optionally substituted N—C 7-14 aralkylcarbamic acid or a salt thereof, and/or an optionally substituted C 7-14 aralkylamine bicarbonate itself can be used, but also compositions comprising them.
  • the composition contains only one optionally substituted N—C 7-14 aralkylcarbamic acid or salt thereof and/or optionally substituted C 7-14 aralkylamine bicarbonate. or two or more of different types may be included.
  • the carbon dioxide generating agent of the present invention is preferably a halogen atom, a nitro group, a cyano group, a C 1-4 alkyl group, a C 1-4 alkoxy group, a halo C 1-4 alkyl group, a halo C 1-4 alkoxy group , a C 1-4 alkylenedioxy group, a C 6-10 aryl group, a C 7-14 aralkyl group and an aminomethyl group, each optionally substituted with a substituent selected from the group consisting of N—C 7- A composition containing 14 aralkylcarbamic acid or a salt thereof, and/or a bicarbonate of C 7-14 aralkylamine, or a hydrate thereof; methylbenzylamine, 2-methoxybenzylamine, 4-methoxybenzylamine, piperonylamine, 2-chlorobenzylamine, 2,4-dichlorobenzylamine, 4-trifluoromethylbenzylamine,
  • aralkylamine-derived N-aralkylcarbamic acid or a salt thereof, and/or an aralkylamine bicarbonate, or a hydrate thereof means that the aralkylamine absorbs carbon dioxide from the atmosphere. It means N-aralkylcarbamic acid or a salt thereof and/or a bicarbonate of aralkylamine, or a hydrate thereof.
  • the carbon dioxide generating agent of the present invention is more preferably from the group consisting of a halogen atom, a nitro group, a cyano group, a C 1-4 alkyl group, a C 1-4 alkoxy group, a haloC 1-4 alkyl group, a haloC 1-4 alkoxy group and an aminomethyl group NC 7-14 aralkylcarbamic acid or a salt thereof and/or a bicarbonate of a C 7-14 aralkylamine, each optionally substituted with a selected substituent, or a hydrate thereof itself, or A composition containing them, more preferably from the group consisting of a halogen atom, a nitro group, a cyano group, a C 1-4 alkyl group, a C 1-4 alkoxy group, a haloC 1-4 alkyl group, a haloC 1-4 alkoxy group and an aminomethyl group N-benzylcarbamic acid or a salt thereof, and/or
  • N-benzylcarbamic acid or salts thereof and/or bicarbonate of benzylamine e.g., N-benzylcarbamic acid or salts thereof and/or bicarbonate of benzylamine; N-4-methoxybenzyl carbamic acid or its salts, and/or 4-methoxybenzylamine bicarbonate; N-4-trifluoromethylbenzylcarbamic acid or its salts, and/or 4-trifluoromethylbenzylamine bicarbonate
  • the composition may, if necessary, contain additives such as desiccants (magnesium sulfate, molecular sieves, etc.) for removing moisture.
  • Optionally substituted N—C 7-14 aralkylcarbamic acid or salt thereof and/or optionally substituted C 7-14 aralkylamine bicarbonate in the carbon dioxide generating agent of the present invention is preferably 80% by weight or more, more preferably 90% by weight or more, optionally substituted N—C 7-14 aralkylcarbamic acids or salts thereof, and/or substituted Especially preferred are those consisting solely of C 7-14 aralkylamine bicarbonates or hydrates thereof.
  • the carbon dioxide generating agent of the present invention can be produced by allowing an optionally substituted C 7-14 aralkylamine (ie, carbon dioxide absorbent) to absorb and fix carbon dioxide.
  • an optionally substituted C 7-14 aralkylamine ie, carbon dioxide absorbent
  • the production method include, for example, the reference examples described later and the method developed by the present inventors (eg, Patent Document 2 (Patent No. 6782961) or Patent Document 3 (JP 2019-127417).
  • Patent Document 2 Patent No. 6782961
  • Patent Document 3 JP 2019-127417
  • an optionally substituted C 7-14 aralkylamine itself can be used, but a composition containing it can also be used.
  • the composition may contain only one optionally substituted C 7-14 aralkylamine per se, or may contain two or more optionally substituted C 7-14 aralkylamines. good. Among them, those containing only one optionally substituted C 7-14 aralkylamine are preferred.
  • the composition may contain additives such as desiccants (magnesium sulfate, molecular sieves, etc.) for removing solvents and moisture, if necessary.
  • the content of the optionally substituted C 7-14 aralkylamine in the carbon dioxide absorbent is preferably 80% by weight or more, and the optionally substituted C 7- Especially preferred are those consisting only of 14 aralkylamines.
  • optionally substituted C 7-14 aralkylamine a commercially available product may be used as it is, or one produced by a method known per se may be used.
  • Specific examples of optionally substituted C 7-14 aralkylamines include benzylamine, 2-methylbenzylamine, 4-methylbenzylamine, 4-trifluoromethylbenzylamine, 4-ethylbenzylamine, 2 -methoxybenzylamine, 4-methoxybenzylamine, piperonylamine, 2-chlorobenzylamine, 4-chlorobenzylamine, 2,4-dichlorobenzylamine, 4-fluorobenzylamine, 4-trifluoromethylbenzylamine, phenethylamine, 4 -methylphenethylamine, 4-ethylphenethylamine, 2-methoxyphenethylamine, 4-methoxyphenethylamine, 4-chlorophenethylamine, 2,4-dichlorophenethyl
  • benzylamine, 2-methylbenzylamine, 2-methoxybenzylamine, 4-methoxybenzylamine, piperonylamine, 2-chlorobenzylamine, 2,4-dichlorobenzylamine, 4-trifluoromethylbenzylamine, phenethylamine, 2 - methoxyphenethylamine, 4-chlorophenethylamine, 2,4-dichlorophenethylamine, benzhydrylamine, 1,2,3,4-tetrahydro-1-naphthylamine, 1-(1-naphthyl)ethylamine or 1,2-diphenylethylamine , and benzylamine, phenethylamine, 4-methoxybenzylamine, or 4-trifluoromethylbenzylamine are more preferred because of their high carbon dioxide absorption capacity. All of these are commercially available and can be easily obtained. In addition, since these materials hardly absorb water (moisture in the
  • the carbon dioxide generating agent of the present invention When the carbon dioxide generating agent of the present invention is produced in an air atmosphere, for example, a carbon dioxide concentration meter and a petri dish are prepared in an openable desiccator, and the carbon dioxide absorbent of the present invention, substituted Add the best C 7-14 aralkylamine to the petri dish in the desiccator, immediately close the door, leave it for several hours to 7 days, and when the carbon dioxide concentration in the desiccator stops changing, air to the carbon dioxide absorbent It can be confirmed that the fixation of carbon dioxide in the medium has been completed.
  • Either a liquid or a solid can be used as the carbon dioxide absorbent of the present invention, but it is preferable to use a liquid from the viewpoint of absorption efficiency.
  • the carbon dioxide generating agent of the present invention can generate carbon dioxide by adding a solvent at normal temperature and normal pressure.
  • carbon dioxide can be efficiently generated (released) simply by adding a solvent to a container containing the carbon dioxide generating agent of the present invention under normal temperature and normal pressure and allowing it to stand.
  • the released carbon dioxide concentration can be measured over time by a carbon dioxide concentration meter installed on the outlet side while flowing nitrogen gas using a mass flow controller.
  • Solvents that can be used in the carbon dioxide generating method of the present invention are not particularly limited, but specific examples include water; halogenated hydrocarbons such as dichloromethane and chloroform; alcohols such as methanol, ethanol and isopropanol; Amides such as dimethylformamide and dimethylacetamide; ketones such as acetone; ethers such as diethyl ether, tert-butyl methyl ether and tetrahydrofuran; aromatic hydrocarbons such as toluene and xylene; More selected solvents are included. Among them, halogenated hydrocarbons such as dichloromethane; or alcohols such as methanol and ethanol are preferred, and dichloromethane is more preferred.
  • the amount of the solvent used can vary depending on the type of carbon dioxide generating agent and solvent used, but the optionally substituted N—C 7-14 aralkylcarbamic acid or salt thereof, and/or the substituted It is usually 0.1 mL to 50 L, preferably 1 mL to 25 L, per 1 mol of C 7-14 aralkylamine bicarbonate or hydrate thereof.
  • the carbon dioxide generating method of the present invention by simply adding a solvent to the carbon dioxide generating agent of the present invention, without performing any physicochemical treatment such as pressure, heating, electric power, and light irradiation, normal temperature and normal pressure can be obtained. 80% or more of the carbon dioxide fixed in the carbon dioxide generating agent can be released, and compared to the conventional method that required heating conditions at a high temperature of 900 ° C., the carbon dioxide is extremely mild. A carbon generation method.
  • the carbon dioxide generation method of the present invention does not use any external energy (heating, pressurization, applied voltage, light irradiation, stirring, etc.), so it is possible to make the separation energy substantially zero. It is a novel method of generating carbon dioxide that is friendly to the global environment.
  • the melting point was measured using a melting point measuring instrument manufactured by Yanagimoto Seisakusho (Micro Melting Point Apparatus MP-J3). Infrared absorption measurement is performed using an infrared spectrophotometer FT/IR-8700 manufactured by Shimadzu Corporation, by transmission measurement with a chloroform solution in a NaCl plate fixed cell, or Nicolet iS5 FT-IR spectrometer manufactured by Thermo Scientific. was used and measured by the ATR method. Elemental analysis was performed using J-SCIENCE LAB JM10.
  • the concentration of carbon dioxide is measured using a carbon dioxide concentration meter (GC-02) manufactured by God Ability (GA) installed on the outlet side while flowing nitrogen gas using a mass flow controller (manufactured by Fujikin). did.
  • GC-02 carbon dioxide concentration meter
  • GA God Ability
  • mass flow controller manufactured by Fujikin
  • the optionally substituted C 7-14 aralkylamine which is the carbon dioxide absorbent used in the preparation of the carbon dioxide generating agent of the present invention, was a commercially available product (benzylamine (manufactured by Nacalai Tesque, Inc.)).
  • Example 1 Method for generating carbon dioxide using the carbon dioxide generating agent of the present invention (N-benzylcarbamic acid or its salt and/or hydrate of benzylamine bicarbonate) (examination of solvent)
  • Example 2 A method for generating carbon dioxide by adding dichloromethane (DCM) to the carbon dioxide generating agent of the present invention (N-benzylcarbamic acid or its salt and/or benzylamine bicarbonate hydrate) (the amount of solvent Consider)
  • DCM dichloromethane
  • Atmospheric carbon dioxide absorption experiment 1 using various aralkylamines Place a petri dish and a carbon dioxide concentration meter in a 35.7 L desiccator, and apply the following formula to the petri dish:
  • carbon dioxide-absorbing and immobilizing amines especially optionally substituted N—C 7-14 aralkylcarbamic acids or salts thereof, and/or optionally substituted C 7 -14
  • Any physicochemical treatment such as pressure, heating, electric power, light irradiation, etc. is performed only by adding a solvent to a carbon dioxide generating agent containing a bicarbonate of aralkylamine or a hydrate thereof. It is possible to provide a simple method for efficiently releasing carbon dioxide under normal temperature and normal pressure. Since the present invention does not use any external energy (heating, pressurization, applied voltage, light irradiation, stirring, etc.), it is a novel carbon dioxide generation method that is friendly to the global environment and can make separation energy substantially zero. be.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本発明は、二酸化炭素を吸収、固定化したアミン類から、加熱等のエネルギーを使用することなく、当該固定化された二酸化炭素を効率よく分離するための二酸化炭素の発生方法を提供することを目的とする。本発明は、置換されていてもよいN-C7-14アラルキルカルバミン酸もしくはその塩、および/または置換されていてもよいC7-14アラルキルアミンの重炭酸塩、あるいはそれらの水和物を含有する二酸化炭素発生剤に溶媒を添加することにより、常温、常圧下で二酸化炭素を効率よく発生させることを特徴とする、二酸化炭素の発生方法に関する。

Description

二酸化炭素の発生方法
 本発明は、二酸化炭素を吸収、固定化したアミン類から、低エネルギーで二酸化炭素を放出(発生)させる方法に関する。
 脱炭素社会実現に向けて、排ガスや大気中の二酸化炭素(CO)を効率的に回収する技術が求められている。一般に、二酸化炭素の化学吸収剤としてはアミン類が用いられている。アミン類を用いて二酸化炭素を吸収後、加熱することにより二酸化炭素を放出させ、濃縮する方法は、温度スイング法(非特許文献1)と呼ばれる。アミン類は、親水性物質であり、二酸化炭素は、水溶性であるため、吸収剤としてはアミン類を水溶液として用いることが一般的であった。一方で、水溶液を用いると加熱放出時に水加熱分のエネルギーも必要となるため、効率性の観点からこの分離エネルギーの高さが問題視されていた。
 本発明者らは、最近、疎水性官能基をアミノ基の近傍に導入することで二酸化炭素選択性が発現することを見出した(特許文献1~3)。これによりアミン類を水溶液として用いる必要がなくなり、水加熱分のエネルギー削減が可能となった。
 二酸化炭素固定化後の化学吸収剤を用いる二酸化炭素放出プロセスは、現在、多様化の一途を辿っており、圧力スイング法(非特許文献2)、光スイング法(非特許文献3)、電気スイング法(特許文献4)等が知られている。しかし、いずれのスイング法でもエネルギーを利用して二酸化炭素を放出する点では共通しており、二酸化炭素放出プロセスの効率性を向上させるためには、低エネルギー化が急務である。
特許第6607596号公報 特許第6782961号公報 特開2019-127417号公報 米国特許出願公開第2021/0387139号明細書
三菱重工技報,Vol.47,No.1,pages 45-53 (2010) 化学工学論文集,第13巻,第2号,pages 139-144 (1987) 光によるCO2回収・貯蔵・供給技術(東京理科大学),2019年10月(https://www.tus.ac.jp/ura/seeds/pa/C1910.pdf)
 本発明の目的は、アミン類に吸収、固定化された二酸化炭素を、分離エネルギーをできるだけ低減させて、緩和な条件下で放出(発生)させる方法を提供することである。
 本発明者らは、かかる状況下、鋭意検討を重ねた結果、二酸化炭素を吸収、固定化させたアミン類、とりわけ、置換されていてもよいN-C7-14アラルキルカルバミン酸もしくはその塩、および/または置換されていてもよいC7-14アラルキルアミンの重炭酸塩、あるいはそれらの水和物を含有する二酸化炭素発生剤(以下、「本発明の二酸化炭素発生剤」と称することもある。)に、溶媒を添加することにより、圧力、加熱、電力、光照射等の物理化学的処理を一切行うことなく、常温下で効率良く二酸化炭素を放出し得ることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の通りである。
[1]置換されていてもよいN-C7-14アラルキルカルバミン酸もしくはその塩、および/または置換されていてもよいC7-14アラルキルアミンの重炭酸塩、あるいはそれらの水和物を含有する二酸化炭素発生剤に溶媒を添加することにより、常温、常圧下で二酸化炭素を発生させることを特徴とする、二酸化炭素の発生方法。
[2]溶媒が、水、ハロゲン化炭化水素類、アルコール類、アミド類、ケトン類、エーテル類、芳香族炭化水素類、およびそれらの混合溶媒からなる群より選択される溶媒である、上記[1]に記載の方法。
[3]溶媒が、ハロゲン化炭化水素類またはアルコール類である、上記[1]に記載の方法。
[4]溶媒の添加量が、置換されていてもよいN-C7-14アラルキルカルバミン酸もしくはその塩、および/または置換されていてもよいC7-14アラルキルアミンの重炭酸塩、あるいはそれらの水和物1モルに対して0.1mL~50Lである、上記[1]~[3]のいずれかに記載の方法。
[5]二酸化炭素発生剤が、ハロゲン原子、ニトロ基、シアノ基、C1-4アルキル基、C1-4アルコキシ基、ハロC1-4アルキル基、ハロC1-4アルコキシ基、C1-4アルキレンジオキシ基、C6-10アリール基、C7-14アラルキル基およびアミノメチル基からなる群より選択される置換基でそれぞれ置換されていてもよい、N-C7-14アラルキルカルバミン酸もしくはその塩、および/またはC7-14アラルキルアミンの重炭酸塩、あるいはそれらの水和物を含有する、上記[1]~[4]のいずれかに記載の方法。
[6]N-C7-14アラルキルカルバミン酸もしくはその塩、および/またはC7-14アラルキルアミンの重炭酸塩、あるいはそれらの水和物が、ベンジルアミン、2-メチルベンジルアミン、2-メトキシベンジルアミン、4-メトキシベンジルアミン、ピペロニルアミン、2-クロロベンジルアミン、2,4-ジクロロベンジルアミン、4-トリフルオロメチルベンジルアミン、フェネチルアミン、2-メトキシフェネチルアミン、4-クロロフェネチルアミン、2,4-ジクロロフェネチルアミン、ベンズヒドリルアミン、1,2,3,4-テトラヒドロ-1-ナフチルアミン、1-(1-ナフチル)エチルアミンおよび1,2-ジフェニルエチルアミンからなる群より選択されるアラルキルアミン由来のN-アラルキルカルバミン酸もしくはその塩、および/またはアラルキルアミンの重炭酸塩、あるいはそれらの水和物である、上記[5]に記載の方法。
[7]二酸化炭素発生剤が、ハロゲン原子、C1-4アルキル基、C1-4アルコキシ基、ハロC1-4アルキル基およびハロC1-4アルコキシ基からなる群より選択される置換基でそれぞれ置換されていてもよい、ベンジルカルバミン酸もしくはその塩、および/またはベンジルアミンの重炭酸塩、あるいはそれらの水和物を含有する、上記[1]~[4]のいずれかに記載の方法。
 本発明によれば、二酸化炭素を吸収、固定化させたアミン類、とりわけ、置換されていてもよいN-C7-14アラルキルカルバミン酸もしくはその塩、および/または置換されていてもよいC7-14アラルキルアミンの重炭酸塩、あるいはそれらの水和物、を含有する二酸化炭素発生剤に、溶媒を添加するだけで、圧力、加熱、電力、光照射等の物理化学的処理を何ら行うことなく、常温、常圧下で効率良く二酸化炭素を放出させる簡便な方法を提供することができる。本発明は、外部エネルギー(加温、加圧、加電圧、光照射、撹拌等)を一切使用しないので、分離エネルギーを実質ゼロにすることも可能な地球環境に優しい新規な二酸化炭素発生方法である。
図1は、常温、常圧下、N-ベンジルカルバミン酸もしくはその塩、および/またはベンジルアミンの重炭酸塩の水和物に各種溶媒(水(HO)、メタノール(MeOH)、エタノール(EtOH)、N,N-ジメチルホルムアミド(DMF)、アセトン、テトラヒドロフラン(THF)、ジエチルエーテル(EtO)、ジクロロメタン(DCM)またはトルエン)を添加した際の時間経過に伴う二酸化炭素放出濃度(ppm)の変化を表す。 図2は、常温、常圧下、N-ベンジルカルバミン酸もしくはその塩、および/またはベンジルアミンの重炭酸塩の水和物に、それぞれ異なる容量のジクロロメタン(1mL、3mL、5mL、10mL、30mL、50mLまたは100mL)を添加した際の時間経過に伴う二酸化炭素放出濃度(ppm)の変化を表す。 図3は、およそ600-700ppm程度の初期二酸化炭素濃度に調整したデシケーター内に各種アラルキルアミン(5mmol)をシャーレに加え、閉扉した後のデシケーター内の二酸化炭素濃度の経時的な変化を表す。 図4は、常温、常圧下、各種N-アラルキルカルバミン酸もしくはその塩、および/またはアラルキルアミンの重炭酸塩の水和物にジクロロメタン(DCM)を添加した際の時間経過に伴う二酸化炭素放出濃度(ppm)の変化を表す。
 以下、本発明について詳細に説明する。
(定義)
 本明細書中、「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子、またはヨウ素原子である。
 本明細書中、「アルキル(基)」としては、直鎖状または分岐鎖状の炭素数1以上のアルキル基が挙げられ、特に炭素数範囲の限定がない場合には、好ましくはC1-10アルキル基であり、より好ましくはC1-6アルキル基であり、特に好ましくはC1-4アルキル基である。炭素数範囲の限定がない場合の好適な具体例としては、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシル等が挙げられる。
 本明細書中、「ハロアルキル(基)」とは、前記アルキル基中の1以上の水素原子がハロゲンで置換された基を意味する。具体的には、例えば、ジフルオロメチル、トリフルオロメチル、2-クロロエチル、2-ブロモエチル、2-ヨードエチル、2-フルオロエチル、2,2-ジフルオロエチル、2,2,2-トリフルオロエチル、ペンタフルオロエチル、2,2,3,3-テトラフルオロプロピル、3,3,3-トリフルオロプロピル、4,4,4-トリフルオロブチル、5,5,5-トリフルオロペンチル、6,6,6-トリフルオロヘキシル等が挙げられる。中でも、「ハロC1-6アルキル」が好ましく、「ハロC1-4アルキル」がより好ましい。
 本明細書中、「アルコキシ(基)」としては、炭素数1以上のアルコキシ基が挙げられ、特に炭素数範囲の限定がない場合には、好ましくはC1-10アルコシ基であり、より好ましくはC1-6アルコキシ基である。炭素数範囲の限定がない場合の好適な具体例としては、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、sec-ブトキシ、tert-ブトキシ、ペンチルオキシ、ヘキシルオキシ等が挙げられる。
 本明細書中、「ハロアルコキシ(基)」とは、前記アルコキシ基中の1以上の水素原子がハロゲンで置換された基を意味する。具体的には、例えば、ジフルオロメトキシ、トリフルオロメトキシ、2-クロロエトキシ、2-ブロモエトキシ、2-ヨードエトキシ、2-フルオロエトキシ、2,2-ジフルオロエトキシ、2,2,2-トリフルオロエトキシ、ペンタフルオロエトキシ、2,2,3,3-テトラフルオロプロポキシ、3,3,3-トリフルオロプロポキシ、4,4,4-トリフルオロブトキシ、5,5,5-トリフルオロペンチルオキシ、6,6,6-トリフルオロヘキシルオキシ等が挙げられる。中でも、「ハロC1-6アルコキシ」が好ましく、「ハロC1-4アルコキシ」がより好ましい。
 本明細書中、「アリール(基)」は、芳香族性を示す単環式あるいは多環式の1価の炭化水素基を意味し、具体的には、例えば、フェニル、1-ナフチル、2-ナフチル、ビフェニリル、2-アンスリル等のC6-14アリール基等が挙げられる。中でもC6-10アリール基がより好ましく、フェニルが特に好ましい。
 本明細書中、「アラルキル(基)」とは、前記アリール基が前記アルキル基に結合した基を意味し、具体的には、例えば、C7-20アラルキル基が挙げられ、好ましくはC7-14アラルキル基(C6-10アリール-C1-4アルキル基)である。好適な具体例としては、ベンジル、1-フェニルエチル、2-フェニルエチル、1-フェニルプロピル、ナフチルメチル、1-ナフチルエチル、1-ナフチルプロピル等が挙げられ、特にベンジルが好ましい。
 本明細書中、「アリールオキシ(基)」とは、前記アリール基が、酸素原子に結合した基を意味し、具体的には、例えば、フェニルオキシ、1-ナフチルオキシ、2-ナフチルオキシ、ビフェニリルオキシ、2-アンスリルオキシ等が挙げられる。中でも、C6-14アリールオキシ基が好ましく、フェニルオキシ基が特に好ましい。
 本明細書中、「アラルキルオキシ(基)」とは、前記アラルキル基が、酸素原子に結合した基を意味し、具体的には、例えば、ベンジルオキシ、フェネチルオキシ、ナフチルメチルオキシ、ビフェニリルメチルオキシ等が挙げられる。中でも、C7-14アラルキルオキシ基が好ましく、ベンジルオキシ基が特に好ましい。
 本明細書中、「アルケニル(基)」としては、直鎖状または分岐鎖状のC2-6アルケニル基等が好ましく、例えば、ビニル、1-プロペニル、アリル、イソプロペニル、ブテニル、イソブテニル等が挙げられる。中でも、C2-4アルケニル基が好ましい。
 本明細書中、「アルキニル(基)」としては、C2-6アルキニル基等が好ましく、例えば、エチニル、1-プロピニル、2-プロピニル、1-ブチニル、2-ブチニル、3-ブチニル、1-ペンチニル、2-ペンチニル、3-ペンチニル、4-ペンチニル、1-ヘキシニル、2-ヘキシニル、3-ヘキシニル、4-ヘキシニル、5-ヘキシニル等が挙げられる。中でも、C2-4アルキニル基が好ましい。
 本明細書中、「シクロアルキル(基)」は、環状アルキル基を意味し、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル等が挙げられる。中でも、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル等のC3-6シクロアルキル基が好ましい。
 本明細書中、「アシル(基)」とは、アルカノイル基またはアロイル基を意味し、特に炭素数範囲は限定されないが、好ましくは、C1-7アルカノイル基またはC7-11アロイルである。
 本明細書中、「C1-7アルカノイル(基)」とは、ホルミル基または炭素原子数2~7の直鎖もしくは分枝鎖状のアルキルカルボニル(すなわち、C1-6アルキル-カルボニル基)であり、例えば、ホルミル、アセチル、プロピオニル、ブチリル、イソブチリル、ペンタノイル、tert-ブチルカルボニル(ピバロイル)、ヘキサノイル、ヘプタノイル等が挙げられる。中でも、好ましくは、C1-5アルカノイル基(すなわち、C1-4アルキル-カルボニル基)である。
 本明細書中、「C7-11アロイル(基)」とは、炭素原子数7~11のアリールカルボニル(すなわち、C6-10アリール-カルボニル)であり、ベンゾイル、1-ナフトイル、2-ナフトイル等が挙げられる。中でも、好ましくは、ベンゾイルである。
 本明細書中、「アシルオキシ(基)」とは、前記アルカノイル基またはアロイル基が酸素原子と結合した基を意味し、好ましくは、C1-5アルカノイルオキシ基またはC7-11アロイルオキシ基である。
 本明細書中、「C1-5アルカノイルオキシ(基)」としては、例えば、ホルミルオキシ、アセトキシ、エチルカルボニルオキシ、プロピルカルボニルオキシ、イソプロピルカルボニルオキシ、ブチルカルボニルオキシ、イソブチルカルボニルオキシ、sec-ブチルカルボニルオキシ、tert-ブチルカルボニルオキシ(ピバロイルオキシ)等が挙げられ、好ましくは、アセトキシである。
 本明細書中、「C7-11アロイルオキシ(基)」としては、例えば、ベンゾイルオキシ、1-ナフトイルオキシ、2-ナフトイルオキシ等が挙げられ、好ましくは、ベンゾイルオキシである。
 本明細書中、「アルコキシ-カルボニル(基)」とは、前記アルコキシ基がカルボニル基に結合した基を意味し、特に炭素数範囲は限定されないが、好ましくは、C1-6アルコキシ-カルボニル基であり、より好ましくは、C1-4アルコキシ-カルボニル基である。
 本明細書中、「アミノC1-6アルキル(基)」とは、前記C1-6アルキル基中の1個の水素原子がアミノ基で置換された基を意味する。好ましくは、アミノC1-4アルキル基であり、より好ましくは、アミノメチル基または2-アミノエチル基である。
 本明細書中、「ヒドロキシC1-6アルキル(基)」とは、前記C1-6アルキル基中の1個の水素原子がヒドロキシ基で置換された基を意味する。好ましくは、ヒドロキシC1-4アルキル基であり、より好ましくは、ヒドロキシメチル基または2-ヒドロキシエチル基である。
 本明細書中、「N-C7-14アラルキルカルバミン酸」とは、C7-14アラルキルアミン中のアミノ基の1個の水素原子が、カルボキシ基(-COH)で置換された化合物を意味する。中でも、好ましくは、N-ベンジルカルバミン酸またはN-フェネチルカルバミン酸であり、より好ましくは、N-ベンジルカルバミン酸である。
 「N-C7-14アラルキルカルバミン酸」は、対応するC7-14アラルキルアミンと塩を形成していてもよい。N-C7-14アラルキルカルバミン酸の塩としては、好ましくは、N-ベンジルカルバミン酸 ベンジルアンモニウム塩(ベンジルアンモニウム N-ベンジルカルバメート)またはN-フェネチルカルバミン酸 フェネチルアンモニウム塩(フェネチルアンモニウム N-フェネチルカルバメート)であり、より好ましくは、N-ベンジルカルバミン酸 ベンジルアンモニウム塩である。
 本明細書中、「C7-14アラルキルアミンの重炭酸塩」とは、C7-14アラルキルアンモニウム バイカーボネート(HCO )を意味する。C7-14アラルキルアミンの重炭酸塩は、水(湿気)の存在下、C7-14アラルキルアミンと二酸化炭素との反応により生成する。
 本明細書中、「N-C7-14アラルキルカルバミン酸もしくはその塩、および/またはC7-14アラルキルアミンの重炭酸塩、あるいはそれらの水和物」とは、N-C7-14アラルキルカルバミン酸もしくはその塩、またはC7-14アラルキルアミンの重炭酸塩、あるいはそれらの水和物のいずれかの形態で存在していてもよく、あるいは、N-C7-14アラルキルカルバミン酸もしくはその塩(またはその水和物)、およびC7-14アラルキルアミンの重炭酸塩(またはその水和物)の両方を、任意の比率で含む混合物の形態で存在していてもよいことを意味する。
 本明細書中、「置換されていてもよい」とは、無置換または1個以上の置換基を有することを意味し、置換基を有する場合の「置換基」としては、(1)ハロゲン原子、(2)ヒドロキシ基、(3)カルボキシ基、(4)ニトロ基、(5)シアノ基、(6)C1-6アルキル基、(7)ハロC1-6アルキル基、(8)C3-8シクロアルキル基、(9)C1-6アルコキシ基、(10)ハロC1-6アルコキシ基、(11)C1-6アルコキシ-カルボニル基、(12)C2-6アルケニル基、(13)C2-6アルキニル基、(14)アシル基、(15)アシルオキシ基、(16)C6-14アリール基、(17)C6-14アリールオキシ基、(18)C7-14アラルキルオキシ基、(19)アミノC1-6アルキル基、(20)ヒドロキシC1-6アルキル基等が挙げられる。中でも、ハロゲン原子、ニトロ基、シアノ基、C1-4アルキル基、C1-4アルコキシ基、ハロC1-4アルキル基、ハロC1-4アルコキシ基、アミノメチル基等が好ましい。また、複数の置換基が存在する場合、各置換基は、同一でも異なっていてもよい。
 上記置換基は、さらに上記置換基で置換されていてもよい。置換基の数は、置換可能な数であれば特に限定されない。複数の置換基が存在する場合、各置換基は、同一でも異なっていてもよい。
 本明細書中、「置換されていてもよいN-C7-14アラルキルカルバミン酸もしくはその塩」、「置換されていてもよいC7-14アラルキルアミンの重炭酸塩」とは、前記「N-C7-14アラルキルカルバミン酸もしくはその塩」または「C7-14アラルキルアミンの重炭酸塩」中のC7-14アラルキル基を構成する、C6-10アリール基および/またはC1-4アルキル基中の1以上の水素原子が、前記置換基で置換されていてもよいことを意味する。
 本明細書中、「置換されていてもよいN-C7-14アラルキルカルバミン酸もしくはその塩、および/または置換されていてもよいC7-14アラルキルアミンの重炭酸塩」の水和物とは、前記「置換されていてもよいN-C7-14アラルキルカルバミン酸もしくはその塩、および/または置換されていてもよいC7-14アラルキルアミンの重炭酸塩」を製造する際に、対応するC7-14アラルキルアミンに、二酸化炭素と水分子(空気中の湿気)がともに吸収、固定化された化合物を意味する。
 本明細書中、「常温」とは、第16改正日本薬局方通則で規定されている常温(15℃~25℃)をいう。
 本明細書中、「常圧」とは、通常、大気圧に等しい圧力を意味する。
(本発明の二酸化炭素発生剤)
 本発明の二酸化炭素発生剤としては、置換されていてもよいN-C7-14アラルキルカルバミン酸もしくはその塩、および/または置換されていてもよいC7-14アラルキルアミンの重炭酸塩自体を使用することができるが、それらを含有してなる組成物を使用することもできる。該組成物としては、置換されていてもよいN-C7-14アラルキルカルバミン酸もしくはその塩、および/または置換されていてもよいC7-14アラルキルアミンの重炭酸塩を1種のみを含んでいてもよいし、異なる種類のものを2種以上含んでいてもよい。
 本発明の二酸化炭素発生剤の好適な態様を以下に説明する。
 本発明の二酸化炭素発生剤は、好ましくは、ハロゲン原子、ニトロ基、シアノ基、C1-4アルキル基、C1-4アルコキシ基、ハロC1-4アルキル基、ハロC1-4アルコキシ基、C1-4アルキレンジオキシ基、C6-10アリール基、C7-14アラルキル基およびアミノメチル基からなる群より選択される置換基でそれぞれ置換されていてもよい、N-C7-14アラルキルカルバミン酸もしくはその塩、および/またはC7-14アラルキルアミンの重炭酸塩、あるいはそれらの水和物を含有する組成物であり、好適な具体例としては、例えば、ベンジルアミン、2-メチルベンジルアミン、2-メトキシベンジルアミン、4-メトキシベンジルアミン、ピペロニルアミン、2-クロロベンジルアミン、2,4-ジクロロベンジルアミン、4-トリフルオロメチルベンジルアミン、フェネチルアミン、2-メトキシフェネチルアミン、4-クロロフェネチルアミン、2,4-ジクロロフェネチルアミン、ベンズヒドリルアミン、1,2,3,4-テトラヒドロ-1-ナフチルアミン、1-(1-ナフチル)エチルアミンおよび1,2-ジフェニルエチルアミンからなる群より選択されるアラルキルアミン由来のN-アラルキルカルバミン酸もしくはその塩、および/またはアラルキルアミンの重炭酸塩、あるいはそれらの水和物を含有する組成物が挙げられる。
 ここで、「アラルキルアミン由来のN-アラルキルカルバミン酸もしくはその塩、および/またはアラルキルアミンの重炭酸塩、あるいはそれらの水和物」とは、アラルキルアミンが大気中の二酸化炭素を吸収することにより生成する、N-アラルキルカルバミン酸もしくはその塩、および/またはアラルキルアミンの重炭酸塩、あるいはそれらの水和物を意味する。
 本発明の二酸化炭素発生剤は、
より好ましくは、ハロゲン原子、ニトロ基、シアノ基、C1-4アルキル基、C1-4アルコキシ基、ハロC1-4アルキル基、ハロC1-4アルコキシ基およびアミノメチル基からなる群より選択される置換基でそれぞれ置換されていてもよい、N-C7-14アラルキルカルバミン酸もしくはその塩、および/またはC7-14アラルキルアミンの重炭酸塩、あるいはそれらの水和物自体、あるいはそれらを含有する組成物であり、
さらに好ましくは、ハロゲン原子、ニトロ基、シアノ基、C1-4アルキル基、C1-4アルコキシ基、ハロC1-4アルキル基、ハロC1-4アルコキシ基およびアミノメチル基からなる群より選択される置換基でそれぞれ置換されていてもよい、N-ベンジルカルバミン酸もしくはその塩、および/またはベンジルアミンの重炭酸塩、あるいはそれらの水和物自体;ハロゲン原子、ニトロ基、シアノ基、C1-4アルキル基、C1-4アルコキシ基、ハロC1-4アルキル基、ハロC1-4アルコキシ基およびアミノメチル基からなる群より選択される置換基でそれぞれ置換されていてもよい、N-フェネチルカルバミン酸もしくはその塩、および/またはフェネチルアミンの重炭酸塩、あるいはそれらの水和物自体;あるいはそれらを含有する組成物であり、
さらにより好ましくは、ハロゲン原子、ニトロ基、シアノ基、C1-4アルキル基、C1-4アルコキシ基、ハロC1-4アルキル基、ハロC1-4アルコキシ基およびアミノメチル基からなる群より選択される置換基でそれぞれ置換されていてもよい、N-ベンジルカルバミン酸もしくはその塩、および/またはベンジルアミンの重炭酸塩、あるいはそれらの水和物自体、あるいはそれらを含有する組成物であり、
特に好ましくは、ハロゲン原子、C1-4アルキル基、C1-4アルコキシ基、ハロC1-4アルキル基およびハロC1-4アルコキシ基からなる群より選択される置換基でそれぞれ置換されていてもよい、N-ベンジルカルバミン酸もしくはその塩、および/またはベンジルアミンの重炭酸塩(例、N-ベンジルカルバミン酸もしくはその塩、および/またはベンジルアミンの重炭酸塩;N-4-メトキシベンジルカルバミン酸もしくはその塩、および/または4-メトキシベンジルアミンの重炭酸塩;N-4-トリフルオロメチルベンジルカルバミン酸もしくはその塩、および/または4-トリフルオロメチルベンジルアミンの重炭酸塩)、あるいはそれらの水和物自体、あるいはそれらを含有する組成物である。
 当該組成物は、必要に応じて、水分を除去するための乾燥剤(硫酸マグネシウム、モレキュラーシーブス等)等の添加剤等を含ませてもよい。
 本発明の二酸化炭素発生剤中の、置換されていてもよいN-C7-14アラルキルカルバミン酸もしくはその塩、および/または置換されていてもよいC7-14アラルキルアミンの重炭酸塩、あるいはそれらの水和物の含有量は、80重量%以上が好ましく、90重量%以上がより好ましく、置換されていてもよいN-C7-14アラルキルカルバミン酸もしくはその塩、および/または置換されていてもよいC7-14アラルキルアミンの重炭酸塩、あるいはそれらの水和物のみからなるものが特に好ましい。
(本発明の二酸化炭素発生剤の製造方法)
 本発明の二酸化炭素発生剤は、置換されていてもよいC7-14アラルキルアミン(すなわち、二酸化炭素吸収剤)に、二酸化炭素を吸収および固定化させることにより製造することができる。
 当該製造方法としては、例えば、後述する参考例、および本発明者らが開発した方法(例、特許文献2(特許第6782961号公報)または特許文献3(特開2019-127417号公報)に記載の方法)に従って、置換されていてもよいC7-14アラルキルアミンを、空気雰囲気下または高濃度の二酸化炭素気流下に放置することにより、置換されていてもよいC7-14アラルキルアミンに二酸化炭素を吸収および固定化させることができる。
 本発明の二酸化炭素吸収剤としては、置換されていてもよいC7-14アラルキルアミン自体を使用することができるが、それを含有してなる組成物を使用することもできる。該組成物は、置換されていてもよいC7-14アラルキルアミン自体を1種のみを含んでもよいし、2種以上の、置換されていてもよいC7-14アラルキルアミンを含んでいてもよい。中でも、置換されていてもよいC7-14アラルキルアミンを1種のみ含むものが好ましい。当該組成物は、必要に応じて、溶媒や水分を除去するための乾燥剤(硫酸マグネシウム、モレキュラーシーブス等)等の添加剤を含ませてもよい。ただし、二酸化炭素吸収能力の観点から、二酸化炭素吸収剤中の、置換されていてもよいC7-14アラルキルアミンの含有量は、80重量%以上が好ましく、置換されていてもよいC7-14アラルキルアミンのみからなるものが特に好ましい。
 置換されていてもよいC7-14アラルキルアミンとしては、市販品をそのまま使用してもよく、または自体公知の方法により製造したものを使用してもよい。
 置換されていてもよいC7-14アラルキルアミンの具体例としては、例えば、ベンジルアミン、2-メチルベンジルアミン、4-メチルベンジルアミン、4-トリフルオロメチルベンジルアミン、4-エチルベンジルアミン、2-メトキシベンジルアミン、4-メトキシベンジルアミン、ピペロニルアミン、2-クロロベンジルアミン、4-クロロベンジルアミン、2,4-ジクロロベンジルアミン、4-フルオロベンジルアミン、4-トリフルオロメチルベンジルアミン、フェネチルアミン、4-メチルフェネチルアミン、4-エチルフェネチルアミン、2-メトキシフェネチルアミン、4-メトキシフェネチルアミン、4-クロロフェネチルアミン、2,4-ジクロロフェネチルアミン、4-フルオロフェネチルアミン、4-トリフルオロメチルフェネチルアミン、3-フェニルプロピルアミン、ベンズヒドリルアミン、1,2,3,4-テトラヒドロ-1-ナフチルアミン、1-(1-ナフチル)エチルアミンおよび1,2-ジフェニルエチルアミン等が挙げられる。中でも、ベンジルアミン、2-メチルベンジルアミン、2-メトキシベンジルアミン、4-メトキシベンジルアミン、ピペロニルアミン、2-クロロベンジルアミン、2,4-ジクロロベンジルアミン、4-トリフルオロメチルベンジルアミン、フェネチルアミン、2-メトキシフェネチルアミン、4-クロロフェネチルアミン、2,4-ジクロロフェネチルアミン、ベンズヒドリルアミン、1,2,3,4-テトラヒドロ-1-ナフチルアミン、1-(1-ナフチル)エチルアミンまたは1,2-ジフェニルエチルアミンは、二酸化炭素吸収能が高いので好ましく、ベンジルアミン、フェネチルアミン、4-メトキシベンジルアミン、または4-トリフルオロメチルベンジルアミンは、より好ましい。これらは、いずれも市販されており、容易に入手することが可能である。また、これらは、二酸化炭素吸収時に水(空気中の湿気)を吸収しにくいので、二酸化炭素を発生させる際に水蒸気の混入を抑制することができる点でも有利である。
 本発明の二酸化炭素発生剤を空気雰囲気下で製造する場合には、例えば、開閉可能なデシケーター内に二酸化炭素濃度計とシャーレを準備し、本発明の二酸化炭素吸収剤である、置換されていてもよいC7-14アラルキルアミンをデシケーター内のシャーレに加え、すぐに扉を閉め、数時間~7日間放置し、デシケーター内の二酸化炭素濃度が変化しなくなった時点で二酸化炭素吸収剤への空気中の二酸化炭素の固定化が完了したことを確認することができる。
 本発明の二酸化炭素吸収剤としては、液体または固体のいずれのものでも使用することができるが、吸収効率の観点から、液体のものを使用することが好ましい。
(本発明の二酸化炭素発生剤を用いる二酸化炭素の発生方法)
 本発明の二酸化炭素発生剤は、常温、常圧下、溶媒を添加することにより、二酸化炭素を発生させることができる。
 具体的には、本発明の二酸化炭素発生剤の入った容器に、常温、常圧下で溶媒を加え、放置するだけで二酸化炭素を効率良く発生(放出)させることができる。放出した二酸化炭素濃度は、マスフローコントローラーを使用して窒素ガスをフローしながら、出口側に設置した二酸化炭素濃度計により経時的に測定することができる。
 本発明の二酸化炭素発生方法において使用し得る溶媒としては、特に限定されないが、具体的には、例えば、水;ジクロロメタン、クロロホルム等のハロゲン化炭化水素類;メタノール、エタノール、イソプロパノール等のアルコール類;ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;アセトン等のケトン類;ジエチルエーテル、tert-ブチルメチルエーテル、テトラヒドロフラン等のエーテル類;トルエン、キシレン等の芳香族炭化水素類;およびそれらの混合溶媒からなる群より選択される溶媒が挙げられる。中でも、ジクロロメタン等のハロゲン化炭化水素類;またはメタノール、エタノール等のアルコール類が好ましく、ジクロロメタンがより好ましい。
 溶媒の使用量は、使用する二酸化炭素発生剤や溶媒の種類に応じて変化し得るが、置換されていてもよいN-C7-14アラルキルカルバミン酸もしくはその塩、および/または置換されていてもよいC7-14アラルキルアミンの重炭酸塩、あるいはそれらの水和物1モルに対して、通常0.1mL~50Lであり、好ましくは1mL~25Lである。
 本発明の二酸化炭素発生方法によれば、本発明の二酸化炭素発生剤に溶媒を添加するだけで、圧力、加熱、電力、光照射等の物理化学的処理を何ら行うことなく、常温、常圧下で当該二酸化炭素発生剤中に固定化された二酸化炭素の80%以上を放出させることが出来、900℃という高温での加熱条件等が必要であった従来法と比較して、極めて緩和な二酸化炭素発生方法である。
 以上、説明した通り、本発明の二酸化炭素発生方法は、外部エネルギー(加温、加圧、加電圧、光照射、撹拌等)を一切使用しないので、分離エネルギーを実質ゼロにすることも可能な地球環境に優しい新規な二酸化炭素発生方法である。
 以下に参考例および実施例を挙げて、本発明を更に具体的に説明するが、これによって本発明が限定されるものではなく、また本発明の範囲を逸脱しない範囲で変化させてもよい。
 融点測定は、柳本製作所製 融点測定器(Micro Melting Point Apparatus MP-J3)を用いて計測した。
 赤外吸収測定は、島津製作所製 赤外分光光度計 FT/IR-8700を用いて、NaCl板固定セルでのクロロホルム溶液による透過測定により行うか、またはThermo Scientific社製 Nicolet iS5 FT-IR spectrometerを用いて、ATR法により測定した。
 元素分析は、J-SCIENCE LAB JM10を用いて実行した。
 二酸化炭素の濃度は、マスフローコントローラー(フジキン社製)を使用して窒素ガスをフローしながら、出口側に設置したGod Ability(GA)社製の二酸化炭素濃度計(GC-02)を用いて計測した。
 以下の実施例中、混合溶媒において示した比は、特に断らない限り容量比を示す。%は、特に断らない限り重量%を示す。
 本発明の二酸化炭素発生剤の調製に使用した二酸化炭素吸収剤である置換されていてもよいC7-14アラルキルアミンは、市販品(ベンジルアミン(ナカライテスク社製))をそのまま使用した。
[参考例1]
 本発明の二酸化炭素発生剤(N-ベンジルカルバミン酸もしくはその塩、および/またはベンジルアミンの重炭酸塩の水和物)の調製
(実験操作例)
 大気雰囲気下、常温、常圧下でシャーレ上にベンジルアミンを加え、1週間静置した。その後、元素分析により二酸化炭素吸収後の化合物(二酸化炭素発生剤)の物性、成分比等を特定した。結果を下記表1に示した。
[実施例1]
 本発明の二酸化炭素発生剤(N-ベンジルカルバミン酸もしくはその塩、および/またはベンジルアミンの重炭酸塩の水和物)を用いた二酸化炭素の発生方法(溶媒の検討)
(実験操作例)
 上記参考例1で得られた二酸化炭素発生剤(755mg,3mmol相当の二酸化炭素含む)を反応容器に加え、常温、常圧下でマスフローコントローラーにより窒素ガスをフロー(250mL/分)しながら、その中で各種溶媒(水(HO)、メタノール(MeOH)、エタノール(EtOH)、N,N-ジメチルホルムアミド(DMF)、アセトン、テトラヒドロフラン(THF)、ジエチルエーテル(EtO)、ジクロロメタン(DCM)またはトルエン)(各50mL)を添加した後、出口側の二酸化炭素濃度を、二酸化炭素濃度計を用いて経時的に計測した。
 その結果を図1に示した。
 図1によれば、いずれの溶媒を添加した場合にも、二酸化炭素の放出が確認されたが、ジクロロメタンまたはメタノールを添加した場合に、効率良く二酸化炭素が放出されることが分かった。
[実施例2]
 本発明の二酸化炭素発生剤(N-ベンジルカルバミン酸もしくはその塩、および/またはベンジルアミンの重炭酸塩の水和物)にジクロロメタン(DCM)を添加することによる二酸化炭素の発生方法(溶媒量の検討)
(実験操作例)
 上記参考例1で得られた二酸化炭素発生剤(755mg,3mmol相当の二酸化炭素含む)を反応容器に加え、常温、常圧下でマスフローコントローラーにより窒素ガスをフロー(250mL/分)しながら、その中で、それぞれ異なる容量のジクロロメタン(DCM)(1mL、3mL、5mL、10mL、30mL、50mLまたは100mL)を添加した後、出口側の二酸化炭素濃度を、二酸化炭素濃度計を用いて経時的に計測した。
 その結果を図2に示した。
 図2によれば、ジクロロメタンの添加量が50mLまでは容量依存的に二酸化炭素の発生量も増加することが確認されたが、それ以上の容量を添加しても、二酸化炭素の発生量に顕著な増加は見られなかった。
 上記結果の二酸化炭素発生量から算出すると、ジクロロメタン50mL添加時に、二酸化炭素発生剤に含まれる二酸化炭素量の80%以上を放出していることが分かった。
[実施例3]
(1)各種アラルキルアミンを用いた大気中の二酸化炭素の吸収実験1
 35.7Lのデシケーター内にシャーレと二酸化炭素濃度計を設置し、シャーレに下式:
で表されるアラルキルアミン(5mmol)を加えた後に閉扉し、デシケーター内の二酸化炭素濃度を経時的に測定した。初期二酸化炭素濃度は、およそ600-700ppm程度とした。結果を図3に示した。
 図3によれば、1,2-ジフェニルエチルアミン以外の全てのアラルキルアミンは、効率良く二酸化炭素を吸収することが確認された。また、1,2-ジフェニルエチルアミンについても徐々にではあるが、二酸化炭素を吸収することが確認された。
(2)各種アラルキルアミンを用いた大気中の二酸化炭素の吸収実験2
 大気中室温下、シャーレの上にアラルキルアミンを入れ、1週間静置した。その後、得られた成分を元素分析し、アミンと吸収した二酸化炭素、および水分のモル比を算出した。
 その結果を表2に示した。
 表2によれば、いずれのアラルキルアミンを使用した場合にも、二酸化炭素を吸収して、対応するN-アラルキルカルバミン酸もしくはその塩、および/またはアラルキルアミンの重炭酸塩もしくはその水和物(二酸化炭素発生剤)が生成することが確認された。
(3)各種アラルキルアミン由来の本発明の二酸化炭素発生剤(N-アラルキルカルバミン酸もしくはその塩、および/またはアラルキルアミンの重炭酸塩もしくはその水和物)を用いた二酸化炭素の発生方法
(実験操作例)
 前記(2)で得られた二酸化炭素発生剤(2.0mmol)を反応容器に加え、マスフロコントローラーで窒素ガスをフロー(250mL/min)し、その中へジクロロメタンを35mL流し込んだ後、出口側の二酸化炭素濃度を経時的に測定した。結果を図4に示した。
 図4によれば、いずれのアラルキルアミン由来の二酸化炭素発生剤を用いても、ジクロロメタンの添加により、2時間以内に吸収した二酸化炭素を効率良く放出することが確認された。
 本発明によれば、二酸化炭素を吸収、固定化させたアミン類、とりわけ、置換されていてもよいN-C7-14アラルキルカルバミン酸もしくはその塩、および/または置換されていてもよいC7-14アラルキルアミンの重炭酸塩、あるいはそれらの水和物、を含有する二酸化炭素発生剤に、溶媒を添加するだけで、圧力、加熱、電力、光照射等の物理化学的処理を何ら行うことなく、常温、常圧下で効率良く二酸化炭素を放出させる簡便な方法を提供することができる。本発明は、外部エネルギー(加温、加圧、加電圧、光照射、撹拌等)を一切使用しないので、分離エネルギーを実質ゼロにすることも可能な地球環境に優しい新規な二酸化炭素発生方法である。
 本出願は、日本国で2022年2月14日に出願された特願2022-020715を基礎としており、その内容は本明細書にすべて包含されるものである。

Claims (7)

  1.  置換されていてもよいN-C7-14アラルキルカルバミン酸もしくはその塩、および/または置換されていてもよいC7-14アラルキルアミンの重炭酸塩、あるいはそれらの水和物を含有する二酸化炭素発生剤に溶媒を添加することにより、常温、常圧下で二酸化炭素を発生させることを特徴とする、二酸化炭素の発生方法。
  2.  溶媒が、水、ハロゲン化炭化水素類、アルコール類、アミド類、ケトン類、エーテル類、芳香族炭化水素類、およびそれらの混合溶媒からなる群より選択される溶媒である、請求項1記載の方法。
  3.  溶媒が、ハロゲン化炭化水素類またはアルコール類である、請求項1に記載の方法。
  4.  溶媒の添加量が、置換されていてもよいN-C7-14アラルキルカルバミン酸もしくはその塩、および/または置換されていてもよいC7-14アラルキルアミンの重炭酸塩、あるいはそれらの水和物1モルに対して0.1mL~50Lである、請求項1~3のいずれか一項に記載の方法。
  5.  二酸化炭素発生剤が、ハロゲン原子、ニトロ基、シアノ基、C1-4アルキル基、C1-4アルコキシ基、ハロC1-4アルキル基、ハロC1-4アルコキシ基、C1-4アルキレンジオキシ基、C6-10アリール基、C7-14アラルキル基およびアミノメチル基からなる群より選択される置換基でそれぞれ置換されていてもよい、N-C7-14アラルキルカルバミン酸もしくはその塩、および/またはC7-14アラルキルアミンの重炭酸塩、あるいはそれらの水和物を含有する、請求項1~4のいずれか一項に記載の方法。
  6.  N-C7-14アラルキルカルバミン酸もしくはその塩、および/またはC7-14アラルキルアミンの重炭酸塩、あるいはそれらの水和物が、ベンジルアミン、2-メチルベンジルアミン、2-メトキシベンジルアミン、4-メトキシベンジルアミン、ピペロニルアミン、2-クロロベンジルアミン、2,4-ジクロロベンジルアミン、4-トリフルオロメチルベンジルアミン、フェネチルアミン、2-メトキシフェネチルアミン、4-クロロフェネチルアミン、2,4-ジクロロフェネチルアミン、ベンズヒドリルアミン、1,2,3,4-テトラヒドロ-1-ナフチルアミン、1-(1-ナフチル)エチルアミンおよび1,2-ジフェニルエチルアミンからなる群より選択されるアラルキルアミン由来のN-アラルキルカルバミン酸もしくはその塩、および/またはアラルキルアミンの重炭酸塩、あるいはそれらの水和物である、請求項5に記載の方法。
  7.  二酸化炭素発生剤が、ハロゲン原子、C1-4アルキル基、C1-4アルコキシ基、ハロC1-4アルキル基およびハロC1-4アルコキシ基からなる群より選択される置換基でそれぞれ置換されていてもよい、ベンジルカルバミン酸もしくはその塩、および/またはベンジルアミンの重炭酸塩、あるいはそれらの水和物を含有する、請求項1~4のいずれか一項に記載の方法。
PCT/JP2023/004697 2022-02-14 2023-02-13 二酸化炭素の発生方法 WO2023153506A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-020715 2022-02-14
JP2022020715 2022-02-14

Publications (1)

Publication Number Publication Date
WO2023153506A1 true WO2023153506A1 (ja) 2023-08-17

Family

ID=87564554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004697 WO2023153506A1 (ja) 2022-02-14 2023-02-13 二酸化炭素の発生方法

Country Status (2)

Country Link
TW (1) TW202342367A (ja)
WO (1) WO2023153506A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019127417A (ja) * 2018-01-24 2019-08-01 国立大学法人金沢大学 低エネルギー型の二酸化炭素発生方法、及び該方法に使用するための二酸化炭素発生剤
WO2020175711A1 (ja) * 2019-02-28 2020-09-03 学校法人東京理科大学 化合物、二酸化炭素吸収・放出剤、二酸化炭素収集方法及び二酸化炭素収集装置
JP6782961B2 (ja) * 2015-07-29 2020-11-11 学校法人神戸学院 空気由来の二酸化炭素の吸収剤及び発生剤
WO2022176534A1 (ja) * 2021-02-22 2022-08-25 学校法人神戸学院 大気由来の二酸化炭素の吸収剤

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6782961B2 (ja) * 2015-07-29 2020-11-11 学校法人神戸学院 空気由来の二酸化炭素の吸収剤及び発生剤
JP2019127417A (ja) * 2018-01-24 2019-08-01 国立大学法人金沢大学 低エネルギー型の二酸化炭素発生方法、及び該方法に使用するための二酸化炭素発生剤
WO2020175711A1 (ja) * 2019-02-28 2020-09-03 学校法人東京理科大学 化合物、二酸化炭素吸収・放出剤、二酸化炭素収集方法及び二酸化炭素収集装置
WO2022176534A1 (ja) * 2021-02-22 2022-08-25 学校法人神戸学院 大気由来の二酸化炭素の吸収剤

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INAGAKI FUYUHIKO, MATSUMOTO CHIAKI, IWATA TAKASHI, MUKAI CHISATO: "CO 2 -Selective Absorbents in Air: Reverse Lipid Bilayer Structure Forming Neutral Carbamic Acid in Water without Hydration", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, vol. 139, no. 13, 5 April 2017 (2017-04-05), pages 4639 - 4642, XP093084854, ISSN: 0002-7863, DOI: 10.1021/jacs.7b01049 *
INAGAKI, FUYUHIKO ET AL.: "Innovative CO2 selective absorbers and emitters that do not absorb atmospheric moisture", KAGAKU-KOGYO = CHEMICAL INDUSTRY, KAGAKU KOGYO-SHA, TOKYO,, JP, vol. 72, no. 9, 1 September 2021 (2021-09-01), JP , pages 609 - 613, XP009548551, ISSN: 0451-2014 *

Also Published As

Publication number Publication date
TW202342367A (zh) 2023-11-01

Similar Documents

Publication Publication Date Title
Zhao et al. Synthesis, characterization and gas transport properties of MOF-5 membranes
Jeremias et al. Advancement of sorption-based heat transformation by a metal coating of highly-stable, hydrophilic aluminium fumarate MOF
US10821417B2 (en) Zeolitic imidazolate frameworks
Yin et al. Effect of ZIF-71 particle size on free-standing ZIF-71/PDMS composite membrane performances for ethanol and 1-butanol removal from water through pervaporation
Zhang et al. Integration of covalent organic frameworks into hydrophilic membrane with hierarchical porous structure for fast adsorption of metal ions
WO2011046661A1 (en) Imidazolium-based room-temperature ionic liquids, polymers monomers and membranes incorporating same
Song et al. Sheathed in-situ room-temperature growth covalent organic framework solid-phase microextraction fiber for detecting ultratrace polybrominated diphenyl ethers from environmental samples
JP7476203B2 (ja) ガスを吸着するための金属有機構造体
US20130129608A1 (en) Porous coordination polymer, process for producing same, gas storage method, and gas separation method
WO2023153506A1 (ja) 二酸化炭素の発生方法
Li et al. Preparation of a new metal-organic framework/porous anodic alumina composite membrane, structural characterization, and CO2 adsorption
Hosseini et al. Polystyrene derivative-blended nanocomposite membranes for pervaporation dehydration of hydrazine
CN111574454B (zh) 咪唑离子液体功能化的杯四芳烃固定相的制备及其应用
CN101245041B (zh) 4,4′-双(2,4-二氨基苯氧基)二苯砜的制备方法
KR101457631B1 (ko) 이온성액체 작용기가 고분자의 곁가지에 도입된 고분자 분리막과 이의 제조방법
WO2022247674A1 (zh) 三维羧酸共价有机框架材料及制备方法和应用
KR101962106B1 (ko) 거대 다공성의 가교된 크라운 에테르 에폭시 폴리머 수지의 제조방법 및 이를 포함하는 리튬 흡착제의 제조방법
Faykov et al. A Deep Eutectic Solvent as a Modifier of Polyphenylene Oxide Membranes for Acetic Acid Dehydration
JP4899122B2 (ja) 有機化合物分離膜及び有機化合物分離方法
CN112480467B (zh) 防潮改性酚醛隔热材料及制备方法
JP6158727B2 (ja) 促進輸送膜及び製造方法
Wu et al. Heterogeneous hybrid of propyl amino functionalized MCM-41 and 1 H-1, 2, 4-triazole for high efficient intermediate temperature proton conductor
CN116586054B (zh) 一种用于室温下快速高产率合成阿司匹林的膜催化材料
CN110354702A (zh) 一种用于co2/n2气体分离的混合基质膜及其制备方法
CA2740074C (en) Polymer bound solid metal complex catalyst for hydrogen reforming from formic acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752968

Country of ref document: EP

Kind code of ref document: A1