WO2022176534A1 - 大気由来の二酸化炭素の吸収剤 - Google Patents

大気由来の二酸化炭素の吸収剤 Download PDF

Info

Publication number
WO2022176534A1
WO2022176534A1 PCT/JP2022/002780 JP2022002780W WO2022176534A1 WO 2022176534 A1 WO2022176534 A1 WO 2022176534A1 JP 2022002780 W JP2022002780 W JP 2022002780W WO 2022176534 A1 WO2022176534 A1 WO 2022176534A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
amine
atmosphere
acid
xylylenediamine
Prior art date
Application number
PCT/JP2022/002780
Other languages
English (en)
French (fr)
Inventor
冬彦 稲垣
遼 村上
日香梨 川満
Original Assignee
学校法人神戸学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人神戸学院 filed Critical 学校法人神戸学院
Priority to JP2023500670A priority Critical patent/JPWO2022176534A1/ja
Priority to US18/547,240 priority patent/US20240123397A1/en
Publication of WO2022176534A1 publication Critical patent/WO2022176534A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1418Recovery of products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20436Cyclic amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/50Combinations of absorbents
    • B01D2252/504Mixtures of two or more absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to an atmospheric carbon dioxide absorbent consisting of m-xylylenediamine and water.
  • the present invention also recovers [3-(aminomethyl)benzyl]carbamic acid produced by leaving the carbon dioxide absorbent to absorb carbon dioxide in the atmosphere by solid-liquid separation, acid treatment or heating It also relates to a method of generating carbon dioxide by processing.
  • the present invention also relates to an atmospheric carbon dioxide absorber consisting of benzylamine, phenethylamine, p-methoxybenzylamine or p-trifluoromethylbenzylamine, and water.
  • Non-Patent Document 1 Carbon Dioxide Capture and Storage
  • Non-Patent Documents 2 and 3 a method using a hydroxyethylamine aqueous solution as a carbon dioxide absorbent
  • the method using an aqueous sodium hydroxide solution has the problems that sodium hydroxide used as a carbon dioxide absorbent is a deleterious substance and that four steps are required from absorption to generation of carbon dioxide.
  • both methods are in the state of an aqueous solution even after absorption of carbon dioxide, so when generating carbon dioxide, extra energy for heating water is required (for example, high temperature conditions (about 900 ° C.)), The challenge was to reduce energy consumption.
  • An object of the present invention is to provide a carbon dioxide absorbent that can efficiently absorb and fix carbon dioxide that exists only at low concentrations in the atmosphere at room temperature and normal pressure, and to provide a carbon dioxide absorbent after fixing carbon dioxide. It is to release carbon dioxide from a carbon absorbent in a timely and energy-efficient manner under mild conditions and use it effectively as a carbon source.
  • the present inventors conducted intensive studies and found that a composition comprising m-xylylenediamine and water and having an m-xylylenediamine content of 1 to 50% by weight based on the total amount was They have found that m-xylylenediamine is an excellent carbon dioxide absorbent capable of absorbing and fixing carbon dioxide in the atmosphere significantly more efficiently than single m-xylylenediamine.
  • the present inventors unexpectedly found that [3-(aminomethyl)benzyl]carbamic acid formed by absorbing and fixing carbon dioxide in the carbon dioxide absorbent is non-aqueous in the composition.
  • the present inventors have found that it can be precipitated as a solid and can be easily and efficiently isolated by solid-liquid separation without containing water, so that immobilized carbon dioxide can be generated with high energy efficiency. Furthermore, the present inventors have found that benzylamine, phenethylamine, p-methoxybenzylamine and p-trifluoromethylbenzylamine, like m-xylylenediamine, also absorb and fix atmospheric carbon dioxide remarkably efficiently. The present inventors have found that it is possible to achieve the present invention.
  • the present invention is as follows. [1] consisting of an amine selected from the group consisting of m-xylylenediamine, benzylamine, phenethylamine, p-methoxybenzylamine and p-trifluoromethylbenzylamine, and water, wherein the content of the amine relative to the total amount is 1 Atmospheric carbon dioxide absorber, characterized in that it is -50% by weight. [2] The carbon dioxide absorbent according to [1] above, wherein the amine is m-xylylenediamine. [3] The carbon dioxide absorbent according to [1] above, wherein the amine is benzylamine.
  • the carbon dioxide absorbent of the present invention has a higher carbon dioxide absorption capacity than known carbon dioxide absorbents, even carbon dioxide that exists only at low concentrations in the atmosphere can be absorbed at room temperature and normal pressure. has the advantage of being able to be efficiently absorbed and immobilized at In addition, since the carbamic acid derivative or bicarbonate produced (precipitated) after carbon dioxide fixation is extremely hydrophobic, it can be isolated without containing water by a simple operation (solid-liquid separation). By not containing water, carbon dioxide can be effectively used as a carbon source by releasing carbon dioxide under mild conditions with high energy efficiency.
  • FIG. 1-1 shows aqueous solutions of m-xylylenediamine (7.58 mmol) at various concentrations (1, 3, 6, 13, 23, 30, 50 and 75% by weight) and m-xylylenediamine at room temperature.
  • m-xylylenediamine 7.58 mmol
  • concentration 1, 3, 6, 13, 23, 30, 50 and 75% by weight
  • m-xylylenediamine at room temperature.
  • Each itself (7.58 mmol; 100% by weight) was separately placed in a cylindrical reaction vessel (5.5 cm in diameter, 9 cm or 13 cm in height), and a nitrogen/carbon dioxide mixed gas (carbon dioxide concentration: about 1 vol% ) is flowed into the reaction vessel at a flow rate of 25 mL/min with a mass flow controller (hereinafter referred to as "MFC"), and a rectangular parallelepiped vessel (length 6 cm, width 6 cm, height 13 cm) provided on the outlet (outflow port) side FIG.
  • MFC mass flow controller
  • FIG. 1-2 shows changes in carbon dioxide concentration (ppm) over time
  • FIG. 1-2 shows a partially enlarged view of FIG. 1-1.
  • an aqueous solution of m-xylylenediamine (7.58 mmol) with a concentration of 6% by weight was placed in a cylindrical reaction vessel (5.5 cm in diameter, 13 cm in height), and the atmosphere (carbon dioxide concentration : about 450 ppm) was flowed into the reaction vessel by MFC at a flow rate of 250 mL/min, and the carbon dioxide concentration ( ppm).
  • FIG. 2 shows changes in carbon dioxide concentration (ppm) over time
  • FIG. 1-2 shows a partially enlarged view of FIG. 1-1.
  • FIG. 2 at room temperature, an aqueous solution of m-xylylenediamine (7.58 mmol) with a concentration of 6% by weight was placed in a cylindrical reaction vessel (5.5 cm in diameter, 13 cm in height), and the atmosphere (carbon dioxide concentration : about 450 ppm) was flow
  • FIG. 3 shows a 6% by weight m-xylylenediamine (7.58 mmol) aqueous solution placed in a petri dish with a diameter of 8 cm and left at room temperature in the atmosphere. Shows mass change (increased grams).
  • room temperature means about 10°C to about 25°C.
  • normal pressure means 1 atmospheric pressure (1013 hPa).
  • solid-liquid separation means an operation for separating solids mixed in a liquid, and includes a separation operation by filtration using a filter and a separation operation using a centrifugal separator.
  • carbamic acid derivative refers to a substituted compound formed by the reaction of m-xylylenediamine, benzylamine, phenethylamine, p-methoxybenzylamine or p-trifluoromethylbenzylamine with carbon dioxide. It means benzyl- or phenethyl-carbamic acid.
  • bicarbonate is formed by the reaction of m-xylylenediamine, benzylamine, phenethylamine, p-methoxybenzylamine or p-trifluoromethylbenzylamine with excess carbon dioxide. , with substituted benzyl- or phenethyl-amines.
  • the carbon dioxide absorbent of the present invention consists of an amine selected from the group consisting of m-xylylenediamine, benzylamine, phenethylamine, p-methoxybenzylamine and p-trifluoromethylbenzylamine, and water. content is 1 to 50% by weight.
  • m-xylylenediamine, benzylamine, phenethylamine, p-methoxybenzylamine and p-trifluoromethylbenzylamine are commercially available, readily available, low volatility, low toxicity, It also has the property of being miscible with water.
  • the present inventors have previously reported that m-xylylenediamine itself is a hydrophobic carbon dioxide absorbent that does not absorb water (moisture in the atmosphere) when absorbing carbon dioxide (see Patent Document 3). ), the carbon dioxide absorbents of the present invention are capable of absorbing only carbon dioxide significantly more efficiently than m-xylylenediamine itself.
  • [3-(aminomethyl)benzyl]carbamic acid formed by absorbing and fixing carbon dioxide in m-xylylenediamine is a non-hydrated solid Therefore, [3-(aminomethyl)benzyl]carbamic acid can be isolated efficiently by a simple operation without containing water by solid-liquid separation.
  • a composition comprising p-xylylenediamine and water was used as a carbon dioxide absorbent, carbon dioxide was efficiently absorbed, but no solid was deposited as a solid-liquid separable solid.
  • the carbon dioxide absorbent of the present invention has an amine content of 1 to 50% by weight with respect to the total amount. If the amine content is less than 1% by weight, a carbamic acid derivative (e.g., [3-(aminomethyl)benzyl]carbamic acid) or bicarbonate formed by absorbing and fixing carbon dioxide in the amine Since the salt is not precipitated sufficiently, the recovery efficiency may be extremely lowered, and when the amine content exceeds 50% by weight, the carbon dioxide absorption efficiency is remarkably lowered.
  • a carbamic acid derivative e.g., [3-(aminomethyl)benzyl]carbamic acid
  • bicarbonate formed by absorbing and fixing carbon dioxide in the amine Since the salt is not precipitated sufficiently, the recovery efficiency may be extremely lowered, and when the amine content exceeds 50% by weight, the carbon dioxide absorption efficiency is remarkably lowered.
  • the content of the amine relative to the total amount of the carbon dioxide absorbent of the present invention is preferably 3 to 30% by weight, more preferably 3 to 15% by weight, still more preferably 3 to 6% by weight. .
  • the carbon dioxide absorbent of the present invention By using the carbon dioxide absorbent of the present invention, it is possible to reduce the concentration of carbon dioxide per unit volume in the atmosphere up to 1/100 at maximum.
  • the carbon dioxide absorbent of the present invention When using the carbon dioxide absorbent of the present invention, it may be used alone, or may be used as a composition blended with known stabilizers and additives.
  • the carbon dioxide absorbent of the present invention can be used not only in the atmosphere but also in a high-concentration carbon dioxide atmosphere.
  • the carbon dioxide absorbent of the present invention is left at room temperature, under normal pressure, in the atmosphere (under an air atmosphere), thereby absorbing and fixing carbon dioxide in the atmosphere.
  • the carbon dioxide absorbent of the present invention is placed in a reaction vessel, and the atmosphere (carbon dioxide concentration: about 450 ppm) is flowed into the reaction vessel at room temperature and normal pressure by MFC, and the outlet (outlet) A carbon dioxide concentration meter is attached to the side to observe changes in carbon dioxide concentration (ppm) over time. Then, when the carbon dioxide concentration stops changing (when the carbon dioxide concentration returns to the initial carbon dioxide concentration), it can be confirmed that the fixation of atmospheric carbon dioxide to the carbon dioxide absorbent of the present invention has been completed. .
  • the carbon dioxide absorbent of the present invention can maintain extremely high carbon dioxide absorption efficiency for 4 to 12 hours, depending on the content of amine relative to the total amount.
  • the m-xylylenediamine in the carbon dioxide absorbent of the present invention absorbs and fixes carbon dioxide in the atmosphere, resulting in poorly water-soluble [3-(aminomethyl)benzyl ] to carbamic acid, which precipitates as a solid.
  • [3-(aminomethyl)benzyl]carbamic acid can be easily recovered without containing water.
  • the recovered [3-(aminomethyl)benzyl]carbamic acid can be subjected to the following carbon dioxide generation method to regenerate m-xylylenediamine.
  • the method for generating carbon dioxide of the present invention Method for generating carbon dioxide from carbamic acid derivative or bicarbonate (hereinafter also referred to as “the method for generating carbon dioxide of the present invention”)
  • the carbamic acid derivative or bicarbonate obtained by the method for absorbing carbon dioxide of the present invention is reacted with an acid at room temperature under normal pressure, or heated at about 120 to 140 ° C.
  • a step of generating carbon dioxide is included.
  • the carbon dioxide generation method of the present invention can be carried out according to or according to the method described in Examples of Patent Document 3.
  • a reactor (the material and the like are not particularly limited) that can be connected to the reaction vessel for the organic synthesis reaction. and [3-(aminomethyl)benzyl]carbamic acid is weighed and added thereto. After diluting with a solvent as necessary, the generation of carbon dioxide can be visually confirmed by dropping an acid or by heating.
  • carbamic acid derivatives e.g., [3-(aminomethyl)benzyl]carbamic acid
  • bicarbonates are used in organic synthesis reactions, etc.
  • the amount of carbon dioxide generated is greater than the amount of reaction substrates. Volume dependent. Therefore, the amount of carbamic acid derivative or bicarbonate and/or acid to be used is desirably set so as to generate about twice the total volume of the reactor used.
  • a solvent is not necessarily required in the carbon dioxide generation method of the present invention, but usable solvents include alcohols such as methanol, ethanol, and isopropanol.
  • the acid used in the method for generating carbon dioxide of the present invention is not particularly limited. aqueous solution, etc.), oxalic acid, malonic acid, malic acid, glycolic acid, trifluoroacetic acid, etc. Among them, dilute hydrochloric acid (eg, 10% hydrochloric acid, etc.) is preferably used.
  • the amount of acid to be used is generally 0.01 to 3 mol, preferably 0.1 to 2 mol, per 1 mol of carbamic acid derivative or bicarbonate. It is also possible to adjust the amount of carbon dioxide generated by the amount of acid used.
  • the carbon dioxide generation method of the present invention by heating, it is possible to effectively generate carbon dioxide simply by heating at about 120 to 140°C.
  • the carbon dioxide generation method of the present invention is compared with the conventional method (specifically, the conventional technology using a sodium hydroxide aqueous solution or a hydroxyethylamine aqueous solution as a carbon dioxide absorbent) that requires heating conditions at a high temperature of 900 ° C. Therefore, it is possible to generate carbon dioxide under extremely mild conditions because the energy required for heating water is not required.
  • the amine that is regenerated after carbon dioxide is generated can be easily recovered, and can be used as the carbon dioxide absorbent of the present invention by making it into an aqueous solution again (this regeneration step of the carbon dioxide absorbent of the invention).
  • Carbon dioxide (CO 2 ) absorption was measured using a CO 2 adsorption/desorption device manufactured by Toyoko Chemical Co., Ltd. Elemental analysis was performed using J-SCIENCE LAB JM10. The concentration of carbon dioxide was measured using a carbon dioxide concentration meter (GC-02) manufactured by God Ability (GA). The weight was measured using an electronic balance (EK-610i) manufactured by A&D. % in the following examples means % by weight unless otherwise specified.
  • m-xylylenediamine manufactured by Tokyo Chemical Industry Co., Ltd.
  • benzylamine manufactured by Tokyo Chemical Industry Co., Ltd.
  • phenethylamine manufactured by Tokyo Chemical Industry Co., Ltd.
  • p-methoxybenzylamine manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.
  • p-trifluoromethylbenzylamine manufactured by Tokyo Chemical Industry Co., Ltd.
  • Example 1 m-xylylenediamine aqueous solution (m-xylylenediamine content: 1, 3, 6, 13, 23, 30, 50 or 75% by weight) or m-xylylenediamine under a nitrogen/carbon dioxide mixed gas stream Change in carbon dioxide concentration (ppm) over time in the presence of itself (100% by weight)
  • FIGS. 1-1 and 1-2 when the content of m-xylylenediamine exceeds 50% by weight (75% by weight and 100% by weight), the carbon dioxide absorption efficiency is remarkable. A decrease was confirmed. Moreover, it was confirmed that the carbon dioxide absorbent after the reaction was solidified when the concentration of m-xylylenediamine was in the range of 1 to 100% by weight.
  • Example 2 Changes in carbon dioxide concentration (ppm) over time in the presence of a 6% by weight m-xylylenediamine aqueous solution under atmospheric air (carbon dioxide concentration: about 450 ppm)
  • Table 2 and FIG. 2 show changes in carbon dioxide concentration (ppm) in the cuboid container.
  • Example 3 Change in mass of m-xylylenediamine aqueous solution with a concentration of 6% by weight over time in an atmosphere (carbon dioxide concentration: about 450 ppm)
  • Table 3 and FIG. 3 show changes in the mass (g) of the test solution over time.
  • Example 4 The solid precipitated after the reaction in Example 2 was collected by filtration, and the elemental analysis of the solid obtained by removing the attached moisture revealed [3-(aminomethyl)benzyl]carbamic acid [compositional formula: C 9 H 12 N 2 O 2 ] (941 mg; 7.58 mmol; yield: 69%). Table 4 shows the results of three measurements of the elemental analysis of the obtained solid.
  • Example 5 Time in the presence of an aqueous solution of m-xylylenediamine, benzylamine, phenethylamine, p-methoxybenzylamine, or p-trifluoromethylbenzylamine at a concentration of 6% by weight under air current (carbon dioxide concentration: about 450 ppm) Change in carbon dioxide concentration (ppm) over time
  • Table 5 and FIG. 4 show changes in carbon dioxide concentration (ppm) in the cuboid container in the presence of each amine aqueous solution.
  • the carbon dioxide absorbent of the present invention has a higher carbon dioxide absorption capacity than known carbon dioxide absorbents, even carbon dioxide that exists only at low concentrations in the atmosphere can be absorbed at room temperature and normal pressure. has the advantage of being able to be efficiently absorbed and immobilized at
  • carbamic acid derivatives e.g., [3-(aminomethyl)benzyl]carbamic acid
  • bicarbonates that are produced (precipitated) after carbon dioxide fixation are extremely hydrophobic, so that simple operations (solid-liquid Separation) can be isolated without containing water, and by not containing water, it can be effectively used as a carbon source by releasing carbon dioxide under mild conditions with high energy efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

本発明は、大気中から二酸化炭素を効率よく吸収、固定化し、簡便に分離回収することができる二酸化炭素吸収剤を提供することを目的とする。本発明は、m-キシリレンジアミン、ベンジルアミン、フェネチルアミン、p-メトキシベンジルアミンおよびp-トリフルオロメチルベンジルアミンからなる群より選択されるアミン、および水からなり、全量に対するアミンの含有量が、1~50重量%であることを特徴とする、大気中の二酸化炭素吸収剤に関する。また、本発明は、前記二酸化炭素吸収剤を使用する簡便かつエネルギー効率に優れた二酸化炭素の発生方法にも関する。

Description

大気由来の二酸化炭素の吸収剤
 本発明は、m-キシリレンジアミンおよび水からなる、大気中の二酸化炭素吸収剤に関する。本発明は、また、当該二酸化炭素吸収剤を放置して大気中の二酸化炭素を吸収させることにより生成する[3-(アミノメチル)ベンジル]カルバミン酸を固液分離により回収し、酸処理または加熱処理により、二酸化炭素を発生させる方法にも関する。また、本発明は、ベンジルアミン、フェネチルアミン、p-メトキシベンジルアミンまたはp-トリフルオロメチルベンジルアミン、および水からなる、大気中の二酸化炭素吸収剤にも関する。
 近年、地球環境保護の観点から、温室効果ガスである二酸化炭素の排出削減について活発な議論がなされているが、真に効果的な解決策は未だ見出されていない。その解決策として、火力発電所等から排出される排ガスから高濃度の二酸化炭素を効率的に回収し、地中や海中に埋めて貯蔵する技術(CCS:Carbon dioxide Capture and Storage)が近年活発に研究されている(非特許文献1)。しかし、CCSは、大規模な設備等への多大な投資が必要であるため、民間レベル(個人レベル)においては現実的な解決策であるとはいえない。また、排ガス等には、二酸化炭素以外にも窒素酸化物や硫黄酸化物等の有毒ガスも高濃度で含まれており、これらの有毒ガスと共に回収した二酸化炭素を炭素源として活用するためには多くの問題が残されている(特許文献1、2)。
 一方、大気中の二酸化炭素(大気中の二酸化炭素比率は、通常、わずか0.04~0.05v/v%である)を、炭素源として、簡便且つ効果的に活用できれば、真に有効な解決策となり得る。これに関連して、大気中から二酸化炭素を回収する技術(DAC: Direct Air Capture)が注目を集め始めている。これまでに、大気中の二酸化炭素のみを収集する方法として、水酸化ナトリウム水溶液に大気中の二酸化炭素を吸収させ、炭酸ナトリウム水溶液とした後、水酸化カルシウムスラリーと反応させ、固体状態の炭酸カルシウムを得、それを900℃で加温することにより炭酸ガスを発生させる方法、および二酸化炭素吸収剤としてヒドロキシエチルアミン水溶液を用いる方法が知られている(非特許文献2、非特許文献3)。しかし、水酸化ナトリウム水溶液を用いる方法では、二酸化炭素吸収剤として使用される水酸化ナトリウムが劇物であることと、二酸化炭素の吸収から発生までに4工程を要するという問題点を有しており、また、両方法ともに二酸化炭素の吸収後も水溶液の状態であるため、二酸化炭素を発生させる際には、水加熱分のエネルギーが余分に必要となり(例えば、高温条件(900℃程度))、エネルギーの低減化が課題であった。
 最近、本発明者らは、特定の置換アルキルアミンが、大気中の二酸化炭素を選択的に吸収し、放出できることを見出した(特許文献3、4、5)。当該方法は、特定の置換アルキルアミンをその水溶液ではなく、特定の置換アルキルアミン単体を二酸化炭素吸収剤として用いることで、吸収した二酸化炭素を放出させる際に、水加熱分のエネルギーが不要となるため、緩和な温度条件下で二酸化炭素を効率良く発生させることができるという利点を有するが、大気中の低濃度の二酸化炭素を効率良く回収再利用するためには、二酸化炭素吸収剤の二酸化炭素の吸収(回収)性能をさらに高める必要がある。
特開2003-53134号公報 特開2005-40683号公報 特開2017-31046号公報 特開2017-31062号公報 特開2019-127417号公報
Iijima, M. and Nakatani, S., Kagaku Kogaku, 2013, Vol.77, pages 300-303 Baciocchi, R. Storti, G. and Mazzotti, M., Chemical Engineering and Processing, 2006, Vol.45, pages 1047-1058. Kiani, A. Jiang, K. and Feron, P., frontiers in Energy Research, 2020, Vol. 8, Article 92.
 本発明の目的は、室温下、常圧下で大気中に低濃度でしか存在しない二酸化炭素を効率良く吸収、固定化することができる二酸化炭素吸収剤を提供すると共に、二酸化炭素固定化後の二酸化炭素吸収剤から、緩和な条件下で適時にエネルギー効率良く二酸化炭素を放出させて炭素源として有効利用することである。
 本発明者らは、かかる状況下、鋭意検討を重ねた結果、m-キシリレンジアミンおよび水からなり、全量に対するm-キシリレンジアミンの含有量が、1~50重量%である組成物が、m-キシリレンジアミン単体よりも大気中の二酸化炭素を顕著に効率良く吸収し、固定化することができる優れた二酸化炭素吸収剤となることを見出した。また、本発明者らは、当該二酸化炭素吸収剤に二酸化炭素を吸収、固定化して形成される[3-(アミノメチル)ベンジル]カルバミン酸が、予期せぬことに前記組成物中で非水和物の固体として析出し、固液分離により水を含むことなく容易に効率良く単離することができ、これにより固定化した二酸化炭素を、エネルギー効率良く発生させることができることを見出した。さらに、本発明者らは、ベンジルアミン、フェネチルアミン、p-メトキシベンジルアミンおよびp-トリフルオロメチルベンジルアミンも、m-キシリレンジアミンと同様に大気中の二酸化炭素を顕著に効率良く吸収し、固定化することができることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の通りである。
[1]m-キシリレンジアミン、ベンジルアミン、フェネチルアミン、p-メトキシベンジルアミンおよびp-トリフルオロメチルベンジルアミンからなる群より選択されるアミン、および水からなり、全量に対するアミンの含有量が、1~50重量%であることを特徴とする、大気中の二酸化炭素吸収剤。
[2]アミンが、m-キシリレンジアミンである、上記[1]に記載の二酸化炭素吸収剤。
[3]アミンが、ベンジルアミンである、上記[1]に記載の二酸化炭素吸収剤。
[4]アミンが、フェネチルアミンである、上記[1]に記載の二酸化炭素吸収剤。
[5]アミンが、p-メトキシベンジルアミンである、上記[1]に記載の二酸化炭素吸収剤。
[6]アミンが、p-トリフルオロメチルベンジルアミンである、上記[1]に記載の二酸化炭素吸収剤。
[7]アミンの含有量が、3~30重量%である、上記[1]~[6]のいずれかに記載の二酸化炭素吸収剤。
[8]アミンの含有量が、3~15重量%である、上記[1]~[6]のいずれかに記載の二酸化炭素吸収剤。
[9]アミンの含有量が、3~6重量%である、上記[1]~[6]のいずれかに記載の二酸化炭素吸収剤。
[10]上記[1]~[9]のいずれかに記載の二酸化炭素吸収剤を放置して大気中の二酸化炭素を吸収させることにより析出するカルバミン酸誘導体を固液分離により回収する工程、および回収されたカルバミン酸誘導体を、酸と反応させるか、または加熱することにより、二酸化炭素を発生させる工程を含む、二酸化炭素の発生方法。
[11]上記[2]または[7]~[9]のいずれかに記載の二酸化炭素吸収剤を使用し、かつ、カルバミン酸誘導体が、[3-(アミノメチル)ベンジル]カルバミン酸である、上記[10]に記載の二酸化炭素の発生方法。
[12]酸が、塩酸、過塩素酸、リン酸、シュウ酸、マロン酸、リンゴ酸、グリコール酸およびトリフルオロ酢酸からなる群から選択される、上記[11]に記載の方法。
[13]加熱が、約120~140℃で行われる、上記[11]に記載の方法。
[14]上記[11]~[13]のいずれかに記載の方法により回収されるm-キシリレンジアミンに、水を加えて、上記[2]に記載の二酸化炭素吸収剤を再生させて、それを二酸化炭素吸収剤として使用することを特徴とする、上記[11]~[13]のいずれかに記載の方法。
 本発明の二酸化炭素吸収剤は、公知の二酸化炭素吸収剤と比較して高い二酸化炭素吸収能を有することから、大気中に低濃度でしか存在しない二酸化炭素であっても、室温下、常圧下で効率良く吸収、固定化することができるという利点を有する。また、二酸化炭素固定化後に生成(析出)するカルバミン酸誘導体または重炭酸塩は、極めて疎水性が高いために、簡便な操作(固液分離)により水を含むことなく単離することができ、水を含まないことにより、エネルギー効率良く、緩和な条件下で二酸化炭素を放出させて炭素源として有効利用することができる。それ故、本発明によれば、外部エネルギー(加温、加圧、撹拌等)の使用を極力抑えながら、大気中の二酸化炭素を効率良く吸収、固定化し、大気由来の二酸化炭素を適時に放出することができる点で、地球環境に優しい二酸化炭素吸収剤および二酸化炭素の有効活用方法を提供することができる。
図1-1は、室温下、各濃度のm-キシリレンジアミン(7.58mmol)の水溶液(1、3、6、13、23、30、50および75重量%)、ならびにm-キシリレンジアミン自体(7.58mmol;100重量%)を、それぞれ別々に円筒形の反応容器(直径5.5cm、高さ9cmまたは13cm)に入れて、窒素/二酸化炭素混合ガス(二酸化炭素濃度:約1vol%)をマスフローコントローラ(以下、「MFC」と称する。)で流速25mL/分で反応容器に流し、出口(流出口)側に設けた直方体形容器(縦6cm、横6cm、高さ13cm)内の時間経過に伴う二酸化炭素濃度(ppm)の変化を示し、図1-2は、図1-1の部分拡大図を示す。 図2は、室温下、6重量%濃度のm-キシリレンジアミン(7.58mmol)の水溶液を、円筒形の反応容器(直径5.5cm、高さ13cm)に入れて、大気(二酸化炭素濃度:約450ppm)をMFCで流速250mL/分で反応容器に流し、出口(流出口)側に設けた直方体形容器(縦6cm、横6cm、高さ13cm)内の時間経過に伴う二酸化炭素濃度(ppm)の変化を示す。 図3は、6重量%濃度のm-キシリレンジアミン(7.58mmol)水溶液を、直径8cmのシャーレに入れて、大気中、室温下で放置し、m-キシリレンジアミン水溶液の時間経過に伴う質量変化(増加したg数)を示す。 図4は、6重量%濃度の、m-キシリレンジアミン、ベンジルアミン、フェネチルアミン、p-メトキシベンジルアミンまたはp-トリフルオロメチルベンジルアミンの水溶液を、それぞれ反応容器に入れて、大気(二酸化炭素濃度:約450ppm)をMFCで流速250mL/分で反応容器に流し、出口(流出口)側に設けた直方体形容器(縦6cm、横6cm、高さ13cm)内の時間経過(0~10時間)に伴う二酸化炭素濃度(ppm)の変化を示す。
 以下、本発明について詳細に説明する。
(定義)
 本明細書中、「室温」とは、約10℃ないし約25℃を意味する。
 本明細書中、「常圧」とは、1気圧(1013hPa)を意味する。
 本明細書中、「約」は、温度の場合±5℃、時間の場合±10分、重量、容量および濃度の場合には±10%と定義する。
 本明細書中、「固液分離」とは、液体中に混在する固体を分ける操作を意味し、フィルタを用いる濾過による分離操作や遠心分離機を用いる分離操作を包含する。
 本明細書中、「カルバミン酸誘導体」とは、m-キシリレンジアミン、ベンジルアミン、フェネチルアミン、p-メトキシベンジルアミンまたはp-トリフルオロメチルベンジルアミンと、二酸化炭素との反応により形成される、置換ベンジル-またはフェネチル-カルバミン酸を意味する。
 本明細書中、「重炭酸塩」とは、m-キシリレンジアミン、ベンジルアミン、フェネチルアミン、p-メトキシベンジルアミンまたはp-トリフルオロメチルベンジルアミンと、過剰の二酸化炭素との反応により形成される、置換ベンジル-またはフェネチル-アミンとの塩を意味する。
(本発明の二酸化炭素吸収剤)
 本発明の二酸化炭素吸収剤は、m-キシリレンジアミン、ベンジルアミン、フェネチルアミン、p-メトキシベンジルアミンおよびp-トリフルオロメチルベンジルアミンからなる群より選択されるアミン、および水からなり、全量に対するアミンの含有量が、1~50重量%である、組成物である。
 m-キシリレンジアミン、ベンジルアミン、フェネチルアミン、p-メトキシベンジルアミンおよびp-トリフルオロメチルベンジルアミンは、市販されており、容易に入手することが可能であり、低揮発性、低毒性であり、かつ水に混和する性質も有している。本発明者らは、以前にm-キシリレンジアミン自体が、二酸化炭素吸収時に水(大気中の湿気)を吸収しない疎水性の二酸化炭素吸収剤であることを既に報告したが(特許文献3参照)、本発明の二酸化炭素吸収剤は、m-キシリレンジアミン自体よりも顕著に効率良く、二酸化炭素のみを吸収することができる。さらに、本発明の二酸化炭素吸収剤を用いることにより、m-キシリレンジアミンに二酸化炭素を吸収、固定化して形成される[3-(アミノメチル)ベンジル]カルバミン酸が、非水和物の固体として析出するので、固液分離により水を含むことなく簡便な操作により効率良く、[3-(アミノメチル)ベンジル]カルバミン酸を単離することができる。一方、p-キシリレンジアミンと水からなる組成物を二酸化炭素吸収剤として使用した場合には、二酸化炭素を効率良く吸収したが、固液分離可能な固体として析出することはなかった。
 本発明の二酸化炭素吸収剤は、その全量に対するアミンの含有量が、1~50重量%である。アミンの含有量が、1重量%未満である場合には、アミンに二酸化炭素を吸収、固定化して形成されるカルバミン酸誘導体(例、[3-(アミノメチル)ベンジル]カルバミン酸)または重炭酸塩が十分に析出しないために、その回収効率が極端に低下することがあり、また、アミンの含有量が、50重量%を超えると、二酸化炭素の吸収効率に顕著な低下がみられる。
 本発明の二酸化炭素吸収剤の全量に対するアミンの含有量は、好ましくは、3~30重量%であり、より好ましくは、3~15重量%であり、さらに好ましくは、3~6重量%である。
 本発明の二酸化炭素吸収剤を用いることにより、大気中の単位体積当たりの二酸化炭素濃度を最大1/100まで減少させることが可能である。
 本発明の二酸化炭素吸収剤は、その使用の際に、単独で使用してもよいし、または、公知の安定化剤や添加剤とともに配合した組成物として使用してもよい。
 本発明の二酸化炭素吸収剤は、大気中で使用できることは勿論のこと、高濃度の二酸化炭素雰囲気下でも同様に使用することができる。
(本発明の二酸化炭素吸収剤を用いる大気中の二酸化炭素の吸収、固定化方法とそれにより生成するカルバミン酸誘導体または重炭酸塩の単離方法(以下、これらを総称して、「本発明の二酸化炭素吸収方法」ともいう。))
 本発明の二酸化炭素吸収方法は、本発明の二酸化炭素吸収剤を、室温下、常圧下、大気中(空気雰囲気下)に放置することにより、大気中の二酸化炭素を吸収および固定化することにより、カルバミン酸誘導体または重炭酸塩を生成させ、それを固体として析出させて、固液分離によりカルバミン酸誘導体または重炭酸塩を、水を含むことなく簡便かつ効率良く回収する工程(二酸化炭素吸収工程)を含む。
 具体的には、例えば、本発明の二酸化炭素吸収剤を、反応容器に入れて、室温下、常圧下、大気(二酸化炭素濃度:約450ppm)をMFCで反応容器に流し、出口(流出口)側に二酸化炭素濃度計を取り付けて、時間経過に伴う二酸化炭素濃度(ppm)の変化を観測する。そして、二酸化炭素濃度が変化しなくなった時点(初期の二酸化炭素濃度に戻った時点)で本発明の二酸化炭素吸収剤への大気中の二酸化炭素の固定化が完了したことを確認することができる。
 本発明の二酸化炭素吸収剤は、後述する試験例に示されるように、全量に対するアミンの含有量にも依るが、極めて高い二酸化炭素の吸収効率を4~12時間維持し続けることができる。
 具体的には、本発明の二酸化炭素吸収剤中のm-キシリレンジアミンは、大気中の二酸化炭素を吸収、固定化することにより、水に対して難溶性の[3-(アミノメチル)ベンジル]カルバミン酸に変換され、固体として析出する。析出した固体を固液分離することにより、[3-(アミノメチル)ベンジル]カルバミン酸を、水を含むことなく簡便に回収することが可能である。回収された[3-(アミノメチル)ベンジル]カルバミン酸は、以下の二酸化炭素の発生方法に供されることにより、m-キシリレンジアミンを再生させることができる。
(カルバミン酸誘導体または重炭酸塩からの二酸化炭素の発生方法(以下、「本発明の二酸化炭素発生方法」ともいう。))
 本発明の二酸化炭素発生方法は、本発明の二酸化炭素吸収方法により得られたカルバミン酸誘導体または重炭酸塩を、室温下、常圧下、酸と反応させるか、または約120~140℃で加熱することにより、二酸化炭素を発生させる工程(二酸化炭素発生工程)を含む。本発明の二酸化炭素発生方法は、特許文献3の実施例に記載の方法に従い、または準じて、実施することができる。
 具体的には、例えば、発生させた二酸化炭素を有機合成反応の炭素源として使用する場合には、有機合成反応を行う反応容器に連結可能な反応装置(その材質等は特に限定されない)を準備し、そこに[3-(アミノメチル)ベンジル]カルバミン酸を秤量して加える。必要に応じて溶媒で希釈した後、酸を滴下するか、または加熱することにより、二酸化炭素の発生を目視により確認することができる。
 有機合成反応等にカルバミン酸誘導体(例、[3-(アミノメチル)ベンジル]カルバミン酸)または重炭酸塩を使用する場合、発生させる二酸化炭素の量は、反応基質の量よりも反応装置の全容積に依存する。そのためカルバミン酸誘導体または重炭酸塩、および/又は酸の使用量は、用いる反応装置の全容積の約2倍程度の二酸化炭素が発生するように設定するのが望ましい。
 本発明の二酸化炭素発生方法においては、溶媒は、必ずしも必要ではないが、使用し得る溶媒としては、メタノール、エタノール、イソプロパノール等のアルコール類等が挙げられる。
 本発明の二酸化炭素発生方法において使用する酸としては、特に限定されないが、具体的には、例えば、希塩酸(例、10%塩酸等)、過塩素酸、リン酸水溶液(例、85%リン酸水溶液等)、シュウ酸、マロン酸、リンゴ酸、グリコール酸、トリフルオロ酢酸等が挙げられ、中でも希塩酸(例、10%塩酸等)が好適に使用される。
 酸の使用量は、カルバミン酸誘導体または重炭酸塩1モルに対して、通常0.01~3モルであり、好ましくは、0.1~2モルである。また、酸の使用量によって発生する二酸化炭素量を調整することも可能である。
 また、加熱による本発明の二酸化炭素発生方法においては、約120~140℃で加熱するだけで効果的に二酸化炭素を発生させることが可能である。本発明の二酸化炭素発生方法は、900℃という高温での加熱条件が必要な従来法(具体的には、水酸化ナトリウム水溶液またはヒドロキシエチルアミン水溶液を二酸化炭素吸収剤として使用する従来技術)と比較して、水加熱分のエネルギーが不要となるため、極めて緩和な条件下で二酸化炭素を発生させることが可能である。
 本発明の二酸化炭素発生方法により、二酸化炭素を発生させた後に再生するアミンは容易に回収することができ、再び水溶液とすることにより、本発明の二酸化炭素吸収剤として使用することができる(本発明の二酸化炭素吸収剤の再生工程)。
 上記一連のプロセス(二酸化炭素吸収工程(本発明の二酸化炭素吸収方法)、二酸化炭素発生工程(本発明の二酸化炭素発生方法)および本発明の二酸化炭素吸収剤の再生工程)を繰り返し行うことにより、大気中からの二酸化炭素の回収効率を飛躍的に向上させると共に、回収された二酸化炭素の活用に際しては、外部エネルギーの使用量を顕著に低減することができる、環境調和型のプロセスを実現することが可能である。
 以下に実施例を挙げて、本発明を更に具体的に説明するが、これによって本発明が限定されるものではなく、また本発明の範囲を逸脱しない範囲で変化させてもよい。二酸化炭素(CO)吸収量は、東横化学株式会社製のCO吸脱着装置を用いて計測した。
 元素分析は、J-SCIENCE LAB JM10を用いて実行した。
 二酸化炭素の濃度は、God Ability(GA)社製の二酸化炭素濃度計(GC-02)を用いて計測した。
 重量は、A&D社製の電子天秤(EK-610i)を用いて測定した。
 以下の実施例中の%は、特に断らない限り重量%を示す。
 m-キシリレンジアミン(東京化成工業株式会社製)、ベンジルアミン(東京化成工業株式会社製)、フェネチルアミン(東京化成工業株式会社製)、p-メトキシベンジルアミン(富士フイルム和光純薬株式会社製)およびp-トリフルオロメチルベンジルアミン(東京化成工業株式会社製)は、市販品をそのまま使用することができる。
実施例1
 窒素/二酸化炭素混合ガス気流下における、m-キシリレンジアミン水溶液(m-キシリレンジアミンの含量:1、3、6、13、23、30、50または75重量%)、あるいはm-キシリレンジアミン自体(100重量%)存在下での時間経過に伴う二酸化炭素濃度(ppm)の変化
(実験操作)
 室温下、各濃度のm-キシリレンジアミン(7.58mmol)の水溶液(1、3、6、13、23、30、50および75重量%)、ならびにm-キシリレンジアミン自体(7.58mmol;m-キシリレンジアミン濃度が100重量%)を、二酸化炭素吸収剤として、それぞれ別々に円筒形の反応容器(直径5.5cm、高さ9cmまたは13cm)に入れて、窒素/二酸化炭素混合ガス(二酸化炭素濃度:約1vol%)をマスフローコントローラ(MFC)で流速25mL/分で反応容器に流し、出口(流出口)側に設けた直方体形容器(縦6cm、横6cm、高さ13cm)内の二酸化炭素濃度(ppm)を、二酸化炭素濃度計で経時的に測定した。
 なお、二酸化炭素濃度を測定する直方体形容器からは適宜ガスが流出する仕組みとなっており、圧力変化がない装置構成となっている。
(実験結果)
 直方体形容器内の二酸化炭素濃度(ppm)の変化を表1、図1-1および図1-2に示した。
Figure JPOXMLDOC01-appb-T000001
 表1、図1-1および図1-2の結果から、m-キシリレンジアミンの含有量が、50重量%(75重量%および100重量%)を超えると、二酸化炭素の吸収効率に顕著な低下がみられることが確認された。また、m-キシリレンジアミン濃度が1~100重量%の範囲において、反応後の二酸化炭素吸収剤が固化していることが確認された。
実施例2
 大気(二酸化炭素濃度:約450ppm)気流下における、6重量%濃度のm-キシリレンジアミン水溶液存在下での時間経過に伴う二酸化炭素濃度(ppm)の変化
(実験操作)
 室温下、6重量%濃度のm-キシリレンジアミン(7.58mmol)の水溶液を、円筒形の反応容器(直径5.5cm、高さ13cm)に入れて、大気(二酸化炭素濃度:約450ppm)をMFCで流速250mL/分で反応容器に流し、出口(流出口)側に設けた直方体形容器(縦6cm、横6cm、高さ13cm)内の二酸化炭素濃度(ppm)を、二酸化炭素濃度計で経時的に測定した。
 なお、二酸化炭素濃度を測定する直方体形容器からは適宜ガスが流出する仕組みとなっており、圧力変化がない装置構成となっている。
(実験結果)
 直方体形容器内の二酸化炭素濃度(ppm)の変化を表2および図2に示した。
Figure JPOXMLDOC01-appb-T000002
 表2および図2の結果から、実験開始後18時間経過後までは、200ppm以下の二酸化炭素濃度に維持することが出来、実験開始後40時間経過後まで、二酸化炭素吸着活性を示すことが確認された。これらの結果は、本発明の二酸化炭素吸着剤が高い二酸化炭素吸着能を有することを裏付けるものである。
実施例3
 大気(二酸化炭素濃度:約450ppm)雰囲気下における、時間経過に伴う6重量%濃度のm-キシリレンジアミン水溶液の質量変化
(実験操作)
 室温下、6重量%濃度のm-キシリレンジアミン(7.58mmol)の水溶液(試験溶液)を、直径8cmのシャーレに入れ、大気中で放置し、その質量の増加量を経時的に測定した。
 なお、水揮発分を考慮するため、同条件下で同量の水のみを用いた対照実験を行い、経時的な水の揮発量を算出し、その減少分を試験溶液の初期値からの変化(差)から差し引いた数値を、質量増加量(g)として算出した。
(実験結果)
 時間経過に伴う、試験溶液の質量(g)の変化を表3および図3に示した。
Figure JPOXMLDOC01-appb-T000003
 表3および図3の結果から、大気中に放置しておくだけで、時間依存的に試験溶液の質量が増加することが確認された。これらの結果は、本発明の二酸化炭素吸着剤が大気雰囲気下においても、高い二酸化炭素吸着能を有することを裏付けるものである。
実施例4
 実施例2の反応後に析出した固体をろ取し、付着した湿気を除去して得られた固体の元素分析を測定した結果、[3-(アミノメチル)ベンジル]カルバミン酸[組成式:C12]であることが分かった(941mg;7.58mmol;収率:69%)。得られた固体の元素分析を3回測定した結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4の結果から、固液分離により得られた[3-(アミノメチル)ベンジル]カルバミン酸は、水中から単離されたにも拘わらず、水和物ではなく、極めて疎水性の高い固体であることが確認された。
実施例5
 大気(二酸化炭素濃度:約450ppm)気流下における、6重量%濃度の、m-キシリレンジアミン、ベンジルアミン、フェネチルアミン、p-メトキシベンジルアミンまたはp-トリフルオロメチルベンジルアミンの水溶液存在下での時間経過に伴う二酸化炭素濃度(ppm)の変化
(実験操作)
 実施例2と同様に、室温下、6重量%濃度の、m-キシリレンジアミン(MXDA)(7.58mmol)、ベンジルアミン(BZA)(7.58mmol)、フェネチルアミン(PEA)(7.58mmol)、p-メトキシベンジルアミン(PMBZA)(7.58mmol)またはp-トリフルオロメチルベンジルアミン(PTFMBZA)(7.58mmol)の水溶液を、それぞれ反応容器に入れて、大気(二酸化炭素濃度:約450ppm)をMFCで流速250mL/分で反応容器に流し、出口(流出口)側に設けた直方体形容器(縦6cm、横6cm、高さ13cm)内の二酸化炭素濃度(ppm)を、二酸化炭素濃度計で経時的(0~10時間)に測定した。
(実験結果)
 各アミンの水溶液存在下における直方体形容器内の二酸化炭素濃度(ppm)の変化を表5および図4に示した。
Figure JPOXMLDOC01-appb-T000005
 表5および図4の結果から、実験開始後10時間経過後までは、いずれのアミンを用いた場合でも、m-キシリレンジアミンの場合と同様に、200ppm程度までの二酸化炭素濃度に維持することが出来、良好な二酸化炭素吸着活性を示すことが確認された。また、実験開始後6時間までの初期段階では、m-キシリレンジアミンよりも高い二酸化炭素吸着能を示すアミン(フェネチルアミンおよびp-メトキシベンジルアミン)も確認された。
 本発明の二酸化炭素吸収剤は、公知の二酸化炭素吸収剤と比較して高い二酸化炭素吸収能を有することから、大気中に低濃度でしか存在しない二酸化炭素であっても、室温下、常圧下で効率良く吸収、固定化することができるという利点を有する。また、二酸化炭素固定化後に生成(析出)するカルバミン酸誘導体(例、[3-(アミノメチル)ベンジル]カルバミン酸)または重炭酸塩は、極めて疎水性が高いために、簡便な操作(固液分離)により水を含むことなく単離することができ、水を含まないことにより、エネルギー効率良く、緩和な条件下で二酸化炭素を放出させて炭素源として有効利用することができる。それ故、本発明によれば、外部エネルギー(加温、加圧、撹拌等)の使用を極力抑えながら、大気中の二酸化炭素を効率良く吸収、固定化し、大気由来の二酸化炭素を適時に放出することができる点で、地球環境に優しい二酸化炭素吸収剤および二酸化炭素の有効活用方法を提供することができる。
 本出願は、日本国で2021年2月22日に出願された特願2021-026634を基礎としており、その内容は本明細書にすべて包含されるものである。

Claims (14)

  1.  m-キシリレンジアミン、ベンジルアミン、フェネチルアミン、p-メトキシベンジルアミンおよびp-トリフルオロメチルベンジルアミンからなる群より選択されるアミン、および水からなり、全量に対するアミンの含有量が、1~50重量%であることを特徴とする、大気中の二酸化炭素吸収剤。
  2.  アミンが、m-キシリレンジアミンである、請求項1に記載の二酸化炭素吸収剤。
  3.  アミンが、ベンジルアミンである、請求項1に記載の二酸化炭素吸収剤。
  4.  アミンが、フェネチルアミンである、請求項1に記載の二酸化炭素吸収剤。
  5.  アミンが、p-メトキシベンジルアミンである、請求項1に記載の二酸化炭素吸収剤。
  6.  アミンが、p-トリフルオロメチルベンジルアミンである、請求項1に記載の二酸化炭素吸収剤。
  7.  アミンの含有量が、3~30重量%である、請求項1~6のいずれか一項に記載の二酸化炭素吸収剤。
  8.  アミンの含有量が、3~15重量%である、請求項1~6のいずれか一項に記載の二酸化炭素吸収剤。
  9.  アミンの含有量が、3~6重量%である、請求項1~6のいずれか一項に記載の二酸化炭素吸収剤。
  10.  請求項1~9のいずれか一項に記載の二酸化炭素吸収剤を放置して大気中の二酸化炭素を吸収させることにより析出するカルバミン酸誘導体または重炭酸塩を固液分離により回収する工程、および回収されたカルバミン酸誘導体または重炭酸塩を、酸と反応させるか、または加熱することにより、二酸化炭素を発生させる工程を含む、二酸化炭素の発生方法。
  11.  請求項2または7~9のいずれか一項に記載の二酸化炭素吸収剤を使用し、かつ、カルバミン酸誘導体または重炭酸塩が、[3-(アミノメチル)ベンジル]カルバミン酸である、請求項10に記載の二酸化炭素の発生方法。
  12.  酸が、塩酸、過塩素酸、リン酸、シュウ酸、マロン酸、リンゴ酸、グリコール酸およびトリフルオロ酢酸からなる群から選択される、請求項11に記載の方法。
  13.  加熱が、約120~140℃で行われる、請求項11に記載の方法。
  14.  請求項11~13のいずれか一項に記載の方法により回収されるm-キシリレンジアミンに、水を加えて、請求項2に記載の二酸化炭素吸収剤を再生させて、それを二酸化炭素吸収剤として使用することを特徴とする、請求項11~13のいずれか一項に記載の方法。
PCT/JP2022/002780 2021-02-22 2022-01-26 大気由来の二酸化炭素の吸収剤 WO2022176534A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023500670A JPWO2022176534A1 (ja) 2021-02-22 2022-01-26
US18/547,240 US20240123397A1 (en) 2021-02-22 2022-01-26 Absorber agent for carbon dioxide derived from atmosphere

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-026634 2021-02-22
JP2021026634 2021-02-22

Publications (1)

Publication Number Publication Date
WO2022176534A1 true WO2022176534A1 (ja) 2022-08-25

Family

ID=82931589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002780 WO2022176534A1 (ja) 2021-02-22 2022-01-26 大気由来の二酸化炭素の吸収剤

Country Status (3)

Country Link
US (1) US20240123397A1 (ja)
JP (1) JPWO2022176534A1 (ja)
WO (1) WO2022176534A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023153506A1 (ja) * 2022-02-14 2023-08-17 学校法人神戸学院 二酸化炭素の発生方法
WO2024111579A1 (ja) * 2022-11-22 2024-05-30 株式会社Inpex 二酸化炭素濃度低減システム、二酸化炭素濃度低減システム用設備及び二酸化炭素濃度低減方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879780A (ja) * 1972-01-29 1973-10-25
JPS5690299A (en) * 1979-12-24 1981-07-22 Tokyo Shibaura Electric Co Gas seperation device for radioactive gaseous waste monitor
JP2002126439A (ja) * 2000-10-25 2002-05-08 Kansai Electric Power Co Inc:The アミン回収方法及び装置並びにこれを備えた脱炭酸ガス装置
JP2011528993A (ja) * 2008-07-28 2011-12-01 イエフペ エネルジ ヌヴェル N,n,n’,n’−テトラメチルヘキサン−1,6−ジアミンと第1級または第2級アミン官能基を有する特定のアミンとに基づく吸収溶液、およびガス状流出物から酸性化合物を除去する方法
JP2012250205A (ja) * 2011-06-06 2012-12-20 Kawasaki Heavy Ind Ltd 二酸化炭素分離回収装置
JP2017031046A (ja) * 2015-07-29 2017-02-09 国立大学法人金沢大学 空気由来の二酸化炭素の吸収剤及び発生剤
JP2019127417A (ja) * 2018-01-24 2019-08-01 国立大学法人金沢大学 低エネルギー型の二酸化炭素発生方法、及び該方法に使用するための二酸化炭素発生剤

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879780A (ja) * 1972-01-29 1973-10-25
JPS5690299A (en) * 1979-12-24 1981-07-22 Tokyo Shibaura Electric Co Gas seperation device for radioactive gaseous waste monitor
JP2002126439A (ja) * 2000-10-25 2002-05-08 Kansai Electric Power Co Inc:The アミン回収方法及び装置並びにこれを備えた脱炭酸ガス装置
JP2011528993A (ja) * 2008-07-28 2011-12-01 イエフペ エネルジ ヌヴェル N,n,n’,n’−テトラメチルヘキサン−1,6−ジアミンと第1級または第2級アミン官能基を有する特定のアミンとに基づく吸収溶液、およびガス状流出物から酸性化合物を除去する方法
JP2012250205A (ja) * 2011-06-06 2012-12-20 Kawasaki Heavy Ind Ltd 二酸化炭素分離回収装置
JP2017031046A (ja) * 2015-07-29 2017-02-09 国立大学法人金沢大学 空気由来の二酸化炭素の吸収剤及び発生剤
JP2019127417A (ja) * 2018-01-24 2019-08-01 国立大学法人金沢大学 低エネルギー型の二酸化炭素発生方法、及び該方法に使用するための二酸化炭素発生剤

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023153506A1 (ja) * 2022-02-14 2023-08-17 学校法人神戸学院 二酸化炭素の発生方法
WO2024111579A1 (ja) * 2022-11-22 2024-05-30 株式会社Inpex 二酸化炭素濃度低減システム、二酸化炭素濃度低減システム用設備及び二酸化炭素濃度低減方法

Also Published As

Publication number Publication date
JPWO2022176534A1 (ja) 2022-08-25
US20240123397A1 (en) 2024-04-18

Similar Documents

Publication Publication Date Title
WO2022176534A1 (ja) 大気由来の二酸化炭素の吸収剤
Chen et al. Liquid-assisted mechanochemical synthesis of copper based MOF-505 for the separation of CO2 over CH4 or N2
US7795175B2 (en) Nano-structure supported solid regenerative polyamine and polyamine polyol absorbents for the separation of carbon dioxide from gas mixtures including the air
ES2741555T3 (es) Procedimiento para la captura y liberación de gases ácidos
US9968880B2 (en) Regenerative absorbents of modified amines on nano-structured supports
JP6300457B2 (ja) 二酸化炭素分離材及び二酸化炭素を分離又は回収する方法
CN106943845A (zh) 用于从气体混合物中吸收co2的方法和吸收介质
US8530375B2 (en) Regenerable solid imine sorbents
CN114225910B (zh) 一种具有NO吸附分离性能的胺基化改性Co-MOFs材料
US11872537B2 (en) Metal-organic frameworks for carbon dioxide capture
KR101911499B1 (ko) 히드라진 유도체를 이용한 이산화탄소의 포집 방법
CN108067181B (zh) 一氧化碳高选择性吸收剂及其制造方法
CN108976124B (zh) 一种co2捕集并直接合成碳酸二烷基酯的方法
KR101383762B1 (ko) 이산화탄소 흡수제 및 이의 사용 방법
CN109414677A (zh) 吸附剂及其制造方法、二氧化碳的除去方法、二氧化碳除去器、以及空调装置
KR101617268B1 (ko) Cage와 링커가 연결된 고분자 및 그 제조방법
JP6463186B2 (ja) 二酸化炭素を分離回収するための吸収剤、及びそれを用いた二酸化炭素の分離回収方法
CN113801146B (zh) 一种锌(ii)配合物单晶及其制备方法和应用
KR101474506B1 (ko) 포름아미딘기를 포함하는 이산화탄소 흡수제와 이의 제조방법 및 이를 포함하는 이산화탄소 흡수제 용액과 이를 이용한 이산화탄소 처리방법 및 이산화탄소 흡수제의 재생방법
EP4074414A1 (en) Crystalline sorbent materials for water capture and release
TW202313184A (zh) 二氧化碳吸收劑、二氧化碳之回收方法、及二氧化碳分離回收裝置
JPS61138531A (ja) 一酸化炭素吸収剤の改質方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22755858

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 18547240

Country of ref document: US

Ref document number: 2023500670

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 17.10.2023)