WO2023153493A1 - 面状発熱体 - Google Patents

面状発熱体 Download PDF

Info

Publication number
WO2023153493A1
WO2023153493A1 PCT/JP2023/004488 JP2023004488W WO2023153493A1 WO 2023153493 A1 WO2023153493 A1 WO 2023153493A1 JP 2023004488 W JP2023004488 W JP 2023004488W WO 2023153493 A1 WO2023153493 A1 WO 2023153493A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
heating element
terminal
planar heating
ptc
Prior art date
Application number
PCT/JP2023/004488
Other languages
English (en)
French (fr)
Inventor
真志 梶
貴之 日置
Original Assignee
東京コスモス電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京コスモス電機株式会社 filed Critical 東京コスモス電機株式会社
Publication of WO2023153493A1 publication Critical patent/WO2023153493A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater

Definitions

  • the present disclosure relates to planar heating elements.
  • An object of one aspect of the present disclosure is to provide a planar heating element capable of improving the efficiency of temperature control.
  • a planar heating element includes an insulating sheet having a first surface and a second surface that is the back surface thereof, a PTC (Positive Temperature Coefficient) element provided on the first surface, and an electrode provided on the second surface, wherein the PTC element is provided on the first surface so as to surround the outer peripheral portion of the first surface and is connected in series with the electrode.
  • the electrode is provided on the second surface so that a portion of the electrode overlaps the position of the PTC element on the first surface.
  • the efficiency of temperature control can be improved.
  • FIG. 1 is a front view showing a first surface of a sheet heating element according to Embodiment 1 of the present disclosure.
  • FIG. 2 is a front view showing the second surface of the planar heating element according to Embodiment 1 of the present disclosure.
  • FIG. 3 is a front view showing the second surface superimposed on the first surface of the planar heating element according to Embodiment 1 of the present disclosure.
  • FIG. 4 is a front view showing the second surface of the planar heating element according to Embodiment 2 of the present disclosure.
  • FIG. 5 is a front view showing the second surface superimposed on the first surface of the planar heating element according to Embodiment 2 of the present disclosure.
  • FIG. 6 is a front view showing the second surface of the planar heating element according to Embodiment 3 of the present disclosure.
  • FIG. 7 is a front view showing the second surface superimposed on the first surface of the planar heating element according to Embodiment 3 of the present disclosure.
  • FIG. 1 is a front view showing the first surface of a planar heating element 100 according to Embodiment 1.
  • FIG. 2 is a front view showing the second surface of the planar heating element 100 according to Embodiment 1.
  • FIG. 3 is a front view showing the second surface shown in FIG. 2 superimposed on the first surface shown in FIG. 1.
  • FIG. 1 is a front view showing the first surface of a planar heating element 100 according to Embodiment 1.
  • FIG. 2 is a front view showing the second surface of the planar heating element 100 according to Embodiment 1.
  • FIG. 3 is a front view showing the second surface shown in FIG. 2 superimposed on the first surface shown in FIG. 1.
  • the planar heating element 100 has an insulating sheet 1 as an electrically insulating base material.
  • the insulating sheet 1 is a planar member, and has a first surface and a second surface, which is the rear surface of the first surface.
  • the planar heating element 100 has electrodes 2 to 4, a PTC (Positive Temperature Coefficient) element 5, terminals 6 to 9, and an electrode 11.
  • PTC Positive Temperature Coefficient
  • the first surface of the planar heating element 100 (specifically, the first surface of the insulating sheet 1) has electrodes 2 to 4 and a PTC element (PTC resistor). ) 5 are provided.
  • an electrode 11 is provided on the second surface of the planar heating element 100 (specifically, the second surface of the insulating sheet 1).
  • the PTC element 5 is an element that has a self-temperature control function (a function that limits the current by increasing the resistance value when the temperature reaches a predetermined temperature). As shown in FIGS. 1 and 3, the PTC element 5 is provided so as to surround the outer peripheral portion of the insulating sheet 1 (in other words, along the outer periphery of the insulating sheet 1).
  • the electrodes 2 to 4 are spaced apart from each other, as shown in FIGS. As a result, the electrodes 2 to 4 are electrically insulated.
  • the electrodes 2 to 4 are provided with terminals 6, 7 to 8, and 9, respectively. These terminals 6 to 9 are conductive members for conducting the first surface side and the second surface side of the insulating sheet 1 .
  • the terminal 6 is provided through the electrode 2 and the insulating sheet 1 .
  • a lead wire (not shown) is connected to the first surface side of the terminal 6 .
  • the terminals 7 and 8 are provided through the electrodes 3 and the insulating sheet 1, respectively.
  • the terminal 8 is electrically connected to the electrode 11 on the second surface side, as shown in FIGS.
  • a lead wire (not shown) is connected to the first surface side of the terminal 7 .
  • the terminal 9 is provided through the electrode 4 and the insulating sheet 1 .
  • the terminal 9 is electrically connected to the electrode 11 on the second surface side, as shown in FIGS.
  • the electrodes 2 and 4 each have a comb-shaped portion between the PTC element 5 and the insulating sheet 1 .
  • the shape of the contour of the comb tooth-shaped portion is substantially the same as the shape of the PTC element 5 shown in FIG. That is, the comb tooth-shaped portion is provided so as to surround the outer peripheral portion of the insulating sheet 1 (in other words, along the outer periphery of the insulating sheet 1).
  • the comb tooth-shaped portion of the electrode 2 includes a plurality of comb teeth spaced apart from each other and arranged in parallel so as to surround the outer peripheral portion of the insulating sheet 1 .
  • the tips of the plurality of comb teeth are arranged in the vicinity of the electrode 4 without being in contact therewith.
  • the comb tooth-shaped portion of the electrode 4 includes a plurality of comb teeth spaced apart from each other and arranged in parallel so as to surround the outer peripheral portion of the insulating sheet 1 .
  • the tips of the plurality of comb teeth are arranged in the vicinity of the electrode 2 without contacting it.
  • the plurality of comb teeth of the electrode 2 and the plurality of comb teeth of the electrode 4 are combined so as not to come into contact with each other.
  • the PTC element 5 is provided on each of the comb-shaped portions of the electrodes 2 and 4 thus interlocked with each other.
  • the electrode 11 is a linear electrode. As shown in FIGS. 2 and 3, one end of electrode 11 is connected to terminal 8 and the other end of electrode 11 is connected to terminal 9 . Also, most of the electrode 11 is zigzagging.
  • the electrode 11 is provided on the second surface so that a portion of the electrode 11 overlaps the position of the PTC element 5 provided on the first surface. Moreover, as shown in FIG. 3, the electrode 11 is arranged on the second surface so that most of the electrode 11 is located inside the PTC element 5 provided on the first surface (the area surrounded by the PTC element 5). be provided.
  • the electrode 11 may be, for example, a pre-patterned metal wire disposed on the insulating sheet 1, or a metal layer disposed on the insulating sheet 11 patterned by etching, cutting, or the like. good too.
  • the current that has passed through the terminal 8 flows through the electrode 11 and reaches the terminal 9 on the second surface. This energization causes the electrode 11 to generate heat.
  • the current that has passed through the terminal 9 flows through the electrode 4, the PTC element 5, and the electrode 2 in order on the first surface and reaches the terminal 6.
  • This energization causes the PTC element 5 to operate as a heating element that performs self-temperature control.
  • the current flows into a lead wire (not shown) connected to the first surface side of the terminal 6 .
  • the PTC element 5 is connected in series with the electrode 11 .
  • the terminals 6 and 7 may be used as the input end and the output end of the current, respectively. In that case, the current flows in the opposite order as described above.
  • FIG. 4 is a front view showing the second surface of the planar heating element 100 according to the second embodiment.
  • 5 is a front view showing the second surface shown in FIG. 4 superimposed on the first surface shown in FIG. 1.
  • the first surface of the planar heating element 100 according to Embodiment 2 is the same as that of Embodiment 1 (see FIG. 1), so description thereof will be omitted here.
  • the second surface of the planar heating element 100 is provided with electrodes 12 including strip electrodes 12a and 12b and linear electrodes 12c.
  • One end of the strip-shaped electrode 12a is connected to the terminal 8. A portion of the strip-shaped electrode 12a is provided along the right side of the second surface.
  • One end of the strip-shaped electrode 12b is connected to the terminal 9. A portion of the strip-shaped electrode 12b is provided along the left side of the second surface.
  • the linear electrode 12c includes three parts formed in a zigzag shape (hereinafter referred to as zigzag parts). In each zigzag portion, one end is connected to the strip electrode 12a and the other end is connected to the strip electrode 12b.
  • the electrodes 12 are patterned by, for example, printing (e.g., screen printing) a conductive paste (e.g., copper paste or silver paste) on the insulating sheet 1, but are not limited thereto. It may be formed by a method.
  • a conductive paste e.g., copper paste or silver paste
  • the electrode 12 is provided on the second surface such that a portion thereof (for example, a portion of the linear electrode 12c) overlaps the position of the PTC element 5 provided on the first surface. . Further, as shown in FIG. 5, most of the electrode 12 (for example, most of the linear electrode 12c) is inside the PTC element 5 provided on the first surface (the area surrounded by the PTC element 5). ) is provided on the second surface.
  • the current that has passed through the terminal 8 flows sequentially through the electrodes 12a, 12c, and 12b on the second surface and reaches the terminal 9. This energization causes the electrode 12 to generate heat.
  • the current that has passed through the terminal 9 flows through the electrode 4, the PTC element 5, and the electrode 2 in order on the first surface and reaches the terminal 6.
  • This energization causes the PTC element 5 to operate as a heating element that performs self-temperature control.
  • the current flows into a lead wire (not shown) connected to the first surface side of the terminal 6 .
  • the PTC element 5 is connected in series with the electrode 12 .
  • the terminals 6 and 7 may be used as the input end and the output end of the current, respectively. In that case, the current flows in the opposite order as described above.
  • FIG. 6 is a front view showing the second surface of the planar heating element 100 according to the third embodiment.
  • 7 is a front view showing the second surface shown in FIG. 6 superimposed on the first surface shown in FIG. 1.
  • the first surface of the planar heating element 100 according to Embodiment 3 is the same as that of Embodiment 1 (see FIG. 1), so description thereof will be omitted here. Since the transparent electrode 13 is used in this embodiment, it is preferable to use a transparent member for the insulating sheet 1 as well.
  • a transparent electrode 13 and strip electrodes 14 and 15 are provided on the second surface of the planar heating element 100 .
  • the transparent electrode 13 is provided on substantially the entire second surface of the insulating sheet 1 (excluding the lower portion of the second surface).
  • Examples of the transparent electrode 13 include, but are not limited to, an AG (silver) film or an ITO (indium tin oxide) film.
  • One end of the strip-shaped electrode 14 is connected to the terminal 8 .
  • a portion of the strip-shaped electrode 14 is provided along the right side of the second surface and in contact with the transparent electrode 13 .
  • One end of the strip-shaped electrode 15 is connected to the terminal 9 .
  • a portion of the strip-shaped electrode 15 is provided along the left side of the second surface and in contact with the transparent electrode 13 .
  • the transparent electrode 13 is provided almost entirely on the second surface, as shown in FIG. 7, a part of the transparent electrode 13 overlaps the position of the PTC element 5 provided on the first surface. . Further, as shown in FIG. 7, the second surface of the transparent electrode 13 is arranged so that most of the transparent electrode 13 is located inside the PTC element 5 provided on the first surface (the area surrounded by the PTC element 5). provided in
  • the current that has passed through the terminal 8 flows through the electrode 14 , the transparent electrode 13 and the electrode 15 in order on the second surface, and reaches the terminal 9 .
  • This energization causes the transparent electrode 13 to generate heat.
  • the current that has passed through the terminal 9 flows through the electrode 4, the PTC element 5, and the electrode 2 in order on the first surface and reaches the terminal 6.
  • This energization causes the PTC element 5 to operate as a heating element that performs self-temperature control.
  • the current flows into a lead wire (not shown) connected to the first surface side of the terminal 6 .
  • the PTC element 5 is connected in series with the transparent electrode 13 and the electrodes 14 and 15 .
  • the terminals 6 and 7 may be used as the input end and the output end of the current, respectively. In that case, the current flows in the opposite order as described above.
  • the planar heating element 100 according to Embodiment 3 is attached to a transparent member of an optical device (for example, a protective glass provided in front of an imaging element, etc.), for example, with double-sided tape.
  • an optical device for example, a protective glass provided in front of an imaging element, etc.
  • the optical device include, but are not limited to, an in-vehicle camera that detects the surroundings of the vehicle (can be called a collision prevention camera), a surveillance camera attached to a building, an in-vehicle electronic door mirror, and the like.
  • the planar heating element 100 may be attached to a transparent member (for example, a glass window of a vehicle, etc.) other than the optical device.
  • the sheet heating elements 100 according to Embodiments 1 to 3 have been described above.
  • the effects of the planar heating elements 100 according to Embodiments 1 to 3 are summarized below.
  • a planar heating element 100 includes an insulating sheet 1 having a first surface and a second surface which is the back surface thereof, a PTC element 5 provided on the first surface, and a
  • the PTC element 5 has an electrode 11 (electrode 12 in Embodiment 2, transparent electrode 13 in Embodiment 3, the same applies hereinafter) provided on the first surface so as to surround the outer peripheral portion of the first surface. and is connected in series with the electrode 11, and the electrode 11 is provided on the second surface so that a portion of the electrode 11 overlaps the position of the PTC element 5 on the first surface. .
  • the PTC element 5 is provided on the first surface so as to surround the outer peripheral portion of the first surface. Temperature control can be performed evenly (in other words, evenly) over the entire surface of the sheet 1). Therefore, the efficiency of temperature control can be improved.
  • the PTC element 5 and the electrode 11 are connected in series, so temperature control in the electrode 11 can be achieved with higher accuracy.
  • the electrode 11 is provided on the second surface so that a portion of the electrode 11 overlaps the position of the PTC element 5 on the first surface. , the temperature of the electrode 11 can be controlled with higher accuracy.
  • planar heating element of the present disclosure is useful as a planar heating element in which electrodes and PTC elements are provided on a planar substrate.

Landscapes

  • Resistance Heating (AREA)

Abstract

面状発熱体は、温度制御の効率を向上させることができる面状発熱体を提供する。面状発熱体は、第1面と、その裏面である第2面とを備えた絶縁シートと、前記第1面に設けられたPTC(Positive Temperature Coefficient)素子と、前記第2面に設けられた電極と、を有し、前記PTC素子は、前記第1面の外周部分を取り囲むように前記第1面に設けられているとともに、前記電極と直列に接続されており、前記電極は、その一部分が前記第1面における前記PTC素子の位置と重なるように前記第2面に設けられている。

Description

面状発熱体
 本開示は、面状発熱体に関する。
 従来、平面状の基材の表面に電極とPTC(Positive Temperature Coefficient)素子とが設けられた面状発熱体が知られている(例えば、特許文献1参照)。
日本国特開2021-125383号公報
 従来の面状発熱体では、温度制御の効率の点で改善の余地があった。
 本開示の一態様の目的は、温度制御の効率を向上させることができる面状発熱体を提供することである。
 本開示の一態様に係る面状発熱体は、第1面と、その裏面である第2面とを備えた絶縁シートと、前記第1面に設けられたPTC(Positive Temperature Coefficient)素子と、前記第2面に設けられた電極と、を有し、前記PTC素子は、前記第1面の外周部分を取り囲むように前記第1面に設けられているとともに、前記電極と直列に接続されており、前記電極は、その一部分が前記第1面における前記PTC素子の位置と重なるように前記第2面に設けられている。
 本開示によれば、温度制御の効率を向上させることができる。
図1は、本開示の実施の形態1に係る面状発熱体の第1面を示す正面図である。 図2は、本開示の実施の形態1に係る面状発熱体の第2面を示す正面図である。 図3は、本開示の実施の形態1に係る面状発熱体の第1面に第2面を重ねて示す正面図である。 図4は、本開示の実施の形態2に係る面状発熱体の第2面を示す正面図である。 図5は、本開示の実施の形態2に係る面状発熱体の第1面に第2面を重ねて示す正面図である。 図6は、本開示の実施の形態3に係る面状発熱体の第2面を示す正面図である。 図7は、本開示の実施の形態3に係る面状発熱体の第1面に第2面を重ねて示す正面図である。
 以下、本開示の実施の形態1~3に係る面状発熱体100について、図1~図7を参照しながら説明する。なお、各図において共通する構成要素については同一の符号を付し、それらの説明は適宜省略する。
 (実施の形態1)
 実施の形態1に係る面状発熱体100について、図1~図3を参照して説明する。図1は、実施の形態1に係る面状発熱体100の第1面を示す正面図である。図2は、実施の形態1に係る面状発熱体100の第2面を示す正面図である。図3は、図1に示す第1面に図2に示す第2面を重ねて示す正面図である。
 図1~図3に示すように、面状発熱体100は、電気的な絶縁性を有する基材として、絶縁シート1を有する。絶縁シート1は、平面状の部材であり、第1面と、その裏面である第2面とを有する。
 また、図1~図3に示すように、面状発熱体100は、電極2~4、PTC(Positive Temperature Coefficient)素子5、端子6~9、および電極11を有する。
 図1に示すように、面状発熱体100の第1面(具体的には、絶縁シート1の第1面)には、電極2~4と、PTC素子(PTC抵抗体と言ってもよい)5とが設けられている。
 一方、図2に示すように、面状発熱体100の第2面(具体的には、絶縁シート1の第2面)には、電極11が設けられている。
 PTC素子5は、自己温度制御機能(所定の温度になった場合に、抵抗値が増加することで電流が制限される機能)を備えた素子である。PTC素子5は、図1、図3に示すように、絶縁シート1の外周部分を取り囲むように(言い換えると、絶縁シート1の外周に沿って)設けられている。
 電極2~4は、図1、図3に示すように、互いに離間して設けられている。これにより、電極2~4では、電気的絶縁性が確保されている。
 また、図1、図3に示すように、電極2~4には、それぞれ、端子6、端子7~8、端子9が設けられている。これらの端子6~9は、絶縁シート1の第1面側と第2面側とを導通させるための導電部材である。
 端子6は、電極2および絶縁シート1を貫通して設けられている。端子6の第1面側には、図示しないリード線が接続される。
 端子7、8は、それぞれ、電極3および絶縁シート1を貫通して設けられている。端子8は、図2、図3に示すように、第2面側において電極11と導通する。端子7の第1面側には、図示しないリード線が接続される。
 端子9は、電極4および絶縁シート1を貫通して設けられている。端子9は、図2、図3に示すように、第2面側において電極11と導通する。
 また、図示は省略しているが、電極2、4は、それぞれ、PTC素子5と絶縁シート1との間に、櫛歯形状部を有する。櫛歯形状部の輪郭の形状は、図1に示したPTC素子5の形状とほぼ同じである。すなわち、櫛歯形状部は、絶縁シート1の外周部分を取り囲むように(言い換えると、絶縁シート1の外周に沿って)設けられている。
 具体的には、電極2の櫛歯形状部は、互いに離間して並列に配置された複数の櫛歯を含み、それらが絶縁シート1の外周部分を取り囲むように設けられている。そして、複数の櫛歯の先端は、電極4に接触することなく、その近傍に配置されている。同様に、電極4の櫛歯形状部は、互いに離間して並列に配置された複数の櫛歯を含み、それらは、絶縁シート1の外周部分を取り囲むように設けられている。そして、複数の櫛歯の先端は、電極2に接触することなく、その近傍に配置されている。また、電極2における複数の櫛歯と、電極4における複数の櫛歯とは、互いに接触しないように、組み合っている。PTC素子5は、このように互いに組み合った電極2、4それぞれの櫛歯形状部の上に設けられている。
 電極11は、線状電極である。図2、図3に示すように、電極11の一端は、端子8に接続されており、電極11の他端は端子9に接続されている。また、電極11の大部分は、つづら折り状である。
 また、図3に示すように、電極11は、その一部分が、第1面に設けられたPTC素子5の位置と重なるように、第2面に設けられる。また、図3に示すように、電極11は、その大部分が、第1面に設けられたPTC素子5の内側(PTC素子5により囲まれた領域)に位置するように、第2面に設けられる。
 電極11は、例えば、予めパターン形成された金属線を絶縁シート1上に配置したものでもよいし、絶縁シート11上に配置された金属層をエッチングや刃型等によりパターン形成したものであってもよい。
 次に、上述のように構成された面状発熱体100における電流の流れについて説明する。なお、ここでは、電流の入力端が端子7であり、電流の出力端が端子6である場合を例に挙げて説明する。
 端子7の第1面側に接続されたリード線(図示略)から端子7に流れ込んだ電流は、第1面において、電極3を介して端子8に到達する。
 次に、端子8を経た電流は、第2面において、電極11を流れ、端子9に到達する。この通電により、電極11は発熱する。
 次に、端子9を経た電流は、第1面において、電極4、PTC素子5、電極2を順に流れ、端子6に到達する。この通電により、PTC素子5は、自己温度制御を行う発熱体として動作する。そして、電流は、端子6の第1面側に接続されたリード線(図示略)へ流入する。
 このような電流の流れから、PTC素子5は、電極11と直列に接続されていると言うことができる。
 なお、電流の入力端および出力端をそれぞれ端子6、7としてもよい。その場合、電流は、上述した順とは逆に流れる。
 (実施の形態2)
 実施の形態2に係る面状発熱体100について、図4、図5を参照して説明する。図4は、実施の形態2に係る面状発熱体100の第2面を示す正面図である。図5は、図1に示す第1面に図4に示す第2面を重ねて示す正面図である。
 実施の形態2に係る面状発熱体100の第1面は、実施の形態1(図1参照)と同じであるので、ここでの説明は省略する。
 図4に示すように、面状発熱体100の第2面には、帯状電極12a、12b、および線状電極12cを含む電極12が設けられている。
 帯状電極12aの一端は、端子8に接続されている。また、帯状電極12aの一部分は、第2面の右辺に沿って設けられている。
 帯状電極12bの一端は、端子9に接続されている。また、帯状電極12bの一部分は、第2面の左辺に沿って設けられている。
 線状電極12cは、つづら折り状に形成された3つの部分(以下、つづら折り部という)を含む。各つづら折り部において、一端は帯状電極12aに接続され、他端は帯状電極12bに接続されている。
 電極12は、例えば、導電性ペースト(例えば、銅ペーストまたは銀ペースト)を絶縁シート1上に印刷(例えば、スクリーン印刷)することでパターン形成したものであるが、これに限定されず、その他の方法で形成されたものであってもよい。
 また、図5に示すように、電極12は、その一部分(例えば、線状電極12cの一部分)が、第1面に設けられたPTC素子5の位置と重なるように、第2面に設けられる。また、図5に示すように、電極12は、その大部分(例えば、線状電極12cの大部分)が、第1面に設けられたPTC素子5の内側(PTC素子5により囲まれた領域)に位置するように、第2面に設けられる。
 次に、上述のように構成された面状発熱体100における電流の流れについて説明する。なお、ここでは、電流の入力端が端子7であり、電流の出力端が端子6である場合を例に挙げて説明する。
 端子7の第1面側に接続されたリード線(図示略)から端子7に流れ込んだ電流は、第1面において、電極3を介して端子8に到達する。
 次に、端子8を経た電流は、第2面において、電極12a、12c、12bを順に流れ、端子9に到達する。この通電により、電極12は発熱する。
 次に、端子9を経た電流は、第1面において、電極4、PTC素子5、電極2を順に流れ、端子6に到達する。この通電により、PTC素子5は、自己温度制御を行う発熱体として動作する。そして、電流は、端子6の第1面側に接続されたリード線(図示略)へ流入する。
 このような電流の流れから、PTC素子5は、電極12と直列に接続されていると言うことができる。
 なお、電流の入力端および出力端をそれぞれ端子6、7としてもよい。その場合、電流は、上述した順とは逆に流れる。
 (実施の形態3)
 実施の形態3に係る面状発熱体100について、図6、図7を参照して説明する。図6は、実施の形態3に係る面状発熱体100の第2面を示す正面図である。図7は、図1に示す第1面に図6に示す第2面を重ねて示す正面図である。
 実施の形態3に係る面状発熱体100の第1面は、実施の形態1(図1参照)と同じであるので、ここでの説明は省略する。なお、本実施の形態では、透明電極13を用いるため、絶縁シート1も透明の部材を用いることが好ましい。
 図6に示すように、面状発熱体100の第2面には、透明電極13および帯状電極14、15が設けられている。
 透明電極13は、絶縁シート1の第2面のほぼ全体(第2面の下方部分を除く)に設けられている。透明電極13としては、例えば、AG(銀)膜またはITO(酸化インジウム・スズ)膜等が挙げられるが、これらに限定されない。
 帯状電極14の一端は、端子8に接続されている。また、帯状電極14の一部分は、第2面の右辺に沿って、かつ、透明電極13に接して設けられている。
 帯状電極15の一端は、端子9に接続されている。また、帯状電極15の一部分は、第2面の左辺に沿って、かつ、透明電極13に接して設けられている。
 また、透明電極13は、第2面のほぼ全体に設けられているため、図7に示すように、透明電極13の一部分は、第1面に設けられたPTC素子5の位置と重なっている。また、図7に示すように、透明電極13は、その大部分が、第1面に設けられたPTC素子5の内側(PTC素子5により囲まれた領域)に位置するように、第2面に設けられる。
 次に、上述のように構成された面状発熱体100における電流の流れについて説明する。なお、ここでは、電流の入力端が端子7であり、電流の出力端が端子6である場合を例に挙げて説明する。
 端子7の第1面側に接続されたリード線(図示略)から端子7に流れ込んだ電流は、第1面において、電極3を介して端子8に到達する。
 次に、端子8を経た電流は、第2面において、電極14、透明電極13、電極15を順に流れ、端子9に到達する。この通電により、透明電極13は発熱する。
 次に、端子9を経た電流は、第1面において、電極4、PTC素子5、電極2を順に流れ、端子6に到達する。この通電により、PTC素子5は、自己温度制御を行う発熱体として動作する。そして、電流は、端子6の第1面側に接続されたリード線(図示略)へ流入する。
 このような電流の流れから、PTC素子5は、透明電極13および電極14、15と直列に接続されていると言うことができる。
 なお、電流の入力端および出力端をそれぞれ端子6、7としてもよい。その場合、電流は、上述した順とは逆に流れる。
 実施の形態3に係る面状発熱体100は、例えば、両面テープにより、光学装置の透明部材(例えば、撮像素子の前方に設けられる保護ガラス等)に取り付けられる。光学装置としては、例えば、車両の周辺の状況を検知する車載カメラ(衝突防止カメラと言ってもよい)、建物等に取り付けられる監視カメラ、車載電子ドアミラー等が挙げられるが、これらに限定されない。なお、面状発熱体100は、光学装置以外に設けられる透明部材(例えば、車両のガラス窓等)に取り付けられてもよい。
 以上、実施の形態1~3に係る面状発熱体100について説明した。以下、実施の形態1~3に係る面状発熱体100の作用効果についてまとめる。
 本実施の形態に係る面状発熱体100は、第1面と、その裏面である第2面とを備えた絶縁シート1と、第1面に設けられたPTC素子5と、第2面に設けられた電極11(実施の形態2では電極12、実施の形態3では透明電極13。以下同様)と、を有し、PTC素子5は、第1面の外周部分を取り囲むように第1面に設けられているとともに、電極11と直列に接続されており、電極11は、その一部分が第1面におけるPTC素子5の位置と重なるように第2面に設けられていることを特徴とする。
 すなわち、本実施の形態の面状発熱体100では、PTC素子5が第1面の外周部分を取り囲むように第1面に設けられているため、面状発熱体100(具体的には、絶縁シート1)の全面に亘って満遍なく(言い換えれば、ムラ無く)温度制御を行うことができる。したがって、温度制御の効率を向上させることができる。
 また、本実施の形態の面状発熱体100では、PTC素子5と電極11とが直列に接続されているため、電極11における温度制御をより精度良く実現することができる。
 また、本実施の形態の面状発熱体100では、電極11は、その一部分が第1面におけるPTC素子5の位置と重なるように第2面に設けられているため、電極11の温度が迅速にPTC素子5に伝わるため、電極11における温度制御をより精度良く実現することができる。
 なお、本開示は、上記実施の形態1~3の説明に限定されず、その趣旨を逸脱しない範囲において種々の変形が可能である。
 本出願は、2022年2月14日付けで出願された日本国特許出願(特願2022-020304)に基づくものであり、その内容はここに参照として取り込まれる。
 本開示の面状発熱体は、平面状の基材に電極とPTC素子とが設けられた面状発熱体に有用である。
 1 絶縁シート
 2、3、4 電極
 5 PTC素子
 6、7、8、9 端子
 11、12 電極
 12a、12b 帯状電極
 12c 線状電極
 13 透明電極
 14、15 帯状電極
 100 面状発熱体

Claims (5)

  1.  第1面と、その裏面である第2面とを備えた絶縁シートと、
     前記第1面に設けられたPTC(Positive Temperature Coefficient)素子と、
     前記第2面に設けられた電極と、を有し、
     前記PTC素子は、前記第1面の外周部分を取り囲むように前記第1面に設けられているとともに、前記電極と直列に接続されており、
     前記電極は、その一部分が前記第1面における前記PTC素子の位置と重なるように前記第2面に設けられている、
     面状発熱体。
  2.  前記電極は、その大部分が前記第1面における前記PTC素子の内側に位置するように前記第2面に設けられている、
     請求項1に記載の面状発熱体。
  3.  前記電極は、線状電極および帯状電極のうち少なくとも一方を含む、
     請求項1に記載の面状発熱体。
  4.  前記線状電極または前記帯状電極は、つづら折り状である、
     請求項3に記載の面状発熱体。
  5.  前記電極は、前記第2面に設けられた透明電極である、
     請求項1に記載の面状発熱体。
PCT/JP2023/004488 2022-02-14 2023-02-10 面状発熱体 WO2023153493A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022020304A JP2023117633A (ja) 2022-02-14 2022-02-14 面状発熱体
JP2022-020304 2022-02-14

Publications (1)

Publication Number Publication Date
WO2023153493A1 true WO2023153493A1 (ja) 2023-08-17

Family

ID=87564482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004488 WO2023153493A1 (ja) 2022-02-14 2023-02-10 面状発熱体

Country Status (2)

Country Link
JP (1) JP2023117633A (ja)
WO (1) WO2023153493A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01204383A (ja) * 1988-02-06 1989-08-16 Ookura Techno Res Kk 複合熱素子
JPH09207723A (ja) * 1996-02-09 1997-08-12 Ichikoh Ind Ltd 車両用ミラーの曇取り・霜取り用ヒータ及びその製造方法
JP2006269241A (ja) * 2005-03-24 2006-10-05 Murakami Corp ヒータミラー
US20100266267A1 (en) * 2007-11-22 2010-10-21 Jui Harvest Co., Ltd. Far Infrared Ray Ceramic Plate Heating Module
JP2017525122A (ja) * 2014-06-13 2017-08-31 イノベーティブ センサー テクノロジー イスト アーゲーInnovative Sensor Technology Ist Ag Ptc抵抗構造を有する平面加熱素子
JP2017185896A (ja) * 2016-04-06 2017-10-12 トヨタ自動車株式会社 車両用撮影装置
WO2020004351A1 (ja) * 2018-06-25 2020-01-02 東京コスモス電機株式会社 ヒータ装置、ヒータ装置の製造方法、及び車載カメラ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01204383A (ja) * 1988-02-06 1989-08-16 Ookura Techno Res Kk 複合熱素子
JPH09207723A (ja) * 1996-02-09 1997-08-12 Ichikoh Ind Ltd 車両用ミラーの曇取り・霜取り用ヒータ及びその製造方法
JP2006269241A (ja) * 2005-03-24 2006-10-05 Murakami Corp ヒータミラー
US20100266267A1 (en) * 2007-11-22 2010-10-21 Jui Harvest Co., Ltd. Far Infrared Ray Ceramic Plate Heating Module
JP2017525122A (ja) * 2014-06-13 2017-08-31 イノベーティブ センサー テクノロジー イスト アーゲーInnovative Sensor Technology Ist Ag Ptc抵抗構造を有する平面加熱素子
JP2017185896A (ja) * 2016-04-06 2017-10-12 トヨタ自動車株式会社 車両用撮影装置
WO2020004351A1 (ja) * 2018-06-25 2020-01-02 東京コスモス電機株式会社 ヒータ装置、ヒータ装置の製造方法、及び車載カメラ

Also Published As

Publication number Publication date
JP2023117633A (ja) 2023-08-24

Similar Documents

Publication Publication Date Title
EP1197792A1 (en) Electrode structure of ec mirror
JP2003163071A (ja) 電熱窓ガラス
US6583919B1 (en) Electrochromic anti-glare mirror
WO2023153493A1 (ja) 面状発熱体
JP2007042330A (ja) 透明導電膜、これを用いた調光ガラスおよび発熱ガラス
JP2002134254A (ja) ヒーター付透明体
JP2023161415A (ja) 面状発熱体
JPH0689955A (ja) 熱電冷却器
US6433476B1 (en) EL lamp with heater electrode
WO2023276464A1 (ja) 面状発熱体、光学装置、および面状発熱体の製造方法
JPH06260265A (ja) 透明面状発熱体
WO2023276463A1 (ja) 面状発熱体、光学装置、および面状発熱体の製造方法
CN112889001B (zh) 加热装置
WO2023276462A1 (ja) 面状発熱体および光学装置
JP2005302553A (ja) 透光性フレキシブルヒータ
WO2021014817A1 (ja) フィルム部材
US4371862A (en) Variable resistance control
JPH09207723A (ja) 車両用ミラーの曇取り・霜取り用ヒータ及びその製造方法
JPH0579908A (ja) 焦電素子
JPH08153571A (ja) 加熱体、定着装置および画像形成装置
JP3250209B2 (ja) 電界発光素子及びその製造方法
JP2019102191A (ja) 面状ヒータ
JPH0719125Y2 (ja) 可変抵抗器
JP2020119879A (ja) ヒータおよびカメラモジュール
WO2013046782A1 (ja) 面状発熱体及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752955

Country of ref document: EP

Kind code of ref document: A1