WO2023153417A1 - 吸収式冷凍機の遠隔監視システム - Google Patents

吸収式冷凍機の遠隔監視システム Download PDF

Info

Publication number
WO2023153417A1
WO2023153417A1 PCT/JP2023/004106 JP2023004106W WO2023153417A1 WO 2023153417 A1 WO2023153417 A1 WO 2023153417A1 JP 2023004106 W JP2023004106 W JP 2023004106W WO 2023153417 A1 WO2023153417 A1 WO 2023153417A1
Authority
WO
WIPO (PCT)
Prior art keywords
cop
control unit
cause
absorbent
temperature
Prior art date
Application number
PCT/JP2023/004106
Other languages
English (en)
French (fr)
Inventor
修司 石崎
佑太 増渕
敬志 柳原
魁人 吉野
篤 海老澤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023153417A1 publication Critical patent/WO2023153417A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/58Remote control using Internet communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/04Arrangement or mounting of control or safety devices for sorption type machines, plants or systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Definitions

  • the present invention relates to a remote monitoring system for an absorption chiller, and more particularly to a remote monitoring system for an absorption chiller that accurately determines a decrease in heat exchange efficiency in a condenser.
  • a control device detects whether a difference between a cold water set temperature and a cold water outlet temperature, which are stable conditions, is within a predetermined range in the vicinity of a plurality of cooling loads, and whether the cooling water outlet temperature is within a predetermined range. If the assumed concentrated liquid concentration is lower than a predetermined value when the stable condition continues for a predetermined period of time, the absorption chiller performs a correction process to reduce the inverter frequency of the dilute absorbent pump. Disclose. Patent document 2 calculates the COP during cooling operation, calculates the COP increase/decrease rate from the calculated COP and the assumed COP, and determines that the average COP increase/decrease rate for one month is equal to or less than a predetermined value. , an absorption chiller equipped with a control device for issuing a maintenance instruction forecast.
  • the present disclosure provides a remote monitoring system for an absorption chiller that can constantly monitor the COP drop and analyze the cause of the COP drop.
  • the remote monitoring system for an absorption chiller of the present disclosure comprises a high temperature regenerator, a low temperature regenerator, an evaporator, a condenser and an absorber, which are connected by piping to monitor absorption liquid and refrigerant.
  • Absorption chillers each forming a circulation path are provided, and a control unit is provided.
  • the control unit determines whether the COP has decreased, and if it is determined that the COP has decreased As a result of analyzing and processing the cause of the decrease, and as a result of analyzing and processing the cause of the decrease of the COP, if there is no cause of the decrease of the COP, control for improving the COP is performed.
  • This specification includes all the contents of Japanese Patent Application/Patent Application No. 2022-018139 filed in Japan on February 8, 2022.
  • control unit can constantly monitor the COP drop and analyze the cause of the COP drop.
  • FIG. 1 is a schematic configuration diagram of an absorption chiller according to Embodiment 1.
  • FIG. 2 is a block diagram showing a control configuration according to Embodiment 1;
  • FIG. 3 is a flowchart showing the operation of the first embodiment;
  • FIG. 4 is a graph showing the relationship between cold water flow rate and cold water flow rate output
  • FIG. 5 is a graph showing the relationship between the gas flow rate and the opening degree of the gas fuel valve
  • FIG. 6 is an explanatory diagram showing the process of cause analysis processing
  • the present disclosure provides a remote monitoring system for an absorption chiller that can constantly monitor the COP drop and analyze the cause of the COP drop.
  • FIG. 1 is a schematic configuration diagram of an absorption chiller according to this embodiment.
  • the absorption chiller 100 uses water as a refrigerant and a lithium bromide (LiBr) aqueous solution as an absorption liquid.
  • LiBr lithium bromide
  • the absorption refrigerator 100 includes an evaporator 1, an absorber 2 arranged in parallel with the evaporator 1, and an evaporator absorber barrel 3 housing the evaporator 1 and the absorber 2.
  • a low-temperature regenerator 6, a condenser 7 arranged in parallel with this low-temperature regenerator 6, and these low-temperature regenerator 6 and condenser 7 are housed.
  • a cold regenerator condenser barrel 8 .
  • the absorption refrigerator 100 includes a low temperature heat exchanger 12, a high temperature heat exchanger 13, a refrigerant drain heat recovery device 17, a dilute absorbent pump 45, a rich absorbent pump 47, and a refrigerant pump 48. These devices are pipe-connected via absorption liquid pipes 21 to 25 and refrigerant pipes 31 to 35 to form a circulation path.
  • the evaporator 1 is provided with a cold water pipe 14 for circulating and supplying the brine heat-exchanged with the refrigerant in the evaporator 1 to a heat load (for example, an air conditioner) not shown.
  • a partially formed heat transfer tube 14A is arranged in the evaporator 1 .
  • the absorber 2 and the condenser 7 are provided with cooling water pipes 15 for passing cooling water through the absorber 2 and the condenser 7 in sequence.
  • 15B are arranged in the absorber 2 and the condenser 7 respectively.
  • the absorber 2 has the function of absorbing the refrigerant vapor evaporated in the evaporator 1 into the absorbing liquid and keeping the pressure inside the evaporator absorber barrel 3 in a high vacuum state.
  • a dilute absorbent reservoir 2A is formed in which the dilute absorbent diluted by absorbing the refrigerant vapor is stored.
  • One end of the liquid pipe 21 is connected.
  • the dilute absorbent pipe 21 is provided with a branched dilute absorbent pipe 21 A that branches downstream of the dilute absorbent pump 45 .
  • the branched dilute absorbent pipe 21A joins the dilute absorbent pipe 21 again on the downstream side of the low temperature heat exchanger 12 of the dilute absorbent pipe 21.
  • the other end of the dilute absorbent pipe 21 passes through the high-temperature heat exchanger 13 and is open to the air layer portion 5B located above the heat exchange portion 5A formed in the high-temperature regenerator 5 .
  • the dilute absorbent pipe 21 is branched into a second branch pipe 21B on the downstream side of the low temperature heat exchanger 12, and the second branch pipe 21B opens into the low temperature regenerator 6.
  • the high-temperature regenerator 5 is configured by housing a gas burner 4 in a shell 60, and above the gas burner 4, a heat exchange section 5A is formed to heat and regenerate the absorbent using the flame of the gas burner 4 as a heat source.
  • An exhaust path 40 through which exhaust gas burned by the gas burner 4 flows is connected to the heat exchange section 5A, and an exhaust gas heat exchanger 41 is provided in the exhaust path 40 .
  • a gas pipe 61 supplied with fuel gas and an intake pipe 63 supplied with air from a blower 62 are connected to the gas burner 4. Fuel gas and air are connected to these gas pipe 61 and intake pipe 63.
  • a control valve 64 is provided to control the amount of
  • an intermediate absorbent reservoir 5C Formed on the side of the heat exchanging portion 5A is an intermediate absorbent reservoir 5C in which the intermediate absorbent flowing out of the heat exchanging portion 5A after being thermally regenerated in the heat exchanging portion 5A is accumulated.
  • One end of a second intermediate absorbent pipe 23 is connected to the lower end of the intermediate absorbent reservoir 5C, and the second intermediate absorbent pipe 23 is provided with a high-temperature heat exchanger 13 .
  • the high-temperature heat exchanger 13 heats the absorbent flowing through the first intermediate absorbent tube 22 with the heat of the high-temperature intermediate absorbent flowing out of the intermediate absorbent reservoir 5C. We are trying to reduce fuel consumption.
  • the other end of the second intermediate absorbent pipe 23 is connected to a rich absorbent pipe 25 that connects the low temperature regenerator 6 and the absorber 2 .
  • the upstream side of the high-temperature heat exchanger 13 of the second intermediate absorbent pipe 23 and the absorber 2 are connected by an absorbent pipe 24 with an on-off valve V1 interposed therebetween.
  • the low-temperature regenerator 6 uses the refrigerant vapor separated by the high-temperature regenerator 5 as a heat source to heat and regenerate the absorbent accumulated in the absorbent reservoir 6A formed in the low-temperature regenerator 6.
  • a heat transfer pipe 31A formed in a part of the refrigerant pipe 31 extending from the upper end of the high temperature regenerator 5 to the bottom of the low temperature regenerator 6 is arranged. By circulating the refrigerant vapor through the refrigerant pipe 31, the heat of the refrigerant vapor is transmitted to the absorbent accumulated in the absorbent reservoir 6A via the heat transfer pipe 31A, and the absorbent is further concentrated.
  • a concentrated absorbent pipe 25 is connected to the absorbent reservoir 6A of the low-temperature regenerator 6, and the other end of the concentrated absorbent pipe 25 is connected to a concentrated solution sprayer provided above the air layer portion 2B of the absorber 2. 2C is connected.
  • a concentrated absorbent pump 47 and a low temperature heat exchanger 12 are provided in the concentrated absorbent pipe 25 .
  • the low-temperature heat exchanger 12 heats the dilute absorbent flowing through the dilute absorbent tube 21 with the heat of the concentrated absorbent flowing out of the absorbent reservoir 6B of the low-temperature regenerator 6 .
  • a bypass pipe 27 that bypasses the concentrated absorbent pump 47 and the low-temperature heat exchanger 12 is provided in the concentrated absorbent pipe 25 .
  • the absorbent accumulated in the absorbent reservoir 6A of the low temperature regenerator 6 is supplied into the absorber 2 through the concentrated absorbent pipe 25 and the bypass pipe 27 .
  • the refrigerant pipe 31 includes a heat transfer pipe 31A connected to the absorbent reservoir 6A of the low-temperature regenerator 6 and a refrigerant drain heat recovery device 17. It is connected to the portion 2B by a refrigerant pipe 32 in which an on-off valve V2 is interposed.
  • a refrigerant pipe 34 through which the refrigerant flowing out from the refrigerant reservoir 7A flows is connected to the refrigerant reservoir 7A of the condenser 7, and the other end of the refrigerant pipe 34 is a downwardly curved U-seal portion 34A. is connected to the gas layer portion 1A of the evaporator 1 via the .
  • a refrigerant reservoir 1B in which liquefied refrigerant is accumulated is formed below the evaporator 1, It is connected by a refrigerant pipe 35 in between.
  • the cooling water pipe 15 is provided with a cooling water inlet temperature sensor 36 for detecting the temperature of the cooling water flowing through the cooling water pipe 15 on the inlet side and a cooling water outlet temperature sensor 37 for detecting the temperature on the cooling water outlet side.
  • the cold water pipe 14 is provided with a cold water inlet temperature sensor 38 for detecting the temperature of the cold water flowing through the cold water pipe 14 on the inlet side and a cold water outlet temperature sensor 39 for detecting the temperature on the cold water outlet side.
  • the absorption chiller 100 of this embodiment also includes an air bleeder 70 , and the air bleeder 70 includes a tank 71 .
  • An air bleed pipe 52 communicating with the air layer portion 2B of the absorber 2 is connected to the upper portion of the tank 71 .
  • a return pipe 73 that communicates with the bottom of the absorber 2 is connected to the bottom of the tank 71 .
  • an absorbent pipe 75 connected to the dilute absorbent pipe 21 via an ejector pump 74 is connected to the upper portion of the tank 71 . By driving the ejector pump 74 , the dilute absorbent in the dilute absorbent tube 21 is taken into the tank 71 through the absorbent tube 75 .
  • the dilute absorbent flowing through the absorbent pipe 75 creates a negative pressure inside the tank 71, thereby extracting not only the non-condensable gas stored in the upper part of the absorber 2 but also the refrigerant vapor and vaporized absorbent. It is guided above the tank 51 through the trachea 72 .
  • the refrigerant vapor and the vaporized absorbing liquid dissolve and are absorbed by the absorbing liquid accumulated in the lower part of the tank 71, but the noncondensable gas cannot dissolve in the absorbing liquid. It is stored above the tank 71 . Then, the absorbent accumulated in the lower part of the tank 71 is returned to the absorber 3 through the return pipe 73 .
  • FIG. 2 is a block diagram showing the control configuration of this embodiment.
  • the absorption chiller 100 of this embodiment includes a controller 50
  • the controller 50 includes a refrigerator controller 51 .
  • the refrigerator controller 51 centrally controls each part of the absorption chiller 100, and stores a CPU as an arithmetic execution unit, a basic control program executable by the CPU, predetermined data, and the like in a non-volatile manner.
  • a memory such as a ROM and a RAM for storing data and other peripheral circuits are provided.
  • detection signals from the cooling water inlet temperature sensor 36, the cooling water outlet temperature sensor 37, the cold water inlet temperature sensor 38, and the cold water outlet temperature sensor 39 are input to the refrigerator controller 51, respectively. .
  • the refrigerator control unit 51 of the controller 50 controls the fuel control valve 64 of the gas burner 4 of the absorption refrigerator 100 to control the combustion by the gas burner 4, and the dilute absorbent pump 45 and the rich absorbent pump 47. and drive control of the refrigerant pump 48 . Furthermore, the refrigerator control unit 51 of the controller 50 performs inverter control of the dilute absorbent pump 45, the rich absorbent pump 47 and the refrigerant pump 48, so that the dilute absorbent pump 45, the intermediate absorbent pump 46, the rich absorbent It is configured to perform flow rate control by the liquid pump 47 and the refrigerant pump 48 . Further, the refrigerator controller 51 is configured to control the opening and closing of the valves 28, V1 and V2.
  • a cloud adapter 52 is connected to the controller 50 , and various refrigerator data acquired by the refrigerator controller 51 of the controller 50 are sent to the cloud adapter 52 .
  • the cloud adapter 52 includes an adapter control unit 53.
  • the adapter control unit 53 includes a CPU as an arithmetic execution unit, and a ROM that nonvolatilely stores a basic control program that can be executed by this CPU, predetermined data, and the like. , memory such as RAM, and other peripheral circuits.
  • the refrigerator data includes, for example, cold water inlet temperature, cold water outlet temperature, high temperature regenerator temperature, condensing temperature, cooling water inlet temperature, cooling water outlet temperature, absorbent temperature, absorbent concentration, refrigerant temperature, control valve Various data such as the degree of opening are included.
  • the cloud adapter 52 includes an adapter communication unit 54 that communicates with the cloud server 56 of the cloud 55 .
  • the cloud server 56 includes a server control unit 57.
  • the server control unit 57 includes a CPU as an arithmetic execution unit, and a ROM that nonvolatilely stores a basic control program executable by this CPU, predetermined data, and the like. , memory such as RAM, and other peripheral circuits.
  • the server controller 57 functions as the controller of the present disclosure.
  • the cloud server 56 includes a server communication unit 58 that communicates with the cloud adapter 52 .
  • the server control unit 57 of the cloud server 56 acquires the refrigerator data sent from the cloud adapter 52 by the server communication unit 58, and based on this refrigerator data, judges the COP decrease, analyzes the cause of the COP decrease, and determines the COP. It is configured to take measures to improve it.
  • brine for example, cold water
  • the refrigerator control unit 51 puts the brine into the absorption refrigerator 100 so that the outlet side temperature of the brine evaporator 1 (the temperature detected by the cold water outlet temperature sensor 39) becomes a predetermined set temperature, for example, 7°C.
  • the amount of heat applied is controlled.
  • the refrigerator controller 51 activates all the pumps 45, 47, and 48 and controls the combustion of the gas in the gas burner 4 so that the brine temperature measured by the cold water outlet temperature sensor 39 is controlled to a predetermined 7°C.
  • the lean absorbent from the absorber 2 is heated by the lean absorbent pump 45 via the lean absorbent tube 21 via the low temperature heat exchanger 12 and the high temperature heat exchanger 13 or the exhaust gas heat exchanger 41. It is sent to the high temperature regenerator 5 .
  • the absorbent sent to the high-temperature regenerator 5 is heated by the flame from the gas burner 4 and the high-temperature combustion gas in the high-temperature regenerator 5, so that the refrigerant in the absorbent evaporates and separates.
  • the intermediate absorbent whose concentration has increased by evaporating and separating the refrigerant in the high-temperature regenerator 5 is sent to the concentrated absorbent pipe 25 via the high-temperature heat exchanger 13 and joins the absorbent that has passed through the low-temperature regenerator 6. .
  • the absorbent sent to the low-temperature regenerator 6 is heated by the high-temperature refrigerant vapor that is supplied from the high-temperature regenerator 5 through the refrigerant pipe 31 and flows into the heat transfer pipe 31A.
  • This concentrated absorbent is combined with the absorbent that has passed through the high-temperature regenerator 5, and is sent to the absorber 2 via the low-temperature heat exchanger 12 by the concentrated absorbent pump 47, whereupon it is sent to the concentrated liquid sprayer 2C. distributed from.
  • the refrigerant separated and produced by the low-temperature regenerator 6 enters the condenser 7, is condensed, and accumulates in the refrigerant liquid reservoir 7A.
  • this refrigerant liquid flows out from the refrigerant liquid reservoir 7A, enters the evaporator 1 via the refrigerant pipe 34, is pumped by the operation of the refrigerant pump 48, and is dispersed. It is sprayed from the vessel 1C onto the heat transfer tubes 14A of the cold water tubes 14.
  • the refrigerant liquid sprayed over the heat transfer tubes 14A takes heat of vaporization from the brine passing through the heat transfer tubes 14A and evaporates, the brine passing through the heat transfer tubes 14A is cooled, and the brine whose temperature has been lowered in this way is Cooling operation such as cooling is performed by supplying the heat load from the cold water pipe 14 .
  • the refrigerant evaporated in the evaporator 1 enters the absorber 2 and is absorbed by the concentrated absorbent supplied from the low-temperature regenerator 6 and sprayed from above.
  • the circulation of the absorbent pump 45 to the high-temperature regenerator 5 is repeated.
  • FIG. 3 is a flow chart showing the operation of this embodiment.
  • the adapter controller 53 acquires stabilized refrigerator data (ST1), and calculates the current COP while the absorption refrigerator 100 is operating in cooling operation or heating operation. (ST2).
  • the refrigerating capacity is obtained by (chilled water inlet temperature - chilled water outlet temperature) x chilled water flow rate.
  • the chilled water inlet temperature can be obtained by a chilled water inlet temperature sensor 38 and the chilled water outlet temperature can be obtained by a chilled water outlet temperature sensor 39 .
  • FIG. 4 is a graph showing the relationship between cold water flow rate and cold water flow rate output. This graph is generated in advance by a worker performing measurement using a differential pressure sensor when the absorption chiller 100 is installed.
  • the cold water flow rate output can be obtained by providing a cold water differential pressure sensor, but in the present embodiment, the graph shown in FIG. 4 is used to measure the cold water flow rate output. Calculate the flow rate.
  • the chilled water flow rate output can be obtained by monitoring the control state of the absorption chiller 100, for example.
  • the chilled water flow rate output may be acquired by any one of the refrigerator controller, the adapter controller 53 , and the server controller 57 .
  • the refrigeration capacity can be increased without providing a cold water differential pressure sensor.
  • a cold water differential pressure sensor may be provided to calculate the refrigerating capacity.
  • FIG. 5 is a graph showing the relationship between the gas flow rate and the degree of opening of the gas fuel valve. This graph is generated in advance by a worker performing measurement using a gas flow meter when the absorption chiller 100 is installed.
  • the opening degree of the gas fuel valve can be acquired by monitoring the control state of the absorption chiller 100, for example.
  • the degree of opening of the gas fuel valve may be acquired by any one of the refrigerator controller, the adapter controller 53 , and the server controller 57 .
  • the unit gas calorific value is a predetermined value.
  • the gas combustion heat quantity can be calculated without providing a gas flow meter.
  • a gas flow meter may be provided to calculate the gas combustion heat quantity. If the refrigerating capacity and the gas combustion heat quantity can be calculated, the current COP can be obtained.
  • the adapter control unit transmits the calculated current COP information to the cloud server 56 (ST3).
  • the server control unit 57 of the cloud server 56 compares the current COP sent from the cloud adapter 52 with the assumed COP serving as a reference to obtain the deviation between the current COP and the assumed COP (ST4), and the COP decreases. It is determined whether or not (ST5).
  • the server control unit 57 determines that the COP is normal if the deviation between the current COP and the assumed COP is within a predetermined threshold. On the other hand, when the COP deviation is higher than the predetermined threshold value, it is determined that the COP has decreased.
  • the server control unit 57 obtains the deviation between the current COP and the assumed COP a plurality of times (for example, 10 times) while the operation state of the absorption chiller 100 is stable, and determines the difference between the current COP and the assumed COP. If the deviation is higher than, for example, 10%, it is determined that the COP is declining. When the server control unit 57 determines that the COP has decreased, it performs cause analysis processing (ST6).
  • FIG. 6 is an explanatory diagram showing the steps of the cause analysis process.
  • the cause analysis processing performed by the server control unit 57 includes: cooling water contamination determination, vacuum degree decrease determination, cold water hunting tendency determination, high-temperature regenerator liquid level start/stop tendency determination, combustion start/stop tendency determination , high cooling water temperature determination, extraction performance inspection, and high temperature regenerator temperature rise tendency determination are performed.
  • the order of each process of these cause analysis processes is not limited to the order shown in FIG. 6, and may be performed in any order or simultaneously.
  • the contamination coefficient is calculated from the cooling water inlet/outlet temperature of the condenser and the condensed refrigerant temperature.
  • the determination of the degree of vacuum is based on whether or not the prediction forecast of the "decrease in the degree of vacuum" of the absorption chiller 100 has been issued or not, and the prediction of the "decrease in the degree of vacuum” of the absorption chiller 100 has occurred 10 times/month in the most recent time. It is determined whether or not it has been reported, and whether or not the chamber pressure (non-condensable gas storage tank pressure) change ⁇ 1.5 [kPa/H]. When the chamber pressure changes by 1.5 [kPa/H] or more, the change is about three times the expected change. In such a situation, it is confirmed that the inhibitor (corrosion inhibitor) tends to be insufficient.
  • Cold water hunting tendency determination is to determine whether the COP has decreased due to the influence of disturbance. Cold water hunting tendency determination is made based on whether or not the cold water outlet temperature has continued to be ⁇ 0.2° C./min or more for 60 minutes.
  • the high-temperature regenerator liquid level start/stop tendency determination is to determine whether the COP has decreased due to insufficient adjustment of the solution circulation amount.
  • the high-temperature regenerator liquid level start/stop tendency determination is made based on whether or not the liquid level starts/stops five times/hour or more for three hours.
  • the combustion start/stop tendency determination is to determine whether the COP has decreased due to the influence of the burner's fuel use failure or disturbance. Combustion start/stop tendency determination is made based on whether or not combustion starts/stops twice or more per hour and the refrigerating capacity ratio of 40% or more continues for three hours.
  • the cooling water temperature high determination is to determine whether the COP has decreased due to insufficient performance of the cooling tower.
  • the high cooling water temperature determination is made based on whether or not a high cooling water temperature forecast has been issued.
  • the extraction performance inspection is to determine whether the COP has decreased due to insufficient collection of non-condensable gas in the extraction system.
  • the air bleed performance check is determined based on whether or not an alarm for the air bleed performance check has been issued.
  • the high-temperature regenerator temperature rise tendency determination is to determine whether the COP has decreased due to an excessive rise in the temperature of the high-temperature regenerator.
  • the high-temperature regenerator temperature rise tendency determination is made based on whether or not the temperature of the high-temperature regenerator has reached 162° C. or higher.
  • the server control unit 57 determines that any one of the causes is applicable as a result of the COP decrease cause analysis, the server control unit 57 makes a maintenance proposal based on the corresponding determination (ST10).
  • the maintenance proposal is made, for example, by sending a report on the operating status of the previous month at the beginning of the month to, for example, a remote monitoring center. In the report, describe the cause of COP decrease judged to be applicable. Thereby, the maintenance worker can obtain the cause of the decrease in COP and the index of the maintenance.
  • the server control unit 57 determines that none of the cases apply and the cause of the COP decrease cannot be identified as a result of the COP decrease cause analysis, the server control unit 57 performs COP improvement control. (ST8).
  • the server control unit 57 When performing COP improvement control, the server control unit 57 obtains the deviation between the current concentration of the absorbing liquid and the assumed concentration.
  • the current concentration of the absorbent can be calculated by acquiring the high temperature regenerator temperature and the low temperature regenerator refrigerant outlet temperature with a temperature sensor and applying the acquired temperatures to a predetermined formula.
  • the server control unit 57 performs control so as to change the drive frequency of the dilute absorbent pump 45 based on the difference between the calculated current concentration of the absorbent and the assumed concentration.
  • the server control unit 57 After performing the control for improving the COP, the server control unit 57 confirms the effect of the control for improving the COP (ST9). To check the effect, the server control unit 57 obtains the COP deviation after the COP improvement control after performing the COP improvement control, and compares it with the COP deviation before the COP improvement control. When the COP deviation after the COP improvement control is larger than the COP deviation before the COP improvement control + 2%, that is, the COP has deteriorated even though the COP improvement control has been performed. If so, the control for improving the COP is stopped, and the drive frequency of the dilute absorbent pump 45 is restored. After that, the server control unit 57 does not perform the COP improvement control until the absorption chiller 100 stops.
  • the server control unit 57 confirms the effect and takes safety measures against excessive control.
  • the safety measures for excessive control are either the concentrated liquid concentration calculated value of the absorbing liquid is above the first threshold (e.g., 64 wt%) or the temperature of the high-temperature regenerator is above the second threshold (e.g., 158°C). is satisfied, the control for improving the COP is stopped until the operation is stopped, and the drive frequency of the dilute absorbent pump 45 is restored. After that, the server control unit 57 does not perform the COP improvement control until the absorption chiller 100 stops.
  • the first threshold and the second threshold described above are set to values smaller than the condition for stopping the absorption chiller 100 .
  • the conditions for stopping the absorption chiller 100 are assuming that the concentrated liquid concentration calculated value of the absorbing liquid is 65.5 wt % or more, or the temperature of the high-temperature regenerator is 165° C. or more, the first threshold is 64 wt %, and the second threshold is 64 wt %. 2 is set to 158°C.
  • the absorption chiller 100 first stops the COP improvement control when an abnormality occurs, and then stops when the abnormality is not resolved. can take appropriate action.
  • the high-temperature regenerator 5, the low-temperature regenerator 6, the evaporator 1, the condenser 7, and the absorber 3 are provided.
  • An absorption chiller 100 is provided which is respectively formed.
  • a server control unit 57 (control unit) is provided, and the server control unit 57 determines whether or not the COP has decreased, and if it determines that the COP has decreased, finds the cause of the COP decrease. If the cause of the COP drop cannot be specified as a result of analyzing and processing the cause of the COP drop, control for improving the COP is performed. According to this, the server control unit 57 can constantly monitor the COP decrease and analyze the cause of the COP decrease. By performing, when the COP is lowered, the COP can be improved.
  • the server control unit 57 obtains the deviation between the current COP and the assumed COP, and if the deviation between the current COP and the assumed COP is equal to or greater than a predetermined threshold, the COP is determined to be decreased. According to this, it is possible to determine whether the COP is decreasing based on the current COP and the assumed COP.
  • the server control unit 57 (control unit), as a result of analyzing the cause of the COP drop, if there is a cause for the COP drop, proposes maintenance of the cause of the COP drop. to create According to this, when there is a cause of COP decrease, by creating a maintenance proposal for the cause of decrease, the maintenance worker can obtain the cause of COP decrease and the index of maintenance.
  • the cloud adapter 52 capable of communicating with the cloud server 56 is connected to the absorption chiller 100, and the control unit is the server control unit 57 of the cloud server 56 or the adapter control unit of the cloud adapter 52. It is part 53 . According to this, the server control unit 57 of the cloud server 56 or the adapter control unit 53 of the cloud adapter 52 can perform analysis processing of whether or not the COP has decreased, the cause of the COP decrease, and the like.
  • Embodiment 1 has been described as an example of the technology disclosed in the present application.
  • the technology in the present disclosure is not limited to this, and can also be applied to embodiments with modifications, replacements, additions, omissions, and the like.
  • FIG. 2 Each part shown in FIG. 2 is an example, and the specific implementation is not particularly limited. In other words, it is not always necessary to mount hardware corresponding to each part individually, and it is of course possible to adopt a configuration in which one processor executes a program to realize the function of each part. Further, part of the functions implemented by software in the above-described embodiments may be implemented by hardware, or part of the functions implemented by hardware may be implemented by software.
  • the server control unit 57 of the cloud server 56 is used as the control unit
  • the present disclosure is not limited to this.
  • the adapter controller 53 of the cloud adapter 52 may be used.
  • the refrigerator controller may be provided with the same function as the adapter controller 53, and the refrigerator controller may be used as the controller.
  • the server control unit 57 compares the current COP with an assumed COP that serves as a reference, and determines whether the COP has decreased based on the deviation between the current COP and the assumed COP.
  • the present disclosure is not limited to this. For example, even if the deviation between the current COP and the assumed COP is within a predetermined threshold, if the current COP is slightly lower than the assumed COP (for example, 2%), the maintenance proposal is for the absorption chiller 100 maintenance may be proposed. At this time, COP decrease cause analysis processing and COP improvement control are not performed.
  • the server control unit 57 always performs COP improvement control when the cause of COP reduction cannot be identified. Whether or not to perform the control may be switched by the user, the property on which the absorption chiller 100 is installed, or the setting of the absorption chiller 100 .
  • the present disclosure is applicable to an absorption chiller capable of monitoring the COP drop and analyzing the cause of the COP drop when the COP drops.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本開示は、COPの低下を常時監視し、COP低下の原因分析を行うことができる吸収式冷凍機の遠隔監視システムを提供する。 高温再生器5、低温再生器6、蒸発器1、凝縮器7および吸収器3を備え、これらを配管接続して吸収液および冷媒の循環経路をそれぞれ形成してなる吸収式冷凍機100を備え、サーバ用制御部57を備え、サーバ用制御部57は、COPが低下しているか否かを判定し、COPが低下していると判定した場合、COPが低下している原因を分析処理し、COPが低下している原因を分析処理した結果、COPが低下している原因を特定できない場合、COPの向上対応制御を行う。

Description

吸収式冷凍機の遠隔監視システム
 本発明は、吸収式冷凍機の遠隔監視システムに係り、特に、凝縮器おける熱交換効率の低下を正確に判断するようにした吸収式冷凍機の遠隔監視システムに関する。
 特許文献1は、制御装置が、複数の冷房負荷の近傍で、安定条件である冷水設定温度と冷水出口温度との差が所定範囲内にあるか、および冷却水出口温度が所定範囲内にあるかをそれぞれ判断し、安定条件が所定時間継続した場合に、想定濃液濃度が所定値以上低い場合、稀吸収液ポンプのインバータ周波数を低下させるように制御する補正処理を行う吸収式冷凍機を開示する。
 特許文献2は、冷房運転時に、COPを算出するとともに、この算出されたCOPと想定COPとからCOP増減率を算出し、1ヶ月間の平均COP増減率が、所定以下であると判断した場合、メンテナンス指示の予報発報を行う制御装置を備えた吸収式冷凍機を開示する。
特開2019-190708号公報 特開2018-169075号公報
 本開示は、COPの低下を常時監視し、COP低下の原因分析を行うことができる吸収式冷凍機の遠隔監視システムを提供する。
 前記目的を達成するため、本開示の吸収式冷凍機の遠隔監視システムは、高温再生器、低温再生器、蒸発器、凝縮器および吸収器を備え、これらを配管接続して吸収液および冷媒の循環経路をそれぞれ形成してなる吸収式冷凍機を備え、制御部を備え、前記制御部は、COPが低下しているか否かを判定し、COPが低下していると判定した場合、COPが低下している原因を分析処理し、COPが低下している原因を分析処理した結果、COPが低下している原因がない場合、COPの向上対応制御を行う。
 なお、この明細書には、2022年2月8日付けで日本国に出願された日本国特許出願・特願2022-018139のすべての内容が含まれる。
 本開示によれば、制御部により、COPの低下を常時監視して、COP低下の原因分析を行うことができる。
図1は、実施の形態1に係る吸収式冷凍機の概略構成図 図2は、実施の形態1の制御構成を示すブロック図 図3は、実施の形態1の動作を示すフローチャート 図4は、冷水流量と冷水流量出力との関係を示すグラフ 図5は、ガス流量とガス燃料弁の開度との関係を示すグラフ 図6は、原因分析処理の工程を示す説明図
 (発明の基礎となった知見等)
 発明者らが本開示に想到するに至った当時、吸収式冷凍機において、安定運転時に吸収液の濃度に基づいてCOPを判定したり、1ヶ月ごとにCOPの増減率を監視する技術があった。
 しかしながら、このような吸収式冷凍機においては、COPの低下を常時監視するものではなく、また、COPが低下した場合に、COP低下の原因の分析やこの分析に基づくCOP向上制御などをシステム化することができないという課題を発見し、その課題を解決するために、本開示の主題を構成するに至った。
 そこで、本開示は、COPの低下を常時監視し、COP低下の原因分析を行うことができる吸収式冷凍機の遠隔監視システムを提供する。
 以下、図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が必要以上に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することを意図していない。
 (実施の形態1)
 以下、図面を用いて、実施の形態1を説明する。
 [1-1.構成]
 [1-1-1.吸収式冷凍機の構成]
 以下、図面を参照して本発明の一実施形態を説明する。
 図1は、本実施形態に係る吸収式冷凍機の概略構成図である。吸収式冷凍機100は、冷媒に水を、吸収液に臭化リチウム(LiBr)水溶液を使用している。
 吸収式冷凍機100は、図1に示すように、蒸発器1と、この蒸発器1に並設された吸収器2と、これら蒸発器1および吸収器2を収納した蒸発器吸収器胴3と、ガスバーナ(加熱手段)4を備えた高温再生器5と、低温再生器6と、この低温再生器6に並設された凝縮器7と、これら低温再生器6および凝縮器7を収納した低温再生器凝縮器胴8とを備える。
 また、吸収式冷凍機100は、低温熱交換器12と、高温熱交換器13と、冷媒ドレン熱回収器17と、稀吸収液ポンプ45と、濃吸収液ポンプ47と、冷媒ポンプ48とを備え、これらの各機器が吸収液管21~25および冷媒管31~35などを介して配管接続されて循環経路が構成されている。
 蒸発器1には、蒸発器1内で冷媒と熱交換したブラインを、図示しない熱負荷(例えば、空気調和装置)に循環供給するための冷水管14が設けられており、この冷水管14の一部に形成された伝熱管14Aが蒸発器1内に配置されている。
 吸収器2および凝縮器7には、吸収器2および凝縮器7に順次冷却水を流通させるための冷却水管15が設けられており、この冷却水管15の一部に形成された各伝熱管15A、15Bがそれぞれ吸収器2および凝縮器7内に配置されている。
 吸収器2は、蒸発器1で蒸発した冷媒蒸気を吸収液に吸収させ、蒸発器吸収器胴3内の圧力を高真空状態に保つ機能を有する。この吸収器2の下部には、冷媒蒸気を吸収して稀釈された稀吸収液が溜る稀吸収液溜り2Aが形成され、この稀吸収液溜り2Aには、稀吸収液ポンプ45を有する稀吸収液管21の一端が接続されている。稀吸収液管21は、稀吸収液ポンプ45の下流側で分岐する分岐稀吸収液管21Aを備える。
 この分岐稀吸収液管21Aは冷媒ドレン熱回収器17を経由した後に、稀吸収液管21の低温熱交換器12の下流側で再び稀吸収液管21に合流する。この稀吸収液管21の他端は、高温熱交換器13を経由した後、高温再生器5内に形成された熱交換部5Aの上方に位置する気層部5Bに開口している。
 稀吸収液管21は、低温熱交換器12の下流側で第2分岐管21Bに分岐され、第2分岐管21Bは低温再生器6内に開口している。
 高温再生器5は、シェル60内にガスバーナ4を収容して構成され、このガスバーナ4の上方に当該ガスバーナ4の火炎を熱源として吸収液を加熱再生する熱交換部5Aが形成されている。この熱交換部5Aには、ガスバーナ4で燃焼された排気ガスが流通する排気経路40が接続され、この排気経路40には、排ガス熱交換器41が設けられている。また、ガスバーナ4には、燃料ガスが供給されるガス管61と、ブロワ62からの空気が供給される吸気管63とが接続され、これらガス管61および吸気管63には、燃料ガスおよび空気の量を制御する制御弁64が設けられている。
 熱交換部5Aの側方には、この熱交換部5Aで加熱再生された後に当該熱交換部5Aから流出した中間吸収液が溜る中間吸収液溜り5Cが形成されている。この中間吸収液溜り5Cの下端には第2中間吸収液管23の一端が接続され、この第2中間吸収液管23には高温熱交換器13が設けられている。この高温熱交換器13は、中間吸収液溜り5Cから流出した高温の中間吸収液の温熱で第1中間吸収液管22を流れる吸収液を加熱するものであり、高温再生器5におけるガスバーナ4の燃料消費量の低減を図っている。
 第2中間吸収液管23の他端は、低温再生器6と吸収器2とを繋ぐ濃吸収液管25に接続されている。また、第2中間吸収液管23の高温熱交換器13上流側と吸収器2とは開閉弁V1が介在する吸収液管24により接続されている。
 低温再生器6は、高温再生器5で分離された冷媒蒸気を熱源として、低温再生器6内に形成された吸収液溜り6Aに溜った吸収液を加熱再生するものであり、吸収液溜り6Aには、高温再生器5の上端部から低温再生器6の底部に延びる冷媒管31の一部に形成される伝熱管31Aが配置されている。この冷媒管31に冷媒蒸気を流通させることにより、伝熱管31Aを介して、冷媒蒸気の温熱が吸収液溜り6Aに溜った吸収液に伝達され、この吸収液が更に濃縮される。
 低温再生器6の吸収液溜り6Aには、濃吸収液管25の一端が接続され、この濃吸収液管25の他端は、吸収器2の気層部2B上部に設けられる濃液散布器2Cに接続されている。濃吸収液管25には濃吸収液ポンプ47および低温熱交換器12が設けられている。この低温熱交換器12は、低温再生器6の吸収液溜り6Bから流出した濃吸収液の温熱で稀吸収液管21を流れる稀吸収液を加熱するものである。
 また、濃吸収液管25には、濃吸収液ポンプ47および低温熱交換器12をバイパスするバイパス管27が設けられている。
 濃吸収液ポンプ47の運転が停止した場合には、低温再生器6の吸収液溜り6Aに溜った吸収液は、濃吸収液管25およびバイパス管27を通じて吸収器2内に供給される。
 前述のように、高温再生器5の気層部5Bと凝縮器7の底部に形成された冷媒液溜り7Aとは、冷媒管31により接続される。この冷媒管31は、低温再生器6の吸収液溜り6Aに配管された伝熱管31Aおよび冷媒ドレン熱回収器17を備え、この冷媒管31の伝熱管31Aの上流側と吸収器2の気層部2Bとは開閉弁V2が介在する冷媒管32により接続されている。
 また、凝縮器7の冷媒液溜り7Aには、この冷媒液溜り7Aから流出した冷媒が流れる冷媒管34の一端が接続され、この冷媒管34の他端は、下方に湾曲したUシール部34Aを介して蒸発器1の気層部1Aに接続されている。
 蒸発器1の下方には、液化した冷媒が溜る冷媒液溜り1Bが形成され、この冷媒液溜り1Bと蒸発器1の気層部1Aの上部に配置される散布器1Cとは冷媒ポンプ48が介在するに冷媒管35により接続されている。
 また、冷却水管15には、冷却水管15を流れる冷却水の入口側の温度を検出する冷却水入口温度センサ36および冷却水の出口側の温度を検出する冷却水出口温度センサ37が設けられている。
 冷水管14には、冷水管14を流れる冷水の入口側の温度を検出する冷水入口温度センサ38および冷水の出口側の温度を検出する冷水出口温度センサ39が設けられている。
 また、本実施形態の吸収式冷凍機100は、抽気装置70を備えており、抽気装置70は、タンク71を備えている。タンク71の上部には、吸収器2の気層部2Bに連通する抽気管52が接続されている。タンク71の底部には、吸収器2の下方に連通する戻り管73が接続されている。さらに、タンク71の上部には、エジェクタポンプ74介して稀吸収液管21に接続される吸収液管75が接続されている。
 そして、エジェクタポンプ74を駆動することにより、吸収液管75を介して稀吸収液管21の稀吸収液をタンク71に取り込む。吸収液管75により流れ込んだ稀吸収液により、タンク71の内部が負圧となり、これにより、吸収器2の上部に貯留されている不凝縮ガスのみならず冷媒蒸気、気化した吸収液などが抽気管72を通ってタンク51の上方に導かれる。
 タンク71に導かれたガスのうち、冷媒蒸気と気化した吸収液は、タンク71の下方に溜まっている吸収液に溶け込んで吸収されるが、不凝縮ガスは吸収液に溶け込むことができないので、タンク71の上方に溜められる。そして、タンク71の下方に溜まった吸収液は、戻り管73を通って吸収器3に戻される。
 [1-1-2.制御構成]
 次に、本実施形態の制御構成について説明する。
 図2は、本実施形態の制御構成を示すブロック図である。
 図2に示すように、本実施形態の吸収式冷凍機100は、コントローラ50を備えており、コントローラ50は、冷凍機用制御部51を備えている。冷凍機用制御部51は、吸収式冷凍機100の各部を中枢的に制御するものであり、演算実行部としてのCPU、このCPUによって実行可能な基本制御プログラムや所定のデータ等を不揮発的に記憶するROM、RAMなどのメモリその他の周辺回路などを備えている。
 また、冷凍機用制御部51には、冷却水入口温度センサ36、冷却水出口温度センサ37、冷水入口温度センサ38、冷水出口温度センサ39の検出信号がそれぞれ入力されるように構成されている。
 コントローラ50の冷凍機用制御部51は、吸収式冷凍機100のガスバーナ4の燃料制御弁64を制御することで、ガスバーナ4による燃焼制御を行うとともに、稀吸収液ポンプ45、濃吸収液ポンプ47および冷媒ポンプ48の駆動制御を行うように構成されている。さらに、コントローラ50の冷凍機用制御部51は、稀吸収液ポンプ45、濃吸収液ポンプ47および冷媒ポンプ48のインバータ制御を行うことで、稀吸収液ポンプ45、中間吸収液ポンプ46、濃吸収液ポンプ47および冷媒ポンプ48による流量制御を行うように構成されている。また、冷凍機用制御部51は、各弁28,V1,V2の開閉制御を行うように構成されている。
 また、コントローラ50には、クラウドアダプタ52が接続されており、クラウドアダプタ52には、コントローラ50の冷凍機用制御部51が取得した各種冷凍機データが送られるように構成されている。
 クラウドアダプタ52は、アダプタ用制御部53を備えており、アダプタ用制御部53は、演算実行部としてのCPU、このCPUによって実行可能な基本制御プログラムや所定のデータ等を不揮発的に記憶するROM、RAMなどのメモリ、その他の周辺回路などを備えている。
 ここで、冷凍機データとしては、例えば、冷水入口温度、冷水出口温度、高温再生器温度、凝縮温度、冷却水入口温度、冷却水出口温度、吸収液温度、吸収液濃度、冷媒温度、制御弁開度など各種データが含まれる。
 クラウドアダプタ52は、クラウド55のクラウドサーバ56と通信を行うアダプタ用通信部54を備えている。
 クラウドサーバ56は、サーバ用制御部57を備えており、サーバ用制御部57は、演算実行部としてのCPU、このCPUによって実行可能な基本制御プログラムや所定のデータ等を不揮発的に記憶するROM、RAMなどのメモリ、その他の周辺回路などを備えている。
 本実施の形態においては、サーバ用制御部57は、本開示の制御部としての機能する。
 クラウドサーバ56は、クラウドアダプタ52と通信を行うサーバ用通信部58を備えている。
 クラウドサーバ56のサーバ用制御部57は、サーバ用通信部58によりクラウドアダプタ52から送られる冷凍機データを取得し、この冷凍機データに基づいてCOP低下の判断、COP低下の原因分析、COPを向上させる対応などを行うように構成されている。
 [1-2.動作]
 次に、本実施形態の動作について説明する。
 冷房などの冷却運転時においては、冷水管14を介して図示しない熱負荷にブライン(例えば、冷水)が循環供給される。冷凍機用制御部51は、ブラインの蒸発器1の出口側温度(冷水出口温度センサ39にて検出される温度)が所定の設定温度、例えば7℃になるように吸収式冷凍機100に投入される熱量が制御される。
 具体的には、冷凍機用制御部51は、全てのポンプ45,47,48を起動し、かつ、ガスバーナ4におけるガスの燃焼制御を行うことで、冷水出口温度センサ39が計測するブラインの温度が所定の7℃となるようにガスバーナ4の火力を制御する。
 この場合、吸収器2からの稀吸収液は、稀吸収液管21を介して稀吸収液ポンプ45により低温熱交換器12および高温熱交換器13または排ガス熱交換器41を経由して加熱され高温再生器5に送られる。
 高温再生器5に送られた吸収液は、この高温再生器5でガスバーナ4による火炎および高温の燃焼ガスにより加熱されるため、この吸収液中の冷媒が蒸発分離する。高温再生器5で冷媒を蒸発分離して濃度が上昇した中間吸収液は、高温熱交換器13を経由して濃吸収液管25に送られ、低温再生器6を経由した吸収液と合流する。
 一方、低温再生器6に送られた吸収液は、高温再生器5から冷媒管31を介して供給されて伝熱管31Aに流入する高温の冷媒蒸気により加熱され、さらに冷媒が分離して濃度が一段と高くなり、この濃吸収液が高温再生器5を経由した上記吸収液と合流し、濃吸収液ポンプ47により低温熱交換器12を経由して吸収器2に送られ、濃液散布器2Cから散布される。
 低温再生器6で分離生成した冷媒は、凝縮器7に入って凝縮して冷媒液溜り7Aに溜る。そして、冷媒液溜り7Aに冷媒液が多く溜まると、この冷媒液は冷媒液溜り7Aから流出し、冷媒管34を経由して蒸発器1に入り、冷媒ポンプ48の運転により揚液されて散布器1Cから冷水管14の伝熱管14Aの上に散布される。
 伝熱管14Aの上に散布された冷媒液は、伝熱管14Aの内部を通るブラインから気化熱を奪って蒸発するため、伝熱管14Aの内部を通るブラインは冷却され、こうして温度を下げたブラインが冷水管14から熱負荷に供給されて冷房などの冷却運転が行われる。
 そして、蒸発器1で蒸発した冷媒は吸収器2に入り、低温再生器6より供給されて上方から散布される濃吸収液に吸収されて、吸収器2の稀吸収液溜り2Aに溜り、稀吸収液ポンプ45によって高温再生器5に搬送される循環を繰り返す。
 次に、本実施形態による制御について、図3に示すフローチャートを参照して説明する。
 図3は、本実施の形態の動作を示すフローチャートである。
 本実施形態においては、アダプタ用制御部53は、安定化した冷凍機データを取得し(ST1)、吸収式冷凍機100が冷房運転または暖房運転で運転している状態で、現在のCOPを算出する(ST2)。
 現在のCOPは、COP=冷凍能力÷ガス燃焼熱量、で求められる。
 冷凍能力は、(冷水入口温度-冷水出口温度)×冷水流量、で求められる。
 冷水入口温度は、冷水入口温度センサ38により取得することができ、冷水出口温度は、冷水出口温度センサ39により取得することができる。
 図4は、冷水流量と冷水流量出力との関係を示すグラフである。
 このグラフは、吸収式冷凍機100の設置時に、作業者が差圧センサを使用して計測することで、あらかじめ生成されるものである。
 冷水流量出力は、冷水差圧センサを設けることで取得することもできるが、本実施の形態においては、図4に示すグラフを用い、冷水流量の出力を計測することで、冷水流量出力から冷水流量を算出する。
 冷水流量出力は、例えば、吸収式冷凍機100の制御状態を監視することで、取得することが可能である。冷水流量出力は、冷凍機用制御部、アダプタ用制御部53またはサーバ用制御部57のいずれが取得するものであってもよい。
 このように冷水入口温度センサ38および冷水出口温度センサ39から冷水入口温度および冷水出口温度を取得するとともに、グラフを用いて冷水流量を取得することで、冷水差圧センサを設けることなく冷凍能力を算出することができる。なお、冷水差圧センサを設けて冷凍能力を算出するようにしても構わない。
 次に、ガス燃焼熱量は、ガス燃焼熱量=単位ガス発熱量×ガス流量、で求められる。
 図5は、ガス流量とガス燃料弁の開度との関係を示すグラフである。
 このグラフは、吸収式冷凍機100の設置時に、作業者がガス流量計を使用して計測することで、あらかじめ生成されるものである。
 ガス燃料弁の開度は、例えば、吸収式冷凍機100の制御状態を監視することで、取得することが可能である。ガス燃料弁の開度は、冷凍機用制御部、アダプタ用制御部53またはサーバ用制御部57のいずれが取得するものであってもよい。
 単位ガス発熱量は、あらかじめ決まった値である。そして、グラフからガス燃料弁の開度に基づいてガス流量を算出することで、ガス流量計を設けることなくガス燃焼熱量を算出することができる。なお、ガス流量計を設けてガス燃焼熱量を算出するようにしても構わない。
 冷凍能力とガス燃焼熱量とを算出することができれば、現在のCOPを取得することができる。
 アダプタ制御部は、算出された現在のCOP情報をクラウドサーバ56に送信する(ST3)。
 クラウドサーバ56のサーバ用制御部57は、クラウドアダプタ52から送られた現在のCOPと基準となる想定COPとを比較して現在のCOPと想定COPとの偏差を求め(ST4)、COPが低下しているか否かを判定する(ST5)。
 サーバ用制御部57は、現在のCOPと想定COPとの偏差が所定の閾値以内であれば、COPが正常であると判定する。一方、COPの偏差が所定の閾値より高い場合には、COPが低下していると判定する。
 サーバ用制御部57は、吸収式冷凍機100の運転状態が安定した状態で、複数回(例えば、10回)の現在のCOPと想定COPとの偏差を求め、現在のCOPと想定COPとの偏差が、例えば、10%より高い場合には、COPが低下していると判断する。
 サーバ用制御部57は、COPが低下していると判定した場合には、原因分析処理を行う(ST6)。
 図6は、原因分析処理の工程を示す説明図である。
 図6に示すように、サーバ用制御部57が行う原因分析処理としては、冷却水汚れ判定、真空度低下判定、冷水ハンチング傾向判定、高温再生機液面発停傾向判定、燃焼発停傾向判定、冷却水温度高判定、抽気性能点検、高温再生器温度上昇傾向判定が行われる。
 なお、これらの原因分析処理の各処理の順番は、図6に示す順番に限定されるものではなく、任意の順番に行うようにしてもよいし、同時に行うようにしてもよい。
 冷却水汚れ判定は、凝縮器の冷却水出入口温度と、凝縮冷媒温度から汚れ係数を算出する。
 汚れ係数(ACOND)は、汚れ係数=(dTc-dTc0)×100÷dTc0、で算出することができる。
 dTcおよびdTc0は、以下の式で算出することができる。
 dTc=凝縮温度-(冷却水出口温度-冷却水中間温度)
 dTc0=1.0021×(冷却水出口温度-冷却水中間温度)
 そして、汚れ係数が90以上の場合、冷却水の汚れがあると判定される。
 真空度低下判定は、吸収式冷凍機100の「真空度低下」の予知予報が発報されたか否か、吸収式冷凍機100の「真空度低下」の予知予報が直近で10回/月発報されたか否か、室圧力(不凝縮ガス貯蔵タンク圧力)変化≧1.5[kPa/H]となったか否かで判定される。室圧力の変化が1.5[kPa/H]以上に変化する場合は、想定される変化の約3倍程度となる。
 このような状況となった場合には、インヒビター(腐食抑制剤)が不足している傾向が確認される。
 冷水ハンチング傾向判定は、外乱の影響によりCOPが低下したかの判定を行うものである。
 冷水ハンチング傾向判定は、冷水出口温度が、±0.2℃/分以上が60分間継続したか否かで判定される。
 高温再生機液面発停傾向判定は、溶液循環量の調整が不足していることによりCOPが低下したかの判定を行うものである。
 高温再生機液面発停傾向判定は、液面発停が、5回/時間以上が3時間継続したか否かで判定される。
 燃焼発停傾向判定は、バーナの燃使用不具合や外乱の影響によりCOP低下したかの判定を行うものである。
 燃焼発停傾向判定は、燃焼発停が、2回/時間以上で、かつ、冷凍能力比40%以上が3時間継続したか否かで判定される。
 冷却水温度高判定は、冷却塔の性能不足によりCOP低下したかの判定を行うものである。
 冷却水温度高判定は、冷却水温度高の予報発報が行われたか否かで判定される。
 抽気性能点検は、抽気装置での不凝縮ガスの回収不足によりCOPが低下したかの判定を行うものである。
 抽気性能点検は、抽気性能点検の発報が行われたか否かで判定される。
 高温再生器温度上昇傾向判定は、高温再生器の温度が過剰に上昇したことによりCOPが低下したかの判定を行うものである。
 高温再生器温度上昇傾向判定は、高温再生器の温度が162℃以上となったか否かで判定される。
 サーバ用制御部57は、これらのCOP低下原因分析を行った結果、いずれかに該当していると判定した場合は、該当する判定に基づいて整備提案を行う(ST10)。
 整備提案は、例えば、月初に前月の稼働状況のレポートをメールで、例えば、遠隔監視センターなどに送付することにより行われる。レポートには、該当すると判断したCOP低下原因を記載する。これにより、メンテナンス作業者は、COPの低下原因および整備の指標を得ることができる。
 サーバ用制御部57は、COP低下原因分析を行った結果、いずれにも該当しておらず、COPが低下している原因を特定することができないと判定した場合は、COP向上対応制御を実施する(ST8)。
 COP向上対応制御を行う場合、サーバ用制御部57は、吸収液の現在の濃度と、想定濃度との偏差を求める。
 吸収液の現在の濃度は、高温再生器温度と低温再生器冷媒出口温度とを温度センサで取得し、取得した温度を所定の式に当てはめることで算出することができる。
 サーバ用制御部57は、このように算出された吸収液の現在の濃度と想定濃度との偏差に基づいて、稀吸収液ポンプ45の駆動周波数を変更するように制御する。
 駆動周波数の制御は、以下の通り行われる。想定濃度-現在濃度=0.1~1.0の場合、駆動周波数は-3Hzに制御される。想定濃度-現在濃度=1.1~1.5の場合、駆動周波数は-5Hzに制御される。想定濃度-現在濃度=1.6~2.0の場合、駆動周波数は-8Hzに制御される。想定濃度-現在濃度=2.1以上の場合は、駆動周波数の変更を行わずに点検を指示する。
 サーバ用制御部57は、COP向上対応制御を行った後、COP向上対応制御の効果確認を行う(ST9)。
 効果確認は、サーバ用制御部57は、COP向上対応制御を行った後、COP向上対応制御後のCOP偏差を求め、COP向上対応制御前のCOP偏差と比較することにより行う。
 サーバ用制御部57は、COP向上対応制御後のCOP偏差が、COP向上対応制御前のCOP偏差+2%より大きい場合、すなわち、COP向上対応制御を行ったにも関わらず、COPがより悪化したと判断した場合には、COP向上対応制御を中止し、稀吸収液ポンプ45の駆動周波数を元に戻す。
 サーバ用制御部57は、その後、吸収式冷凍機100の停止までの間、COP向上対応制御は実施しない。
 サーバ用制御部57は、効果確認とともに、過剰制御時の安全対応を行う。
 過剰制御時の安全対応は、吸収液の濃液濃度演算値が第1の閾値(例えば、64wt%)以上、または高温再生器の温度が第2の閾値(例えば、158℃)以上のいずれかの条件を満たす場合、運転停止されるまでCOP向上対応制御を中止し、稀吸収液ポンプ45の駆動周波数を元に戻す。
 サーバ用制御部57は、その後、吸収式冷凍機100の停止までの間、COP向上対応制御は実施しない。
 なお、上記で説明した第1の閾および第2の閾値は、吸収式冷凍機100を停止させる条件よりも小さい値に設定することとする。例えば、吸収式冷凍機100を停止させる条件を、吸収液の濃液濃度演算値が65.5wt%以上、または、高温再生器の温度が165℃以上として、第1の閾値として64wt%、第2の閾値として158℃とする。このように異常発生に備えた閾値を段階的に設定することで、吸収式冷凍機100は、異常発生時にまずCOP向上対応制御を中止し、それでも異常が解消しない場合に停止するという、段階的な対応を行うことができる。
 [1-3.効果等]
 以上説明したように、本実施形態においては、高温再生器5、低温再生器6、蒸発器1、凝縮器7および吸収器3を備え、これらを配管接続して吸収液および冷媒の循環経路をそれぞれ形成してなる吸収式冷凍機100を備えている。サーバ用制御部57(制御部)を備え、サーバ用制御部57は、COPが低下しているか否かを判定し、COPが低下していると判定した場合、COPが低下している原因を分析処理し、COPが低下している原因を分析処理した結果、COPが低下している原因を特定できない場合、COPの向上対応制御を行う。
 これによれば、サーバ用制御部57により、COPの低下を常時監視して、COP低下の原因分析を行うことができ、COPが低下している原因を特定できない場合に、COPの向上対応制御を行うことで、COPが低下した場合に、COPを向上させることができる。
 また、本実施形態においては、サーバ用制御部57(制御部)は、現在のCOPと想定COPとの偏差を求め、現在のCOPと想定COPとの偏差が所定の閾値以上の場合に、COPが低下していると判定する。
 これによれば、現在のCOPと想定COPとに基づいて、COPが低下しているか否かを判定することができる。
 また、本実施形態においては、サーバ用制御部57(制御部)は、COPが低下している原因を分析処理した結果、COPが低下している原因がある場合、COPの低下原因の整備提案を作成する。
 これによれば、COPの低下原因がある場合に、低下原因の整備提案を作成することで、メンテナンス作業者は、COPの低下原因および整備の指標を得ることができる。
 また、本実施形態においては、吸収式冷凍機100に、クラウドサーバ56と通信可能なクラウドアダプタ52を接続し、制御部は、クラウドサーバ56のサーバ用制御部57またはクラウドアダプタ52のアダプタ用制御部53である。
 これによれば、クラウドサーバ56のサーバ用制御部57またはクラウドアダプタ52のアダプタ用制御部53によりCOPの低下の有無、COPの低下原因の分析処理などを行うことができる。
 (他の実施の形態)
 以上のように、本出願において開示する技術の例示として、実施の形態1を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施の形態にも適用できる。また、上記実施の形態1で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
 図2に示した各部は一例であって、具体的な実装形態は特に限定されない。つまり、必ずしも各部に個別に対応するハードウェアが実装される必要はなく、1つのプロセッサがプログラムを実行することで各部の機能を実現する構成とすることも勿論可能である。また、上述した実施の形態においてソフトウェアで実現される機能の一部をハードウェアとしてもよく、或いは、ハードウェアで実現される機能の一部をソフトウェアで実現してもよい。
 また、実施の形態1では、制御部として、クラウドサーバ56のサーバ用制御部57を用いた例について説明したが、本開示はこれに限定されない。例えば、クラウドアダプタ52のアダプタ用制御部53を用いるようにしてもよい。
 さらに、冷凍機用制御部にアダプタ用制御部53と同様の機能を持たせ、制御部として冷凍機用制御部を用いるようにしてもよい。
 また、実施の形態1では、サーバ用制御部57により、現在のCOPと基準となる想定COPとを比較し、現在のCOPと想定COPとの偏差に基づいて、COPが低下しているか否かを判定するようにしているが、本開示はこれに限定されない。
 例えば、現在のCOPと想定COPとの偏差が所定の閾値以内である場合でも、現在のCOPが想定COPよりも少し低下していれば(例えば、2%)、整備提案で吸収式冷凍機100のメンテナンスを提案するようにしてもよい。このとき、COP低下原因分析処理やCOP向上対応制御は行わない。
 また、実施の形態1では、サーバ用制御部57により、COPの低下原因を特定できない場合に、必ずCOP向上対応制御を行うようにしているが、COPの低下原因を特定できない場合、COP向上対応制御を実施するか否かをユーザー、吸収式冷凍機100の設置物件、または、吸収式冷凍機100の設定によって切り替えるようにしてもよい。
 本開示は、COPの低下を監視して、COPが低下した場合に、COP低下の原因分析を行うことのできる吸収式冷凍機に適用可能である。
 1 蒸発器
 2 吸収器
 3 吸収器
 4 ガスバーナ
 5 高温再生器
 6 低温再生器
 7 凝縮器
 12 低温熱交換器
 13 高温熱交換器
 14 冷水管
 15 冷却水管
 17 冷媒ドレン熱回収器
 21 稀吸収液管
 36 冷却水入口温度センサ
 37 冷却水出口温度センサ
 38 冷水入口温度センサ
 39 冷水出口温度センサ
 41 排ガス熱交換器
 45 稀吸収液ポンプ
 46 中間吸収液ポンプ
 47 濃吸収液ポンプ
 48 冷媒ポンプ
 50 コントローラ
 51 冷凍機用制御部
 52 クラウドアダプタ
 53 アダプタ用制御部
 54 アダプタ用通信部
 55 クラウド
 56 クラウドサーバ
 57 サーバ用制御部
 58 サーバ用通信部
 64 燃料制御弁
 70 抽気装置
 100 吸収式冷凍機
 V1 開閉弁
 V2 開閉弁

Claims (4)

  1.  高温再生器、低温再生器、蒸発器、凝縮器および吸収器を備え、これらを配管接続して吸収液および冷媒の循環経路をそれぞれ形成してなる吸収式冷凍機を備え、
     制御部を備え、
     前記制御部は、COPが低下しているか否かを判定し、COPが低下していると判定した場合、COPが低下している原因を分析処理し、
     COPが低下している原因を分析処理した結果、COPが低下している原因がない場合、COPの向上対応制御を行う
     吸収式冷凍機の遠隔監視システム。
  2.  前記制御部は、現在のCOPと想定COPとの偏差を求め、現在のCOPと想定COPとの偏差が所定の閾値以上の場合に、COPが低下していると判定する
     請求項1に記載の吸収式冷凍機の遠隔監視システム。
  3.  前記制御部は、COPが低下している原因を分析処理した結果、COPが低下している原因がある場合、COPの低下原因の整備提案を作成する
     請求項1に記載の吸収式冷凍機の遠隔監視システム。
  4.  前記吸収式冷凍機に、クラウドサーバと通信可能なクラウドアダプタを接続し、
     前記制御部は、前記クラウドサーバのサーバ用制御部または前記クラウドアダプタのアダプタ用制御部である
     請求項1から請求項3のいずれか一項に記載の吸収式冷凍機の遠隔監視システム。
PCT/JP2023/004106 2022-02-08 2023-02-08 吸収式冷凍機の遠隔監視システム WO2023153417A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-018139 2022-02-08
JP2022018139A JP7233030B1 (ja) 2022-02-08 2022-02-08 吸収式冷凍機の遠隔監視システム

Publications (1)

Publication Number Publication Date
WO2023153417A1 true WO2023153417A1 (ja) 2023-08-17

Family

ID=85414478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004106 WO2023153417A1 (ja) 2022-02-08 2023-02-08 吸収式冷凍機の遠隔監視システム

Country Status (2)

Country Link
JP (2) JP7233030B1 (ja)
WO (1) WO2023153417A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017163221A (ja) * 2016-03-07 2017-09-14 パナソニックIpマネジメント株式会社 機器情報管理システム
JP2018204920A (ja) * 2017-06-09 2018-12-27 株式会社日立ビルシステム 吸収式冷凍機の性能診断装置及び性能診断方法
JP2019190708A (ja) * 2018-04-24 2019-10-31 パナソニックIpマネジメント株式会社 吸収式冷凍機

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073300B2 (ja) * 1986-10-17 1995-01-18 三洋電機株式会社 吸収冷凍機の保護装置
JP2018169075A (ja) 2017-03-29 2018-11-01 パナソニックIpマネジメント株式会社 吸収式冷凍機
JP6900303B2 (ja) * 2017-11-16 2021-07-07 株式会社日立ビルシステム 冷凍機の性能診断システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017163221A (ja) * 2016-03-07 2017-09-14 パナソニックIpマネジメント株式会社 機器情報管理システム
JP2018204920A (ja) * 2017-06-09 2018-12-27 株式会社日立ビルシステム 吸収式冷凍機の性能診断装置及び性能診断方法
JP2019190708A (ja) * 2018-04-24 2019-10-31 パナソニックIpマネジメント株式会社 吸収式冷凍機

Also Published As

Publication number Publication date
JP2023115745A (ja) 2023-08-21
JP7233030B1 (ja) 2023-03-06
JP2023115918A (ja) 2023-08-21

Similar Documents

Publication Publication Date Title
JP2023030204A (ja) 吸収式冷凍機および吸収式冷凍機の制御方法
JP2003279186A (ja) 吸収式冷凍機及びその制御方法
WO2023153417A1 (ja) 吸収式冷凍機の遠隔監視システム
WO2023153421A1 (ja) 吸収式冷凍機の遠隔監視システム
JP7122538B2 (ja) 吸収式冷凍機
JP6486159B2 (ja) 吸収式冷凍機及びその制御方法
JP6754981B2 (ja) 吸収式冷凍機
KR100585352B1 (ko) 흡수 냉동기
JP2018169075A (ja) 吸収式冷凍機
JP2017198402A (ja) 吸収式冷凍機
JP3081472B2 (ja) 吸収式冷凍機の制御方法
JP6789846B2 (ja) 吸収式冷凍機
JP4922872B2 (ja) 吸収式冷温水機
JP7365612B2 (ja) 吸収式冷凍機、吸収式冷凍機の制御方法およびコントローラ
JP6765056B2 (ja) 吸収式冷凍機
JP6653444B2 (ja) 吸収式冷凍機
KR20030081154A (ko) 흡수식 냉동기
JP2018138849A (ja) 吸収式冷凍機
JP2011033261A (ja) 吸収式冷凍機
JPH0282063A (ja) 吸収冷凍機の制御方法
JPH0749897B2 (ja) 吸収式冷凍機の運転監視装置
JPH0942810A (ja) 吸収冷凍機の診断方法
JPH03134443A (ja) 吸収冷凍機の運転方法
JPH04295558A (ja) 吸収式冷凍機
JPH0814687A (ja) 吸収式冷凍機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752881

Country of ref document: EP

Kind code of ref document: A1