WO2023153296A1 - 感放射線性樹脂組成物及びパターン形成方法 - Google Patents

感放射線性樹脂組成物及びパターン形成方法 Download PDF

Info

Publication number
WO2023153296A1
WO2023153296A1 PCT/JP2023/003312 JP2023003312W WO2023153296A1 WO 2023153296 A1 WO2023153296 A1 WO 2023153296A1 JP 2023003312 W JP2023003312 W JP 2023003312W WO 2023153296 A1 WO2023153296 A1 WO 2023153296A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
radiation
resin composition
structural unit
carbon atoms
Prior art date
Application number
PCT/JP2023/003312
Other languages
English (en)
French (fr)
Inventor
龍一 根本
泰一 古川
剛 古川
甫 稲見
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Publication of WO2023153296A1 publication Critical patent/WO2023153296A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/72Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 spiro-condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D327/00Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms
    • C07D327/02Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms one oxygen atom and one sulfur atom
    • C07D327/04Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D327/00Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms
    • C07D327/02Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms one oxygen atom and one sulfur atom
    • C07D327/06Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the present invention relates to a radiation-sensitive resin composition and a pattern forming method.
  • Photolithography technology that uses resist compositions is used to form fine circuits in semiconductor devices.
  • an acid is generated by exposing the film of the resist composition to radiation through a mask pattern, and the acid is used as a catalyst to react with the resin in the exposed area and the unexposed area.
  • a resist pattern is formed on a substrate by creating a difference in solubility in an organic solvent-based developer.
  • Resist compositions to which a water-repellent compound is added are required to have LWR (Line Width Roughness) performance, water repellency, and development defect suppression, which indicates sensitivity and line width variation of resist patterns, even in the above-mentioned next-generation technology. .
  • An object of the present invention is to provide a radiation-sensitive resin composition capable of forming a resist film excellent in sensitivity, LWR performance, water repellency, and development defect suppressing property, and having good storage stability, and a pattern forming method. .
  • An onium salt represented by the following formula (i) (hereinafter also referred to as “onium salt (i)”); It relates to a radiation-sensitive resin composition containing a solvent.
  • RK1 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • L 1 is an alkanediyl group having 1 to 5 carbon atoms.
  • R f1 is a fluorinated hydrocarbon group having 2 to 10 carbon atoms and having 5 to 7 fluorine atoms.
  • R a1 is a substituted or unsubstituted monovalent organic group having 1 to 40 carbon atoms in which a fluorine atom and a fluorinated hydrocarbon group are not bonded to an atom adjacent to a sulfur atom.
  • X + is a monovalent onium cation.
  • the radiation-sensitive resin composition it is possible to construct a resist film that has good storage stability, sensitivity, LWR performance, water repellency, and development defect suppression properties.
  • the polymer can exhibit high water repellency due to the fluorine atoms contained in the structural unit (I). Further, during the development step, a dissociation reaction occurs in the structural unit (I) in the polymer, and the solubility of the polymer in the developer can be improved, and as a result, the development defect suppressing property can be improved. .
  • the relatively bulky structure introduced around the part where the developer dissociation reaction occurs in the structural unit (I) acts as a reaction barrier, and the radiation-sensitive resin composition. Inadvertent dissociation reaction due to moisture or the like during storage can be suppressed. It is presumed that these combined actions can satisfy both the contradictory requirements of storage stability and development defect suppression. Furthermore, it is presumed that the coexistence of the polymer and the onium salt (i) can ensure the sensitivity and LWR performance.
  • an “organic group” is a group having at least one carbon atom.
  • the “hydrocarbon group” includes chain hydrocarbon groups, alicyclic hydrocarbon groups and aromatic hydrocarbon groups unless otherwise specified.
  • the “hydrocarbon group” includes both saturated hydrocarbon groups and unsaturated hydrocarbon groups.
  • the above-mentioned “chain hydrocarbon group” refers to a hydrocarbon group that does not contain a cyclic structure and is composed only of a chain structure, and includes both a straight chain hydrocarbon group and a branched chain hydrocarbon group.
  • alicyclic hydrocarbon group refers to a hydrocarbon group that contains only an alicyclic structure as a ring structure and does not contain an aromatic ring structure, and includes monocyclic alicyclic hydrocarbon groups and polycyclic alicyclic It contains both hydrocarbon groups. However, it does not need to be composed only of an alicyclic structure, and may partially contain a chain structure.
  • aromatic hydrocarbon group refers to a hydrocarbon group containing an aromatic ring structure as a ring structure. However, it does not need to be composed only of an aromatic ring structure, and may partially contain a chain structure or an alicyclic structure.
  • the present invention provides, in another embodiment, a step of directly or indirectly applying the radiation-sensitive resin composition to a substrate to form a resist film; exposing the resist film; and developing the exposed resist film with a developer.
  • the pattern forming method it is possible to form a resist film excellent in sensitivity, LWR performance, water repellency and development defect suppressing property, and since the radiation-sensitive resin composition having good storage stability is used, high A high-quality resist pattern can be efficiently formed.
  • the radiation-sensitive resin composition (hereinafter also simply referred to as “composition”) contains a polymer, an onium salt (i), and a solvent.
  • the composition contains a resin (hereinafter also referred to as "base resin") that contains a structural unit having an acid-labile group and has a lower mass content of fluorine atoms than the polymer. is preferred.
  • base resin a resin that contains a structural unit having an acid-labile group and has a lower mass content of fluorine atoms than the polymer. is preferred.
  • the composition preferably further contains a radiation-sensitive acid generator.
  • the above composition may contain other optional components as long as they do not impair the effects of the present invention.
  • the polymer contains a structural unit (I) represented by formula (1) above and a structural unit different from the structural unit (I) above. Each structural unit will be described below.
  • Structural unit (I) Structural unit (I) is represented by the following formula (1).
  • RK1 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • L 1 is an alkanediyl group having 1 to 5 carbon atoms.
  • R f1 is a monovalent fluorinated hydrocarbon group having 2 to 10 carbon atoms and having 5 to 7 fluorine atoms.
  • R K1 is preferably a hydrogen atom or a methyl group from the viewpoint of copolymerizability of the monomer that gives the structural unit (I).
  • the C 1-5 alkanediyl group represented by L 1 includes a group obtained by removing two hydrogen atoms from a chain or branched alkane having the corresponding carbon number.
  • the two hydrogen atoms may be removed from the same carbon atom or from different carbon atoms.
  • Specific examples include methanediyl group, 1,1-ethanediyl group, 1,2-ethanediyl group, 1,1-dimethyl-1,2-ethanediyl group, 1,1-propanediyl group and 1,2-propanediyl group.
  • L 1 is preferably a methanediyl group or an ethanediyl group (1,1-ethanediyl group or 1,2-ethanediyl group).
  • the monovalent fluorinated hydrocarbon group having 2 to 10 carbon atoms and having 5 to 7 fluorine atoms represented by R f1 is, for example, 1 of 2 to 10 carbon atoms having 5 to 7 fluorine atoms.
  • Examples of the monovalent fluorinated linear hydrocarbon group having 2 to 10 carbon atoms and having 5 to 7 fluorine atoms include a pentafluoroethyl group, a 2,2,3,3,3-pentafluoropropyl group, heptafluoropropyl group, 1,1,1,3,3,3-hexafluoro-2-propyl group, 1,1,1,3,3,3-hexafluoro-2-fluoropropyl group, heptafluoro n- fluorinated alkyl groups such as propyl groups; fluorinated alkenyl groups such as pentafluoropropenyl groups; Examples include fluorinated alkynyl groups such as pentafluorobutynyl groups.
  • Examples of the monovalent fluorinated alicyclic hydrocarbon group having 3 to 10 carbon atoms and 5 to 7 fluorine atoms include: pentafluorocyclobutyl group, hexafluorocyclobutyl group, pentaolocyclopentyl group, hexafluorocyclopentyl group, heptafluorocyclopentyl group, pentafluorocyclohexyl group, hexaolocyclohexyl group, pentafluorocyclohexylmethyl group, pentafluoronorbornyl group, fluorinated cycloalkyl groups such as a pentafluoroadamantyl group, a pentafluorobornyl group, and a pentafluoroisobornyl group; Fluorinated cycloalkenyl groups such as a pentafluorocyclopentenyl group and a pentafluorocyclohe
  • R f1 is preferably a monovalent fluorinated chain hydrocarbon group having 2 to 8 carbon atoms and having 5 to 7 fluorine atoms, and a monovalent fluorinated chain hydrocarbon group having 2 to 6 carbon atoms and having 5 to 7 fluorine atoms. More preferably a fluorinated chain hydrocarbon group, more preferably a monovalent linear hydrocarbon group having 2 to 4 carbon atoms having 5 to 7 fluorine atoms, and 2 carbon atoms having 5 fluorine atoms A monovalent straight chain hydrocarbon group of ⁇ 4 is even more preferred, and a monovalent straight chain saturated hydrocarbon group of 2 to 4 carbon atoms having 5 fluorine atoms is particularly preferred.
  • Examples of monomers that give the structural unit (I) include compounds represented by the following formulas (1-1) to (1-18).
  • the lower limit of the content ratio of the structural unit (I) in the total structural units constituting the polymer is preferably 5 mol%, more preferably 10 mol%, 15 mol % is more preferred, and 20 mol % is particularly preferred.
  • the upper limit of the content is preferably 95 mol%, more preferably 80 mol%, still more preferably 65 mol%, and particularly preferably 50 mol%.
  • the monomer ( ⁇ ) that gives the structural unit (I) can be synthesized by a condensation reaction between an alcohol having a polymerizable group and a fluorine-containing carboxylic acid, as shown in the scheme below.
  • Other structures can also be synthesized by changing the structures of alcohols and carboxylic acids.
  • the polymer further includes a structural unit (II) represented by the following formula (2) (excluding structures corresponding to the structural unit (I)) as a structural unit different from the structural unit (I). preferably included.
  • RK2 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • L f is a fluorine-substituted or unsubstituted divalent organic group having 1 to 20 carbon atoms.
  • L 2 is * -COO- or * -OCO-. * is a bond on the Lf side.
  • m is an integer from 0 to 2;
  • L f and L 2 are the same or different from each other.
  • R f2 is a fluorine-substituted or unsubstituted monovalent organic group having 1 to 20 carbon atoms. However, L f and R f2 have a total of 1 or more fluorine atoms.
  • R K2 is preferably a hydrogen atom or a methyl group from the viewpoint of copolymerizability of the monomer that gives the structural unit (II).
  • L f is a divalent organic group having 1 to 20 carbon atoms, and some or all of the hydrogen atoms may be substituted with fluorine atoms, and may not be substituted with fluorine atoms (may be unsubstituted ).
  • the fluorine-substituted or unsubstituted divalent organic group having 1 to 20 carbon atoms represented by L f includes the fluorine-substituted or unsubstituted C 1 to 20 organic group represented by R f2 in the above formula (2). Since a group obtained by removing one hydrogen atom from a monovalent organic group can be suitably employed, R f2 will be explained first.
  • R f2 is a monovalent organic group having 1 to 20 carbon atoms, and some or all of the hydrogen atoms may be substituted with fluorine atoms, and may not be substituted with fluorine atoms (may be unsubstituted ).
  • the monovalent organic group having 1 to 20 carbon atoms is not particularly limited, and may be a chain structure, a cyclic structure, or a combination thereof. Examples of the chain structure include chain hydrocarbon groups that may be saturated or unsaturated, linear or branched.
  • the above cyclic structures include cyclic hydrocarbon groups which may be alicyclic, aromatic or heterocyclic.
  • the monovalent organic group includes a substituted or unsubstituted monovalent chain hydrocarbon group having 1 to 20 carbon atoms and a substituted or unsubstituted monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms. , a substituted or unsubstituted monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms, or a combination thereof.
  • R' is a hydrogen atom or a monovalent hydrocarbon group having 1 to 10 carbon atoms.
  • Examples of the monovalent chain hydrocarbon group having 1 to 20 carbon atoms include a linear or branched saturated hydrocarbon group having 1 to 20 carbon atoms, or a linear or branched unsaturated hydrocarbon group having 1 to 20 carbon atoms.
  • a hydrocarbon group etc. can be mentioned.
  • Examples of the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms include a monocyclic or polycyclic saturated hydrocarbon group, a monocyclic or polycyclic unsaturated hydrocarbon group, and the like.
  • Preferred monocyclic saturated hydrocarbon groups are cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl groups.
  • Preferred polycyclic cycloalkyl groups are bridged alicyclic hydrocarbon groups such as norbornyl, adamantyl, tricyclodecyl and tetracyclododecyl groups.
  • Monocyclic unsaturated hydrocarbon groups include monocyclic cycloalkenyl groups such as a cyclopropenyl group, a cyclobutenyl group, a cyclopentenyl group, and a cyclohexenyl group.
  • Polycyclic unsaturated hydrocarbon groups include polycyclic cycloalkenyl groups such as norbornenyl, tricyclodecenyl, and tetracyclododecenyl groups.
  • the bridged alicyclic hydrocarbon group is a polycyclic alicyclic hydrocarbon group in which two carbon atoms that are not adjacent to each other among the carbon atoms constituting the alicyclic ring are linked by a bond chain containing one or more carbon atoms.
  • a cyclic hydrocarbon group is a polycyclic alicyclic hydrocarbon group in which two carbon atoms that are not adjacent to each other among the carbon atoms constituting the alicyclic ring are linked by a bond chain
  • Examples of the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms include aryl groups such as phenyl group, tolyl group, xylyl group, naphthyl group and anthryl group; benzyl group, phenethyl group and naphthylmethyl group; An aralkyl group and the like can be mentioned.
  • heterocyclic cyclic hydrocarbon group examples include a group obtained by removing one hydrogen atom from an aromatic heterocyclic structure and a group obtained by removing one hydrogen atom from an alicyclic heterocyclic structure.
  • the heterocyclic structure also includes a 5-membered ring aromatic structure having aromaticity by introducing a heteroatom.
  • Heteroatoms include oxygen atoms, nitrogen atoms, sulfur atoms, and the like.
  • aromatic heterocyclic structures examples include oxygen atom-containing aromatic heterocyclic structures such as furan, pyran, benzofuran, and benzopyran; nitrogen atom-containing aromatic heterocyclic structures such as pyrrole, imidazole, pyridine, pyrimidine, pyrazine, indole, quinoline, isoquinoline, acridine, phenazine, carbazole; sulfur atom-containing aromatic heterocyclic structures such as thiophene; Examples include aromatic heterocyclic structures containing multiple heteroatoms such as thiazole, benzothiazole, thiazine, and oxazine.
  • Examples of the alicyclic heterocyclic structures include oxygen atom-containing alicyclic heterocyclic structures such as oxirane, tetrahydrofuran, tetrahydropyran, dioxolane, and dioxane; nitrogen atom-containing alicyclic heterocyclic structures such as aziridine, pyrrolidine, piperidine, piperazine; Sulfur atom-containing alicyclic heterocyclic structures such as thietane, thiolane, and thiane; Examples include alicyclic heterocyclic structures containing multiple heteroatoms such as morpholine, 1,2-oxathiolane, and 1,3-oxathiolane.
  • the cyclic structures also include structures containing lactone structures, cyclic carbonate structures, sultone structures and cyclic acetals.
  • the fluorine-substituted or unsubstituted divalent organic group having 1 to 20 carbon atoms represented by L f includes the fluorine-substituted or unsubstituted C 1 to 20 organic group represented by R f2 above.
  • a group obtained by removing one hydrogen atom from a monovalent organic group can be preferably employed.
  • m is preferably 1 or 2, more preferably 1.
  • L f and R f2 have a total of 1 or more fluorine atoms.
  • the lower limit of the total number of fluorine atoms in L f and R f2 may be two or three.
  • the upper limit of the total number may be 10, 8, or 6.
  • one or two fluorine atoms or trifluoromethyl groups are preferably bonded to at least one carbon atom adjacent to the carbonyl group in L2 .
  • Examples of monomers that give the structural unit (II) include compounds represented by the following formulas (2-1) to (2-42).
  • the lower limit of the content ratio of the structural unit (II) in the total structural units constituting the polymer is preferably 5 mol%, more preferably 10 mol%, 15 mol % is more preferred, and 20 mol % is particularly preferred.
  • the upper limit of the content ratio is preferably 80 mol %, more preferably 70 mol %, still more preferably 60 mol %, and particularly preferably 50 mol %.
  • the polymer preferably further contains a structural unit (III) represented by the following formula (3) as a structural unit different from the structural unit (I).
  • R7 is a hydrogen atom, fluorine atom, methyl group or trifluoromethyl group.
  • R 8 is a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • R 9 and R 10 are each independently a monovalent chain hydrocarbon group having 1 to 10 carbon atoms or a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, or these groups represents a divalent alicyclic group having 3 to 20 carbon atoms which is combined with the carbon atoms to which they are bonded.
  • R 7 is preferably a hydrogen atom or a methyl group, more preferably a methyl group, from the viewpoint of copolymerizability of the monomer that gives the structural unit (III).
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms represented by R 8 include a monovalent linear hydrocarbon group having 1 to 10 carbon atoms and a monovalent alicyclic ring having 3 to 20 carbon atoms. and a monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms.
  • the monovalent chain hydrocarbon group having 1 to 10 carbon atoms represented by R 8 to R 10 the monovalent chain hydrocarbon group having 1 to 20 carbon atoms in R f2 in the above formula (2) Of these, groups having 1 to 10 carbon atoms can be preferably employed.
  • Examples of the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms represented by R 8 to R 10 include carbonized monovalent alicyclic hydrocarbon groups having 3 to 20 carbon atoms in R f2 of the above formula (2).
  • a hydrogen group can be preferably employed.
  • the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms represented by R 8 is preferably a monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms in R f2 of the above formula (2). can be adopted.
  • R 8 is preferably a monovalent linear or branched saturated hydrocarbon group having 1 to 10 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms.
  • the divalent alicyclic group having 3 to 20 carbon atoms in which the R 9 and R 10 are combined together and formed together with the carbon atoms to which they are bonded is the monocyclic or polycyclic alicyclic hydrocarbon having the above carbon number. is not particularly limited as long as it is a group obtained by removing two hydrogen atoms from the same carbon atoms constituting the carbocyclic ring of .
  • Either a monocyclic hydrocarbon group or a polycyclic hydrocarbon group may be used, and the polycyclic hydrocarbon group may be either a bridged alicyclic hydrocarbon group or a condensed alicyclic hydrocarbon group. It may be either a hydrogen group or an unsaturated hydrocarbon group.
  • the condensed alicyclic hydrocarbon group is a polycyclic alicyclic hydrocarbon group in which a plurality of alicyclic rings share a side (a bond between two adjacent carbon atoms).
  • the saturated hydrocarbon group is preferably a cyclopentanediyl group, a cyclohexanediyl group, a cycloheptanediyl group, a cyclooctanediyl group, or the like
  • the unsaturated hydrocarbon group is a cyclopentenediyl group.
  • cyclohexenediyl group, cycloheptenediyl group, cyclooctenediyl group, cyclodecenediyl group and the like are preferable.
  • the polycyclic alicyclic hydrocarbon group is preferably a bridged alicyclic saturated hydrocarbon group, such as a bicyclo[2.2.1]heptane-2,2-diyl group (norbornane-2,2-diyl group ), bicyclo[2.2.2]octane-2,2-diyl group, tricyclo[3.3.1.1 3,7 ]decane-2,2-diyl group (adamantane-2,2-diyl group) etc. are preferred.
  • a bridged alicyclic saturated hydrocarbon group such as a bicyclo[2.2.1]heptane-2,2-diyl group (norbornane-2,2-diyl group ), bicyclo[2.2.2]octane-2,2-diyl group, tricyclo[3.3.1.1 3,7 ]decane-2,2-diyl group (adamantane-2,2-diyl group) etc.
  • R 8 is an alkyl group having 1 to 4 carbon atoms or a phenyl group
  • R 9 and R 10 are combined with each other and the alicyclic structure composed together with the carbon atom to which they are bonded is polycyclic or monocyclic. is preferably a cycloalkane structure of
  • structural unit (III) examples include structural units represented by the following formulas (3-1) to (3-7) (hereinafter also referred to as “structural units (III-1) to (III-7)”). etc.
  • R 7 to R 10 have the same meanings as in formula (3) above.
  • i and j are each independently an integer of 1 to 4;
  • k and l are 0 or 1;
  • R8 is preferably a methyl group, an ethyl group, an isopropyl group or a phenyl group.
  • R 9 and R 10 are preferably a methyl group or an ethyl group.
  • the polymer may contain one or a combination of two or more structural units (III).
  • the lower limit of the content ratio of the structural unit (III) in the total structural units constituting the polymer is preferably 5 mol%, more preferably 8 mol%. , 10 mol % is more preferred, and 15 mol % is particularly preferred.
  • the upper limit of the content ratio is preferably 80 mol %, more preferably 75 mol %, still more preferably 70 mol %, and particularly preferably 65 mol %.
  • the polymer contains, as a structural unit different from the structural unit (I), a structural unit (IV) containing at least one selected from the group consisting of a lactone structure, a cyclic carbonate structure and a sultone structure (however, the structural unit (II ) except for structures corresponding to ).
  • the polymer can adjust the solubility in the developer, and as a result, the radiation-sensitive resin composition improves lithography performance such as resolution. be able to.
  • Structural units (IV) include, for example, structural units represented by the following formulas (T-1) to (T-10).
  • R L1 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • R L2 to R L5 each independently represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a cyano group, a trifluoromethyl group, a methoxy group, a methoxycarbonyl group, a hydroxy group, a hydroxymethyl group, or a dimethylamino group; be.
  • R L4 and R L5 may be a divalent alicyclic group having 3 to 8 carbon atoms combined with each other and composed together with the carbon atoms to which they are attached.
  • LT is a single bond or a divalent linking group.
  • X is an oxygen atom or a methylene group.
  • k is an integer from 0 to 3;
  • m is an integer of 1-3.
  • R 9 and R 10 in the above formula (3) are examples include groups having 3 to 8 carbon atoms among divalent alicyclic groups having 3 to 20 carbon atoms which are composed together with the carbon atoms to which they are bonded.
  • One or more hydrogen atoms on this alicyclic group may be replaced with a hydroxy group.
  • the divalent linking group represented by L T includes, for example, a divalent linear or branched hydrocarbon group having 1 to 10 carbon atoms, and a divalent alicyclic carbonized group having 4 to 12 carbon atoms.
  • a hydrogen group, or a group composed of one or more of these hydrocarbon groups and at least one group selected from -CO-, -O-, -NH- and -S- may be mentioned.
  • structural units containing a lactone structure are preferred as structural units (IV), structural units containing a norbornanelactone structure are more preferred, and structural units derived from norbornanelactone-yl (meth)acrylate are even more preferred.
  • the lower limit of the content ratio of the structural unit (IV) (total when multiple types of structural units (IV) are present) is preferably 5 mol%, more preferably 8 mol%, based on the total structural units constituting the polymer. Preferably, 10 mol % is more preferred.
  • the upper limit of the content ratio is preferably 50 mol%, more preferably 40 mol%, and even more preferably 35 mol%.
  • the polymer may contain a structural unit (V) containing a polar group as a structural unit different from the structural unit (I) (provided that the structure corresponding to the structural units (II) and (IV) is except).
  • the polymer can adjust the solubility in the developer, and as a result, the lithography performance such as the resolution of the radiation-sensitive resin composition can be improved.
  • the polar group include a hydroxy group, a carboxyl group, a cyano group, a nitro group, a sulfonamide group and the like. Among these, a hydroxy group and a carboxy group are preferred, and a hydroxy group is more preferred.
  • Examples of structural units (V) include structural units represented by the following formula.
  • RA is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • the lower limit of the content ratio of the structural unit (V) (the total when there are multiple types of structural units (V)) constitutes the polymer. 5 mol% is preferable, 8 mol% is more preferable, and 10 mol% is still more preferable with respect to the total structural units.
  • the upper limit of the content ratio is preferably 60 mol%, more preferably 50 mol%, and even more preferably 45 mol%.
  • the polymer may contain a structural unit having an alicyclic structure represented by the following formula (6) as a structural unit other than the structural units listed above.
  • R 1 ⁇ is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • R 2 ⁇ is a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms.
  • the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms represented by R 2 ⁇ includes 3 to 3 carbon atoms represented by R 8 to R 10 in the above formula (3).
  • 20 monovalent alicyclic hydrocarbon groups can be preferably employed.
  • the lower limit of the content of the structural unit having the alicyclic structure is preferably 5 mol%, and 10 mol, based on the total structural units constituting the polymer. % is more preferred, and 15 mol % is even more preferred.
  • the upper limit of the content ratio is preferably 40 mol %, more preferably 30 mol %, and even more preferably 20 mol %.
  • the polymer can be synthesized, for example, by subjecting monomers that give each structural unit to a polymerization reaction in an appropriate solvent using a radical polymerization initiator or the like.
  • radical polymerization initiator examples include azobisisobutyronitrile (AIBN), 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis(2-cyclopropylpropyl pionitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), azo radical initiators such as dimethyl 2,2'-azobis isobutyrate; benzoyl peroxide, t-butyl hydroperoxide, Peroxide-based radical initiators such as cumene hydroperoxide can be used.
  • AIBN and dimethyl 2,2'-azobisisobutyrate are preferred, and AIBN is more preferred.
  • These radical initiators can be used individually by 1 type or in mixture of 2 or more types.
  • solvents used in the above polymerization reaction include alkanes such as n-pentane, n-hexane, n-heptane, n-octane, n-nonane, and n-decane; cyclohexane, cycloheptane, cyclooctane, and decalin.
  • the reaction temperature in the above polymerization reaction is usually 40°C to 150°C, preferably 50°C to 120°C.
  • the reaction time is generally 1 hour to 48 hours, preferably 1 hour to 24 hours.
  • the molecular weight of the polymer is not particularly limited, but the lower limit of the polystyrene equivalent weight average molecular weight (Mw) by gel permeation chromatography (GPC) is preferably 3,000, more preferably 5,000, and even more preferably 6,000. , 7,00 are particularly preferred.
  • the upper limit of Mw is preferably 30,000, more preferably 20,000, still more preferably 15,000, and particularly preferably 12,000.
  • the ratio (Mw/Mn) of Mw to the polystyrene equivalent number average molecular weight (Mn) of the polymer measured by GPC is usually 1 or more and 5 or less, preferably 1 or more and 3 or less, and more preferably 1 or more and 2 or less.
  • the lower limit of the content of the polymer is preferably 0.1 parts by mass, more preferably 0.5 parts by mass, even more preferably 1 part by mass, and particularly preferably 2 parts by mass with respect to 100 parts by mass of the base resin described later.
  • the upper limit of the content is preferably 40 parts by mass, more preferably 30 parts by mass, still more preferably 20 parts by mass, and particularly preferably 15 parts by mass.
  • the base resin is a resin containing a structural unit having an acid-labile group and having a lower mass content of fluorine atoms than the polymer.
  • the structural unit having an acid-labile group in the base resin the structural unit (III) contained in the above polymer can be suitably employed (hereinafter also referred to as "structural unit (III)" in the base resin). The same applies to other structural units.).
  • the radiation-sensitive resin composition has excellent pattern formability because the base resin has the structural unit (III).
  • the lower limit of the content ratio of the structural unit (III) in the total structural units constituting the base resin is preferably 15 mol%, more preferably 25 mol%. , 30 mol % is more preferred, and 35 mol % is particularly preferred.
  • the upper limit of the content ratio is preferably 80 mol %, more preferably 75 mol %, still more preferably 70 mol %, and particularly preferably 65 mol %.
  • the base resin may contain structural units (IV) and structural units (V) in the polymer in addition to the structural units (III) having an acid-labile group. Furthermore, the base resin may contain a structural unit derived from hydroxystyrene or a structural unit having a phenolic hydroxyl group (hereinafter also referred to as “structural unit (VI)”, described later).
  • the lower limit of the content of the structural unit (IV) is preferably 20 mol%, more preferably 30 mol%, more preferably 35 mol%, relative to all structural units constituting the base resin. Mole % is even more preferred.
  • the upper limit of the content ratio is preferably 80 mol%, more preferably 70 mol%, and even more preferably 65 mol%.
  • the lower limit of the content of the structural unit (V) is preferably 5 mol%, more preferably 8 mol%, based on the total structural units constituting the base resin. , 10 mol % is more preferred.
  • the upper limit of the content ratio is preferably 40 mol %, more preferably 30 mol %, and even more preferably 20 mol %.
  • Structural unit (VI) is a structural unit derived from hydroxystyrene or a structural unit having a phenolic hydroxyl group. Structural unit (VI) contributes to improvement of etching resistance and improvement of developer solubility difference (dissolution contrast) between exposed and unexposed areas. In particular, it can be suitably applied to pattern formation using exposure to radiation with a wavelength of 50 nm or less, such as electron beams and EUV. In the case of exposure to radiation with a wavelength of 50 nm or less, the base resin preferably has the structural unit (VI), the structural unit (III), and optionally the structural unit (V).
  • Structural units derived from hydroxystyrene are represented by, for example, the following formulas (4-1) to (4-2), and structural units having a phenolic hydroxyl group are represented by, for example, the following formulas (4-3) to (4-4 ) etc.
  • R 11 is a hydrogen atom, a fluorine atom, a methyl group or a trifluoromethyl group.
  • the phenolic hydroxyl group is protected by a protective group such as an alkali dissociable group (e.g., an acyl group) during polymerization, and then hydrolyzed to deprotect the structure. It is preferred to obtain units (VI).
  • a protective group such as an alkali dissociable group (e.g., an acyl group) during polymerization, and then hydrolyzed to deprotect the structure. It is preferred to obtain units (VI).
  • the lower limit of the content of the structural unit (VI) is preferably 10 mol%, more preferably 20 mol%, based on the total structural units constituting the base resin. Moreover, the upper limit of the content ratio is preferably 70 mol %, more preferably 60 mol %.
  • the molecular weight of the base resin is not particularly limited, but the lower limit of the polystyrene equivalent weight average molecular weight (Mw) by gel permeation chromatography (GPC) is preferably 1,000, more preferably 2,000, and more preferably 3,000. Preferably, 4,000 is particularly preferred.
  • the upper limit of Mw is preferably 30,000, more preferably 20,000, still more preferably 12,000, and particularly preferably 8,000.
  • the ratio (Mw/Mn) of Mw to the polystyrene equivalent number average molecular weight (Mn) of the base resin measured by GPC is usually 1 or more and 5 or less, preferably 1 or more and 3 or less, and more preferably 1 or more and 2 or less.
  • the base resin can be synthesized by a method similar to the method for synthesizing the polymer described above.
  • Onium salt (i)> Onium salt (i) is represented by the following formula (i).
  • the radiation-sensitive resin composition has excellent storage stability.
  • the radiation-sensitive resin composition contains an onium salt (i) as a quencher (acid diffusion controller), it can exhibit excellent LWR performance and development defect suppression during pattern formation.
  • R a1 is a substituted or unsubstituted monovalent organic group having 1 to 40 carbon atoms in which a fluorine atom and a fluorinated hydrocarbon group are not bonded to an atom adjacent to a sulfur atom.
  • X + is a monovalent onium cation.
  • R f2 in the above formula (2) is preferably a group obtained by expanding the monovalent organic group having 1 to 20 carbon atoms to 40 carbon atoms.
  • R a1 a substituent that the organic group of R f2 in the above formula (2) can have can be suitably employed.
  • R a1 preferably contains a cyclic structure.
  • a cyclic structure that can be included in the organic group of R f2 in the above formula (2) can be preferably employed.
  • the cyclic structure is preferably a monocyclic or polycyclic alicyclic hydrocarbon structure having 5 to 15 carbon atoms, an aromatic hydrocarbon structure having 6 to 10 carbon atoms, a lactone structure, a sultone structure, or a combination thereof.
  • anion portion of the onium salt (i) represented by the formula (i) is not particularly limited, examples thereof include structures represented by the following formulas (i-1-1) to (i-1-27). be done.
  • the monovalent onium cation represented by X + includes, for example, S, I, O, N, P, Cl, Br, F, As, Se, Sn, Sb, Te, Onium cations containing elements such as Bi can be mentioned.
  • Onium cations include, for example, sulfonium cations, tetrahydrothiophenium cations, iodonium cations, phosphonium cations, diazonium cations, pyridinium cations, and ammonium cations. Among them, a sulfonium cation or an iodonium cation is preferred.
  • Sulfonium cations or iodonium cations are preferably represented by the following formulas (X-1) to (X-6).
  • R a1 , R a2 and R a3 each independently represent a substituted or unsubstituted C 1-12 linear or branched alkyl group, alkoxy group or alkoxycarbonyl oxy group, substituted or unsubstituted monocyclic or polycyclic cycloalkyl group having 3 to 12 carbon atoms, substituted or unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms, hydroxy group, halogen atom, —OSO 2 —R P , —SO 2 —R Q or —S—R T , or represents a ring structure composed of two or more of these groups combined together.
  • the ring structure may contain a heteroatom such as O or S between the carbon-carbon bonds forming the skeleton.
  • R P , R Q and R T are each independently a substituted or unsubstituted linear or branched C 1-12 alkyl group, a substituted or unsubstituted C 5-25 alicyclic It is a hydrocarbon group or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms.
  • k1, k2 and k3 are each independently an integer from 0 to 5; When R a1 to R a3 and R P , R Q and R T are each plural, R a1 to R a3 and R P , R Q and R T may be the same or different.
  • R b1 is a substituted or unsubstituted linear or branched alkyl group or alkoxy group having 1 to 20 carbon atoms, or a substituted or unsubstituted acyl group having 2 to 8 carbon atoms. , or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 8 carbon atoms, or a hydroxy group.
  • nk is 0 or 1; When nk is 0, k4 is an integer of 0-4, and when nk is 1, k4 is an integer of 0-7.
  • R b1 When there are a plurality of R b1 , the plurality of R b1 may be the same or different, and the plurality of R b1 may represent a ring structure formed by being combined with each other.
  • R b2 is a substituted or unsubstituted C 1-7 linear or branched alkyl group or a substituted or unsubstituted C 6 or 7 aromatic hydrocarbon group.
  • LC is a single bond or a divalent linking group.
  • k5 is an integer from 0 to 4;
  • the plurality of Rb2 's may be the same or different, and the plurality of Rb2 's may represent a ring structure formed by being combined with each other.
  • q is an integer from 0 to 3;
  • the ring structure containing S + may contain a heteroatom such as O or S between the carbon-carbon bonds forming the skeleton.
  • R c1 , R c2 and R c3 are each independently a substituted or unsubstituted C 1-12 linear or branched alkyl group.
  • R g1 is a substituted or unsubstituted linear or branched alkyl group or alkoxy group having 1 to 20 carbon atoms, or a substituted or unsubstituted acyl group having 2 to 8 carbon atoms. , or a substituted or unsubstituted aromatic hydrocarbon group having 6 to 8 carbon atoms, or a hydroxy group.
  • nk is 0 or 1; When nk2 is 0, k10 is an integer of 0-4, and when nk2 is 1, k10 is an integer of 0-7.
  • R g1 When there are a plurality of R g1 , the plurality of R g1 may be the same or different, and the plurality of R g1 may represent a ring structure formed by being combined with each other.
  • R g2 and R g3 are each independently a substituted or unsubstituted C 1-12 linear or branched alkyl group, an alkoxy group or an alkoxycarbonyloxy group, a substituted or unsubstituted C 3 -12 monocyclic or polycyclic cycloalkyl groups, substituted or unsubstituted C6-12 aromatic hydrocarbon groups, hydroxy groups, halogen atoms, or these groups combined together Represents a ring structure.
  • k11 and k12 are each independently an integer of 0-4. When each of R g2 and R g3 is plural, the plural R g2 and R g3 may be the same or different.
  • R d1 and R d2 are each independently a substituted or unsubstituted C 1-12 linear or branched alkyl group, alkoxy group or alkoxycarbonyl group, substituted or an unsubstituted aromatic hydrocarbon group having 6 to 12 carbon atoms, a halogen atom, a halogenated alkyl group having 1 to 4 carbon atoms, a nitro group, or two or more of these groups combined with each other Represents the ring structure that is composed.
  • k6 and k7 are each independently an integer from 0 to 5; When each of R d1 and R d2 is plural, the plural R d1 and R d2 may be the same or different.
  • R e1 and R e2 are each independently a halogen atom, a substituted or unsubstituted linear or branched alkyl group having 1 to 12 carbon atoms, or a substituted or unsubstituted is an aromatic hydrocarbon group having 6 to 12 carbon atoms.
  • k8 and k9 are each independently an integer of 0-4.
  • onium cation examples include, but are not limited to, the structures of the following formulas (i-2-1) to (i-2-44).
  • the onium salt (i) includes a structure in which the above anion portion and the above onium cation are arbitrarily combined.
  • Specific examples of the onium salt (i) include, but are not limited to, onium salts represented by the following formulas (i-1) to (i-41).
  • the lower limit of the content of the onium salt (i) in the total mass of the components other than the solvent in the radiation-sensitive resin composition is 0.1% by mass. is preferred, 1% by mass is more preferred, 2% by mass is even more preferred, and 4% by mass is particularly preferred.
  • the upper limit of the content of the onium salt (i) is preferably 30% by mass, more preferably 25% by mass, still more preferably 20% by mass, and particularly preferably 15% by mass.
  • a radiation-sensitive acid generator is a component that generates an acid.
  • the acid generated from the radiation-sensitive acid generator upon exposure dissociates the acid-dissociable group of the structural unit (III). , a carboxyl group and the like.
  • the onium salt (i) When the onium salt (i) has a radiation-sensitive onium cation, an acid is generated from the onium salt (i) upon exposure.
  • the generated acid does not substantially dissociate the acid-dissociable group of the structural unit (III) under the pattern forming conditions using the radiation-sensitive resin composition, and the radiation-sensitive acid generator does not dissociate in the unexposed area. It has a function of suppressing the diffusion of the acid generated from (I). That is, the onium salt (i) functions as an acid diffusion control agent regardless of radiation sensitivity.
  • the acid generated from the radiation-sensitive acid generator is a relatively stronger acid (an acid with a lower pKa) than the acid generated from the radiation-sensitive onium salt (i).
  • the radiation-sensitive acid generator contained in the radiation-sensitive resin composition may be present alone as a compound (free from the polymer) or incorporated as a part of the polymer. Although both forms may be used, the form in which they exist alone as a compound is preferred.
  • the radiation-sensitive resin composition contains the radiation-sensitive acid generator, the polarity of the resin in the exposed area increases, and the resin in the exposed area becomes soluble in the developer in the case of alkaline aqueous solution development. On the other hand, in the case of organic solvent development, it becomes sparingly soluble in the developer.
  • Examples of radiation-sensitive acid generators include onium salt compounds, sulfonimide compounds, halogen-containing compounds, and diazoketone compounds.
  • Examples of onium salt compounds include sulfonium salts, tetrahydrothiophenium salts, iodonium salts, phosphonium salts, diazonium salts, pyridinium salts and the like. Among these, sulfonium salts and iodonium salts are preferred.
  • acids generated by exposure include those that generate sulfonic acid, carboxylic acid, and sulfonimide upon exposure.
  • Such acids include compounds in which the carbon atom adjacent to the sulfo group is substituted with one or more fluorine atoms or fluorinated hydrocarbon groups.
  • the lower limit of the content of the radiation-sensitive acid generator (the total when multiple types of radiation-sensitive acid generators are present) is set to 100 parts by mass of the base resin. 2 parts by mass is preferable, 5 parts by mass is more preferable, and 8 parts by mass is even more preferable.
  • the upper limit of the content of the radiation-sensitive acid generator is preferably 30 parts by mass, more preferably 25 parts by mass, more preferably 20 parts by mass, with respect to 100 parts by mass of the resin, from the viewpoint of ensuring transparency to radiation. preferable.
  • the radiation-sensitive resin composition contains a solvent.
  • the solvent is not particularly limited as long as it is capable of dissolving or dispersing at least the polymer together with the base resin and the radiation-sensitive acid generator that are preferably contained, other additives that are optionally contained, and the like.
  • solvents examples include alcohol-based solvents, ether-based solvents, ketone-based solvents, amide-based solvents, ester-based solvents, and hydrocarbon-based solvents.
  • alcohol solvents include Carbon such as iso-propanol, 4-methyl-2-pentanol, 3-methoxybutanol, n-hexanol, 2-ethylhexanol, furfuryl alcohol, cyclohexanol, 3,3,5-trimethylcyclohexanol, diacetone alcohol Monoalcoholic solvents of numbers 1 to 18; C2-C18 poly(ethylene glycol) such as ethylene glycol, 1,2-propylene glycol, 2-methyl-2,4-pentanediol, 2,5-hexanediol, diethylene glycol, dipropylene glycol, triethylene glycol and tripropylene glycol. a alcohol-based solvent; A polyhydric alcohol partial ether solvent obtained by etherifying a part of the hydroxy groups of the above polyhydric alcohol solvent may be used.
  • ether solvents examples include Dialkyl ether solvents such as diethyl ether, dipropyl ether, dibutyl ether; Cyclic ether solvents such as tetrahydrofuran and tetrahydropyran; Aromatic ring-containing ether solvents such as diphenyl ether and anisole (methylphenyl ether); Examples thereof include polyhydric alcohol ether solvents obtained by etherifying the hydroxy groups of the above polyhydric alcohol solvents.
  • amide solvents include cyclic amide solvents such as N,N'-dimethylimidazolidinone and N-methylpyrrolidone; Chain amide solvents such as N-methylformamide, N,N-dimethylformamide, N,N-diethylformamide, acetamide, N-methylacetamide, N,N-dimethylacetamide, N-methylpropionamide, and the like.
  • ester solvents include monocarboxylic acid ester solvents such as n-butyl acetate and ethyl lactate; Polyhydric alcohol partial ether acetate solvents such as diethylene glycol mono-n-butyl ether acetate, propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether acetate; Lactone solvents such as ⁇ -butyrolactone and valerolactone; Carbonate solvents such as diethyl carbonate, ethylene carbonate, propylene carbonate; Polyvalent carboxylic acid diester solvents such as propylene glycol diacetate, methoxytriglycol acetate, diethyl oxalate, ethyl acetoacetate, ethyl lactate and diethyl phthalate can be used.
  • monocarboxylic acid ester solvents such as n-butyl acetate and ethyl lactate
  • hydrocarbon solvents examples include aliphatic hydrocarbon solvents such as n-hexane, cyclohexane, and methylcyclohexane; Aromatic hydrocarbon solvents such as benzene, toluene, di-iso-propylbenzene, n-amylnaphthalene and the like are included.
  • ester-based solvents ether-based solvents, and ketone-based solvents are preferred, and polyhydric alcohol partial ether acetate-based solvents, polyhydric alcohol ether-based solvents, polyvalent carboxylic acid diester-based solvents, cyclic ketone-based solvents, and lactone-based solvents.
  • Solvents are more preferred, and propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, ethyl lactate, cyclohexanone, and ⁇ -butyrolactone are even more preferred.
  • the radiation-sensitive resin composition may contain one or more solvents.
  • the radiation-sensitive resin composition may contain other optional components in addition to the components described above.
  • the other optional components include a cross-linking agent, an uneven distribution promoter, a surfactant, an alicyclic skeleton-containing compound, a sensitizer, and the like. These other optional components may be used alone or in combination of two or more.
  • the radiation-sensitive resin composition can be prepared, for example, by mixing a base resin, a radiation-sensitive acid generator, an acid diffusion control agent and a solvent, if necessary, in a predetermined ratio together with a polymer. After mixing, the radiation-sensitive resin composition is preferably filtered through a filter having a pore size of about 0.05 ⁇ m to 0.2 ⁇ m.
  • the solid content concentration of the radiation-sensitive resin composition is usually 0.1% by mass to 50% by mass, preferably 0.5% by mass to 30% by mass, more preferably 1% by mass to 20% by mass.
  • a pattern forming method comprises: A step (1) of directly or indirectly applying the radiation-sensitive resin composition to a substrate to form a resist film (hereinafter also referred to as a “resist film forming step”); Step (2) of exposing the resist film (hereinafter also referred to as “exposure step”); and a step (3) of developing the exposed resist film (hereinafter also referred to as “development step”).
  • the resist pattern forming method it is possible to form a resist film having excellent sensitivity, LWR performance, water repellency, and development defect suppressing property. A high-quality resist pattern can be efficiently formed. Each step will be described below.
  • a resist film is formed from the radiation-sensitive resin composition.
  • the substrate on which the resist film is formed include conventionally known substrates such as silicon wafers, silicon dioxide, and aluminum-coated wafers. Further, for example, an organic or inorganic antireflection film disclosed in JP-B-6-12452, JP-A-59-93448, etc. may be formed on the substrate. Examples of coating methods include spin coating, casting coating, and roll coating. After coating, if necessary, prebaking (PB) may be performed in order to volatilize the solvent in the coating film.
  • the PB temperature is usually 60°C to 150°C, preferably 80°C to 130°C.
  • the PB time is usually 5 to 600 seconds, preferably 10 to 300 seconds.
  • the thickness of the resist film to be formed is preferably 10 nm to 1,000 nm, more preferably 10 nm to 500 nm.
  • the receding contact angle of the resist film after prebaking is preferably 70° or more, more preferably 72° or more, and even more preferably 74° or more.
  • the method for measuring the receding contact angle is described in Examples.
  • an immersion protective film that is insoluble in the immersion liquid may be provided on the resist film formed above in order to avoid direct contact between the immersion liquid and the resist film.
  • a solvent peelable protective film that is peeled off with a solvent before the development process see, for example, JP-A-2006-227632
  • a developer peelable protective film that is peeled off at the same time as development in the development process may be used.
  • the exposure step which is the next step, is performed with radiation having a wavelength of 50 nm or less, the structural unit (III) and the structural unit (VI) as the base resin in the composition, and if necessary, the structural unit (V). It is preferable to use a resin having
  • the resist film formed in the resist film forming step (step (1) above) is coated through a photomask (in some cases, through an immersion medium such as water). , emit radiation and expose. Radiation used for exposure depends on the line width of the desired pattern. A charged particle beam and the like can be mentioned. Among these, far ultraviolet rays, electron beams, and EUV are preferred, and ArF excimer laser light (wavelength 193 nm), KrF excimer laser light (wavelength 248 nm), electron beams, and EUV are more preferred. The following electron beams and EUV are more preferable.
  • the immersion liquid used When exposure is performed by immersion exposure, examples of the immersion liquid used include water and fluorine-based inert liquids.
  • the immersion liquid is preferably a liquid that is transparent to the exposure wavelength and has a temperature coefficient of refractive index as small as possible so as to minimize distortion of the optical image projected onto the film.
  • excimer laser light wavelength: 193 nm
  • water it is preferable to use water from the viewpoints of availability and ease of handling in addition to the above viewpoints.
  • an additive that reduces the surface tension of water and increases surface activity may be added in a small proportion. This additive preferably does not dissolve the resist film on the wafer and has negligible effect on the optical coating on the bottom surface of the lens. Distilled water is preferred as the water used.
  • a post-exposure bake is performed to accelerate the dissociation of the acid-dissociable groups of the resin or the like by the acid generated from the radiation-sensitive acid generator upon exposure in the exposed portions of the resist film.
  • This PEB causes a difference in solubility in a developer between the exposed area and the unexposed area.
  • the PEB temperature is usually 50°C to 180°C, preferably 80°C to 130°C.
  • the PEB time is usually 5 to 600 seconds, preferably 10 to 300 seconds.
  • step (3) above the resist film exposed in the exposure step (step (2) above) is developed. Thereby, a predetermined resist pattern can be formed. After development, it is common to wash with a rinsing liquid such as water or alcohol and dry.
  • a rinsing liquid such as water or alcohol
  • TMAH tetramethylammonium hydroxide
  • a TMAH aqueous solution is preferable, and a 2.38% by mass TMAH aqueous solution is more preferable.
  • organic solvents such as hydrocarbon solvents, ether solvents, ester solvents, ketone solvents, alcohol solvents, or solvents containing organic solvents can be used.
  • the organic solvent include one or more of the solvents listed above as the solvent for the radiation-sensitive resin composition.
  • ether-based solvents, ester-based solvents, and ketone-based solvents are preferred.
  • the ether solvent a glycol ether solvent is preferable, and ethylene glycol monomethyl ether and propylene glycol monomethyl ether are more preferable.
  • ester solvent an acetate solvent is preferable, and n-butyl acetate and amyl acetate are more preferable.
  • ketone-based solvent a chain ketone is preferred, and 2-heptanone is more preferred.
  • the content of the organic solvent in the developer is preferably 80% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, and particularly preferably 99% by mass or more.
  • Components other than the organic solvent in the developer include, for example, water and silicon oil.
  • the developer may be either an alkaline developer or an organic solvent developer, but it is preferable that the developer contains an alkaline aqueous solution and the resulting pattern is a positive pattern.
  • Examples of the developing method include a method of immersing the substrate in a tank filled with a developer for a certain period of time (dip method), and a method of developing by standing still for a certain period of time while the developer is heaped up on the surface of the substrate by surface tension (puddle method).
  • dip method a method of immersing the substrate in a tank filled with a developer for a certain period of time
  • puddle method a method of developing by standing still for a certain period of time while the developer is heaped up on the surface of the substrate by surface tension
  • method a method of spraying the developer onto the substrate surface
  • spray method a method of continuously discharging the developer while scanning the developer discharge nozzle at a constant speed onto the substrate rotating at a constant speed
  • Mw and Mn Weight average molecular weight (Mw) and number average molecular weight (Mn)
  • Mw and Mn of the polymer are determined by gel permeation chromatography (GPC) using Tosoh Corporation GPC columns (2 "G2000HXL”, 1 "G3000HXL”, and 1 "G4000HXL”). was measured under the conditions of Further, the degree of dispersion (Mw/Mn) was calculated from the measurement results of Mw and Mn.
  • Elution solvent Tetrahydrofuran Flow rate: 1.0 mL/min Sample concentration: 1.0% by mass
  • Sample injection volume 100 ⁇ L
  • 13 C-NMR analysis 13 C-NMR analysis of the polymer was performed using a nuclear magnetic resonance apparatus (“JNM-Delta400” manufactured by JEOL Ltd.).
  • the polymerization solution was cooled with water to 30° C. or lower.
  • the cooled polymerization solution was poured into methanol (2,000 parts by mass), and the precipitated white powder was separated by filtration.
  • the filtered white powder was washed twice with methanol, filtered, and dried at 50° C. for 24 hours to obtain a white powdery base resin (A-1) (yield: 74%).
  • Resin (A-1) had Mw of 5,800 and Mw/Mn of 1.53.
  • the content ratio of each structural unit derived from (M-1), (M-2) and (M-6) was 34.8 mol% and 19.4 mol%, respectively. and 45.8 mol%.
  • the polymerization solution was cooled with water to 30° C. or lower.
  • the cooled polymerization solution was poured into hexane (2,000 parts by mass), and the precipitated white powder was separated by filtration.
  • the filtered white powder was washed twice with hexane, filtered, and dissolved in 1-methoxy-2-propanol (300 parts by mass).
  • methanol 500 parts by mass
  • triethylamine 50 parts by mass
  • ultrapure water 10 parts by mass
  • the base resin (A-12) had an Mw of 6,100 and an Mw/Mn of 1.49.
  • the content ratios of structural units derived from (M-1) and (M-18) were 49.2 mol % and 50.8 mol %, respectively.
  • C-1 to C-10 compounds represented by the following formulas (C-1) to (C-10)
  • cc-1 to cc-7 represented by the following formulas (cc-1) to (cc-7) compound
  • Example 1 [A] 100 parts by mass of (A-1) as a base resin, [B] 12.0 parts by mass of (B-1) as a radiation-sensitive acid generator, [C] as an acid diffusion controller (C- 1) 10.0 parts by mass, [E] 3.0 parts by mass (E-1) as a polymer (solid content), and [D] as a solvent (D-1) / (D-2) / ( A radiation-sensitive resin composition (J-1) was prepared by mixing 3,230 parts by mass of the mixed solvent of D-3) and filtering through a membrane filter with a pore size of 0.2 ⁇ m.
  • a resist film with an average thickness of 90 nm was formed.
  • Exposure was performed through a 50 nm line-and-space mask pattern under the following conditions. After exposure, PEB (post-exposure bake) was performed at 100° C. for 60 seconds. Thereafter, the resist film is alkali-developed using a 2.38% by mass TMAH aqueous solution as an alkali developer, washed with water after development, and dried to form a positive resist pattern (50 nm line and space pattern). formed.
  • the resist pattern formed using the positive radiation-sensitive resin composition for ArF exposure was evaluated for sensitivity, LWR performance, storage stability, and number of defects after development according to the following methods.
  • the receding contact angle of the resist film before ArF exposure was evaluated according to the following method. The results are shown in Table 6 below.
  • a scanning electron microscope (“CG-5000” manufactured by Hitachi High-Technologies Corporation) was used for the length measurement of the resist pattern.
  • the exposure dose for forming a 50 nm line-and-space pattern is defined as the optimum exposure dose, and this optimum exposure dose is defined as sensitivity (mJ/cm 2 ). did. The sensitivity was evaluated as "good” when it was 35 mJ/cm 2 or less, and as “bad” when it exceeded 35 mJ/cm 2 .
  • LWR performance A resist pattern was formed by adjusting the mask size so as to form a 50 nm line-and-space pattern by irradiating with the optimum exposure amount determined in the above sensitivity evaluation. The formed resist pattern was observed from above the pattern using the scanning electron microscope. Line width variation was measured at a total of 500 points, a 3 sigma value was obtained from the distribution of the measured values, and this 3 sigma value was defined as LWR (nm). LWR indicates that the smaller the value, the smaller the roughness of the line and the better. The LWR performance was evaluated as "good” when less than or equal to 3.0 nm, and as “poor” when greater than 3.0 nm.
  • Water was discharged from the DSA-10 needle to form 25 ⁇ L water droplets on the resist film, and then the water droplets were sucked by the needle at a rate of 10 ⁇ L/min for 90 seconds, and the contact angle was measured every second (90 times in total). .
  • the average value of the contact angles at a total of 20 points was calculated from the time when the contact angles became stable, and this was taken as the receding contact angle (°) after PB.
  • the receding contact angle after PB was evaluated as "good” when it was 70° or more, and as "bad” when it was less than 70°.
  • Rate of change in receding contact angle (%) ⁇ ( ⁇ 0 - ⁇ 1 )/ ⁇ 0 ⁇ ⁇ 100 ( ⁇ 0 is the receding contact angle before storage, and ⁇ 1 is the receding contact angle after one month of storage.)
  • a line-and-space pattern with a line width of 50 nm was formed by exposing the resist film with the optimum exposure dose, and a wafer for defect inspection was obtained.
  • the number of defects on this defect inspection wafer was measured using a defect inspection apparatus (KLA-Tencor "KLA2810"). Defects with a diameter of 50 ⁇ m or less were determined to be derived from the resist film, and the number of defects was calculated. The number of defects after development was evaluated as "good” when the number of defects determined to be derived from the resist film was 50 or less, and as "bad” when the number exceeded 50.
  • the radiation-sensitive resin compositions of Examples had sensitivity, LWR performance, receding contact angle after PB, and storage stability when used for ArF exposure. , the number of development defects was good, but in the comparative example, each characteristic was inferior to that in the example. Therefore, when the radiation-sensitive resin composition of the example is used for ArF exposure, a resist pattern with high sensitivity and good LWR performance, water repellency, storage stability, and defect resistance can be formed.
  • Example 79 [A] 100 parts by mass of (A-12) as a base resin, [B] 15.0 parts by mass of (B-5) as a radiation-sensitive acid generator, [C] (C- 5) 12.0 parts by mass, [E] 3.0 parts by mass (E-1) as a polymer (solid content), and [D] a mixture of (D-1) / (D-4) as a solvent
  • a radiation-sensitive resin composition (J-79) was prepared by mixing 6,110 parts by mass of a solvent and filtering through a membrane filter with a pore size of 0.2 ⁇ m.
  • a spin coater (“CLEAN TRACK ACT12" available from Tokyo Electron Co., Ltd.) was used to apply a composition for forming a lower antireflection film ("ARC66" available from Bulwer Science).
  • a lower antireflection film having an average thickness of 105 nm was formed by heating at 205° C. for 60 seconds.
  • the positive radiation-sensitive resin composition for EUV exposure prepared above was applied onto this lower antireflection film using the above spin coater, and PB was performed at 130° C. for 60 seconds. Then, by cooling at 23° C. for 30 seconds, a resist film with an average thickness of 55 nm was formed.
  • the resist pattern formed using the positive radiation-sensitive resin composition for EUV exposure was evaluated for sensitivity, LWR performance, storage stability, and number of defects after development according to the following methods.
  • the receding contact angle of the resist film before EUV exposure was evaluated according to the following method. The results are shown in Table 8 below.
  • a scanning electron microscope (“CG-5000” manufactured by Hitachi High-Technologies Corporation) was used for the length measurement of the resist pattern.
  • the exposure dose for forming a 32 nm line-and-space pattern is defined as the optimum exposure dose, and this optimum exposure dose is defined as sensitivity (mJ/cm 2 ). did. The sensitivity was evaluated as "good” when it was 30 mJ/cm 2 or less, and as “bad” when it exceeded 30 mJ/cm 2 .
  • LWR performance A resist pattern was formed by adjusting the mask size so as to form a 32 nm line-and-space pattern by irradiating with the optimum exposure amount determined by the evaluation of sensitivity. The formed resist pattern was observed from above the pattern using the scanning electron microscope. Line width variation was measured at a total of 500 points, a 3 sigma value was obtained from the distribution of the measured values, and this 3 sigma value was defined as LWR (nm). LWR indicates that the smaller the value, the smaller the roughness of the line and the better. The LWR performance was evaluated as "good” when less than or equal to 3.0 nm, and as “poor” when greater than 3.0 nm.
  • Water was discharged from the DSA-10 needle to form 25 ⁇ L water droplets on the resist film, and then the water droplets were sucked by the needle at a rate of 10 ⁇ L/min for 90 seconds, and the contact angle was measured every second (90 times in total). .
  • the average value of the contact angles at a total of 20 points was calculated from the time when the contact angles became stable, and this was taken as the receding contact angle (°) after PB.
  • the receding contact angle after PB was evaluated as "good” when it was 70° or more, and as "bad” when it was less than 70°.
  • Rate of change in receding contact angle (%) ⁇ ( ⁇ 0 - ⁇ 1 )/ ⁇ 0 ⁇ ⁇ 100 ( ⁇ 0 is the receding contact angle before storage, and ⁇ 1 is the receding contact angle after one month of storage.)
  • a line-and-space pattern with a line width of 32 nm was formed by exposing the resist film with the optimum exposure dose, and a wafer for defect inspection was obtained.
  • the number of defects on this defect inspection wafer was measured using a defect inspection apparatus (KLA-Tencor "KLA2810"). Defects with a diameter of 50 ⁇ m or less were determined to be derived from the resist film, and the number of defects was calculated. The number of defects after development was evaluated as "good” when the number of defects determined to be derived from the resist film was 50 or less, and as "bad” when the number exceeded 50.
  • the radiation-sensitive resin compositions of Examples exhibited good sensitivity, LWR performance, receding contact angle after PB, storage stability, and the number of development defects when used for EUV exposure.
  • each characteristic was inferior to those in Examples. Therefore, when the radiation-sensitive resin composition of the example is used for EUV exposure, a resist pattern with high sensitivity and good LWR performance, water repellency, storage stability, and defect resistance can be formed.
  • Example 93 [A] 100 parts by mass of (A-10) as a base resin, [B] 12.0 parts by mass of (B-4) as a radiation-sensitive acid generator, [C] (C- 3) 12.0 parts by mass, [E] 4.0 parts by mass (E-32) as a polymer (solid content), and [D] as a solvent (D-1) / (D-2) / ( D-3) mixed solvent 3,230 parts by mass (mass ratio 2240 parts / 960 parts / 30 parts) was mixed and filtered through a membrane filter with a pore size of 0.2 ⁇ m to obtain a radiation-sensitive resin composition (J- 93) was prepared.
  • a spin coater (“CLEAN TRACK ACT 12" from Tokyo Electron Co., Ltd.) was used to apply a composition for forming a lower anti-reflection film ("ARC66" from Bulwer Science).
  • a lower antireflection film having an average thickness of 100 nm was formed by heating at 205° C. for 60 seconds.
  • the negative type radiation-sensitive resin composition for ArF exposure (J-93) prepared above was applied onto this lower antireflection film using the above spin coater, and PB (pre-baking) was performed at 100° C. for 60 seconds. Then, by cooling at 23° C. for 30 seconds, a resist film with an average thickness of 90 nm was formed.
  • PEB post-exposure bake
  • the resist pattern formed using the above negative radiation-sensitive resin composition for ArF exposure and the resist film before ArF exposure were evaluated in the same manner as the evaluation of the resist pattern using the above positive radiation-sensitive resin composition for ArF exposure. evaluated.
  • the radiation-sensitive resin composition of Example 93 exhibited a receding contact angle after PB, the number of defects after development, and storage stability with high sensitivity. It was good.
  • Example 94 [A] 100 parts by mass of (A-14) as a base resin, [B] 20.0 parts by mass of (B-8) as a radiation-sensitive acid generator, [C] as an acid diffusion controller (C- 2) 18.0 parts by mass, [E] 3.0 parts by mass (E-32) as a polymer (solid content), and [D] a mixture of (D-1) / (D-4) as a solvent
  • a radiation-sensitive resin composition (J-94) was prepared by mixing 6,110 parts by mass of a solvent (mass ratio of 4280 parts/1830 parts) and filtering through a membrane filter with a pore size of 0.2 ⁇ m.
  • a spin coater (“CLEAN TRACK ACT 12" from Tokyo Electron Co., Ltd.) was used to apply a composition for forming a lower anti-reflection film ("ARC66" from Bulwer Science).
  • a lower antireflection film having an average thickness of 105 nm was formed by heating at 205° C. for 60 seconds.
  • the negative type radiation-sensitive resin composition for EUV exposure (J-94) prepared above was applied onto this lower antireflection film using the above spin coater, and PB was performed at 130° C. for 60 seconds. Then, by cooling at 23° C. for 30 seconds, a resist film with an average thickness of 55 nm was formed.
  • the resist pattern using the negative radiation-sensitive resin composition for EUV exposure was evaluated in the same manner as the resist pattern using the negative radiation-sensitive resin composition for ArF exposure. As a result, even when the radiation-sensitive resin composition of Example 94 formed a negative resist pattern by EUV exposure, the receding contact angle after PB, the number of defects after development, and the storage stability were high with high sensitivity. It was good.
  • the composition is excellent in storage stability, has good sensitivity to exposure light, has LWR performance, water repellency, and a resist with few defects. Patterns can be formed. Therefore, these materials can be suitably used in the processing of semiconductor devices, which are expected to further miniaturize in the future.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

感度、LWR性能、撥水性、現像欠陥抑制性に優れるレジスト膜を形成可能であり、保存安定性が良好な感放射線性樹脂組成物及びパターン形成方法を提供する。下記式(1)で表される構造単位(I)と、上記構造単位(I)とは異なる構造単位とを含む重合体と、下記式(i)で表されるオニウム塩と、溶剤とを含む感放射線性樹脂組成物。(上記式(1)中、RK1は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。L1は、炭素数1~5のアルカンジイル基である。Rf1は、5~7個のフッ素原子を有する炭素数2~10のフッ素化炭化水素基である。)(上記式(i)中、Ra1は、硫黄原子に隣接する原子にフッ素原子及びフッ素化炭化水素基が結合していない置換又は非置換の炭素数1~40の1価の有機基である。X+は1価のオニウムカチオンである。)

Description

感放射線性樹脂組成物及びパターン形成方法
 本発明は、感放射線性樹脂組成物及びパターン形成方法に関する。
 半導体素子における微細な回路形成にレジスト組成物を用いるフォトリソグラフィー技術が利用されている。代表的な手順として、例えば、レジスト組成物の被膜に対するマスクパターンを介した放射線照射による露光で酸を発生させ、その酸を触媒とする反応により露光部と未露光部とにおいて樹脂のアルカリ系や有機溶剤系の現像液に対する溶解度の差を生じさせることで、基板上にレジストパターンを形成する。
 上記フォトリソグラフィー技術ではArFエキシマレーザー等の短波長の放射線を用いたり、このArF露光と液浸露光法(リキッドイマージョンリソグラフィー)とを組み合わせたりしてパターン微細化を推進している。
 液浸露光法において用いられるレジスト組成物には、レジスト膜の表面改質によってプロセス効率を改善することを目的として、レジスト組成物に撥水性の化合物を添加する試みがなされている。例えば、レジスト性能や欠陥防止性の向上のために、レジスト組成物中では疎水性を維持し、アルカリ現像液に対して溶解性を示す撥水性の化合物を添加する技術が提案されている(特許第6774214号参照)。
特許第6774214号
 ArF露光に続く次世代技術として、電子線、X線及びEUV(極端紫外線)等のさらに短波長の放射線の利用が図られている。撥水性化合物を添加したレジスト組成物には、上述の次世代技術においても、感度やレジストパターンの線幅のバラつきを示すLWR(Line Width Roughness)性能、撥水性、現像欠陥抑制性が要求される。
 しかしながら、現像欠陥抑制性を高めるために撥水性化合物の現像液への溶解性を高めると、その反応性から長期の保存に向かない場合がある。保存安定性と現像欠陥抑制性とはいわゆるトレードオフの関係にあり、その両立が求められる。
 本発明は、感度、LWR性能、撥水性、現像欠陥抑制性に優れるレジスト膜を形成可能であり、保存安定性が良好な感放射線性樹脂組成物及びパターン形成方法を提供することを目的とする。
 本発明者らは、本課題を解決すべく鋭意検討を重ねた結果、下記構成を採用することにより、上記目的を達成できることを見出し、本発明を完成させるに至った。
 すなわち、本発明は、一実施形態において、
 下記式(1)で表される構造単位(I)と、上記構造単位(I)とは異なる構造単位とを含む重合体と、
 下記式(i)で表されるオニウム塩(以下、「オニウム塩(i)」ともいう。)と、
 溶剤と
 を含む感放射線性樹脂組成物に関する。
Figure JPOXMLDOC01-appb-C000005
(上記式(1)中、
 RK1は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
 Lは、炭素数1~5のアルカンジイル基である。
 Rf1は、5~7個のフッ素原子を有する炭素数2~10のフッ素化炭化水素基である。)
Figure JPOXMLDOC01-appb-C000006
(上記式(i)中、
 Ra1は、硫黄原子に隣接する原子にフッ素原子及びフッ素化炭化水素基が結合していない置換又は非置換の炭素数1~40の1価の有機基である。
 Xは1価のオニウムカチオンである。)
 当該感放射線性樹脂組成物によれば、保存安定性が良好であるとともに、感度、LWR性能、撥水性に加え、現像欠陥抑制性を満足するレジスト膜を構築することができる。この理由は定かではなく限定されないものの、以下のように推察される。重合体は、構造単位(I)が含むフッ素原子により高い撥水性を発揮することができる。また、現像工程時に、重合体中の構造単位(I)において解離反応が生じ、重合体の現像液への溶解性を向上させることができ、その結果、現像欠陥抑制性を向上させることができる。一方で、構造単位(I)における現像液解離反応が生じる部分(主に側鎖末端側のエステル結合)の周囲に導入した比較的嵩高い構造が反応障壁となり、当該感放射線性樹脂組成物の保存中の水分等による不用意な解離反応を抑制することができる。これらの複合的な作用により保存安定性と現像欠陥抑制性という、相反する要求性能を両立することができると推察される。さらに、重合体とオニウム塩(i)との併存により感度及びLWR性能を確保することができると推察される。
 本明細書において、「有機基」は少なくとも1個の炭素原子を有する基である。「炭化水素基」には、特に示さない限り、鎖状炭化水素基、脂環式炭化水素基及び芳香族炭化水素基が含まれる。上記「炭化水素基」は、飽和炭化水素基及び不飽和炭化水素基の両方を含む。上記「鎖状炭化水素基」は、環状構造を含まず、鎖状構造のみで構成された炭化水素基をいい、直鎖状炭化水素基及び分岐鎖状炭化水素基の両方を含む。上記「脂環式炭化水素基」は、環構造としては脂環構造のみを含み、芳香環構造を含まない炭化水素基をいい、単環の脂環式炭化水素基及び多環の脂環式炭化水素基の両方を含む。ただし、脂環構造のみで構成されている必要はなく、その一部に鎖状構造を含んでいてもよい。上記「芳香族炭化水素基」には、環構造として芳香環構造を含む炭化水素基をいう。ただし、芳香環構造のみで構成されている必要はなく、その一部に鎖状構造や脂環構造を含んでいてもよい。
 本発明は、別の実施形態において、
 当該感放射線性樹脂組成物を基板に直接又は間接に塗布してレジスト膜を形成する工程と、
 上記レジスト膜を露光する工程と、
 露光された上記レジスト膜を現像液で現像する工程と
 を含むパターン形成方法に関する。
 当該パターン形成方法によれば、感度、LWR性能、撥水性及び現像欠陥抑制性に優れるレジスト膜を形成可能であり、保存安定性が良好な上記感放射線性樹脂組成物を用いているので、高品位のレジストパターンを効率的に形成することができる。
 以下、本発明の実施形態について詳細に説明するが、本発明はこれらの実施形態に限定されるものではない。好適な実施形態の組み合わせもまた好ましい。
 《感放射線性樹脂組成物》
 本実施形態に係る感放射線性樹脂組成物(以下、単に「組成物」ともいう。)は、重合体とオニウム塩(i)と溶剤とを含む。上記組成物は、上記重合体に加え、酸解離性基を有する構造単位を含み、上記重合体よりもフッ素原子の質量含有率が小さい樹脂(以下、「ベース樹脂」ともいう。)を含むことが好ましい。上記組成物は、感放射線性酸発生剤をさらに含むことが好ましい。上記組成物は、本発明の効果を損なわない限り、他の任意成分を含んでいてもよい。
 <重合体>
 重合体は、上記式(1)で表される構造単位(I)と、上記構造単位(I)とは異なる構造単位とを含む。以下、各構造単位について説明する。
 (構造単位(I))
 構造単位(I)は、下記式(1)で表される。
Figure JPOXMLDOC01-appb-C000007
(上記式(1)中、
 RK1は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
 Lは、炭素数1~5のアルカンジイル基である。
 Rf1は、5~7個のフッ素原子を有する炭素数2~10の1価のフッ素化炭化水素基である。)
 RK1としては、構造単位(I)を与える単量体の共重合性の点から、水素原子又はメチル基が好ましい。
 Lで表される炭素数1~5のアルカンジイル基としては、対応する炭素数の鎖状又は分岐状アルカンから水素原子の2個除いた基が挙げられる。2個の水素原子は、同一炭素原子から除いてもよく、異なる炭素原子から除いてもよい。具体例としては、メタンジイル基、1,1-エタンジイル基、1,2-エタンジイル基、1,1-ジメチル-1,2-エタンジイル基、1,1-プロパンジイル基、1,2-プロパンジイル基、1,3-プロパンジイル基、2,2-プロパンジイル基、1,1-ブタンジイル基、2,2-ブタンジイル基、1,2-ブタンジイル基、1,3-ブタンジイル基、1,4-ブタンジイル基、2,3-ブタンジイル基等が挙げられる。中でも、Lは、メタンジイル基又はエタンジイル基(1,1-エタンジイル基又は1,2-エタンジイル基)であることが好ましい。
 Rf1で表される5~7個のフッ素原子を有する炭素数2~10の1価のフッ素化炭化水素基としては、例えば、5~7個のフッ素原子を有する炭素数2~10の1価のフッ素化鎖状炭化水素基、5~7個のフッ素原子を有する炭素数3~10の1価のフッ素化脂環式炭化水素基等をあげることができる。
 上記5~7個のフッ素原子を有する炭素数2~10の1価のフッ素化鎖状炭化水素基としては、例えば
 ペンタフルオロエチル基、2,2,3,3,3-ペンタフルオロプロピル基、ヘプタフルオロプロピル基、1,1,1,3,3,3-ヘキサフルオロ-2-プロピル基、1,1,1,3,3,3-ヘキサフルオロ-2-フルオロプロピル基、ヘプタフルオロn-プロピル基等のフッ素化アルキル基;
 ペンタフルオロプロペニル基等のフッ素化アルケニル基;
 ペンタフルオロブチニル基等のフッ素化アルキニル基等をあげることができる。
 上記5~7個のフッ素原子を有する炭素数3~10の1価のフッ素化脂環式炭化水素基としては、例えば、
 ペンタフルオロシクロブチル基、ヘキサフルオロシクロブチル基、ペンタオロシクロペンチル基、ヘキサフルオロシクロペンチル基、ヘプタフルオロシクロペンチル基、ペンタフルオロシクロヘキシル基、ヘキサオロシクロヘキシル基、ペンタフルオロシクロヘキシルメチル基、ペンタフルオロノルボルニル基、ペンタフルオロアダマンチル基、ペンタフルオロボルニル基、ペンタフルオロイソボルニル基等のフッ素化シクロアルキル基;
 ペンタフルオロシクロペンテニル基、ペンタフルオロシクロヘキセニル基等のフッ素化シクロアルケニル基等をあげることができる。
 Rf1としては、5~7個のフッ素原子を有する炭素数2~8の1価のフッ素化鎖状炭化水素基が好ましく、5~7個のフッ素原子を有する炭素数2~6の1価のフッ素化鎖状炭化水素基がより好ましく、5~7個のフッ素原子を有する炭素数2~4の1価の直鎖状炭化水素基がさらに好ましく、5個のフッ素原子を有する炭素数2~4の1価の直鎖状炭化水素基がなおさらに好ましく、5個のフッ素原子を有する炭素数2~4の1価の直鎖状飽和炭化水素基が特に好ましい。
 構造単位(I)を与える単量体としては、例えば、下記式(1-1)~(1-18)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000008
 重合体を構成する全構造単位に占める構造単位(I)の含有割合(構造単位(I)が複数種存在する場合は合計)の下限は、5モル%が好ましく、10モル%がより好ましく、15モル%がさらに好ましく、20モル%が特に好ましい。上記含有割合の上限としては、95モル%が好ましく、80モル%がより好ましく、65モル%がさらに好ましく、50モル%が特に好ましい。構造単位(I)の含有割合を上記範囲とすることで、上記感放射線性樹脂組成物は、撥水性、保存安定性及び現像欠陥抑制性をより向上させることができる。
 (構造単位(I)を与える単量体の合成方法)
 構造単位(I)を与える単量体(α)は、下記スキームに示すように、重合性基を有するアルコールとフッ素含有カルボン酸との縮合反応により合成することができる。他の構造についても、アルコールやカルボン酸の構造を変更することにより合成することができる。
Figure JPOXMLDOC01-appb-C000009
(スキーム中、RK1、L及びRf1は、上記式(1)と同義である。)
 (構造単位(II))
 重合体は、上記構造単位(I)とは異なる構造単位として、下記式(2)で表される構造単位(II)(ただし、上記構造単位(I)に該当する構造を除く。)をさらに含むことが好ましい。
Figure JPOXMLDOC01-appb-C000010
(上記式(2)中、
 RK2は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
 Lは、フッ素置換又は非置換の炭素数1~20の2価の有機基である。
 Lは、-COO-又は-OCO-である。*はL側の結合手である。
 mは、0~2の整数である。L及びLが複数存在する場合、複数のL及びLはそれぞれ互いに同一又は異なる。
 Rf2は、フッ素置換又は非置換の炭素数1~20の1価の有機基である。
 ただし、L及びRf2は合計1個以上のフッ素原子を有する。)
 RK2としては、構造単位(II)を与える単量体の共重合性の点から、水素原子又はメチル基が好ましい。
 Lは炭素数1~20の2価の有機基であり、水素原子の一部又は全部がフッ素原子で置換されていてもよく、フッ素原子で置換されていなくてもよい(非置換でもよい)。Lで表されるフッ素置換又は非置換の炭素数1~20の2価の有機基としては、上記式(2)のRf2で表されるフッ素置換又は非置換の炭素数1~20の1価の有機基から1個の水素原子を除いた基を好適に採用することができるので、まずRf2を説明する。
 Rf2は炭素数1~20の1価の有機基であり、水素原子の一部又は全部がフッ素原子で置換されていてもよく、フッ素原子で置換されていなくてもよい(非置換でもよい)。上記炭素数1~20の1価の有機基としては、特に限定されず、鎖状構造、環状構造又はこれらの組み合わせのいずれであってもよい。上記鎖状構造としては、飽和又は不飽和、直鎖又は分岐鎖のいずれをも問わない鎖状炭化水素基が挙げられる。上記環状構造としては、脂環式、芳香族又は複素環式のいずれをも問わない環状炭化水素基が挙げられる。中でも、1価の有機基としては、置換若しくは非置換の炭素数1~20の1価の鎖状炭化水素基、置換若しくは非置換の炭素数3~20の1価の脂環式炭化水素基、置換若しくは非置換の炭素数6~20の1価の芳香族炭化水素基又はこれらの組み合わせが好ましい。また、鎖状構造を有する基や環状構造を有する基が含む水素原子の一部又は全部を置換基で置換した基、これらの基の炭素-炭素間若しくは炭素鎖末端に、-CO-、-CS-、-O-、-S-、-SO-若しくは-NR’-、又はこれらのうちの2種以上の組み合わせを含む基等も挙げられる。R’は、水素原子又は炭素数1~10の1価の炭化水素基である。
 上記有機基が有する水素原子の一部又は全部を置換する置換基としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;ヒドロキシ基;カルボキシ基;シアノ基;ニトロ基;アルキル基、アルコキシ基、アルコキシカルボニル基、アルコキシカルボニルオキシ基、アシル基、アシロキシ基又はこれらの基の水素原子をハロゲン原子で置換した基;オキソ基(=O)等が挙げられる。
 上記炭素数1~20の1価の鎖状炭化水素基としては、例えば、炭素数1~20の直鎖若しくは分岐鎖飽和炭化水素基、又は炭素数1~20の直鎖若しくは分岐鎖不飽和炭化水素基等を挙げることができる。
 上記炭素数3~20の1価の脂環式炭化水素基としては、例えば、単環若しくは多環の飽和炭化水素基、又は単環若しくは多環の不飽和炭化水素基等が挙げられる。単環の飽和炭化水素基としてはシクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基が好ましい。多環のシクロアルキル基としてはノルボルニル基、アダマンチル基、トリシクロデシル基、テトラシクロドデシル基等の有橋脂環式炭化水素基が好ましい。単環の不飽和炭化水素基としては、シクロプロペニル基、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基等の単環のシクロアルケニル基が挙げられる。多環の不飽和炭化水素基としては、ノルボルネニル基、トリシクロデセニル基、テトラシクロドデセニル基等の多環のシクロアルケニル基が挙げられる。なお、有橋脂環式炭化水素基とは、脂環を構成する炭素原子のうち互いに隣接しない2つの炭素原子間が1つ以上の炭素原子を含む結合連鎖で結合された多環性の脂環式炭化水素基をいう。
 上記炭素数6~20の1価の芳香族炭化水素基としては、例えば、フェニル基、トリル基、キシリル基、ナフチル基、アントリル基等のアリール基;ベンジル基、フェネチル基、ナフチルメチル基等のアラルキル基等が挙げられる。
 上記複素環式の環状炭化水素基としては、芳香族複素環構造から水素原子を1個取り除いた基及び脂環複素環構造から水素原子を1個取り除いた基が挙げられる。ヘテロ原子を導入することで芳香族性を有する5員環の芳香族構造も複素環構造に含まれる。ヘテロ原子としては、酸素原子、窒素原子、硫黄原子等が挙げられる。
 上記芳香族複素環構造としては、例えば
 フラン、ピラン、ベンゾフラン、ベンゾピラン等の酸素原子含有芳香族複素環構造;
 ピロール、イミダゾール、ピリジン、ピリミジン、ピラジン、インドール、キノリン、イソキノリン、アクリジン、フェナジン、カルバゾール等の窒素原子含有芳香族複素環構造;
 チオフェン等の硫黄原子含有芳香族複素環構造;
 チアゾール、ベンゾチアゾール、チアジン、オキサジン等の複数のヘテロ原子を含有する芳香族複素環構造等が挙げられる。
 上記脂環複素環構造としては、例えば
 オキシラン、テトラヒドロフラン、テトラヒドロピラン、ジオキソラン、ジオキサン等の酸素原子含有脂環複素環構造;
 アジリジン、ピロリジン、ピペリジン、ピペラジン等の窒素原子含有脂環複素環構造;
 チエタン、チオラン、チアン等の硫黄原子含有脂環複素環構造;
 モルホリン、1,2-オキサチオラン、1,3-オキサチオラン等の複数のヘテロ原子を含有する脂環複素環構造等が挙げられる。
 環状構造として、ラクトン構造、環状カーボネート構造、スルトン構造及び環状アセタールを含む構造も挙げられる。
 上述のように、Lで表されるフッ素置換又は非置換の炭素数1~20の2価の有機基としては、上記Rf2で表されるフッ素置換又は非置換の炭素数1~20の1価の有機基から1個の水素原子を除いた基を好適に採用することができる。
 mは1又は2が好ましく、1がより好ましい。
 L及びRf2は合計1個以上のフッ素原子を有する。L及びRf2が有するフッ素原子の合計数の下限としては、2であってもよく、3であってもよい。上記合計数の上限としては、10であってもよく、8であってもよく、6であってもよい。
 上記式(2)において、Lにおけるカルボニル基に隣接する少なくとも1個の炭素原子に1個又は2個のフッ素原子若しくはトリフルオロメチル基が結合することが好ましい。
 構造単位(II)を与える単量体としては、例えば、下記式(2-1)~(2-42)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 重合体を構成する全構造単位に占める構造単位(II)の含有割合(構造単位(II)が複数種存在する場合は合計)の下限は、5モル%が好ましく、10モル%がより好ましく、15モル%がさらに好ましく、20モル%が特に好ましい。上記含有割合の上限としては、80モル%が好ましく、70モル%がより好ましく、60モル%がさらに好ましく、50モル%が特に好ましい。構造単位(II)の含有割合を上記範囲とすることで、上記感放射線性樹脂組成物は、撥水性、保存安定性及び現像欠陥抑制性をより向上させることができる。
 (構造単位(III))
 重合体は、上記構造単位(I)とは異なる構造単位として、下記式(3)で表される構造単位(III)をさらに含むことが好ましい。
Figure JPOXMLDOC01-appb-C000013
 上記式(3)中、
 Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
 Rは、炭素数1~20の1価の炭化水素基である。
 R及びR10は、それぞれ独立して、炭素数1~10の1価の鎖状炭化水素基若しくは炭素数3~20の1価の脂環式炭化水素基であるか、又はこれらの基が互いに合わせられこれらが結合する炭素原子と共に構成される炭素数3~20の2価の脂環式基を表す。
 上記Rとしては、構造単位(III)を与える単量体の共重合性の観点から、水素原子、メチル基が好ましく、メチル基がより好ましい。
 上記Rで表される炭素数1~20の1価の炭化水素基としては、例えば、炭素数1~10の1価の鎖状炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基等が挙げられる。
 上記R~R10で表される炭素数1~10の1価の鎖状炭化水素基としては、上記式(2)のRf2における炭素数1~20の1価の鎖状炭化水素基のうち炭素数1~10に対応する基を好適に採用することができる。
 上記R~R10で表される炭素数3~20の1価の脂環式炭化水素基としては、上記式(2)のRf2における炭素数3~20の1価の脂環式炭化水素基を好適に採用することができる。
 上記Rで表される炭素数6~20の1価の芳香族炭化水素基としては、上記式(2)のRf2における炭素数6~20の1価の芳香族炭化水素基を好適に採用することができる。
 上記Rとしては、炭素数1~10の1価の直鎖又は分岐鎖飽和炭化水素基、炭素数6~20の1価の芳香族炭化水素基が好ましい。
 上記R及びR10が互いに合わせられこれらが結合する炭素原子と共に構成される炭素数3~20の2価の脂環式基は、上記炭素数の単環又は多環の脂環式炭化水素の炭素環を構成する同一炭素原子から2個の水素原子を除いた基であれば特に限定されない。単環式炭化水素基及び多環式炭化水素基のいずれでもよく、多環式炭化水素基としては、有橋脂環式炭化水素基及び縮合脂環式炭化水素基のいずれでもよく、飽和炭化水素基及び不飽和炭化水素基のいずれでもよい。なお、縮合脂環式炭化水素基とは、複数の脂環が辺(隣接する2つの炭素原子間の結合)を共有する形で構成された多環性の脂環式炭化水素基をいう。
 単環の脂環式炭化水素基のうち飽和炭化水素基としては、シクロペンタンジイル基、シクロヘキサンジイル基、シクロヘプタンジイル基、シクロオクタンジイル基等が好ましく、不飽和炭化水素基としてはシクロペンテンジイル基、シクロヘキセンジイル基、シクロヘプテンジイル基、シクロオクテンジイル基、シクロデセンジイル基等が好ましい。多環の脂環式炭化水素基としては、有橋脂環式飽和炭化水素基が好ましく、例えばビシクロ[2.2.1]ヘプタン-2,2-ジイル基(ノルボルナン-2,2-ジイル基)、ビシクロ[2.2.2]オクタン-2,2-ジイル基、トリシクロ[3.3.1.13,7]デカン-2,2-ジイル基(アダマンタン-2,2-ジイル基)等が好ましい。
 これらの中で、Rは炭素数1~4のアルキル基又はフェニル基であり、R及びR10が互いに合わせられこれらが結合する炭素原子と共に構成される脂環構造が多環又は単環のシクロアルカン構造であることが好ましい。
 構造単位(III)としては、例えば、下記式(3-1)~(3-7)で表される構造単位(以下、「構造単位(III-1)~(III-7)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000014
 上記式(3-1)~(3-7)中、R~R10は、上記式(3)と同義である。i及びjは、それぞれ独立して、1~4の整数である。k及びlは0又は1である。
 i及びjとしては、1が好ましい。Rとしては、メチル基、エチル基、イソプロピル基又はフェニル基が好ましい。R及びR10としては、メチル基又はエチル基が好ましい。
 重合体は、構造単位(III)を1種又は2種以上組み合わせて含んでいてもよい。
 重合体を構成する全構造単位に占める構造単位(III)の含有割合(構造単位(III)が複数種存在する場合は合計)の下限としては、5モル%が好ましく、8モル%がより好ましく、10モル%がさらに好ましく、15モル%が特に好ましい。また、上記含有割合の上限は、80モル%が好ましく、75モル%がより好ましく、70モル%がさらに好ましく、65モル%が特に好ましい。構造単位(III)の含有割合を上記範囲とすることで、当該感放射線性樹脂組成物の感度、LWR性能及び現像欠陥抑制性をより向上させることができる。
 (構造単位(IV))
 重合体は、上記構造単位(I)とは異なる構造単位として、ラクトン構造、環状カーボネート構造及びスルトン構造からなる群より選ばれる少なくとも1種を含む構造単位(IV)(ただし、上記構造単位(II)に該当する構造を除く。)を含んでいてもよい。重合体は、構造単位(IV)をさらに有することで、現像液への溶解性を調整することができ、その結果、当該感放射線性樹脂組成物は、解像性等のリソグラフィー性能を向上させることができる。
 構造単位(IV)としては、例えば、下記式(T-1)~(T-10)で表される構造単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000015
 上記式中、RL1は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。RL2~RL5は、それぞれ独立して、水素原子、炭素数1~4のアルキル基、シアノ基、トリフルオロメチル基、メトキシ基、メトキシカルボニル基、ヒドロキシ基、ヒドロキシメチル基、ジメチルアミノ基である。RL4及びRL5は、互いに合わせられこれらが結合する炭素原子と共に構成される炭素数3~8の2価の脂環式基であってもよい。Lは、単結合又は2価の連結基である。Xは、酸素原子又はメチレン基である。kは0~3の整数である。mは1~3の整数である。
 上記RL4及びRL5が互いに合わせられこれらが結合する炭素原子と共に構成される炭素数3~8の2価の脂環式基としては、上記式(3)中のR及びR10が互いに合わせられこれらが結合する炭素原子と共に構成される炭素数3~20の2価の脂環式基のうち炭素数が3~8の基が挙げられる。この脂環式基上の1つ以上の水素原子は、ヒドロキシ基で置換されていてもよい。
 上記Lで表される2価の連結基としては、例えば、炭素数1~10の2価の直鎖状若しくは分岐状の炭化水素基、炭素数4~12の2価の脂環式炭化水素基、又はこれらの炭化水素基の1個以上と-CO-、-O-、-NH-及び-S-のうちの少なくとも1種の基とから構成される基等が挙げられる。
 構造単位(IV)としては、これらの中で、ラクトン構造を含む構造単位が好ましく、ノルボルナンラクトン構造を含む構造単位がより好ましく、ノルボルナンラクトン-イル(メタ)アクリレートに由来する構造単位がさらに好ましい。
 構造単位(IV)の含有割合(構造単位(IV)が複数種存在する場合は合計)の下限は、重合体を構成する全構造単位に対して、5モル%が好ましく、8モル%がより好ましく、10モル%がさらに好ましい。上記含有割合の上限は、50モル%が好ましく、40モル%がより好ましく、35モル%がさらに好ましい。構造単位(IV)の含有割合を上記範囲とすることで、当該感放射線性樹脂組成物は解像性等のリソグラフィー性能をより向上させることができる。
 (構造単位(V))
 重合体は、上記構造単位(I)とは異なる構造単位として、極性基を含む構造単位(V)等を含んでいてもよい(ただし、構造単位(II)、(IV)に該当する構造を除く)。重合体は、構造単位(V)をさらに有することで、現像液への溶解性を調整することができ、その結果、当該感放射線性樹脂組成物の解像性等のリソグラフィー性能を向上させることができる。上記極性基としては、例えば、ヒドロキシ基、カルボキシ基、シアノ基、ニトロ基、スルホンアミド基等をあげることができる。これらの中で、ヒドロキシ基、カルボキシ基が好ましく、ヒドロキシ基がより好ましい。
 構造単位(V)としては、例えば、下記式で表される構造単位等をあげることができる。
Figure JPOXMLDOC01-appb-C000016
 上記式中、Rは水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
 上記重合体が上記極性基を有する構造単位(V)を有する場合、上記構造単位(V)の含有割合(構造単位(V)が複数種存在する場合は合計)の下限は、重合体を構成する全構造単位に対して、5モル%が好ましく、8モル%がより好ましく、10モル%がさらに好ましい。上記含有割合の上限は、60モル%が好ましく、50モル%がより好ましく、45モル%がさらに好ましい。構造単位(V)の含有割合を上記範囲とすることで、当該感放射線性樹脂組成物の解像性等のリソグラフィー性能をさらに向上させることができる。
 (その他の構造単位)
 重合体は、上記列挙した構造単位以外の構造単位として、下記式(6)で表される脂環構造を有する構造単位を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000017
(上記式(6)中、R1αは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。R2αは、炭素数3~20の1価の脂環式炭化水素基である。)
 上記式(6)中、R2αで表される炭素数3~20の1価の脂環式炭化水素基としては、上記式(3)のR~R10で表される炭素数3~20の1価の脂環式炭化水素基を好適に採用することができる。
 重合体が上記脂環構造を有する構造単位を含む場合、上記脂環構造を有する構造単位の含有割合の下限は、重合体を構成する全構造単位に対して、5モル%が好ましく、10モル%がより好ましく、15モル%がさらに好ましい。上記含有割合の上限は、40モル%が好ましく、30モル%がより好ましく、20モル%がさらに好ましい。
 (重合体の合成方法)
 重合体は、例えば、各構造単位を与える単量体を、ラジカル重合開始剤等を用い、適当な溶剤中で重合反応を行うことにより合成できる。
 上記ラジカル重合開始剤としては、アゾビスイソブチロニトリル(AIBN)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-シクロプロピルプロピオニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、ジメチル2,2’-アゾビスイソブチレート等のアゾ系ラジカル開始剤;ベンゾイルパーオキサイド、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等の過酸化物系ラジカル開始剤等を挙げることができる。これらの中で、AIBN、ジメチル2,2’-アゾビスイソブチレートが好ましく、AIBNがより好ましい。これらのラジカル開始剤は1種単独で又は2種以上を混合して用いることができる。
 上記重合反応に使用される溶剤としては、例えば、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカン等のアルカン類;シクロヘキサン、シクロヘプタン、シクロオクタン、デカリン、ノルボルナン等のシクロアルカン類;ベンゼン、トルエン、キシレン、エチルベンゼン、クメン等の芳香族炭化水素類;クロロブタン類、ブロモヘキサン類、ジクロロエタン類、ヘキサメチレンジブロミド、クロロベンゼン等のハロゲン化炭化水素類;酢酸エチル、酢酸n-ブチル、酢酸i-ブチル、プロピオン酸メチル等の飽和カルボン酸エステル類;アセトン、メチルエチルケトン、4-メチル-2-ペンタノン、2-ヘプタノン等のケトン類;テトラヒドロフラン、ジメトキシエタン類、ジエトキシエタン類等のエーテル類;メタノール、エタノール、1-プロパノール、2-プロパノール、4-メチル-2-ペンタノール等のアルコール類等を挙げることができる。これらの重合反応に使用される溶剤は、1種単独で又は2種以上を併用してもよい。
 上記重合反応における反応温度としては、通常40℃~150℃であり、50℃~120℃が好ましい。反応時間としては、通常1時間~48時間であり、1時間~24時間が好ましい。
 重合体の分子量は特に限定されないが、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算重量平均分子量(Mw)の下限は、3,000が好ましく、5,000がより好ましく、6,000がさらに好ましく、7,00が特に好ましい。上記Mwの上限は、30,000が好ましく、20,000がより好ましく、15,000がさらに好ましく、12,000が特に好ましい。重合体のMwが上記範囲とすることで、当該感放射線性樹脂組成物の保存安定性及び現像欠陥抑制性を向上させることができる。
 重合体のGPCによるポリスチレン換算数平均分子量(Mn)に対するMwの比(Mw/Mn)は、通常、1以上5以下であり、1以上3以下が好ましく、1以上2以下がさらに好ましい。
 重合体及び後述のベース樹脂のMw及びMnの測定方法は、実施例の記載による。
 重合体の含有量の下限は、後述のベース樹脂100質量部に対して、0.1質量部が好ましく、0.5質量部がより好ましく、1質量部がさらに好ましく、2質量部が特に好ましい。上記含有量の上限は、40質量部が好ましく、30質量部がより好ましく、20質量部がさらに好ましく、15質量部が特に好ましい。
 <ベース樹脂>
 ベース樹脂は、酸解離性基を有する構造単位を含み、上記重合体よりもフッ素原子の質量含有率が小さい樹脂である。ベース樹脂における酸解離性基を有する構造単位としては、上記重合体に含まれる構造単位(III)を好適に採用することができる(以下、ベース樹脂においても「構造単位(III)」ともいう。他の構造単位についても同様。)。当該感放射線性樹脂組成物は、ベース樹脂が構造単位(III)を有することで、パターン形成性に優れる。
 ベース樹脂を構成する全構造単位に占める構造単位(III)の含有割合(構造単位(III)が複数種存在する場合は合計)の下限としては、15モル%が好ましく、25モル%がより好ましく、30モル%がさらに好ましく、35モル%が特に好ましい。また、上記含有割合の上限は、80モル%が好ましく、75モル%がより好ましく、70モル%がさらに好ましく、65モル%が特に好ましい。ベース樹脂における構造単位(III)の含有割合を上記範囲とすることで、当該感放射線性樹脂組成物のパターン形成性をより向上させることができる。
 ベース樹脂は、酸解離性基を有する構造単位(III)以外にも、重合体における構造単位(IV)や構造単位(V)を含んでいてもよい。さらに、ベース樹脂は、ヒドロキシスチレンに由来する構造単位又はフェノール性水酸基を有する構造単位(以下、「構造単位(VI)」ともいう。後述。)を含んでいてもよい。
 ベース樹脂が構造単位(IV)を有する場合、構造単位(IV)の含有割合の下限は、ベース樹脂を構成する全構造単位に対して、20モル%が好ましく、30モル%がより好ましく、35モル%がさらに好ましい。上記含有割合の上限は、80モル%が好ましく、70モル%がより好ましく、65モル%がさらに好ましい。構造単位(IV)の含有割合を上記範囲とすることで、当該感放射線性樹脂組成物は解像性等のリソグラフィー性能及び形成されるレジストパターンの基板との密着性をより向上させることができる。
 上記ベース樹脂が構造単位(V)を有する場合、上記構造単位(V)の含有割合の下限は、ベース樹脂を構成する全構造単位に対して、5モル%が好ましく、8モル%がより好ましく、10モル%がさらに好ましい。上記含有割合の上限は、40モル%が好ましく、30モル%がより好ましく、20モル%がさらに好ましい。構造単位(V)の含有割合を上記範囲とすることで、当該感放射線性樹脂組成物の解像性等のリソグラフィー性能をさらに向上させることができる。
 (構造単位(VI))
 構造単位(VI)は、ヒドロキシスチレンに由来する構造単位又はフェノール性水酸基を有する構造単位である。構造単位(VI)はエッチング耐性の向上と、露光部と未露光部との間の現像液溶解性の差(溶解コントラスト)の向上に寄与する。特に、電子線やEUVといった波長50nm以下の放射線による露光を用いるパターン形成に好適に適用することができる。波長50nm以下の放射線による露光の場合、ベース樹脂は、構造単位(VI)とともに上記構造単位(III)、所望により構造単位(V)を有することが好ましい。
 ヒドロキシスチレンに由来する構造単位は、例えば下記式(4-1)~(4-2)等で表され、フェノール性水酸基を有する構造単位は、例えば下記式(4-3)~(4-4)等で表される。
Figure JPOXMLDOC01-appb-C000018
 上記式(4-1)~(4-4)中、R11は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
 構造単位(VI)を得る場合、重合時にはアルカリ解離性基(例えばアシル基)等の保護基によりフェノール性水酸基を保護した状態で重合させておき、その後加水分解を行って脱保護することにより構造単位(VI)を得るようにすることが好ましい。
 波長50nm以下の放射線による露光用のベース樹脂の場合、構造単位(VI)の含有割合の下限は、ベース樹脂を構成する全構造単位に対して、10モル%が好ましく、20モル%がより好ましい。また、上記含有割合の上限は、70モル%が好ましく、60モル%がより好ましい。
 ベース樹脂の分子量は特に限定されないが、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算重量平均分子量(Mw)の下限としては、1,000が好ましく、2,000がより好ましく、3,000がさらに好ましく、4,000が特に好ましい。Mwの上限としては30,000が好ましく、20,000がより好ましく、12,000がさらに好ましく、8,000が特に好ましい。ベース樹脂のMwを上記範囲とすることで、得られるレジスト膜が良好な耐熱性や現像性を有することができる。
 ベース樹脂のGPCによるポリスチレン換算数平均分子量(Mn)に対するMwの比(Mw/Mn)は、通常、1以上5以下であり、1以上3以下が好ましく、1以上2以下がさらに好ましい。
 (ベース樹脂の合成方法)
 ベース樹脂は、上述の重合体の合成方法と同様の方法により合成することができる。
 <オニウム塩(i)>
 オニウム塩(i)は、下記式(i)で表される。オニウム塩(i)の採用により当該感放射線性樹脂組成物は保存安定性に優れる。また、当該感放射線性樹脂組成物は、クエンチャー(酸拡散制御剤)としてオニウム塩(i)を含むので、パターン形成の際に優れたLWR性能及び現像欠陥抑制性を発揮することができる。
Figure JPOXMLDOC01-appb-C000019
(上記式(i)中、
 Ra1は、硫黄原子に隣接する原子にフッ素原子及びフッ素化炭化水素基が結合していない置換又は非置換の炭素数1~40の1価の有機基である。
 Xは1価のオニウムカチオンである。)
 Ra1で表される炭素数1~40の1価の有機基としては、上記式(2)におけるRf2は炭素数1~20の1価の有機基を炭素数40まで拡張した基を好適に採用することができる。Ra1の有機基の置換基としては、上記式(2)におけるRf2の有機基が有し得る置換基を好適に採用することができる。ただし、Ra1において上記式(i)中の硫黄原子に隣接する原子にフッ素原子及びフッ素化炭化水素基が結合していないことが必要である。
 Ra1は環状構造を含むことが好ましい。これにより、パターン形成の際に優れた感度、LWR性能及び現像欠陥抑制性を発揮することができる。上記環状構造としては、上記式(2)におけるRf2の有機基が含み得る環状構造を好適に採用することができる。中でも、環状構造としては、炭素数5~15の単環若しくは多環の脂環式炭化水素構造、炭素数6~10の芳香族炭化水素構造、ラクトン構造、スルトン構造又はこれらの組み合わせが好ましい。
 上記式(i)で表されるオニウム塩(i)のアニオン部分としては特に限定されないものの、例えば下記式(i-1-1)~(i-1-27)で表される構造等が挙げられる。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 上記式(i)中、上記Xで表される1価のオニウムカチオンとしては、例えば、S、I、O、N、P、Cl、Br、F、As、Se、Sn、Sb、Te、Bi等の元素を含むオニウムカチオンが挙げられる。オニウムカチオンとしては、例えばスルホニウムカチオン、テトラヒドロチオフェニウムカチオン、ヨードニウムカチオン、ホスホニウムカチオン、ジアゾニウムカチオン、ピリジニウムカチオン、アンモニウムカチオン等が挙げられる。中でも、スルホニウムカチオン又はヨードニウムカチオンが好ましい。スルホニウムカチオン又はヨードニウムカチオンは、好ましくは下記式(X-1)~(X-6)で表される。
Figure JPOXMLDOC01-appb-C000022
 上記式(X-1)中、Ra1、Ra2及びRa3は、それぞれ独立して、置換若しくは非置換の炭素数1~12の直鎖状若しくは分岐状のアルキル基、アルコキシ基若しくはアルコキシカルボニルオキシ基、置換若しくは非置換の炭素数3~12の単環若しくは多環のシクロアルキル基、置換若しくは非置換の炭素数6~12の芳香族炭化水素基、ヒドロキシ基、ハロゲン原子、-OSO-R、-SO-R若しくは-S-Rであるか、又はこれらの基のうちの2つ以上が互いに合わせられ構成される環構造を表す。当該環構造は骨格を形成する炭素-炭素結合間にOやS等のヘテロ原子を含んでいてもよい。R、R及びRは、それぞれ独立して、置換若しくは非置換の炭素数1~12の直鎖状若しくは分岐状のアルキル基、置換若しくは非置換の炭素数5~25の脂環式炭化水素基又は置換若しくは非置換の炭素数6~12の芳香族炭化水素基である。k1、k2及びk3は、それぞれ独立して0~5の整数である。Ra1~Ra3並びにR、R及びRがそれぞれ複数の場合、複数のRa1~Ra3並びにR、R及びRはそれぞれ同一でも異なっていてもよい。
 上記式(X-2)中、Rb1は、置換若しくは非置換の炭素数1~20の直鎖状若しくは分岐状のアルキル基若しくはアルコキシ基、置換若しくは非置換の炭素数2~8のアシル基、又は置換若しくは非置換の炭素数6~8の芳香族炭化水素基、又はヒドロキシ基である。nは0又は1である。nが0のとき、k4は0~4の整数であり、nが1のとき、k4は0~7の整数である。Rb1が複数の場合、複数のRb1は同一でも異なっていてもよく、また、複数のRb1は、互いに合わせられ構成される環構造を表してもよい。Rb2は、置換若しくは非置換の炭素数1~7の直鎖状若しくは分岐状のアルキル基、又は置換若しくは非置換の炭素数6若しくは7の芳香族炭化水素基である。Lは単結合又は2価の連結基である。k5は、0~4の整数である。Rb2が複数の場合、複数のRb2は同一でも異なっていてもよく、また、複数のRb2は互いに合わせられ構成される環構造を表してもよい。qは、0~3の整数である。式中、Sを含む環構造は骨格を形成する炭素-炭素結合間にOやS等のヘテロ原子を含んでいてもよい。
 上記式(X-3)中、Rc1、Rc2及びRc3は、それぞれ独立して、置換若しくは非置換の炭素数1~12の直鎖状若しくは分岐状のアルキル基である。
 上記式(X-4)中、Rg1は、置換若しくは非置換の炭素数1~20の直鎖状若しくは分岐状のアルキル基若しくはアルコキシ基、置換若しくは非置換の炭素数2~8のアシル基、又は置換若しくは非置換の炭素数6~8の芳香族炭化水素基、又はヒドロキシ基である。nは0又は1である。nk2が0のとき、k10は0~4の整数であり、nk2が1のとき、k10は0~7の整数である。Rg1が複数の場合、複数のRg1は同一でも異なっていてもよく、また、複数のRg1は、互いに合わせられ構成される環構造を表してもよい。Rg2は及びRg3は、それぞれ独立して、置換若しくは非置換の炭素数1~12の直鎖状若しくは分岐状のアルキル基、アルコキシ基若しくはアルコキシカルボニルオキシ基、置換若しくは非置換の炭素数3~12の単環若しくは多環のシクロアルキル基、置換若しくは非置換の炭素数6~12の芳香族炭化水素基、ヒドロキシ基、ハロゲン原子であるか、又はこれらの基が互いに合わせられ構成される環構造を表す。k11及びk12は、それぞれ独立して0~4の整数である。Rg2は及びRg3がそれぞれ複数の場合、複数のRg2は及びRg3はそれぞれ同一でも異なっていてもよい。
 上記式(X-5)中、Rd1及びRd2は、それぞれ独立して、置換若しくは非置換の炭素数1~12の直鎖状若しくは分岐状のアルキル基、アルコキシ基若しくはアルコキシカルボニル基、置換若しくは非置換の炭素数6~12の芳香族炭化水素基、ハロゲン原子、炭素数1~4のハロゲン化アルキル基、ニトロ基であるか、又はこれらの基のうちの2つ以上が互いに合わせられ構成される環構造を表す。k6及びk7は、それぞれ独立して0~5の整数である。Rd1及びRd2がそれぞれ複数の場合、複数のRd1及びRd2はそれぞれ同一でも異なっていてもよい。
 上記式(X-6)中、Re1及びRe2は、それぞれ独立して、ハロゲン原子、置換若しくは非置換の炭素数1~12の直鎖状若しくは分岐状のアルキル基、又は置換若しくは非置換の炭素数6~12の芳香族炭化水素基である。k8及びk9は、それぞれ独立して0~4の整数である。
 上記オニウムカチオンの具体例としては、限定されないものの、例えば下記式(i-2-1)~(i-2-44)の構造等が挙げられる。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
 オニウム塩(i)としては、上記アニオン部分と上記オニウムカチオンとを任意に組み合わせた構造が挙げられる。オニウム塩(i)の具体例としては、限定されないものの、例えば下記式(i-1)~(i-41)で表されるオニウム塩等が挙げられる。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 上記感放射線性樹脂組成物中の溶媒以外の成分の合計質量に占めるオニウム塩(i)の含有割合(オニウム塩(i)が複数種存在する場合は合計)の下限は、0.1質量%が好ましく、1質量%がより好ましく、2質量%がさらに好ましく、4質量%が特に好ましい。オニウム塩(i)の含有割合の上限は、30質量%が好ましく、25質量%がより好ましく、20質量%がさらに好ましく、15質量%が特に好ましい。
 <感放射線性酸発生剤>
 感放射線性酸発生剤は、酸を発生する成分である。露光により感放射線性酸発生剤から発生した酸は、重合体及びベース樹脂が酸解離性基を有する構造単位(III)を含む場合は該構造単位(III)が有する酸解離性基を解離させ、カルボキシ基等を発生させる機能を有する。
 なお、上記オニウム塩(i)が感放射線性オニウムカチオンを有する場合、露光によりオニウム塩(i)から酸が発生する。この発生酸は、上記感放射線性樹脂組成物を用いたパターン形成条件において、構造単位(III)が有する酸解離性基を実質的に解離させず、未露光部において上記感放射線性酸発生剤(I)から発生した酸の拡散を抑制する機能を有する。すなわち、オニウム塩(i)は感放射線性の有無を問わず、酸拡散制御剤として機能する。
 感放射線性酸発生剤から発生する酸は、感放射線性を有するオニウム塩(i)から発生する酸より相対的に強い酸(pKaが低い酸)であるということができる。感放射線性樹脂組成物における感放射線性酸発生剤の含有形態としては、それ単独で化合物として存在する(重合体から遊離した)形態でも、重合体の一部として組み込まれた形態でも、これらの両方の形態でもよいものの、単独で化合物として存在する形態が好ましい。
 感放射線性樹脂組成物が上記感放射線性酸発生剤を含有することにより、露光部の樹脂の極性が増大し、露光部における樹脂が、アルカリ水溶液現像の場合は現像液に対して溶解性となり、一方、有機溶剤現像の場合は現像液に対して難溶性となる。
 感放射線性酸発生剤としては、例えばオニウム塩化合物、スルホンイミド化合物、ハロゲン含有化合物、ジアゾケトン化合物等が挙げられる。オニウム塩化合物としては、例えばスルホニウム塩、テトラヒドロチオフェニウム塩、ヨードニウム塩、ホスホニウム塩、ジアゾニウム塩、ピリジニウム塩等が挙げられる。これらのうち、スルホニウム塩、ヨードニウム塩が好ましい。
 露光により発生する酸としては、露光によりスルホン酸、カルボン酸、スルホンイミドを生じるものをあげることができる。このような酸として、スルホ基に隣接する炭素原子に1以上のフッ素原子またはフッ素化炭化水素基が置換した化合物を挙げることができる。
 これらの感放射線性酸発生剤は、単独で使用してもよく2種以上を併用してもよい。感放射線性酸発生剤の含有量(感放射線性酸発生剤が複数種存在する場合は合計)の下限としては、レジストとしての感度及び現像性を確保する観点から、ベース樹脂100質量部に対して、2質量部が好ましく、5質量部がより好ましく、8質量部がさらに好ましい。感放射線性酸発生剤の含有量の上限としては、放射線に対する透明性を確保する観点から、樹脂100質量部に対して、30質量部が好ましく、25質量部がより好ましく、20質量部がさらに好ましい。
 <溶剤>
 当該感放射線性樹脂組成物は、溶剤を含有する。溶剤は、少なくとも重合体とともに、好適に含有されるベース樹脂及び感放射線性酸発生剤、所望により含有される他の添加剤等を溶解又は分散可能な溶剤であれば特に限定されない。
 溶剤としては、例えば、アルコール系溶剤、エーテル系溶剤、ケトン系溶剤、アミド系溶剤、エステル系溶剤、炭化水素系溶剤等が挙げられる。
 アルコール系溶剤としては、例えば、
 iso-プロパノール、4-メチル-2-ペンタノール、3-メトキシブタノール、n-ヘキサノール、2-エチルヘキサノール、フルフリルアルコール、シクロヘキサノール、3,3,5-トリメチルシクロヘキサノール、ジアセトンアルコール等の炭素数1~18のモノアルコール系溶剤;
 エチレングリコール、1,2-プロピレングリコール、2-メチル-2,4-ペンタンジオール、2,5-ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等の炭素数2~18の多価アルコール系溶剤;
 上記多価アルコール系溶剤が有するヒドロキシ基の一部をエーテル化した多価アルコール部分エーテル系溶剤等が挙げられる。
 エーテル系溶剤としては、例えば、
 ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル等のジアルキルエーテル系溶剤;
 テトラヒドロフラン、テトラヒドロピラン等の環状エーテル系溶剤;
 ジフェニルエーテル、アニソール(メチルフェニルエーテル)等の芳香環含有エーテル系溶剤;
 上記多価アルコール系溶剤が有するヒドロキシ基をエーテル化した多価アルコールエーテル系溶剤等が挙げられる。
 ケトン系溶剤としては、例えばアセトン、ブタノン、メチル-iso-ブチルケトン等の鎖状ケトン系溶剤:
 シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン等の環状ケトン系溶剤:
 2,4-ペンタンジオン、アセトニルアセトン、アセトフェノン等が挙げられる。
 アミド系溶剤としては、例えばN,N’-ジメチルイミダゾリジノン、N-メチルピロリドン等の環状アミド系溶剤;
 N-メチルホルムアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルプロピオンアミド等の鎖状アミド系溶剤等が挙げられる。
 エステル系溶剤としては、例えば、
 酢酸n-ブチル、乳酸エチル等のモノカルボン酸エステル系溶剤;
 ジエチレングリコールモノ-n-ブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート等の多価アルコール部分エーテルアセテート系溶剤;
 γ-ブチロラクトン、バレロラクトン等のラクトン系溶剤;
 ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等のカーボネート系溶剤;
 ジ酢酸プロピレングリコール、酢酸メトキシトリグリコール、シュウ酸ジエチル、アセト酢酸エチル、乳酸エチル、フタル酸ジエチル等の多価カルボン酸ジエステル系溶剤が挙げられる。
 炭化水素系溶剤としては、例えば
 n-ヘキサン、シクロヘキサン、メチルシクロヘキサン等の脂肪族炭化水素系溶剤;
 ベンゼン、トルエン、ジ-iso-プロピルベンゼン、n-アミルナフタレン等の芳香族炭化水素系溶剤等が挙げられる。
 これらの中で、エステル系溶剤、エーテル系溶剤、ケトン系溶剤が好ましく、多価アルコール部分エーテルアセテート系溶剤、多価アルコールエーテル系溶剤、多価カルボン酸ジエステル系溶剤、環状ケトン系溶剤、ラクトン系溶剤がより好ましく、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、乳酸エチル、シクロヘキサノン、γ-ブチロラクトンがさらに好ましい。当該感放射線性樹脂組成物は、溶剤を1種又は2種以上含有していてもよい。
 <その他の任意成分>
 上記感放射線性樹脂組成物は、上記成分以外にも、その他の任意成分を含有していてもよい。上記その他の任意成分としては、例えば、架橋剤、偏在化促進剤、界面活性剤、脂環式骨格含有化合物、増感剤等をあげることができる。これらのその他の任意成分は、それぞれ1種又は2種以上を併用してもよい。
 <感放射線性樹脂組成物の調製方法>
 上記感放射線性樹脂組成物は、例えば、重合体とともに、必要に応じてベース樹脂、感放射線性酸発生剤、酸拡散制御剤及び溶剤を所定の割合で混合することにより調製できる。上記感放射線性樹脂組成物は、混合後に、例えば、孔径0.05μm~0.2μm程度のフィルター等でろ過することが好ましい。上記感放射線性樹脂組成物の固形分濃度としては、通常0.1質量%~50質量%であり、0.5質量%~30質量%が好ましく、1質量%~20質量%がより好ましい。
 <パターン形成方法>
 本発明の一実施形態に係るパターン形成方法は、
 上記感放射線性樹脂組成物を基板に直接又は間接に塗布してレジスト膜を形成する工程(1)(以下、「レジスト膜形成工程」ともいう)と、
 上記レジスト膜を露光する工程(2)(以下、「露光工程」ともいう)と、
 露光された上記レジスト膜を現像する工程(3)(以下、「現像工程」ともいう)とを含む。
 上記レジストパターン形成方法によれば、感度、LWR性能、撥水性、現像欠陥抑制性に優れるレジスト膜を形成可能であり、保存安定性が良好な感放射線性樹脂組成物を用いているため、高品位のレジストパターンを効率良く形成することができる。以下、各工程について説明する。
 [レジスト膜形成工程]
 本工程(上記工程(1))では、上記感放射線性樹脂組成物でレジスト膜を形成する。このレジスト膜を形成する基板としては、例えば、シリコンウエハ、二酸化シリコン、アルミニウムで被覆されたウェハ等の従来公知のもの等を挙げることができる。また、例えば、特公平6-12452号公報や特開昭59-93448号公報等に開示されている有機系又は無機系の反射防止膜を基板上に形成してもよい。塗布方法としては、例えば、回転塗布(スピンコーティング)、流延塗布、ロール塗布等をあげることができる。塗布した後に、必要に応じて、塗膜中の溶剤を揮発させるため、プレベーク(PB)を行ってもよい。PB温度としては、通常60℃~150℃であり、80℃~130℃が好ましい。PB時間としては、通常5秒~600秒であり、10秒~300秒が好ましい。形成されるレジスト膜の膜厚としては、10nm~1,000nmが好ましく、10nm~500nmがより好ましい。
 プレベーク後のレジスト膜の後退接触角としては、70°以上が好ましく、72°以上がより好ましく、74°以上がさらに好ましい。後退接触角の測定方法は、実施例の記載による。
 液浸露光を行う場合、上記形成したレジスト膜上に、液浸液とレジスト膜との直接の接触を避ける目的で、液浸液に不溶性の液浸用保護膜を設けてもよい。液浸用保護膜としては、現像工程の前に溶剤により剥離する溶剤剥離型保護膜(例えば、特開2006-227632号公報参照)、現像工程の現像と同時に剥離する現像液剥離型保護膜(例えば、WO2005-069076号公報、WO2006-035790号公報参照)のいずれを用いてもよい。ただし、スループットの観点からは、現像液剥離型液浸用保護膜を用いることが好ましい。
 また、次工程である露光工程を波長50nm以下の放射線にて行う場合、上記組成物中のベース樹脂として上記構造単位(III)及び構造単位(VI)、必要に応じて構造単位(V)を有する樹脂を用いることが好ましい。
 [露光工程]
 本工程(上記工程(2))では、上記工程(1)であるレジスト膜形成工程で形成されたレジスト膜に、フォトマスクを介して(場合によっては、水等の液浸媒体を介して)、放射線を照射し、露光する。露光に用いる放射線としては、目的とするパターンの線幅に応じて、例えば、可視光線、紫外線、遠紫外線、EUV(極端紫外線)、X線、γ線等の電磁波;電子線、α線等の荷電粒子線などをあげることができる。これらの中でも、遠紫外線、電子線、EUVが好ましく、ArFエキシマレーザー光(波長193nm)、KrFエキシマレーザー光(波長248nm)、電子線、EUVがより好ましく、次世代露光技術として位置付けされる波長50nm以下の電子線、EUVがさらに好ましい。
 露光を液浸露光により行う場合、用いる液浸液としては、例えば、水、フッ素系不活性液体等をあげることができる。液浸液は、露光波長に対して透明であり、かつ膜上に投影される光学像の歪みを最小限に留めるよう屈折率の温度係数ができる限り小さい液体が好ましいが、特に露光光源がArFエキシマレーザー光(波長193nm)である場合、上述の観点に加えて、入手の容易さ、取り扱いのし易さといった点から水を用いるのが好ましい。水を用いる場合、水の表面張力を減少させるとともに、界面活性力を増大させる添加剤をわずかな割合で添加しても良い。この添加剤は、ウェハ上のレジスト膜を溶解させず、かつレンズの下面の光学コートに対する影響が無視できるものが好ましい。使用する水としては蒸留水が好ましい。
 上記露光の後、ポストエクスポージャーベーク(PEB)を行い、レジスト膜の露光された部分において、露光により感放射線性酸発生剤から発生した酸による樹脂等が有する酸解離性基の解離を促進させることが好ましい。このPEBによって、露光部と未露光部とで現像液に対する溶解性に差が生じる。PEB温度としては、通常50℃~180℃であり、80℃~130℃が好ましい。PEB時間としては、通常5秒~600秒であり、10秒~300秒が好ましい。
 [現像工程]
 本工程(上記工程(3))では、上記工程(2)である上記露光工程で露光されたレジスト膜を現像する。これにより、所定のレジストパターンを形成することができる。現像後は、水又はアルコール等のリンス液で洗浄し、乾燥することが一般的である。
 上記現像に用いる現像液としては、アルカリ現像の場合、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、けい酸ナトリウム、メタけい酸ナトリウム、アンモニア水、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、エチルジメチルアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(TMAH)、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノネン等のアルカリ性化合物の少なくとも1種を溶解したアルカリ水溶液等をあげることができる。これらの中でも、TMAH水溶液が好ましく、2.38質量%TMAH水溶液がより好ましい。
 また、有機溶剤現像の場合、炭化水素系溶剤、エーテル系溶剤、エステル系溶剤、ケトン系溶剤、アルコール系溶剤等の有機溶剤、又は有機溶剤を含有する溶剤をあげることができる。上記有機溶剤としては、例えば、上述の感放射線性樹脂組成物の溶剤として列挙した溶剤の1種又は2種以上等をあげることができる。これらの中でも、エーテル系溶剤、エステル系溶剤、ケトン系溶剤が好ましい。エーテル系溶剤としては、グリコールエーテル系溶剤が好ましく、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルがより好ましい。エステル系溶剤としては、酢酸エステル系溶剤が好ましく、酢酸n-ブチル、酢酸アミルがより好ましい。ケトン系溶剤としては、鎖状ケトンが好ましく、2-ヘプタノンがより好ましい。現像液中の有機溶剤の含有量としては、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましく、99質量%以上が特に好ましい。現像液中の有機溶剤以外の成分としては、例えば、水、シリコンオイル等をあげることができる。
 上述のように、現像液としてはアルカリ現像液、有機溶剤現像液のいずれであってもよいが、上記現像液がアルカリ水溶液を含み、得られるパターンがポジ型パターンであることが好ましい。
 現像方法としては、例えば、現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、一定速度で回転している基板上に一定速度で現像液吐出ノズルをスキャンしながら現像液を吐出しつづける方法(ダイナミックディスペンス法)等をあげることができる。
以下、本発明を実施例に基づいて具体的に説明するが、本発明は、これらの実施例に限定されるものではない。各種物性値の測定方法を以下に示す。
[重量平均分子量(Mw)及び数平均分子量(Mn)]
 重合体のMw及びMnは、ゲルパーミエーションクロマトグラフィー(GPC)により、東ソー(株)のGPCカラム(「G2000HXL」2本、「G3000HXL」1本、及び「G4000HXL」1本)を使用し、以下の条件により測定した。また、分散度(Mw/Mn)は、Mw及びMnの測定結果より算出した。
 溶出溶媒 :テトラヒドロフラン
 流量   :1.0mL/分
 試料濃度 :1.0質量%
 試料注入量:100μL
 カラム温度:40℃
 検出器  :示差屈折計
 標準物質 :単分散ポリスチレン
13C-NMR分析]
重合体の13C-NMR分析は、核磁気共鳴装置(日本電子(株)の「JNM-Delta400」)を用いて行った。
<[F]化合物(単量体)の合成>
[合成例1]
(化合物(F-1)の合成)
 化合物(F-1)(以下、「単量体(F-1)」ともいう。)を以下の合成スキームに従って合成した。
Figure JPOXMLDOC01-appb-C000030
 反応容器にメタクリル酸2-ヒドロキシエチル20mmol、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩20.0mmol、1-ジメチルアミノピリジン4.0mmol及びジクロロメタン50gを混合し0℃に冷却した。この溶液に対して、ペンタフルオロプロピオン酸20.0mmolを滴下し1時間撹拌した。その後、水を加えて希釈させたのち、ジクロロメタンを加えて抽出し、有機層を分離した。得られた有機層を飽和塩化ナトリウム水溶液、次いで水で洗浄した。硫酸ナトリウムで乾燥後、溶媒を留去し、カラムクロマトグラフィーで精製することで、化合物(F-1)を良好な収率で得た。
[合成例2~6](化合物(F-2)~化合物(F-6)の合成)
 原料及び前駆体を適宜変更したこと以外は合成例1と同様にして、下記式(F-2)~(F-6)で表される化合物を合成した(以下、式(F-2)~(F-6)で表される化合物をそれぞれ「化合物(F-2)」~「化合物(F-6)」又は「単量体(F-2)」~「単量体(F-6)」と記載する場合がある。以下には化合物(F-1)も併記している。)。
Figure JPOXMLDOC01-appb-C000031
 各重合体及びベース樹脂の合成で用いた単量体のうち、上記単量体(F-1)~単量体(F-6)以外の単量体を以下に示す。なお、以下の合成例においては特に断りのない限り、質量部は使用した単量体の合計質量を100質量部とした場合の値を意味し、モル%は使用した単量体の合計モル数を100モル%とした場合の値を意味する。
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
[合成例7]
 (ベース樹脂(A-1)の合成)
 単量体(M-1)、単量体(M-2)及び単量体(M-10)を、モル比率が35/20/45(モル%)となるよう2-ブタノン(200質量部)に溶解し、開始剤としてAIBN(アゾビスイソブチロニトリル)(使用した単量体の合計100モル%に対して5モル%)を添加して単量体溶液を調製した。反応容器に2-ブタノン(100質量部)を入れ、30分窒素パージした後、反応容器内を80℃とし、撹拌しながら上記単量体溶液を3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合溶液を水冷して30℃以下に冷却した。冷却した重合溶液をメタノール(2,000質量部)中に投入し、析出した白色粉末をろ別した。ろ別した白色粉末をメタノールで2回洗浄した後、ろ別し、50℃で24時間乾燥させて白色粉末状のベース樹脂(A-1)を得た(収率:74%)。樹脂(A-1)のMwは5,800であり、Mw/Mnは1.53であった。また、13C-NMR分析の結果、(M-1)、(M-2)及び(M-6)に由来する各構造単位の含有割合は、それぞれ34.8モル%、19.4モル%及び45.8モル%であった。
[合成例8~17]
 (ベース樹脂(A-2)~ベース樹脂(A-11)の合成)
 下記表1に示す種類及び配合割合の単量体を用いたこと以外は合成例7と同様にして、ベース樹脂(A-2)~ベース樹脂(A-11)を合成した。得られたベース樹脂の各構造単位の含有割合(モル%)及び物性値(Mw及びMw/Mn)を下記表1に併せて示す。なお、下記表1における「-」は、該当する単量体を使用しなかったことを示す(以降の表についても同様。)。
Figure JPOXMLDOC01-appb-T000036
[合成例18]
 (ベース樹脂(A-12)の合成)
 単量体(M-1)及び単量体(M-18)を、モル比率が50/50(モル%)となるよう1-メトキシ-2-プロパノール(200質量部)に溶解し、開始剤としてAIBN(5モル%)を添加して単量体溶液を調製した。反応容器に1-メトキシ-2-プロパノール(100質量部)を入れ、30分窒素パージした後、反応容器内を80℃とし、撹拌しながら上記単量体溶液を3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合溶液を水冷して30℃以下に冷却した。冷却した重合溶液をヘキサン(2,000質量部)中に投入し、析出した白色粉末をろ別した。ろ別した白色粉末をヘキサンで2回洗浄した後、ろ別し、1-メトキシ-2-プロパノール(300質量部)に溶解した。次いで、メタノール(500質量部)、トリエチルアミン(50質量部)及び超純水(10質量部)を加え、撹拌しながら70℃で6時間加水分解反応を実施した。反応終了後、残溶媒を留去し、得られた固体をアセトン(100質量部)に溶解し、水(500質量部)の中に滴下して樹脂を凝固させた。得られた固体をろ別し、50℃で13時間乾燥させて白色粉末状のベース樹脂(A-12)を得た(収率:75%)。ベース樹脂(A-12)のMwは6,100であり、Mw/Mnは1.49であった。また、13C-NMR分析の結果、(M-1)及び(M-18)に由来する各構造単位の含有割合は、それぞれ49.2モル%及び50.8モル%であった。
[合成例19~21]
 (ベース樹脂(A-13)~ベース樹脂(A-15)の合成)
 下記表2に示す種類及び配合割合の単量体を用いたこと以外は合成例18と同様にして、ベース樹脂(A-13)~ベース樹脂(A-15)を合成した。得られた樹脂の各構造単位の含有割合(モル%)及び物性値(Mw及びMw/Mn)を下記表2に併せて示す。
Figure JPOXMLDOC01-appb-T000037
[合成例22]
 (重合体(E-1)の合成)
 単量体(F-1)、単量体(fb-1)及び単量体(M-1)を、モル比率が35/30/35(モル%)となるよう2-ブタノン(200質量部)に溶解し、開始剤としてAIBN(3モル%)を添加して単量体溶液を調製した。反応容器に2-ブタノン(100質量部)を入れ、30分窒素パージした後、反応容器内を80℃とし、撹拌しながら上記単量体溶液を3時間かけて滴下した。滴下開始を重合反応の開始時間とし、重合反応を6時間実施した。重合反応終了後、重合溶液を水冷して30℃以下に冷却した。溶媒をアセトニトリル(400質量部)に置換した後、ヘキサン(100質量部)を加えて撹拌しアセトニトリル層を回収する作業を3回繰り返した。溶媒をプロピレングリコールモノメチルエーテルアセテートに置換することで、重合体(E-1)の溶液を得た(収率:75%)。重合体(E-1)のMwは9,200であり、Mw/Mnは1.51であった。また、13C-NMR分析の結果、(F-1)、(fb-1)及び(M-1)に由来する各構造単位の含有割合は、それぞれ34.4モル%、31.2モル%及び34.4モル%であった。
[合成例23~60]
 (重合体(E-2)~重合体(E-34)及び重合体(CE-1)~重合体(CE-5)の合成)
 下記表3及び表4に示す種類及び配合割合の単量体を用いたこと以外は合成例22と同様にして、重合体(E-2)~重合体(E-34)及び重合体(CE-1)~重合体(CE-5)を合成した。得られた重合体の各構造単位の含有割合(モル%)及び物性値(Mw及びMw/Mn)を下記表3及び表4に合わせて示す。
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
<感放射線性樹脂組成物の調製>
 各感放射線性樹脂組成物の調製に用いた[A]ベース樹脂及び[E]重合体以外の成分を以下に示す。
[[B]感放射線性酸発生剤]
 B-1~B-8:下記式(B-1)~(B-8)で表される化合物
Figure JPOXMLDOC01-appb-C000040
[[C]酸拡散抑制剤(オニウム塩(i))]
 C-1~C-10 :下記式(C-1)~(C-10)で表される化合物
 cc-1~cc-7:下記式(cc-1)~(cc-7)で表される化合物
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
[[D]溶剤]
 D-1:プロピレングリコールモノメチルエーテルアセテート
 D-2:プロピレングリコールモノメチルエーテル
 D-3:γ-ブチロラクトン
 D-4:乳酸エチル
[ArF露光用ポジ型感放射線性樹脂組成物の調製]
[実施例1]
 [A]ベース樹脂としての(A-1)100質量部、[B]感放射線性酸発生剤としての(B-1)12.0質量部、[C]酸拡散制御剤としての(C-1)10.0質量部、[E]重合体としての(E-1)3.0質量部(固形分)、並びに[D]溶剤としての(D-1)/(D-2)/(D-3)の混合溶媒3,230質量部を混合し、孔径0.2μmのメンブランフィルターで濾過することにより、感放射線性樹脂組成物(J-1)を調製した。
[実施例2~78及び比較例1~12]
 下記表5-1及び表5-2に示す種類及び含有量の各成分を用いたこと以外は実施例1と同様にして、感放射線性樹脂組成物(J-2)~(J-78)及び(CJ-1)~(CJ-12)を調製した。
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
<ArF露光用ポジ型感放射線性樹脂組成物を用いたレジストパターンの形成>
 12インチのシリコンウエハ上に、スピンコーター(東京エレクトロン(株)の「CLEAN TRACK ACT12」)を使用して、下層反射防止膜形成用組成物(ブルワーサイエンス社の「ARC66」)を塗布した後、205℃で60秒間加熱することにより平均厚さ100nmの下層反射防止膜を形成した。この下層反射防止膜上に上記スピンコーターを使用して上記調製したArF露光用ポジ型感放射線性樹脂組成物(J-1)を塗布し、100℃で60秒間PB(プレベーク)を行った。その後、23℃で30秒間冷却することにより、平均厚さ90nmのレジスト膜を形成した。次に、このレジスト膜に対し、ArFエキシマレーザー液浸露光装置(ASML社の「TWINSCAN XT-1900i」)を用い、NA=1.35、Dipole(σ=0.9/0.7)の光学条件にて、50nmラインアンドスペースのマスクパターンを介して露光した。露光後、100℃で60秒間PEB(ポストエクスポージャーベーク)を行った。その後、アルカリ現像液として2.38質量%のTMAH水溶液を用いて上記レジスト膜をアルカリ現像し、現像後に水で洗浄し、さらに乾燥させることでポジ型のレジストパターン(50nmラインアンドスペースパターン)を形成した。
<評価>
 上記ArF露光用ポジ型感放射線性樹脂組成物を用いて形成したレジストパターンについて、感度、LWR性能、保存安定性及び現像後欠陥数を下記方法に従って評価した。また、ArF露光前のレジスト膜について、後退接触角を下記方法に従って評価した。それらの結果を下記表6に示す。なお、レジストパターンの測長には、走査型電子顕微鏡(日立ハイテクノロジーズ(株)の「CG-5000」)を用いた。
[感度]
 上記ArF露光用ポジ型感放射線性樹脂組成物を用いたレジストパターンの形成において、50nmラインアンドスペースパターンを形成する露光量を最適露光量とし、この最適露光量を感度(mJ/cm)とした。感度は、35mJ/cm以下の場合は「良好」と、35mJ/cmを超える場合は「不良」と評価した。
[LWR性能]
 上記感度の評価で求めた最適露光量を照射して50nmラインアンドスペースパターンを形成するようにマスクサイズを調整して、レジストパターンを形成した。形成したレジストパターンを、上記走査型電子顕微鏡を用い、パターン上部から観察した。線幅のばらつきを計500点測定し、その測定値の分布から3シグマ値を求め、この3シグマ値をLWR(nm)とした。LWRは、その値が小さいほど、ラインのラフネスが小さく良好であることを示す。LWR性能は、3.0nm以下の場合は「良好」と、3.0nmを超える場合は「不良」と評価した。
[PB後の後退接触角]
 上記レジストパターンの形成方法におけるArF露光前のレジスト膜について、室温23℃、相対湿度40%、常圧の環境下で、KRUS社のDSA-10を用いて以下の手順で後退接触角を測定した。
 DSA-10の針から水を排出してレジスト膜上に25μLの水滴を形成した後、針によって水滴を10μL/分の速度で90秒間吸引するとともに、接触角を毎秒(計90回)測定した。その測定において、接触角が安定した時点から計20点の接触角について平均値を算出し、PB後の後退接触角(°)とした。PB後の後退接触角は、70°以上の場合は「良好」と、70°を下回る場合は「不良」と評価した。
[保存安定性]
 上記ArF露光用ポジ型感放射線性樹脂組成物を40℃で1カ月保管した後、上記の方法と同様にPB後の後退接触角を評価した。保管前後でのPB後の後退接触角の変化率を下記式により求めた。後退接触角の変化率が0.5%以下であれば「A」(極めて良好)、0.5%超1.0%以下であれば「B」(良好)、1.0%超であれば「C」(不良)と評価した。
  後退接触角の変化率(%)={(θ-θ)/θ}×100
 (θは保管前の後退接触角であり、θは1カ月保管後の後退接触角である。)
[現像欠陥数]
 最適露光量にてレジスト膜を露光して線幅50nmのラインアンドスペースパターンを形成し、欠陥検査用ウェハとした。この欠陥検査用ウェハ上の欠陥数を、欠陥検査装置(KLA-Tencor社の「KLA2810」)を用いて測定した。直径50μm以下の欠陥をレジスト膜由来のものと判断し、その数を算出した。現像後欠陥数は、このレジスト膜由来と判断される欠陥の数が50個以下の場合は「良好」と、50個を超える場合は「不良」と評価した。
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
 表6-1及び表6-2の結果から明らかなように、実施例の感放射線性樹脂組成物は、ArF露光に用いた場合、感度、LWR性能、PB後の後退接触角、保存安定性、現像欠陥数が良好であったのに対し、比較例では、各特性が実施例に比べて劣っていた。したがって、実施例の感放射線性樹脂組成物をArF露光に用いた場合、高い感度でLWR性能、撥水性、保存安定性、欠陥性能が良好なレジストパターンを形成することができる。
[極端紫外線(EUV)露光用ポジ型感放射線性樹脂組成物の調製]
[実施例79]
 [A]ベース樹脂としての(A-12)100質量部、[B]感放射線性酸発生剤としての(B-5)15.0質量部、[C]酸拡散制御剤としての(C-5)12.0質量部、[E]重合体としての(E-1)3.0質量部(固形分)、並びに[D]溶剤としての(D-1)/(D-4)の混合溶媒6,110質量部を混合し、孔径0.2μmのメンブランフィルターで濾過することにより、感放射線性樹脂組成物(J-79)を調製した。
[実施例80~92及び比較例13~18]
 下記表7に示す種類及び含有量の各成分を用いたこと以外は実施例79と同様にして、感放射線性樹脂組成物(J-80)~(J-92)及び(CJ-13)~(CJ-18)を調製した。
Figure JPOXMLDOC01-appb-T000047
<EUV露光用ポジ型感放射線性樹脂組成物を用いたレジストパターンの形成>
 12インチのシリコンウエハ上に、スピンコーター(東京エレクトロン(株)の「CLEAN TRACK ACT12」)を使用して、下層反射防止膜形成用組成物(ブルワーサイエンス社の「ARC66」)を塗布した後、205℃で60秒間加熱することにより平均厚さ105nmの下層反射防止膜を形成した。この下層反射防止膜上に上記スピンコーターを使用して上記調製したEUV露光用ポジ型感放射線性樹脂組成物を塗布し、130℃で60秒間PBを行った。その後、23℃で30秒間冷却することにより、平均厚さ55nmのレジスト膜を形成した。次に、このレジスト膜に対し、EUV露光装置(ASML社の「NXE3300」)を用い、NA=0.33、照明条件:Conventional s=0.89、マスク:imecDEFECT32FFR02にて露光した。露光後、120℃で60秒間PEBを行った。その後、アルカリ現像液として2.38質量%のTMAH水溶液を用いて上記レジスト膜をアルカリ現像し、現像後に水で洗浄し、さらに乾燥させることでポジ型のレジストパターン(32nmラインアンドスペースパターン)を形成した。
<評価>
 上記EUV露光用ポジ型感放射線性樹脂組成物を用いて形成したレジストパターンについて、感度、LWR性能、保存安定性及び現像後欠陥数を下記方法に従って評価した。また、EUV露光前のレジスト膜について、後退接触角を下記方法に従って評価した。その結果を下記表8に示す。なお、レジストパターンの測長には、走査型電子顕微鏡(日立ハイテクノロジーズ(株)の「CG-5000」)を用いた。
[感度]
 上記EUV露光用ポジ型感放射線性樹脂組成物を用いたレジストパターンの形成において、32nmラインアンドスペースパターンを形成する露光量を最適露光量とし、この最適露光量を感度(mJ/cm)とした。感度は、30mJ/cm以下の場合は「良好」と、30mJ/cmを超える場合は「不良」と評価した。
[LWR性能]
 上記感度の評価で求めた最適露光量を照射して32nmラインアンドスペースパターンを形成するようにマスクサイズを調整して、レジストパターンを形成した。形成したレジストパターンを、上記走査型電子顕微鏡を用い、パターン上部から観察した。線幅のばらつきを計500点測定し、その測定値の分布から3シグマ値を求め、この3シグマ値をLWR(nm)とした。LWRは、その値が小さいほど、ラインのラフネスが小さく良好であることを示す。LWR性能は、3.0nm以下の場合は「良好」と、3.0nmを超える場合は「不良」と評価した。
[PB後の後退接触角]
 上記レジストパターンの形成方法におけるEUV露光前のレジスト膜について、室温23℃、相対湿度40%、常圧の環境下で、KRUS社のDSA-10を用いて以下の手順で後退接触角を測定した。
 DSA-10の針から水を排出してレジスト膜上に25μLの水滴を形成した後、針によって水滴を10μL/分の速度で90秒間吸引するとともに、接触角を毎秒(計90回)測定した。その測定において、接触角が安定した時点から計20点の接触角について平均値を算出し、PB後の後退接触角(°)とした。PB後の後退接触角は、70°以上の場合は「良好」と、70°を下回る場合は「不良」と評価した。
[保存安定性]
 上記EUV露光用ポジ型感放射線性樹脂組成物を40℃で1カ月保管した後、上記の方法と同様にPB後の後退接触角を評価した。保管前後でのPB後の後退接触角の変化率を下記式により求めた。後退接触角の変化率が0.5%以下であれば「A」(極めて良好)、0.5%超1.0%以下であれば「B」(良好)、1.0%超であれば「C」(不良)と評価した。
  後退接触角の変化率(%)={(θ-θ)/θ}×100
 (θは保管前の後退接触角であり、θは1カ月保管後の後退接触角である。)
[現像欠陥数]
 最適露光量にてレジスト膜を露光して線幅32nmのラインアンドスペースパターンを形成し、欠陥検査用ウェハとした。この欠陥検査用ウェハ上の欠陥数を、欠陥検査装置(KLA-Tencor社の「KLA2810」)を用いて測定した。直径50μm以下の欠陥をレジスト膜由来のものと判断し、その数を算出した。現像後欠陥数は、このレジスト膜由来と判断される欠陥の数が50個以下の場合は「良好」と、50個を超える場合は「不良」と評価した。
Figure JPOXMLDOC01-appb-T000048
 表8の結果から明らかなように、実施例の感放射線性樹脂組成物は、EUV露光に用いた場合、感度、LWR性能、PB後の後退接触角、保存安定性及び現像欠陥数が良好であったのに対し、比較例では、各特性が実施例に比べて劣っていた。したがって、実施例の感放射線性樹脂組成物をEUV露光に用いた場合、高い感度でLWR性能、撥水性、保存安定性、欠陥性能が良好なレジストパターンを形成することができる。
[ArF露光用ネガ型感放射線性樹脂組成物の調製、この組成物を用いたレジストパターンの形成及び評価]
[実施例93]
 [A]ベース樹脂としての(A-10)100質量部、[B]感放射線性酸発生剤としての(B-4)12.0質量部、[C]酸拡散制御剤としての(C-3)12.0質量部、[E]重合体としての(E-32)4.0質量部(固形分)、並びに[D]溶剤としての(D-1)/(D-2)/(D-3)の混合溶媒3,230質量部(質量比2240部/960部/30部)を混合し、孔径0.2μmのメンブランフィルターで濾過することにより、感放射線性樹脂組成物(J-93)を調製した。
 12インチのシリコンウエハ上に、スピンコーター(東京エレクトロン(株)の「CLEAN TRACK ACT12」)を使用して、下層反射防止膜形成用組成物(ブルワーサイエンス社の「ARC66」)を塗布した後、205℃で60秒間加熱することにより平均厚さ100nmの下層反射防止膜を形成した。この下層反射防止膜上に上記スピンコーターを使用して上記調製したArF露光用ネガ型感放射線性樹脂組成物(J-93)を塗布し、100℃で60秒間PB(プレベーク)を行った。その後、23℃で30秒間冷却することにより、平均厚さ90nmのレジスト膜を形成した。次に、このレジスト膜に対し、ArFエキシマレーザー液浸露光装置(ASML社の「TWINSCAN XT-1900i」)を用い、NA=1.35、Annular(σ=0.8/0.6)の光学条件にて、40nmホール、105nmピッチのマスクパターンを介して露光した。露光後、100℃で60秒間PEB(ポストエクスポージャーベーク)を行った。その後、有機溶剤現像液として酢酸n-ブチルを用いて上記レジスト膜を有機溶剤現像し、乾燥させることでネガ型のレジストパターン(40nmホール、105nmピッチ)を形成した。
<評価>
 上記ArF露光用ネガ型感放射線性樹脂組成物を用いて形成したレジストパターンについて、感度、PB後の後退接触角、現像後欠陥数及び保存安定性を下記方法に従って評価した。なお、レジストパターンの測長には、走査型電子顕微鏡(日立ハイテクノロジーズ(株)の「CG-5000」)を用いた。
 上記ArF露光用ネガ型感放射線性樹脂組成物を用いて形成したレジストパターン及びArF露光前のレジスト膜について、上記ArF露光用ポジ型感放射線性樹脂組成物を用いたレジストパターンの評価と同様にして評価した。その結果、実施例93の感放射線性樹脂組成物は、ArF露光にてネガ型のレジストパターンを形成した場合においても、高い感度でPB後の後退接触角、現像後欠陥数、保存安定性が良好であった。
[EUV露光用ネガ型感放射線性樹脂組成物の調製、この組成物を用いたレジストパターンの形成及び評価]
[実施例94]
 [A]ベース樹脂としての(A-14)100質量部、[B]感放射線性酸発生剤としての(B-8)20.0質量部、[C]酸拡散制御剤としての(C-2)18.0質量部、[E]重合体としての(E-32)3.0質量部(固形分)、並びに[D]溶剤としての(D-1)/(D-4)の混合溶媒6,110質量部(質量比4280部/1830部)を混合し、孔径0.2μmのメンブランフィルターで濾過することにより、感放射線性樹脂組成物(J-94)を調製した。
 12インチのシリコンウエハ上に、スピンコーター(東京エレクトロン(株)の「CLEAN TRACK ACT12」)を使用して、下層反射防止膜形成用組成物(ブルワーサイエンス社の「ARC66」)を塗布した後、205℃で60秒間加熱することにより平均厚さ105nmの下層反射防止膜を形成した。この下層反射防止膜上に上記スピンコーターを使用して上記調製したEUV露光用ネガ型感放射線性樹脂組成物(J-94)を塗布し、130℃で60秒間PBを行った。その後、23℃で30秒間冷却することにより、平均厚さ55nmのレジスト膜を形成した。次に、このレジスト膜に対し、EUV露光装置(ASML社の「NXE3300」)を用い、NA=0.33、照明条件:Conventional s=0.89、マスク:imecDEFECT32FFR15にて露光した。露光後、120℃で60秒間PEBを行った。その後、有機溶剤現像液として酢酸n-ブチルを用いて上記レジスト膜を有機溶剤現像し、乾燥させることでネガ型のレジストパターン(40nmホール、105nmピッチ)を形成した。
 上記EUV露光用ネガ型感放射線性樹脂組成物を用いたレジストパターンについて、上記ArF露光用ネガ型感放射線性樹脂組成物を用いたレジストパターンの評価と同様にして評価した。その結果、実施例94の感放射線性樹脂組成物は、EUV露光にてネガ型のレジストパターンを形成した場合においても、高い感度でPB後の後退接触角、現像後欠陥数、保存安定性が良好であった。
 本発明の感放射線性樹脂組成物及びレジストパターン形成方法によれば、当該組成物の保存安定性に優れているとともに、露光光に対する感度が良好であり、LWR性能、撥水性、欠陥の少ないレジストパターンを形成することができる。したがって、これらは、今後さらに微細化が進行すると予想される半導体デバイスの加工プロセス等に好適に用いることができる。
 

Claims (12)

  1.  下記式(1)で表される構造単位(I)と、上記構造単位(I)とは異なる構造単位とを含む重合体と、
     下記式(i)で表されるオニウム塩と、
     溶剤と
     を含む感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (上記式(1)中、
     RK1は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
     Lは、炭素数1~5のアルカンジイル基である。
     Rf1は、5~7個のフッ素原子を有する炭素数2~10のフッ素化炭化水素基である。)
    Figure JPOXMLDOC01-appb-C000002
    (上記式(i)中、
     Ra1は、硫黄原子に隣接する原子にフッ素原子及びフッ素化炭化水素基が結合していない置換又は非置換の炭素数1~40の1価の有機基である。
     Xは1価のオニウムカチオンである。)
  2.  上記式(i)中、Ra1は環状構造を含む請求項1に記載の感放射線性樹脂組成物。
  3.  上記感放射線性樹脂組成物中の溶媒以外の成分の合計質量に占める上記オニウム塩の含有割合が、0.1質量%以上30質量%以下である請求項1に記載の感放射線性樹脂組成物。
  4.  上記式(1)中、Rf1は、5個のフッ素原子を有する炭素数2~4のフッ素化直鎖状炭化水素基である請求項1に記載の感放射線性樹脂組成物。
  5.  上記式(1)中、Lは、メタンジイル基又はエタンジイル基である請求項1に記載の感放射線性樹脂組成物。
  6.  上記重合体を構成する全構造単位に占める上記構造単位(I)の含有割合が、5.0モル%以上95.0モル%以下である請求項1に記載の感放射線性樹脂組成物。
  7.  上記重合体は、上記構造単位(I)とは異なる構造単位として、下記式(2)で表される構造単位(II)(上記構造単位(I)に該当する構造を除く。)をさらに含む請求項1~6のいずれか1項に記載の感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    (上記式(2)中、
     RK2は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
     Lは、フッ素置換又は非置換の炭素数1~20の2価の有機基である。
     Lは、-COO-又は-OCO-である。*はL側の結合手である。
     mは、0~2の整数である。L及びLが複数存在する場合、複数のL及びLはそれぞれ互いに同一又は異なる。
     Rf2は、フッ素置換又は非置換の炭素数1~20の1価の有機基である。
     ただし、L及びRf2は合計1個以上のフッ素原子を有する。)
  8.  上記重合体は、上記構造単位(I)とは異なる構造単位として、下記式(3)で表される構造単位(III)をさらに含む請求項1~6のいずれか1項に記載の感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
    (上記式(3)中、
     Rは、水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。
     Rは、炭素数1~20の1価の炭化水素基である。
     R及びR10は、それぞれ独立して、炭素数1~10の1価の鎖状炭化水素基若しくは炭素数3~20の1価の脂環式炭化水素基であるか、又はこれらの基が互いに合わせられこれらが結合する炭素原子と共に構成される炭素数3~20の2価の脂環式基を表す。)
  9.  酸解離性基を有する構造単位を含み、上記重合体よりもフッ素原子の質量含有率が低い樹脂をさらに含む請求項1~6のいずれか1項に記載の感放射線性樹脂組成物。
  10.  感放射線性酸発生剤をさらに含む請求項1~6のいずれか1項に記載の感放射線性樹脂組成物。
  11.  請求項1~6のいずれか1項に記載の感放射線性樹脂組成物を基板に直接又は間接に塗布してレジスト膜を形成する工程と、
     上記レジスト膜を露光する工程と、
     露光された上記レジスト膜を現像液で現像する工程と
     を含むパターン形成方法。
  12.  上記現像をアルカリ水溶液により行う請求項11に記載のパターン形成方法。
     
     
PCT/JP2023/003312 2022-02-08 2023-02-02 感放射線性樹脂組成物及びパターン形成方法 WO2023153296A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-017994 2022-02-08
JP2022017994 2022-02-08

Publications (1)

Publication Number Publication Date
WO2023153296A1 true WO2023153296A1 (ja) 2023-08-17

Family

ID=87564288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003312 WO2023153296A1 (ja) 2022-02-08 2023-02-02 感放射線性樹脂組成物及びパターン形成方法

Country Status (2)

Country Link
TW (1) TW202332664A (ja)
WO (1) WO2023153296A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015147926A (ja) * 2014-01-10 2015-08-20 住友化学株式会社 樹脂及びレジスト組成物
WO2020105523A1 (ja) * 2018-11-22 2020-05-28 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015147926A (ja) * 2014-01-10 2015-08-20 住友化学株式会社 樹脂及びレジスト組成物
WO2020105523A1 (ja) * 2018-11-22 2020-05-28 富士フイルム株式会社 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法

Also Published As

Publication number Publication date
TW202332664A (zh) 2023-08-16

Similar Documents

Publication Publication Date Title
JPWO2018180049A1 (ja) 感放射線性組成物及びレジストパターン形成方法
KR20210114861A (ko) 감방사선성 수지 조성물, 패턴 형성 방법 및 단량체 화합물의 제조 방법
JP7360633B2 (ja) 感放射線性樹脂組成物及びレジストパターンの形成方法
WO2021039331A1 (ja) 感放射線性樹脂組成物及びレジストパターンの形成方法
JP2017181697A (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
WO2022113663A1 (ja) 感放射線性樹脂組成物、及びパターン形成方法
JP7323865B2 (ja) 感放射線性樹脂組成物及びパターン形成方法
WO2021241246A1 (ja) 感放射線性樹脂組成物及びパターン形成方法
WO2023100574A1 (ja) 感放射線性樹脂組成物、パターン形成方法、基板の製造方法、及び化合物
WO2022172736A1 (ja) 感放射線性樹脂組成物及びパターン形成方法
WO2021131845A1 (ja) 感放射線性樹脂組成物及びパターン形成方法
KR20230074470A (ko) 감방사선성 수지 조성물, 패턴 형성 방법 및 오늄염 화합물
WO2021157354A1 (ja) 感放射線性樹脂組成物及びレジストパターンの形成方法
WO2023153296A1 (ja) 感放射線性樹脂組成物及びパターン形成方法
WO2023153295A1 (ja) 感放射線性樹脂組成物及びパターン形成方法
WO2023153294A1 (ja) 感放射線性樹脂組成物及びパターン形成方法
TWI837313B (zh) 感放射線性樹脂組成物及抗蝕劑圖案的形成方法
WO2021235283A1 (ja) 感放射線性樹脂組成物、パターン形成方法及びオニウム塩化合物
WO2023095561A1 (ja) 感放射線性樹脂組成物及びパターン形成方法
WO2024116576A1 (ja) 感放射線性樹脂組成物、パターン形成方法及び感放射線性酸発生剤
WO2022113814A1 (ja) 感放射線性樹脂組成物、パターン形成方法及びオニウム塩化合物
WO2024057751A1 (ja) 感放射線性樹脂組成物及びパターン形成方法
WO2024116577A1 (ja) 感放射線性樹脂組成物、パターン形成方法及び感放射線性酸発生剤
WO2023058369A1 (ja) 感放射線性樹脂組成物、樹脂、化合物及びパターン形成方法
WO2022190964A1 (ja) 感放射線性樹脂組成物及びパターン形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752761

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023580199

Country of ref document: JP

Kind code of ref document: A