WO2023153163A1 - フリップチップ実装構造およびフリップチップ実装方法 - Google Patents

フリップチップ実装構造およびフリップチップ実装方法 Download PDF

Info

Publication number
WO2023153163A1
WO2023153163A1 PCT/JP2023/001556 JP2023001556W WO2023153163A1 WO 2023153163 A1 WO2023153163 A1 WO 2023153163A1 JP 2023001556 W JP2023001556 W JP 2023001556W WO 2023153163 A1 WO2023153163 A1 WO 2023153163A1
Authority
WO
WIPO (PCT)
Prior art keywords
flip
bump
electrode pad
chip mounting
bonding layer
Prior art date
Application number
PCT/JP2023/001556
Other languages
English (en)
French (fr)
Inventor
隆博 隈川
大輔 櫻井
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023153163A1 publication Critical patent/WO2023153163A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation

Definitions

  • FIG. 11 is a diagram showing a conventional structure when the semiconductor device 110 is flip-chip mounted on the mounting board 120.
  • FIG. The electrode pads 111 of the semiconductor device 110 and the electrode pads 121 of the mounting substrate 120 are joined via metal bumps 130 .
  • the metal bump 130 has a structure including a tapered portion 130a and a columnar portion 130b.
  • the bonding area between the electrode pad 121 of the mounting substrate 120 and the columnar portion 130b of the metal bump 130 is larger than the bonding area between the electrode pad 111 of the semiconductor device 110 and the tapered portion 130a of the metal bump 130. small. Therefore, during flip-chip mounting, an excessive load is applied to the joint between the electrode pad 121 and the columnar portion 130b.
  • a flip-chip mounting method is a flip-chip mounting method for flip-chip mounting a first member having a first electrode pad and a second member having a second electrode pad. forming a bump on the first electrode pad; forming a paste-like bonding layer containing metal powder on the second electrode pad in a region larger than the diameter of the bump; on the second member such that a part of the bump is embedded in the bonding layer; and converting the bonding layer into a first bonding layer made of a porous sintered body.
  • a part of the first bonding layer existing between the bump and the second electrode pad is made of a sintered body denser than the sintered body of the first bonding layer.
  • FIG. 1 is a cross-sectional view schematically showing a flip-chip mounting structure according to a first embodiment of the present invention
  • FIG. Figure 2 is an enlarged view of the area indicated in Figure 1A
  • 3 is a cross-sectional view taken along the line BB' of FIG. 2
  • FIG. FIG. 4 is a cross-sectional view schematically showing a flip-chip mounting structure in a modified example of the first embodiment
  • FIG. 10 is a cross-sectional view schematically showing a flip-chip mounting structure in another modified example of the first embodiment
  • (A) to (D) are cross-sectional views schematically showing a flip-chip mounting method according to a second embodiment of the present invention.
  • FIG. 1 is a diagram showing a conventional structure when a semiconductor device is flip-chip mounted on a circuit board;
  • FIG. 1 is a cross-sectional view schematically showing a flip-chip mounting structure according to a first embodiment of the invention.
  • 2 is an enlarged view of the area shown in A of FIG. 3 is a cross-sectional view taken along line BB' of FIG.
  • the flip-chip mounting structure includes a first member 1 having a first electrode pad 2 and a second member 5 having a second electrode pad 6. It has a flip-chip mounted structure.
  • first member 1 and the second member 5 in the present embodiment are a general term for objects to be flip-chip mounted to each other, and the objects are not particularly limited. A component, a flexible wiring board, etc. are mentioned.
  • the first electrode pad 2 and the second electrode pad 6 are composed of a bump 4 formed on the first electrode pad 2 side and a joint portion formed on the second electrode pad side. 8 are electrically connected.
  • the first electrode pad 2 is exposed at the opening of the insulating film 3 and connected to the bump 4 at this opening.
  • the second electrode pad 6 is exposed at the opening of the resist 7 and connected to the joint 8 at this opening.
  • the bump 4 has a structure including, in order from the first electrode pad 2 side, a tapered portion 4a, a columnar portion 4b, and a top portion 4c.
  • the tapered portion 4a decreases in size from the side of the first electrode pad 2 toward the columnar portion 4b.
  • the tapered portion 4a and the columnar portion 4b are made of the same material, and there is no interface.
  • the top portion 4c indicates the periphery of the tip of the columnar portion 4b, and indicates the lower surface of the columnar portion 4b and the side wall portions close to the lower surface.
  • the material of the bumps 4 is not particularly limited, examples thereof include copper, cobalt, gold, and silver.
  • the interface between the first joint portion 8a and the top portion 4c of the bump 4 is reduced.
  • the stress applied to the interface between the first joint portion 8a and the second electrode pad 6 can be dispersed.
  • the stress applied to the fragile insulating film (not shown) under the second electrode pads 6 can be alleviated.
  • the columnar portion 4b falls down with the second bonding portion 8b serving as a support during flip-chip mounting. can be prevented.
  • the boundary between the first joint portion 8a made of a dense sintered body and the second joint portion 8b made of a porous sintered body is clearly shown.
  • the boundary does not necessarily have to be clear, and it may be a region in which the voids of the sintered body gradually change from a dense region to a porous region. That is, even if the volume ratio of the voids in the sintered bodies of the first joint portion 8a and the second joint portion 8b gradually increases from the first joint portion 8a toward the second joint portion 8b, good. More specifically, the gap between the sintered bodies of the first joint portion 8a and the second joint portion 8b gradually increases from the first joint portion 8a toward the second joint portion 8b. good too.
  • FIG. 4 is a cross-sectional view schematically showing a flip-chip mounting structure in a modification of the first embodiment.
  • the resist 7 surrounding the joint 8 shown in FIG. 2 may be omitted.
  • FIG. 6A to 6D and 7A to 7B are sectional views schematically showing a flip chip mounting method according to the second embodiment of the present invention.
  • the flip chip mounting method in this embodiment is a method for manufacturing the flip chip mounting structure shown in FIG.
  • the second member 5 is flip-chip mounted.
  • bumps 4 are formed on the first electrode pads 2 formed on the surface of the first member 1 .
  • a part of the first electrode pad 2 is exposed through an opening formed in the insulating film 3 .
  • the bumps 4 can be formed by a stud bump bonding method, a semi-additive method using plating, a full-additive method, or the like.
  • a paste containing metal powder is applied to a region larger than the diameter of the bump 4 on the second electrode pad 6 formed on the surface of the second member 5 .
  • a bonding layer 8c is formed. Specifically, a resist 7 having an opening that partially exposes the second electrode pad 6 is formed on the second electrode pad 6 , and a paste bonding layer is applied to the opening of the resist 7 .
  • Fill 8c As a filling method, a printing method, a transfer method, or an inkjet method can be used.
  • the joining layer 8c is in a paste state before sintering, in which metal powder is mixed with a dispersant or a solvent, for example.
  • the second member 5 is heated in a high-temperature furnace or on a hot plate to heat the paste-like bonding layer 8c.
  • the heating temperature at this time is a temperature at which only the solvent is vaporized without sintering the metal powder contained in the paste-like bonding layer 8c. By doing so, the paste-like bonding layer 8c containing the metal powder becomes the temporarily dried bonding layer 8d.
  • the first member 1 sucked by the collet 9 is held on the stage 10 so that a part of the bump 4 is embedded in the bonding layer 8d. 2 on the member 5. At this time, a certain gap is provided between the top portion 4 c of the bump 4 and the second electrode pad 6 .
  • the stage 10 and the collet 9 may be preheated in advance.
  • a heating method a method by heat transfer from the stage 10, a method by placing the entire heating area 11 in a high-temperature furnace, a method by heat transfer from the collet 9, or a combination of these methods can be used.
  • the main heating step the sintering reaction of the bonding layer 8d in the temporarily dried state proceeds, and the entire bonding layer 8d is transformed into the first bonding layer 8b made of a porous sintered body.
  • the first bonding layer 8b existing between the bump 4 and the second electrode pad 6 is It is converted into a bonding layer (second bonding layer) 8a made of a dense sintered body.
  • the first member 1 is pressed toward the second member 5 to apply a predetermined compressive stress to the first bonding layer 8b existing between the bump 4 and the second electrode pad 6.
  • This compression step further promotes metal bonding between the metal powders in the first bonding layer 8b in the region to which the compressive stress is applied, and the first bonding layer 8b in the region has few voids and is similar to bulk metal. It transforms into the second bonding layer 8a made of a sintered body in a similar state.
  • the compression process may be performed while plastically deforming the bumps 4, as shown in FIGS. 8(A) and 8(B).
  • the first bonding layer existing in the region between the bump 4 and the second electrode pad 6 when compressive stress is applied to the first bonding layer 8b existing in the region between the bump 4 and the second electrode pad 6, the first bonding layer existing in the region The layer 8b gradually transforms into a second joining layer 8a made of a dense sintered body. At this time, the hardness of the second bonding layer 8a made of a dense sintered body gradually increases.
  • the bump 4 gradually undergoes plastic deformation, the columnar portion 4b gradually collapses, and the area of the top portion 4c expands. To go. Along with this, the area between the expanded top portion 4c portion and the second electrode pad 6 also gradually changes to the second bonding layer 8a made of a denser sintered body, and the area is expanded. go. Further, as the bump 4 is crushed, a compressive stress is also applied to the lateral direction of the columnar portion 4b, so that the second bonding layer 8a made of a dense sintered body is also formed in the lateral direction of the columnar portion 4b. In order for the bumps 4 to be plastically deformed, it is preferable that the hardness of the second bonding layer 8a is higher than the hardness of the bumps 4 .
  • pressure is applied between the first electrode pads 2 and the second electrode pads 6 to compress the first member 1 and the second member 5 into This may also serve as a pressurizing step for connecting via the bump 4 and the second bonding layer 8a.
  • Modification 1 of the second embodiment 9A and 9B are cross-sectional views schematically showing a flip-chip mounting method in Modification 1 of the second embodiment. Note that the steps shown in FIGS. 6A to 6D are the same in this modified example, so description thereof will be omitted.
  • 9A is the same as the step shown in FIG. 7A, in which the temporarily dried bonding layer 8d is heated to a temperature (first temperature) higher than the sintering temperature of the metal powder to obtain a porous structure. It is converted into a first bonding layer 8b made of a high-quality sintered body.
  • the heating here is performed by a method in which the entire bonding layer 8d in the temporarily dried state is heated.
  • the first bonding layer 8b existing in the vicinity of the region in contact with the bump 4 is heated to a second temperature higher than the first temperature.
  • the heat transmitted from the first member 1 to the bumps 4 via the first electrode pads 2 causes the first bonding layer 8b existing in the vicinity of the area in contact with the bumps 4 to be locally heated.
  • Can be heated By this heating step, metal bonding between the metal powders further progresses in the first bonding layer 8b in the locally heated region, and the first bonding layer 8b in the region becomes a bulk metal with few voids. It transforms into the second bonding layer 8a made of a sintered body in a similar state.
  • a step of applying compressive stress to the second bonding layer 8a existing between the bump 4 and the second electrode pad 6 may be further performed.
  • FIG. 10(A) is a diagram showing a state in which the first member 1 and the second member 5 are arranged so that the first electrode pad 2 and the second electrode pad 6 face each other.
  • the first member 1 is heated via the collet 9 to a temperature (first temperature) higher than the sintering temperature of the metal powder.
  • first temperature a temperature higher than the sintering temperature of the metal powder.
  • second member 5 may be heated via the stage 10 to a temperature lower than the sintering temperature of the metal powder.
  • the first member 1 is arranged on the second member 5 at a position where a part of the bump 4 is embedded in the bonding layer 8d.
  • the bonding layer 8d is gradually heated to a temperature higher than the sintering temperature of the metal powder from the region in contact with the bump 4, and the entire bonding layer 8d becomes the first bonding layer 8b made of a porous sintered body. is converted to
  • the first member 1 is pressed in the direction of the second member 5, and the region between the bump 4 and the second electrode pad 6 is pressed.
  • the first bonding layer 8b in the region is transformed into the second bonding layer 8a made of a dense sintered body.

Abstract

フリップチップ実装構造は、第1の電極パッドを備えた第1の部材と、第1の電極パッド上に形成されたバンプと、第2の電極パッドを備えた第2の部材と、第2の電極パッド上に形成された接続部と、を備える。第1の部材と第2の部材は、フリップチップ実装され、第1の電極パッドと第2の電極パッドとは、バンプと、接合部とを介して電気的に接続されている。接合部は、少なくとも、バンプの頭頂部と第2の電極パッドとの間に挟まれた領域に形成された第1の接合部と、第1の接合部の周辺を囲む領域であって、少なくとも、バンプの側面を囲む領域に形成された第2の接合部とで構成されている。第1の接合部および第2の接合部の各々は、金属粉末の焼結体からなる。

Description

フリップチップ実装構造およびフリップチップ実装方法
 本発明は、フリップチップ実装構造、及び、フリップチップ実装方法に関する。
 半導体装置の実装基板への実装技術の1つとして、フリップチップ実装が知られている。フリップチップ実装においては、突起電極が、半導体装置の電極端子上に形成され、実装基板の電極パッドに対して圧接・加熱することにより、電極端子が実装基板の電極パッドにバンプ接続され、半導体装置が実装基板にフリップチップ実装される。
 電極端子上に形成される突起電極には、はんだバンプが多く採用されている。しかしながら、電極端子間の狭ピッチ化に伴い、フリップチップ実装時の圧接・加熱工程において、溶融し変形したはんだバンプが、その表面張力により他のはんだバンプと繋がるブリッジ不良が発生し易くなる。
 そこで、電極端子上に形成される突起電極に、はんだバンプに代えて、例えば、銅などからなる柱状の微細金属バンプを採用する工法が知られている。この工法においては、フリップチップ実装時の圧接・加熱工程において、突起電極の先端を塑性変形させ、固相拡散により突起電極を電極パッドに接合する。この工法によれば、フリップチップ実装時の圧接・加熱工程において、微細金属バンプを溶融させないので、微細金属バンプの溶融及び変形に起因するブリッジ不良の発生を防ぐことができる。
 しかしながら、半導体装置が高温下や低温下で繰り返し使用された場合、熱ストレスにより、微細金属バンプの根元部分にクラックが入ったり断線したりする問題が生じる。このような問題を解決する方法として、特許文献1には、微細金属バンプの根元部分にテーパ部を設ける構造が開示されている。
特開2014-3201号公報
 図11は、半導体装置110を、実装基板120にフリップチップ実装したときの従来の構造を示した図である。半導体装置110の電極パッド111と、実装基板120の電極パッド121とは、金属バンプ130を介して接合されている。ここで、金属バンプ130は、テーパ部130aと柱状部130bとを備えた構造を有している。
 図11に示すように、実装基板120の電極パッド121と、金属バンプ130の柱状部130bとの接合面積は、半導体装置110の電極パッド111と、金属バンプ130のテーパ部130aとの接合面積より小さい。そのため、フリップチップ実装時に、電極パッド121と柱状部130bとの接合部には、過大な荷重が加わる。
 通常、実装基板120の電極パッド121の下には、絶縁膜122が形成されているが、実装基板120に搭載した電子部品の微細化や高速伝送化が進むと、絶縁膜122の脆弱化が顕著になる。そのため、電極パッド121と柱状部130bとの接合部には、過大な荷重が加わると、電極パッド121の下にある脆弱な絶縁膜122にも、局所的な圧縮応力が働く。かかる圧縮応力が絶縁膜122の破壊応力を上回ると、絶縁膜122に破断や亀裂等が生じたり、絶縁膜122の下にあるトランジスタ等と電子部品の電気特性が変動したりするという問題が発生する。
 本発明は、上記の課題に鑑み、フリップチップ実装時において、実装基板側に与える応力を緩和し得るフリップチップ実装構造、およびフリップチップ実装方法を提供することを目的とする。
 本発明に係るフリップチップ実装構造は、第1の電極パッドを備えた第1の部材と、第1の電極パッド上に形成されたバンプと、第2の電極パッドを備えた第2の部材と、第2の電極パッド上に形成された接続部と、を備える。第1の部材と第2の部材は、フリップチップ実装され、第1の電極パッドと第2の電極パッドとは、バンプと、接合部とを介して電気的に接続されている。接合部は、少なくとも、バンプの頭頂部と第2の電極パッドとの間に挟まれた領域に形成された第1の接合部と、第1の接合部の周辺を囲む領域であって、少なくとも、バンプの側面を囲む領域に形成された第2の接合部とで構成されている。第1の接合部および第2の接合部の各々は、金属粉末の焼結体からなり、第1の接合部の焼結体は、第2の接合部の焼結体よりも緻密であり、第2の接合部の焼結体は、多孔質である。
 本発明に係るフリップチップ実装方法は、第1の電極パッドを備えた第1の部材と、第2の電極パッドを備えた第2の部材とを、フリップチップ実装するフリップチップ実装方法であって、第1の電極パッド上に、バンプを形成する工程と、第2の電極パッド上に、バンプの径よりも大きな領域に、金属粉末を含むペースト状の接合層を形成する工程と、第1の部材を、バンプの一部が前記接合層内に埋設するように、第2の部材上に配置する工程と、接合層を、多孔質な焼結体からなる第1の接合層に変換する第1の変換工程と、バンプと第2の電極パッドとの間に存在する前記第1の接合層の一部を、第1の接合層の焼結体よりも緻密な焼結体からなる第2の接合層に変換する第2の変換工程と、第1の電極パッドと第2の電極パッドとの間に圧力を加えて、第1の部材と第2の部材とを、バンプ及び第2の接合層を介して接続する接続工程とを含む。
 本発明によれば、フリップチップ実装時において、実装基板側に与える応力を緩和し得るフリップチップ実装構造、およびフリップチップ実装方法を提供することができる。
本発明の第1の実施形態におけるフリップチップ実装構造を模式的に示した断面図である。 図1のAに示した領域の拡大図である。 図2のB-B´断面図である。 第1の実施形態の変形例におけるフリップチップ実装構造を模式的に示した断面図である。 第1の実施形態の他の変形例におけるフリップチップ実装構造を模式的に示した断面図である。 (A)~(D)は、本発明の第2の実施形態におけるフリップチップ実装方法を模式的に示した断面図である。 (A)及び(B)は、本発明の第2の実施形態におけるフリップチップ実装方法を模式的に示した断面図である。 (A)及び(B)は、圧縮工程の他の実施形態を示した図である。 (A)及び(B)は、第2の実施形態の変形例2におけるフリップチップ実装方法を模式的に示した断面図である。 (A)及び(B)は、第2の実施形態の変形例2におけるフリップチップ実装方法を模式的に示した断面図である。 半導体装置を回路基板にフリップチップ実装したときの従来の構造を示した図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。また、本発明の効果を奏する範囲を逸脱しない範囲で、適宜変更は可能である。
 (第1の実施形態)
 図1は、本発明の第1の実施形態におけるフリップチップ実装構造を模式的に示した断面図である。また、図2は、図1のAに示した領域の拡大図である。また、図3は、図2のB-B´断面図である。
 図1に示すように、本実施形態におけるフリップチップ実装構造は、第1の電極パッド2を備えた第1の部材1と、第2の電極パッド6を備えた第2の部材5とが、フリップチップ実装された構造を有する。
 なお、本実施形態における第1の部材1及び第2の部材5は、互いにフリップチップ実装する対象を総称してもので、特に、その対象は限定されず、例えば、半導体装置、回路基板、電子部品、フレキシブル配線基板等が挙げられる。
 図1に示すように、第1の電極パッド2と第2の電極パッド6とは、第1の電極パッド2側に形成されたバンプ4と、第2の電極パッド側に形成された接合部8とを介して電気的に接続されている。第1の電極パッド2は、絶縁膜3の開口部で露出し、この開口部で、バンプ4と接続されている。また、第2の電極パッド6は、レジスト7の開口部で露出し、この開口部で、接合部8に接続されている。
 図2に示すように、バンプ4は、第1の電極パッド2側から順に、テーパ部4a、柱状部4b、及び頭頂部4cを備えた構造をなす。テーパ部4aは、第1の電極パッド2側から柱状部4bに向かって、サイズが小さくなっている。テーパ部4aと柱状部4bは同一材料からなり、界面は存在しない。また、頭頂部4cは、柱状部4bの先端周辺を示し、柱状部4bの下面、及び、下面に近い側壁部を指す。バンプ4の材料は特に限定されないが、例えば、銅、コバルト、金、銀等が挙げられる。
 本実施形態において、接合部8は、金属粉末の焼結体からなり、図2及び図3に示すように、緻密な焼結体からなる第1の接合部8aと、多孔質な焼結体からなる第2の接合部8bとで構成されている。すなわち、第1の接合部8aの焼結体は、第2の接合部8bの焼結体よりも緻密である。第1の接合部8aは、少なくとも、バンプ4の頭頂部4cと第2の電極パッド6との間に挟まれた領域に形成されている。第2の接合部8bは、第1の接合部8aの周辺を囲む領域であって、少なくとも、バンプ4の柱状部4bの側面を囲む領域に形成されている。なお、第1の接合部8a及び第2の接合部8bは、同一材料からなる。
 ここで、「緻密な焼結体」とは、金属粉末同士の結合が密で、空隙の少ないバルク金属に近い状態の焼結体を言い、「多孔質な焼結体」とは、金属粉末同士の結合が粗く、空隙が残っている状態の焼結体を言う。当然に、「緻密な焼結体」の硬度は、「多孔質な焼結体」の硬度よりも大きい。
 接合部8の材料は、融点より低い温度で焼結(金属間結合)が進む金属粉末であれば、特に限定されないが、例えば、銀、銅、金、はんだ等の材料からなる、ナノ金属粒子またはマイクロ金属粒子が挙げられる。
 本実施形態によれば、バンプ4は、剛性の高い緻密な焼結体からなる第1の接合部8aを介して、第2の電極パッド6に接続されているため、強固で、かつ低電気抵抗での接続が可能となる。
 また、第1の接合部8aの周辺を、剛性の低い多孔質な焼結体からなる第2の接合部8bで取り囲むことにより、第1の接合部8aとバンプ4の頭頂部4cとの界面、及び、第1の接合部8aと第2の電極パッド6との界面にかかる応力を分散させることができる。これにより、フリップチップ実装時に、バンプ4に過大な荷重が加わっても、第2の電極パッド6の下にある脆弱な絶縁膜(不図示)に加わる応力を緩和することができる。その結果、絶縁膜に破断や亀裂等が生じたり、絶縁膜の下にあるトランジスタ等と電子部品の電気特性が変動したりするのを防止することがきる。
 加えて、第2の接合部8bを、バンプ4の柱状部4bの側面を囲む領域に形成することによって、フリップチップ実装時に、第2の接合部8bが支えとなって、柱状部4bが倒れるのを防止することができる。
 ところで、図2に示した接合部8では、緻密な焼結体からなる第1の接合部8aと、多孔質な焼結体からなる第2の接合部8bとの境界を明確に示したが、必ずしも、当該境界が明確でなくてもよく、緻密な領域から多孔質な領域に、焼結体の空隙が徐々に変化している領域になっていてもよい。すなわち、第1の接合部8aおよび第2の接合部8bの焼結体の空隙の体積比率は、第1の接合部8aから第2の接合部8bに向けて、徐々に大きくなっていてもよい。より具体的には、第1の接合部8aおよび第2の接合部8bの焼結体の空隙は、第1の接合部8aから第2の接合部8bに向けて、徐々に大きくなっていてもよい。また、第1の接合部8aおよび第2の接合部8bの焼結体の空隙の個数は、第1の接合部8aから第2の接合部8bに向けて、徐々に多くなっていてもよい。これにより、応力のかかりやすい第1の接合部8aと、第2の接合部8bの界面が曖昧となり、応力集中を緩和することができる。
 なお、本実施形態では、より信頼性を高めるために、バンプ4は、テーパ部4a、柱状部4b、頭頂部4cを設けた形状としているが、特に本構造に限定する必要はなく、例えば柱状、球状などでも構わない。
 (第1の実施形態の変形例)
 図4は、第1の実施形態の変形例におけるフリップチップ実装構造を模式的に示した断面図である。
 図4に示すように、本変形例では、バンプ4(柱状部4b)の側面に接する領域にも、緻密な集結体からなる第1の接合部8aの一部が形成されている。図2に示したように、バンプ4(柱状部4b)の側面が、物性の異なる第1の接合部8aと第2の接合部8bに接していると、その界面に応力が集中する。本変形例では、バンプ4(柱状部4b)の側面が、第1の接合部8aのみで接することにより、応力集中を緩和することができ、これにより、より信頼性の高い実装構造が得られる。
 また、図5に示すように、図2に示した接合部8を囲むレジスト7はなくてもよい。
 (第2の実施形態)
 図6(A)~(D)、及び図7(A)~(B)は、本発明の第2の実施形態におけるフリップチップ実装方法を模式的に示した断面図である。本実施形態におけるフリップチップ実装方法は、図1に示したフリップチップ実装構造を製造する方法で、第1の電極パッド2を備えた第1の部材1と、第2の電極パッド6を備えた第2の部材5とを、フリップチップ実装する。
 図6(A)に示すように、第1の部材1の表面に形成された第1の電極パッド2上に、バンプ4を形成する。ここで、第1の電極パッド2の一部は、絶縁膜3に形成された開口部で露出している。バンプ4の形成は、スタッドバンプボンディング法や、メッキによるセミアディティブ法やフルアディティブ法等の方法で行うことができる。
 次に、図6(B)に示すように、第2の部材5の表面に形成された第2の電極パッド6上に、バンプ4の径よりも大きな領域に、金属粉末を含むペースト状の接合層8cを形成する。具体的には、第2の電極パッド6上に、第2の電極パッド6の一部が露出するような開口部を有するレジスト7を形成し、レジスト7の開口部に、ペースト状の接合層8cを充填する。充填する方法としては、印刷法や、転写法、インクジェット法を用いることができる。ここで、接合層8cは、例えば、金属粉末を分散剤や溶剤に混ぜた焼結前のペースト状態である。
 次に、図6(C)に示すように、第2の部材5を、高温炉内や、ホットプレート上でペースト状の接合層8cを加熱する。このときの加熱温度は、ペースト状の接合層8c内に含まれる金属粉末が焼結せずに、溶剤のみを気化する温度である。こうすることで、金属粉末を含むペースト状の接合層8cは、仮乾燥状態の接合層8dとなる。
 なお、この仮乾燥工程は、必ずしも必要ではなく、省いても構わない。
 次に、図6(D)に示すように、コレット9に吸着された第1の部材1を、バンプ4の一部が接合層8d内に埋設するように、ステージ10上に保持された第2の部材5上に配置する。このとき、バンプ4の頭頂部4cと、第2の電極パッド6との間には、一定の隙間が設けられている。また、ステージ10及びコレット9は、あらかじめ予熱しておいても良い。
 次に、図7(A)に示すように、仮乾燥状態の接合層8dを、金属粉末の焼結温度より高い温度(第1の温度)に加熱して、多孔質な焼結体からなる接合層(第1の接合層)8bに変換する。
 加熱方法としては、ステージ10からの伝熱による方法、加熱エリア11全体を高温炉内に入れる方法、コレット9からの伝熱による方法や、これらを組合せた方法などを用いることができる。本加熱工程により、仮乾燥状態の接合層8dの焼結反応が進み、接合層8dの全体が、多孔質な焼結体からなる第1の接合層8bへと変換していく。
 次に、図7(B)に示すように、第1の接合層8bのうち、少なくとも、バンプ4と第2の電極パッド6との間に存在する第1の接合層8bの一部を、緻密な焼結体からなる接合層(第2の接合層)8aに変換する。具体的には、第1の部材1を、第2の部材5の方向に押し付け、バンプ4と第2の電極パッド6との間に存在する第1の接合層8bに、所定の圧縮応力を加えることにより行われる。本圧縮工程により、圧縮応力が加わった領域にある第1の接合層8bにおいて、金属粉末同士の金属結合がさらに進み、当該領域にある第1の接合層8bは、空隙が少なく、バルク金属に近い状態の焼結体からなる第2の接合層8aへと変換していく。
 最後に、第1の電極パッド2と第2の電極パッド6との間に、所定の圧力を加えることにより、第1の部材1と第2の部材5とを、バンプ4及び第1の接合層8bを介して接続し、図1に示したフリップチップ実装構造を得る。ここで、図1における第1の接合部8a及び第2の接合部8bが、本実施形態における第2の接合層8a及び第1の接合層8bに相当する。
 なお、上記圧縮工程は、第1の接合層8bに加える圧縮応力を徐々に高めながら行ってもよい。これにより、緻密な焼結体からなる第2の接合層8aと、多孔質な焼結体からなる第1の接合層8bとの境界を、緻密な領域から多孔質な領域に、焼結体の空隙が徐々に変化している領域とすることができる。その結果、応力のかかりやすい第2の接合層8aと、第1の接合層8bの界面が曖昧となり、応力集中を緩和することができる。
 また、上記圧縮工程は、図8(A)、(B)に示すように、バンプ4を塑性変形させながら行ってもよい。
 図8(A)に示すように、バンプ4と第2の電極パッド6との間の領域に存在する第1の接合層8bに、圧縮応力を加えると、当該領域に存在する第1の接合層8bは、徐々に緻密な焼結体からなる第2の接合層8aに変換していく。このとき、緻密な焼結体からなる第2の接合層8aの硬度は、徐々に高くなっていく。
 第2の接合層8aの硬度がある程度高くなってくると、図8(B)に示すように、バンプ4が次第に塑性変形を起こし、柱状部4bが次第につぶれて、頭頂部4cの面積が広がっていく。これに伴い、広がった頭頂部4c部分と第2の電極パッド6との間の領域も、より緻密な焼結体からなる第2の接合層8aへと徐々に変化し、その領域を広げていく。また、バンプ4のつぶれに伴い、柱状部4bの側面方向にも圧縮応力が加わるため、柱状部4bの側面方向にも、緻密な焼結体からなる第2の接合層8aが形成される。なお、バンプ4が塑性変形するためには、第2の接合層8aの硬度が、バンプ4の硬度よりも大きくなっていることが好ましい。
 また、バンプ4の塑性変形を伴う圧縮工程は、第1の電極パッド2と、第2の電極パッド6との間に圧力を加えて、第1の部材1と第2の部材5とを、バンプ4及び第2の接合層8aを介して接続する加圧工程を兼ねていてもよい。
 (第2の実施形態の変形例1)
 図9(A)、(B)は、第2の実施形態の変形例1におけるフリップチップ実装方法を模式的に示した断面図である。なお、図6(A)~(D)に示した工程は、本変形例においても同じであるので、説明は省略する。
 第2の実施形態では、第1の接合層8bを第2の接合層8aに変換する工程を、バンプ4と第2の電極パッド6との間の領域に存在する第1の接合層8bに、圧縮応力を加える圧縮工程により行ったが、本変形例では、当該領域に存在する第1の接合層8bを、所定の温度に加熱する加熱工程によって行うものである。
 図9(A)は、図7(A)に示した工程と同じで、仮乾燥状態の接合層8dを、金属粉末の焼結温度より高い温度(第1の温度)に加熱して、多孔質な焼結体からなる第1の接合層8bに変換する。ここでの加熱は、仮乾燥状態の接合層8d全体が加熱される方法で行われる。
 次に、図9(B)に示すように、バンプ4と接触している領域近傍に存在する第1の接合層8bを、第1の温度よりも高い第2の温度に加熱する。当該領域を局所的に加熱するためには、図9(B)に示すように、コレット9を介して、第1の部材1を加熱することが好ましい。これにより、第1の部材1から、第1の電極パッド2を介してバンプ4に伝達した熱により、バンプ4と接触している近傍の領域に存在する第1の接合層8bを局所的に加熱することができる。本加熱工程により、局所的に加熱された領域にある第1の接合層8bにおいて、金属粉末同士の金属結合がさらに進み、当該領域にある第1の接合層8bが、空隙の少ないバルク金属に近い状態の焼結体からなる第2の接合層8aへと変換していく。
 なお、本加熱工程の後、バンプ4と第2の電極パッド6との間に存在する第2の接合層8aに、圧縮応力を加える工程をさらに行ってもよい。
 (第2の実施形態の変形例2)
 図10(A)、(B)は、第2の実施形態の変形例2におけるフリップチップ実装方法を模式的に示した断面図である。なお、図6(A)~(C)に示した工程は、本変形例においても同じであるので、説明は省略する。
 図10(A)は、第1の部材1と第2の部材5とを、第1の電極パッド2と第2の電極パッド6とが対向するように配置した状態を示した図である。
 図10(A)に示すように、コレット9を介して、第1の部材1を、金属粉末の焼結温度より高い温度(第1の温度)に加熱する。これにより、第1の部材1からの熱が、第1の電極パッド2を介してバンプ4に伝達し、バンプ4の温度が第1の温度となる。なお、このとき、ステージ10を介して、第2の部材5を、金属粉末の焼結温度より低い温度に加熱しておいてもよい。
 次に、図10(B)に示すように、第1の部材1を、バンプ4の一部が接合層8d内に埋設する位置に、第2の部材5上に配置する。これにより、接合層8dは、バンプ4が接した領域から、徐々に金属粉末の焼結温度以上に加熱され、接合層8dの全体が、多孔質な焼結体からなる第1の接合層8bに変換される。
 次に、図7(B)に示したのと同様に、第1の部材1を、第2の部材5の方向に押し付け、バンプ4と第2の電極パッド6との間の領域に存在する第1の接合層8bに、所定の圧縮応力を加えることによって、当該領域にある第1の接合層8bが、緻密な焼結体からなる第2の接合層8aに変換する。
 以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、もちろん、種々の改変が可能である。
  1   第1の部材
  2   第1の電極パッド
  3   絶縁膜
  4   バンプ
  4a  テーパ部
  4b  柱状部
  4c  頭頂部
  5   第2の部材
  6   第2の電極パッド
  7   レジスト
  8   接合部
  8a  第1の接合部(第2の接合層)
  8b  第2の接合部(第1の接合層)
  8c  ペースト状の接合層
  8d  仮乾燥状態の接合層
  9   コレット
  10  ステージ
  11  加熱エリア

Claims (15)

  1.  第1の電極パッドを備えた第1の部材と、
     前記第1の電極パッド上に形成されたバンプと、
     第2の電極パッドを備えた第2の部材と、
     前記第2の電極パッド上に形成された接続部と、を備えるフリップチップ実装構造であって、
     前記第1の部材と前記第2の部材は、フリップチップ実装され、
     前記第1の電極パッドと前記第2の電極パッドとは、前記バンプと、前記接合部とを介して電気的に接続されており、
     前記接合部は、
      少なくとも、前記バンプの頭頂部と前記第2の電極パッドとの間に挟まれた領域に形成された第1の接合部と、
      前記第1の接合部の周辺を囲む領域であって、少なくとも、前記バンプの側面を囲む領域に形成された第2の接合部とで構成されており、
     前記第1の接合部および前記第2の接合部の各々は、金属粉末の焼結体からなり、
     前記第1の接合部の焼結体は、前記第2の接合部の焼結体よりも緻密であり、
     前記第2の接合部の焼結体は、多孔質である、フリップチップ実装構造。
  2.  前記第1の接合部と、前記第2の接合部との境界は、前記第1の接合部および前記第2の接合部の焼結体の空隙が徐々に変化している領域となっている、請求項1に記載のフリップチップ実装構造。
  3.  前記バンプの側面に接する領域に、前記第1の接合部の一部が形成されている、請求項1に記載のフリップチップ実装構造。
  4.  前記バンプは、テーパ部を備えており、
     前記テーパ部の断面積は、前記第1の電極パッドから前記第2の電極パッドに向けて、徐々に小さくなる、請求項1に記載のフリップチップ実装構造。
  5.  前記第1の接合部の硬度は、前記バンプの硬度よりも大きい、請求項1に記載のフリップチップ実装構造。
  6.  第1の電極パッドを備えた第1の部材と、第2の電極パッドを備えた第2の部材とを、フリップチップ実装するフリップチップ実装方法であって、
     前記第1の電極パッド上に、バンプを形成する工程と、
     前記第2の電極パッド上に、前記バンプの径よりも大きな領域に、金属粉末を含むペースト状の接合層を形成する工程と、
     前記第1の部材を、前記バンプの一部が前記接合層内に埋設するように、前記第2の部材上に配置する工程と、
     前記接合層を、多孔質な焼結体からなる第1の接合層に変換する第1の変換工程と、
     前記バンプと前記第2の電極パッドとの間に存在する前記第1の接合層の一部を、前記第1の接合層の焼結体よりも緻密な焼結体からなる第2の接合層に変換する第2の変換工程と、
     前記第1の電極パッドと前記第2の電極パッドとの間に圧力を加えて、前記第1の部材と前記第2の部材とを、前記バンプ及び前記第2の接合層を介して接続する接続工程と、を含む、フリップチップ実装方法。
  7.  前記第1の変換工程は、前記接合層を、前記金属粉末の焼結温度より高い第1の温度に加熱することにより行われる、請求項6に記載のフリップチップ実装方法。
  8.  前記第2の変換工程は、前記バンプと前記第2の電極パッドとの間に存在する前記第1の接合層の一部に、圧縮応力を加える圧縮工程により行われる、請求項6に記載のフリップチップ実装方法。
  9.  前記第2の変換工程は、前記バンプと前記第2の電極パッドとの間に存在する前記第1の接合層の一部を、前記第1の温度よりも高い第2の温度に加熱する加熱工程により行われる、請求項7に記載のフリップチップ実装方法。
  10.  前記加熱工程は、前記第1の部材を加熱して、該第1の部材から前記バンプに伝達される熱により行われる、請求項9に記載のフリップチップ実装方法。
  11.  前記圧縮工程の後、前記第1の部材を加熱して、該第1の部材から前記バンプに伝達される熱により、前記バンプの側面に接する前記第1の接合層の一部を、前記第2の接合層に変換する工程をさらに含む、請求項8に記載のフリップチップ実装方法。
  12.  前記加熱工程の後、前記バンプと前記第2の電極パッドとの間に存在する前記第1の接合層の一部に、圧縮応力を加える工程をさらに含む、請求項9に記載のフリップチップ実装方法。
  13.  前記圧縮工程は、前記第1の接合層の一部に加える圧縮応力を徐々に高めながら行われる、請求項8に記載のフリップチップ実装方法。
  14.  前記圧縮工程は、前記バンプを塑性変形させながら行われる、請求項8に記載のフリップチップ実装方法。
  15.  前記バンプの塑性変形に伴う前記バンプの側面方向への圧縮応力により、前記バンプの側面に接する前記第1の接合層の一部を、前記第2の接合層に変換する工程をさらに含む、請求項14に記載のフリップチップ実装方法。
PCT/JP2023/001556 2022-02-09 2023-01-19 フリップチップ実装構造およびフリップチップ実装方法 WO2023153163A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022018616 2022-02-09
JP2022-018616 2022-02-09

Publications (1)

Publication Number Publication Date
WO2023153163A1 true WO2023153163A1 (ja) 2023-08-17

Family

ID=87564146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001556 WO2023153163A1 (ja) 2022-02-09 2023-01-19 フリップチップ実装構造およびフリップチップ実装方法

Country Status (1)

Country Link
WO (1) WO2023153163A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007208082A (ja) * 2006-02-02 2007-08-16 Fujitsu Ltd 半導体装置の製造方法
JP2009224615A (ja) * 2008-03-17 2009-10-01 Fujitsu Ltd 半導体装置及び半導体装置の製造方法
JP2014029897A (ja) * 2012-07-31 2014-02-13 Hitachi Ltd 導電性接合体およびそれを用いた半導体装置
JP2015106654A (ja) * 2013-11-29 2015-06-08 富士通株式会社 接合方法、半導体装置の製造方法、及び半導体装置
WO2019093427A1 (ja) * 2017-11-08 2019-05-16 日立化成株式会社 接合体の製造方法及び接合材
JP2019179834A (ja) * 2018-03-30 2019-10-17 東レエンジニアリング株式会社 実装装置ならびに実装方法およびこれを用いた半導体装置の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007208082A (ja) * 2006-02-02 2007-08-16 Fujitsu Ltd 半導体装置の製造方法
JP2009224615A (ja) * 2008-03-17 2009-10-01 Fujitsu Ltd 半導体装置及び半導体装置の製造方法
JP2014029897A (ja) * 2012-07-31 2014-02-13 Hitachi Ltd 導電性接合体およびそれを用いた半導体装置
JP2015106654A (ja) * 2013-11-29 2015-06-08 富士通株式会社 接合方法、半導体装置の製造方法、及び半導体装置
WO2019093427A1 (ja) * 2017-11-08 2019-05-16 日立化成株式会社 接合体の製造方法及び接合材
JP2019179834A (ja) * 2018-03-30 2019-10-17 東レエンジニアリング株式会社 実装装置ならびに実装方法およびこれを用いた半導体装置の製造方法

Similar Documents

Publication Publication Date Title
JP4731340B2 (ja) 半導体装置の製造方法
US20090045507A1 (en) Flip chip interconnection
JP4105409B2 (ja) マルチチップモジュールの製造方法
US6153938A (en) Flip-chip connecting method, flip-chip connected structure and electronic device using the same
JP5066935B2 (ja) 電子部品および電子装置の製造方法
KR20020036669A (ko) 반도체 장치의 플립 칩 실장 구조 및 실장 방법
JP2007019360A (ja) 電子部品の実装方法
US11810892B2 (en) Method of direct bonding semiconductor components
JP2000113919A (ja) 電気的接続装置と電気的接続方法
US6657313B1 (en) Dielectric interposer for chip to substrate soldering
JP2000353714A (ja) バンプ転写基板及びその製造方法、並びに半導体装置の製造方法及び半導体装置
US6998293B2 (en) Flip-chip bonding method
JP2007184408A (ja) 電極接合方法
JP3269390B2 (ja) 半導体装置
JP4129837B2 (ja) 実装構造体の製造方法
WO2023153163A1 (ja) フリップチップ実装構造およびフリップチップ実装方法
JP2011187635A (ja) 半導体装置およびその製造方法
JP2002170853A (ja) フリップチップ実装方法
JP2005243714A (ja) 電極バンプ及びその製造並びにその接続方法
JP2008244191A (ja) 部品内蔵基板の製造方法
JP5812123B2 (ja) 電子機器の製造方法
JP4065264B2 (ja) 中継基板付き基板及びその製造方法
TWI672782B (zh) 半導體晶片之製造方法
JP6936595B2 (ja) 半導体装置
JP3768870B2 (ja) 半導体素子の実装方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752632

Country of ref document: EP

Kind code of ref document: A1