WO2023151561A1 - 一种分离碳八芳烃中乙苯的吸附剂及其制备方法 - Google Patents

一种分离碳八芳烃中乙苯的吸附剂及其制备方法 Download PDF

Info

Publication number
WO2023151561A1
WO2023151561A1 PCT/CN2023/074837 CN2023074837W WO2023151561A1 WO 2023151561 A1 WO2023151561 A1 WO 2023151561A1 CN 2023074837 W CN2023074837 W CN 2023074837W WO 2023151561 A1 WO2023151561 A1 WO 2023151561A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite
ethylbenzene
adsorbent
alkali metal
pellets
Prior art date
Application number
PCT/CN2023/074837
Other languages
English (en)
French (fr)
Inventor
赵云
李犇
汪洋
胡智中
李滨
郭春垒
臧甲忠
赵闯
陈自浩
于海斌
Original Assignee
中海油天津化工研究设计院有限公司
中海油能源发展股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中海油天津化工研究设计院有限公司, 中海油能源发展股份有限公司 filed Critical 中海油天津化工研究设计院有限公司
Publication of WO2023151561A1 publication Critical patent/WO2023151561A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/186Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Definitions

  • the invention belongs to the technical field of preparation of zeolite-type adsorbents, and in particular relates to an adsorbent capable of separating ethylbenzene from mixed C8 aromatics through adsorption and a preparation method thereof.
  • Ethylbenzene is an important basic chemical raw material, and more than 99% of ethylbenzene is used to produce styrene.
  • 2020 the demand for styrene in my country will be higher than 11 million tons per year, and the import volume will remain above 2.5 million tons per year, indicating a significant market gap.
  • the current ethylbenzene production technology is mainly the alkylation of benzene and ethylene. Due to the occurrence of excessive alkylation reactions, it is difficult for the alkylation technology to obtain good results in terms of raw material conversion and selectivity at the same time, and it also has disadvantages such as high material consumption, high energy consumption, and large investment costs.
  • the adsorption separation method is a method of separating ethylbenzene by using the different adsorption capacities of the adsorbent for ethylbenzene and other C8 aromatics.
  • the main process is to selectively adsorb ethylbenzene on the adsorbent, and under certain conditions , desorb it with a solvent, and then obtain high-purity ethylbenzene product after simple separation.
  • the adsorption separation technology has low material consumption, low energy consumption, high product yield and high purity, and has a good application prospect.
  • the main difference between the ethylbenzene adsorption and separation technology and the above-mentioned technologies is that it mainly uses high-efficiency adsorbents to separate ethylbenzene from catalytic reforming oil or ethylene pyrolysis gasoline, so as to increase the production of ethylbenzene.
  • the development of ethylbenzene adsorption and separation technology will effectively alleviate the waste of ethylbenzene resources contained in reformed oil and ethylene pyrolysis gasoline, effectively expand my country's ethylbenzene production capacity, optimize the existing aromatics production process, and achieve energy conservation and emission reduction.
  • the technology for industrial application in the field of adsorption separation is mainly the separation of p-xylene (PX) in C8 aromatics.
  • the large-scale promotion technology is the Parex process of UOP company in the United States and the Eluxyl process of Axens in France.
  • the main components of the adsorbent used are barium ion-exchanged X-type zeolite.
  • the following patents disclose the preparation method of the adsorbent for the ethylbenzene component in the adsorption and separation of C8 aromatics:
  • Patent CN112573987A discloses a preparation method of ethylbenzene adsorbent.
  • the X-type zeolite adsorbent formed by rolling balls is used as the carrier, and the Cs ion is exchanged to the surface of the spherical carrier by column exchange method, and the exchange rate is higher than 60mol%.
  • the prepared adsorbent has excellent ethylbenzene separation performance. Using mixed C8 aromatic hydrocarbons as raw materials, after adsorption and separation, the product ethylbenzene has a purity of 99.85wt% and a yield of 95%.
  • Patent CN110871053A discloses a method for preparing an adsorbent for separating ethylbenzene from C8 aromatics.
  • the adsorbent has a BEA/MFI core-shell structure, and its cationic sites are occupied by alkali metal ions.
  • the highest purity of ethylbenzene separated by adsorption is in 99.9 wt%.
  • Patent US4079094 discloses the technical details of the EBex process developed by UOP for the separation of ethylbenzene from mixed C8 aromatics.
  • the adsorbent used is faujasite (X or Y zeolite) exchanged by Sr and K, and the technological form is a simulated moving bed.
  • the separation of ethylbenzene components in mixed C8 aromatics can be achieved, but the ethylbenzene components are separated from the raw materials in the form of raffinate.
  • the ethylbenzene product yield is >95%, and the ethylbenzene purity is >98wt%.
  • Patent US4584424 discloses a preparation method of ethylbenzene adsorbent.
  • the main component of the adsorbent is Beta zeolite, which can realize the separation of ethylbenzene from mixed C8 aromatic hydrocarbons. After comparison, it is found that Beta zeolite with Cs ion exchange has a higher separation coefficient, and its performance is better than that of X zeolite as the parent under the same conditions.
  • prepared adsorbent is alkylbenzene or heteroatom-substituted alkylbenzene, preferably p-diethylbenzene.
  • Patent US4613725 discloses a preparation method of ethylbenzene adsorbent.
  • the main component of the adsorbent is X zeolite, which can realize the separation of ethylbenzene from mixed C8 aromatics.
  • X zeolite was prepared by ion exchange of Rb to obtain ethylbenzene adsorbent, and alkylbenzene was used as adsorbent.
  • the patent also discloses that doping a small amount of Al or Ga atoms in the zeolite has little effect on the separation performance of the adsorbent.
  • the patent USP3724170 uses ZSM-5 zeolite and ZSM-8 zeolite or a mixture of the two as an adsorbent to adsorb and separate ethylbenzene and p-xylene in C8 aromatics, and the zeolite used is modified by silane.
  • patents related to the preparation method of adsorbents with zeolite molecular sieve as the main composition for separating ethylbenzene components in C8 aromatics.
  • patents such as US104513124, US3997619, US4021499, US4107224, US4108915, US4175099, US4497972, US6177604 and other patents all involve the preparation method of ethylbenzene adsorbent or the research of ethylbenzene separation process.
  • the adsorbent has obvious water absorption during operation.
  • the adsorption separation of ethylbenzene in C8 aromatics it is required that the adsorbent should keep the water content as low as possible.
  • the problem that is difficult to solve is that during the actual operation of industrial devices, raw materials or desorbents will inevitably contain trace amounts of water. As the operation time prolongs, water molecules will continue to accumulate on the adsorbent, resulting in a decrease in the separation capacity of the adsorbent.
  • the present invention provides an adsorbent for separating ethylbenzene from C8 aromatics.
  • the agent uses X zeolite as the matrix, adding an appropriate amount of kaolin as a binder and rolling balls to obtain X zeolite pellets, and then through alkali metal ion exchange and surface silicon ester modification A combination of treatment methods is used to prepare an adsorbent capable of separating ethylbenzene components from mixed C8 aromatics.
  • the invention provides a kind of preparation method of the adsorbent for separating ethylbenzene in C8 aromatics, comprising the following steps:
  • Alkali metal ion-exchanged X zeolite pellets are modified by surface organic silicon ester to improve their water resistance stability, and after drying, the finished adsorbent is obtained by roasting in an inert atmosphere;
  • the silicon-aluminum molar ratio of the X zeolite is 2.0-2.3; the grain size of the X zeolite is 0.5-5 ⁇ m;
  • the organosilicon ester is one or more of ethyl orthosilicate, n-octyltrichlorosilane, vinyltrichlorosilane, and methylvinyldichlorosilane.
  • the modification of the surface organosilicon ester preferably includes: dissolving the organosilicon ester in cyclohexane solution to prepare the surface silicon modified organic solution, wherein the mass ratio of cyclohexane to organosilicon ester is 1-10:1; the alkali metal ion-exchanged X zeolite pellets are placed in the surface silicon-modified organic solution, at 15-50°C Soak for 12-24 hours.
  • the ratio of the total amount of water added to the mass of the mixed material in the pelleting process is 30-50 wt%; sieve pellets with a particle size of 20-50 mesh, and dry them at 100-140°C for more than 10 hours to obtain X zeolite pellets;
  • step (c) placing the alkali metal ion-exchanged X zeolite pellets obtained in step (c) in (d) the surface silicon-modified organic solution, Immerse at 15-50°C for 12-24 hours, dry at 90-110°C for more than 10 hours after impregnation, and roast at 400-600°C for 4-10 hours in an inert gas atmosphere to obtain isolated carbon eight Adsorbent for ethylbenzene in aromatic hydrocarbons.
  • the alkali metal salt preferably includes one of cesium chloride, cesium nitrate, rubidium chloride, rubidium nitrate, potassium chloride, and potassium nitrate or several.
  • the ion exchange temperature is 85-95°C, and further, the temperature is controlled at 90-95°C.
  • the drying temperature of the X zeolite pellets after flushing and exchange is 220-230°C.
  • the inert gas atmosphere includes nitrogen, helium, argon or a mixture of the above gases.
  • the present invention also provides an adsorbent for separating ethylbenzene from C8 aromatics prepared by the above preparation method.
  • the present invention also provides an application of the ethylbenzene adsorbent prepared by the present invention in the separation of ethylbenzene from C8 aromatics in a simulated moving bed adsorption separation process, using mixed C8 aromatics as raw materials, and the separation has a purity of 99.7wt % ethylbenzene product, wherein ethylbenzene yield is higher than 95wt%.
  • the entire adsorption tower is divided into four areas by the raw material entry point, desorbent entry point, extraction liquid extraction point, and raffinate extraction point: the area between the desorbent and the extraction liquid is the desorption area; The area between the extraction liquid and the adsorption feed is the refining area; the area between the adsorption feed and the raffinate is the adsorption area; the area between the raffinate and the desorbent is the isolation area.
  • the entire adsorption tower is divided into 24 beds, the number of beds in the adsorption area, refining area, desorption area, and isolation area are 8, 9, 5, and 2 respectively.
  • the adsorption and separation temperature is 60-80 °C and the pressure is 0.6-1.0 MPa .
  • the beneficial effect of the present invention is that, by using X zeolite, which is easy to synthesize and has low cost, as the matrix, the adsorption and separation mixed carbon can be prepared in a simple ball-forming manner, combined with alkali metal ion exchange, surface silicon ester modification and other treatment methods. Highly efficient adsorbent of ethylbenzene in octaaromatics. By adopting the adsorbent provided by the invention and supporting the simulated moving bed adsorption separation process, a complete ethylbenzene adsorption separation process technology can be formed.
  • the ethylbenzene adsorption separation unit can also be grafted before the PX adsorption separation unit in the aromatics complex, which can not only obtain high-purity ethylbenzene products, but also reduce the operating severity of the subsequent PX and isomerization units, and fully improve the aromatics complex. economic benefits.
  • the total amount of water added in the rolling ball process in step (1) is about 40wt% of the powder material gross mass, and other conditions are consistent with embodiment 1;
  • the alkali metal salt that adopts in the step (2) is rubidium chloride, and add-on is 2.42kg, and other conditions are consistent with embodiment 1;
  • Step (3) is consistent with embodiment 1;
  • organosilicon ester is vinyl trichlorosilane, consumption is 3.86kg, other conditions are consistent with embodiment 1;
  • the roasting atmosphere of step (5) is a helium atmosphere, and other conditions are consistent with embodiment 1;
  • Step (6) is consistent with embodiment 1;
  • Step (7) is consistent with embodiment 1.
  • the total amount of water added in the rolling ball process in step (1) is about 50wt% of the powder material gross mass, and other conditions are consistent with embodiment 1;
  • the alkali metal salt that adopts in the step (2) is potassium chloride, and add-on is 1.5kg, and other conditions are consistent with embodiment 1;
  • Step (3) is consistent with embodiment 1;
  • the organosilicon ester adopted in the step (4) is methyl vinyl dichlorosilane, and the consumption is 5.04kg, and other conditions are consistent with embodiment 1;
  • the roasting atmosphere of step (5) is an argon atmosphere, and other conditions are consistent with embodiment 1;
  • Step (6) is consistent with embodiment 1;
  • Step (7) is consistent with embodiment 1.
  • Step (1) is consistent with embodiment 1;
  • Step (2) is consistent with embodiment 1;
  • Step (3) After the ion exchange, the drying temperature of the pellets was changed to 230° C., and other conditions were consistent with Example 1;
  • Step (4) is consistent with embodiment 1;
  • Step (5) is consistent with embodiment 1;
  • Step (6) is consistent with embodiment 1;
  • Step (7) is consistent with embodiment 1.
  • Step (1) is consistent with embodiment 1;
  • Step (2) is consistent with embodiment 1;
  • Step (3) is consistent with embodiment 1;
  • the organosilicon ester that adopts in the step (4) is n-octyltrichlorosilane, and consumption is 1.77kg, and other conditions are consistent with embodiment 1;
  • Step (5) is consistent with embodiment 1;
  • Step (6) is consistent with embodiment 1;
  • Step (7) is consistent with embodiment 1.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • Table 2 embodiment 1 and the method described in comparative example 1 make the ethylbenzene extraction liquid composition that adsorbent obtains

Abstract

本发明公开了一种分离碳八芳烃中乙苯的吸附剂及其制备方法,该吸附剂主要组成为X沸石,其硅铝比(SiO2/Al2O3)为2.0~2.3,晶粒度为0.5~5μm,该吸附剂是将X沸石采用碱金属离子交换和表面硅酯改性的组合处理工艺处理制备得到。本发明吸附剂可将混合碳八芳烃中的乙苯分离出来,乙苯产品具有较高的纯度和收率。

Description

一种分离碳八芳烃中乙苯的吸附剂及其制备方法 技术领域
本发明属于沸石型吸附剂制备技术领域,具体涉及一种通过吸附作用实现混合碳八芳烃中乙苯分离的吸附剂及其制备方法。
背景技术
乙苯是重要的基础化工原料,99%以上的乙苯均被用来生产苯乙烯。2020年,我国苯乙烯需求量高于1100万吨/年,进口量保持在250万吨/年以上,市场缺口明显。面对当前复杂的国际环境,进一步发展我国乙苯生产技术,弥补下游产品苯乙烯的市场缺口具有显著经济及战略意义。现行乙苯生产技术主要为苯和乙烯烷基化法。由于过度烷基化反应的发生,使得烷基化技术在原料转化率和选择性上难以同时获得较好结果,还兼有物耗高、能耗高、投资成本大等弊端。
吸附分离法是利用吸附剂对乙苯和其他碳八芳烃的不同吸附能力将乙苯分离出来的一种方法,其主要过程是将乙苯选择性的吸附在吸附剂上,另在一定条件下,用一种溶剂将其解吸,经后续简单分离可得到高纯度乙苯产品。相较于烷基化法,吸附分离技术物耗小、能耗低、产品收率高、纯度高,具有很好的应用前景。乙苯吸附分离技术与上述技术主要区别在于,其主要通过采用高效吸附剂将催化重整生成油或乙烯裂解汽油中的乙苯分离出来,实现乙苯的增产。乙苯吸附分离技术的开发,将有效缓解目前重整生成油及乙烯裂解汽油中所包含乙苯资源的浪费,有效扩大我国乙苯产能,优化现有芳烃生产工艺流程,实现节能减排。
目前吸附分离领域实现工业应用的技术主要是碳八芳烃中对二甲苯(PX)的分离,大规模推广技术是美国UOP公司的Parex工艺和法国Axens的Eluxyl工艺。使用的吸附剂主要成分均为钡离子交换的X型沸石。以下专利披露了吸附分离碳八芳烃中乙苯组分吸附剂的制备方法:
专利CN112573987A披露了一种乙苯吸附剂的制备方法,以滚球成型的X型沸石吸附剂为载体,采用柱式交换方式将Cs离子交换至球形载体表面,交换率高于60mol%。制得的吸附剂具有优异的乙苯分离性能。以混合碳八芳烃为原料,经吸附分离后,产物乙苯纯度达99.85wt%,收率达95%。
专利CN110871053A披露了一种从碳八芳烃中分离乙苯的吸附剂制备方法。吸附剂具有BEA/MFI核壳结构,其阳离子位为碱金属离子占据,吸附分离出乙苯的最高纯度在 99.9wt%。
专利US4079094披露了UOP公司针对混合碳八芳烃中乙苯分离开发的EBex工艺的技术细节。采用的吸附剂为Sr、K交换的八面沸石(X或Y沸石),工艺技术形式为模拟移动床。在一定的分离条件下,可实现混合碳八芳烃中乙苯组分的分离,但乙苯组分是以抽余液的形式从原料中分离。乙苯产物收率>95%,乙苯纯度>98wt%。
专利US4584424披露了一种乙苯吸附剂的制备方法。吸附剂主要成分为Beta沸石,能够实现乙苯从混合碳八芳烃中的分离,且经对比发现,Cs离子交换的Beta沸石具有较高的分离系数,性能优于同样条件下以X沸石为母体制备的吸附剂。采用的吸附剂为烷基苯或杂原子取代的烷基苯,优选对二乙苯。
专利US4613725披露了一种乙苯吸附剂的制备方法。吸附剂主要成分为X沸石,能够实现乙苯从混合碳八芳烃中的分离。X沸石用Rb离子交换制备得到乙苯吸附剂,采用烷基苯类物质作为吸附剂。专利中还披露,沸石中掺杂少量Al或Ga原子对吸附剂的分离性能影响不大。
专利USP3724170采用ZSM-5沸石和ZSM-8沸石或二者的混合物作为吸附剂吸附分离碳八芳烃中的乙苯和对二甲苯,所用沸石采用了硅烷进行改性。
此外,还有一些专利涉及了以沸石分子筛为主要组成用于分离碳八芳烃中乙苯组分的吸附剂制备方法。例如,专利US104513124、US3997619、US4021499、US4107224、US4108915、US4175099、US4497972、US6177604等专利中均涉及到乙苯吸附剂的制备方法或乙苯分离工艺方面的研究。
在PX吸附分离装置运行过程中,通过注水的方式控制吸附剂的含水量可以使其保持最佳的分离能力,可见吸附剂在运行过程中具有明显的吸水性。然而,对于碳八芳烃中乙苯的吸附分离,要求吸附剂尽可能保持较低水含量。难以解决的问题是,在工业装置实际运行过程中,原料或解吸剂难免会含有微量水分,随着运行时间延长,水分子会不断积累在吸附剂上,导致吸附剂分离能力降低。但上述专利中均没有涉及到如何在保持较高乙苯分离选择性前提下尽可能提高乙苯吸附剂憎水性能的方法,进而避免其在使用过程中因吸水而分离性能下降。从这一点上看,制备具有一定憎水性的乙苯吸附剂,使其在使用过程中不易因水的积累而丧失分离性能是具有明显研究意义的。
发明内容
为了能够从混合碳八芳烃中分离出高收率、高纯度的乙苯产品,实现乙苯组分的高值化利用,本发明提供一种分离碳八芳烃中乙苯的吸附剂,该吸附剂以X沸石为母体,加入适量高岭土作为粘结剂并滚球成型得到X沸石小球,然后通过碱金属离子交换和表面硅酯改 性的组合处理方式,制得能够从混合碳八芳烃中分离乙苯组分的吸附剂。
本发明提供了一种分离碳八芳烃中乙苯的吸附剂的制备方法,包括如下步骤:
1)将X沸石粉末与高岭土粉末充分混合,其中高岭土占总物料的比例为5~10%;将得到的混合物料放入糖衣机转盘中边滚动边喷入水,促使粉料滚动成球,滚球过程中加入水的总量与混合物料质量比例为30~50wt%;筛取粒径为20~50目的小球,在100~140℃条件下干燥10小时以上,得到X沸石小球;
2)将所述的X沸石小球加入到碱金属盐溶液中进行碱金属离子交换,再经去离子水冲洗后干燥得到碱金属离子交换X沸石小球;
3)再将碱金属离子交换X沸石小球经过表面有机硅酯改性提高其抗水稳定性,干燥后通过在惰性气氛中焙烧得到成品吸附剂;
其中以氧化物计,所述X沸石的硅铝摩尔比为2.0~2.3;所述X沸石晶粒度为0.5~5μm;
所述有机硅酯为正硅酸乙酯、正辛基三氯硅烷、乙烯基三氯硅烷、甲基乙烯基二氯硅烷中的一种或几种。
本发明上述分离碳八芳烃中乙苯的吸附剂的制备方法技术方案中,所述的表面有机硅酯改性优选包括:将有机硅酯溶于环己烷溶液中配制得到表面硅改性有机溶液,其中环己烷与有机硅酯的质量比为1~10:1;将所述的碱金属离子交换X沸石小球置于所述的表面硅改性有机溶液中,在15~50℃下浸渍12~24小时。
本发明上述分离碳八芳烃中乙苯的吸附剂制备方法技术方案中,优选包括以下步骤:
a)将X沸石粉末与高岭土粉末充分混合,其中高岭土占总物料的比例为5~10%;将得到的混合物料放入糖衣机转盘中边滚动边喷入水,促使粉料滚动成球,滚球过程中加入水的总量与混合物料质量比例为30~50wt%;筛取粒径为20~50目的小球,在100~140℃条件下干燥10小时以上,得到X沸石小球;
b)将质量浓度为5~15%的碱金属盐溶液,作为碱金属离子交换溶液;
c)将所述X沸石小球放入交换釜中,加入(b)中配制的碱金属离子交换溶液,于70~95℃条件下进行离子交换,交换时间1~10h,交换完毕后,用去离子水冲洗交换后的X沸石小球,然后,将冲洗交换后的X沸石小球在180~250℃条件下干燥10小时以上,得到碱金属离子交换X沸石小球;
d)将一定量有机硅酯溶于环己烷溶液中配制得到表面硅改性有机溶液,其中环己烷与有机硅酯的质量比为1~10:1;
e)将步骤(c)得到的碱金属离子交换X沸石小球置于(d)表面硅改性有机溶液中, 在15~50℃下浸渍12~24小时,浸渍完毕后在90~110℃条件下干燥10小时以上,干燥完毕后,在惰性气体气氛下,400~600℃焙烧4~10h,得到分离碳八芳烃中乙苯的吸附剂。
本发明上述分离碳八芳烃中乙苯的吸附剂制备方法技术方案中,优选所述碱金属盐包括氯化铯、硝酸铯、氯化铷、硝酸铷、氯化钾、硝酸钾中的一种或几种。
优选离子交换温度为85~95℃,更进一步地,将温度控制在90~95℃。
优选冲洗交换后的X沸石小球的干燥温度为220~230℃。
优选所述惰性气体气氛包括氮气、氦气、氩气或上述气体的混合气。
本发明还提供了一种上述制备方法制得的分离碳八芳烃中乙苯的吸附剂。
进一步,本发明还提供了一种由本发明制备得到的乙苯吸附剂在模拟移动床吸附分离工艺分离碳八芳烃中乙苯中的应用,以混合碳八芳烃为原料,分离得到纯度达99.7wt%的乙苯产物,其中乙苯收率高于95wt%。在吸附分离过程中,原料进入点、解吸剂进入点、抽出液采出点、抽余液采出点将整个吸附塔分为四个区域:解吸剂和抽出液之间的区域为解吸区;抽出液和吸附进料之间的区域为精制区;吸附进料和抽余液之间的区域为吸附区;抽余液和解吸剂之间的区域为隔离区。整个吸附塔分为24个床层,吸附区、精制区、解吸区、隔离区的床层数分别为8、9、5、2,吸附分离温度为60~80℃,压力为0.6~1.0MPa。
本发明的有益效果为,采用合成容易、成本较低的X沸石为母体,以简单的成球方式,结合碱金属离子交换、表面硅酯改性等处理方法,即可制备得到吸附分离混合碳八芳烃中乙苯的高效吸附剂。采用本发明提供的吸附剂,配套模拟移动床吸附分离工艺,可形成完整的乙苯吸附分离工艺技术。乙苯吸附分离装置也可嫁接至芳烃联合装置中的PX吸附分离单元之前,既可得到高纯度乙苯产品,又可降低后续PX和异构化单元的操作苛刻度,充分提高芳烃联合装置的经济效益。
具体实施方式
下面通过实施例对本发明做进一步说明,但是本发明不受这些实施例的限制。
实施例1:
(1)将5kg X沸石与0.48kg高岭土充分混合,形成混合粉料。将粉料放入糖衣机转盘中边滚动边喷入适量的水,促使粉料滚动成球。整个滚球过程中加入水的总量约为粉料总质量的30wt%。筛取粒径为20~50目的小球,在140℃条件下干燥10小时。
(2)将3.4kg氯化铯溶于40L去离子水中,配制用于对X沸石小球进行离子交换的溶液。
(3)将4kg(1)中所述干燥后的成型小球放入交换釜中,加入(2)中配制的CsCl溶液中,于95℃条件下进行离子交换,交换时间4h。交换完毕后,用大量去离子水冲洗交 换后的小球。然后,将冲洗后的小球在200℃条件下干燥10小时。
(4)将1.49kg正硅酸乙酯溶于15kg环己烷溶液中,配制用于对(3)中离子交换后的小球做进一步表面硅改性的溶液。
(5)将(3)中经Cs离子交换且干燥完毕的小球置于(4)中配制的正硅酸乙酯溶液中,25℃下浸渍12小时,浸渍完毕后在110℃条件下干燥12小时。干燥完毕后,在马弗炉中550℃,氮气气氛条件下,焙烧4h。
(6)乙苯吸附剂评价:以混合碳八芳烃为吸附原料,其中乙苯质量分数为17.1%(具体组成见表1)。将吸附剂装入小型模拟移动床中,采用逆流模拟移动床吸附分离工艺,吸附床层数为24,吸附分离温度为80℃,解吸剂为甲苯。从模拟移动床采出两股物料,一股物料为富乙苯组分(抽出液),另一股物料为贫乙苯组分(抽余液),分析两股物料中乙苯含量。评价结果见表2实验Ⅰ所示。
(7)含水条件下乙苯吸附剂评价:混合碳八芳烃原料中加入1000μg/g水,其他条件与步骤(6)一致,评价结果见表2实验Ⅱ所示。
实施例2:
步骤(1)中滚球过程中加入水的总量约为粉料总质量的40wt%,其他条件与实施例1一致;
步骤(2)中采用的碱金属盐为氯化铷,加入量为2.42kg,其他条件与实施例1一致;
步骤(3)与实施例1一致;
步骤(4)有机硅酯为乙烯基三氯硅烷,用量为3.86kg,其他条件与实施例1一致;
步骤(5)的焙烧气氛为氦气气氛,其他条件与实施例1一致;
步骤(6)与实施例1一致;
步骤(7)与实施例1一致。
实施例3:
步骤(1)中滚球过程中加入水的总量约为粉料总质量的50wt%,其他条件与实施例1一致;
步骤(2)中采用的碱金属盐为氯化钾,加入量为1.5kg,其他条件与实施例1一致;
步骤(3)与实施例1一致;
步骤(4)中采用的有机硅酯为甲基乙烯基二氯硅烷,用量为5.04kg,其他条件与实施例1一致;
步骤(5)的焙烧气氛为氩气气氛,其他条件与实施例1一致;
步骤(6)与实施例1一致;
步骤(7)与实施例1一致。
实施例4:
步骤(1)与实施例1一致;
步骤(2)与实施例1一致;
步骤(3)离子交换后小球的干燥温度改为230℃,其他条件与实施例1一致;
步骤(4)与实施例1一致;
步骤(5)与实施例1一致;
步骤(6)与实施例1一致;
步骤(7)与实施例1一致。
实施例5:
步骤(1)与实施例1一致;
步骤(2)与实施例1一致;
步骤(3)与实施例1一致;
步骤(4)中采用的有机硅酯为正辛基三氯硅烷,用量为1.77kg,其他条件与实施例1一致;
步骤(5)与实施例1一致;
步骤(6)与实施例1一致;
步骤(7)与实施例1一致。
实施例6:
重复实施例1,将步骤(5)中的焙烧气氛改为氦气气氛,其他操作步骤不变。
对比实施例1:
(1)将5kg NaX型沸石与0.48kg高岭土充分混合,形成混合粉料。将粉料放入糖衣机转盘中边滚动边喷入适量的水,促使粉料滚动成球。整个滚球过程中加入水的总量约为粉料总质量的30%。筛取粒径为20~50目的小球,在140℃条件下干燥10小时。
(2)将3.4kg氯化铯溶于40L去离子水中,配制用于对X沸石小球进行离子交换的溶液。
(3)将4kg(1)中所述干燥后的成型小球放入交换釜中,加入(2)中配制的CsCl溶液中,于95℃条件下进行离子交换,交换时间4h。交换完毕后,用大量去离子水冲洗交换后的小球。然后,将冲洗后的小球在200℃条件下干燥10小时。干燥完毕后,在马弗炉中550℃,氮气气氛条件下,焙烧4h。
对比实施例2:
重复对比实施例1,但将步骤(2)中使用的氯化铯改为氯化铷,加入量为2.42kg,其他操作步骤不变。
表1乙苯吸附分离混合碳八芳烃原料组成
表2实施例1和对比实施例1所述方法制得吸附剂得到的乙苯抽出液组成

Claims (9)

  1. 一种分离碳八芳烃中乙苯的吸附剂的制备方法,其特征在于包括以下步骤:
    1)将X沸石粉末与高岭土粉末充分混合,其中高岭土占总物料的比例为5~10%;将得到的混合物料放入糖衣机转盘中边滚动边喷入水,促使粉料滚动成球,滚球过程中加入水的总量与混合物料质量比例为30~50wt%;筛取粒径为20~50目的小球,在100~140℃条件下干燥10小时以上,得到X沸石小球;
    2)将所述的X沸石小球加入到碱金属盐溶液中进行碱金属离子交换,再经去离子水冲洗后干燥得到碱金属离子交换X沸石小球;
    3)将所述的碱金属离子交换X沸石小球经过表面有机硅酯改性提高其抗水稳定性,干燥后通过在惰性气体气氛中焙烧得到成品吸附剂;
    其中以氧化物计,所述X沸石的硅铝摩尔比为2.0~2.3;所述X沸石晶粒度为0.5~5μm;
    所述的表面有机硅酯改性包括:将有机硅酯溶于环己烷溶液中配制得到表面硅改性有机溶液,其中环己烷与有机硅酯的质量比为1~10:1;将所述的碱金属离子交换X沸石小球置于所述的表面硅改性有机溶液中,在15~50℃下浸渍12~24小时;
    所述有机硅酯为正硅酸乙酯、正辛基三氯硅烷、乙烯基三氯硅烷、甲基乙烯基二氯硅烷中的一种或几种。
  2. 根据权利要求1所述的制备方法,其特征在于,包括以下步骤:
    a)将X沸石粉末与高岭土粉末充分混合,其中高岭土占总物料的比例为5~10%;将得到的混合物料放入糖衣机转盘中边滚动边喷入水,促使粉料滚动成球,滚球过程中加入水的总量与混合物料质量比例为30~50wt%;筛取粒径为20~50目的小球,在100~140℃条件下干燥10小时以上,得到X沸石小球;
    b)将质量浓度为5~15%的碱金属盐溶液,作为碱金属离子交换溶液;
    c)将所述X沸石小球放入交换釜中,加入b)中配制的碱金属离子交换溶液,于70~95℃条件下进行离子交换,交换时间1~10h,交换完毕后,用去离子水冲洗交换后的X沸石小球,然后,将冲洗交换后的X沸石小球在180~250℃条件下干燥10小时以上,得到碱金属离子交换X沸石小球;
    d)将一定量有机硅酯溶于环己烷溶液中配制得到表面硅改性有机溶液,其中环己烷与有机硅酯的质量比为1~10:1;
    e)将步骤c)得到的碱金属离子交换X沸石小球置于d)表面硅改性有机溶液中,在 15~50℃下浸渍12~24小时,浸渍完毕后在90~110℃条件下干燥10小时以上,干燥完毕后,在惰性气体气氛下,400~600℃焙烧4~10h,得到分离碳八芳烃中乙苯的吸附剂。
  3. 根据权利要求1所述的制备方法,其特征在于,所述碱金属盐为氯化铯、硝酸铯、氯化铷、硝酸铷、氯化钾、硝酸钾中的一种或几种。
  4. 根据权利要求2所述的制备方法,其特征在于,碱金属离子交换的温度为85~95℃。
  5. 根据权利要求2所述的制备方法,其特征在于,步骤c)中冲洗交换后的X沸石小球干燥温度为220~230℃。
  6. 根据权利要求1所述的制备方法,其特征在于,所述惰性气体气氛为氮气、氦气、氩气中的一种或几种。
  7. 根据权利要求1所述的制备方法,其特征在于,所述的X沸石的晶粒度为0.8~1μm。
  8. 一种根据权利要求1~7任一项所述的制备方法制得的分离碳八芳烃中乙苯的吸附剂。
  9. 一种权利要求8所述的吸附剂在模拟移动床吸附分离工艺分离碳八芳烃中乙苯中的应用,其特征在于,以混合碳八芳烃为吸附原料,分离得到纯度达99.7wt%的乙苯产物,其中乙苯收率高于95wt%。
PCT/CN2023/074837 2022-02-08 2023-02-07 一种分离碳八芳烃中乙苯的吸附剂及其制备方法 WO2023151561A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210117567.1A CN114160096B (zh) 2022-02-08 2022-02-08 一种分离碳八芳烃中乙苯的吸附剂及其制备方法
CN202210117567.1 2022-02-08

Publications (1)

Publication Number Publication Date
WO2023151561A1 true WO2023151561A1 (zh) 2023-08-17

Family

ID=80489550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/074837 WO2023151561A1 (zh) 2022-02-08 2023-02-07 一种分离碳八芳烃中乙苯的吸附剂及其制备方法

Country Status (2)

Country Link
CN (1) CN114160096B (zh)
WO (1) WO2023151561A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3104376C (en) * 2018-07-02 2022-10-18 Praxair Technology, Inc. Large crystal tunable adsorbents

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090326308A1 (en) * 2008-06-30 2009-12-31 Uop Llc Binderless adsorbents comprising nano-size zeolite x and their use in the adsorptive separation of para-xylene
KR20130110683A (ko) * 2012-03-30 2013-10-10 연세대학교 산학협력단 이중 제올라이트 투과 분리막과 흡착제를 통한 혼합 자일렌의 에틸벤젠 고순도화 복합공정
CN104971695A (zh) * 2014-04-01 2015-10-14 中国石油化工股份有限公司 一种气相吸附分离c8芳烃异构体的吸附剂及制备与应用
CN106552583A (zh) * 2015-09-29 2017-04-05 中国石油化工股份有限公司 一种乙苯吸附剂及其制备方法
CN106552582A (zh) * 2015-09-29 2017-04-05 中国石油化工股份有限公司 从c8芳烃中分离乙苯的吸附剂及制备方法
CN112573985A (zh) * 2019-09-29 2021-03-30 中国石油化工股份有限公司 由c8芳烃生产对二甲苯和乙苯的方法
CN113087585A (zh) * 2020-01-08 2021-07-09 中国石化工程建设有限公司 由混合c8芳烃生产对二甲苯和乙苯的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100577618C (zh) * 2006-03-31 2010-01-06 中国石油化工股份有限公司 从c8芳烃中吸附-结晶分离对二甲苯和乙苯的方法
CN102895800B (zh) * 2011-07-28 2016-05-25 中国石油化工股份有限公司 模拟移动床吸附分离方法和设备
CN104477937A (zh) * 2014-12-05 2015-04-01 上海绿强新材料有限公司 介孔x型分子筛、基于该分子筛的吸附剂及其制备与应用
CN108525650B (zh) * 2017-03-01 2020-11-13 中国石油化工股份有限公司 一种X/Silicalite-1核/壳分子筛及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090326308A1 (en) * 2008-06-30 2009-12-31 Uop Llc Binderless adsorbents comprising nano-size zeolite x and their use in the adsorptive separation of para-xylene
KR20130110683A (ko) * 2012-03-30 2013-10-10 연세대학교 산학협력단 이중 제올라이트 투과 분리막과 흡착제를 통한 혼합 자일렌의 에틸벤젠 고순도화 복합공정
CN104971695A (zh) * 2014-04-01 2015-10-14 中国石油化工股份有限公司 一种气相吸附分离c8芳烃异构体的吸附剂及制备与应用
CN106552583A (zh) * 2015-09-29 2017-04-05 中国石油化工股份有限公司 一种乙苯吸附剂及其制备方法
CN106552582A (zh) * 2015-09-29 2017-04-05 中国石油化工股份有限公司 从c8芳烃中分离乙苯的吸附剂及制备方法
CN112573985A (zh) * 2019-09-29 2021-03-30 中国石油化工股份有限公司 由c8芳烃生产对二甲苯和乙苯的方法
CN113087585A (zh) * 2020-01-08 2021-07-09 中国石化工程建设有限公司 由混合c8芳烃生产对二甲苯和乙苯的方法

Also Published As

Publication number Publication date
CN114160096A (zh) 2022-03-11
CN114160096B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
KR101703359B1 (ko) 무바인더 흡착제 및 파라-크실렌의 흡착 분리에서의 이의 용도
CN104492383B (zh) 一种金属有机框架吸附剂及其制备方法和应用
CN101607864B (zh) 一种甲醇/二甲醚转化高产率制备对二甲苯的方法
CN103157514B (zh) 甲醇和/或二甲醚与c4液化气相互转化制备对二甲苯的催化剂及其制备方法和应用
WO2009097747A1 (zh) 聚结型沸石吸附剂及其制备方法
CN104418698B (zh) 一种从c8芳烃组分中吸附分离生产对二甲苯和乙苯的方法
CN101935544B (zh) 一种催化裂化汽油的加工方法
CN104148010B (zh) 无粘结剂高硅mfi沸石吸附剂及其制备方法
CN103373891A (zh) 从c8芳烃中吸附分离生产对二甲苯和乙苯的方法
CN101530813A (zh) 用于碳四液化气芳构化反应的分子筛催化剂的制备方法
WO2023151561A1 (zh) 一种分离碳八芳烃中乙苯的吸附剂及其制备方法
JPS62171751A (ja) モルデン沸石を含有する触媒、その調製方法及びノルマルパラフインリツチな留分の異性化へのその適用
CN102452885A (zh) 一种c5、c6异构化产物的吸附分离方法
CN112573985B (zh) 由c8芳烃生产对二甲苯和乙苯的方法
CN104710267B (zh) 一种甲醇或/和二甲醚制对二甲苯和丙烯的方法
JP2022539350A (ja) 複合層凝集型吸着剤およびその製造方法
TW202118749A (zh) 一種由含乙苯的c芳烴生產對二甲苯和乙苯的方法
CN106552582A (zh) 从c8芳烃中分离乙苯的吸附剂及制备方法
CN104418687B (zh) 从c8芳烃组分中吸附分离对二甲苯和乙苯的方法
CN106433742A (zh) 一种从含正构烷烃的馏分油中吸附分离正构烷烃的方法
CN106943994A (zh) 一种正构烷烃吸附分离吸附剂及其制备方法
CN104399518B (zh) 一种催化裂化轻汽油芳构化催化剂制备方法
CN104437596B (zh) 甲醇制芳烃催化剂及其制备方法
CN106833738B (zh) 一种提高c5/c6烷烃辛烷值的方法
CN108543515B (zh) 用于超深度脱除汽油中噻吩类硫化物的rey分子筛吸附剂的制备方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752341

Country of ref document: EP

Kind code of ref document: A1