WO2023149312A1 - 電子材料用銅合金及び電子部品 - Google Patents

電子材料用銅合金及び電子部品 Download PDF

Info

Publication number
WO2023149312A1
WO2023149312A1 PCT/JP2023/002300 JP2023002300W WO2023149312A1 WO 2023149312 A1 WO2023149312 A1 WO 2023149312A1 JP 2023002300 W JP2023002300 W JP 2023002300W WO 2023149312 A1 WO2023149312 A1 WO 2023149312A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper alloy
mass
less
rolling
grain size
Prior art date
Application number
PCT/JP2023/002300
Other languages
English (en)
French (fr)
Inventor
祐太 中村
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Priority to KR1020247014987A priority Critical patent/KR20240073113A/ko
Priority to CN202380014095.XA priority patent/CN118176312A/zh
Publication of WO2023149312A1 publication Critical patent/WO2023149312A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Definitions

  • the present invention relates to copper alloys for electronic materials and electronic parts.
  • Copper alloys for electronic materials used in various electronic components such as connectors, switches, relays, pins, terminals, and lead frames are required to have both high strength and high conductivity as basic characteristics.
  • substrates, connectors, etc. mounted on them are also becoming lighter, thinner and shorter, and the demand level for the properties of copper alloys is becoming higher and higher.
  • the copper alloy is desired to have a 0.2% yield strength in the direction parallel to the rolling direction of 700 MPa or more and an electrical conductivity of 50% IACS or more.
  • the copper alloy is required to have high bending workability so that the base material can be processed into various connector shapes.
  • a Cu-Ni-Si alloy generally called a Corson alloy, is known as a representative copper alloy that combines high strength, electrical conductivity, and bending workability.
  • This copper alloy is a precipitation hardening copper alloy, and is intended to improve strength and electrical conductivity by precipitating fine Ni—Si based intermetallic compound particles in a copper matrix.
  • Cu--Co--Ni--Si system alloys and Cu--Co--Si system alloys in which part or all of Ni is replaced with Co have also been proposed.
  • Patent Document 1 Patent No. 5391169 describes a technique for achieving both strength, conductivity and bending workability by controlling the crystal grain size and the size of precipitates. Specifically, 0.2 to 2 mass% of Co, 0.05 to 0.5 mass% of Si, and one or more selected from the group consisting of Fe, Ni, Cr and P at 0.05%. 01 to 0.4 mass%, the balance is Cu and inevitable impurities, the crystal grain size is 3 to 35 ⁇ m, and the size of the precipitate containing both Co and Si is 5 to 50 nm.
  • a copper alloy material for electronic components is disclosed.
  • Patent Document 2 (Patent No. 6228725) describes a technique for achieving both strength and bending workability by controlling the ratio of crystal orientations including Cube orientation. Specifically, it contains 0.5 to 3.0% by mass of Co and 0.1 to 1.0% by mass of Si, the balance being copper and unavoidable impurities, and EBSD (Electron Back-Scatter Diffraction: Electron backscatter diffraction) measurement was performed and the crystal orientation was analyzed. Disclosed is a Cu-Co-Si alloy having an area ratio of 20% or less in the direction ⁇ 112 ⁇ 111> and a work hardening index of 0.2 or less, and having excellent strength and bending workability. .
  • the present invention has been made in view of the above problems, and in one embodiment, it has a 0.2% proof stress (YS) and electrical conductivity (EC) suitable for electronic material applications, and has improved bending workability.
  • An object of the present invention is to provide a highly reliable copper alloy for electronic materials and an electronic component comprising the copper alloy for electronic materials.
  • the present inventors have found that the average Taylor factor, which is a parameter that is calculated from all crystal orientations present in the texture and represents the ease of plastic deformation of the entire material, is controlled to 3.5 or less, and By controlling the crystal grain size to 10 ⁇ m or less, bending workability is improved, and by setting the 0.2% proof stress to 700 MPa or more and the conductivity to 50% IACS or more, strength, conductivity, and bending workability are improved. It was found that a copper alloy for electronic materials excellent in both was obtained. The present invention has been completed based on such findings, and is exemplified below.
  • Ni is 1.0% by mass or less, 0.5 to 2.5% by mass of Co is contained, Si is contained so that the mass ratio (Ni + Co)/Si is 3 to 5, and the balance is is composed of copper and unavoidable impurities, and has an average Taylor factor of 3.5 or less under plane strain in which sheet thickness decreases due to elongation in the direction perpendicular to rolling, a grain size of 10 ⁇ m or less, and a grain size of 0.0 ⁇ m or less in the rolling direction.
  • Copper alloy for material [3] An electronic component comprising the copper alloy for electronic materials according to [1] or [2].
  • a highly reliable copper alloy for electronic materials that has a 0.2% proof stress and electrical conductivity suitable for electronic material applications and has improved bending workability
  • An electronic component comprising a copper alloy can be provided.
  • the copper alloy for electronic materials of the present embodiment (hereinafter also simply referred to as copper alloy) has an amount of Ni of 1.0% by mass or less, contains 0.5 to 2.5% by mass of Co, and contains Si. (Ni + Co) / Si is contained so that the mass ratio is 3 to 5, the balance is copper and unavoidable impurities, and the average Taylor factor under plane strain in which the plate thickness decreases by stretching in the direction perpendicular to the rolling direction is 3 0.5 or less, the grain size is 10 ⁇ m or less, the 0.2% proof stress in the rolling direction is 700 MPa or more, and the electrical conductivity in the rolling direction is 50% IACS or more.
  • the term "perpendicular to rolling direction” refers to a direction perpendicular to the direction of rotation of the roll surface during rolling.
  • Ni and Si are precipitated in the matrix as Co 2 Si and Ni 2 Si by subjecting them to appropriate heat treatment, thereby increasing the strength without lowering the electrical conductivity.
  • the Co concentration is less than 0.5% by mass, precipitation hardening is insufficient, and the desired strength cannot be obtained even if the other component is added.
  • the Co concentration exceeds 2.5% by mass or the Ni concentration exceeds 1.0% by mass, sufficient strength is obtained, but electrical conductivity, bending workability, and hot workability decrease.
  • Concentrations of Ni and Co are preferably 0.7 to 2.3 mass % for Co and 0.2 to 0.8 mass % for Ni.
  • the upper limit of Co may be 2.2% by mass or less, 2.1% by mass or less, 2.0% by mass or less, 1.9% by mass or less, or 1.8% by mass or less. 0.7 mass % or less may be sufficient. Note that the amount of Ni may be 0% by mass.
  • (Amount of Si added) Si is adjusted so that (Ni+Co)/Si is 3 to 5 in terms of mass ratio. With the above ratio, both strength and electrical conductivity after precipitation hardening can be improved. If the above ratio exceeds 5, precipitation of Co 2 Si and Ni 2 Si in the aging treatment becomes insufficient, resulting in a decrease in strength. If the ratio is less than 3, Si that is not precipitated as Co 2 Si or Ni 2 Si will form a solid solution in the matrix, resulting in a decrease in electrical conductivity.
  • the copper alloy is Ag, Cr, Mn, Sn, P, B, Zr, Ti , Mg, Al, Fe and Zn in a total amount of 1.0% by mass or less.
  • the total amount of Ag, Cr, Mn, Sn, P, B, Zr, Ti, Mg, Al, Fe and Zn added is more preferably 0.7% by mass or less, more preferably 0.5% by mass or less. .
  • the total content of Ag, Cr, Mn, Sn, P, B, Zr, Ti, Mg, Al, Fe and Zn is less than 0.01% by mass, the effect tends to be small.
  • the total amount of Sn, P, B, Zr, Ti, Mg, Al, Fe and Zn added is 0.01% by mass or more.
  • 0.05% by mass or more is more preferable, and 0.1% by mass or more is even more preferable.
  • the balance which is components other than the above, consists of Cu and unavoidable impurities.
  • the unavoidable impurity means an impurity element that is unavoidably mixed into the material during the manufacturing process.
  • the concentration of the unavoidable impurity can be, for example, 0.10% by mass or less, preferably 0.05% by mass or less.
  • the present inventor regards bending in the Badway direction (bending direction having a central axis of bending in the direction parallel to the rolling direction) as plane strain deformation with the direction perpendicular to the rolling direction as the main strain direction, and the value of the calculated Taylor factor is controlled within a predetermined range, a material having suitable bending workability can be obtained.
  • the method for measuring the average Taylor factor is shown below.
  • EBSD Electro Back Scatter Diffraction
  • the normal direction (ND direction) of the rolled surface of the sample is tilted 70° with respect to the incident electron beam, the acceleration voltage is 15.0 kV, the irradiation current amount is 1.5 ⁇ 10 -8 A, the working distance is 15 mm, and 500 ⁇ m ⁇ A region of 500 ⁇ m is measured in steps of 1 ⁇ m.
  • JSM-IT500HR manufactured by JEOL Ltd. is used as a measuring device.
  • OIM Analysis 8 manufactured by TSL Solutions Co., Ltd. is used, a strain tensor representing a deformation state in which the plate thickness is reduced by stretching in the direction perpendicular to the rolling is set, and the average value of the Taylor factor within the measurement field is calculated. .
  • the average Taylor factor under plane strain in which the plate thickness is reduced by stretching in the direction perpendicular to rolling, is preferably 3.45 or less, more preferably 3.4 or less. , is even more preferably 3.35 or less, even more preferably 3.3 or less, and even more preferably 3.25 or less.
  • crystal grain size By reducing the crystal grain size, a material with suitable bending workability can be obtained.
  • the crystal grain size is preferably 9.5 ⁇ m or less, more preferably 9.0 ⁇ m or less, even more preferably 8.5 ⁇ m or less, and 8.0 ⁇ m It is even more preferably 7.5 ⁇ m or less, and even more preferably 7.5 ⁇ m or less.
  • the average grain size was calculated in the intercept lengths mode of the analysis program using the data obtained from the EBSD measurement of the rolled surface described above. Specifically, the average intercept length in each of the rolling parallel direction and the rolling vertical direction was calculated, and the average value of both was taken as the average crystal grain size. At this time, grain boundaries with an orientation difference of 15° or more were regarded as grain boundaries, and grain boundaries corresponding to ⁇ 3 were excluded from the grain boundaries.
  • the 0.2% proof stress in the direction parallel to rolling is 700 MPa or more, more preferably 710 MPa or more, still more preferably 720 MPa or more, still more preferably 730 MPa or more, and further It is more preferably 740 MPa or higher, and still more preferably 750 MPa or higher.
  • the upper limit of the 0.2% yield strength is not particularly restricted, it is typically 850 MPa or less to achieve a conductivity of 50% IACS or higher.
  • Conductivity in the rolling direction should be 50% IACS (International Annealed Copper Standard) or more. Thereby, it can be effectively used as an electronic material.
  • the electrical conductivity can be measured by a four-probe method in accordance with JIS H 0505 (1975), taking a test piece so that the longitudinal direction of the test piece is parallel to the rolling direction.
  • the electrical conductivity in the rolling direction is preferably 51%IACS or higher, more preferably 52%IACS or higher, even more preferably 53%IACS or higher, and even more preferably 54%IACS or higher. Preferably, 55% IACS or higher is even more preferred.
  • the Cu-Co-Ni-Si-based alloy as described above undergoes the ingot manufacturing process, the homogenization annealing process, the hot rolling process, the first intermediate cold rolling process, the intermediate annealing process, and the second intermediate cold rolling process. , a solution heat treatment step, an aging treatment step, and a final cold rolling step, in order. In addition, after hot rolling, it is possible to perform chamfering as needed.
  • ⁇ Ingot manufacturing> Melting and casting is generally carried out in an atmospheric melting furnace, but it can also be carried out in a vacuum or in an inert gas atmosphere. After melting the electrolytic copper, raw materials such as Co, Ni, and Si are added according to the composition of each sample, and the mixture is stirred and held for a certain period of time to obtain a molten metal having a desired composition. Then, after the molten metal is adjusted to 1250° C. or higher, it is cast into an ingot. Other than Co, Ni, Si, at least one selected from Ag, Cr, Mn, Sn, P, B, Zr, Ti, Mg, Al, Fe and Zn so that the total is 1.0% by mass or less can also be added to
  • Coarse crystallized substances may be formed during the solidification process during casting, and coarse precipitates may be formed during the cooling process.
  • these second phase particles are redissolved in the mother phase.
  • the homogenization annealing temperature is preferably 950 to 1025° C.
  • the homogenization annealing time is preferably 1 to 24 hours. In the cooling process after the completion of hot rolling, it is preferable to increase the cooling rate as much as possible to suppress precipitation of second phase particles.
  • a first intermediate cold rolling is performed on the copper alloy material after the hot rolling step.
  • the workability of the first intermediate cold rolling can be 30 to 98%.
  • the workability is an amount calculated by (h 1 ⁇ h 2 )/h 1 ⁇ 100%, where h 1 and h 2 are thicknesses of the material before and after rolling.
  • the intermediate annealing precipitates a certain amount of second phase particles in the alloy, and the second intermediate cold rolling imparts strain that serves as a driving force for subsequent recrystallization.
  • the recrystallized texture formed by the subsequent solution treatment changes.
  • the intermediate annealing temperature in the range of 500 to 1000 ° C. and the workability of the second intermediate cold rolling in the range of 50 to 99%, the average Taylor factor and grain size can be controlled, and bending A recrystallized texture that is advantageous for processing can be formed.
  • solution treatment is performed.
  • the purpose of the solution treatment is to form a recrystallized texture and solid solution of added elements. If the solution heat treatment temperature is too low, the desired recrystallized texture cannot be obtained, and the solid solution amount of the additive element is reduced, so that a sufficient amount of age hardening cannot be obtained and the strength of the product is lowered. On the other hand, if the solution heat treatment temperature is too high, the crystal grains become coarse and the strength of the product is lowered. Therefore, it is preferable that the solution treatment temperature is 850 to 1000° C. and the holding time is 5 to 300 seconds.
  • aging treatment is performed.
  • precipitates of appropriate size are uniformly distributed to obtain the desired strength and electrical conductivity.
  • the aging treatment temperature if the maximum temperature is lower than 400°C, the electrical conductivity will be low, and if the maximum temperature is higher than 550°C, the strength will be low.
  • the total time of the aging treatment is preferably 1 to 24 hours.
  • the aging treatment is preferably performed in an inert atmosphere such as Ar, N 2 , H 2 or the like in order to suppress the generation of an oxide film.
  • the degree of rolling can be 10 to 50%, preferably 20 to 40%.
  • the Cu-Co-Ni-Si alloy of the present invention can be processed into various copper products such as plates, strips, pipes, rods and wires. It can be used for electronic parts such as lead frames, connectors, pins, terminals, relays, switches, foil materials for secondary batteries, and the like.
  • a copper alloy having each component composition (unit: mass %) shown in Table 1 was melted at 1300°C using a high-frequency melting furnace and cast into an ingot with a thickness of 30 mm. Then, the ingot was homogenized and annealed at 980° C. for 3 hours, hot rolled to a thickness of 10 mm, and rapidly water-cooled. After performing the first intermediate cold rolling, intermediate annealing and second intermediate cold rolling were performed. Table 2 shows the conditions of the intermediate annealing and the second intermediate cold rolling of Invention Example 1 and Comparative Example 1.
  • the intermediate annealing temperature was 500 to 1000 ° C.
  • the second intermediate cold rolling reduction was 50 to 50 so that the average Taylor factor and the grain size were predetermined values. It was adjusted within the range of 99% based on the following findings.
  • Second intermediate cold rolling When the degree of workability of the second intermediate cold rolling is low, the working strain is not sufficiently applied, so the frequency of generation of recrystallization nuclei decreases and the crystal grain size increases. When the degree of second intermediate cold rolling is high, growth of recrystallized texture that is advantageous for bending in the BW direction is inhibited, resulting in a high average Taylor factor.
  • solution treatment was performed under the conditions of 950°C x 160 seconds, and aging treatment was performed for a total of 24 hours at a maximum temperature of 520°C. Then, after the aging treatment, final cold rolling was performed with a rolling reduction rate of 25% to prepare a sample with a thickness of 0.2 mm.
  • the surface of the rolled surface was electrolytically polished to 10 ⁇ m in a solution of 67% phosphoric acid + 10% sulfuric acid, and then EBSD (Electron Back Scatter Diffraction) measurement was performed. rice field.
  • the normal direction (ND direction) of the rolled surface of the sample is tilted 70° with respect to the incident electron beam, the acceleration voltage is 15.0 kV, the irradiation current amount is 1.5 ⁇ 10 -8 A, the working distance is 15 mm, and 500 ⁇ m ⁇ A region of 500 ⁇ m was measured in steps of 1 ⁇ m.
  • JSM-IT500HR manufactured by JEOL Ltd. was used as a measuring device.
  • OIM Analysis 8 manufactured by TSL Solutions was used, a strain tensor representing a deformation state in which the plate thickness was reduced by stretching in the direction perpendicular to the rolling direction was set, and the average value of the Taylor factor within the measurement field was calculated. .
  • Crystal grain size (Crystal grain size) Using the data obtained by the EBSD measurement of the rolled surface described above, the average grain size was calculated in the Intercept Lengths mode of the analysis program. Specifically, the average intercept length in each of the rolling parallel direction and the rolling vertical direction was calculated, and the average value of both was taken as the average crystal grain size. At this time, grain boundaries with an orientation difference of 15° or more were regarded as grain boundaries, and grain boundaries corresponding to ⁇ 3 were excluded from the grain boundaries.
  • JIS13B test pieces were prepared so that the tensile direction was parallel to the rolling direction, and each test piece was subjected to a tensile test in the direction parallel to the rolling based on JIS Z 2241 (2011). , 0.2% proof stress (YS: MPa) was measured.
  • the electrical conductivity (EC: %IACS) was measured by the four-probe method in accordance with JIS H 0505 (1975), taking a test piece so that the longitudinal direction of the test piece was parallel to the rolling direction.
  • each invention example was subjected to intermediate annealing and second intermediate cold rolling under predetermined conditions, so that the average under plane strain was elongated in the direction perpendicular to the rolling direction and the thickness decreased.
  • the Taylor factor was 3.5 or less
  • the grain size was 10 ⁇ m or less
  • the 0.2% proof stress in the rolling direction was 700 MPa or more
  • the electrical conductivity in the rolling direction was 50% IACS or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

Niの量が1.0質量%以下であり、0.5~2.5質量%のCoを含有し、Siを質量割合で(Ni+Co)/Siが3~5となるように含有し、残部が銅及び不可避的不純物からなり、圧延直角方向に伸長し板厚が減少する平面ひずみ下での平均Taylor因子が3.5以下であり、結晶粒径が10μm以下であり、圧延方向の0.2%耐力が700MPa以上であり、圧延方向の導電率が50%IACS以上である電子材料用銅合金。

Description

電子材料用銅合金及び電子部品
 本発明は、電子材料用銅合金及び電子部品に関する。
 コネクタ、スイッチ、リレー、ピン、端子、リードフレーム等の各種電子部品に使用される電子材料用銅合金には、基本特性として高強度及び高導電性を両立させることが要求される。近年の電子機器の小型化に伴い、これらに搭載される基板やコネクタ等も軽薄化、短小化が進んでおり、銅合金の特性に対する要求レベルはますます高くなっている。特にコネクタを大型化させないために、銅合金としては、700MPa以上の圧延平行方向の0.2%耐力と50%IACS以上の導電率とを有することが望まれる。また母材を種々のコネクタ形状に加工できるよう、銅合金には高い曲げ加工性も要求される。
 高い強度、導電性、曲げ加工性を兼備する代表的な銅合金として、コルソン合金と一般に称されるCu-Ni-Si系合金が知られている。この銅合金は、析出硬化型の銅合金であり、銅マトリックス中に微細なNi-Si系金属間化合物粒子を析出させることにより強度と導電性の向上を図っている。またより高い導電性を得るために、Niの一部又は全部をCoに置き換えたCu-Co-Ni-Si系合金やCu-Co-Si系合金も提案されている。
 特許文献1(特許第5391169号)には、結晶粒径と析出物のサイズを制御することで強度、導電性および曲げ加工性を両立させる技術が記載されている。具体的には、Coを0.2~2mass%、Siを0.05~0.5mass%を含み、更にFe、Ni、CrおよびPからなる群から選ばれる1種または2種以上を0.01~0.4mass%含み、残部がCuおよび不可避不純物からなり、その結晶粒径が3~35μmで、CoとSiの両方を含む析出物のサイズが5~50nmであることを特徴とする電気電子部品用銅合金材が開示されている。
 特許文献2(特許第6228725号)には、Cube方位をはじめとした結晶方位の割合を制御することで強度と曲げ加工性を両立させる技術が記載されている。具体的には、0.5~3.0質量%のCo及び0.1~1.0質量%のSiを含有し、残部が銅及び不可避的不純物からなり、EBSD(Electron Back-Scatter Diffraction:電子後方散乱回折)測定を行い、結晶方位を解析したときに、Cube方位{001}<100>の面積率が5%以上、Brass方位{110}<112>の面積率が20%以下、Copper方位{112}<111>の面積率が20%以下であり、加工硬化指数が0.2以下である、優れた強度、曲げ加工性を備えたCu-Co-Si系合金が開示されている。
特許第5391169号 特許第6228725号
 ところで、近年コネクタの形状が従来よりもさらに小型化・複雑化しており、銅合金には単純な曲げ加工のみならず、ノッチ曲げ加工や180°密着曲げ加工、たたき曲げ加工などのより厳しい曲げ加工が施される場合もある。上述のような従来の銅合金は、これら多種多様の複雑な加工への要求に対し改善の余地を有していた。
 すなわち、特許文献1に開示されるように結晶粒径の制御のみ、あるいは特許文献2にあるような特定方位をもつ結晶粒の割合の制御のみでは、より高度な曲げ加工性が求められる場合、十分な加工が難しいと思われる。
 本発明は上記問題点に鑑みなされたものであり、一実施態様では、電子材料用途として好適な0.2%耐力(YS)及び導電率(EC)を有し、曲げ加工性を向上させた、信頼性の高い電子材料用銅合金、当該電子材料用銅合金を備えた電子部品を提供することを課題とする。
 本発明者は鋭意検討の結果、集合組織中に存在する全ての結晶方位から算出され、材料全体の塑性変形のしやすさを表すパラメータである平均Taylor因子を3.5以下に制御し、かつ結晶粒径を10μm以下に制御することで、曲げ加工性が向上すること、及び0.2%耐力を700MPa以上、導電率を50%IACS以上とすることで、強度、導電率、曲げ加工性がともに優れた電子材料用銅合金が得られることを見出した。本発明はこのような知見に基づいて完成したものであり、以下に例示される。
[1]
 Niの量が1.0質量%以下であり、0.5~2.5質量%のCoを含有し、Siを質量割合で(Ni+Co)/Siが3~5となるように含有し、残部が銅及び不可避的不純物からなり、圧延直角方向に伸長し板厚が減少する平面ひずみ下での平均Taylor因子が3.5以下であり、結晶粒径が10μm以下であり、圧延方向の0.2%耐力が700MPa以上であり、圧延方向の導電率が50%IACS以上である、電子材料用銅合金。
[2]
 さらにAg、Cr、Mn、Sn、P、B、Zr、Ti、Mg、Al、Fe及びZnから選択される少なくとも1種類以上を総計で1.0質量%以下含有する[1]に記載の電子材料用銅合金。
[3]
 [1]又は[2]に記載の電子材料用銅合金を備えた電子部品。
 本発明の一実施態様によれば、電子材料用途として好適な0.2%耐力及び導電率を有し、曲げ加工性を向上させた、信頼性の高い電子材料用銅合金、当該電子材料用銅合金を備えた電子部品を提供することができる。
 次に、本発明の実施形態について詳細に説明する。本発明は以下の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解されるべきである。
 本実施形態の電子材料用銅合金(以下、単に銅合金とも称す)は、Niの量が1.0質量%以下であり、0.5~2.5質量%のCoを含有し、Siを質量割合で(Ni+Co)/Siが3~5となるように含有し、残部が銅及び不可避的不純物からなり、圧延直角方向に伸長し板厚が減少する平面ひずみ下での平均Taylor因子が3.5以下であり、結晶粒径が10μm以下であり、圧延方向の0.2%耐力が700MPa以上であり、圧延方向の導電率が50%IACS以上である。なお、「圧延直角方向」とは、圧延時ロール表面の回転方向と直交する方向をいう。
(Co、Niの添加量)
 Co、Ni及びSiは、適当な熱処理を施すことによりCo2SiやNi2Siとして母相中に析出し、導電率を低下させずに高強度化を図ることができる。ただし、Co濃度が0.5質量%未満の場合、析出硬化が不十分となり、他方の成分を添加しても所望とする強度が得られない。また、Co濃度が2.5質量%を超える場合、又はNi濃度が1.0質量%を超える場合は十分な強度が得られるものの、導電性や曲げ加工性、熱間加工性が低下する。Ni及びCoの濃度としては、好ましくは、Coが0.7~2.3質量%、Niが0.2~0.8質量%である。Coの上限は2.2質量%以下でもよく、2.1質量%以下でもよく、2.0質量%以下でもよく、1.9質量%以下でもよく、1.8質量%以下でもよく、1.7質量%以下でもよい。なお、Niの量は0質量%であってもよい。
(Siの添加量)
 Siは質量割合で(Ni+Co)/Siが3~5となるように調整する。上記割合とすれば、析出硬化後の強度と導電率を共に向上させることができる。上記割合が5を超えると、時効処理でのCo2SiやNi2Siの析出が不十分になり、強度が低下する。上記割合が3未満であると、Co2SiやNi2Siとして析出しないSiが母相中に固溶し、導電率が低下する。
(Ag、Cr、Mn、Sn、P、B、Zr、Ti、Mg、Al、Fe及びZnの添加量)
 Ag、Cr、Mn、Sn、Zr、Ti、Mg、Al、Fe及びZnは、微量の添加で、導電率を損なわずに強度、応力緩和特性等の製品特性を改善することができる。Pは脱酸効果を有し、Bは鋳造組織の微細化効果を有し、Mnは熱間加工性を向上させる効果を有する。添加の効果は主に母相への固溶により発揮されるが、第二相粒子に含有されることで一層の効果を発揮させることもできる。
 本発明の一部の実施形態において、Ag、Cr、Mn、Sn、P、B、Zr、Ti、Mg、Al、Fe及びZnを濃度総計で1.0質量%を超える添加量で添加してもよいが、導電率及び曲げ特性の低下を防止し、製造性を維持する観点から、本発明の好ましい実施形態として、銅合金は、Ag、Cr、Mn、Sn、P、B、Zr、Ti、Mg、Al、Fe及びZnから選択される少なくとも1種類以上を総計で1.0質量%以下含有する。
 また、Ag、Cr、Mn、Sn、P、B、Zr、Ti、Mg、Al、Fe及びZnの添加量は総計で0.7質量%以下がより好ましく、0.5質量%以下がさらに好ましい。ただし、Ag、Cr、Mn、Sn、P、B、Zr、Ti、Mg、Al、Fe及びZnの合計が0.01質量%未満ではその効果が小さい傾向があるので、Ag、Cr、Mn、Sn、P、B、Zr、Ti、Mg、Al、Fe及びZnの添加量は、総計で0.01質量%以上であることがより好ましい。また、0.05質量%以上がより好ましく、0.1質量%以上がさらにより好ましい。
 なお、本実施形態において、上記以外の成分である残部は、Cu及び不可避的不純物からなる。ここで、不可避的不純物とは、製造工程中に、材料中への混入が避けられない不純物元素のことを意味する。当該不可避的不純物の濃度としては、例えば0.10質量%以下とすることができ、好ましくは0.05質量%以下である。
(平均Taylor因子)
 Taylor因子は多結晶体の複数のすべり系を考慮した塑性変形のしやすさを表す指標であり、応力方向と結晶方位分布によって決まる値である。多結晶体の降伏応力をσy、結晶の臨界分解せん断応力をτCRSSとすると、Taylor因子Mはσy=M・τCRSSと表される。このTaylor因子が小さいほど、すべり変形を生じさせるために必要な降伏応力が小さく、容易に塑性変形させることができる。本発明者は、Badway方向(圧延平行方向に曲げの中心軸を有する曲げ方向)の曲げ加工を、圧延直角方向を主ひずみ方向とする平面ひずみ変形であるとみなし、算出されるTaylor因子の値を所定の範囲に制御することで、好適な曲げ加工性を備えた材料を得ることができることを見出した。本発明において、平均Taylor因子の測定方法を以下に示す。
 圧延面表面をリン酸67%+硫酸10%の溶液中において、表面を10μm電解研磨した試料を用いて、EBSD(Electron Back Scatter Diffraction:電子後方散乱回折)測定を行う。試料の圧延面法線方向(ND方向)を入射電子線に対して70°傾け、加速電圧:15.0kV、照射電流量:1.5×10-8A、ワーキングディスタンス:15mmとして、500μm×500μmの領域を1μmステップで測定を行う。測定装置としては日本電子株式会社製のJSM-IT500HRを用いる。解析プログラムとしてはTSLソリューションズ社製のOIM Analysis 8を用い、圧延直角方向に伸長し板厚が減少するような変形状態を表すひずみテンソルを設定し、測定視野内のTaylor因子の平均値を算出する。
 本発明において、好適な曲げ加工性を得るためには、圧延直角方向に伸長し板厚が減少する平面ひずみ下での平均Taylor因子を3.5以下に制御する必要がある。曲げ加工性をさらに高める観点から、圧延直角方向に伸長し板厚が減少する平面ひずみ下での平均Taylor因子は、3.45以下であることが好ましく、3.4以下であることがより好ましく、3.35以下であることがさらにより好ましく、3.3以下であることがさらにより好ましく、3.25以下であることがさらにより好ましい。
(結晶粒径)
 結晶粒径を小さくすることにより、好適な曲げ加工性を備えた材料を得ることができる。本発明において、好適な曲げ加工性を得るためには、結晶粒径を10μm以下に制御する必要がある。曲げ加工性をさらに高める観点から、結晶粒径は、9.5μm以下であることが好ましく、9.0μm以下であることがより好ましく、8.5μm以下であることがさらにより好ましく、8.0μm以下であることがさらにより好ましく、7.5μm以下であることがさらにより好ましい。
 平均結晶粒径は、前述の圧延面のEBSD測定により得られたデータを用いて、解析プログラムのIntercept Lengths(切片長さ)モードにて算出した。具体的には、圧延平行方向と圧延垂直方向それぞれの平均切片長さを算出し、両者の平均値を平均結晶粒径とした。なお、このとき方位差15°以上の粒界を結晶粒界とみなし、Σ3対応粒界は結晶粒界から除いた。
(0.2%耐力)
 コネクタ等の所定の電子材料で要求される特性を満たすため、圧延平行方向の0.2%耐力は700MPa以上、より好ましくは710MPa以上、さらにより好ましくは720MPa以上、さらにより好ましくは730MPa以上、さらにより好ましくは740MPa以上、さらにより好ましくは750MPa以上とする。0.2%耐力の上限値は、特に規制されないが、50%IACS以上の導電率となるには、典型的には850MPa以下である。
 0.2%耐力は、引張方向が圧延方向と平行になるようにJIS13B号試験片を作製し、JIS Z 2241(2011)に準拠して、引張試験機により圧延方向と平行に引張試験を行うことで測定することができる。
(導電率)
 圧延方向の導電率は50%IACS(International Annealed Copper Standard)以上とする。これにより、電子材料として有効に用いることができる。導電率は、試験片の長手方向が圧延方向と平行になるように試験片を採取し、JIS H 0505(1975)に準拠して、4端子法で測定することができる。圧延方向の導電率は、51%IACS以上であることが好ましく、52%IACS以上であることがより好ましく、53%IACS以上であることがさらにより好ましく、54%IACS以上であることがさらにより好ましく、55%IACS以上であることがさらにより好ましい。
(製造方法)
 本発明に係るCu-Co-Ni-Si系合金の好適な製造方法の例を工程毎に説明する。
 上述したようなCu-Co-Ni-Si系合金は、インゴットを製造する工程、均質化焼鈍工程、熱間圧延工程、第1中間冷間圧延工程、中間焼鈍工程、第2中間冷間圧延工程、溶体化処理工程、時効処理工程、最終冷間圧延工程を順次に行うことにより製造することができる。なお熱間圧延後、必要に応じて面削を行うことが可能である。
<インゴット製造>
 溶解鋳造は一般的には大気溶解炉で行うが、真空中又は不活性ガス雰囲気中で行うことも可能である。電気銅を溶解した後に、Co、Ni、Si等各試料の組成に応じて原料を添加し、撹拌後一定時間保持して、所望の組成の溶湯を得る。そして、この溶湯を1250℃以上に調整した後、インゴットに鋳造する。Co、Ni、Si以外、Ag、Cr、Mn、Sn、P、B、Zr、Ti、Mg、Al、Fe及びZnから選択される少なくとも1種類以上を総計で1.0質量%以下になるように添加することもできる。
<均質化焼鈍・熱間圧延>
 鋳造時の凝固過程では粗大な晶出物が、その冷却過程では粗大な析出物が生成し得る。均質化焼鈍を適切な温度・時間で行った後に熱間圧延を行うことで、これらの第二相粒子を母相に再固溶させる。均質化焼鈍温度が高すぎる場合は材料が溶解する可能性があるため好ましくない。具体的には均質化焼鈍温度は950~1025℃、均質化焼鈍時間は1~24時間が好ましい。熱間圧延終了後の冷却過程では冷却速度をできるだけ速くし、第二相粒子の析出を抑制するのがよい。
<第1中間冷間圧延>
 熱間圧延工程後の銅合金材料に対して第1中間冷間圧延を行う。ここで、第1中間冷間圧延の加工度は30~98%とすることができる。加工度とは、圧延前後の材料の板厚をそれぞれh1、h2とするとき、(h1-h2)/h1×100%で算出される量である。
<中間焼鈍・第2中間冷間圧延>
 中間焼鈍により合金中の第二相粒子が一定量析出し、第2中間冷間圧延により、その後の再結晶の駆動力となるひずみが付与される。第二相粒子の析出状態やひずみ量を変化させることで、その後の溶体化処理で形成される再結晶集合組織が変化する。中間焼鈍温度を500~1000℃の範囲で、第2中間冷間圧延の加工度を50~99%の範囲で適宜調整することで、平均Taylor因子ならびに結晶粒径を制御することができ、曲げ加工に有利な再結晶集合組織を形成させることができる。
<溶体化処理>
 続いて、溶体化処理を行う。溶体化処理の目的は、再結晶集合組織の形成および添加元素の固溶である。溶体化処理温度が低すぎると、所望の再結晶集合組織が得られなくなり、また添加元素の固溶量が少なくなるため十分な時効硬化量が得られなくなり製品強度が低下する。また、溶体化処理温度が高すぎると結晶粒が粗大化し製品の強度が低下する。そのため、溶体化処理温度は850~1000℃とし、保持時間は5~300秒とすることが好ましい。
<時効処理>
 続いて、時効処理を行う。時効処理を行うことで、適切な大きさの析出物が均一に分布し、所望の強度および導電率が得られる。時効処理温度は、最高到達温度が400℃より低いと導電率が低くなり、最高到達温度が550℃より高いと強度が低下するので、最高到達温度は400~550℃とすることが好ましい。また、時効処理の合計時間は1~24時間が好ましい。時効処理は、酸化被膜の発生を抑制するために、Ar、N2、H2等の不活性雰囲気で行うことが好ましい。
<最終冷間圧延>
 時効処理後に引き続いて最終冷間圧延を行うことで、合金中に転位を導入し強度上昇をはかることができる。圧延加工度が高いほど高強度の材料が得られるが、圧延加工度が高すぎる場合には曲げ加工性が損なわれる傾向がある。したがって、強度と曲げ加工性の良好なバランスを得るために、圧延加工度を10~50%とすることができ、好ましくは20~40%とする。
 なお、上記各工程の合間に適宜、表面の酸化スケール除去のための研削、研磨、ショットブラスト酸洗等の工程を行うことができる。
 本発明のCu-Co-Ni-Si系合金は種々の伸銅品、例えば板、条、管、棒及び線に加工することができ、更に、このCu-Co-Ni-Si系合金は、リードフレーム、コネクタ、ピン、端子、リレー、スイッチ、二次電池用箔材等の電子部品等に使用することができる。
 以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。
 表1に示す各成分組成(単位:質量%)の銅合金を、高周波溶解炉を用いて1300℃で溶製し、厚さ30mmのインゴットに鋳造した。次いで、このインゴットに対し980℃で3時間均質化焼鈍を行った後、厚さ10mmまで熱間圧延し速やかに水冷を行った。そして、第1中間冷間圧延を行った後、中間焼鈍、第2中間冷間圧延を行った。表2に発明例1、比較例1の中間焼鈍、第2中間冷間圧延の条件を示す。発明例2~4、比較例2~7については、平均Taylor因子ならびに結晶粒径が所定の値となるように、中間焼鈍温度を500~1000℃、第2中間冷間圧延加工度を50~99%の範囲内で以下の知見に基づき調整した。
中間焼鈍:
 中間焼鈍温度が高い場合は合金中の第二相粒子の数密度が大きくなるため、第二相粒子の結晶粒界に対するピン止め効果が有効に働き結晶粒径は小さくなる。一方で、BW方向(Bad Way、圧延方向に対して曲げ軸が平行する方向)の曲げ加工に有利な再結晶集合組織(例えば、Cube方位{100}<001>やBR方位{236}<385>)の成長が阻害されるため、平均Taylor因子は高くなる。中間焼鈍温度が低い場合は、合金中の第二相粒子の数密度が小さくなるため、第二相粒子の結晶粒界に対するピン止め効果が不十分となり結晶粒径は大きくなる。一方でBW方向の曲げ加工に有利な再結晶集合組織が発達するため、平均Taylor因子は低くなる。
第2中間冷間圧延:
 第2中間冷間圧延加工度が低い場合は、加工ひずみが十分に付与されないため、再結晶核の生成頻度が少なくなり、結晶粒径は大きくなる。第2中間冷間圧延加工度が高い場合は、BW方向の曲げ加工に有利な再結晶集合組織の成長が阻害されるため、平均Taylor因子は高くなる。
 その後、950℃×160秒の条件で溶体化処理を行い、最高到達温度を520℃として計24時間時効処理を行った。次いで、時効処理後に、圧延加工度25%の最終冷間圧延を行い、厚さ0.2mmの試料を作製した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 このようにして得られた各試験片に対し、以下の特性評価を行った。評価結果は表1に示されている。
(平均Taylor因子)
 各発明例及び比較例の銅合金試料について、圧延面表面をリン酸67%+硫酸10%の溶液中において、10μm電解研磨した後、EBSD(Electron Back Scatter Diffraction:電子後方散乱回折)測定を行った。試料の圧延面法線方向(ND方向)を入射電子線に対して70°傾け、加速電圧:15.0kV、照射電流量:1.5×10-8A、ワーキングディスタンス:15mmとして、500μm×500μmの領域を1μmステップで測定を行った。測定装置として、日本電子株式会社製のJSM-IT500HRを用いた。解析プログラムとして、TSLソリューションズ社製のOIM Analysis 8を用い、圧延直角方向に伸長し板厚が減少するような変形状態を表すひずみテンソルを設定し、測定視野内のTaylor因子の平均値を算出した。
(結晶粒径)
 前述の圧延面のEBSD測定により得られたデータを用いて、解析プログラムのIntercept Lengths(切片長さ)モードにて平均結晶粒径を算出した。具体的には、圧延平行方向と圧延垂直方向それぞれの平均切片長さを算出し、両者の平均値を平均結晶粒径とした。なお、このとき方位差15°以上の粒界を結晶粒界とみなし、Σ3対応粒界は結晶粒界から除いた。
(0.2%耐力)
 0.2%耐力は、引張方向が圧延方向と平行になるようにJIS13B号試験片を作製し、各試験片に対し、JIS Z 2241(2011)に基づいて圧延平行方向の引張り試験を行って、0.2%耐力(YS:MPa)を測定した。
(導電率)
 導電率(EC:%IACS)については、試験片の長手方向が圧延方向と平行になるように試験片を採取し、JIS H 0505(1975)に準拠して、4端子法で測定した。
(曲げ加工性)
 JIS H 3130(2018)に従いW曲げ試験をBW方向(Bad Way、圧延方向に対して曲げ軸が平行する方向)について行い、割れの生じない最小曲げ半径(MBR、単位:mm)を求め、板厚(t、単位:mm)との比(MBR/t)を測定した。MBR/tの数値が小さければ、より小さい曲げ半径に耐えられるので好ましい。MBR/tが0とは、曲げ半径が0mmでも割れが生じないことを示す。
 表1に示すように、各発明例はいずれも、所定の条件の中間焼鈍、第2中間冷間圧延を行ったことにより、圧延直角方向に伸長し板厚が減少する平面ひずみ下での平均Taylor因子が3.5以下であり、結晶粒径が10μm以下であり、圧延方向の0.2%耐力が700MPa以上であり、圧延方向の導電率が50%IACS以上であった。
 比較例2~4、7は、平均Taylor因子が3.5を超えてしまい、曲げ加工性が低下した。
 比較例1、5~7は、得られた銅合金の結晶粒径が10μmを超えてしまい、曲げ加工性が低下した。
 このように、本開示によれば、電子材料用途として好適な0.2%耐力、導電率を有し、曲げ加工性を向上させた、信頼性の高い電子材料用銅合金が得られることがわかる。
 本発明によれば、電子材料用途として好適な0.2%耐力及び導電率を有し、曲げ加工性を向上させた、信頼性の高い電子材料用銅合金、及び当該電子材料用銅合金を備えた電子部品を提供することができる。

Claims (3)

  1.  Niの量が1.0質量%以下であり、0.5~2.5質量%のCoを含有し、Siを質量割合で(Ni+Co)/Siが3~5となるように含有し、残部が銅及び不可避的不純物からなり、圧延直角方向に伸長し板厚が減少する平面ひずみ下での平均Taylor因子が3.5以下であり、結晶粒径が10μm以下であり、圧延方向の0.2%耐力が700MPa以上であり、圧延方向の導電率が50%IACS以上である、電子材料用銅合金。
  2.  さらにAg、Cr、Mn、Sn、P、B、Zr、Ti、Mg、Al、Fe及びZnから選択される少なくとも1種類以上を総計で1.0質量%以下含有する、請求項1に記載の電子材料用銅合金。
  3.  請求項1又は2に記載の電子材料用銅合金を備えた電子部品。
PCT/JP2023/002300 2022-02-01 2023-01-25 電子材料用銅合金及び電子部品 WO2023149312A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020247014987A KR20240073113A (ko) 2022-02-01 2023-01-25 전자 재료용 구리 합금 및 전자 부품
CN202380014095.XA CN118176312A (zh) 2022-02-01 2023-01-25 电子材料用铜合金以及电子部件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022014415A JP7311651B1 (ja) 2022-02-01 2022-02-01 電子材料用銅合金及び電子部品
JP2022-014415 2022-02-01

Publications (1)

Publication Number Publication Date
WO2023149312A1 true WO2023149312A1 (ja) 2023-08-10

Family

ID=87201308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002300 WO2023149312A1 (ja) 2022-02-01 2023-01-25 電子材料用銅合金及び電子部品

Country Status (5)

Country Link
JP (1) JP7311651B1 (ja)
KR (1) KR20240073113A (ja)
CN (1) CN118176312A (ja)
TW (1) TWI842346B (ja)
WO (1) WO2023149312A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007666A (ja) * 2007-05-31 2009-01-15 Furukawa Electric Co Ltd:The 電気・電子機器用銅合金
WO2009148101A1 (ja) * 2008-06-03 2009-12-10 古河電気工業株式会社 銅合金板材およびその製造方法
WO2011068121A1 (ja) * 2009-12-02 2011-06-09 古河電気工業株式会社 銅合金板材、これを用いたコネクタ、並びにこれを製造する銅合金板材の製造方法
JP2011208232A (ja) * 2010-03-30 2011-10-20 Jx Nippon Mining & Metals Corp Cu−Co−Si合金材
JP2012046774A (ja) * 2010-08-24 2012-03-08 Jx Nippon Mining & Metals Corp 電子材料用Cu−Co−Si系合金
JP2012211377A (ja) * 2011-03-31 2012-11-01 Jx Nippon Mining & Metals Corp Cu−Co−Si系合金条
JP5391169B2 (ja) 2008-01-31 2014-01-15 古河電気工業株式会社 電気電子部品用銅合金材およびその製造方法
JP6228725B2 (ja) 2011-11-02 2017-11-08 Jx金属株式会社 Cu−Co−Si系合金及びその製造方法
WO2018174081A1 (ja) * 2017-03-22 2018-09-27 Jx金属株式会社 プレス加工後の寸法精度を改善した銅合金条
WO2018174079A1 (ja) * 2017-03-21 2018-09-27 Jx金属株式会社 プレス加工後の寸法精度を改善した銅合金条

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5391169U (ja) 1976-12-27 1978-07-26
JPH0415628Y2 (ja) 1985-08-01 1992-04-08
JP5437519B1 (ja) * 2013-07-31 2014-03-12 Jx日鉱日石金属株式会社 Cu−Co−Si系銅合金条及びその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009007666A (ja) * 2007-05-31 2009-01-15 Furukawa Electric Co Ltd:The 電気・電子機器用銅合金
JP5391169B2 (ja) 2008-01-31 2014-01-15 古河電気工業株式会社 電気電子部品用銅合金材およびその製造方法
WO2009148101A1 (ja) * 2008-06-03 2009-12-10 古河電気工業株式会社 銅合金板材およびその製造方法
WO2011068121A1 (ja) * 2009-12-02 2011-06-09 古河電気工業株式会社 銅合金板材、これを用いたコネクタ、並びにこれを製造する銅合金板材の製造方法
JP2011208232A (ja) * 2010-03-30 2011-10-20 Jx Nippon Mining & Metals Corp Cu−Co−Si合金材
JP2012046774A (ja) * 2010-08-24 2012-03-08 Jx Nippon Mining & Metals Corp 電子材料用Cu−Co−Si系合金
JP2012211377A (ja) * 2011-03-31 2012-11-01 Jx Nippon Mining & Metals Corp Cu−Co−Si系合金条
JP6228725B2 (ja) 2011-11-02 2017-11-08 Jx金属株式会社 Cu−Co−Si系合金及びその製造方法
WO2018174079A1 (ja) * 2017-03-21 2018-09-27 Jx金属株式会社 プレス加工後の寸法精度を改善した銅合金条
WO2018174081A1 (ja) * 2017-03-22 2018-09-27 Jx金属株式会社 プレス加工後の寸法精度を改善した銅合金条

Also Published As

Publication number Publication date
CN118176312A (zh) 2024-06-11
JP7311651B1 (ja) 2023-07-19
TW202332785A (zh) 2023-08-16
JP2023112550A (ja) 2023-08-14
KR20240073113A (ko) 2024-05-24
TWI842346B (zh) 2024-05-11

Similar Documents

Publication Publication Date Title
JP5367999B2 (ja) 電子材料用Cu−Ni−Si系合金
KR101422382B1 (ko) 전자 재료용 Cu-Ni-Si-Co 계 구리 합금 및 그 제조 방법
KR101331339B1 (ko) 전자 재료용 Cu-Ni-Si-Co 계 구리 합금 및 그 제조 방법
KR101866129B1 (ko) 전자재료용 구리합금
EP2692878B1 (en) Cu-si-co-base copper alloy for electronic materials and method for producing same
JP5417366B2 (ja) 曲げ加工性に優れたCu−Ni−Si系合金
WO2011125153A1 (ja) 電子材料用Cu-Ni-Si系合金
KR101917416B1 (ko) 전자 재료용 Cu-Co-Si 계 합금
JP2013104068A (ja) 電子材料用Cu−Ni−Si−Co系銅合金
JP7311651B1 (ja) 電子材料用銅合金及び電子部品
JP7046032B2 (ja) 電子材料用銅合金、電子材料用銅合金の製造方法及び電子部品
JP2018062705A (ja) 電子材料用銅合金
US20170096725A1 (en) Cu-Co-Ni-Si Alloy for Electronic Components
JP2016211077A (ja) チタン銅
KR102345805B1 (ko) 강도와 압연 평행 방향 및 압연 직각 방향의 굽힘 가공성이 우수한 Cu-Ni-Si계 합금 스트립
EP3460082B1 (en) Titanium copper for electronic components
JP2017179392A (ja) Cu−Ni−Co−Si系銅合金及びその製造方法
JP2016183418A (ja) 電子材料用Cu−Ni−Si−Co系銅合金
JP2013117060A (ja) 電子材料用Cu−Co−Si系合金
JP2019203202A (ja) 電子部品用Cu−Ni−Co−Si合金
JP2018145495A (ja) 電子部品用Cu−Ni−Co−Si合金

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749628

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202380014095.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247014987

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023749628

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2023749628

Country of ref document: EP

Effective date: 20240902