WO2023145576A1 - センサモジュール、及び力覚センサ装置 - Google Patents

センサモジュール、及び力覚センサ装置 Download PDF

Info

Publication number
WO2023145576A1
WO2023145576A1 PCT/JP2023/001359 JP2023001359W WO2023145576A1 WO 2023145576 A1 WO2023145576 A1 WO 2023145576A1 JP 2023001359 W JP2023001359 W JP 2023001359W WO 2023145576 A1 WO2023145576 A1 WO 2023145576A1
Authority
WO
WIPO (PCT)
Prior art keywords
force
sensor chip
detection
substrate
sensor
Prior art date
Application number
PCT/JP2023/001359
Other languages
English (en)
French (fr)
Inventor
真也 山口
Original Assignee
ミネベアミツミ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミネベアミツミ株式会社 filed Critical ミネベアミツミ株式会社
Priority to CN202380014426.XA priority Critical patent/CN118235029A/zh
Publication of WO2023145576A1 publication Critical patent/WO2023145576A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/161Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance
    • G01L5/162Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance of piezoresistors

Definitions

  • the present invention relates to sensor modules and force sensor devices.
  • a force sensor device that detects displacement in a predetermined axial direction.
  • Examples include a sensor chip, an external force application plate arranged around the sensor chip to which an external force is applied, a pedestal supporting the sensor chip, an external force buffering mechanism fixing the external force application plate to the pedestal, and a connecting rod as an external force transmission mechanism. and a force sensor device in which an external force applying plate and an action portion are connected by a connecting rod (see, for example, Patent Document 1).
  • the sensor is directly mounted on the housing, which is a structure composed of a pedestal, a cushioning strut, and an external force applying plate.
  • the housing which is a structure composed of a pedestal, a cushioning strut, and an external force applying plate.
  • the present invention has been made in view of the above points, and an object thereof is to provide a sensor module capable of improving mass productivity of force sensor devices.
  • the sensor module (300) includes a substrate (310), a sensor chip (100) mounted on one surface of the substrate (310) and detecting displacement in a predetermined axial direction, and one of the substrate (310).
  • a bonding wire (90) electrically connecting a first electrode (313) formed on the surface of the sensor chip (100) to the second electrode (110) of the sensor chip (100), and one surface of the substrate (310)
  • a protective frame (320) is provided on the peripheral edge and is spaced apart from the bonding wire (90).
  • FIG. 1 is a perspective view illustrating a force sensor device according to one embodiment
  • FIG. It is a perspective view which illustrates the state which removed the cover plate of the force sensor apparatus which concerns on one Embodiment.
  • FIG. 3 is a cross-sectional perspective view taken along the line II of FIG. 2;
  • FIG. 3 is a perspective view illustrating a state in which a cover plate of the strain generating body is removed;
  • 1 is a perspective view illustrating a sensor module according to one embodiment;
  • FIG. 1 is a plan view illustrating a sensor module according to one embodiment;
  • FIG. FIG. 4 is a bottom view illustrating a sensor module according to one embodiment; It is a perspective view which illustrates a board
  • FIG. 2 is a diagram (part 2) showing an example of a detection circuit using each piezoresistive element; It is a figure explaining Fx input. It is a figure explaining Fy input.
  • FIG. 11 is a plan view illustrating a state in which an upper substrate is removed from a sensor module according to a modification of one embodiment;
  • FIG. 11 is a plan view illustrating an upper substrate of a sensor module according to a modified example of one embodiment;
  • FIG. 11 is a plan view illustrating a sensor module according to a modified example of one embodiment;
  • FIG. 23 is a diagram showing a section II-II of FIG. 22;
  • FIG. 1 is a perspective view illustrating a force sensor device according to one embodiment.
  • FIG. 2 is a perspective view illustrating a state in which the cover plate of the force sensor device according to one embodiment is removed.
  • 3 is a cross-sectional perspective view taken along the line II of FIG. 2.
  • the force sensor device 1 has a sensor module 300 and a strain body 200.
  • the force sensor device 1 is, for example, a multi-axis force sensor device mounted on an arm or finger of a robot used in a machine tool or the like.
  • the strain body 200 has a force receiving plate 210 , a strain generating portion 220 , an input transmission portion 230 and a cover plate 240 .
  • a strain-generating section 220 is laminated on the force-receiving plate 210
  • an input transmission section 230 is laminated on the strain-generating section 220
  • a cover plate 240 is laminated on the input transmission section 230
  • a substantially cylindrical strain-generating body as a whole. 200 are formed. Since the function of the strain-generating body 200 is mainly performed by the strain-generating portion 220 and the input transmission portion 230, the force-receiving plate 210 and the cover plate 240 are provided as necessary.
  • the cover plate 240 side is defined as the upper side or one side, and the force receiving plate 210 side is defined as the lower side or the other side.
  • the surface of each portion on the cover plate 240 side is one surface or upper surface, and the surface on the force receiving plate 210 side is the other surface or lower surface.
  • the force sensor device 1 can be used upside down, or can be arranged at an arbitrary angle.
  • Planar view refers to viewing an object from the normal direction (Z-axis direction) of the upper surface of the cover plate 240
  • planar shape means viewing the object from the normal direction (Z-axis direction) of the upper surface of the cover plate 240. ) shall refer to the shape viewed from
  • the sensor module 300 is attached to the input transmission section 230 of the strain body 200. As shown in FIG. The sensor module 300 holds the sensor chip 100 and is detachable from the strain body 200 .
  • the sensor chip 100 has a function of detecting displacement in predetermined axial directions up to six axes.
  • the strain body 200 has the function of transmitting applied force and/or moment to the sensor chip 100 .
  • the sensor chip 100 detects 6 axes will be described, but the sensor chip 100 is not limited to this, and can be used, for example, when detecting 3 axes. .
  • FIG. 4 is a perspective view illustrating the strain body 200 with the cover plate 240 removed.
  • the input transmission portion 230 is provided with a housing portion 235 protruding from the lower surface of the input transmission portion 230 toward the strain generating portion 220 .
  • the sensor module 300 is fixed to the cover plate 240 side of the housing portion 235 .
  • the accommodation section 235 enables attachment with high positional accuracy.
  • the central portion 232 has a substantially ring-shaped first connecting portion 234 in a plan view, and a substantially cross-shaped accommodating portion 235 extending from the lower surface of the first connecting portion 234 toward the strain-flexing portion 220 . ing.
  • the accommodating portion 235 is provided inside the first connecting portion 234 and can accommodate the sensor chip 100 .
  • One end of the housing portion 235 is connected to the first connecting portion 234, and four vertical supporting portions 235a vertically extending from the lower surface of the first connecting portion 234 toward the strain generating portion 220, and the lower end of the vertical supporting portion 235a. It has four horizontal support portions 235b extending in the horizontal direction from each other, and a second connection portion 235c connecting the other ends of the horizontal support portions 235b.
  • Each of the second connection portions 235d is connected to the lower surface of the force points 151 to 154 (see FIG. 7, etc., which will be described later) of the sensor chip 100. As shown in FIG.
  • the accommodating portion 235 is inserted into the strain-flexing portion 220 side.
  • Five columnar first connection portions 224 projecting toward the input transmission portion 230 are arranged in the strain generating portion 220 .
  • Each first connection portion 224 is connected to at least part of the lower surface of the support portions 101 to 105 of the sensor chip 100 (see FIGS. 9 to 12 described later).
  • the force or moment is transmitted to the central portion of the strain-generating portion 220 connected to the force-receiving plate 210, for example, four beams (not shown).
  • the structure undergoes deformation in response to the input.
  • the outer frame portion of the strain generating portion 220 and the input transmission portion 230 are not deformed.
  • the force-receiving plate 210, the central portion of the strain-generating portion 220, and the beam structure are movable portions that are deformed by receiving a predetermined axial force or moment.
  • the frame is a non-moving part that does not deform under force or moment.
  • the input transmission part 230 joined to the outer frame part of the strain-generating part 220, which is a non-movable part is a non-movable part that does not deform under force or moment
  • the cover plate 240 joined to the input transmission part 230. is a non-moving part that does not deform under the force or moment.
  • the support portions 101 to 105 of the sensor chip 100 are connected to the first connecting portion 224 provided in the central portion of the strain-generating portion 220 which is a movable portion.
  • power points 151 to 154 of the sensor chip 100 are connected to the second connecting portion 235d provided in the accommodating portion 235 which is the immovable portion. Therefore, in the sensor chip 100, the force points 151 to 154 do not move, and each detection beam deforms through the support portions 101 to 105.
  • the power points 151 to 154 of the sensor chip 100 are connected to the first connecting portion 224 provided in the central portion of the strain-generating portion 220, which is the movable portion, and the second connection provided in the accommodating portion 235, which is the non-moving portion.
  • a configuration in which the support portions 101 to 105 of the sensor chip 100 are connected to the portion 235d may be employed.
  • the sensor chip 100 that can be accommodated in the accommodation portion 235 has the support portions 101 to 105 and the power points 151 to 154 whose relative positions change due to receiving force or moment.
  • the central portion of the strain generating portion 220 which is a movable portion, extends toward the input transmission portion 230 and is connected to one of the support portions 101 to 105 and the force points 151 to 154. 224.
  • the housing portion 235 includes a second connection portion 235d that is connected to the other of the support portions 101-105 and the force points 151-154.
  • the sensor module 300 will be described in detail below.
  • FIG. 5 is a perspective view illustrating a sensor module 300 according to one embodiment.
  • FIG. 6 is a plan view illustrating a sensor module 300 according to one embodiment.
  • FIG. 7 is a bottom view illustrating the sensor module 300 according to one embodiment.
  • FIG. 8 is a perspective view illustrating the substrate 310.
  • a sensor module 300 shown in FIGS. 5 to 7 has a substrate 310 and a sensor chip 100 mounted on the upper surface (one surface) of the substrate 310 and detecting displacement in a predetermined axial direction.
  • a first electrode (bonding pad) 313 is formed on the upper surface (one surface) of the substrate 310 , and the first electrode 313 and the second electrode 110 of the sensor chip 100 are electrically connected by a bonding wire 90 .
  • a protective frame 320 is provided on the periphery of the upper surface (one surface) of the substrate 310 so as to be spaced apart from the bonding wires 90 .
  • a reinforcing plate 330 may be provided on the bottom surface (the other surface) of the substrate 310 .
  • the sensor chip 100 is mounted with the back surface located opposite to the electrode forming surface on which the second electrode 110 is formed facing the upper surface of the substrate 310 .
  • the substrate 310 has an opening (first opening) 314 that exposes part of the back surface of the sensor chip 100, as shown in FIG. Specifically, the opening 314 exposes power points 151 to 154 of the sensor chip 100, which will be described later.
  • the shape of the substrate 310 is not particularly limited, it may have, for example, a mounting portion 311 on which the sensor chip 100 is mounted and an arm portion 312 from which the mounting portion 311 extends.
  • the opening 314 is preferably provided in the mounting portion 311 .
  • a positioning hole 315 may be provided in the substrate 310 .
  • the positioning hole 315 is a hole that engages with a projection of the input transmission section 230 and enables positioning when the sensor module 300 is attached to the input transmission section 230 .
  • two positioning holes 315 that are circular in plan view are provided facing each other across the center of the mounting portion 311 .
  • the thickness of the substrate 310 is not particularly limited, and can be appropriately selected according to the purpose.
  • the substrate 310 may be a flexible substrate (FPC) or a rigid substrate.
  • Materials constituting the flexible substrate include, for example, PI (polyimide) resin, epoxy resin, PEEK (polyetheretherketone) resin, PEN (polyethylene naphthalate) resin, PET (polyethylene terephthalate) resin, and PPS (polyphenylene sulfide) resin. , polyolefin resins, and the like.
  • Materials constituting the rigid substrate include, for example, glass epoxy resin and ceramics.
  • the protective frame 320 is a member for protecting the sensor chip 100 and the bonding wires 90 from coming into contact with other members.
  • the protective frame 320 is provided on the periphery of the upper surface of the mounting portion 311 in the example of FIG. That is, the arm portion 312 protrudes from the protective frame 320 .
  • the upper surface of protective frame 320 is preferably higher than the top of bonding wire 90 . As a result, it is possible to prevent the bonding wires 90 from coming into contact with other members positioned on the electrode forming surface side of the sensor chip 100 .
  • a positioning hole 321 may be provided in the protective frame 320 .
  • the positioning hole 321 is a hole that engages with a projection of the input transmission section 230 and enables positioning when the sensor module 300 is attached to the input transmission section 230 .
  • two positioning holes 321 that are circular in plan view are provided facing each other with the center of the protective frame 320 interposed therebetween.
  • the thickness of the protective frame 320 is not particularly limited and can be appropriately selected according to the purpose, but it is preferably larger than the thickness of the sensor chip 100 and the height of the top of the bonding wire 90 from the upper surface of the substrate 310 .
  • the thickness of the protective frame 320 can be, for example, about 700 ⁇ m to 1000 ⁇ m.
  • the material of the protective frame 320 is not particularly limited as long as it is an insulating material, and examples thereof include PPS (polyphenylene sulfide) resin, glass epoxy resin, and the like.
  • the reinforcing plate 330 is a member for reinforcing the substrate 310.
  • the substrate 310 is reinforced by the reinforcing plate 330, so that it is possible to improve the mountability when die-bonding or wire-bonding the sensor chip.
  • the portion 230 it can be attached easily.
  • the reinforcing plate 330 has an opening (second opening) 331 that exposes part of the back surface of the sensor chip 100, as shown in FIG. Specifically, the opening 331 exposes the force points 151 to 154 of the sensor chip 100 .
  • a positioning hole 332 may be provided in the reinforcing plate 330 .
  • the positioning hole 332 is a hole that engages with a projection of the input transmission section 230 and enables positioning when the sensor module 300 is attached to the input transmission section 230 .
  • two positioning holes 332 that are circular in plan view are provided facing each other across the center of the reinforcing plate 330 .
  • the positioning hole 315 of the substrate 310, the positioning hole 321 of the protective frame 320, and the positioning hole 332 of the reinforcing plate 330 overlap each other in a plan view to form one communicating positioning hole.
  • the thickness of the reinforcing plate 330 is not particularly limited and can be appropriately selected according to the purpose, but it is preferably smaller than the thickness of the sensor chip 100.
  • the thickness of the reinforcing plate 330 can be, for example, about 100 ⁇ m to 500 ⁇ m.
  • the material of the reinforcing plate 330 is not particularly limited as long as it is an insulating material, and examples thereof include PPS (polyphenylene sulfide) resin, glass epoxy resin, and the like.
  • an adhesive is applied to the four corners of the periphery of the opening 314 .
  • the adhesive for example, an epoxy-based or silicone-based resin or the like can be used.
  • the sensor chip 100 is arranged on the substrate 310 so as to cover the opening 314 and die-bonded.
  • the second electrode 110 of the sensor chip 100 and the first electrode 313 of the substrate 310 are connected by the bonding wire 90 (wire bonding).
  • the protective frame 320 is fixed to the periphery of the upper surface of the mounting portion 311 with an adhesive.
  • the adhesive the same adhesive as described above can be used.
  • the reinforcing plate 330 may be fixed to the lower surface of the mounting portion 311 with an adhesive.
  • FIG. 9 is a perspective view of the sensor chip 100 viewed from above in the Z-axis direction.
  • FIG. 10 is a plan view of the sensor chip 100 viewed from above in the Z-axis direction.
  • FIG. 11 is a perspective view of the sensor chip 100 viewed from below in the Z-axis direction.
  • FIG. 12 is a bottom view of the sensor chip 100 viewed from below in the Z-axis direction.
  • surfaces having the same height are shown with the same pear-skin pattern for the sake of convenience.
  • the direction parallel to one side of the upper surface of the sensor chip 100 is the X-axis direction
  • the direction perpendicular to it is the Y-axis direction
  • the thickness direction of the sensor chip 100 is the Z-axis direction. direction.
  • the X-axis direction, Y-axis direction, and Z-axis direction are orthogonal to each other.
  • the sensor chip 100 shown in FIGS. 9 to 12 is a MEMS (Micro Electro Mechanical Systems) sensor chip that can detect up to 6 axes with one chip, and is formed from a semiconductor substrate such as an SOI (Silicon On Insulator) substrate.
  • the planar shape of the sensor chip 100 can be, for example, a rectangle (square or rectangle) of about 7000 ⁇ m square.
  • the sensor chip 100 has five columnar support parts 101-105.
  • the planar shape of the support portions 101 to 105 can be, for example, a square of about 2000 ⁇ m square.
  • Supports 101 to 104 are arranged at four corners of rectangular sensor chip 100 .
  • the support portion 105 is arranged in the center of the rectangular sensor chip 100 .
  • the support portions 101 to 104 are representative examples of the first support portion according to the present invention, and the support portion 105 is a representative example of the second support portion according to the present invention.
  • a frame part 112 is provided which has both ends fixed to the support part 101 and the support part 102 (connects the adjacent support parts).
  • a frame portion 113 is provided between the support portion 102 and the support portion 103 and has both ends fixed to the support portion 102 and the support portion 103 (connects the adjacent support portions).
  • a frame portion 114 is provided between the support portion 103 and the support portion 104 and has both ends fixed to the support portion 103 and the support portion 104 (connects adjacent support portions to each other).
  • a frame portion 111 is provided between the support portion 104 and the support portion 101 and has both ends fixed to the support portion 104 and the support portion 101 (connects adjacent support portions).
  • the four frame portions 111, 112, 113, and 114 are formed in a frame shape, and the corners forming the intersections of the respective frame portions are the support portions 101, 102, 103, and 104.
  • the inner corner of the support portion 101 and the opposite corner of the support portion 105 are connected by a connecting portion 121 .
  • the inner corner of the support portion 102 and the opposite corner of the support portion 105 are connected by a connecting portion 122 .
  • the inner corner of the support portion 103 and the opposite corner of the support portion 105 are connected by a connecting portion 123 .
  • the inner corner of the support portion 104 and the opposite corner of the support portion 105 are connected by the connecting portion 124 .
  • the sensor chip 100 has connecting portions 121-124 that connect the supporting portion 105 and the supporting portions 101-104.
  • the connecting portions 121 to 124 are arranged obliquely with respect to the X-axis direction (Y-axis direction). That is, the connecting portions 121 to 124 are arranged non-parallel to the frame portions 111, 112, 113, and 114.
  • the support parts 101 to 105, the frame parts 111 to 114, and the connection parts 121 to 124 can be formed from, for example, an active layer, a BOX layer, and a support layer of an SOI substrate, and each thickness is, for example, 400 ⁇ m. It can be about 600 ⁇ m.
  • the sensor chip 100 has four sensing blocks B 1 to B 4 .
  • Each sensing block has three sets of T-shaped beam structures in which piezoresistive elements, which are strain sensing elements, are arranged.
  • the T-shaped beam structure includes a first detection beam and a second detection beam that extends from the center of the first detection beam in a direction perpendicular to the first detection beam and connects to the force point. refers to the containing structure.
  • the beam for detection refers to a beam on which a piezoresistive element can be arranged, but the piezoresistive element does not necessarily have to be arranged.
  • the detection beam can detect forces and moments by arranging piezoresistive elements. may have
  • sensing block B 1 comprises T-beam structures 131T 1 , 131T 2 and 131T 3 .
  • Sensing block B 2 also includes T-beam structures 132T 1 , 132T 2 , and 132T 3 .
  • Sensing block B 3 also includes T-beam structures 133T 1 , 133T 2 , and 133T 3 .
  • Sensing block B 4 also includes T-beam structures 134T 1 , 134T 2 , and 134T 3 .
  • a more detailed description of the beam structure will be given below.
  • support portions 101 are provided at predetermined intervals so as to bridge the side of the frame portion 111 close to the support portion 101 and the side of the connection portion 121 close to the support portion 105 in plan view.
  • a first detection beam 131a is provided parallel to the side on the part 104 side.
  • a second detection beam 131b is provided whose one end is connected to the longitudinal central portion of the first detection beam 131a and extends in the direction perpendicular to the longitudinal direction of the first detection beam 131a toward the support portion 104 side. ing.
  • the first sensing beam 131a and the second sensing beam 131b form a T-shaped beam structure 131T1 .
  • first detection beam 131c In plan view, parallel to the side of the support portion 104 on the side of the support portion 101 with a predetermined gap so as to bridge the side of the frame portion 111 close to the support portion 104 and the side of the connection portion 124 close to the support portion 105 . is provided with a first detection beam 131c.
  • a second detection beam 131d is provided whose one end is connected to the central portion in the longitudinal direction of the first detection beam 131c and extends in the direction perpendicular to the longitudinal direction of the first detection beam 131c toward the support portion 101 side. ing.
  • the first sensing beam 131c and the second sensing beam 131d form a T-shaped beam structure 131T2 .
  • first detection beam 131e In plan view, parallel to the side of the support portion 105 on the side of the frame portion 111 with a predetermined gap so as to bridge the side of the connection portion 121 close to the support portion 105 and the side of the connection portion 124 close to the support portion 105 . is provided with a first detection beam 131e.
  • a second detection beam 131f is provided, one end of which is connected to the central portion in the longitudinal direction of the first detection beam 131e and extends in the direction perpendicular to the longitudinal direction of the first detection beam 131e toward the frame portion 111 side. ing.
  • the first sensing beam 131e and the second sensing beam 131f form a T-shaped beam structure 131T3 .
  • the other end sides of the second detection beam 131b, the second detection beam 131d, and the second detection beam 131f are connected to each other to form a connection portion 141, and a force point 151 is provided on the lower surface side of the connection portion 141.
  • the power point 151 has, for example, a quadrangular prism shape.
  • the T-shaped beam structures 131T 1 , 131T 2 , and 131T 3 , the connection portion 141 and the force point 151 constitute a detection block B 1 .
  • each sensing beam of the sensing block B1 can be, for example, about 30 ⁇ m to 50 ⁇ m.
  • the detection block B2 supports the support portion 102 at a predetermined interval so as to bridge the side of the frame portion 112 close to the support portion 102 and the side of the connection portion 122 close to the support portion 105 in plan view.
  • a first detection beam 132a is provided parallel to the side on the part 101 side.
  • a second detection beam 132b having one end connected to the longitudinal center of the first detection beam 132a and extending in the direction perpendicular to the longitudinal direction of the first detection beam 132a toward the support portion 101 is provided. ing.
  • First sensing beam 132a and second sensing beam 132b form a T-shaped beam structure 132T1 .
  • first detection beam 132c parallel to the side of the support portion 101 on the side of the support portion 102 with a predetermined gap so as to bridge the side of the frame portion 112 close to the support portion 101 and the side of the connection portion 121 close to the support portion 105 .
  • a first detection beam 132c parallel to the side of the support portion 101 on the side of the support portion 102 with a predetermined gap so as to bridge the side of the frame portion 112 close to the support portion 101 and the side of the connection portion 121 close to the support portion 105 .
  • second detection beam 132d having one end connected to the central portion in the longitudinal direction of the first detection beam 132c and extending in the direction perpendicular to the longitudinal direction of the first detection beam 132c toward the support portion 102 is provided.
  • the first sensing beam 132c and the second sensing beam 132d form a T-shaped beam structure 132T2 .
  • first detection beam 132e In plan view, parallel to the side of the support portion 105 on the frame portion 112 side with a predetermined gap so as to bridge the side of the connection portion 122 close to the support portion 105 and the side of the connection portion 121 close to the support portion 105 . is provided with a first detection beam 132e.
  • a second detection beam 132f is provided, one end of which is connected to the central portion in the longitudinal direction of the first detection beam 132e and extends in the direction perpendicular to the longitudinal direction of the first detection beam 132e toward the frame portion 112 side. ing.
  • the first sensing beam 132e and the second sensing beam 132f form a T-shaped beam structure 132T3 .
  • the other end sides of the second detection beam 132b, the second detection beam 132d, and the second detection beam 132f are connected to each other to form a connection portion 142, and a force point 152 is provided on the lower surface side of the connection portion 142.
  • the power point 152 has, for example, a quadrangular prism shape.
  • the T-shaped beam structures 132T 1 , 132T 2 , and 132T 3 , the connecting portion 142 and the force point 152 constitute a sensing block B 2 .
  • each detection beam of the detection block B2 can be, for example, about 30 ⁇ m to 50 ⁇ m.
  • a support for the support portion 103 at a predetermined interval so as to bridge the side of the frame portion 113 close to the support portion 103 and the side of the connection portion 123 close to the support portion 105 in plan view.
  • a first detection beam 133a is provided parallel to the side on the part 102 side.
  • a second detection beam 133b having one end connected to the central portion in the longitudinal direction of the first detection beam 133a and extending in the direction perpendicular to the longitudinal direction of the first detection beam 133a toward the support portion 102 is provided. ing.
  • the first sensing beam 133a and the second sensing beam 133b form a T-shaped beam structure 133T1 .
  • first detection beam 133c In plan view, parallel to the side of the support portion 103 side of the support portion 102 with a predetermined gap so as to bridge the side of the frame portion 113 close to the support portion 102 and the side of the connection portion 122 close to the support portion 105 . is provided with a first detection beam 133c.
  • a second detection beam 133d is provided which has one end connected to the central portion in the longitudinal direction of the first detection beam 133c and extends in the direction perpendicular to the longitudinal direction of the first detection beam 133c toward the support portion 103 side. ing.
  • the first sensing beam 133c and the second sensing beam 133d form a T-shaped beam structure 133T2 .
  • first detection beam 133e In plan view, parallel to the side of the support portion 105 on the frame portion 113 side with a predetermined gap so as to bridge the side of the connection portion 123 close to the support portion 105 and the side of the connection portion 122 close to the support portion 105 . is provided with a first detection beam 133e.
  • a second detection beam 133f is provided which has one end connected to the central portion in the longitudinal direction of the first detection beam 133e and extends in the direction perpendicular to the longitudinal direction of the first detection beam 133e toward the frame portion 113 side. ing.
  • the first sensing beam 133e and the second sensing beam 133f form a T-shaped beam structure 133T3 .
  • the other end sides of the second detection beam 133b, the second detection beam 133d, and the second detection beam 133f are connected to each other to form a connection portion 143, and a force point 153 is provided on the lower surface side of the connection portion 143.
  • the power point 153 has, for example, a quadrangular prism shape.
  • the T-shaped beam structures 133T 1 , 133T 2 , and 133T 3 , the connection portion 143 and the force point 153 constitute a detection block B 3 .
  • each detection beam of the detection block B3 can be, for example, about 30 ⁇ m to 50 ⁇ m.
  • the detection block B4 supports the support portion 104 at a predetermined interval so as to bridge the side of the frame portion 114 close to the support portion 104 and the side of the connection portion 124 close to the support portion 105 in plan view.
  • a first detection beam 134a is provided parallel to the side on the part 103 side.
  • a second detection beam 134b having one end connected to the central portion of the first detection beam 134a in the longitudinal direction and extending in the direction perpendicular to the longitudinal direction of the first detection beam 134a toward the support portion 103 is provided. ing.
  • First sensing beam 134a and second sensing beam 134b form a T-shaped beam structure 134T1 .
  • first detection beam 134c In plan view, parallel to the side of the support portion 103 on the side of the support portion 104 with a predetermined gap so as to bridge the side of the frame portion 114 close to the support portion 103 and the side of the connection portion 123 close to the support portion 105 . is provided with a first detection beam 134c.
  • a second detection beam 134d is provided whose one end is connected to the central portion in the longitudinal direction of the first detection beam 134c and extends in the direction perpendicular to the longitudinal direction of the first detection beam 134c toward the support portion 104 side. ing.
  • the first sensing beam 134c and the second sensing beam 134d form a T-shaped beam structure 134T2 .
  • first detection beam 134e In plan view, parallel to the side of the support portion 105 on the frame portion 114 side with a predetermined gap so as to bridge the side of the connection portion 124 close to the support portion 105 and the side of the connection portion 123 close to the support portion 105 . is provided with a first detection beam 134e.
  • a second detection beam 134f is provided which has one end connected to the central portion in the longitudinal direction of the first detection beam 134e and extends in the direction perpendicular to the longitudinal direction of the first detection beam 134e toward the frame portion 114 side. ing.
  • the first sensing beam 134e and the second sensing beam 134f form a T-shaped beam structure 134T3 .
  • the other end sides of the second detection beam 134b, the second detection beam 134d, and the second detection beam 134f are connected to each other to form a connection portion 144, and a force point 154 is provided on the lower surface side of the connection portion 144.
  • the power point 154 has, for example, a quadrangular prism shape.
  • the T-shaped beam structures 134T 1 , 134T 2 , and 134T 3 , the connecting portion 144 and the force point 154 constitute a sensing block B 4 .
  • each detection beam of the detection block B4 can be, for example, about 30 ⁇ m to 50 ⁇ m.
  • the sensor chip 100 has four detection blocks (detection blocks B 1 to B 4 ). Each detection block is arranged in a region surrounded by adjacent support portions among the support portions 101 to 104, frame portions and connecting portions that connect to the adjacent support portions, and the support portion 105. there is In plan view, each detection block can be arranged point-symmetrically with respect to the center of the sensor chip, for example.
  • each detection block is equipped with three sets of T-shaped beam structures.
  • the three sets of T-shaped beam structures are, in a plan view, two sets of T-shaped beam structures in which the first detection beams are arranged in parallel with the connecting portion interposed therebetween, and two sets of T-shaped beam structures.
  • a pair of first sensing beams of a T-shaped beam structure are arranged between the connection portion and the support portion 105 .
  • the three sets of T-shaped beam structures are T-shaped structures in which the first detection beams 131a and the first detection beams 131c are arranged in parallel with the connecting portion 141 interposed in plan view.
  • the first detection beam 131e of the T-shaped beam structure 131T3 is arranged between the connection portion 141 and the support portion 105.
  • the detection blocks B 2 to B 4 also have a similar structure.
  • Force points 151 to 154 are locations where external force is applied, and can be formed, for example, from the BOX layer and support layer of the SOI substrate.
  • the lower surfaces of the power points 151-154 are substantially flush with the lower surfaces of the support portions 101-105.
  • the portion forming the internal angle be rounded.
  • the support portions 101 to 105 of the sensor chip 100 are connected to the non-movable portion of the strain body 200, and the power points 151 to 154 are connected to the movable portion of the strain body 200.
  • the support portions 101 to 105 of the sensor chip 100 may be connected to the movable portion of the strain body 200, and the force points 151 to 154 may be connected to the non-movable portion of the strain body 200.
  • FIG. 13 is a diagram explaining the symbols indicating the force and moment applied to each axis.
  • Fx be the force in the X-axis direction
  • Fy be the force in the Y-axis direction
  • Fz be the force in the Z-axis direction.
  • Mx be the moment of rotation about the X axis
  • My be the moment of rotation about the Y axis
  • Mz be the moment of rotation about the Z axis.
  • FIG. 14 is a diagram illustrating the arrangement of piezoresistive elements of the sensor chip 100.
  • FIG. 15 is a partially enlarged view of a set of sensing blocks of the sensor chip shown in FIG. 14; FIG. As shown in FIGS. 14 and 15, piezoresistive elements are arranged at predetermined positions of each detection block corresponding to the four power points 151-154. The arrangement of the piezoresistive elements in the other detection block shown in FIG. 14 is the same as the arrangement of the piezoresistive elements in the one detection block shown in FIG.
  • piezoresistive element MzR1' is connected to first sensing beam 131a at the second sensing beam 131a. 131b and the first detection beam 131e on the side closer to the second detection beam 131b.
  • the piezoresistive element FxR3 is arranged on the side closer to the first detection beam 131e in the portion of the first detection beam 131a located between the second detection beam 131b and the first detection beam 131e.
  • the piezoresistive element MxR1 is arranged on the side closer to the connecting portion 141 in the second sensing beam 131b.
  • the piezoresistive element MzR2' is arranged in the first detection beam 131c on the side closer to the second detection beam 131d in the portion positioned between the second detection beam 131d and the first detection beam 131e. ing.
  • the piezoresistive element FxR1 is arranged on the side closer to the first detection beam 131e in the portion of the first detection beam 131c located between the second detection beam 131d and the first detection beam 131e.
  • the piezoresistive element MxR2 is arranged on the side closer to the connecting portion 141 in the second sensing beam 131d.
  • the piezoresistive element FzR1' is arranged on the side closer to the connection portion 141 in the second detection beam 131f.
  • the piezoresistive element FzR2' is arranged on the second detection beam 131f on the side closer to the first detection beam 131e.
  • the piezoresistive elements MzR1', FxR3, MxR1, MzR2', FxR1, and MxR2 are arranged at positions offset from the longitudinal centers of the respective detection beams.
  • the piezoresistive element MzR4 is located between the second sensing beam 132b and the first sensing beam 132e in the first sensing beam 132a. 2 is arranged on the side close to the detection beam 132b.
  • the piezoresistive element FyR3 is arranged on the side closer to the first detection beam 132e in the portion of the first detection beam 132a located between the second detection beam 132b and the first detection beam 132e.
  • the piezoresistive element MyR4 is arranged on the side closer to the connecting portion 142 in the second sensing beam 132b.
  • the piezoresistive element MzR3 is arranged in the first detection beam 132c on the side closer to the second detection beam 132d in the portion positioned between the second detection beam 132d and the first detection beam 132e.
  • the piezoresistive element FyR1 is arranged on the side closer to the first detection beam 132e in the portion of the first detection beam 132c located between the second detection beam 132d and the first detection beam 132e.
  • the piezoresistive element MyR3 is arranged on the side closer to the connecting portion 142 in the second sensing beam 132d.
  • the piezoresistive element FzR4 is arranged on the side closer to the connecting portion 142 in the second sensing beam 132f.
  • the piezoresistive element FzR3 is arranged on the second detection beam 132f on the side closer to the first detection beam 132e.
  • the piezoresistive elements MzR4, FyR3, MyR4, MzR3, FyR1, and MyR3 are arranged at positions offset from the longitudinal centers of the respective detection beams.
  • the piezoresistive element MzR4' is located in the portion of the first sensing beam 133a between the second sensing beam 133b and the first sensing beam 133e. It is arranged on the side closer to the second detection beam 133b.
  • the piezoresistive element FxR2 is arranged on the side closer to the first detection beam 133e in the portion of the first detection beam 133a located between the second detection beam 133b and the first detection beam 133e.
  • the piezoresistive element MxR4 is arranged on the side closer to the connecting portion 143 in the second sensing beam 133b.
  • the piezoresistive element MzR3′ is arranged in the first detection beam 133c on the side closer to the second detection beam 133d in the portion positioned between the second detection beam 133d and the first detection beam 133e. ing.
  • the piezoresistive element FxR4 is arranged on the side closer to the first detection beam 133e in the portion of the first detection beam 133c located between the second detection beam 133d and the first detection beam 133e.
  • the piezoresistive element MxR3 is arranged on the side closer to the connecting portion 143 in the second sensing beam 133d.
  • the piezoresistive element FzR4' is arranged on the side closer to the connecting portion 143 in the second sensing beam 133f.
  • the piezoresistive element FzR3' is arranged on the second detection beam 133f on the side closer to the first detection beam 133e.
  • the piezoresistive elements MzR4', FxR2, MxR4, MzR3', FxR4, and MxR3 are arranged at positions offset from the longitudinal center of each detection beam.
  • the piezoresistive element MzR1 is located between the second sensing beam 134b and the first sensing beam 134e in the first sensing beam 134a. 2 is arranged on the side close to the detection beam 134b.
  • the piezoresistive element FyR2 is arranged in the first detection beam 134a on the side closer to the first detection beam 134e in the portion positioned between the second detection beam 134b and the first detection beam 134e.
  • the piezoresistive element MyR1 is arranged on the side closer to the connecting portion 144 in the second sensing beam 134b.
  • the piezoresistive element MzR2 is arranged on the side closer to the second detection beam 134d in the portion located between the second detection beam 134d and the first detection beam 134e in the first detection beam 134c.
  • the piezoresistive element FyR4 is arranged in the first detection beam 134c on the side closer to the first detection beam 134e in the portion located between the second detection beam 134d and the first detection beam 134e.
  • the piezoresistive element MyR2 is arranged on the side closer to the connecting portion 144 in the second sensing beam 134d.
  • the piezoresistive element FzR1 is arranged on the side closer to the connecting portion 144 in the second sensing beam 134f.
  • the piezoresistive element FzR2 is arranged on the second detection beam 134f on the side closer to the first detection beam 134e.
  • the piezoresistive elements MzR1, FyR2, MyR1, MzR2, FyR4, and MyR2 are arranged at positions offset from the longitudinal center of each sensing beam.
  • a plurality of piezoresistive elements are arranged separately in each detection block.
  • dummy piezoresistive elements may be arranged in addition to the piezoresistive elements used for strain detection.
  • the dummy piezoresistive elements are used to adjust the balance of the stress applied to the sensing beam and the resistance of the bridge circuit.
  • 105 are arranged so as to be point-symmetrical with respect to the center.
  • a plurality of piezoresistive elements for detecting displacement in the X-axis direction and Y-axis direction are arranged on the first detection beam that constitutes the T-shaped beam structure.
  • a plurality of piezoresistive elements for detecting displacement in the Z-axis direction are arranged on the second detection beam that constitutes the T-shaped beam structure.
  • a plurality of piezoresistive elements for detecting a moment in the Z-axis direction are arranged on the first detection beam that constitutes the T-shaped beam structure.
  • a plurality of piezoresistive elements for detecting the moment in the X-axis direction and the moment in the Y-axis direction are arranged on the second detection beam that constitutes the T-shaped beam structure.
  • the piezoresistive elements FxR1 to FxR4 detect the force Fx
  • the piezoresistive elements FyR1 to FyR4 detect the force Fy
  • the piezoresistive elements FzR1 to FzR4 and FzR1' to FzR4' detect the force Fz.
  • the piezoresistive elements MxR1 to MxR4 detect the moment Mx
  • the piezoresistive elements MyR1 to MyR4 detect the moment My
  • the piezoresistive elements MzR1 to MzR4 and MzR1' to MzR4' detect the moment Mz.
  • a plurality of piezoresistive elements are arranged separately in each detection block.
  • the output of the plurality of piezoresistive elements arranged on the predetermined beam is changed, and the predetermined axis Directional displacement can be detected in up to six axes.
  • 16 and 17 show an example of a detection circuit using each piezoresistive element.
  • squared numbers indicate external output terminals.
  • No. 1 is the power supply terminal for the Fx, Fy, and Fz axes
  • No. 2 is the Fx axis output minus terminal
  • No. 3 is the Fx axis GND terminal
  • No. 4 is the Fx axis output plus terminal.
  • No. 19 is an Fy-axis output minus terminal
  • No. 20 is an Fy-axis GND terminal
  • No. 21 is an Fy-axis output plus terminal.
  • No. 22 is an Fz-axis output minus terminal
  • No. 23 is an Fz-axis GND terminal
  • No. 24 is an Fz-axis output plus terminal.
  • No. 9 is the Mx axis output minus terminal
  • No. 10 is the Mx axis GND terminal
  • No. 11 is the Mx axis output plus terminal.
  • No. 12 is a power supply terminal for the Mx-axis, My-axis, and Mz-axis.
  • No. 13 is the My axis output minus terminal
  • No. 14 is the My axis GND terminal
  • No. 15 is the My axis output plus terminal.
  • No. 16 is the Mz-axis output minus terminal
  • No. 17 is the Mz-axis GND terminal
  • No. 18 is the Mz-axis output plus terminal.
  • FIG. 18 is a diagram explaining the Fx input.
  • FIG. 19 is a diagram explaining the Fy input.
  • the input from the strain-generating body 200 on which the sensor chip 100 is mounted is Fx
  • all four power points 151 to 154 will move in the same direction (rightward in the example of FIG. 18).
  • the input from the strain-generating body 200 on which the sensor chip 100 is mounted is Fy
  • the four force points 151 to 154 are all in the same direction (upward in the example of FIG. 19). try to move to That is, in the sensor chip 100, there are four detection blocks, and in any of the detection blocks, all force points move in the same direction with respect to displacements in the X-axis direction and the Y-axis direction.
  • the sensor chip 100 has one or more first detection beams orthogonal to the input displacement direction among the first detection beams of the T-shaped beam structure, and the first detection beams are orthogonal to the input displacement direction.
  • the first sensing beam can accommodate large deformations.
  • the beams used to detect the Fx input are the first detection beams 131a, 131c, 133a, and 133c, all of which are T-shaped beam structure first detection beams at a certain distance from the force point.
  • the beams used to detect the Fy input are the first detection beams 132a, 132c, 134a, and 134c, all of which are T-shaped beam structure first detection beams separated from the force point by a certain distance.
  • the input force can be effectively detected by greatly deforming the first detection beam of the T-shaped beam structure in which the piezoresistive element is arranged.
  • the beams not used for input detection are also designed to be able to deform greatly following the displacement of the Fx input and Fy input, even if there is a large Fx input and/or Fy input, the detection beam will be destroyed. never.
  • the sensor chip 100 can suppress such problems. That is, in the sensor chip 100, the beam's resistance to destruction against displacement in various directions can be improved.
  • the sensor chip 100 has one or more first detection beams orthogonal to the input displacement direction, and the first detection beams orthogonal to the input displacement direction can be greatly deformed. Therefore, the Fx input and Fy input can be effectively detected, and the detection beam will not be destroyed even if there is a large Fx input and/or Fy input. As a result, the sensor chip 100 can cope with a large rating, and the measurement range and load capacity can be improved. For example, the sensor chip 100 can be rated at 500N, which is about 10 times that of the conventional one.
  • the T-shaped beam structure that extends from the force point in three directions deforms differently depending on the input, so multiaxial forces can be detected with good separation.
  • the beams are T-shaped, there are many paths from the beams to the frame and connecting parts, so wiring can be easily routed around the outer periphery of the sensor chip, and the degree of freedom in layout can be improved.
  • the first detection beams 131a, 131c, 132a, 132c, 133a, 133c, 134a, and 134c which are arranged to face each other across the points of force, are greatly deformed with respect to the moment in the Z-axis direction. do. Therefore, piezoresistive elements can be arranged on some or all of these first sensing beams.
  • the second detection beams 131b, 131d, 131f, 132b, 132d, 132f, 133b, 133d, 133f, 134b, 134d, and 134f directly connected to each force point deform greatly. Therefore, piezoresistive elements can be arranged on some or all of these second sensing beams.
  • the sensor module 300 allows the substrate 310 and the sensor chip 100 to be wire-bonded in advance.
  • the sensor chip 100 can be attached to the strain body 200 as the sensor module 300 using a general semiconductor mounting device. Therefore, the sensor module 300 can improve mass productivity of the force sensor device 1 .
  • the substrate 310 and the sensor chip 100 can be wire-bonded in advance by the sensor module 300, the degree of difficulty in wire-bonding can be reduced compared to the case where the sensor chip 100 is directly attached to the strain generating body 200. can improve the quality of wire bonding.
  • the substrate 310 has the opening 314, the force points 151 to 154 of the sensor chip 100 can be exposed, so that the force points 151 to 154 can be directly connected to the second connection portion 235d of the input transmission portion 230. Therefore, the substrate 310 does not interfere with the connection between the sensor chip 100 and the strain-generating body 200, and the force sensor device 1 exhibits the same force-sense characteristics as when the sensor chip 100 is directly attached to the strain-generating body 200. be able to.
  • the reinforcing plate 330 Similar to the substrate 310, the reinforcing plate 330 also has an opening 331 so that the force points 151 to 154 of the sensor chip 100 can be exposed. can be directly connected to Therefore, the reinforcing plate 330 does not interfere with the connection between the sensor chip 100 and the strain body 200, and the force sensor device 1 exhibits the same force sense characteristics as when the sensor chip 100 is directly attached to the strain body 200. can do.
  • the inspection can be performed in the form of the sensor module 300, the inspection can be easily performed. Even if the sensor module is determined to be defective in the inspection, it can be discarded as the sensor module 300 before it is assembled with the strain body 200, which is relatively expensive, so the final disposal cost can be reduced.
  • FIG. 20 is a plan view illustrating a state in which the upper substrate 412 of the sensor module 400 according to the modified example of the embodiment is removed.
  • FIG. 21 is a plan view illustrating the upper substrate 412 of the sensor module 400 according to the modification of one embodiment.
  • FIG. 22 is a plan view illustrating a sensor module 400 according to a modified example of one embodiment.
  • FIG. 23 is a diagram showing a II-II section of FIG.
  • a sensor module 400 shown in FIGS. 20 to 23 differs from the sensor module 300 shown in FIGS. 5 to 8 in that it does not have a protective frame and has a different substrate structure.
  • the sensor module 400 includes a mounting board 411 having a cavity 415, a sensor chip 100 mounted in the cavity 415 of the mounting board 411 and detecting displacement in a predetermined axial direction, the mounting board 411 and a sensor. and an upper substrate 412 covering the chip 100 .
  • the sensor chip 100 is mounted with the back surface located opposite to the electrode forming surface on which the second electrode 110 is formed facing the bottom surface of the cavity 415 .
  • the mounting substrate 411 preferably has openings 416 for exposing the force points 151 to 154 of the sensor chip 100, as shown in FIG.
  • the upper substrate 412 has an opening 413 that exposes the second electrode 110 of the sensor chip 100, as shown in FIG.
  • First electrodes (bonding pads) 414 are formed on the upper surface (one surface) of the upper substrate 412 as shown in FIG. are electrically connected by From the viewpoint of shortening the distance between the first electrode 414 and the second electrode 110 in wire bonding, it is preferable that the first electrode 414 is provided at the peripheral portion of the opening 413 .
  • a wiring member such as a flexible flat cable (FFC) may be connected to the upper surface of the upper substrate 412 .
  • FFC flexible flat cable
  • the thicknesses of the mounting substrate 411 and the upper substrate 412 and the materials forming the mounting substrate 411 and the upper substrate 412 can be the same as those of the substrate 310 of the sensor module 300 .
  • the strain body is fastened to the object to be measured with a screw
  • the present invention is not limited to this.
  • Various bolts, rivets, etc. can be used.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

本センサモジュールは、基板と、前記基板の一方の面に実装され、所定の軸方向の変位を検知するセンサチップと、前記基板の一方の面に形成された第1電極と前記センサチップの第2電極とを電気的に接続するボンディングワイヤと、前記基板の一方の面の周縁に、前記ボンディングワイヤと離間して設けられた保護枠と、を備える。

Description

センサモジュール、及び力覚センサ装置
 本発明は、センサモジュール、及び力覚センサ装置に関する。
 従来より、所定の軸方向の変位を検知する力覚センサ装置が知られている。一例として、センサチップと、センサチップの周囲に配置され、外力が加わる外力印加板、センサチップを支持する台座部、外力印加板を台座部に固定する外力緩衝機構、外力伝達機構である連結ロッドから成る構造体を備え、外力印加板と作用部が連結ロッドで連結されている力覚センサ装置が挙げられる(例えば、特許文献1参照)。
特開2003-254843号公報
 特許文献1の力覚センサ装置では、センサが、台座部と緩衝支柱と外力印加板から成る構造体である筐体に直接実装されている。センサに比べて非常に大きい筐体にセンサを実装する場合、センサからの信号を取り出すためのワイヤボンディング工程において、筐体の上面からセンサの表面までの距離が大きいため、半導体実装装置が干渉し、通常の半導体実装装置が使用できず、量産性が低下するという問題があった。
 本発明は、上記の点に鑑みてなされたもので、力覚センサ装置の量産性を向上させることができるセンサモジュールの提供を目的とする。
 本センサモジュール(300)は、基板(310)と、前記基板(310)の一方の面に実装され、所定の軸方向の変位を検知するセンサチップ(100)と、前記基板(310)の一方の面に形成された第1電極(313)と前記センサチップ(100)の第2電極(110)とを電気的に接続するボンディングワイヤ(90)と、前記基板(310)の一方の面の周縁に、前記ボンディングワイヤ(90)と離間して設けられた保護枠(320)と、を備える。
 なお、上記括弧内の参照符号は、理解を容易にするために付したものであり、一例にすぎず、図示の態様に限定されるものではない。
 開示の技術によれば、力覚センサ装置の量産性を向上させることができるセンサモジュールを提供できる。
一実施形態に係る力覚センサ装置を例示する斜視図である。 一実施形態に係る力覚センサ装置の蓋板を外した状態を例示する斜視図である。 図2のI-I断面における断面斜視図である。 起歪体の蓋板を外した状態を例示する斜視図である。 一実施形態に係るセンサモジュールを例示する斜視図である。 一実施形態に係るセンサモジュールを例示する平面図である。 一実施形態に係るセンサモジュールを例示する底面図である。 基板を例示する斜視図である。 センサチップをZ軸方向上側から視た斜視図である。 センサチップをZ軸方向上側から視た平面図である。 センサチップをZ軸方向下側から視た斜視図である。 センサチップをZ軸方向下側から視た底面図である。 各軸にかかる力及びモーメントを示す符号を説明する図である。 センサチップのピエゾ抵抗素子の配置を例示する図である。 図14に示すセンサチップの1組の検知ブロックの部分拡大図である。 各ピエゾ抵抗素子を用いた検出回路の一例を示す図(その1)である。 各ピエゾ抵抗素子を用いた検出回路の一例を示す図(その2)である。 Fx入力について説明する図である。 Fy入力について説明する図である。 一実施形態の変形例に係るセンサモジュールの上基板を外した状態を例示する平面図である。 一実施形態の変形例に係るセンサモジュールの上基板を例示する平面図である。 一実施形態の変形例に係るセンサモジュールを例示する平面図である。 図22のII-II断面を示す図である。
 以下、図面を参照して発明を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。
 (力覚センサ装置1)
 図1は、一実施形態に係る力覚センサ装置を例示する斜視図である。図2は、一実施形態に係る力覚センサ装置の蓋板を外した状態を例示する斜視図である。図3は、図2のI-I断面における断面斜視図である。図1~図3を参照すると、力覚センサ装置1は、センサモジュール300と、起歪体200とを有している。力覚センサ装置1は、例えば、工作機械等に使用されるロボットの腕や指等に搭載される多軸の力覚センサ装置である。
 起歪体200は、受力板210と、起歪部220と、入力伝達部230と、蓋板240とを有している。受力板210上に起歪部220が積層され、起歪部220上に入力伝達部230が積層され、入力伝達部230上に蓋板240が積層され、全体として略円筒状の起歪体200を形成している。なお、起歪体200としての機能は主に起歪部220及び入力伝達部230が担っているため、受力板210及び蓋板240は必要に応じて設けられる。
 なお、本実施形態では、便宜上、力覚センサ装置1において、蓋板240側を上側又は一方の側、受力板210側を下側又は他方の側とする。また、各部位の蓋板240側の面を一方の面又は上面、受力板210側の面を他方の面又は下面とする。但し、力覚センサ装置1は天地逆の状態で用いることができ、又は任意の角度で配置することができる。また、平面視とは対象物を蓋板240の上面の法線方向(Z軸方向)から視ることを指し、平面形状とは対象物を蓋板240の上面の法線方向(Z軸方向)から視た形状を指すものとする。
 図2及び図3に示すように、起歪体200の入力伝達部230には、センサモジュール300が取り付けられている。センサモジュール300は、センサチップ100を保持し、起歪体200に対して着脱可能となっている。
 センサチップ100は、所定の軸方向の変位を最大で6軸検知する機能を有している。起歪体200は、印加された力及び/又はモーメントをセンサチップ100に伝達する機能を有している。以降の実施形態では、一例として、センサチップ100が6軸を検知する場合について説明するが、これには限定されず、例えば、センサチップ100は3軸を検知する場合等にも用いることができる。
 図4は、起歪体200の蓋板240を外した状態を例示する斜視図である。図4に示すように、入力伝達部230には、入力伝達部230の下面から起歪部220側に突出する収容部235が設けられている。そして、収容部235の蓋板240側に、センサモジュール300が固定される。センサモジュール300を入力伝達部230に取り付ける際、収容部235によって、高い位置精度で取り付けることができる。
 具体的には、中央部232は、平面視で略リング状の第1連結部234と、第1連結部234の下面から起歪部220側に伸びる略十字状の収容部235とを有している。収容部235は、第1連結部234の内側に設けられており、センサチップ100を収容可能である。
 収容部235は、一端が第1連結部234に接続され、第1連結部234の下面から起歪部220側に垂直に伸びる4つの垂直支持部235aと、垂直支持部235aの下側の端部から水平方向に伸びる4つの水平支持部235bと、水平支持部235bの他端同士を連結する第2連結部235cとを有する。
 収容部235には、蓋板240側に突起する4つの第2接続部235dが配置されている。そして、各々の第2接続部235dは、センサチップ100の力点151~154(後述の図7等参照)の下面と接続される。
 また、収容部235は起歪部220側に入り込んでいる。そして、起歪部220には、入力伝達部230側に突起する5本の柱状の第1接続部224が配置されている。そして、各々の第1接続部224は、センサチップ100の支持部101~105(後述の図9~図12等参照)の下面の少なくとも一部と接続される。
 起歪体200において、受力板210に力やモーメントが印加されると、力やモーメントは受力板210と接続された起歪部220の中央部へ伝達し、例えば、図示しない4つの梁構造で入力に応じた変形が生じる。このとき、起歪部220の外枠部と入力伝達部230は変形しない。
 すなわち、起歪体200において、受力板210と起歪部220の中央部及び梁構造とは、所定の軸方向の力又はモーメントを受けて変形する可動部であり、起歪部220の外枠部は力又はモーメントを受けて変形しない非可動部である。また、非可動部である起歪部220の外枠部と接合される入力伝達部230は、力又はモーメントを受けて変形しない非可動部であり、入力伝達部230と接合される蓋板240も力又はモーメントを受けて変形しない非可動部である。
 起歪体200が力覚センサ装置1に用いられる場合、可動部である起歪部220の中央部に設けられた第1接続部224に、センサチップ100の支持部101~105が接続される。また、非可動部である収容部235に設けられた第2接続部235dに、センサチップ100の力点151~154が接続される。そのため、センサチップ100は、力点151~154が動かずに、支持部101~105を通じて各検知用梁が変形する動作となる。
 ただし、可動部である起歪部220の中央部に設けられた第1接続部224にセンサチップ100の力点151~154が接続され、非可動部である収容部235に設けられた第2接続部235dにセンサチップ100の支持部101~105が接続された構成としてもよい。
 すなわち、収容部235に収容可能なセンサチップ100は、力又はモーメントを受けて互いの相対位置が変化する支持部101~105及び力点151~154を有している。そして、起歪体200において、可動部である起歪部220の中央部は、入力伝達部230側に延伸して支持部101~105及び力点151~154の一方と接続される第1接続部224を備えている。また、収容部235は、支持部101~105及び力点151~154の他方と接続される第2接続部235dを備えている。
 以下、センサモジュール300について詳説する。
 (センサモジュール300)
 図5は、一実施形態に係るセンサモジュール300を例示する斜視図である。図6は、一実施形態に係るセンサモジュール300を例示する平面図である。図7は、一実施形態に係るセンサモジュール300を例示する底面図である。図8は、基板310を例示する斜視図である。
 図5~図7に示すセンサモジュール300は、基板310と、基板310の上面(一方の面)に実装され、所定の軸方向の変位を検知するセンサチップ100とを有する。基板310の上面(一方の面)には、第1電極(ボンディングパッド)313が形成され、第1電極313とセンサチップ100の第2電極110とは、ボンディングワイヤ90によって電気的に接続されている。また、基板310の上面(一方の面)の周縁に、ボンディングワイヤ90と離間して設けられた保護枠320を有する。さらに、基板310の下面(他方の面)に補強板330を有していてもよい。
 センサチップ100は、第2電極110が形成された電極形成面とは反対側に位置する裏面を基板310の上面側に向けて実装されている。
 基板310は、図8示すように、センサチップ100の裏面の一部を露出させる開口部(第1開口部)314を有している。具体的には、開口部314は、後述するセンサチップ100の力点151~154を露出させる。
 基板310の形状は、特に限定されないが、例えば、センサチップ100が実装される実装部311と、実装部311が延設されたアーム部312とを有していてよい。開口部314は、実装部311に設けるとよい。アーム部312を有することにより、センサモジュール300を入力伝達部230に取り付ける際、アーム部312を保持することができ、センサモジュール300を入力伝達部230に容易に取り付けることができる。
 基板310には、位置決め穴315が設けられていてよい。位置決め穴315は、センサモジュール300を入力伝達部230に取り付ける際、入力伝達部230の突起と係合し、位置決め可能な穴である。図8の例では、平面視円形の2つの位置決め穴315が実装部311の中心を挟んで対向して設けられている。
 基板310の厚さは、特に制限はなく、目的に応じて適宜選択できるが、例えば、30μm~500μm程度とすることができる。
 基板310は、フレキシブル基板(FPC)であってよく、リジッド基板であってもよい。フレキシブル基板を構成する材料としては、例えば、PI(ポリイミド)樹脂、エポキシ樹脂、PEEK(ポリエーテルエーテルケトン)樹脂、PEN(ポリエチレンナフタレート)樹脂、PET(ポリエチレンテレフタレート)樹脂、PPS(ポリフェニレンサルファイド)樹脂、ポリオレフィン樹脂等が挙げられる。リジッド基板を構成する材料としては、例えば、ガラスエポキシ樹脂、セラミック等が挙げられる。
 保護枠320は、センサチップ100及びボンディングワイヤ90が、他の部材と接触しないように保護するための部材である。保護枠320は、図5の例では、実装部311の上面の周縁に設けられている。即ち、アーム部312は、保護枠320からはみ出している。保護枠320の上面の位置は、ボンディングワイヤ90の頂部の位置よりも高いことが好ましい。これにより、センサチップ100の電極形成面側に位置する他の部材とボンディングワイヤ90とが接触することを防止することができる。
 保護枠320には、位置決め穴321が設けられていてよい。位置決め穴321は、センサモジュール300を入力伝達部230に取り付ける際、入力伝達部230の突起と係合し、位置決め可能な穴である。図5及び図6の例では、平面視円形の2つの位置決め穴321が保護枠320の中心を挟んで対向して設けられている。
 保護枠320の厚みは、特に制限はなく、目的に応じて適宜選択できるが、センサチップ100の厚み、及びボンディングワイヤ90の頂部の基板310上面からの高さより大きいことが好ましい。保護枠320の厚みは、例えば、700μm~1000μm程度とすることができる。
 保護枠320の材料は、絶縁性の材料であれば特に制限はなく、例えば、PPS(ポリフェニレンサルファイド)樹脂、ガラスエポキシ樹脂等が挙げられる。
 補強板330は、基板310を補強するための部材である。特に、基板310が、フレキシブル基板である場合、補強板330によって基板310が補強されるため、センサチップをダイボンディングやワイヤボンディングを行う際の実装性の向上が望める他、センサモジュール300を入力伝達部230に取り付ける際、容易に取り付けることができる。
 補強板330は、図7に示すように、センサチップ100の裏面の一部を露出させる開口部(第2開口部)331を有している。具体的には、開口部331は、センサチップ100の力点151~154を露出させる。
 補強板330には、位置決め穴332が設けられていてよい。位置決め穴332は、センサモジュール300を入力伝達部230に取り付ける際、入力伝達部230の突起と係合し、位置決め可能な穴である。図7の例では、平面視円形の2つの位置決め穴332が補強板330の中心を挟んで対向して設けられている。基板310の位置決め穴315、保護枠320の位置決め穴321、及び補強板330の位置決め穴332は、平面視で重なり、連通した1つの位置決め穴を構成する。
 補強板330の厚みは、特に制限はなく、目的に応じて適宜選択できるが、センサチップ100の厚みより小さいことが好ましい。補強板330の厚みは、例えば、100μm~500μm程度とすることができる。
 補強板330の材料は、絶縁性の材料であれば特に制限はなく、例えば、PPS(ポリフェニレンサルファイド)樹脂、ガラスエポキシ樹脂等が挙げられる。
 次に、センサモジュール300の組み立て方法について説明する。
 まず、基板310の上面において、開口部314の周縁の四隅に接着剤を塗布する。接着剤としては、例えば、エポキシ系やシリコーン系の樹脂等を用いることができる。次に、センサチップ100を基板310上に開口部314を覆うように配置し、ダイボンディングする。センサチップ100の第2電極110と基板310の第1電極313をボンディングワイヤ90で接続(ワイヤボンディング)する。そして、保護枠320を実装部311の上面の周縁に接着剤で固定する。接着剤としては、上述の接着剤と同様のものを用いることができる。さらに、補強板330を実装部311の下面に接着剤で固定してもよい。
 次に、センサチップ100について詳説する。なお、以下の説明において、『直交』とは、2つの直線や辺等が90°±10°の範囲にある場合を含むものとする。ただし、個別に特別な説明がある場合は、この限りではない。また、『中心』や『中央』は、対象物のおおよその中心や中央を示すものであり、厳密な中心や中央を示すものではない。すなわち、製造誤差程度のばらつきは、許容されるものとする。点対称等についても同様である。
 図9は、センサチップ100をZ軸方向上側から視た斜視図である。図10は、センサチップ100をZ軸方向上側から視た平面図である。図11は、センサチップ100をZ軸方向下側から視た斜視図である。図12は、センサチップ100をZ軸方向下側から視た底面図である。なお、図12において、便宜上、同一高さの面を同一の梨地模様で示している。なお、ここでは、センサチップ100の上面の一辺に平行な方向をX軸方向、垂直な方向をY軸方向、センサチップ100の厚さ方向(センサチップ100の上面の法線方向)をZ軸方向としている。X軸方向、Y軸方向、及びZ軸方向は、互いに直交している。
 図9~図12に示すセンサチップ100は、1チップで最大6軸を検知できるMEMS(Micro Electro Mechanical Systems)センサチップであり、SOI(Silicon On Insulator)基板等の半導体基板から形成されている。センサチップ100の平面形状は、例えば、7000μm角程度の矩形(正方形又は長方形)とすることができる。
 センサチップ100は、柱状の5つの支持部101~105を備えている。支持部101~105の平面形状は、例えば、2000μm角程度の正方形とすることができる。支持部101~104は、矩形のセンサチップ100の四隅に配置されている。支持部105は、矩形のセンサチップ100の中央に配置されている。なお、支持部101~104は本発明に係る第1支持部の代表的な一例であり、支持部105は本発明に係る第2支持部の代表的な一例である。
 支持部101と支持部102との間には、支持部101と支持部102とに両端を固定された(隣接する支持部同士を連結する)枠部112が設けられている。支持部102と支持部103との間には、支持部102と支持部103とに両端を固定された(隣接する支持部同士を連結する)枠部113が設けられている。
 支持部103と支持部104との間には、支持部103と支持部104とに両端を固定された(隣接する支持部同士を連結する)枠部114が設けられている。支持部104と支持部101との間には、支持部104と支持部101とに両端を固定された(隣接する支持部同士を連結する)枠部111が設けられている。
 言い換えれば、4つの枠部111、112、113、及び114が枠状に形成され、各枠部の交点をなす角部が、支持部101、102、103、及び104となる。
 支持部101の内側の角部と、それに対向する支持部105の角部とは、連結部121により連結されている。支持部102の内側の角部と、それに対向する支持部105の角部とは、連結部122により連結されている。
 支持部103の内側の角部と、それに対向する支持部105の角部とは、連結部123により連結されている。支持部104の内側の角部と、それに対向する支持部105の角部とは、連結部124により連結されている。
 すなわち、センサチップ100は、支持部105と支持部101~104とを連結する連結部121~124を有している。連結部121~124は、X軸方向(Y軸方向)に対して斜めに配置されている。つまり、連結部121~124は、枠部111、112、113、及び114と非平行に配置されている。
 支持部101~105、枠部111~114、及び連結部121~124は、例えば、SOI基板の活性層、BOX層、及び支持層から形成することができ、それぞれの厚さは、例えば、400μm~600μm程度とすることができる。
 センサチップ100は、4つの検知ブロックB~Bを有している。また、各々の検知ブロックは、歪検出素子であるピエゾ抵抗素子が配置されたT字型梁構造を3組備えている。ここで、T字型梁構造とは、第1検知用梁と、第1検知用梁の中央部から第1検知用梁と直交する方向に伸びて力点と接続する第2検知用梁とを含む構造を指す。
 なお、検知用梁とは、ピエゾ抵抗素子を配置可能な梁を指すが、必ずしもピエゾ抵抗素子を配置しなくてもよい。つまり、検知用梁は、ピエゾ抵抗素子を配置することで力やモーメントの検出が可能であるが、センサチップ100は、ピエゾ抵抗素子を配置せず、力やモーメントの検出に用いない検知用梁を有してもよい。
 具体的には、検知ブロックBは、T字型梁構造131T、131T、及び131Tを備えている。また、検知ブロックBは、T字型梁構造132T、132T、及び132Tを備えている。また、検知ブロックBは、T字型梁構造133T、133T、及び133Tを備えている。また、検知ブロックBは、T字型梁構造134T、134T、及び134Tを備えている。以下に、より詳しい梁構造の説明を行う。
 検知ブロックBには、平面視において、枠部111の支持部101に近い側と、連結部121の支持部105に近い側とを橋渡しするように、所定間隔を空けて支持部101の支持部104側の辺と平行に第1検知用梁131aが設けられている。また、第1検知用梁131aの長手方向の中央部に一端が接続され、支持部104側に向かって第1検知用梁131aの長手方向と垂直方向に伸びる第2検知用梁131bが設けられている。第1検知用梁131aと第2検知用梁131bとは、T字型梁構造131Tを形成している。
 平面視において、枠部111の支持部104に近い側と、連結部124の支持部105に近い側とを橋渡しするように、所定間隔を空けて支持部104の支持部101側の辺と平行に第1検知用梁131cが設けられている。また、第1検知用梁131cの長手方向の中央部に一端が接続され、支持部101側に向かって第1検知用梁131cの長手方向と垂直方向に伸びる第2検知用梁131dが設けられている。第1検知用梁131cと第2検知用梁131dとは、T字型梁構造131Tを形成している。
 平面視において、連結部121の支持部105に近い側と、連結部124の支持部105に近い側とを橋渡しするように、所定間隔を空けて支持部105の枠部111側の辺と平行に第1検知用梁131eが設けられている。また、第1検知用梁131eの長手方向の中央部に一端が接続され、枠部111側に向かって第1検知用梁131eの長手方向と垂直方向に伸びる第2検知用梁131fが設けられている。第1検知用梁131eと第2検知用梁131fとは、T字型梁構造131Tを形成している。
 第2検知用梁131bと第2検知用梁131dと第2検知用梁131fの他端側同士が接続して接続部141を形成し、接続部141の下面側に力点151が設けられている。力点151は、例えば、四角柱状である。T字型梁構造131T、131T、及び131Tと接続部141及び力点151とにより、検知ブロックBを構成している。
 検知ブロックBにおいて、第1検知用梁131aと第1検知用梁131cと第2検知用梁131fとは平行であり、第2検知用梁131b及び131dと第1検知用梁131eとは平行である。検知ブロックBの各々の検知用梁の厚さは、例えば、30μm~50μm程度とすることができる。
 検知ブロックBには、平面視において、枠部112の支持部102に近い側と、連結部122の支持部105に近い側とを橋渡しするように、所定間隔を空けて支持部102の支持部101側の辺と平行に第1検知用梁132aが設けられている。また、第1検知用梁132aの長手方向の中央部に一端が接続され、支持部101側に向かって第1検知用梁132aの長手方向と垂直方向に伸びる第2検知用梁132bが設けられている。第1検知用梁132aと第2検知用梁132bとは、T字型梁構造132Tを形成している。
 平面視において、枠部112の支持部101に近い側と、連結部121の支持部105に近い側とを橋渡しするように、所定間隔を空けて支持部101の支持部102側の辺と平行に第1検知用梁132cが設けられている。また、第1検知用梁132cの長手方向の中央部に一端が接続され、支持部102側に向かって第1検知用梁132cの長手方向と垂直方向に伸びる第2検知用梁132dが設けられている。第1検知用梁132cと第2検知用梁132dとは、T字型梁構造132Tを形成している。
 平面視において、連結部122の支持部105に近い側と、連結部121の支持部105に近い側とを橋渡しするように、所定間隔を空けて支持部105の枠部112側の辺と平行に第1検知用梁132eが設けられている。また、第1検知用梁132eの長手方向の中央部に一端が接続され、枠部112側に向かって第1検知用梁132eの長手方向と垂直方向に伸びる第2検知用梁132fが設けられている。第1検知用梁132eと第2検知用梁132fとは、T字型梁構造132Tを形成している。
 第2検知用梁132bと第2検知用梁132dと第2検知用梁132fの他端側同士が接続して接続部142を形成し、接続部142の下面側に力点152が設けられている。力点152は、例えば、四角柱状である。T字型梁構造132T、132T、及び132Tと接続部142及び力点152とにより、検知ブロックBを構成している。
 検知ブロックBにおいて、第1検知用梁132aと第1検知用梁132cと第2検知用梁132fとは平行であり、第2検知用梁132b及び132dと第1検知用梁132eとは平行である。検知ブロックBの各々の検知用梁の厚さは、例えば、30μm~50μm程度とすることができる。
 検知ブロックBには、平面視において、枠部113の支持部103に近い側と、連結部123の支持部105に近い側とを橋渡しするように、所定間隔を空けて支持部103の支持部102側の辺と平行に第1検知用梁133aが設けられている。また、第1検知用梁133aの長手方向の中央部に一端が接続され、支持部102側に向かって第1検知用梁133aの長手方向と垂直方向に伸びる第2検知用梁133bが設けられている。第1検知用梁133aと第2検知用梁133bとは、T字型梁構造133Tを形成している。
 平面視において、枠部113の支持部102に近い側と、連結部122の支持部105に近い側とを橋渡しするように、所定間隔を空けて支持部102の支持部103側の辺と平行に第1検知用梁133cが設けられている。また、第1検知用梁133cの長手方向の中央部に一端が接続され、支持部103側に向かって第1検知用梁133cの長手方向と垂直方向に伸びる第2検知用梁133dが設けられている。第1検知用梁133cと第2検知用梁133dとは、T字型梁構造133Tを形成している。
 平面視において、連結部123の支持部105に近い側と、連結部122の支持部105に近い側とを橋渡しするように、所定間隔を空けて支持部105の枠部113側の辺と平行に第1検知用梁133eが設けられている。また、第1検知用梁133eの長手方向の中央部に一端が接続され、枠部113側に向かって第1検知用梁133eの長手方向と垂直方向に伸びる第2検知用梁133fが設けられている。第1検知用梁133eと第2検知用梁133fとは、T字型梁構造133Tを形成している。
 第2検知用梁133bと第2検知用梁133dと第2検知用梁133fの他端側同士が接続して接続部143を形成し、接続部143の下面側に力点153が設けられている。力点153は、例えば、四角柱状である。T字型梁構造133T、133T、及び133Tと接続部143及び力点153とにより、検知ブロックBを構成している。
 検知ブロックBにおいて、第1検知用梁133aと第1検知用梁133cと第2検知用梁133fとは平行であり、第2検知用梁133b及び133dと第1検知用梁133eとは平行である。検知ブロックBの各々の検知用梁の厚さは、例えば、30μm~50μm程度とすることができる。
 検知ブロックBには、平面視において、枠部114の支持部104に近い側と、連結部124の支持部105に近い側とを橋渡しするように、所定間隔を空けて支持部104の支持部103側の辺と平行に第1検知用梁134aが設けられている。また、第1検知用梁134aの長手方向の中央部に一端が接続され、支持部103側に向かって第1検知用梁134aの長手方向と垂直方向に伸びる第2検知用梁134bが設けられている。第1検知用梁134aと第2検知用梁134bとは、T字型梁構造134Tを形成している。
 平面視において、枠部114の支持部103に近い側と、連結部123の支持部105に近い側とを橋渡しするように、所定間隔を空けて支持部103の支持部104側の辺と平行に第1検知用梁134cが設けられている。また、第1検知用梁134cの長手方向の中央部に一端が接続され、支持部104側に向かって第1検知用梁134cの長手方向と垂直方向に伸びる第2検知用梁134dが設けられている。第1検知用梁134cと第2検知用梁134dとは、T字型梁構造134Tを形成している。
 平面視において、連結部124の支持部105に近い側と、連結部123の支持部105に近い側とを橋渡しするように、所定間隔を空けて支持部105の枠部114側の辺と平行に第1検知用梁134eが設けられている。また、第1検知用梁134eの長手方向の中央部に一端が接続され、枠部114側に向かって第1検知用梁134eの長手方向と垂直方向に伸びる第2検知用梁134fが設けられている。第1検知用梁134eと第2検知用梁134fとは、T字型梁構造134Tを形成している。
 第2検知用梁134bと第2検知用梁134dと第2検知用梁134fの他端側同士が接続して接続部144を形成し、接続部144の下面側に力点154が設けられている。力点154は、例えば、四角柱状である。T字型梁構造134T、134T、及び134Tと接続部144及び力点154とにより、検知ブロックBを構成している。
 検知ブロックBにおいて、第1検知用梁134aと第1検知用梁134cと第2検知用梁134fとは平行であり、第2検知用梁134b及び134dと第1検知用梁134eとは平行である。検知ブロックBの各々の検知用梁の厚さは、例えば、30μm~50μm程度とすることができる。
 このように、センサチップ100は、4つの検知ブロック(検知ブロックB~B)を有している。そして、各々の検知ブロックは、支持部101~104のうちの隣接する支持部と、隣接する支持部に連結する枠部及び連結部と、支持部105と、に囲まれた領域に配置されている。平面視で、各々の検知ブロックは、例えば、センサチップの中心に対して点対称に配置することができる。
 また、各々の検知ブロックは、T字型梁構造を3組備えている。各々の検知ブロックにおいて、3組のT字型梁構造は、平面視で、接続部を挟んで第1検知用梁が平行に配置された2組のT字型梁構造と、2組のT字型梁構造の第2検知用梁と平行に配置された第1検知用梁を備えた1組のT字型梁構造とを含む。そして、1組のT字型梁構造の第1検知用梁は、接続部と支持部105との間に配置されている。
 例えば、検知ブロックBでは、3組のT字型梁構造は、平面視で、接続部141を挟んで第1検知用梁131aと第1検知用梁131cとが平行に配置されたT字型梁構造131T及び131Tと、T字型梁構造131T及び131Tの第2検知用梁131b及び131dと平行に配置された第1検知用梁131eを備えたT字型梁構造131Tとを含む。そして、T字型梁構造131Tの第1検知用梁131eは、接続部141と支持部105との間に配置されている。検知ブロックB~Bも同様の構造である。
 力点151~154は、外力が印加される箇所であり、例えば、SOI基板のBOX層及び支持層から形成することができる。力点151~154のそれぞれの下面は、支持部101~105の下面と略面一である。
 このように、力又は変位を4つの力点151~154から取り入れることで、力の種類毎に異なる梁の変形が得られるため、6軸の分離性が良いセンサを実現することができる。力点の数は組み合わされる起歪体の変位入力箇所と同数である。
 なお、センサチップ100において、応力集中を抑制する観点から、内角を形成する部分はR状とすることが好ましい。
 センサチップ100の支持部101~105は起歪体200の非可動部に接続され、力点151~154は起歪体200の可動部に接続される。ただし、可動と非可動との関係が逆であっても力覚センサ装置として機能する。すなわち、センサチップ100の支持部101~105は起歪体200の可動部に接続され、力点151~154は起歪体200の非可動部に接続されてもよい。
 図13は、各軸にかかる力及びモーメントを示す符号を説明する図である。図13に示すように、X軸方向の力をFx、Y軸方向の力をFy、Z軸方向の力をFzとする。また、X軸を軸として回転させるモーメントをMx、Y軸を軸として回転させるモーメントをMy、Z軸を軸として回転させるモーメントをMzとする。
 図14は、センサチップ100のピエゾ抵抗素子の配置を例示する図である。図15は、図14に示すセンサチップの1組の検知ブロックの部分拡大図である。図14及び図15に示すように、4つ力点151~154に対応する各検知ブロックの所定位置には、ピエゾ抵抗素子が配置されている。なお、図14に示す他の検知ブロックにおけるピエゾ抵抗素子の配置は、図15に示す一の検知ブロックにおけるピエゾ抵抗素子の配置と同様である。
 図9~図12、図14、及び図15を参照すると、接続部141及び力点151を有する検知ブロックBにおいて、ピエゾ抵抗素子MzR1'は、第1検知用梁131aにおいて、第2検知用梁131bと第1検知用梁131eとの間に位置する部分の第2検知用梁131bに近い側に配置されている。ピエゾ抵抗素子FxR3は、第1検知用梁131aにおいて、第2検知用梁131bと第1検知用梁131eとの間に位置する部分の第1検知用梁131eに近い側に配置されている。ピエゾ抵抗素子MxR1は、第2検知用梁131bにおいて、接続部141に近い側に配置されている。
 また、ピエゾ抵抗素子MzR2'は、第1検知用梁131cにおいて、第2検知用梁131dと第1検知用梁131eとの間に位置する部分の第2検知用梁131dに近い側に配置されている。ピエゾ抵抗素子FxR1は、第1検知用梁131cにおいて、第2検知用梁131dと第1検知用梁131eとの間に位置する部分の第1検知用梁131eに近い側に配置されている。ピエゾ抵抗素子MxR2は、第2検知用梁131dにおいて、接続部141に近い側に配置されている。
 また、ピエゾ抵抗素子FzR1'は、第2検知用梁131fにおいて、接続部141に近い側に配置されている。ピエゾ抵抗素子FzR2'は、第2検知用梁131fにおいて、第1検知用梁131eに近い側に配置されている。なお、ピエゾ抵抗素子MzR1'、FxR3、MxR1、MzR2'、FxR1、及びMxR2は、各々の検知用梁の長手方向の中心からオフセットした位置に配置されている。
 接続部142及び力点152を有する検知ブロックBにおいて、ピエゾ抵抗素子MzR4は、第1検知用梁132aにおいて、第2検知用梁132bと第1検知用梁132eとの間に位置する部分の第2検知用梁132bに近い側に配置されている。ピエゾ抵抗素子FyR3は、第1検知用梁132aにおいて、第2検知用梁132bと第1検知用梁132eとの間に位置する部分の第1検知用梁132eに近い側に配置されている。ピエゾ抵抗素子MyR4は、第2検知用梁132bにおいて、接続部142に近い側に配置されている。
 また、ピエゾ抵抗素子MzR3は、第1検知用梁132cにおいて、第2検知用梁132dと第1検知用梁132eとの間に位置する部分の第2検知用梁132dに近い側に配置されている。ピエゾ抵抗素子FyR1は、第1検知用梁132cにおいて、第2検知用梁132dと第1検知用梁132eとの間に位置する部分の第1検知用梁132eに近い側に配置されている。ピエゾ抵抗素子MyR3は、第2検知用梁132dにおいて、接続部142に近い側に配置されている。
 また、ピエゾ抵抗素子FzR4は、第2検知用梁132fにおいて、接続部142に近い側に配置されている。ピエゾ抵抗素子FzR3は、第2検知用梁132fにおいて、第1検知用梁132eに近い側に配置されている。なお、ピエゾ抵抗素子MzR4、FyR3、MyR4、MzR3、FyR1、及びMyR3は、各々の検知用梁の長手方向の中心からオフセットした位置に配置されている。
 接続部143及び力点153を有する検知ブロックBにおいて、ピエゾ抵抗素子MzR4'は、第1検知用梁133aにおいて、第2検知用梁133bと第1検知用梁133eとの間に位置する部分の第2検知用梁133bに近い側に配置されている。ピエゾ抵抗素子FxR2は、第1検知用梁133aにおいて、第2検知用梁133bと第1検知用梁133eとの間に位置する部分の第1検知用梁133eに近い側に配置されている。ピエゾ抵抗素子MxR4は、第2検知用梁133bにおいて、接続部143に近い側に配置されている。
 また、ピエゾ抵抗素子MzR3'は、第1検知用梁133cにおいて、第2検知用梁133dと第1検知用梁133eとの間に位置する部分の第2検知用梁133dに近い側に配置されている。ピエゾ抵抗素子FxR4は、第1検知用梁133cにおいて、第2検知用梁133dと第1検知用梁133eとの間に位置する部分の第1検知用梁133eに近い側に配置されている。ピエゾ抵抗素子MxR3は、第2検知用梁133dにおいて、接続部143に近い側に配置されている。
 また、ピエゾ抵抗素子FzR4'は、第2検知用梁133fにおいて、接続部143に近い側に配置されている。ピエゾ抵抗素子FzR3'は、第2検知用梁133fにおいて、第1検知用梁133eに近い側に配置されている。なお、ピエゾ抵抗素子MzR4'、FxR2、MxR4、MzR3'、FxR4、及びMxR3は、各々の検知用梁の長手方向の中心からオフセットした位置に配置されている。
 接続部144及び力点154を有する検知ブロックBにおいて、ピエゾ抵抗素子MzR1は、第1検知用梁134aにおいて、第2検知用梁134bと第1検知用梁134eとの間に位置する部分の第2検知用梁134bに近い側に配置されている。ピエゾ抵抗素子FyR2は、第1検知用梁134aにおいて、第2検知用梁134bと第1検知用梁134eとの間に位置する部分の第1検知用梁134eに近い側に配置されている。ピエゾ抵抗素子MyR1は、第2検知用梁134bにおいて、接続部144に近い側に配置されている。
 また、ピエゾ抵抗素子MzR2は、第1検知用梁134cにおいて、第2検知用梁134dと第1検知用梁134eとの間に位置する部分の第2検知用梁134dに近い側に配置されている。ピエゾ抵抗素子FyR4は、第1検知用梁134cにおいて、第2検知用梁134dと第1検知用梁134eとの間に位置する部分の第1検知用梁134eに近い側に配置されている。ピエゾ抵抗素子MyR2は、第2検知用梁134dにおいて、接続部144に近い側に配置されている。
 また、ピエゾ抵抗素子FzR1は、第2検知用梁134fにおいて、接続部144に近い側に配置されている。ピエゾ抵抗素子FzR2は、第2検知用梁134fにおいて、第1検知用梁134eに近い側に配置されている。なお、ピエゾ抵抗素子MzR1、FyR2、MyR1、MzR2、FyR4、及びMyR2は、各々の検知用梁の長手方向の中心からオフセットした位置に配置されている。
 このように、センサチップ100では、各検知ブロックに複数のピエゾ抵抗素子を分けて配置している。これにより、力点151~154に印加された入力に応じた所定の梁に配置された複数のピエゾ抵抗素子の出力の変化に基づいて、所定の軸方向の力又はモーメントを最大で6軸検知できる。
 なお、センサチップ100において、歪の検出に用いるピエゾ抵抗素子以外に、ダミーのピエゾ抵抗素子が配置されてもよい。ダミーのピエゾ抵抗素子は、検知用梁にかかる応力やブリッジ回路の抵抗のバランスを調整するために用いられ、例えば、歪の検出に用いるピエゾ抵抗素子も含めた全てのピエゾ抵抗素子が、支持部105の中心に対して点対称となるように配置される。
 センサチップ100では、T字型梁構造を構成する第1検知用梁に、X軸方向の変位及びY軸方向の変位を検知する複数のピエゾ抵抗素子を配置している。また、T字型梁構造を構成する第2検知用梁に、Z軸方向の変位を検知する複数のピエゾ抵抗素子を配置している。また、T字型梁構造を構成する第1検知用梁に、Z軸方向のモーメントを検知する複数のピエゾ抵抗素子を配置している。また、T字型梁構造を構成する第2検知用梁に、X軸方向のモーメント及びY軸方向のモーメントを検知する複数のピエゾ抵抗素子を配置している。
 ここで、ピエゾ抵抗素子FxR1~FxR4は力Fxを検出し、ピエゾ抵抗素子FyR1~FyR4は力Fyを検出し、ピエゾ抵抗素子FzR1~FzR4及びFzR1'~FzR4'は力Fzを検出する。また、ピエゾ抵抗素子MxR1~MxR4はモーメントMxを検出し、ピエゾ抵抗素子MyR1~MyR4はモーメントMyを検出し、ピエゾ抵抗素子MzR1~MzR4及びMzR1'~MzR4'はモーメントMzを検出する。
 このように、センサチップ100では、各検知ブロックに複数のピエゾ抵抗素子を分けて配置している。これにより、力点151~154に印加(伝達)された力又は変位の向き(軸方向)に応じた、所定の梁に配置された複数のピエゾ抵抗素子の出力の変化に基づいて、所定の軸方向の変位を最大で6軸検知することができる。また、各検知用梁の厚みと幅を可変することで、検出感度の均一化や、検出感度の向上等の調整を図ることができる。
 なお、ピエゾ抵抗素子の数を減らし、5軸以下の所定の軸方向の変位を検知するセンサチップとすることも可能である。
 センサチップ100において、力及びモーメントは、例えば、以下に説明する検出回路を用いて検出できる。図16及び図17に各ピエゾ抵抗素子を用いた検出回路の一例を示す。図16及び図17において、四角で囲まれた数字は外部出力端子を示している。例えば、No1はFx軸Fy軸Fz軸の電源端子、No2はFx軸出力マイナス端子、No3はFx軸のGND端子、No4はFx軸出力プラス端子である。No19はFy軸出力マイナス端子、No20はFy軸のGND端子、No21はFy軸出力プラス端子である。No22はFz軸出力マイナス端子、No23はFz軸のGND端子、No24はFz軸出力プラス端子である。
 また、No9はMx軸出力マイナス端子、No10はMx軸のGND端子、No11はMx軸出力プラス端子である。No12はMx軸My軸Mz軸の電源端子である。No13はMy軸出力マイナス端子、No14はMy軸のGND端子、No15はMy軸出力プラス端子である。No16はMz軸出力マイナス端子、No17はMz軸のGND端子、No18はMz軸出力プラス端子である。
 次に、検知用梁の変形について説明する。図18は、Fx入力について説明する図である。図19は、Fy入力について説明する図である。図18に示すように、センサチップ100が搭載される起歪体200からの入力がFxである場合、4つの力点151~154の全てが同じ方向(図18の例では右方向)に移動しようとする。同様に、図19に示すように、センサチップ100が搭載される起歪体200からの入力がFyである場合、4つの力点151~154の全てが同じ方向(図19の例では上方向)に移動しようとする。すなわち、センサチップ100では、4つの検知ブロックが存在するが、いずれの検知ブロックにおいても、X軸方向の変位及びY軸方向の変位に対して、すべての力点が同じ方向に移動する。
 センサチップ100では、T字型梁構造の第1検知用梁の中に、入力の変位方向に対して直交する第1検知用梁を1つ以上有し、入力の変位方向に対して直交する第1検知用梁が大きな変形に対応できる。
 Fx入力の検知に使用する梁は、第1検知用梁131a、131c、133a、及び133cであり、いずれも力点から一定距離離れたT字型梁構造の第1検知用梁である。また、Fy入力の検知に使用する梁は、第1検知用梁132a、132c、134a、及び134cであり、いずれも力点から一定距離離れたT字型梁構造の第1検知用梁である。
 Fx入力及びFy入力において、ピエゾ抵抗素子が配置されたT字型梁構造の第1検知用梁が大きく変形することで、入力される力を効果的に検知できる。また、入力の検知に使用しない梁もFx入力及びFy入力の変位に追従して大きく変形可能に設計されているため、大きなFx入力及び/又はFy入力があっても検知用梁が破壊されることがない。
 なお、従来のセンサチップでは、Fx入力及び/又はFy入力に対して大きく変形できない梁が存在していたため、大きなFx入力及び/又はFy入力があった場合には、変形できない検知用梁が破壊されるおそれがあった。センサチップ100では、このような問題を抑制できる。すなわち、センサチップ100では、様々な方向の変位に対する梁の破壊耐性を向上できる。
 このように、センサチップ100は、入力の変位方向に対して直交する第1検知用梁を1つ以上有し、入力の変位方向に対して直交する第1検知用梁が大きく変形できる。そのため、Fx入力及びFy入力を効果的に検知できると共に、大きなFx入力及び/又はFy入力があっても検知用梁が破壊されることがない。その結果、センサチップ100は、大きな定格にも対応でき、測定範囲や耐荷重の向上が可能となる。例えば、センサチップ100では、定格を従来の10倍程度である500Nとすることも可能である。
 また、各検知ブロックにおいて力点から3方向へ繋がるT字型梁構造が入力によって異なる変形をするため、多軸の力を分離性良く検出できる。
 また、梁がT字型であるため、梁から枠部や連結部へ至る経路が多いため、配線をセンサチップの外周部へ引き回すことが容易となり、レイアウト自由度を向上できる。
 センサチップ100では、Z軸方向のモーメントに対しては、各力点を挟んで対向して配置された第1検知用梁131a、131c、132a、132c、133a、133c、134a、及び134cが大きく変形する。従って、これらの第1検知用梁の一部又は全部にピエゾ抵抗素子を配置できる。
 また、Z軸方向の変位に対しては、主に、各力点に直接繋がる第2検知用梁131b、131d、131f、132b、132d、132f、133b、133d、133f、134b、134d、及び134fが大きく変形する。従って、これらの第2検知用梁の一部又は全部にピエゾ抵抗素子を配置できる。
 以上のように、センサモジュール300によって、基板310とセンサチップ100とを予めワイヤボンディングすることができるため、例えば、センサチップ100に対して起歪体200のサイズが非常に大きい場合であっても、一般的な半導体実装装置を用いてセンサチップ100をセンサモジュール300として起歪体200に取り付けることができる。よって、センサモジュール300は、力覚センサ装置1の量産性を向上させることができる。
 また、センサモジュール300によって、基板310とセンサチップ100とを予めワイヤボンディングすることができるため、センサチップ100を起歪体200に直接取り付ける場合と比較して、ワイヤボンディングの難易度を低くすることができ、ワイヤボンディングの品質を向上させることができる。
 さらに、基板310が開口部314を有することにより、センサチップ100の力点151~154を露出させることができるため、力点151~154は、入力伝達部230の第2接続部235dに直接接続できる。よって、基板310がセンサチップ100と起歪体200との接続を妨げることはなく、力覚センサ装置1は、センサチップ100を起歪体200に直接取り付ける場合と同等の力覚特性を発揮することができる。
 補強板330も、基板310と同様に開口部331を有することにより、センサチップ100の力点151~154を露出させることができるため、力点151~154は、入力伝達部230の第2接続部235dに直接接続できる。よって、補強板330がセンサチップ100と起歪体200との接続を妨げることはなく、力覚センサ装置1は、センサチップ100を起歪体200に直接取り付ける場合と同等の力覚特性を発揮することができる。
 また、センサモジュール300の形態で検査を行うことができるため、検査を簡便に行うことができる。検査で不良と判定された場合においても、比較的高価な起歪体200に組み付ける前の段階でセンサモジュール300として排除できるため、最終的な廃棄コストを低減することができる。
(センサモジュール300の変形例)
 図20は、一実施形態の変形例に係るセンサモジュール400の上基板412を外した状態を例示する平面図である。図21は、一実施形態の変形例に係るセンサモジュール400の上基板412を例示する平面図である。図22は、一実施形態の変形例に係るセンサモジュール400を例示する平面図である。図23は、図22のII-II断面を示す図である。
 図20~図23に示すセンサモジュール400は、図5~図8に示すセンサモジュール300と、保護枠を有しない点、及び基板の構造が異なる点で異なる。センサモジュール400は、図20に示すようにキャビティ415を有する実装基板411と、実装基板411のキャビティ415内に実装され、所定の軸方向の変位を検知するセンサチップ100と、実装基板411及びセンサチップ100を覆う上基板412とを有する。センサチップ100は、第2電極110が形成された電極形成面とは反対側に位置する裏面をキャビティ415の底面側に向けて実装されている。実装基板411は、図23に示すようにセンサチップ100の力点151~154を露出させる開口部416を備えていることが好ましい。
 上基板412は、図21に示すようにセンサチップ100の第2電極110を露出させる開口部413を有する。上基板412の上面(一方の面)には、図22に示すように第1電極(ボンディングパッド)414が形成され、第1電極414とセンサチップ100の第2電極110とは、ボンディングワイヤ90によって電気的に接続されている。第1電極414は、ワイヤボンディングにおける第1電極414と第2電極110との距離を短くする観点から、開口部413の周縁部に設けられていることが好ましい。上基板412の上面には、例えば、フレキシブルフラットケーブル(FFC)等の配線部材を接続してもよい。
 実装基板411及び上基板412の厚さ、並びに、実装基板411及び上基板412を構成する材料は、センサモジュール300の基板310と同様のものを適用することができる。
 以上、好ましい実施形態について詳説したが、上述した実施形態に制限されることはなく、特許請求の範囲に記載された範囲を逸脱することなく、上述した実施形態に種々の変形及び置換を加えることができる。
 例えば、上述した実施形態では、起歪体を被測定物にネジで締結する例を説明したが、これに限定されず、起歪体を被測定物に固定できる締結具であれば、例えば、ボルト、リベットなど種々を使用することができる。
 本国際出願は2022年1月25日に出願した日本国特許出願2022-009568号に基づく優先権を主張するものであり、日本国特許出願2022-009568号の全内容を本国際出願に援用する。
 1 力覚センサ装置、90 ボンディングワイヤ、100 センサチップ、101~105 支持部、110 第2電極、111~114 枠部、121~124 連結部、131a、131c、131e、131g、132a、132c、132e、133a、133c、133e、134a、134c、134e 第1検知用梁、131b、131d、131f、131h、132b、132d、132f、133b、133d、133f、134b、134d、134f 第2検知用梁、131T、131T、131T、131T、132T、132T、132T、133T、133T、133T、134T、134T、134T T字型梁構造、141~144 接続部、151~154 力点、200 起歪体、210 受力板、238 ネジ穴、220 起歪部、224 第1接続部、230 入力伝達部、232 中央部、234 第1連結部、235 収容部、235a 垂直支持部、235b 水平支持部、235c 第2連結部、235d 第2接続部、238 ネジ穴、240 蓋板、300、400 センサモジュール、310 基板、311 実装部、312 アーム部、313、414 第1電極、314 第1開口部、320 保護枠、315、321、332 位置決め穴、330 補強板、331 第2開口部、411 実装基板、412 上基板、413、416 開口部、415 キャビティ

Claims (9)

  1.  基板と、
     前記基板の一方の面に実装され、所定の軸方向の変位を検知するセンサチップと、
     前記基板の一方の面に形成された第1電極と前記センサチップの第2電極とを電気的に接続するボンディングワイヤと、
     前記基板の一方の面の周縁に、前記ボンディングワイヤと離間して設けられた保護枠と、を備えた、センサモジュール。
  2.  前記保護枠の上面の位置は、前記ボンディングワイヤの頂部の位置よりも高い、請求項1に記載のセンサモジュール。
  3.  前記センサチップは、前記第2電極が形成された電極形成面と、前記電極形成面とは反対側に位置する裏面と、を備え、前記裏面を前記基板の一方の面側に向けて実装され、
     前記基板は、前記センサチップの前記裏面の一部を露出させる第1開口部を有する、請求項2に記載のセンサモジュール。
  4.  前記センサチップは、外力が印加される力点を有し、
     前記力点は、前記第1開口部から露出している、請求項3に記載のセンサモジュール。
  5.  前記基板の他方の面に補強板が設けられ、
     前記補強板は、前記力点を露出させる第2開口部を有する、請求項4に記載のセンサモジュール。
  6.  前記基板は、前記センサチップが実装される実装部と、前記実装部が延設されたアーム部とを有する、請求項5に記載のセンサモジュール。
  7.  所定の軸方向の力又はモーメントを受けて変形する可動部、及び前記力又は前記モーメントを受けて変形しない非可動部、を備えた起歪部と、前記非可動部と接合され、前記力又は前記モーメントを受けて変形しない入力伝達部と、を有する起歪体と、
     前記入力伝達部に固定された、請求項1乃至6のいずれか一項に記載のセンサモジュールと、を有する力覚センサ装置。
  8.  前記入力伝達部は、接続部を有し、
     前記接続部は、前記センサチップの力点と接続される、請求項7に記載の力覚センサ装置。
  9.  前記入力伝達部は、前記センサモジュールを収容可能な収容部を有する、請求項8に記載の力覚センサ装置。
PCT/JP2023/001359 2022-01-25 2023-01-18 センサモジュール、及び力覚センサ装置 WO2023145576A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380014426.XA CN118235029A (zh) 2022-01-25 2023-01-18 传感器模块以及力传感器装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-009568 2022-01-25
JP2022009568A JP2023108438A (ja) 2022-01-25 2022-01-25 センサモジュール、及び力覚センサ装置

Publications (1)

Publication Number Publication Date
WO2023145576A1 true WO2023145576A1 (ja) 2023-08-03

Family

ID=87471800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001359 WO2023145576A1 (ja) 2022-01-25 2023-01-18 センサモジュール、及び力覚センサ装置

Country Status (3)

Country Link
JP (1) JP2023108438A (ja)
CN (1) CN118235029A (ja)
WO (1) WO2023145576A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003010651A1 (fr) * 2001-07-27 2003-02-06 Elantech Devices Corporation Appareil de saisie et son procede de fabrication
JP2008190865A (ja) * 2007-01-31 2008-08-21 Honda Motor Co Ltd 力覚センサ
US20130247690A1 (en) * 2012-03-23 2013-09-26 Honeywell International Inc. Force sensor
JP2016217804A (ja) * 2015-05-18 2016-12-22 タッチエンス株式会社 多軸触覚センサ及び多軸触覚センサの製造法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003010651A1 (fr) * 2001-07-27 2003-02-06 Elantech Devices Corporation Appareil de saisie et son procede de fabrication
JP2008190865A (ja) * 2007-01-31 2008-08-21 Honda Motor Co Ltd 力覚センサ
US20130247690A1 (en) * 2012-03-23 2013-09-26 Honeywell International Inc. Force sensor
JP2016217804A (ja) * 2015-05-18 2016-12-22 タッチエンス株式会社 多軸触覚センサ及び多軸触覚センサの製造法

Also Published As

Publication number Publication date
CN118235029A (zh) 2024-06-21
JP2023108438A (ja) 2023-08-04

Similar Documents

Publication Publication Date Title
CN108827521B (zh) 力传感器装置
KR100879958B1 (ko) 멀티 레인지 3축 가속도 센서장치
US9632105B2 (en) Angular velocity sensor for suppressing fluctuation of detection sensitivity
CN112747855A (zh) 力觉传感器装置
WO2018066557A1 (ja) センサチップ、起歪体、力覚センサ装置
JP6919964B2 (ja) センサチップ及び力覚センサ装置
JP6940037B2 (ja) 力覚センサ装置
EP4019923A1 (en) Strain inducing body and force sensor device
EP4019922A1 (en) Sensor chip and force sensor device
WO2023145576A1 (ja) センサモジュール、及び力覚センサ装置
CN115112286A (zh) 应变体、力传感器装置
JP2022142117A (ja) センサチップ、力覚センサ装置
WO2020158189A1 (ja) 力覚センサ装置
JP6957823B2 (ja) センサチップ及び力覚センサ装置
EP4060304A1 (en) Strain body and force sensor apparatus
JP2022142118A (ja) センサチップ、力覚センサ装置
JP2022144822A (ja) 起歪体、力覚センサ装置
JP2022144824A (ja) 起歪体、力覚センサ装置
JP2023023688A (ja) 力覚センサ装置
JP2023023689A (ja) 力覚センサ装置
JP2022144823A (ja) 起歪体、力覚センサ装置
JP6919965B2 (ja) センサチップ及び力覚センサ装置
CN113376403B (zh) 一种有冗余功能的mems加速度计检测模块及其制作方法
JP2022047296A (ja) 減衰機構、力検出器
JP2023110338A (ja) 振動デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746790

Country of ref document: EP

Kind code of ref document: A1