WO2023145505A1 - 生成装置 - Google Patents

生成装置 Download PDF

Info

Publication number
WO2023145505A1
WO2023145505A1 PCT/JP2023/000955 JP2023000955W WO2023145505A1 WO 2023145505 A1 WO2023145505 A1 WO 2023145505A1 JP 2023000955 W JP2023000955 W JP 2023000955W WO 2023145505 A1 WO2023145505 A1 WO 2023145505A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyzed water
water
flow rate
adjusting means
discharge
Prior art date
Application number
PCT/JP2023/000955
Other languages
English (en)
French (fr)
Inventor
洋 内海
Original Assignee
株式会社アクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アクト filed Critical 株式会社アクト
Publication of WO2023145505A1 publication Critical patent/WO2023145505A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a generator equipped with an electrolytic cell that generates acidic water and alkaline water.
  • This conventional electrolyzed water generator discharges the acidic electrolyzed water and the alkaline electrolyzed water generated in the electrolyzer through pipes.
  • Mixed water neutral water is generated by combining the generated acidic electrolyzed water and alkaline electrolyzed water.
  • the above-described electrolyzed water generator requires pipes for discharging the acidic electrolyzed water and the alkaline electrolyzed water, and a valve for joining them. , a tank, etc., are required separately, requiring an arrangement space.
  • the generating device adjusts an electrolytic cell for generating acidic electrolyzed water and alkaline electrolyzed water, and discharge and confluence of the acidic electrolyzed water and the alkaline electrolyzed water generated in the electrolytic cell.
  • one and the other flow rate adjusting means for adjusting the flow rates of the acidic electrolyzed water and the alkaline electrolyzed water that are merged by the adjusting means, and the acid generated by adjusting the flow rate by the flow rate adjusting means It is generated by confluence of one and the other surplus discharge parts for discharging surplus electrolyzed water and the alkaline electrolyzed water, the acidic electrolyzed water, the alkaline electrolyzed water, and the acidic electrolyzed water and the alkaline electrolyzed water. and a discharge part capable of discharging the mixed water separately.
  • the generator according to claim 2 is the generator according to claim 1, wherein the discharge part capable of discharging the acidic electrolyzed water is connected to the one adjustment means, and the discharge capable of discharging the alkaline electrolyzed water is connected to the one adjusting means. is connected to the other adjustment means, and the discharge part capable of discharging the mixed water is connected to a flow path between the one flow rate adjustment means and the other flow rate adjustment means, and is connected to the one flow rate adjustment means.
  • the surplus discharge section is connected to a flow path between the one adjustment means and the one flow rate adjustment means, and the other surplus discharge section is connected between the other adjustment means and the other flow rate adjustment means. is connected to the flow path of
  • the generator according to claim 3 is the generator according to claim 1 or 2, wherein the mixing ratio of the acidic electrolyzed water and the alkaline electrolyzed water in the mixed water can be arbitrarily set.
  • the generating apparatus is the generating apparatus according to claim 1 or 2, wherein the electrolytic cell, the one and the other adjusting means, and the one and the other flow rate adjusting means are arranged in a main body part. and sensors arranged outside the main body at positions corresponding to the respective discharge parts and detecting proximity or contact with an object outside the main body, and corresponding to the sensor in response to detection by the sensor. and a control unit for controlling the operation of the adjusting means and the flow rate adjusting means so as to discharge the acidic electrolyzed water, the alkaline electrolyzed water, or the mixed water corresponding to the discharging part from the discharging part. be.
  • acidic electrolyzed water, alkaline electrolyzed water, and mixed water can be easily and individually obtained in a space-saving manner.
  • FIG. 3 is an explanatory diagram of a generation device according to one embodiment
  • 1 indicates a generator that generates electrolyzed water (electrolyzed water generator).
  • the generator 1 is, for example, a device (hypochlorous acid water generator) that generates electrolyzed water by electrolysis of salt water, which is an electrolytic solution.
  • the generation device 1 includes a main body 3.
  • An electrolytic bath (electrolytic cell) 5 is arranged in the body portion 3 .
  • the electrolytic cell 5 has a chamber, electrodes (cathode, anode) and an ion-exchange membrane arranged in the chamber, and electrolyzes an internal electrolytic solution to generate acidic electrolyzed water and alkaline electrolyzed water.
  • the electrolytic cell 5 uses water (for example, tap water passed through a water softener), which is electrolyzed raw water, continuously supplied from the outside of the main body 3 and an electrolytic solution, and continuously produces electrolyzed water. It is a continuous type that is generated continuously.
  • a water supply unit such as a pump for pumping up water or electrolyte from a supply source of water or electrolyte outside the main body 3 to the electrolytic bath 5 may be provided outside the main body 3 or may be provided on the main body 3 . It can be inside.
  • a power supply is connected to the electrodes.
  • a power source applies a negative voltage to the cathode and a positive voltage to the anode.
  • the electrolyzed water generated in the electrolytic bath 5 is discharged from the electrolytic bath 5 through the piping parts 7 and 8.
  • the pipe portions 7 and 8 are arranged in the body portion 3 .
  • One pipe portion 7 is connected to the anode chamber and discharges the acidic electrolyzed water from the electrolytic cell 5 .
  • the other pipe portion 8 is connected to the cathode chamber and discharges alkaline electrolyzed water from the electrolytic cell 5 .
  • Adjusting means 10 and 11 are connected to the pipe portions 7 and 8 .
  • the adjusting means 10 and 11 are arranged on the body portion 3 .
  • Adjusting means 10 and 11 adjust discharge and merging of the acidic electrolyzed water and the alkaline electrolyzed water generated in the electrolytic cell 5, respectively.
  • the adjustment means 10 and 11 may arbitrarily set the discharge ratio and the confluence ratio of the acidic electrolyzed water and the alkaline electrolyzed water. It is a switching means (switching valve) for alternatively setting merging and merging.
  • the adjusting means 10 and 11 are connected to the discharge portions 13 and 14 for discharging the electrolyzed water from the main body portion 3 to the outside, and the confluence portions 15 and 16 for joining the electrolyzed water, and pass through the pipe portions 7 and 8.
  • the electrolyzed water is switched so as to be alternatively sent to the discharge parts 13, 14 and the confluence parts 15, 16.
  • the discharge part 13 is a discharge part for acidic electrolyzed water
  • the discharge part 14 is a discharge part for alkaline electrolyzed water.
  • the confluence portions 15 and 16 are connected to each other, and are also connected to a discharge portion 17 that discharges the mixed water generated by the confluence of the electrolyzed water from the body portion 3 to the outside at the mutual connection position.
  • the discharge part 17 is a mixed water discharge part. Therefore, in the present embodiment, the electrolyzed water is alternatively sent to the discharging portions 13, 14 and 17 by the adjustment means 10 and 11. FIG.
  • flow rate adjusting means (flow rate adjusting valves) 20 and 21 for adjusting the flow rate (flow rate per unit time) of the electrolyzed water merged by the adjusting means 10 and 11 are arranged in the confluence portions 15 and 16 .
  • the flow rate adjusting means 20 and 21 are arranged in the body portion 3 .
  • the flow rate of the electrolyzed water joined by the flow rate adjusting means 20 and 21, that is, the mixing ratio of the acidic electrolyzed water and the alkaline electrolyzed water may be fixed at a predetermined amount (predetermined ratio), or may be arbitrarily set by the user. It may be settable.
  • surplus discharge portions 23 and 24 for discharging surplus electrolyzed water to the outside of the main body portion 3 are provided between the adjustment means 10 and 11 and the flow rate adjustment means 20 and 21 in the junction portions 15 and 16 . is connected.
  • the surplus discharge parts 23 and 24 are overflow drain pipes for overflowing electrolyzed water that is not flowed to the discharge part 17 by the flow rate adjusting means 20 and 21 .
  • the drain ports 30, 31, 32 at the downstream ends of the discharge parts 13, 14, 17 are arranged on the outer surface part of the main body part 3 and exposed to the outside.
  • Valve bodies such as faucets may be arranged at the drain ports 30, 31, and 32, for example.
  • Sensors 35 , 36 , 37 are arranged near the drain ports 30 , 31 , 32 . That is, sensors 35, 36, and 37 are provided corresponding to the discharge sections 13, 14, and 17, respectively.
  • Sensors 35, 36, and 37 detect an object (supplied portion) such as a user's hand or a container.
  • the sensors 35, 36, 37 may be non-contact sensors or contact sensors.
  • the sensors 35 , 36 and 37 are electrically connected to the controller 40 .
  • the control unit 40 generates signals for controlling the operations of at least the adjusting means 10 and 11 using the detections of the sensors 35, 36, and 37 as triggers, and detects the supplied portions near the sensors 35, 36, and 37.
  • the adjustment means 10, 11 are operated so as to supply water from the drain ports 30, 31, 32 that are connected to the water.
  • the control unit 40 generates signals for controlling the operation of the water supply unit, the power supply unit, the adjusting means 10 and 11, and the flow rate adjusting means 20 and 21 of the electrolytic cell 5, and controls these to the supplied parts. Water is supplied from the drain ports 30, 31, 32 located near the sensors 35, 36, 37 detected.
  • the control section 40 is arranged in the main body section 3 .
  • the generator 1 electrolyzes the electrolytic solution by supplying power from the power supply unit to the electrodes.
  • water is decomposed as follows in the chamber where the cathode is arranged to obtain alkaline electrolyzed water, for example, caustic soda water.
  • chlorine ions are reduced as follows, chlorine gas is generated, and reacts with water to produce acidic electrolyzed water, such as hypochlorous acid water (discharged bacteria water).
  • the acidic electrolyzed water and the alkaline electrolyzed water generated in the electrolytic cell 5 are discharged to the outside of the main body 3 from discharge sections 13 and 14 via pipe sections 7 and 8 and adjustment means 10 and 11 .
  • Mixed water in which the acidic electrolyzed water and the alkaline electrolyzed water are mixed is discharged from the discharge portion 17 to the outside of the main body portion 3 .
  • the mixed water is, for example, hypochlorous acid water (neutral water) whose pH is controlled to be near neutral.
  • any one of the sensors 35, 36, and 37 detects the supplied portion, and a signal is generated by the control portion 40 in response to this detection.
  • the water supply portion, The adjusting means 10, 11 and the flow rate adjusting means 20, 21 operate to supply raw electrolytic water and electrolytic solution from the water supply unit to the electrolytic cell 5 to electrolyze the electrolytic solution, and the electrolytic water generated by this electrolysis is
  • the adjusting means 10 and 11 and the flow rate adjusting means 21 operate so as to discharge from the drain ports 30, 31 and 32 corresponding to the sensors 35, 36 and 37 that have detected the parts to be supplied.
  • the water supply unit operates to supply electrolytic raw water and electrolytic solution to the electrolytic cell 5 , and the power supply unit operates to supply power to the electrodes of the electrolytic cell 5 .
  • acidic electrolyzed water and alkaline electrolyzed water are generated by electrolysis as described above, and the acidic electrolyzed water and the alkaline electrolyzed water are discharged from the electrolytic cell 5 through the piping parts 7 and 8 .
  • the acidic electrolyzed water is supplied from the drain port 30 to the supply receiving part by the adjustment means 10 operating to flow the acidic electrolyzed water to the discharge part 13 according to the signal generated by the control part 40 .
  • the adjusting means 11 operates to flow the alkaline electrolyzed water to the confluence section 16 and the flow rate adjusting means 21 closes according to the signal generated by the control section 40. Thus, it is discharged from the surplus discharge unit 24 .
  • the water supply unit operates to supply electrolytic raw water and electrolytic solution to the electrolytic cell 5
  • the power supply unit operates to supply power to the electrodes of the electrolytic cell 5 .
  • acidic electrolyzed water and alkaline electrolyzed water are generated by electrolysis as described above, and the acidic electrolyzed water and the alkaline electrolyzed water are discharged from the electrolytic cell 5 through the pipes 7 and 8 .
  • Alkaline electrolyzed water is supplied from the drain port 31 to the supply receiving part by the adjustment means 11 operating to flow the alkaline electrolyzed water to the discharge part 14 according to the signal generated by the control part 40 .
  • the adjustment means 10 operates to flow the acidic electrolyzed water to the confluence section 15 and the flow adjustment means 20 closes according to the signal generated by the control section 40. Thus, it is discharged from the surplus discharge unit 23 .
  • the sensor 37 detects it, and a signal is generated from the control part 40 in response to this detection.
  • the water supply unit operates to supply electrolytic raw water and electrolytic solution to the electrolytic cell 5 and the power supply unit operates to supply power to the electrodes of the electrolytic cell 5 .
  • acidic electrolyzed water and alkaline electrolyzed water are generated by electrolysis as described above, and the acidic electrolyzed water and the alkaline electrolyzed water are discharged from the electrolytic cell 5 through the piping parts 7 and 8 .
  • the adjusting means 10, 11 operate to flow the acidic electrolyzed water and the alkaline electrolyzed water to the confluence parts 15, 16, and the flow rate adjusting means 20, 21 are set to a predetermined open state.
  • the acidic electrolyzed water and the alkaline electrolyzed water are adjusted in flow rate and flow to the discharge section 17, whereby mixed water is supplied from the drain port 32 to the supply receiving section.
  • the surpluses of the acidic electrolyzed water and the alkaline electrolyzed water generated by the flow rate adjustment by the flow rate adjusting means 20 and 21 are discharged from surplus discharge sections 23 and 24, respectively.
  • control unit 40 performs acidic electrolysis after a predetermined time has elapsed since the sensors 35, 36, and 37 no longer detect the supplied portions, or after a predetermined operation such as operation of a stop button is performed. Generate a signal to stop the water supply unit, power supply unit, adjusting means 10, 11, and flow rate adjusting means 20, 21 of the electrolytic cell 5 so as to stop the supply of water, alkaline electrolyzed water, or mixed water, and stop them.
  • the electrolytic cell 5 and the adjusting means 10 and 11 for switching between discharge and merging of the acidic electrolyzed water and the alkaline electrolyzed water generated in the electrolytic cell 5 are included in the main body.
  • the electrolyzed acidic water, the electrolyzed alkaline water, and the mixed water generated by the confluence of the electrolyzed acidic water and the electrolyzed alkaline water are discharged from the main body 3 by separate discharge units 13, 14, and 17, respectively.
  • the acidic electrolyzed water, the alkaline electrolyzed water, and the mixed water can be easily and separately obtained from the discharge units 13, 14, and 17. In other words, it is possible to realize a compact generation device 1 capable of separately obtaining acidic electrolyzed water, alkaline electrolyzed water, and mixed water.
  • Desired water can be easily obtained.
  • Sensors 35, 36, and 37 are arranged corresponding to the discharge units 13, 14, and 17, and in response to detection by the sensors 35, 36, and 37, the control unit 40 controls discharge corresponding to the sensors 35, 36, and 37.
  • the control unit 40 controls discharge corresponding to the sensors 35, 36, and 37.
  • the flow rate adjusting means 20, 21, the surplus discharging units 23, 24, and the sensors 35, 36, 37 are not essential components.
  • control unit 40 operates the adjusting means 10 and 11 so as to discharge water from any one of the discharge units 13, 14 and 17 in response to the detection of the object (supplied portion) by the sensors 35, 36 and 37.
  • Any one of the ejection units 13, 14, and 17 is controlled in response to reception of an externally input signal, such as a signal input by operation means such as a button or a remote controller, or a signal input by voice or the like.
  • the operation of the adjustment means 10, 11 may be controlled so as to drain water from the hook.
  • control unit 40 controls the discharge units 13, 14, and 17 Therefore, it is also possible to perform control so that any two or more of the acidic electrolyzed water, the alkaline electrolyzed water, and the combined water are discharged at the same time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

省スペースで、酸性電解水、アルカリ性電解水、及び、混合水を容易に個別に得ることができる生成装置を提供する。生成装置(1)は、酸性電解水とアルカリ性電解水とを生成する電解槽(5)と、電解槽(5)で生成される酸性電解水とアルカリ性電解水との排出と合流とを調整する調整手段(10),(11)と、調整手段(10),(11)により合流される酸性電解水及びアルカリ性電解水の流量を調整する一方及び他方の流量調整手段(20),(21)と、酸性電解水と、アルカリ性電解水と、酸性電解水とアルカリ性電解水との合流により生成される混合水と、をそれぞれ別個に排出可能な排出部(13),(14),(17)と、を備える。

Description

生成装置
 本発明は、酸性水とアルカリ性水とを生成する電解槽を備える生成装置に関するものである。
 従来、例えば下記の特許文献1及び2に記載された電解水生成装置が知られている。
 この従来の電解水生成装置は、電解槽で生成された酸性電解水とアルカリ性電解水とをそれぞれ配管によって排出する。また、生成された酸性電解水とアルカリ性電解水とを合流させることで混合水(中性水)を生成する。
特開2019-5679号公報 特開2021-169084号公報
 上述のような電解水生成装置は、酸性電解水とアルカリ性電解水と混合水とを個別に得ようとすると、酸性電解水とアルカリ性電解水とを排出する配管と、それらを合流させるためのバルブやタンク等と、が別途必要となり、配置スペースを要する。また、生成装置を設置した後で、配管やバルブ、タンク等の外付けの手間が掛かる。
 本発明は、このような点に鑑みなされたもので、省スペースで、酸性電解水、アルカリ性電解水、及び、混合水を容易に個別に得ることができる生成装置を提供することを目的とする。
 請求項1記載の生成装置は、酸性電解水とアルカリ性電解水とを生成する電解槽と、前記電解槽で生成される前記酸性電解水と前記アルカリ性電解水との排出と合流とを調整する一方及び他方の調整手段と、前記調整手段により合流される前記酸性電解水及び前記アルカリ性電解水の流量を調整する一方及び他方の流量調整手段と、前記流量調整手段により流量が調整されて生じる前記酸性電解水及び前記アルカリ性電解水の余剰分を排出する一方及び他方の余剰排出部と、前記酸性電解水と、前記アルカリ性電解水と、前記酸性電解水と前記アルカリ性電解水との合流により生成される混合水と、をそれぞれ別個に排出可能な排出部とを備えるものである。
 請求項2記載の生成装置は、請求項1記載の生成装置において、前記酸性電解水を排出可能な前記排出部は、前記一方の調整手段に接続され、前記アルカリ性電解水を排出可能な前記排出部は、前記他方の調整手段に接続され、前記混合水を排出可能な前記排出部は、前記一方の流量調整手段と前記他方の流量調整手段との間の流路に接続され、前記一方の余剰排出部は、前記一方の調整手段と前記一方の流量調整手段との間の流路に接続され、前記他方の余剰排出部は、前記他方の調整手段と前記他方の流量調整手段との間の流路に接続されているものである。
 請求項3記載の生成装置は、請求項1又は2記載の生成装置において、前記混合水における前記酸性電解水と前記アルカリ性電解水との混合比率は、任意に設定可能であるものである。
 請求項4記載の生成装置は、請求項1又は2記載の生成装置において、前記電解槽と、前記一方及び他方の調整手段と、前記一方及び他方の流量調整手段と、が配置される本体部と、前記本体部の外部における前記各排出部に対応する位置にそれぞれ配置され、前記本体部の外部の物体の近接又は接触を検出するセンサと、前記センサの検出に応じて、そのセンサに対応する前記排出部から当該排出部に対応する前記酸性電解水、前記アルカリ性電解水又は前記混合水を排出させるように前記調整手段及び前記流量調整手段の動作を制御する制御部と、を備えるものである。
 本発明によれば、省スペースで、酸性電解水、アルカリ性電解水、及び、混合水を容易に個別に得ることができる。
一実施の形態に係る生成装置の説明図である。
 本発明の一実施の形態について、図1を参照して説明する。
 図1において、1は電解水を生成する生成装置(電解水生成装置)を示す。生成装置1は、例えば電解液である食塩水の電解によって電解水を生成する装置(次亜塩素酸水生成装置)である。
 この生成装置1は、本体部3を備える。本体部3には、電解槽(電解セル)5が配置されている。電解槽5は、室、室内に配置された電極(陰極、陽極)及びイオン交換膜を有し、内部の電解液を電気分解して酸性電解水とアルカリ性電解水とを生成する。本実施の形態において、電解槽5は、本体部3の外部から連続的に供給される電解原水である水(例えば軟水器を通った水道水等)と電解液とを用い、電解水を連続的に生成する連続式のものである。本体部3の外部にある水や電解液の供給源からの水や電解液を電解槽5へと汲み上げるポンプ等の給水部は、本体部3の外部にあってもよいし、本体部3の内部にあってもよい。電極には、電源部が接続されている。電源部により、陰極には負電圧が印加され、陽極には正電圧が印加される。
 電解槽5で生成された電解水は、電解槽5から配管部7,8を通って排出される。配管部7,8は、本体部3に配置される。一方の配管部7は、陽極室に接続され、酸性電解水を電解槽5から排出する。他方の配管部8は、陰極室に接続され、アルカリ性電解水を電解槽5から排出する。
 配管部7,8には、調整手段10,11が接続されている。調整手段10,11は、本体部3に配置される。調整手段10,11は、電解槽5で生成される酸性電解水とアルカリ性電解水との排出と合流とをそれぞれ調整する。調整手段10,11は、酸性電解水とアルカリ性電解水との排出の割合と合流の割合とを任意に設定するものとしてよいが、本実施の形態では、酸性電解水とアルカリ性電解水との排出と合流とを択一的に設定する切替手段(切替バルブ)である。すなわち、調整手段10,11は、電解水を本体部3から外部に排出する排出部13,14、及び、電解水を合流させる合流部15,16と接続され、配管部7,8を通過した電解水を排出部13,14と合流部15,16とに択一的に送るように切り替える。排出部13は、酸性電解水用排出部であり、排出部14は、アルカリ性電解水用排出部である。合流部15,16は、互いに接続されているとともに、互いの接続位置で、電解水の合流により生成される混合水を本体部3から外部に排出する排出部17と接続されている。排出部17は、混合水用排出部である。したがって、本実施の形態では、調整手段10,11により、排出部13,14,17に対し択一的に電解水が送られる。
 好ましくは、合流部15,16には、調整手段10,11により合流される電解水の流量(単位時間当たりの流量)を調整する流量調整手段(流量調整バルブ)20,21が配置される。流量調整手段20,21は、本体部3に配置される。流量調整手段20,21により合流される電解水の流量、すなわち酸性電解水とアルカリ性電解水との混合比率は、所定量(所定比率)に固定されていてもよいし、使用者等が任意に設定可能としてもよい。
 また、好ましくは、合流部15,16には、調整手段10,11と流量調整手段20,21との間に、電解水の余剰分を本体部3の外部に排出する余剰排出部23,24が接続されている。余剰排出部23,24は、流量調整手段20,21によって排出部17に流さない電解水をオーバーフローさせるオーバーフロー排水管である。
 排出部13,14,17の下流端の排水口30,31,32は、本体部3の外面部に配置されて外部に露出している。排水口30,31,32には、例えば蛇口等の弁体を配置してもよい。排水口30,31,32の近傍には、センサ35,36,37が配置されている。つまり、排出部13,14,17毎に対応するセンサ35,36,37を有する。センサ35,36,37は、使用者の手や容器等の物体(被供給部)を検出する。センサ35,36,37は、非接触型のセンサでも接触型のセンサでもよい。
 センサ35,36,37は、制御部40と電気的に接続される。制御部40は、センサ35,36,37の検出をトリガとして、少なくとも調整手段10,11の動作を制御する信号を生成して、被供給部を検出したセンサ35,36,37の近傍に位置する排水口30,31,32から水を供給するように調整手段10,11を動作させる。本実施の形態では、制御部40は、電解槽5の給水部、電源部、調整手段10,11、流量調整手段20,21の動作を制御する信号を生成し、これらを、被供給部を検出したセンサ35,36,37の近傍に位置する排水口30,31,32から水を供給するように動作させる。制御部40は、本体部3に配置されている。
 次に、一実施の形態の生成装置1の動作について説明する。
 生成装置1は、給水部から電解原水及び電解液が電解槽5に供給されると、電極に電源部から電源が供給されることで電解液を電気分解する。
 具体的に、電解槽5では、陰極が配置される室において、以下の通り水が分解されてアルカリ性電解水、例えば苛性ソーダ水を得る。
    HO+2e → 1/2H+OH
    Na+e → Na
    Na+OH → NaOH+e
 また、陽極が配置される室において、以下の通り塩素イオンが還元され塩素ガスが発生し、水と反応して酸性電解水、例えば次亜塩素酸水(電解除菌水)を生じる。
    HO → 2H+1/2O+2e
    2Cl → Cl+2e
    Cl+HO ⇔ HClO+HCl
 そして、電解槽5で生成された酸性電解水及びアルカリ性電解水は、配管部7,8及び調整手段10,11を経由して排出部13,14から本体部3の外部に排出される。また、酸性電解水とアルカリ性電解水とが混合された混合水は、排出部17から本体部3の外部に排出される。本実施の形態において、混合水は、例えば中性付近にpH制御された次亜塩素酸水(中性水)である。
 本実施の形態では、被供給部をセンサ35,36,37のいずれかが検出することにより、この検出に応じて制御部40で信号が生成され、その生成された信号に基づいて給水部、調整手段10,11及び流量調整手段20,21が動作し、給水部から電解槽5に電解原水及び電解液を供給して電解液を電気分解し、この電気分解により生成された電解水を、被供給部を検出したセンサ35,36,37に対応する排水口30,31,32から排出するように、調整手段10,11と、流量調整手段21と、が動作する。
 例えば、酸性電解水を供給する場合、使用者が排水口30の近傍に被供給部を翳すと、センサ35がそれを検出し、この検出に応じて制御部40から信号が生成されて、その信号に応じて、電解槽5に電解原水及び電解液を供給するように給水部が動作するとともに、電解槽5の電極に電源を供給するように電源部が動作する。電解槽5では、上記のような電気分解によって酸性電解水及びアルカリ性電解水が生成されて、配管部7,8により酸性電解水及びアルカリ性電解水が電解槽5から排出される。酸性電解水については、制御部40で生成された信号に応じて、調整手段10が酸性電解水を排出部13に流すように動作することで、排水口30から被供給部に供給される。一方、アルカリ性電解水については、制御部40で生成された信号に応じて、調整手段11がアルカリ性電解水を合流部16に流すように動作し、かつ、流量調整手段21が閉じるように動作することで、余剰排出部24から排出される。
 同様に、アルカリ性電解水を供給する場合、使用者が排水口31の近傍に被供給部を翳すと、センサ36がそれを検出し、この検出に応じて制御部40から信号が生成されて、その信号に応じて、電解槽5に電解原水及び電解液を供給するように給水部が動作するとともに、電解槽5の電極に電源を供給するように電源部が動作する。電解槽5では上記のような電気分解によって酸性電解水及びアルカリ性電解水が生成されて、配管部7,8により酸性電解水及びアルカリ性電解水が電解槽5から排出される。アルカリ性電解水については、制御部40で生成された信号に応じて、調整手段11がアルカリ性電解水を排出部14に流すように動作することで、排水口31から被供給部に供給される。一方、酸性電解水については、制御部40で生成された信号に応じて、調整手段10が酸性電解水を合流部15に流すように動作し、かつ、流量調整手段20が閉じるように動作することで、余剰排出部23から排出される。
 さらに、混合水を供給する場合、使用者が排水口32の近傍に被供給部を翳すと、センサ37がそれを検出し、この検出に応じて制御部40から信号が生成されて、その信号に応じて、電解槽5に電解原水及び電解液を供給するように給水部が動作するとともに、電解槽5の電極に電源を供給するように電源部が動作する。電解槽5では、上記のような電気分解によって酸性電解水及びアルカリ性電解水が生成されて、配管部7,8により酸性電解水及びアルカリ性電解水が電解槽5から排出される。制御部40で生成された信号に応じて、調整手段10,11が酸性電解水及びアルカリ性電解水を合流部15,16に流すように動作し、流量調整手段20,21が所定の開状態となるように動作することで、酸性電解水及びアルカリ性電解水が、それぞれ流量が調整されて合流して排出部17に流れることで、排水口32から被供給部に混合水が供給される。流量調整手段20,21の流量調整により生じた酸性電解水及びアルカリ性電解水の余剰分は、それぞれ余剰排出部23,24から排出される。
 なお、制御部40は、センサ35,36,37により被供給部を検出しなくなってから所定時間が経過した後、あるいは、停止ボタンの操作等の所定の操作がされた後等に、酸性電解水、アルカリ性電解水、あるいは混合水の供給を停止させるように電解槽5の給水部、電源部、調整手段10,11、流量調整手段20,21を停止させる信号を生成して、これらを停止させる。
 このように、上記の一実施の形態によれば、電解槽5と、電解槽5で生成される酸性電解水とアルカリ性電解水との排出と合流とを切り替える調整手段10,11と、を本体部3に配置し、酸性電解水と、アルカリ性電解水と、酸性電解水とアルカリ性電解水との合流により生成される混合水と、を本体部3からそれぞれ別個の排出部13,14,17により排出可能とすることにより、混合水を得るために電解水を貯留する外付けのタンク、電解水を合流させるバルブ、配管等を本体部3の外部に別途備える必要がなく、省スペースで、生成装置1を設置するだけで、排出部13,14,17から、酸性電解水、アルカリ性電解水、及び、混合水を容易に個別に得ることができる。つまり、酸性電解水、アルカリ性電解水、及び、混合水を個別に得られる生成装置1をコンパクトに実現できる。
 また、調整手段10,11により合流される各電解水の流量を、本体部3に配置した流量調整手段20,21で調整することにより、合流させる電解水の流量に応じて、所望のpHの混合水を生成できる。
 流量調整手段20,21により流量が調整された酸性電解水とアルカリ性電解水との余剰分を余剰排出部23,24により排出することにより、排出部13,14,17から直接的に使用しない酸性電解水やアルカリ性電解水を別用途等に利用することも可能となる。
 制御部40が、排出部13,14,17の少なくともいずれかから水を排出させるように調整手段10,11の動作を制御することで、酸性電解水とアルカリ性電解水と混合水とのうち、所望する水を容易に得ることができる。
 各排出部13,14,17に対応してセンサ35,36,37を配置し、センサ35,36,37の検出に応じて、制御部40が、そのセンサ35,36,37に対応する排出部13,14,17から水を排出させるように電解槽5及び調整手段10の動作を制御することにより、センサ35,36,37の前に手等の被供給部を翳すだけで、酸性電解水とアルカリ性電解水と混合水とのうち、所望する水を容易に得ることができる。
 なお、上記の一実施の形態において、流量調整手段20,21、余剰排出部23,24、及び、センサ35.36.37は、必須の構成ではない。
 また、制御部40は、センサ35,36,37による物体(被供給部)の検出に応じて排出部13,14,17のいずれかから水を排出させるように調整手段10,11の動作を制御するものに限らず、例えばボタンやリモコン等の操作手段により入力される信号あるいは音声等により入力される信号等、外部から入力される信号の受信に応じて排出部13,14,17のいずれかから水を排出させるように調整手段10,11の動作を制御してもよい。
 さらに、調整手段10,11を、酸性電解水とアルカリ性電解水との排出の割合と合流の割合とを任意に設定するものとする場合には、制御部40により、排出部13,14,17から、酸性電解水と、アルカリ性電解水と、合流水と、のうちのいずれか二つ以上を同時に排出させるように制御することも可能である。
 1   生成装置
 3   本体部
 5   電解槽
 10,11  調整手段
 13,14,17  排出部
 20,21  流量調整手段
 23,24  余剰排出部
 35,36,37  センサ
 40  制御部

Claims (4)

  1.  酸性電解水とアルカリ性電解水とを生成する電解槽と、
     前記電解槽で生成される前記酸性電解水と前記アルカリ性電解水との排出と合流とを調整する一方及び他方の調整手段と、
     前記調整手段により合流される前記酸性電解水及び前記アルカリ性電解水の流量を調整する一方及び他方の流量調整手段と、
     前記流量調整手段により流量が調整されて生じる前記酸性電解水及び前記アルカリ性電解水の余剰分を排出する一方及び他方の余剰排出部と、
     前記酸性電解水と、前記アルカリ性電解水と、前記酸性電解水と前記アルカリ性電解水との合流により生成される混合水と、をそれぞれ別個に排出可能な排出部と
     を備えることを特徴とする生成装置。
  2.  前記酸性電解水を排出可能な前記排出部は、前記一方の調整手段に接続され、
     前記アルカリ性電解水を排出可能な前記排出部は、前記他方の調整手段に接続され、
     前記混合水を排出可能な前記排出部は、前記一方の流量調整手段と前記他方の流量調整手段との間の流路に接続され、
     前記一方の余剰排出部は、前記一方の調整手段と前記一方の流量調整手段との間の流路に接続され、
     前記他方の余剰排出部は、前記他方の調整手段と前記他方の流量調整手段との間の流路に接続されている
     ことを特徴とする請求項1記載の生成装置。
  3.  前記混合水における前記酸性電解水と前記アルカリ性電解水との混合比率は、任意に設定可能である
     ことを特徴とする請求項1又は2記載の生成装置。
  4.  前記電解槽と、前記一方及び他方の調整手段と、前記一方及び他方の流量調整手段と、が配置される本体部と、
     前記本体部の外部における前記各排出部に対応する位置にそれぞれ配置され、前記本体部の外部の物体の近接又は接触を検出するセンサと、
     前記センサの検出に応じて、そのセンサに対応する前記排出部から当該排出部に対応する前記酸性電解水、前記アルカリ性電解水又は前記混合水を排出させるように前記調整手段及び前記流量調整手段の動作を制御する制御部と、
     を備えることを特徴とする請求項1又は2記載の生成装置。
PCT/JP2023/000955 2022-01-31 2023-01-16 生成装置 WO2023145505A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022013390A JP7218024B1 (ja) 2022-01-31 2022-01-31 生成装置
JP2022-013390 2022-01-31

Publications (1)

Publication Number Publication Date
WO2023145505A1 true WO2023145505A1 (ja) 2023-08-03

Family

ID=85151333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000955 WO2023145505A1 (ja) 2022-01-31 2023-01-16 生成装置

Country Status (3)

Country Link
JP (1) JP7218024B1 (ja)
TW (1) TW202340103A (ja)
WO (1) WO2023145505A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212670A (ja) * 1993-01-13 1994-08-02 Saraya Kk 洗浄装置
JPH06246268A (ja) * 1993-02-22 1994-09-06 Nippon Intetsuku Kk 電解水の生成方法および装置
JPH11140929A (ja) * 1997-11-05 1999-05-25 Kawai Musical Instr Mfg Co Ltd 手洗い装置
JP2001112663A (ja) * 1999-10-18 2001-04-24 Koito Ind Ltd 液体吐出方法及びその装置並びにこれを用いた手洗い装置
JP2001170635A (ja) * 1999-12-21 2001-06-26 Matsushita Electric Ind Co Ltd 水改質装置
JP2007014888A (ja) * 2005-07-08 2007-01-25 Skg:Kk 消毒装置
JP2018000889A (ja) * 2016-07-04 2018-01-11 アメミヤ機器株式会社 手洗消毒装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08117753A (ja) * 1994-10-24 1996-05-14 Sanden Corp 電解水生成装置
JPH09225463A (ja) * 1996-02-27 1997-09-02 Chiyoda Manufacturing Co Ltd 水電解装置
JPH10469A (ja) * 1996-06-18 1998-01-06 Hoshizaki Electric Co Ltd 電解水生成装置
JPH10140384A (ja) * 1996-09-15 1998-05-26 Yoshiya Okazaki 電解による強アルカリ水と次亜塩素酸殺菌水の同時生成装置
JP6100025B2 (ja) 2013-02-28 2017-03-22 ヤマト科学株式会社 消毒装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212670A (ja) * 1993-01-13 1994-08-02 Saraya Kk 洗浄装置
JPH06246268A (ja) * 1993-02-22 1994-09-06 Nippon Intetsuku Kk 電解水の生成方法および装置
JPH11140929A (ja) * 1997-11-05 1999-05-25 Kawai Musical Instr Mfg Co Ltd 手洗い装置
JP2001112663A (ja) * 1999-10-18 2001-04-24 Koito Ind Ltd 液体吐出方法及びその装置並びにこれを用いた手洗い装置
JP2001170635A (ja) * 1999-12-21 2001-06-26 Matsushita Electric Ind Co Ltd 水改質装置
JP2007014888A (ja) * 2005-07-08 2007-01-25 Skg:Kk 消毒装置
JP2018000889A (ja) * 2016-07-04 2018-01-11 アメミヤ機器株式会社 手洗消毒装置

Also Published As

Publication number Publication date
JP7218024B1 (ja) 2023-02-06
TW202340103A (zh) 2023-10-16
JP2023111510A (ja) 2023-08-10

Similar Documents

Publication Publication Date Title
CA2639613C (en) Electrolyzed water producing method and apparatus
GB2441427A (en) Method and apparatus for generating electrolysed water
KR19990072981A (ko) 전해수생성장치
KR20180015081A (ko) 수소수의 생성 방법
WO2008032946A1 (en) Apparatus for producing sodium hypochlorite
JP6917280B2 (ja) 電解水生成装置
WO2023145505A1 (ja) 生成装置
JP7267655B1 (ja) 生成装置
WO2008032947A1 (en) Apparatus for replenishing water in salt water tank included in apparatus for producing sodium hypochlorite
JP2017164692A (ja) 電解水生成装置
JP4936423B2 (ja) 電解水生成装置及びそれを備えた流し台
JPH06312189A (ja) 電解殺菌水製造装置
JPH07155764A (ja) 酸性イオン水生成装置
JP7212978B1 (ja) 電解装置
JP2001246383A (ja) 電解水生成装置
JPH06246266A (ja) 電解水の生成装置
JP2012096215A (ja) 強アルカリ電解水生成電解槽及び装置
JP6885776B2 (ja) 電解水生成装置
JP2005279519A (ja) 電解水生成装置
JP2018153781A (ja) 電解水生成方法
JP3575712B2 (ja) 電解水生成装置
JP2020058971A (ja) 電解水生成装置
JP2023159497A (ja) 電解水生成装置
JP2001070941A (ja) バッチ式電解水生成装置の制御方法
JPH11244860A (ja) 電解水生成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746719

Country of ref document: EP

Kind code of ref document: A1