WO2023144927A1 - 制御装置および制御方法 - Google Patents

制御装置および制御方法 Download PDF

Info

Publication number
WO2023144927A1
WO2023144927A1 PCT/JP2022/002883 JP2022002883W WO2023144927A1 WO 2023144927 A1 WO2023144927 A1 WO 2023144927A1 JP 2022002883 W JP2022002883 W JP 2022002883W WO 2023144927 A1 WO2023144927 A1 WO 2023144927A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
capacity
air conditioner
control device
indoor space
Prior art date
Application number
PCT/JP2022/002883
Other languages
English (en)
French (fr)
Inventor
貴大 橋川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/002883 priority Critical patent/WO2023144927A1/ja
Publication of WO2023144927A1 publication Critical patent/WO2023144927A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/48Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring prior to normal operation, e.g. pre-heating or pre-cooling

Definitions

  • the present disclosure relates to a control device and control method for controlling an air conditioner.
  • pre-cooling and pre-cooling systems have been implemented by activating air conditioners before the set time so that the temperature of the indoor space reaches the set temperature at the set time.
  • Techniques for warming up are known.
  • Patent Document 1 when precooling/prewarming the air conditioner, considering the energy consumption efficiency calculated from the power consumption and the air conditioning capacity, the air conditioning capacity is normally set.
  • a control device is disclosed that controls an air conditioner in such a way as to suppress air flow.
  • the present disclosure has been made to solve the above problems, and aims to provide a technique for realizing energy saving in precooling/prewarming operation.
  • a control device is a control device that controls an air conditioner.
  • the control device includes a communication section that communicates with the air conditioner, and a control section that controls the air conditioner via the communication section.
  • the control unit has a startup mode in which the air conditioner is started before the set time so that the temperature of the indoor space reaches the set temperature at the set time. For each of the plurality of capacity reduction rates shown, calculate the power consumption of the air conditioner required for the temperature of the indoor space to reach the set temperature after starting the air conditioner, and calculate the power consumption among the plurality of capacity reduction rates.
  • the air conditioner is controlled based on the capacity suppression rate that minimizes .
  • a control method is a startup mode in which the air conditioner is started before the set time so that the temperature of the indoor space reaches the set temperature at the set time. a step of calculating the power consumption of the air conditioner required for the temperature of the indoor space to reach the set temperature from the start of the air conditioner for each of the capacity reduction rates of; and controlling the air conditioner based on the capacity reduction rate at which is minimized.
  • control device can realize energy saving in precooling/prewarming operation by controlling the air conditioner based on the capacity reduction rate that minimizes power consumption.
  • FIG. 1 is a diagram showing the configuration of an air conditioning system according to Embodiment 1;
  • FIG. 1 is a diagram showing a configuration of an air conditioner according to Embodiment 1;
  • FIG. 2 is a diagram showing a functional configuration of a control device according to Embodiment 1;
  • FIG. FIG. 4 is a diagram showing an example of changes in indoor temperature and power consumption related to precooling/prewarming operation; 1 is a diagram for explaining an overview of supervised learning;
  • FIG. 4 is a diagram for explaining inputs and outputs of supervised learning in the control device according to Embodiment 1;
  • FIG. It is a figure which shows the structure of a learning apparatus. It is a figure which shows the structure of a neural network.
  • FIG. 1 is a diagram showing the configuration of an air conditioning system 1 according to Embodiment 1. As shown in FIG. 1 , the air conditioning system 1 includes an air conditioner 2 and a control device 100 that controls the air conditioner 2 .
  • the air conditioner 2 includes an outdoor unit 10 and at least one indoor unit 20.
  • the air conditioning system 1 as at least one indoor unit 20, a plurality of indoor units 20A, 20B, and 20C are installed so as to cool or heat the indoor space to be air-conditioned.
  • the outdoor unit 10 is connected to at least one indoor unit 20 by connecting pipes 30 .
  • the air conditioning system 1 is configured such that a plurality of indoor units 20A, 20B, and 20C are connected to one outdoor unit 10, but one indoor unit is connected to one outdoor unit 10. 20 may be configured to be connected.
  • the air conditioning system 1 further includes an outdoor temperature sensor 61 that measures the temperature of the outside air, and at least one indoor temperature sensor 62 that measures the temperature of the indoor space.
  • an outdoor temperature sensor 61 that measures the temperature of the outside air
  • at least one indoor temperature sensor 62 that measures the temperature of the indoor space.
  • a plurality of indoor temperature sensors 62A, 62B, 62C are installed for each of the indoor units 20A, 20B, 20C.
  • the air conditioning system 1 may be configured such that one indoor temperature sensor 62 is installed for each of the indoor units 20A, 20B, and 20C.
  • the measured value of the outside air temperature acquired by the outside temperature sensor 61 is transmitted from the outside temperature sensor 61 to the control device 100 , and the control device 100 acquires the measured value of the outside temperature from the outside temperature sensor 61 .
  • the indoor temperature measurement value acquired by the indoor temperature sensor 62 is transmitted from the indoor temperature sensor 62 to the control device 100 , and the control device 100 acquires the indoor temperature measurement value from the indoor temperature sensor 62 .
  • FIG. 2 is a diagram showing the configuration of the air conditioner 2 according to Embodiment 1. As shown in FIG. As shown in FIG. 2, in the air conditioner 2, the outdoor unit 10 and the indoor units 20A, 20B, 20C are connected by connecting pipes 30 (30A, 30B). Note that FIG. 2 shows an example in which the indoor units 20A, 20B, and 20C all have the same configuration.
  • the outdoor unit 10 includes a four-way valve 50, a compressor 11, an outdoor heat exchanger 13, and a fan 45.
  • the four-way valve 50 includes a connection port 51, a connection port 52, a connection port 53, and a connection port 54.
  • a connection port 51 of the four-way valve 50 is connected to the suction port 111 of the compressor 11 via the pipe 35 .
  • a connection port 52 of the four-way valve 50 is connected via a pipe 32 to a connection pipe 30A leading to the indoor unit 20 .
  • a connection port 53 of the four-way valve 50 is connected to the discharge port 112 of the compressor 11 via the pipe 31 .
  • a connection port 54 of the four-way valve 50 is connected to one end side of the outdoor heat exchanger 13 via a pipe 34 .
  • the four-way valve 50 is configured to switch internal communication states under the control of the control device 100 .
  • the other end side of the outdoor heat exchanger 13 is connected to a connecting pipe 30B leading to the indoor unit 20 via a pipe 33 .
  • the compressor 11 is configured to operate, stop, and change the rotational speed during operation under the control of the control device 100 .
  • Compressor 11 is driven using an inverter under the control of control device 100 .
  • the control device 100 arbitrarily changes the driving frequency of the compressor 11 by controlling the compressor 11 .
  • the compressor 11 changes the number of rotations per unit time, that is, the rotation speed, according to changes in the drive frequency, thereby changing the amount of refrigerant discharged per unit time.
  • Various types of compressors 11 can be employed, for example, scroll type, rotary type, screw type, etc. can be employed as compressor 11 .
  • the outdoor heat exchanger 13 exchanges heat between the outside air sucked from the outside by the blower 45 and the refrigerant.
  • the blower 45 includes a fan 41 and a motor 42.
  • the fan 41 sends outside air sucked from the outside to the outdoor heat exchanger 13 .
  • the motor 42 is configured to drive or stop the fan 41 under the control of the control device 100, and to change the rotation speed during driving.
  • the control device 100 arbitrarily changes the driving frequency of the motor 42 by controlling the motor 42 .
  • the motor 42 changes the number of revolutions per unit time of the fan 41, that is, the rotational speed, in accordance with the change in drive frequency. Thereby, the control device 100 can adjust the amount of air blown by the rotation of the fan 41 .
  • the indoor unit 20 includes an indoor heat exchanger 23, a blower 25, and an expansion device 24.
  • One end side of the indoor heat exchanger 23 is connected to a connecting pipe 30A leading to the outdoor unit 10 .
  • the other end side of the indoor heat exchanger 23 is connected to one end side of the expansion device 24 .
  • the other end side of the expansion device 24 is connected to a connection pipe 30B leading to the outdoor unit 10 .
  • the indoor heat exchanger 23 exchanges heat between the air sucked from the indoor space by the blower 25 and the refrigerant.
  • the blower 25 includes a fan 21 and a motor 22.
  • the fan 21 sends the air sucked from the indoor space to the indoor heat exchanger 23.
  • the motor 22 is configured to drive or stop the fan 21 under the control of the control device 100, and to change the rotation speed during driving.
  • the control device 100 arbitrarily changes the driving frequency of the motor 22 by controlling the motor 22 .
  • the motor 22 changes the number of revolutions per unit time of the fan 21, that is, the rotational speed, in accordance with the change in drive frequency. Thereby, the control device 100 can adjust the amount of air blown by the rotation of the fan 21 .
  • the expansion device 24 is, for example, an electronic expansion valve whose opening is adjusted under the control of the control device 100.
  • the expansion device 24 reduces the pressure of the inflowing refrigerant and outflows the refrigerant obtained by decompression.
  • the control device 100 can adjust the amount of pressure reduction of the refrigerant by adjusting the opening degree of the expansion device 24 .
  • the expansion device 24 may be a capillary tube that adjusts the flow rate of the refrigerant based on the pressure difference.
  • a refrigeration cycle is configured by annularly connecting the compressor 11, the four-way valve 50, the outdoor heat exchanger 13, the expansion device 24, and the indoor heat exchanger 23 by refrigerant piping.
  • the air conditioner 2 is controlled in one of a plurality of types of operation modes including a cooling operation for cooling the indoor space and a heating operation for heating the indoor space.
  • the communication state inside the four-way valve 50 is such that the connection port 51 communicates with the connection port 52 and the connection port 53 communicates with the connection port 54 as indicated by solid lines in FIG. That is, in the cooling operation, the suction port 111 of the compressor 11 communicates with the indoor unit 20 and the discharge port 112 of the compressor 11 communicates with the outdoor heat exchanger 13 .
  • the compressor 11 sucks in the low-temperature, low-pressure gas refrigerant from the indoor heat exchanger 23 and compresses the sucked gas refrigerant to increase the pressure of the gas refrigerant.
  • the compressor 11 discharges the high-temperature and high-pressure gas refrigerant obtained by compression to the outdoor heat exchanger 13 .
  • the outdoor heat exchanger 13 works as a condenser.
  • the outdoor heat exchanger 13 exchanges heat between the high-temperature and high-pressure gas refrigerant from the compressor 11 and the outside air sucked from the outside by the blower 45 .
  • the gas refrigerant that has radiated heat through this heat exchange is condensed inside the outdoor heat exchanger 13 to change into a high-temperature, high-pressure liquid refrigerant.
  • the high-temperature and high-pressure liquid refrigerant obtained by the outdoor heat exchanger 13 flows out to the expansion device 24 .
  • the expansion device 24 reduces the pressure of the high-temperature, high-pressure liquid refrigerant from the outdoor heat exchanger 13 .
  • the low-temperature, low-pressure gas-liquid two-phase refrigerant obtained by the pressure reduction of the expansion device 24 flows out to the indoor heat exchanger 23 .
  • the indoor heat exchanger 23 works as an evaporator.
  • the indoor heat exchanger 23 heat-exchanges the low-temperature, low-pressure gas-liquid two-phase refrigerant from the expansion device 24 with the air sucked from the room by the blower 25 .
  • the gas-liquid two-phase refrigerant that absorbs heat through this heat exchange evaporates inside the indoor heat exchanger 23 and changes into a low-temperature, low-pressure gas refrigerant.
  • the low-temperature, low-pressure gas refrigerant obtained by the indoor heat exchanger 23 flows out to the compressor 11 .
  • the air whose heat has been absorbed by the gas refrigerant in the indoor heat exchanger 23 is sent into the indoor space again. Thereby, the indoor space is cooled.
  • the refrigerant flows through the compressor 11, the outdoor heat exchanger 13 (condenser), the expansion device 24, and the indoor heat exchanger 23 (evaporator) in this order.
  • the communication state inside the four-way valve 50 is such that the connection port 51 communicates with the connection port 54 and the connection port 52 communicates with the connection port 53 as indicated by broken lines in FIG. That is, in the heating operation, the suction port 111 of the compressor 11 communicates with the outdoor heat exchanger 13 and the discharge port 112 of the compressor 11 communicates with the indoor unit 20 .
  • the compressor 11 sucks in the low-temperature, low-pressure gas refrigerant that has flowed in from the outdoor heat exchanger 13, and increases the pressure of the gas refrigerant by compressing the sucked gas refrigerant.
  • the compressor 11 discharges the high-temperature and high-pressure gas refrigerant obtained by compression to the indoor heat exchanger 23 .
  • the indoor heat exchanger 23 works as a condenser.
  • the indoor heat exchanger 23 exchanges heat between the high-temperature and high-pressure gas refrigerant from the compressor 11 and the outside air sucked from the indoor space by the blower 25 .
  • the gas refrigerant that has released heat through this heat exchange is condensed inside the indoor heat exchanger 23 to change into a high-temperature, high-pressure liquid refrigerant.
  • the high-temperature and high-pressure liquid refrigerant obtained by the indoor heat exchanger 23 flows out to the expansion device 24 .
  • the air that has absorbed heat from the gas refrigerant in the indoor heat exchanger 23 is sent into the indoor space again. Thereby, the indoor space is heated.
  • the expansion device 24 reduces the pressure of the high-temperature, high-pressure liquid refrigerant from the indoor heat exchanger 23 .
  • the low-temperature, low-pressure gas-liquid two-phase refrigerant obtained by the expansion device 24 flows out to the outdoor heat exchanger 13 .
  • the outdoor heat exchanger 13 works as an evaporator.
  • the outdoor heat exchanger 13 heat-exchanges the low-temperature, low-pressure gas-liquid two-phase refrigerant from the expansion device 24 with outside air sucked from the outside by the blower 45 .
  • the gas-liquid two-phase refrigerant that absorbs heat through this heat exchange evaporates inside the outdoor heat exchanger 13 to change into a low-temperature, low-pressure gas refrigerant.
  • the low-temperature, low-pressure gas refrigerant obtained by the outdoor heat exchanger 13 flows out to the compressor 11 .
  • the refrigerant flows through the compressor 11, the indoor heat exchanger 23 (condenser), the expansion device 24, and the outdoor heat exchanger 13 (evaporator) in this order.
  • FIG. 3 is a diagram showing the configuration of the control device 100 according to Embodiment 1. As shown in FIG. As shown in FIG. 3, the control device 100 includes a control unit 101, a storage unit 102, and a communication unit 103 as main functional components.
  • the control unit 101 is a computing entity that executes various processes by executing various programs, and an example thereof is a computer (for example, a processor).
  • the control unit 101 is composed of, for example, at least one of a CPU (Central Processing Unit), FPGA (Field-Programmable Gate Array), and GPU (Graphics Processing Unit). Also, the control unit 101 may be configured by a processing circuit such as an ASIC (application specific integrated circuit).
  • ASIC application specific integrated circuit
  • the storage unit 102 is a memory that provides a storage area for temporarily storing program codes or work memory when the control unit 101 executes various programs. (static random access memory) or non-volatile memory such as ROM (Read Only Memory) and flash memory. Furthermore, the storage unit 102 may be a storage device that provides a storage area for storing various data necessary for controlling the air conditioner 2. Examples include an SSD (solid state drive) or HDD (hard disk drive). It may be a storage device such as a disk drive).
  • the communication unit 103 is a communication interface that transmits and receives data to and from each of the air conditioner 2, the outdoor temperature sensor 61, the indoor temperature sensor 62, and the temperature setting device 65.
  • the control device 100 controls the air conditioner 2 by communicating with the air conditioner 2 via the communication unit 103 .
  • Control device 100 acquires the measured value of the outside air temperature from outside air temperature sensor 61 by communicating with outside air temperature sensor 61 via communication unit 103 .
  • the room temperature measurement value is obtained from the room temperature sensor 62 .
  • the temperature setting device 65 is composed of a remote controller, a PC (Personal Computer), a smartphone, and the like.
  • the user of the air conditioner 2 can set the target temperature of the indoor space by inputting the set temperature using the temperature setting device 65 .
  • the user of the air conditioner 2 can set the target time at which the temperature of the indoor space reaches the set temperature in the precooling/prewarming operation by inputting the set time using the temperature setting device 65 .
  • the control device 100 acquires the set temperature (target temperature) and the set time (target time) set by the user from the temperature setting device 65 by communicating with the temperature setting device 65 via the communication unit 103 .
  • the control device 100 configured as described above has a startup mode in which the air conditioner 2 is started before the set time and precooled/prewarmed so that the temperature of the indoor space reaches the set temperature at the set time. .
  • the control device 100 controls the compressor 11 so that the room temperature obtained from the room temperature sensor 62 approaches the preset temperature set by the user. For example, when the air conditioner 2 is started after being stopped for a certain period of time, such as first thing in the morning, the room temperature gradually approaches the set temperature from a state in which the room temperature and the set temperature deviate from each other.
  • the driving frequency of the compressor 11 is increased to the maximum value (for example, 100%) to quickly bring the room temperature closer to the set temperature, and the air conditioning operation is performed with the maximum air conditioning capacity. is assumed.
  • the energy consumption efficiency (COP: Coefficient of Performance) calculated from the power consumption and the air conditioning capacity
  • the compressor 11 is controlled at 50 to 60% inverter capacity at which the drive frequency of the compressor 11 is less than the maximum value.
  • Energy consumption efficiency is increased by controlling.
  • the energy consumption efficiency (COP) is a value indicating the air conditioning capacity per unit electric power (for example, 1 kW).
  • the air conditioning capacity of the air conditioner 2 is reduced, the time required for the temperature of the indoor space to reach the set temperature will increase, so the time to start the precooling/prewarming operation must be advanced. Since a heat load from the outside and an internal load are always generated, the longer the operating time for precooling and prewarming, the more heat must be processed and the more power is consumed for heat treatment.
  • FIG. 4 is a diagram showing an example of changes in room temperature and power consumption related to precooling/prewarming operation. Note that FIG. 4 shows an example in which the air conditioner 2 performs a cooling operation.
  • the capacity suppression rate is a value indicating the degree of suppression of the air conditioning capacity of the air conditioner 2. For example, if the drive frequency of the compressor 11 is controlled at the maximum value, the capacity suppression rate is 100%. When the drive frequency is controlled at 50%, the capacity suppression rate is 50%.
  • an upper limit is set for the driving frequency, rotation speed, or input current value of the compressor 11, or a restriction is set for the evaporation temperature, which is the control target value, or the degree of superheat of the refrigerant at the outlet of the indoor unit 20.
  • the method of suppressing the capacity is not limited.
  • FIG. 4(A) is a graph showing changes in room temperature with respect to time when precooling/prewarming operation is performed for each of the three levels of capacity suppression ratios, "large”, “medium”, and “small”. It is shown.
  • a state in which the capacity control rate is "small” corresponds to a state in which the drive frequency of compressor 11 is controlled at a first value (for example, inverter capacity 100%).
  • a state in which the capacity control rate is "medium” corresponds to a state in which the driving frequency of the compressor 11 is controlled at a second value (for example, inverter capacity 75%) smaller than the first value (for example, inverter capacity 100%).
  • a state in which the capacity control rate is "large” corresponds to a state in which the driving frequency of the compressor 11 is controlled at a third value (for example, inverter capacity 50%) smaller than the second value (for example, inverter capacity 75%).
  • the larger the capacity suppression rate that is, the smaller the air conditioning capacity of the air conditioner 2
  • the time to start warming up must be advanced.
  • the capacity reduction rate is "small"
  • the air conditioner 2 can be started at time t3 close to the set time.
  • the air conditioner 2 must be started at time t1 far from .
  • FIG. 4(B) shows changes in power consumption over time when precooling/prewarming operation is performed for each of the three levels of capacity suppression rate, which are "large”, “medium”, and "small”. An illustrative graph is shown.
  • the amount of power consumption required for the temperature of the indoor space to reach the set temperature is the largest when the capacity reduction rate is "small", The state where the suppression rate is "middle" is the smallest. That is, in this example, the energy saving effect is most effective when the capacity control rate is "medium".
  • the operating time for precooling/prewarming may vary from property to property and day to day depending on the indoor temperature, outdoor temperature, set temperature, building specifications in the indoor space, and the like.
  • the building specifications are based on the air conditioning load of the building.
  • building specifications include the thermal insulation performance or area of walls, the thermal insulation performance or area of windows, the amount of ventilation, the amount of draft, the environment outside the walls (outer walls separating the indoor space to be air-conditioned from the outdoors, Inner walls that separate an indoor space from other indoor spaces, and temperature information of other indoor spaces in the case of inner walls, etc.).
  • the control device 100 has the energy saving effect of increasing the energy consumption efficiency by suppressing the air conditioning capacity and the power consumption for heat treatment by increasing the operating time for precooling and prewarming.
  • the system is configured to set an optimum capacity reduction rate that achieves energy savings in pre-cooling/pre-warming operation for each property and for each day.
  • FIG. 4 shows an example in which the air conditioner 2 performs the cooling operation, the same technique as for the cooling operation can be applied to the case in which the air conditioner 2 performs the heating operation.
  • the control unit 101 of the control device 100 includes a data acquisition unit 110, a model generation unit 120, an inference unit 130, a power amount calculation unit 140, and a capacity reduction rate determination unit. 150 and an activation time determination unit 160 .
  • the data acquisition unit 110 acquires the indoor temperature, the outdoor temperature, and the set temperature via the communication unit 103.
  • the model generation unit 120 uses learning data, which is a set of input data including indoor temperature, outdoor temperature, set temperature, and capacity control rate, and required time, which is correct data corresponding to these input data, Based on the temperature of the indoor space, the outside air temperature, the set temperature, and the capacity reduction rate, a trained model is generated for inferring the required time for each of the plurality of capacity reduction rates.
  • the inference unit 130 infers the required time for each of the plurality of capacity reduction rates using a trained model for inferring the required time based on the indoor temperature, the outdoor temperature, the set temperature, and the capacity reduction rate. .
  • the power consumption calculation unit 140 calculates the power consumption for each of the plurality of capacity reduction rates based on the required time for each of the plurality of capacity reduction rates.
  • the capacity reduction rate determining unit 150 determines the capacity reduction rate that minimizes power consumption among a plurality of capacity reduction rates.
  • the start-up time determination unit 160 determines the start-up time of the air conditioner 2 from the required time when using the capacity reduction rate that minimizes the power consumption.
  • the control device 100 uses input data including the indoor temperature, the outdoor temperature, the set temperature, and the capacity control rate, and the required time, which is the correct data corresponding to these input data, as a set of learning data. to perform supervised learning.
  • Supervised learning is a technique that uses a data set of factors and results (labels) to learn features in these learning data and infer results from inputs.
  • FIG. 5 is a diagram for explaining an outline of supervised learning.
  • control device 100 executes a learning program 190 to generate a trained model 170 based on learning data 180 including input 1 and input 2 (correct answer). (Update.
  • control device 100 uses the learned model 170 to obtain an output based on the input 1.
  • FIG. 6 is a diagram for explaining inputs and outputs of supervised learning in the control device 100 according to the first embodiment.
  • the indoor temperature, the outdoor temperature, the set temperature, and the capacity reduction rate are used as the inputs 1.
  • input 1 the difference between the indoor temperature and the outdoor temperature, the difference between the indoor temperature and the set temperature, and the capacity reduction rate are used.
  • input 2 the time required for the room temperature to reach the set temperature is used as input 2, which is correct data.
  • the required time until the indoor temperature reaches the set temperature is obtained.
  • FIG. 7 is a diagram showing the configuration of the learning device 301.
  • Learning device 301 is implemented by control unit 101 of control device 100 .
  • the learning device 301 can exchange data with each of the learning program storage unit 304 and the trained model storage unit 303 .
  • the learning program storage unit 304 and the learned model storage unit 303 are implemented by the storage unit 102 of the control device 100 .
  • the learning device 301 includes a data acquisition unit 110 and a model generation unit 120.
  • the learning device 301 executes the learning program 190 stored in the learning program storage unit 304 to generate the trained model 170 based on the learning data 180 including the input 1 and the input 2 (correct answer). .
  • the data acquisition unit 110 acquires learning data 180 including input 1 and input 2 (correct answer). Specifically, the data acquisition unit 110 acquires, as inputs 1, the difference between the indoor temperature and the outdoor temperature, the difference between the indoor temperature and the set temperature, and the capacity reduction rate. The data acquisition unit 110 acquires the time required for the indoor temperature to reach the set temperature as input 2 (correct answer).
  • the model generation unit 120 uses the learning data 180 including the input 1 and the input 2 (correct answer) acquired by the data acquisition unit 110, and uses the input 1 to output the required time until the indoor temperature reaches the set temperature.
  • a trained model 170 for inference is generated.
  • the model generating unit 120 stores the generated trained model 170 in the trained model storage unit 303 .
  • FIG. 8 is a diagram showing the configuration of a neural network.
  • Model generator 120 generates learned model 170 by supervised learning, for example, according to a neural network model.
  • a neural network consists of an input layer consisting of multiple neurons, an intermediate layer (hidden layer) consisting of multiple neurons, and an output layer consisting of multiple neurons.
  • the intermediate layer may be one layer, or two or more layers.
  • FIG. 8 shows a configuration with three inputs and three outputs.
  • values obtained by multiplying the values by weights w11 to w16 are input to the intermediate layers Y1 and Y2, and the results are further multiplied by weights w21 to w26. are output from the output layers Z1, Z2 and Z3.
  • This output result varies depending on the values of weights w11 to w16 and w21 to w26.
  • the neural network performs supervised learning based on learning data 180 including Input 1 and Input 2 (correct answer) acquired by the data acquisition unit 110 . That is, the neural network learns by adjusting the weights so that the input 1 is input to the input layer and the result output from the output layer approaches the input 2 (correct answer).
  • the model generation unit 120 generates the trained model 170 by performing supervised learning as described above.
  • FIG. 9 is a flowchart relating to processing executed by the learning device 301 (control device 100) in the learning phase. Note that FIG. 9 shows processing executed by the control device 100 corresponding to the learning device 301 . Also, in FIG. 9, "S" is used as an abbreviation for "STEP".
  • the control device 100 acquires learning data 180 including input 1 and input 2 (correct answer) by the data acquisition unit 110 (S1). Note that the control device 100 is not limited to obtaining input 1 and input 2 (correct answer) at the same time, and may obtain input 1 and input 2 (correct answer) at different timings. In addition, the control device 100 is not limited to acquiring the indoor temperature, the outdoor temperature, the set temperature, and the capacity reduction rate at the same time. good too.
  • the control device 100 uses the model generation unit 120 to perform supervised learning based on the learning data 180 to generate the trained model 170 (S2).
  • the control device 100 stores the generated learned model 170 in the learned model storage unit 303 (S3), and ends this process.
  • FIG. 10 is a diagram showing the configuration of the inference device 302. As shown in FIG.
  • the inference device 302 is implemented by the control unit 101 of the control device 100 .
  • the inference device 302 can exchange data with the trained model storage unit 303 .
  • the inference device 302 includes a data acquisition unit 110 and an inference unit .
  • the inference device 302 uses the trained model 170 to obtain the time required for the room temperature to reach the set temperature as an output from the input 1 .
  • the data acquisition unit 110 acquires input 1. Specifically, the data acquisition unit 110 acquires, as inputs 1, the difference between the indoor temperature and the outdoor temperature, the difference between the indoor temperature and the set temperature, and the capacity reduction rate.
  • the inference unit 130 uses the learned model 170 to obtain the time required for the indoor temperature to reach the set temperature as an output from input 1. Specifically, the inference unit 130 reads the learned model 170 from the learned model storage unit 303 . Using the learned model 170, the inference unit 130 infers the time required for the indoor temperature to reach the set temperature as an output based on the data of the input 1 acquired by the data acquisition unit 110. FIG.
  • FIG. 11 is a flowchart regarding processing executed by the inference device 302 (control device 100) in the utilization phase. Note that FIG. 11 shows processing executed by the control device 100 corresponding to the inference device 302 . Also, in FIG. 11, "S" is used as an abbreviation for "STEP".
  • control device 100 acquires the input 1 by the data acquisition unit 110 (S11). Note that control device 100 is not limited to acquiring the indoor temperature, outdoor temperature, set temperature, and capacity reduction rate at the same time. good too.
  • the control device 100 inputs the acquired input 1 to the learned model 170 (S12). Using the trained model 170, the control device 100 infers the time required for the indoor temperature to reach the set temperature as an output from the input 1 (S13). As a result, using the learned model 170, the control device 100 uses the difference between the indoor temperature and the outdoor temperature, the difference between the indoor temperature and the set temperature, and the capacity suppression rate to determine the time required for the indoor temperature to reach the set temperature. You can get the required time.
  • control device 100 can obtain the required time for each of the plurality of capacity reduction rates by inferring the required time as described above for each of the plurality of capacity reduction rates.
  • step widths of the plurality of capacity reduction rates can be arbitrarily set by the user, the designer of the air conditioning system 1, or the like.
  • the control device 100 calculates the power consumption for each of the plurality of capacity reduction rates based on the required time for each of the plurality of capacity reduction rates (S14). Specifically, control device 100 stores energy consumption efficiency (COP) and air conditioning capacity corresponding to each of a plurality of capacity reduction rates in storage unit 102 . For example, the control device 100 stores in the storage unit 102 a table in which an energy consumption efficiency (COP) and air conditioning capacity are associated with one capacity reduction rate. As described above, the energy consumption efficiency (COP) is a value indicating the air conditioning capacity per unit power (for example, 1 kW). Power consumption per unit time can be calculated from the energy consumption efficiency (COP) and the air conditioning capacity using the table provided. Then, the control device 100 can calculate the power consumption (integrated power consumption) required for the precooling/prewarming operation by multiplying the calculated power consumption per unit time by the inferred required time.
  • COP energy consumption efficiency
  • air conditioning capacity corresponding to each of a plurality of capacity reduction rates in storage unit 102 .
  • control device 100 calculates the power consumption (integrated power consumption) for each of the plurality of capacity reduction rates, thereby calculating the power consumption required for precooling/prewarming operation for each of the plurality of capacity reduction rates. (Integrated power consumption) can be obtained.
  • the control device 100 determines the capacity reduction rate that minimizes power consumption from among the plurality of capacity reduction rates (S15).
  • the control device 100 determines the startup time of the air conditioner 2 from the required time when using the capacity reduction rate that minimizes the power consumption. Specifically, the control device 100 sets the time when the required time when using the capacity reduction rate that minimizes the power consumption is traced back from the set time input by the user. The start time is set (S16).
  • the control device 100 determines whether or not the current time has reached the activation time (S17). If the current time has not reached the activation time (NO in S17), the control device 100 repeats the process of S17. On the other hand, when the current time reaches the activation time (YES in S17), the control device 100 activates the air conditioner 2 (S18).
  • the control device 100 determines whether the room temperature has reached the set temperature (S19). If the room temperature has not reached the set temperature (NO in S19), the control device 100 repeats the process of S19. On the other hand, when the room temperature reaches the set temperature (YES in S19), the control device 100 performs normal control on the air conditioner 2, such as maintaining the room temperature at the set temperature (S20). After that, the control device 100 terminates this process.
  • the control device 100 sets, for each of the plurality of capacity suppression rates, the air conditioner 2 required from startup until the indoor temperature reaches the set temperature. is calculated, and the capacity reduction rate that minimizes the power consumption is determined from among the plurality of capacity reduction rates. As a result, the control device 100 can determine the capacity reduction rate that minimizes power consumption for each property and for each day, and controls the air conditioner 2 based on the determined capacity reduction rate. ⁇ Energy saving in prewarming operation can be realized.
  • control device 100 uses the learned model 170 to infer the required time required for precooling/prewarming operation, but infers the required time without using the learned model 170 ( calculation).
  • the control device 100 controls a plurality of The required time for each of the capacity suppression rates may be calculated by calculation. That is, the control device 100 stores parameters for calculating the required time, such as the volume of the indoor space and the air conditioning load, in the storage unit 102 in advance. A required time may be calculated for each of a plurality of capacity restraint rates based on the capacity restraint rate.
  • Control device 100 calculates the difference between the temperature of the indoor space and the temperature of the outside air as preprocessing for inputting the data of input 1 to learned model 170, and calculates the temperature of the indoor space and the set temperature. , and input these differences as input 1 to the trained model 170 .
  • the control device 100 may directly input the indoor temperature, the outdoor temperature, the set temperature, and the capacity reduction rate to the learned model 170 without performing the above-described preprocessing, and perform machine learning.
  • control device 100 is provided separately from the air conditioner 2, it may be mounted, for example, inside the outdoor unit 10 so as to be integrated with the air conditioner 2. Further, the control device 100 may be a server device communicably connected to the air conditioner 2 (for example, the outdoor unit 10) via a network, or may be a cloud server.
  • the learning device 301 may be a device different from the control device 100.
  • learning device 301 may be a server device communicably connected to control device 100 via a network, or may be a cloud server. That is, the control device 100 may acquire the learned model 170 generated by another device from the other device and store it in the storage unit 102 .
  • the inference device 302 may be a device different from the control device 100.
  • the inference device 302 may be a server device communicably connected to the control device 100 via a network, or may be a cloud server.
  • the control device 100 may execute the process of S13 shown in FIG. 11 using the inference device 302 existing as a separate entity.
  • control device 100 uses supervised learning as a learning algorithm
  • a known algorithm such as unsupervised learning or reinforcement learning may be used.
  • FIG. 12 is a diagram for explaining inputs and outputs of supervised learning in the control device 100 according to the second embodiment. As shown in FIG. 12, in the control device 100 according to the second embodiment, building specifications are added to the indoor temperature, the outdoor temperature, the set temperature, and the capacity reduction rate as the inputs 1 .
  • the building specifications include the thermal insulation performance or area of the walls, the thermal insulation performance or area of the windows, the amount of ventilation, the amount of draft, the environment outside the walls (the outer wall separating the indoor space to be air-conditioned from the outdoors). , an inner wall that separates an indoor space to be air-conditioned from another indoor space, and temperature information of another indoor space in the case of an inner wall, etc.).
  • the control device 100 functioning as the learning device 301 receives, as inputs 1, the difference between the indoor temperature and the outdoor temperature, the difference between the indoor temperature and the set temperature, the capacity reduction rate, and the building specifications. , and the time required for the indoor temperature to reach the set temperature is obtained as input 2 (correct answer). Then, the control device 100 includes the obtained difference between the indoor temperature and the outdoor temperature, the difference between the indoor temperature and the set temperature, the capacity suppression rate, the building specifications, and the time required for the indoor temperature to reach the set temperature.
  • a trained model 170 is generated using the learning data 180 .
  • control device 100 functioning as the inference device 302 receives, as inputs 1, the difference between the indoor temperature and the outdoor temperature, the difference between the indoor temperature and the set temperature, the capacity reduction rate, and the building specifications. to get Then, the control device 100 uses the learned model 170 based on the obtained difference between the indoor temperature and the outdoor temperature, the difference between the indoor temperature and the set temperature, the capacity suppression rate, and the building specifications to determine whether the indoor temperature is equal to the set temperature. Infer the time required to reach
  • the control device 100 can generate the learned model 170 in consideration of various building specifications by performing machine learning for each of a plurality of properties with different building specifications. . Then, the control device 100 can infer the required time until the room temperature reaches the set temperature by using the learned model 170 generated considering various building specifications. As a result, the control device 100 can more accurately infer the required time immediately after introducing the air conditioning system 1 than when learning is performed only from the data of the single air conditioning system 1 to generate the learned model 170. can.
  • Embodiment 3 A control device 100 according to Embodiment 3 will be described with reference to FIGS. 13 and 14. FIG. In addition, below, only a part different from the control apparatus 100 based on Embodiment 1 is demonstrated about the control apparatus 100 based on Embodiment 3. FIG.
  • FIG. 13 is a diagram for explaining inputs and outputs of supervised learning in the control device 100 according to the third embodiment.
  • the air conditioning load is used as the input 2 which is correct data.
  • the control device 100 which functions as the learning device 301, acquires, as input 1, the difference between the indoor temperature and the outdoor temperature, the difference between the indoor temperature and the set temperature, and the capacity suppression rate, and inputs As 2 (correct answer), the air conditioning load is acquired. Then, the control device 100 uses learning data 180 including the obtained difference between the indoor temperature and the outdoor temperature, the difference between the indoor temperature and the set temperature, the capacity control rate, and the air conditioning load, and uses the learned model 170. to generate
  • control device 100 functioning as the inference device 302 acquires, as inputs 1, the difference between the indoor temperature and the outdoor temperature, the difference between the indoor temperature and the set temperature, and the capacity suppression rate. Based on the difference between the room temperature and the outside air temperature, the difference between the room temperature and the set temperature, and the capacity control rate, the learned model 170 is used to infer the air conditioning load.
  • FIG. 14 is a flowchart relating to processing executed by the control device 100 according to Embodiment 3 in the utilization phase.
  • the control device 100 according to Embodiment 3 executes S21 and S22 instead of S13 of FIG.
  • the control device 100 uses the learned model 170 based on the acquired difference between the indoor temperature and the outdoor temperature, the difference between the indoor temperature and the set temperature, and the capacity control rate to determine the air conditioning load. to infer Then, inferred air conditioning load is used to calculate the time required for the indoor temperature to reach the set temperature.
  • the required amount of heat to be processed can be calculated from the difference between the room temperature before the start of air conditioning and the set temperature, and the volume of the room space to be air-conditioned.
  • the air conditioning capacity Qc and the required amount of heat to be treated are determined for each building.
  • the control device 100 can calculate the required time from the inferred air conditioning load using the above-described calculation formula.
  • the input 1 for learning and inferring the air conditioning load is not limited to the indoor temperature and the outdoor temperature, and may include the amount of ventilation or the amount of internal heat generated due to the magnitude of the air conditioning load.
  • control device 100 As described above, the control device 100 according to the third embodiment generates the learned model 170 for inferring the air conditioning load, which is easier to infer than the required time. Also, it is possible to shorten the learning time until a highly accurate trained model 170 is created.
  • the present disclosure relates to a control device 100 that controls an air conditioner 2.
  • the control device 100 includes a communication unit 103 that communicates with the air conditioner 2 and a control unit 101 that controls the air conditioner 2 via the communication unit 103 .
  • the control unit 101 has an activation mode in which the air conditioner 2 is activated before the set time so that the temperature of the indoor space reaches the set temperature at the set time.
  • the control unit 101 determines the amount of air required for the temperature of the indoor space to reach the set temperature from the startup of the air conditioner 2 for each of a plurality of capacity reduction rates indicating the degree of inhibition of the air conditioning capacity of the air conditioner 2.
  • the power consumption of the air conditioner 2 is calculated, and the air conditioner 2 is controlled based on the capacity reduction rate that minimizes the power consumption among the plurality of capacity reduction rates.
  • control device 100 has the energy saving effect of increasing the energy consumption efficiency by suppressing the air conditioning capacity, and the energy increasing effect of increasing the power consumption for heat treatment by increasing the operation time for precooling and prewarming. In consideration of both, it is possible to realize energy saving in the precooling/prewarming operation.
  • the control unit 101 infers the time required for the temperature of the indoor space to reach the set temperature for each of the plurality of capacity reduction rates, and determines the capacity reduction rate based on the required time for each of the plurality of capacity reduction rates. Calculate the power consumption for each.
  • control device 100 can calculate the power consumption for each of the plurality of capacity reduction rates using the estimated required time for each of the plurality of capacity reduction rates.
  • the control unit 101 uses the learned model 170 for inferring the required time based on the temperature of the indoor space, the outside air temperature, the set temperature, and the capacity reduction rate, and calculates the required time for each of the plurality of capacity reduction rates. to infer
  • control device 100 can use the learned model 170 to accurately infer the required time for each of the plurality of capacity suppression rates.
  • the learned model 170 infers the required time based on the difference between the temperature of the indoor space and the outside air temperature, the difference between the temperature of the indoor space and the set temperature, and the capacity control rate.
  • the control device 100 calculates the difference between the temperature of the indoor space and the outdoor temperature by preprocessing without directly using the indoor temperature, the outdoor temperature, the set temperature, and the capacity control rate, and further calculates the temperature of the indoor space. and the set temperature is calculated, and the required time is inferred using this difference, the inference accuracy of the required time can be improved.
  • the control device 100 can perform machine learning efficiently, it is possible to shorten the time required to generate the learned model 170 .
  • the control unit 101 uses a trained model 170 for inferring the required time based on the temperature of the indoor space, the outdoor temperature, the set temperature, the capacity suppression rate, and the specifications of the building regarding the indoor space. Infer the required time for each of the capacity curtailment rates.
  • control device 100 can infer the required time using the learned model 170 generated in consideration of various building specifications.
  • the learned model 170 infers the required time based on the difference between the temperature of the indoor space and the outside air temperature, the difference between the temperature of the indoor space and the set temperature, the capacity control rate, and the specifications of the building.
  • the control device 100 calculates the difference between the temperature of the indoor space and the outdoor temperature by preprocessing without using the indoor temperature, the outdoor temperature, the set temperature, the capacity suppression rate, and the building specifications as they are. Since the difference between the temperature of the space and the set temperature is calculated and the required time is inferred using this difference, the inference accuracy of the required time can be improved. In addition, since the control device 100 can perform machine learning efficiently, it is possible to shorten the time required to generate the learned model 170 .
  • the control unit 101 infers the air conditioning load in the indoor space for each of the plurality of capacity reduction rates, and determines the temperature of the indoor space for each of the plurality of capacity reduction rates based on the air conditioning load for each of the plurality of capacity reduction rates. A time required for reaching the set temperature is calculated, and power consumption is calculated for each of the plurality of capacity reduction rates based on the required time for each of the plurality of capacity reduction rates.
  • control device 100 can calculate the power consumption for each of the plurality of capacity reduction rates using the air conditioning load inferred for each of the plurality of capacity reduction rates.
  • the control unit 101 uses a trained model 170 for inferring the air conditioning load based on the temperature of the indoor space, the outside air temperature, the set temperature, and the capacity reduction rate, and calculates the air conditioning load for each of the plurality of capacity reduction rates. to infer
  • control device 100 can use the learned model 170 to accurately infer the air conditioning load for each of the plurality of capacity reduction rates.
  • the learned model 170 infers the air conditioning load based on the difference between the temperature of the indoor space and the outside air temperature, the difference between the temperature of the indoor space and the set temperature, and the capacity control rate.
  • the control device 100 calculates the difference between the temperature of the indoor space and the outdoor temperature by preprocessing without directly using the indoor temperature, the outdoor temperature, the set temperature, and the capacity control rate, and further calculates the temperature of the indoor space. and the set temperature is calculated, and the difference is used to infer the air conditioning load, so the air conditioning load inference accuracy can be improved.
  • the control device 100 can perform machine learning efficiently, it is possible to shorten the time required to generate the learned model 170 .
  • the present disclosure is a control method for the control device 100 that controls the air conditioner 2 .
  • the control method includes a plurality of capabilities indicating the extent to which the air conditioning capacity of the air conditioner 2 is suppressed in a startup mode in which the air conditioner 2 is started before the set time so that the temperature of the indoor space reaches the set temperature at the set time. a step of calculating the power consumption of the air conditioner 2 required for the temperature of the indoor space to reach the set temperature from the startup of the air conditioner 2 for each of the suppression rates; and controlling the air conditioner 2 based on the capacity reduction rate at which is the minimum.
  • control device 100 has the energy saving effect of increasing the energy consumption efficiency by suppressing the air conditioning capacity, and the energy increasing effect of increasing the power consumption for heat treatment by increasing the operation time for precooling and prewarming. In consideration of both, it is possible to realize energy saving in the precooling/prewarming operation.
  • 1 air conditioning system 2 air conditioner, 10 outdoor unit, 11 compressor, 13 outdoor heat exchanger 20, 20A, 20B, 20C indoor unit, 21, 41 fan, 22, 42 motor, 23 indoor heat exchanger, 24 expansion Device, 25, 45 blower, 30, 30A, 30B connection pipe, 31, 32, 33, 34, 35 pipe, 50 four-way valve, 51, 52, 53, 54 connection port, 61 outside air temperature sensor, 62, 62A, 62B , 62C room temperature sensor, 65 temperature setting device, 100 control device, 101 control unit, 102 storage unit, 103 communication unit, 110 data acquisition unit, 111 intake port, 112 discharge port, 120 model generation unit, 130 inference unit, 140 Electric energy calculation unit 150 Capacity control rate determination unit 160 Startup time determination unit 170 Learned model 180 Learning data 190 Learning program 301 Learning device 302 Inference device 303 Learned model storage unit 304 Learning program storage unit.

Abstract

制御装置(100)は、空気調和機(2)と通信する通信部(103)と、通信部を介して空気調和機を制御する制御部(101)とを備える。制御部は、設定時刻において室内空間の温度が設定温度に達するように設定時刻よりも前に空気調和機を起動する起動モードを有する。制御部は、起動モードにおいて、空気調和機の空調能力の抑制度合いを示す複数の能力抑制率の各々について、空気調和機の起動から室内空間の温度が設定温度に達するまでに要する空気調和機の消費電力量を算出し、複数の能力抑制率のうちの消費電力量が最小となる能力抑制率に基づき空気調和機を制御する。

Description

制御装置および制御方法
 本開示は、空気調和機を制御する制御装置および制御方法に関する。
 従来、ピーク電力の抑制および消費電力量の削減を目的として、予め設定された設定時刻において室内空間の温度が設定温度に達するように設定時刻よりも前に空気調和機を起動して予冷・予暖運転する技術が知られている。
 特開2016-61487号公報(特許文献1)には、空気調和機に予冷・予暖運転させる際に、消費電力と空調能力とから算出されるエネルギー消費効率を考慮して、空調能力を通常よりも抑えるようにして空気調和機を制御する制御装置が開示されている。
特開2016-61487号公報
 特開2016-61487号公報に開示された制御装置によれば、空気調和機の空調能力を抑えている分、エネルギー消費効率を上げることができる。しかしながら、空気調和機の空調能力を小さくすれば、室内空間の温度が設定温度に達するまでの所要時間が長くなるため、予冷・予暖運転を開始する時刻を早めなければならない。室外からの侵入熱負荷および内部負荷は常に発生するため、予冷・予暖のための運転時間が長くなると、処理しなければならない熱量が増え、熱処理のための消費電力量が増大する。
 一方、空気調和機の空調能力を大きくすれば、室内空間の温度が設定温度に達するまでの時間が短くなるため、予冷・予暖のための運転時間を短くすることができるが、エネルギー消費効率が上がり難い。すなわち、空調能力を抑えることによってエネルギー消費効率が上がる省エネルギー効果と、予冷・予暖のための運転時間が長くなることによって熱処理のための消費電力量が増大する増エネルギー効果との両方を考慮しなければ、真の省エネルギー運転を実現することはできない。
 本開示は、上記課題を解決するためになされたものであって、予冷・予暖運転における省エネルギー化を実現する技術を提供することを目的とする。
 本開示に係る制御装置は、空気調和機を制御する制御装置である。制御装置は、空気調和機と通信する通信部と、通信部を介して空気調和機を制御する制御部とを備える。制御部は、設定時刻において室内空間の温度が設定温度に達するように設定時刻よりも前に空気調和機を起動する起動モードを有し、起動モードにおいて、空気調和機の空調能力の抑制度合いを示す複数の能力抑制率の各々について、空気調和機の起動から室内空間の温度が設定温度に達するまでに要する空気調和機の消費電力量を算出し、複数の能力抑制率のうちの消費電力量が最小となる能力抑制率に基づき空気調和機を制御する。
 本開示に係る制御方法は、設定時刻において室内空間の温度が設定温度に達するように設定時刻よりも前に空気調和機を起動する起動モードにおいて、空気調和機の空調能力の抑制度合いを示す複数の能力抑制率の各々について、空気調和機の起動から室内空間の温度が設定温度に達するまでに要する空気調和機の消費電力量を算出するステップと、複数の能力抑制率のうちの消費電力量が最小となる能力抑制率に基づき空気調和機を制御するステップとを含む。
 本開示によれば、制御装置は、消費電力量が最小となる能力抑制率に基づき空気調和機を制御することによって、予冷・予暖運転における省エネルギー化を実現することができる。
実施の形態1に係る空調システムの構成を示す図である。 実施の形態1に係る空気調和機の構成を示す図である。 実施の形態1に係る制御装置の機能構成を示す図である。 予冷・予暖運転に関する室内温度および消費電力量の変化の一例を示す図である。 教師あり学習の概要を説明するための図である。 実施の形態1に係る制御装置における教師あり学習の入力および出力を説明するための図である。 学習装置の構成を示す図である。 ニューラルネットワークの構成を示す図である。 学習装置(制御装置)が学習フェーズにおいて実行する処理に関するフローチャートである。 推論装置の構成を示す図である。 推論装置(制御装置)が活用フェーズにおいて実行する処理に関するフローチャートである。 実施の形態2に係る制御装置における教師あり学習の入力および出力を説明するための図である。 実施の形態3に係る制御装置における教師あり学習の入力および出力を説明するための図である。 実施の形態3に係る制御装置が活用フェーズにおいて実行する処理に関するフローチャートである。
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 実施の形態1.
 図1は、実施の形態1に係る空調システム1の構成を示す図である。図1に示すように、空調システム1は、空気調和機2と、空気調和機2を制御する制御装置100とを備える。
 空気調和機2は、室外機10と、少なくとも1つの室内機20とを備える。空調システム1においては、少なくとも1つの室内機20として、複数の室内機20A,20B,20Cが空調の対象となる室内空間を冷房または暖房するように設置されている。室外機10は、接続配管30によって、少なくとも1つの室内機20に接続されている。なお、実施の形態1において、空調システム1は、1つの室外機10に複数の室内機20A,20B,20Cが接続されるように構成されているが、1つの室外機10に1つの室内機20が接続されるように構成されてもよい。
 空調システム1は、室外の外気温度を測定する外気温度センサ61と、室内空間の室内温度を測定する少なくとも1つの室内温度センサ62とをさらに備える。空調システム1においては、少なくとも1つの室内温度センサ62として、複数の室内機20A,20B,20Cのそれぞれに対して複数の室内温度センサ62A,62B,62Cが設置されている。なお、空調システム1は、複数の室内機20A,20B,20Cに対して1つの室内温度センサ62が設置されるように構成されてもよい。
 外気温度センサ61によって取得された外気温度の測定値は、外気温度センサ61から制御装置100に送信され、制御装置100は、外気温度センサ61から外気温度の測定値を取得する。室内温度センサ62によって取得された室内温度の測定値は、室内温度センサ62から制御装置100に送信され、制御装置100は、室内温度センサ62から室内温度の測定値を取得する。
 図2は、実施の形態1に係る空気調和機2の構成を示す図である。図2に示すように、空気調和機2は、室外機10と、室内機20A,20B,20Cとが、接続配管30(30A,30B)によって接続されている。なお、図2においては、室内機20A,20B,20Cがともに同じ構成を備える例が示されている。
 室外機10は、四方弁50と、圧縮機11と、室外熱交換器13と、送風機45とを備える。
 四方弁50は、接続口51と、接続口52と、接続口53と、接続口54とを備える。四方弁50の接続口51は、配管35を介して、圧縮機11の吸入口111に接続されている。四方弁50の接続口52は、配管32を介して、室内機20へと繋がる接続配管30Aに接続されている。四方弁50の接続口53は、配管31を介して、圧縮機11の吐出口112に接続されている。四方弁50の接続口54は、配管34を介して、室外熱交換器13の一端側に接続されている。四方弁50は、制御装置100の制御に従って、内部の連通状態を切り替えるように構成されている。室外熱交換器13の他端側は、配管33を介して、室内機20へと繋がる接続配管30Bに接続されている。
 圧縮機11は、制御装置100の制御に従って、運転および停止、さらには運転時の回転速度を変化するように構成されている。圧縮機11は、制御装置100の制御に基づき、インバータを利用して駆動する。具体的には、制御装置100は、圧縮機11を制御することによって、圧縮機11の駆動周波数を任意に変化させる。圧縮機11は、駆動周波数の変化に応じて単位時間当たりの回転数すなわち回転速度を変化させ、それによって、単位時間当たりの冷媒の吐出量を変化させる。圧縮機11には種々のタイプのものを採用可能であり、たとえば、スクロールタイプ、ロータリータイプ、スクリュータイプなどが圧縮機11として採用され得る。
 室外熱交換器13は、送風機45によって室外から吸い込まれた外気と冷媒との間で熱交換を行う。
 送風機45は、ファン41と、モータ42とを備える。ファン41は、室外から吸い込んだ外気を室外熱交換器13に送る。モータ42は、制御装置100の制御に従って、ファン41を駆動または停止、さらには駆動時の回転速度を変化するように構成されている。具体的には、制御装置100は、モータ42を制御することによって、モータ42の駆動周波数を任意に変化させる。モータ42は、駆動周波数の変化に応じてファン41の単位時間当たりの回転数すなわち回転速度を変化させる。これにより、制御装置100は、ファン41の回転による送風量を調整することができる。
 室内機20は、室内熱交換器23と、送風機25と、膨張装置24とを備える。室内熱交換器23の一端側は、室外機10へと繋がる接続配管30Aに接続されている。室内熱交換器23の他端側は、膨張装置24の一端側に接続されている。膨張装置24の他端側は、室外機10へと繋がる接続配管30Bに接続されている。
 室内熱交換器23は、送風機25によって室内空間から吸い込まれた空気と冷媒との間で熱交換を行う。
 送風機25は、ファン21と、モータ22とを備える。ファン21は、室内空間から吸い込んだ空気を室内熱交換器23に送る。モータ22は、制御装置100の制御に従って、ファン21を駆動または停止、さらには駆動時の回転速度を変化するように構成されている。具体的には、制御装置100は、モータ22を制御することによって、モータ22の駆動周波数を任意に変化させる。モータ22は、駆動周波数の変化に応じてファン21の単位時間当たりの回転数すなわち回転速度を変化させる。これにより、制御装置100は、ファン21の回転による送風量を調整することができる。
 膨張装置24は、たとえば、制御装置100の制御に従って開度が調整される電子膨張弁である。膨張装置24は、流入した冷媒の圧力を下げ、減圧によって得られた冷媒を流出する。制御装置100は、膨張装置24の開度を調整することによって、冷媒の減圧量を調整することができる。なお、膨張装置24は、圧力差によって冷媒の流量を調整するキャピラリチューブであってもよい。
 このように、圧縮機11、四方弁50、室外熱交換器13、膨張装置24、および室内熱交換器23が冷媒配管によって環状に接続されることで冷凍サイクルが構成される。空気調和機2は、室内空間を冷房する冷房運転と室内空間を暖房する暖房運転とを含む複数種類の運転モードのいずれかに制御される。
 まず、冷房運転における空気調和機2の動作について説明する。冷房運転において、四方弁50の内部の連通状態は、図2中の実線で示されるように、接続口51が接続口52に連通し、かつ、接続口53が接続口54に連通する。つまり、冷房運転においては、圧縮機11の吸入口111が室内機20に連通し、かつ、圧縮機11の吐出口112が室外熱交換器13に連通する。
 圧縮機11は、室内熱交換器23からの低温低圧のガス冷媒を吸入し、吸入したガス冷媒を圧縮することでガス冷媒の圧力を上げる。圧縮機11は、圧縮によって得られた高温高圧のガス冷媒を室外熱交換器13へと吐出する。
 冷房運転において、室外熱交換器13は、凝縮器として働く。室外熱交換器13は、圧縮機11からの高温高圧のガス冷媒を、送風機45によって室外から吸い込まれた外気との間で熱交換させる。この熱交換により放熱したガス冷媒は、室外熱交換器13の内部で凝縮することで高温高圧の液冷媒に変化する。室外熱交換器13によって得られた高温高圧の液冷媒は、膨張装置24へと流出する。
 膨張装置24は、室外熱交換器13からの高温高圧の液冷媒の圧力を下げる。膨張装置24の減圧によって得られた低温低圧の気液二相冷媒は、室内熱交換器23へと流出する。
 冷房運転において、室内熱交換器23は、蒸発器として働く。室内熱交換器23は、膨張装置24からの低温低圧の気液二相冷媒を、送風機25によって室内から吸い込まれた空気との間で熱交換させる。この熱交換により吸熱した気液二相冷媒は、室内熱交換器23の内部で蒸発することで低温低圧のガス冷媒に変化する。室内熱交換器23によって得られた低温低圧のガス冷媒は、圧縮機11へと流出する。室内熱交換器23においてガス冷媒によって吸熱された空気は、再び室内空間に送り込まれる。これにより、室内空間が冷房される。
 このように、冷房運転において、冷媒は、圧縮機11、室外熱交換器13(凝縮器)、膨張装置24、および室内熱交換器23(蒸発器)の順に流通する。
 次に、暖房運転における空気調和機2の動作について説明する。暖房運転において、四方弁50の内部の連通状態は、図2中の破線で示されるように、接続口51が接続口54に連通し、かつ、接続口52が接続口53に連通する。つまり、暖房運転においては、圧縮機11の吸入口111が室外熱交換器13に連通し、かつ、圧縮機11の吐出口112が室内機20に連通する。
 圧縮機11は、室外熱交換器13から流入した低温低圧のガス冷媒を吸入し、吸入したガス冷媒を圧縮することでガス冷媒の圧力を上げる。圧縮機11は、圧縮によって得られた高温高圧のガス冷媒を、室内熱交換器23へと吐出する。
 暖房運転において、室内熱交換器23は、凝縮器として働く。室内熱交換器23は、圧縮機11からの高温高圧のガス冷媒を、送風機25によって室内空間から吸い込まれた外気との間で熱交換させる。この熱交換により放熱したガス冷媒は、室内熱交換器23の内部で凝縮することで高温高圧の液冷媒に変化する。室内熱交換器23によって得られた高温高圧の液冷媒は、膨張装置24へと流出する。室内熱交換器23においてガス冷媒から吸熱した空気は、再び室内空間に送り込まれる。これにより、室内空間が暖房される。
 膨張装置24は、室内熱交換器23からの高温高圧の液冷媒の圧力を下げる。膨張装置24によって得られた低温低圧の気液二相冷媒は、室外熱交換器13へと流出する。
 暖房運転において、室外熱交換器13は、蒸発器として働く。室外熱交換器13は、膨張装置24からの低温低圧の気液二相冷媒を、送風機45によって室外から吸い込まれた外気との間で熱交換させる。この熱交換により吸熱した気液二相冷媒は、室外熱交換器13の内部で蒸発することで低温低圧のガス冷媒に変化する。室外熱交換器13によって得られた低温低圧のガス冷媒は、圧縮機11へと流出する。
 このように、暖房運転において、冷媒は、圧縮機11、室内熱交換器23(凝縮器)、膨張装置24、および室外熱交換器13(蒸発器)の順に流通する。
 図3は、実施の形態1に係る制御装置100の構成を示す図である。図3に示すように、制御装置100は、主な機能構成として、制御部101と、記憶部102と、通信部103とを備える。
 制御部101は、各種のプログラムを実行することで各種の処理を実行する演算主体であり、一例として、コンピュータ(たとえば、プロセッサ)が挙げられる。制御部101は、たとえば、CPU(Central Processing Unit)、FPGA(Field-Programmable Gate Array)、およびGPU(Graphics Processing Unit)のうちの少なくとも1つで構成されている。また、制御部101は、ASIC(application specific integrated circuit)などの演算回路(processing circuitry)で構成されてもよい。
 記憶部102は、制御部101が各種のプログラムを実行するにあたって、プログラムコードまたはワークメモリなどを一時的に格納する記憶領域を提供するメモリであり、一例として、DRAM(dynamic random access memory)およびSRAM(static random access memory)などの揮発性メモリ、または、ROM(Read Only Memory)およびフラッシュメモリなどの不揮発性メモリが挙げられる。さらに、記憶部102は、空気調和機2を制御するために必要な各種のデータを格納する記憶領域を提供する記憶装置であってもよく、一例として、SSD(solid state drive)またはHDD(hard disk drive)などの記憶装置であってもよい。
 通信部103は、空気調和機2、外気温度センサ61、室内温度センサ62、および温度設定装置65の各々との間でデータの送受信を行う通信インターフェースである。制御装置100は、通信部103を介して空気調和機2と通信することによって、空気調和機2を制御する。制御装置100は、通信部103を介して外気温度センサ61と通信することによって、外気温度センサ61から外気温度の測定値を取得する。制御装置100を、通信部103を介して室内温度センサ62と通信することによって、室内温度センサ62から室内温度の測定値を取得する。
 温度設定装置65は、リモートコントローラ、PC(Personal Computer)、スマートフォンなどによって構成される。空気調和機2のユーザは、温度設定装置65を用いて設定温度を入力することによって、室内空間の目標温度を設定することができる。また、空気調和機2のユーザは、温度設定装置65を用いて設定時刻を入力することによって、予冷・予暖運転において室内空間の温度が設定温度に達する目標時刻を設定することができる。制御装置100は、通信部103を介して温度設定装置65と通信することによって、温度設定装置65からユーザによって設定された設定温度(目標温度)および設定時刻(目標時刻)を取得する。
 上述のように構成された制御装置100は、設定時刻において室内空間の温度が設定温度に達するように設定時刻よりも前に空気調和機2を起動して予冷・予暖運転する起動モードを有する。起動モードにおいて、制御装置100は、室内温度センサ62から取得した室内温度が、ユーザによって設定された設定温度に近づくように圧縮機11が制御される。たとえば、朝一など、空気調和機2が一定期間停止した後に空気調和機2が起動した場合、室内温度と設定温度とが乖離した状態から、室内温度が徐々に設定温度に近づいていく。
 空気調和機2の起動時においては、室内温度を早期に設定温度に近づけるために、圧縮機11の駆動周波数を最大値(たとえば、100%)まで上げ、空調能力が最大の状態で空調運転することが想定される。このとき、消費電力と空調能力とから算出されるエネルギー消費効率(COP:Coefficient of Performance)を考慮すれば、圧縮機11の駆動周波数を抑えるような運転をすることが望ましい。たとえば、圧縮機11の駆動周波数が最大値となるインバータ能力100%で圧縮機11を制御するよりも、圧縮機11の駆動周波数が最大値未満となるインバータ能力50~60%で圧縮機11を制御する方が、エネルギー消費効率は大きくなる。なお、エネルギー消費効率(COP)とは、単位電力(たとえば、1kW)当たりの空調能力を示す値である。
 しかしながら、空気調和機2の空調能力を小さくすれば、室内空間の温度が設定温度に達するまでの所要時間が長くなるため、予冷・予暖運転を開始する時刻を早めなければならない。室外からの侵入熱負荷および内部負荷は常に発生するため、予冷・予暖のための運転時間が長くなると、処理しなければならない熱量が増え、熱処理のための消費電力量が増大する。
 一方、空気調和機2の空調能力を大きくすれば、室内空間の温度が設定温度に達するまでの時間が短くなるため、予冷・予暖のための運転時間を短くすることができるが、エネルギー消費効率が上がり難い。
 図4を参照しながら、空調能力に関する能力抑制率と、消費電力量との関係を説明する。図4は、予冷・予暖運転に関する室内温度および消費電力量の変化の一例を示す図である。なお、図4においては、空気調和機2が冷房運転を行う場合の例を示している。
 能力抑制率とは、空気調和機2の空調能力の抑制度合いを示す値であり、たとえば、圧縮機11の駆動周波数を最大値で制御した場合を能力抑制率100%とすると、圧縮機11の駆動周波数が50%で制御した場合は能力抑制率50%になる。能力抑制の方法については、圧縮機11の駆動周波数、回転数、または入力電流値などに上限を設けたり、制御目標値である蒸発温度または室内機20の出口の冷媒過熱度に制約を設けたりといった方法が考えられ、能力抑制の方法については限定されない。
 図4(A)には、「大」、「中」、「小」からなる3段階の能力抑制率ごとに、予冷・予暖運転を行った場合の時間に対する室内温度の変化を示すグラフが示されている。たとえば、能力抑制率が「小」の状態は、圧縮機11の駆動周波数を第1値(たとえば、インバータ能力100%)で制御した状態に対応する。能力抑制率が「中」の状態は、圧縮機11の駆動周波数を第1値(たとえば、インバータ能力100%)よりも小さい第2値(たとえば、インバータ能力75%)で制御した状態に対応する。能力抑制率が「大」の状態は、圧縮機11の駆動周波数を第2値(たとえば、インバータ能力75%)よりも小さい第3値(たとえば、インバータ能力50%)で制御した状態に対応する。
 図4(A)に示すように、能力抑制率が大きいほど、すなわち空気調和機2の空調能力が小さいほど、室内空間の温度が設定温度に達するまでの所要時間が長くなるため、予冷・予暖運転を開始する時刻を早めなければならない。この例では、能力抑制率が「小」の状態では、設定時刻に近い時刻t3で空気調和機2を起動させればよいのに対して、能力抑制率が「大」の状態では、設定時刻から遠い時刻t1で空気調和機2を起動させなければならない。
 予冷・予暖のための運転時間が長くなると、室内空間において累積する侵入熱負荷量が増大するため、熱処理のための消費電力量が増大する。たとえば、図4(B)には、「大」、「中」、「小」からなる3段階の能力抑制率ごとに、予冷・予暖運転を行った場合の時間に対する消費電力量の変化を示すグラフが示されている。
 図4(B)に示すように、3段階の能力抑制率のうち、室内空間の温度が設定温度に達するまでに要する消費電力量は、能力抑制率が「小」の状態が最も大きく、能力抑制率が「中」の状態が最も小さくなる。すなわち、この例では、能力抑制率が「中」の状態が最も省エネルギー効果がある。
 このように、空調能力を抑えた場合は、エネルギー消費効率(COP)が上がるが、空調能力を抑える度合いが過剰になれば、予冷・予暖のための運転時間が長くなることによって熱処理のための消費電力量が増大することになる。さらに、予冷・予暖のための運転時間は、室内温度、外気温度、設定温度、および室内空間における建物仕様などによって、物件ごとおよび日ごとに変化し得る。なお、建物仕様とは、建物の空調負荷の大きさに起因するものである。たとえば、建物仕様は、壁の断熱性能または面積、窓の断熱性能または面積、換気量、隙間風の量、壁外側の環境(空調対象となる室内空間と屋外とを隔てる外壁、空調対象となる室内空間と他の室内空間とを隔てる内壁、さらに内壁の場合は他の室内空間の温度情報など)を含む。
 そこで、実施の形態1に係る制御装置100は、空調能力を抑えることによってエネルギー消費効率が上がる省エネルギー効果と、予冷・予暖のための運転時間が長くなることによって熱処理のための消費電力量が増大する増エネルギー効果との両方を考慮して、物件ごとおよび日ごとに、予冷・予暖運転において省エネルギー化を実現する最適な能力抑制率を設定するように構成されている。なお、図4においては、空気調和機2が冷房運転を行う場合の例を示していたが、空気調和機2が暖房運転を行う場合においても冷房運転と同様の技術を適用可能である。
 具体的には、図3に示すように、制御装置100の制御部101は、データ取得部110と、モデル生成部120と、推論部130と、電力量算出部140と、能力抑制率決定部150と、起動時刻決定部160とを備える。
 データ取得部110は、通信部103を介して、室内温度、外気温度、および設定温度を取得する。モデル生成部120は、室内温度、外気温度、設定温度、および能力抑制率を含む入力データと、これらの入力データに対応する正解データである所要時間とをセットにした学習用データを用いて、室内空間の温度と、外気温度と、設定温度と、能力抑制率とに基づき、複数の能力抑制率の各々について所要時間を推論するための学習済モデルを生成する。推論部130は、室内温度と、外気温度と、設定温度と、能力抑制率とに基づき所要時間を推論するための学習済モデルを用いて、複数の能力抑制率の各々について所要時間を推論する。電力量算出部140は、複数の能力抑制率の各々の所要時間に基づき、複数の能力抑制率の各々について消費電力量を算出する。能力抑制率決定部150は、複数の能力抑制率のうち、消費電力量が最小となる能力抑制率を決定する。起動時刻決定部160は、消費電力量が最小となる能力抑制率を用いた場合の所要時間から、空気調和機2の起動時刻を決定する。これにより、制御装置100は、起動時刻になったときに、消費電力量が最小となる能力抑制率に基づき空気調和機2を起動することによって、予冷・予暖運転における省エネルギー化を実現することができる。
 上述したように、制御装置100は、室内温度、外気温度、設定温度、および能力抑制率を含む入力データと、これらの入力データに対応する正解データである所要時間とをセットにした学習用データを用いて、教師あり学習を行う。教師あり学習とは、要因と結果(ラベル)のデータセットを用いて、これらの学習用データにある特徴を学習し、入力から結果を推論する手法である。図5は、教師あり学習の概要を説明するための図である。
 図5に示すように、学習フェーズにおいて、制御装置100は、学習用プログラム190を実行することで、入力1と入力2(正解)とを含む学習用データ180に基づき、学習済モデル170を生成(更新)する。
 活用フェーズにおいて、制御装置100は、学習済モデル170を用いて、入力1に基づき、出力を得る。
 図6は、実施の形態1に係る制御装置100における教師あり学習の入力および出力を説明するための図である。図6に示すように、実施の形態1に係る制御装置100においては、入力1として、室内温度、外気温度、設定温度、および能力抑制率が用いられる。より具体的には、入力1として、室内温度と外気温度との差、室内温度と設定温度との差、および能力抑制率が用いられる。また、正解データである入力2として、室内温度が設定温度に達するまでの所要時間が用いられる。出力として、室内温度が設定温度に達するまでの所要時間が得られる。
 図7は、学習装置301の構成を示す図である。学習装置301は、制御装置100の制御部101によって実現される。学習装置301は、学習用プログラム記憶部304および学習済モデル記憶部303の各々とデータの受け渡しが可能である。学習用プログラム記憶部304および学習済モデル記憶部303は、制御装置100の記憶部102によって実現される。
 図7に示すように、学習装置301は、データ取得部110と、モデル生成部120とを備える。学習装置301は、学習用プログラム記憶部304によって記憶された学習用プログラム190を実行することで、入力1と入力2(正解)とを含む学習用データ180に基づき、学習済モデル170を生成する。
 データ取得部110は、入力1と入力2(正解)とを含む学習用データ180を取得する。具体的には、データ取得部110は、入力1として、室内温度と外気温度との差、室内温度と設定温度との差、および能力抑制率を取得する。データ取得部110は、入力2(正解)として、室内温度が設定温度に達するまでの所要時間を取得する。
 モデル生成部120は、データ取得部110によって取得された入力1と入力2(正解)とを含む学習用データ180を用いて、入力1から出力として室内温度が設定温度に達するまでの所要時間を推論する学習済モデル170を生成する。モデル生成部120は、生成した学習済モデル170を学習済モデル記憶部303に記憶させる。
 図8は、ニューラルネットワークの構成を示す図である。モデル生成部120は、たとえば、ニューラルネットワークモデルに従って、教師あり学習によって学習済モデル170を生成する。
 ニューラルネットワークは、複数のニューロンからなる入力層、複数のニューロンからなる中間層(隠れ層)、および複数のニューロンからなる出力層で構成される。中間層は、1層、または2層以上でもよい。
 図8においては、3層のニューラルネットワークが表されている。図8においては、入力が3個、出力が3個の構成が表されている。複数の入力が入力層X1,X2,X3に入力されると、その値に重みw11~w16を掛けた値が中間層Y1,Y2に入力され、その結果にさらに重みw21~w26を掛けた値が出力層Z1,Z2,Z3から出力される。この出力結果は、重みw11~w16,w21~w26の値によって変わる。
 ニューラルネットワークは、データ取得部110によって取得された入力1と入力2(正解)とを含む学習用データ180に基づき、教師あり学習を行う。すなわち、ニューラルネットワークは、入力層に入力1を入力して出力層から出力された結果が、入力2(正解)に近づくように重みを調整することで学習する。
 モデル生成部120は、上述したような教師あり学習を行うことで、学習済モデル170を生成する。
 図9は、学習装置301(制御装置100)が学習フェーズにおいて実行する処理に関するフローチャートである。なお、図9においては、学習装置301に対応する制御装置100が実行する処理が示されている。また、図9において、「S」は「STEP」の略称として用いられる。
 図9に示すように、制御装置100は、データ取得部110によって、入力1と入力2(正解)とを含む学習用データ180を取得する(S1)。なお、制御装置100は、入力1および入力2(正解)を同時に取得する場合に限らず、入力1および入力2(正解)を互いに異なるタイミングで取得してもよい。また、制御装置100は、室内温度、外気温度、設定温度、および能力抑制率を同時に取得する場合に限らず、室内温度、外気温度、設定温度、および能力抑制率を互いに異なるタイミングで取得してもよい。
 制御装置100は、モデル生成部120によって、学習用データ180に基づき、教師あり学習を行うことで、学習済モデル170を生成する(S2)。制御装置100は、生成した学習済モデル170を、学習済モデル記憶部303に記憶し(S3)、本処理を終了する。
 図10は、推論装置302の構成を示す図である。推論装置302は、制御装置100の制御部101によって実現される。推論装置302は、学習済モデル記憶部303とデータの受け渡しが可能である。
 図10に示すように、推論装置302は、データ取得部110と、推論部130とを備える。推論装置302は、学習済モデル170を用いて、入力1から出力として室内温度が設定温度に達するまでの所要時間を得る。
 データ取得部110は、入力1を取得する。具体的には、データ取得部110は、入力1として、室内温度と外気温度との差、室内温度と設定温度との差、および能力抑制率を取得する。
 推論部130は、学習済モデル170を用いて、入力1から出力として室内温度が設定温度に達するまでの所要時間を得る。具体的には、推論部130は、学習済モデル記憶部303から、学習済モデル170を読み出す。推論部130は、学習済モデル170を用いて、データ取得部110によって取得された入力1のデータに基づき、出力として室内温度が設定温度に達するまでの所要時間を推論する。
 図11は、推論装置302(制御装置100)が活用フェーズにおいて実行する処理に関するフローチャートである。なお、図11においては、推論装置302に対応する制御装置100が実行する処理が示されている。また、図11において、「S」は「STEP」の略称として用いられる。
 図11に示すように、制御装置100は、データ取得部110によって、入力1を取得する(S11)。なお、制御装置100は、室内温度、外気温度、設定温度、および能力抑制率を同時に取得する場合に限らず、室内温度、外気温度、設定温度、および能力抑制率を互いに異なるタイミングで取得してもよい。
 制御装置100は、取得した入力1を学習済モデル170に入力する(S12)。制御装置100は、学習済モデル170を用いて、入力1から出力として室内温度が設定温度に達するまでの所要時間を推論する(S13)。これにより、制御装置100は、学習済モデル170を用いて、室内温度と外気温度との差、室内温度と設定温度との差、および能力抑制率に基づき、室内温度が設定温度に達するまでの所要時間を得ることができる。
 また、制御装置100は、上述したような所要時間の推論を、複数の能力抑制率の各々について行うことで、複数の能力抑制率の各々についての所要時間を得ることができる。なお、複数の能力抑制率の刻み幅は、ユーザまたは空調システム1の設計者などによって任意に設定され得る。
 制御装置100は、複数の能力抑制率の各々の所要時間に基づき、複数の能力抑制率の各々について消費電力量を算出する(S14)。具体的には、制御装置100は、記憶部102によって、複数の能力抑制率の各々に対応するエネルギー消費効率(COP)および空調能力を記憶している。たとえば、制御装置100は、1つの能力抑制率に対して、エネルギー消費効率(COP)および空調能力が紐付けられたテーブルを記憶部102に格納している。上述したように、エネルギー消費効率(COP)は、単位電力(たとえば、1kW)当たりの空調能力を示す値であるため、制御装置100は、複数の能力抑制率の各々について、記憶部102に格納されたテーブルを用いて、エネルギー消費効率(COP)および空調能力から、単位時間当たりの消費電力量を算出することができる。そして、制御装置100は、算出した単位時間当たりの消費電力量に、推論した所要時間を乗算することによって、予冷・予暖運転に要する消費電力量(積算電力量)を算出することができる。
 また、制御装置100は、消費電力量(積算電力量)の算出を、複数の能力抑制率の各々について行うことで、複数の能力抑制率の各々についての予冷・予暖運転に要する消費電力量(積算電力量)を得ることができる。
 制御装置100は、複数の能力抑制率のうち、消費電力量が最小となる能力抑制率を決定する(S15)。制御装置100は、消費電力量が最小となる能力抑制率を用いた場合の所要時間から、空気調和機2の起動時刻を決定する。具体的には、制御装置100は、ユーザによって入力された設定時刻から、消費電力量が最小となる能力抑制率を用いた場合の所要時間を遡らせたときの時刻を、空気調和機2の起動時刻とする(S16)。
 制御装置100は、現在時刻が起動時刻に達したか否かを判定する(S17)。制御装置100は、現在時刻が起動時刻に達していない場合(S17でNO)、S17の処理を繰り返す。一方、制御装置100は、現在時刻が起動時刻に達した場合(S17でYES)、空気調和機2を起動させる(S18)。
 制御装置100は、室内温度が設定温度に達したか否かを判定する(S19)。制御装置100は、室内温度が設定温度に達していない場合(S19でNO)、S19の処理を繰り返す。一方、制御装置100は、室内温度が設定温度に達した場合(S19でYES)、室内温度を設定温度で維持するなどの通常制御を、空気調和機2に対して行う(S20)。その後、制御装置100は、本処理を終了する。
 以上のように、実施の形態1に係る制御装置100は、起動モードにおいて、複数の能力抑制率の各々について、空気調和機2の起動から室内温度が設定温度に達するまでに要する空気調和機2の消費電力量を算出し、複数の能力抑制率のうちの消費電力量が最小となる能力抑制率を決定する。これにより、制御装置100は、物件ごとおよび日ごとに、消費電力量が最小となる能力抑制率を決定することができ、決定した能力抑制率に基づき空気調和機2を制御することによって、予冷・予暖運転における省エネルギー化を実現することができる。
 なお、実施の形態1に係る制御装置100は、学習済モデル170を用いて、予冷・予暖運転に要する所要時間を推論していたが、学習済モデル170を用いることなく所要時間を推論(算出)してもよい。具体的には、制御装置100は、室内温度、外気温度、設定温度、室内空間の容積、空調負荷(室内空間における建物の断熱性能または窓の数など)、および能力抑制率などに基づき、複数の能力抑制率の各々について所要時間を計算によって算出してもよい。すなわち、制御装置100は、室内空間の容積および空調負荷など、所要時間を算出するためのパラメータを記憶部102によって予め記憶しておくことによって、入力された室内温度、外気温度、設定温度、および能力抑制率に基づき、複数の能力抑制率の各々について所要時間を算出してもよい。
 実施の形態1に係る制御装置100は、学習済モデル170に入力1のデータを入力する前処理として、室内空間の温度と外気温度との差を算出し、さらに室内空間の温度と設定温度との差を算出し、これらの差を入力1として学習済モデル170に入力していた。しかしながら、制御装置100は、室内温度、外気温度、設定温度、および能力抑制率を、上述したような前処理を行うことなくそのまま学習済モデル170に入力して、機械学習を行ってもよい。
 実施の形態1に係る制御装置100は、空気調和機2と別体に設けられているが、空気調和機2と一体化するように、たとえば室外機10内に搭載されていてもよい。また、制御装置100は、ネットワークを介して空気調和機2(たとえば、室外機10)と通信可能に接続されたサーバ装置であってもよく、クラウドサーバであってもよい。
 実施の形態1に係る制御装置100は、学習装置301の機能を有していたが、学習装置301は、制御装置100と別の装置であってもよい。たとえば、学習装置301は、ネットワークを介して制御装置100と通信可能に接続されたサーバ装置であってもよく、クラウドサーバであってもよい。すなわち、制御装置100は、別の装置によって生成された学習済モデル170を、当該別の装置から取得して記憶部102によって記憶してもよい。
 実施の形態1に係る制御装置100は、推論装置302の機能を有していたが、推論装置302は、制御装置100と別の装置であってもよい。たとえば、推論装置302は、ネットワークを介して制御装置100と通信可能に接続されたサーバ装置であってもよく、クラウドサーバであってもよい。この場合、制御装置100は、別体として存在する推論装置302を用いて、図11に示すS13の処理を実行してもよい。
 実施の形態1に係る制御装置100は、学習アルゴリズムとして教師あり学習を用いていたが、教師なし学習または強化学習などの公知のアルゴリズムを用いてもよい。
 実施の形態2.
 図12を参照しながら、実施の形態2に係る制御装置100について説明する。なお、以下では、実施の形態2に係る制御装置100について、実施の形態1に係る制御装置100と異なる部分のみを説明する。
 図12は、実施の形態2に係る制御装置100における教師あり学習の入力および出力を説明するための図である。図12に示すように、実施の形態2に係る制御装置100においては、入力1として、室内温度、外気温度、設定温度、および能力抑制率に、建物仕様を加えている。
 なお、上述したように、建物仕様は、壁の断熱性能または面積、窓の断熱性能または面積、換気量、隙間風の量、壁外側の環境(空調対象となる室内空間と屋外とを隔てる外壁、空調対象となる室内空間と他の室内空間とを隔てる内壁、さらに内壁の場合は他の室内空間の温度情報など)を含む。
 すなわち、学習装置301として機能する実施の形態2に係る制御装置100は、入力1として、室内温度と外気温度との差、室内温度と設定温度との差、および能力抑制率に加えて建物仕様を取得し、入力2(正解)として、室内温度が設定温度に達するまでの所要時間を取得する。そして、制御装置100は、取得した室内温度と外気温度との差、室内温度と設定温度との差、能力抑制率、および建物仕様と、室内温度が設定温度に達するまでの所要時間とを含む学習用データ180を用いて、学習済モデル170を生成する。
 また、推論装置302として機能する実施の形態2に係る制御装置100は、入力1として、室内温度と外気温度との差、室内温度と設定温度との差、および能力抑制率に加えて建物仕様を取得する。そして、制御装置100は、取得した室内温度と外気温度との差、室内温度と設定温度との差、能力抑制率、および建物仕様に基づき、学習済モデル170を用いて、室内温度が設定温度に達するまでの所要時間を推論する。
 以上のように、実施の形態2に係る制御装置100は、建物仕様の異なる複数の物件ごとに機械学習を行うことによって、様々な建物仕様を考慮して学習済モデル170を生成することができる。そして、制御装置100は、様々な建物仕様を考慮して生成された学習済モデル170を用いて、室内温度が設定温度に達するまでの所要時間を推論することができる。これにより、単独の空調システム1のデータのみから学習を行って学習済モデル170を生成した場合よりも、制御装置100は、空調システム1を導入した直後から、精度よく所要時間を推論することができる。
 実施の形態3.
 図13および図14を参照しながら、実施の形態3に係る制御装置100について説明する。なお、以下では、実施の形態3に係る制御装置100について、実施の形態1に係る制御装置100と異なる部分のみを説明する。
 図13は、実施の形態3に係る制御装置100における教師あり学習の入力および出力を説明するための図である。図13に示すように、実施の形態3に係る制御装置100においては、正解データである入力2として、空調負荷が用いられる。
 すなわち、学習装置301として機能する実施の形態3に係る制御装置100は、入力1として、室内温度と外気温度との差、室内温度と設定温度との差、および能力抑制率を取得し、入力2(正解)として、空調負荷を取得する。そして、制御装置100は、取得した室内温度と外気温度との差、室内温度と設定温度との差、および能力抑制率と、空調負荷とを含む学習用データ180を用いて、学習済モデル170を生成する。
 また、推論装置302として機能する実施の形態3に係る制御装置100は、入力1として、室内温度と外気温度との差、室内温度と設定温度との差、および能力抑制率を取得し、取得した室内温度と外気温度との差、室内温度と設定温度との差、および能力抑制率に基づき、学習済モデル170を用いて、空調負荷を推論する。
 図14は、実施の形態3に係る制御装置100が活用フェーズにおいて実行する処理に関するフローチャートである。図14に示すように、実施の形態3に係る制御装置100は、図11のS13の代わりに、S21およびS22を実行する。具体的には、制御装置100は、S13において、取得した室内温度と外気温度との差、室内温度と設定温度との差、および能力抑制率に基づき、学習済モデル170を用いて、空調負荷を推論する。そして、S14において、推論した空調負荷を用いて、室内温度が設定温度に達するまでの所要時間を算出する。
 空調負荷Lc[kW]は、空調能力をQc[kW]、必要処理熱量をQn[kW]、所要時間をtn[s]とすると、Lc=Qc-Qn/(tn/3600)の計算式によって算出され得る。すなわち、所要時間をtnは、tn=Qn/(Qc-Lc)*3600の計算式によって算出され得る。ここで、必要処理熱量は、空調起動前の室内温度と設定温度との差、および空調対象の室内空間の容積から算出され得る。空調能力Qcおよび必要処理熱量は、建物ごとに決まっている。制御装置100は、上述した計算式を用いて、推論した空調負荷から、所要時間を算出することができる。
 なお、空調負荷の学習および推論するための入力1は、室内温度および外気温度に限らず、空調負荷の大きさに起因する換気量または内部発熱量を含んでいてもよい。
 以上のように、実施の形態3に係る制御装置100は、所要時間よりも推論しやすい空調負荷を推論するための学習済モデル170を生成することによって、実施の形態1に係る制御装置100よりも、精度の高い学習済モデル170ができるまでの学習時間を短縮することができる。
 (まとめ)
 本開示は、空気調和機2を制御する制御装置100に関する。制御装置100は、空気調和機2と通信する通信部103と、通信部103を介して空気調和機2を制御する制御部101とを備える。制御部101は、設定時刻において室内空間の温度が設定温度に達するように設定時刻よりも前に空気調和機2を起動する起動モードを有する。制御部101は、起動モードにおいて、空気調和機2の空調能力の抑制度合いを示す複数の能力抑制率の各々について、空気調和機2の起動から室内空間の温度が設定温度に達するまでに要する空気調和機2の消費電力量を算出し、複数の能力抑制率のうちの消費電力量が最小となる能力抑制率に基づき空気調和機2を制御する。
 これにより、制御装置100は、空調能力を抑えることによってエネルギー消費効率が上がる省エネルギー効果と、予冷・予暖のための運転時間が長くなることによって熱処理のための消費電力量が増大する増エネルギー効果との両方を考慮して、予冷・予暖運転における省エネルギー化を実現することができる。
 制御部101は、複数の能力抑制率の各々について、室内空間の温度が設定温度に達するまでの所要時間を推論し、複数の能力抑制率の各々の所要時間に基づき、複数の能力抑制率の各々について消費電力量を算出する。
 これにより、制御装置100は、複数の能力抑制率の各々について推論した所要時間を用いて、複数の能力抑制率の各々について消費電力量を算出することができる。
 制御部101は、室内空間の温度と、外気温度と、設定温度と、能力抑制率とに基づき所要時間を推論するための学習済モデル170を用いて、複数の能力抑制率の各々について所要時間を推論する。
 これにより、制御装置100は、学習済モデル170を用いて、複数の能力抑制率の各々について所要時間を精度よく推論することができる。
 学習済モデル170は、室内空間の温度と外気温度との差、室内空間の温度と設定温度との差、および能力抑制率に基づき所要時間を推論する。
 これにより、制御装置100は、室内温度、外気温度、設定温度、および能力抑制率をそのまま用いることなく、前処理によって、室内空間の温度と外気温度との差を算出し、さらに室内空間の温度と設定温度との差を算出し、これらの差を用いて所要時間を推論するため、所要時間の推論精度を高めることができる。また、制御装置100は、効率よく機械学習を行うことができるため、学習済モデル170の生成に要する時間を短縮することができる。
 制御部101は、室内空間の温度と、外気温度と、設定温度と、能力抑制率と、室内空間に関する建物の仕様とに基づき所要時間を推論するための学習済モデル170を用いて、複数の能力抑制率の各々について所要時間を推論する。
 これにより、制御装置100は、様々な建物仕様を考慮して生成された学習済モデル170を用いて所要時間を推論することができる。
 学習済モデル170は、室内空間の温度と外気温度との差、室内空間の温度と設定温度との差、能力抑制率、および建物の仕様に基づき所要時間を推論する。
 これにより、制御装置100は、室内温度、外気温度、設定温度、能力抑制率、および建物仕様をそのまま用いることなく、前処理によって、室内空間の温度と外気温度との差を算出し、さらに室内空間の温度と設定温度との差を算出し、これらの差を用いて所要時間を推論するため、所要時間の推論精度を高めることができる。また、制御装置100は、効率よく機械学習を行うことができるため、学習済モデル170の生成に要する時間を短縮することができる。
 制御部101は、複数の能力抑制率の各々について、室内空間の空調負荷を推論し、複数の能力抑制率の各々の空調負荷に基づき、複数の能力抑制率の各々について、室内空間の温度が設定温度に達するまでの所要時間を算出し、複数の能力抑制率の各々の所要時間に基づき、複数の能力抑制率の各々について消費電力量を算出する。
 これにより、制御装置100は、複数の能力抑制率の各々について推論した空調負荷を用いて、複数の能力抑制率の各々について消費電力量を算出することができる。
 制御部101は、室内空間の温度と、外気温度と、設定温度と、能力抑制率とに基づき空調負荷を推論するための学習済モデル170を用いて、複数の能力抑制率の各々について空調負荷を推論する。
 これにより、制御装置100は、学習済モデル170を用いて、複数の能力抑制率の各々について空調負荷を精度よく推論することができる。
 学習済モデル170は、室内空間の温度と外気温度との差、室内空間の温度と設定温度との差、および能力抑制率に基づき空調負荷を推論する。
 これにより、制御装置100は、室内温度、外気温度、設定温度、および能力抑制率をそのまま用いることなく、前処理によって、室内空間の温度と外気温度との差を算出し、さらに室内空間の温度と設定温度との差を算出し、これらの差を用いて空調負荷を推論するため、空調負荷の推論精度を高めることができる。また、制御装置100は、効率よく機械学習を行うことができるため、学習済モデル170の生成に要する時間を短縮することができる。
 本開示は、空気調和機2を制御する制御装置100の制御方法である。制御方法は、設定時刻において室内空間の温度が設定温度に達するように設定時刻よりも前に空気調和機2を起動する起動モードにおいて、空気調和機2の空調能力の抑制度合いを示す複数の能力抑制率の各々について、空気調和機2の起動から室内空間の温度が設定温度に達するまでに要する空気調和機2の消費電力量を算出するステップと、複数の能力抑制率のうちの消費電力量が最小となる能力抑制率に基づき空気調和機2を制御するステップとを含む。
 これにより、制御装置100は、空調能力を抑えることによってエネルギー消費効率が上がる省エネルギー効果と、予冷・予暖のための運転時間が長くなることによって熱処理のための消費電力量が増大する増エネルギー効果との両方を考慮して、予冷・予暖運転における省エネルギー化を実現することができる。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 空調システム、2 空気調和機、10 室外機、11 圧縮機、13 室外熱交換器20,20A,20B,20C 室内機、21,41 ファン、22,42 モータ、23 室内熱交換器、24 膨張装置、25,45 送風機、30,30A,30B 接続配管、31,32,33,34,35 配管、50 四方弁、51,52,53,54 接続口、61 外気温度センサ、62,62A,62B,62C 室内温度センサ、65 温度設定装置、100 制御装置、101 制御部、102 記憶部、103 通信部、110 データ取得部、111 吸入口、112 吐出口、120 モデル生成部、130 推論部、140 電力量算出部、150 能力抑制率決定部、160 起動時刻決定部、170 学習済モデル、180 学習用データ、190 学習用プログラム、301 学習装置、302 推論装置、303 学習済モデル記憶部、304 学習用プログラム記憶部。

Claims (10)

  1.  空気調和機を制御する制御装置であって、
     前記空気調和機と通信する通信部と、
     前記通信部を介して前記空気調和機を制御する制御部とを備え、
     前記制御部は、
     設定時刻において室内空間の温度が設定温度に達するように前記設定時刻よりも前に前記空気調和機を起動する起動モードを有し、
     前記起動モードにおいて、前記空気調和機の空調能力の抑制度合いを示す複数の能力抑制率の各々について、前記空気調和機の起動から前記室内空間の温度が前記設定温度に達するまでに要する前記空気調和機の消費電力量を算出し、前記複数の能力抑制率のうちの前記消費電力量が最小となる能力抑制率に基づき前記空気調和機を制御する、制御装置。
  2.  前記制御部は、
     前記複数の能力抑制率の各々について、前記室内空間の温度が前記設定温度に達するまでの所要時間を推論し、
     前記複数の能力抑制率の各々の前記所要時間に基づき、前記複数の能力抑制率の各々について前記消費電力量を算出する、請求項1に記載の制御装置。
  3.  前記制御部は、前記室内空間の温度と、外気温度と、前記設定温度と、前記能力抑制率とに基づき前記所要時間を推論するための学習済モデルを用いて、前記複数の能力抑制率の各々について前記所要時間を推論する、請求項2に記載の制御装置。
  4.  前記学習済モデルは、前記室内空間の温度と前記外気温度との差、前記室内空間の温度と前記設定温度との差、および前記能力抑制率に基づき前記所要時間を推論する、請求項3に記載の制御装置。
  5.  前記制御部は、前記室内空間の温度と、外気温度と、前記設定温度と、前記能力抑制率と、前記室内空間に関する建物の仕様とに基づき前記所要時間を推論するための学習済モデルを用いて、前記複数の能力抑制率の各々について前記所要時間を推論する、請求項2に記載の制御装置。
  6.  前記学習済モデルは、前記室内空間の温度と前記外気温度との差、前記室内空間の温度と前記設定温度との差、前記能力抑制率、および前記建物の仕様に基づき前記所要時間を推論する、請求項5に記載の制御装置。
  7.  前記制御部は、
     前記複数の能力抑制率の各々について、前記室内空間の空調負荷を推論し、
     前記複数の能力抑制率の各々の前記空調負荷に基づき、前記複数の能力抑制率の各々について、前記室内空間の温度が前記設定温度に達するまでの所要時間を算出し、
     前記複数の能力抑制率の各々の前記所要時間に基づき、前記複数の能力抑制率の各々について前記消費電力量を算出する、請求項1に記載の制御装置。
  8.  前記制御部は、前記室内空間の温度と、外気温度と、前記設定温度と、前記能力抑制率とに基づき前記空調負荷を推論するための学習済モデルを用いて、前記複数の能力抑制率の各々について前記空調負荷を推論する、請求項7に記載の制御装置。
  9.  前記学習済モデルは、前記室内空間の温度と前記外気温度との差、前記室内空間の温度と前記設定温度との差、および前記能力抑制率に基づき前記空調負荷を推論する、請求項8に記載の制御装置。
  10.  空気調和機を制御する制御装置の制御方法であって、
     設定時刻において室内空間の温度が設定温度に達するように前記設定時刻よりも前に前記空気調和機を起動する起動モードにおいて、
     前記空気調和機の空調能力の抑制度合いを示す複数の能力抑制率の各々について、前記空気調和機の起動から前記室内空間の温度が前記設定温度に達するまでに要する前記空気調和機の消費電力量を算出するステップと、
     前記複数の能力抑制率のうちの前記消費電力量が最小となる能力抑制率に基づき前記空気調和機を制御するステップとを含む、制御方法。
PCT/JP2022/002883 2022-01-26 2022-01-26 制御装置および制御方法 WO2023144927A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/002883 WO2023144927A1 (ja) 2022-01-26 2022-01-26 制御装置および制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/002883 WO2023144927A1 (ja) 2022-01-26 2022-01-26 制御装置および制御方法

Publications (1)

Publication Number Publication Date
WO2023144927A1 true WO2023144927A1 (ja) 2023-08-03

Family

ID=87471263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002883 WO2023144927A1 (ja) 2022-01-26 2022-01-26 制御装置および制御方法

Country Status (1)

Country Link
WO (1) WO2023144927A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006029607A (ja) * 2004-07-12 2006-02-02 Mitsubishi Electric Corp 空調熱源設備の熱負荷予測装置および方法
JP2022003291A (ja) * 2020-06-23 2022-01-11 ダイキン工業株式会社 空調システム、空調制御装置、空気調和機、及び空調制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006029607A (ja) * 2004-07-12 2006-02-02 Mitsubishi Electric Corp 空調熱源設備の熱負荷予測装置および方法
JP2022003291A (ja) * 2020-06-23 2022-01-11 ダイキン工業株式会社 空調システム、空調制御装置、空気調和機、及び空調制御方法

Similar Documents

Publication Publication Date Title
US11092151B2 (en) System and method for controlling a system that includes fixed speed and variable speed compressors
JP4347588B2 (ja) 空気調和機の運転方法およびこれを用いた装置
US20120253543A1 (en) Controlling Operations of Vapor Compression System
CN104653444B (zh) 一种控制变频空调启动的方法和装置
US10941951B2 (en) Systems and methods for temperature and humidity control
JP2004218879A (ja) 空気調和機及びその制御方法
WO2015037434A1 (ja) 空調装置
JP7208519B2 (ja) 台数制御装置、台数制御方法、台数制御プログラム
JP2020153574A (ja) 情報処理装置、空気調和装置、情報処理方法、空気調和方法、及びプログラム
WO2022048131A1 (zh) 空调系统
JP6819807B2 (ja) 空調システム、機械学習装置及び機械学習方法
WO2023169519A1 (zh) 多联机空调系统及多联机空调系统的容错控制方法
WO2023144927A1 (ja) 制御装置および制御方法
JP2003254589A (ja) 空気調和機
JP5931774B2 (ja) ターボ冷凍機の最大負荷率算出装置及びその方法並びに熱源システム及びその台数制御方法
CN113531862B (zh) 变频氟泵空调控制方法、装置、电子设备和介质
JP6890706B1 (ja) 空気調和システムおよび制御方法
JP6570748B2 (ja) 空気調和機
JP4074422B2 (ja) 空調機とその制御方法
US11313577B2 (en) Air-conditioning system, machine learning apparatus, and machine learning method
TW202045821A (zh) 即時可變內置體積比的螺旋式壓縮系統及其操作方法
WO2024009434A1 (ja) 空気調和装置および空気調和システム
JP6219160B2 (ja) ターボ冷凍機の最大負荷率算出装置及びその方法並びに熱源システム及びその台数制御方法
JP6415019B2 (ja) 空気調和装置
JP2002061979A (ja) 冷暖房装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923795

Country of ref document: EP

Kind code of ref document: A1