WO2023144865A1 - 制御装置 - Google Patents

制御装置 Download PDF

Info

Publication number
WO2023144865A1
WO2023144865A1 PCT/JP2022/002564 JP2022002564W WO2023144865A1 WO 2023144865 A1 WO2023144865 A1 WO 2023144865A1 JP 2022002564 W JP2022002564 W JP 2022002564W WO 2023144865 A1 WO2023144865 A1 WO 2023144865A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
conveyor
control device
unit
predetermined
Prior art date
Application number
PCT/JP2022/002564
Other languages
English (en)
French (fr)
Inventor
将士 木村
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2022/002564 priority Critical patent/WO2023144865A1/ja
Publication of WO2023144865A1 publication Critical patent/WO2023144865A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/02Feeding of components

Definitions

  • the technology disclosed in this specification relates to a control device that controls a drive device of a conveyor that transports substrates to predetermined positions.
  • Patent Literature 1 discloses a component mounting apparatus having transport means for horizontally transporting a board having a board recognition mark on its upper surface, and a camera for capturing an image of the board recognition mark from above.
  • the component mounting apparatus recognizes that the center of the board recognition mark is positioned at a predetermined reference point within the field of view of the camera, it stops the conveying means.
  • the control device disclosed in this specification includes a measuring unit that measures the actual distance between the predetermined position and the substrate, and controls the driving device based on the actual distance measured by the measuring unit. and a correction unit that corrects the position of the substrate so that the substrate is arranged at the predetermined position.
  • the position of the substrate can be corrected based on the actual distance measured by the measurement sensor. It is possible to suppress the substrate from shifting from a predetermined position.
  • FIG. 1 shows a schematic diagram of a mounting device
  • FIG. 1 shows a block diagram of a mounting device
  • FIG. The figure which looked at the conveyor from the upper direction in the state where the board
  • attained near the predetermined position is shown.
  • FIG. 11 shows a flowchart of slip detection processing in the third embodiment.
  • FIG. 14 shows a flowchart of slip detection processing in the fourth embodiment.
  • the measurement unit may include a sensor that measures the actual distance using reflected light of the laser irradiated to the substrate.
  • the measurement unit has the function of detecting that the board has reached the entrance of the conveyor, and the function of detecting that the board has reached the exit of the conveyor. and a function of detecting.
  • the measurement unit can serve not only to measure the actual distance, but also to detect the arrival of the substrate at the entrance and the exit.
  • the measuring section may be provided separately from a mounting unit for mounting components on the board.
  • the measurement unit is integrated with the mounting unit.
  • the mounting unit can be operated independently of the measuring section, and the mounting unit can be prepared for component mounting while the measuring section is being used. .
  • the control device further determines that the absolute value of the difference between the value indicating the speed of the conveyor and the amount of change per unit time in the actual distance measured by the measurement unit is
  • a notification unit may be provided that executes a predetermined notification operation when the number is equal to or greater than a predetermined value of 1.
  • the fact that the absolute value of the difference between the value indicating the speed of the conveyor and the amount of change per unit time of the actual distance measured by the measuring unit is greater than or equal to the first predetermined value means that the speed of the conveyor is different from the speed of the substrate.
  • the substrate may shift with respect to the conveyor, and the substrate may not be placed at a predetermined position. According to the above configuration, it is possible to detect that the substrate is shifted with respect to the conveyor by using the measurement unit. Then, by a predetermined notification operation, it is possible to notify the user that the substrate is shifted with respect to the conveyor.
  • the control device further determines that the absolute value of the difference between the value indicating the speed of the conveyor and the amount of change per unit time of the actual distance measured by the measurement unit is A control unit may be provided that controls the driving device so that the absolute value of the difference is less than a third predetermined value when the difference is equal to or greater than a predetermined value of 2.
  • the driving device when it is detected that the board is shifted with respect to the conveyor, the driving device can be controlled to automatically eliminate the shift of the board with respect to the conveyor.
  • the mounting apparatus 10 is an apparatus that mounts a component (for example, an electronic component such as a resistor) on a substrate 100 to produce a circuit board.
  • the mounting device 10 includes an entrance sensor 12 , an exit sensor 14 , a distance sensor 16 , a driving device 18 , a display section 20 , a control section 30 , a mounting unit 50 and a component feeder 60 .
  • the driving device 18 is a device that drives a conveyor 18a that conveys the board 100 into the mounting device 10.
  • the driving device 18 is an actuator such as a motor.
  • the upstream end of the conveyor 18a is connected to a carry-in device (not shown) that carries the substrate 100 onto the conveyor 18a, and the downstream end of the conveyor 18a is connected to the destination of the produced circuit board (for example, a reflow device (not shown)). ))It is connected to the.
  • the inlet sensor 12 is installed at the inlet on the upstream side of the conveyor 18a and detects arrival of the substrate 100 at the inlet.
  • the exit sensor 14 is installed at the downstream exit of the conveyor 18a and detects arrival of the substrate 100 to the exit.
  • the entrance sensor 12 and the exit sensor 14 are, for example, photoelectric sensors having a light projecting section and a light receiving section. Note that, in a modification, the entrance sensor 12 and the exit sensor 14 may be contact type limit switches, magnetic switches, or the like.
  • the entrance sensor 12 and the exit sensor 14 respectively indicate "0 (translucent)" indicating that the substrate 100 is not passing in front of each sensor, and indicate that the substrate 100 is passing in front of each sensor. Either "1 (for example, light shielding)" is output.
  • the distance sensor 16 is a sensor that measures the actual distance between a predetermined position and the substrate 100 being conveyed by the conveyor 18a.
  • the predetermined position is a fixed position on the conveyor 18a for mounting components on the board 100.
  • the distance sensor 16 is, for example, a laser sensor that measures a distance using reflected light of a laser that irradiates the substrate 100 .
  • the distance sensor 16 may be another non-contact type sensor (for example, an ultrasonic sensor using ultrasonic waves).
  • the distance sensor 16 is supported on the ceiling inside the mounting apparatus 10 above the conveyor 18a.
  • the distance sensor 16 can move up and down along the height direction of the mounting apparatus 10 .
  • the distance sensor 16 descends to the same height as the substrate 100 and irradiates the laser in the horizontal direction.
  • the distance sensor 16 may be lowered to a position higher than the substrate 100 and irradiate the laser obliquely downward.
  • the mounting unit 50 mounts the components supplied from the component feeder 60 onto the board 100 fixed at the fixed position of the conveyor 18a.
  • a nozzle 50 a for sucking a component in the component feeder 60 is attached to the tip of the mounting unit 50 .
  • FIG. 1 is a cross section of the mounting device 10 seen from the conveying direction of the conveyor 18a.
  • the mounting unit 50 is movable in the horizontal direction (that is, the left-right direction and the vertical direction on the paper surface).
  • the mounting unit 50 moves above the component feeder 60 and picks up the component in the component feeder 60 with the nozzle 50a.
  • the mounting unit 50 moves above the substrate 100 fixed at the fixed position of the conveyor 18a, and mounts the component sucked by the nozzle 50a onto the substrate 100. As shown in FIG. By repeating this operation, a circuit board is produced.
  • the display unit 20 is a display for displaying various information.
  • the control unit 30 controls each unit 12 to 20, 50, 60, etc. of the mounting apparatus 10.
  • the control unit 30 has a CPU 32 and a memory 34 .
  • the CPU 32 executes various processes according to programs 40 stored in the memory 34 .
  • the memory 34 is composed of a volatile memory, a nonvolatile memory, or the like.
  • the control unit 30 monitors the rotation speed of the driving device 18 from the timing when the entrance sensor 12 detects the arrival of the substrate 100 . Then, the control unit 30 stops the drive device 18 at the timing when the rotation speed of the drive device 18 reaches a predetermined rotation speed. Thereby, the substrate 100 is arranged at a predetermined position.
  • the predetermined rotation speed is set in advance based on, for example, the distance between the predetermined position and the entrance sensor 12, the specifications of the driving device 18, and the like.
  • the conveying speed of the conveyor 18a has also increased.
  • the vibration transmitted to 100 is also increasing. Increased acceleration (absolute value) and vibration increase the risk of substrate 100 moving out of position.
  • the frictional force generated between the substrate 100 and the conveyor 18a decreases over time due to wear of the surface of the conveyor 18a, reducing the risk of the substrate 100 slipping from its predetermined position. increase.
  • the distance sensor 16 is used to perform correction processing for correcting the position of the substrate 100 .
  • the controller 30 lowers the distance sensor 16 so as to approach the conveyor 18a (FIG. 3).
  • the control unit 30 stops the driving device 18 using a predetermined number of revolutions, as in the conventional control method. After the driving device 18 stops, the controller 30 determines whether the actual distance indicated by the output value of the distance sensor 16 is greater than or equal to a predetermined distance. The control unit 30 does not perform correction processing when determining that the actual distance is less than the predetermined distance.
  • the control unit 30 determines that the actual distance is greater than or equal to the predetermined distance (FIG. 4), it executes correction processing.
  • the control unit 30 drives the driving device 18 again to correct the position of the substrate 100 so that the substrate 100 is arranged at a predetermined position. If the substrate 100 has not reached the predetermined position (FIG. 4), the controller 30 rotates the driving device 18 in the forward direction to correct the position. If the substrate 100 exceeds the predetermined position, the controller 30 rotates the driving device 18 in the opposite direction to correct the position.
  • the control unit 30 repeats the above correction until the distance sensor 16 outputs an output value indicating that the distance is less than the predetermined distance. Accordingly, even if the substrate 100 deviates from the predetermined position, the position of the substrate 100 can be corrected based on the actual distance measured by the distance sensor 16 . It is possible to prevent the substrate 100 from deviating from a predetermined position.
  • the transport speed of the substrate 100 is made smaller than the transport speed when moving the substrate 100 from the entrance to the predetermined position. This suppresses the occurrence of slippage between the substrate 100 and the conveyor 18a. Further, although the substrate 100 is transported at a slower speed during position correction, it does not take a long time to correct the position because the movement distance for correcting the position is short. In this embodiment, it is possible to improve the positioning accuracy of the substrate 100 while suppressing a decrease in productivity.
  • the process of correcting the position of the substrate 100 is not limited to the above process. There may be.
  • a comparative example in which the distance sensor 16 is integrated with the mounting unit 50 is assumed.
  • the mounting unit 50 cannot be operated to prepare for mounting a component on the board 100 (for example, component suction by the nozzle 50a).
  • the mounting unit 50 is operated independently of the distance sensor 16 to mount the component on the substrate 100 by the mounting unit 50. be prepared to implement. Note that the configuration of the comparative example described above may be employed in the modified example.
  • the conveyor 18a and the driving device 18 are examples of the “conveyor” and the “driving device", respectively.
  • the distance sensor 16 is an example of a "measurement section”.
  • the control unit 30 that executes correction processing is an example of a "correction unit.”
  • a system including the distance sensor 16 and the controller 30 is an example of a "controller.”
  • the correction process may be performed by another device (for example, a server) provided separately from the mounting device 10 .
  • the other device described above is an example of the “correction unit”.
  • This embodiment is the same as the first embodiment except that the mounting apparatus 10 does not have the entrance sensors 12 and 14 and has a distance sensor 216 .
  • the distance sensor 216 has the same function as in the first embodiment, which measures the actual distance between a predetermined position and the substrate 100, but also has the function of detecting that the substrate 100 has reached the entrance of the conveyor 18a, and a function of detecting that the substrate 100 has reached the exit of the conveyor 18a.
  • the distance sensor 216 is arranged at a position not overlapping the conveyor 18a when viewed from above the conveyor 18a.
  • the distance sensor 216 can irradiate a laser over a wide range from the entrance to the exit.
  • the distance sensor 216 detects arrival of the substrate 100 at the entrance using the reflected light of the laser irradiated in the entrance direction.
  • the distance sensor 216 measures the actual distance between a predetermined position and the substrate 100 using the reflected light of the laser irradiated between the entrance and the exit. Further, the distance sensor 216 detects arrival of the substrate 100 to the exit using the reflected light of the laser irradiated in the exit direction.
  • the distance sensor 16 can serve both as the entrance sensor 12 and the exit sensor 14 . Further, compared to the first embodiment in which the entrance sensor 12 and the exit sensor 14 are provided separately from the distance sensor 16, the configuration of the mounting apparatus 10 can be simplified.
  • the slip detection process is triggered by detection of arrival of the substrate 100 at the entrance by the entrance sensor 12 .
  • the controller 30 calculates the speed of the substrate 100 (hereinafter referred to as “substrate speed”) from the amount of change per unit of the actual distance indicated by the output value of the distance sensor 16 .
  • the controller 30 determines whether the absolute value of the difference between the driving speed and the substrate speed is less than a predetermined value.
  • the drive speed is the speed of the conveyor 18a and is calculated from the rotation speed of the drive device 18, for example.
  • the control unit 30 skips the processing of S14 described later and returns to S10.
  • the process proceeds to S14. If the absolute value of the difference between the driving speed and the substrate speed is equal to or greater than a predetermined value, there is a possibility that the substrate 100 is shifted relative to the conveyor 18a due to vibration of the conveyor 18a or the like. In this case, there is a possibility that the substrate 100 will not be placed at a predetermined position.
  • the control unit 30 causes the display unit 20 to display a notification screen indicating that the substrate 100 is shifted with respect to the conveyor 18a. When S14 ends, the control unit 30 returns to the process of S10.
  • the predetermined value of S12 is an example of the "first predetermined value”.
  • Displaying the notification screen in S14 is an example of the "predetermined notification operation”. Note that the "predetermined notification operation" is not limited to displaying a notification screen, and may be, for example, outputting a warning sound, turning on a warning light, or the like.
  • the control unit 30 executes slip elimination control.
  • the slip elimination control is a process of controlling the driving device 18 so that the absolute value of the difference between the driving speed and the substrate speed is less than a predetermined value. In the slip elimination control, for example, the rotational speed of the driving device 18 is adjusted. According to this configuration, when it is detected that the substrate 100 is shifted with respect to the conveyor 18a, the displacement of the substrate 100 with respect to the conveyor 18a can be automatically eliminated.
  • the predetermined value of S12 is an example of the "second predetermined value” and the "third predetermined value”
  • the control section 30 that executes S24 is an example of the "control section.”
  • the "third predetermined value” may be a value different from the "second predetermined value", for example, a value smaller than the "second predetermined value”.
  • the “predetermined position” is not limited to a fixed position for mounting components on the board 100 , and may be a fixed position for printing solder on the board 100 , for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

基板を所定の位置へと搬送するコンベアの駆動装置を制御する制御装置を開示する。前記制御装置は、前記所定の位置と前記基板との間の実際の距離を計測する計測部と、前記計測部によって計測された前記実際の距離に基づいて前記駆動装置を制御し、前記基板が前記所定の位置に配置されるように前記基板の位置を補正する補正部と、を備える。

Description

制御装置
 本明細書に開示する技術は、基板を所定の位置へと搬送するコンベアの駆動装置を制御する制御装置に関する。
 特許文献1には、上面に基板認識マークが設けられた基板を水平方向に搬送する搬送手段と、基板認識マークを上方から撮像するカメラと、を有する部品実装装置が開示されている。部品実装装置は、カメラの視野内の所定の基準地点に基板認識マークの中心が位置したことを認識すると、搬送手段を停止させる。
特開2014-278014号公報
 近年、部品実装装置が単位時間当たりに生産する回路基板の個数が増加している。これに伴い、搬送手段が基板を搬送する速度も増加し、基板の加減速の際の加速度(絶対値)が増加すると共に搬送手段から基板に伝達する振動も増加している。基板上の基板認識マークを認識して搬送手段を停止させるだけでは、搬送手段から基板に伝達する振動等により、基板が所定の基準位置からずれる可能性がある。本明細書では、基板が所定の位置からずれることを抑制するための技術を提供する。
 本明細書で開示する制御装置は、前記所定の位置と前記基板との間の実際の距離を計測する計測部と、前記計測部によって計測された前記実際の距離に基づいて前記駆動装置を制御し、前記基板が前記所定の位置に配置されるように前記基板の位置を補正する補正部と、を備える。
 この構成によれば、基板が所定の位置からずれたとしても、計測センサによって計測された実際の距離に基づいて、基板の位置を補正することができる。基板が所定の位置からずれることを抑制することができる。
実装装置の概略図を示す。 実装装置のブロック図を示す。 基板が入口付近に到達した状況でコンベアを上方から見た図を示す。 基板が所定の位置付近に到達した状況でコンベアを上方から見た図を示す。 第2実施例において、コンベアを上方から見た図を示す。 第3実施例におけるすべり検知処理のフローチャートを示す。 第4実施例におけるすべり検知処理のフローチャートを示す。
 以下に説明する実施例の主要な特徴を列記しておく。なお、以下に記載する技術要素は、それぞれ独立した技術要素であって、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時の請求項に記載の組合せに限定されるものではない。
(特徴1) 前記計測部は、前記基板に照射したレーザの反射光を利用して前記実際の距離を計測するセンサを含んでもよい。
(特徴2) 前記計測部は、前記実際の距離を計測する機能に加えて、前記基板が前記コンベアの入口に到達したことを検知する機能と、前記基板が前記コンベアの出口に到達したことを検知する機能と、を備えてもよい。
 この構成によれば、計測部に、実際の距離の計測だけでなく、基板の入口への到達と出口への到達とを検知することも兼務させることができる。
(特徴3) 前記計測部は、部品を前記基板に実装するための実装ユニットとは別体で設けられていてもよい。
 例えば、計測部が実装ユニットと一体である比較例が想定される。この比較例では、計測部を利用している間に実装ユニットを動作させて、部品を実装するための準備をすることができない。これに対して、上記の構成によれば、計測部とは独立して実装ユニットを動作させて、計測部を利用している間に実装ユニットに部品を実装するための準備をさせることができる。
(特徴4) 前記制御装置は、さらに、前記コンベアの速度を示す値と、前記計測部によって計測された前記実際の距離の単位時間当たりの変化量と、の間の差分の絶対値が、第1の所定値以上である場合に、所定の報知動作を実行する報知部を備えてもよい。
 コンベアの速度を示す値と計測部による実際の距離の単位時間当たりの変化量との間の差分の絶対値が第1の所定値以上であることは、コンベアの速度と基板の速度が異なることを意味する。この場合、コンベアに対して基板がずれて移動し、基板が所定の位置に配置されない可能性がある。上記の構成によれば、計測部を利用して、コンベアに対して基板がずれて移動していることを検知することができる。そして、所定の報知動作によって、コンベアに対して基板がずれて移動していることをユーザに報知することができる。
(特徴5) 前記制御装置は、さらに、前記コンベアの速度を示す値と、前記計測部によって計測された前記実際の距離の単位時間当たりの変化量と、の間の差分の絶対値が、第2の所定値以上である場合に、前記差分の絶対値が第3の所定値未満となるように前記駆動装置を制御する制御部を備えてもよい。
 この構成によれば、コンベアに対して基板がずれて移動していることが検知される場合に、駆動装置を制御して、コンベアに対する基板のずれを自動的に解消することができる。
(第1実施例)
(実装装置10;図1、図2)
 実装装置10は、部品(例えば抵抗器等の電子部品)を基板100に実装して回路基板を生産する装置である。実装装置10は、入口センサ12と、出口センサ14と、距離センサ16と、駆動装置18と、表示部20と、制御部30と、実装ユニット50と、部品フィーダ60と、を備える。
 駆動装置18は、基板100を実装装置10の内部へと搬送するコンベア18aを駆動する装置である。駆動装置18は、モータ等のアクチュエータである。コンベア18aの上流端は、基板100をコンベア18aに搬入する搬入装置(図示省略)に接続されており、コンベア18aの下流端は、生産済みの回路基板の搬送先(例えば、リフロー装置(図示省略))に接続されている。
 入口センサ12は、コンベア18aの上流側の入口に設置され、基板100の入口への到達を検知する。出口センサ14は、コンベア18aの下流側の出口に設置され、基板100の出口への到達を検知する。入口センサ12及び出口センサ14は、例えば、投光部と受光部とを備える光電センサである。なお、変形例では、入口センサ12及び出口センサ14は、接触型のリミットスイッチ、磁気型のスイッチ等であってもよい。入口センサ12及び出口センサ14は、それぞれ、基板100が各センサの前方を通過していないことを示す「0(例えば透光)」と、基板100が各センサの前方を通過していることを示す「1(例えば遮光)」と、のいずれかの値を出力する。
 距離センサ16は、所定の位置とコンベア18aで搬送されている基板100との間の実際の距離を計測するセンサである。所定の位置は、基板100上に部品を実装するためのコンベア18a上の固定位置である。距離センサ16は、例えば、基板100に照射したレーザの反射光を利用して距離を計測するレーザセンサである。なお、変形例では、距離センサ16は、他の非接触型のセンサ(例えば、超音波を利用した超音波センサ)であってもよい。
 距離センサ16は、コンベア18aの上方で実装装置10の内側の天井に支持されている。距離センサ16は、実装装置10の高さ方向に沿って、上下に移動可能である。距離センサ16は、基板100と同じ高さ迄降下して、水平方向にレーザを照射する。なお、変形例では、距離センサ16は、基板100よりも高い位置迄降下して、レーザを斜め下方向に照射してもよい。
 実装ユニット50は、部品フィーダ60から供給された部品を、コンベア18aの固定位置で固定されている基板100に実装する。実装ユニット50の先端には、部品フィーダ60内の部品を吸着するノズル50aが取り付けられる。
 図1は、コンベア18aの搬送方向から見た実装装置10の断面である。実装ユニット50は、水平方向(即ち紙面左右方向及び紙面垂直方向)に移動可能である。実装ユニット50は、部品フィーダ60の上方に移動して、ノズル50aで部品フィーダ60内の部品を吸着する。実装ユニット50は、コンベア18aの固定位置に固定されている基板100の上方に移動して、ノズル50aに吸着されてる部品を基板100上に実装する。この動作を繰り返すことによって、回路基板が生産される。
 表示部20は、様々な情報を表示するためのディスプレイである。制御部30は、実装装置10の各部12~20、50、60等を制御する。制御部30は、CPU32と、メモリ34と、を備える。CPU32は、メモリ34に記憶されているプログラム40に従って、様々な処理を実行する。メモリ34は、揮発性メモリ、不揮発性メモリ等によって構成される。
 基板100を所定の位置に配置するための従来の制御方法では、制御部30は、入口センサ12が基板100の到達を検知したタイミングから駆動装置18の回転数を監視する。そして、制御部30は、駆動装置18の回転数が所定の回転数に到達したタイミングで駆動装置18を停止させる。これにより、基板100が所定の位置に配置される。ここで、所定の回転数は、例えば、所定の位置と入口センサ12との間の距離、駆動装置18の仕様等に基づいて予め設定されている。
 しかし、近年、単位時間当たりに生産される回路基板の個数の増加に伴い、コンベア18aの搬送速度も増加し、基板100の加減速の際の加速度(絶対値)が増加すると共にコンベア18aから基板100に伝達する振動も増加している。加速度(絶対値)及び振動の増加により、基板100が所定の位置からずれるリスクが高まっている。また、基板100とコンベア18aとの間に生じる摩擦力(基板100のずれを防止する力)は、コンベア18aの表面の摩耗によって時間の経過とともに低下し、基板100が所定の位置からずれるリスクを増加させる。本実施例では、基板100が所定の位置からずれることを抑制するために、距離センサ16を利用して、基板100の位置を補正する補正処理を実行する。
(補正処理;図3、図4)
 本実施例では、制御部30は、入口センサ12が基板100の入口への到達を検知すると、距離センサ16をコンベア18aに近づくように下へと下げる(図3)。本実施例でも、制御部30は、従来の制御方法と同様に所定の回転数を利用して、駆動装置18を停止させる。駆動装置18の停止後、制御部30は、距離センサ16の出力値によって示される実際の距離が、所定の距離以上であるのか否かを判断する。制御部30は、実際の距離が所定の距離未満であると判断する場合に、補正処理を実行しない。
 一方、制御部30は、実際の距離が所定の距離以上であると判断する場合(図4)に、補正処理を実行する。補正処理では、制御部30は、駆動装置18を再び駆動させ、基板100が所定の位置に配置されるように基板100の位置を補正する。基板100が所定の位置に到達していない場合(図4)には、制御部30は、駆動装置18を順方向に回転させて、位置を補正する。基板100が所定の位置を超えている場合には、制御部30は、駆動装置18を逆方向に回転させて、位置を補正する。制御部30は、距離センサ16が所定の距離未満を示す出力値を出力するまで、上記の補正を繰り返す。これにより、基板100が所定の位置からずれたとしても、距離センサ16によって計測された実際の距離に基づいて、基板100の位置を補正することができる。基板100が所定の位置からずれることを抑制することができる。
 また、基板100の位置を補正する場合には、基板100の搬送速度が、基板100を入口から所定の位置に移動させるときの搬送速度より小さくされる。これにより、基板100とコンベア18aの間にすべりが生じることが抑制される。また、位置の補正時における基板100の搬送速度が遅くはなるが、位置の補正のための移動距離は短いため、位置の補正に長時間を要することはない。本実施例では、生産性の低下を抑制しながら、基板100の位置決め精度を高めることができる。
 なお、基板100の位置を補正する処理は、上記の処理に限らず、例えば、従来の制御方法と同様の所定の回転数を利用せずに、距離センサ16の出力値を利用したフィードバック制御であってもよい。
 また、例えば、距離センサ16が実装ユニット50と一体である比較例が想定される。この比較例では、距離センサ16を利用している間に実装ユニット50を動作させて、部品を基板100に実装する準備(例えばノズル50aによる部品の吸着)をすることができない。これに対して、本実施例の構成によれば、距離センサ16を利用している間に、距離センサ16とは独立して実装ユニット50を動作させて、実装ユニット50に部品を基板100に実装する準備をさせることができる。なお、変形例では、上記の比較例の構成が採用されてもよい。
(対応関係)
 コンベア18a、駆動装置18が、それぞれ、「コンベア」、「駆動装置」の一例である。距離センサ16が、「計測部」の一例である。補正処理を実行する制御部30が、「補正部」の一例である。距離センサ16と制御部30を含むシステムが、「制御装置」の一例である。なお、変形例では、補正処理は、実装装置10とは別体で設けられる他の装置(例えばサーバ)によって実行されてもよい。本変形例では、上記の他の装置が、「補正部」の一例である。
(第2実施例)
(補正処理;図5)
 本実施例は、実装装置10が、入口センサ12及び14を備えず、距離センサ216を備える点を除いて、第1実施例と同様である。距離センサ216は、所定の位置と基板100との間の実際の距離を計測する第1実施例と同様の機能に加えて、基板100がコンベア18aの入口に到達したことを検知する機能と、基板100がコンベア18aの出口に到達したことを検知する機能と、を備える。
 図5に示すように、距離センサ216は、コンベア18aの上方から見たときに、コンベア18aと重ならない位置に配置されている。距離センサ216は、入口から出口までの広範囲に亘ってレーザを照射可能である。距離センサ216は、入口方向に照射したレーザの反射光を利用して、基板100の入口への到達を検知する。また、距離センサ216は、入口と出口の間に照射したレーザの反射光を利用して、所定の位置と基板100との間の実際の距離を計測する。また、距離センサ216は、出口方向に照射したレーザの反射光を利用して、基板100の出口への到達を検知する。
 本実施例の構成によれば、距離センサ16に入口センサ12及び出口センサ14を兼務させることができる。そして、距離センサ16とは別体に入口センサ12及び出口センサ14を備える第1実施例と比べて、実装装置10の構成を簡易にすることできる。
(第3実施例)
 本実施例は、上記の補正処理に加えて、後述するすべり検出処理が実行される点を除いて、第1実施例と同様である。
(すべり検出処理;図6)
 すべり検出処理は、入口センサ12が基板100の入口への到達を検知することをトリガとして開始される。S10では、制御部30は、距離センサ16の出力値によって示される実際の距離の単位当たりの変化量から基板100の速度(以下では「基板速度」と記載)を算出する。
 S12では、制御部30は、駆動速度と基板速度との差分の絶対値が所定値未満であるのか否かを判断する。ここで、駆動速度は、コンベア18aの速度であり、例えば、駆動装置18の回転速度から算出される。制御部30は、駆動速度と基板速度との差分の絶対値が所定値未満であると判断する場合(S12でYES)に、後述するS14の処理をスキップして、S10に戻る。
 一方、制御部30は、駆動速度と基板速度との差分の絶対値が所定値以上であると判断する場合(S12でNO)に、S14に進む。駆動速度と基板速度との差分の絶対値が所定値以上である場合には、コンベア18aの振動等に起因して、コンベア18aに対して基板100がずれて移動している可能性がある。この場合には、基板100が所定の位置に配置されない可能性が生じる。S14では、制御部30は、コンベア18aに対して基板100がずれて移動していること示す報知画面を表示部20に表示させる。S14が終了すると、制御部30は、S10の処理に戻る。
 本実施例の構成によれば、S14の報知画面により、コンベア18aに対して基板100がずれて移動していることをユーザに報知することができる。ユーザは、基板100のずれを解消するための作業(例えば、コンベア18aを交換する等のメンテナンス作業)を行うことができる。S12の所定値が、「第1の所定値」の一例である。S14の報知画面を表示することが、「所定の報知動作」の一例である。なお、「所定の報知動作」は、報知画面の表示に限らず、例えば、警告音の出力、警告灯の点灯等であってもよい。
(第4実施例)
(すべり検知処理;図7)
 本実施例は、すべり検知処理の一部が異なる点を除いて、第3実施例と同様である。本実施例のすべり検知処理は、S14に代えて、S24の処理が実行される点を除いて、第3実施例のすべり検知処理(図6参照)と同様である。
 制御部30は、駆動速度と基板速度との差分の絶対値が所定値以上であると判断する場合(S12でNO)に、S24に進む。S24では、制御部30は、すべり解消制御を実行する。すべり解消制御は、駆動速度と基板速度との差分の絶対値が所定値未満となるように駆動装置18を制御する処理である。すべり解消制御では、例えば、駆動装置18の回転速度が調整される。この構成によれば、コンベア18aに対して基板100がずれて移動していることが検知される場合に、コンベア18aに対する基板100のずれを自動的に解消することができる。S12の所定値が、「第2の所定値」及び「第3の所定値」の一例であり、S24を実行する制御部30が、「制御部」の一例である。なお、変形例では、「第3の所定値」は、「第2の所定値」とは異なる値、例えば、「第2の所定値」よりも小さい値であってもよい。
 実施例で説明した制御装置に関する留意点を述べる。「所定の位置」は、基板100に部品を実装するための固定位置に限らず、例えば、基板100に半田を印刷するための固定位置であってもよい。
 本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
10  :実装装置
12  :入口センサ
14  :出口センサ
16  :距離センサ
18  :駆動装置
18a :コンベア
20  :表示部
30  :制御部
32  :CPU
34  :メモリ
40  :プログラム
50  :実装ユニット
50a :ノズル
60  :部品フィーダ
100 :基板
216 :距離センサ

Claims (6)

  1.  基板を所定の位置へと搬送するコンベアの駆動装置を制御する制御装置であって、
     前記所定の位置と前記基板との間の実際の距離を計測する計測部と、
     前記計測部によって計測された前記実際の距離に基づいて前記駆動装置を制御し、前記基板が前記所定の位置に配置されるように前記基板の位置を補正する補正部と、
     を備える、制御装置。
  2.  前記計測部は、前記基板に照射したレーザの反射光を利用して前記実際の距離を計測するセンサを含む、請求項1に記載の制御装置。
  3.  前記計測部は、前記実際の距離を計測する機能に加えて、前記基板が前記コンベアの入口に到達したことを検知する機能と、前記基板が前記コンベアの出口に到達したことを検知する機能と、を備える、請求項1又は2に記載の制御装置。
  4.  前記計測部は、部品を前記基板に実装するための実装ユニットとは別体で設けられている、請求項1から3のいずれか一項に記載の制御装置。
  5.  前記制御装置は、さらに、
     前記コンベアの速度を示す値と、前記計測部によって計測された前記実際の距離の単位時間当たりの変化量と、の間の差分の絶対値が、第1の所定値以上である場合に、所定の報知動作を実行する報知部を備える、請求項1から4のいずれか一項に記載の制御装置。
  6.  前記制御装置は、さらに、
     前記コンベアの速度を示す値と、前記計測部によって計測された前記実際の距離の単位時間当たりの変化量と、の間の差分の絶対値が、第2の所定値以上である場合に、前記差分の絶対値が第3の所定値未満となるように前記駆動装置を制御する制御部を備える、請求項1から5のいずれか一項に記載の制御装置。
PCT/JP2022/002564 2022-01-25 2022-01-25 制御装置 WO2023144865A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/002564 WO2023144865A1 (ja) 2022-01-25 2022-01-25 制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/002564 WO2023144865A1 (ja) 2022-01-25 2022-01-25 制御装置

Publications (1)

Publication Number Publication Date
WO2023144865A1 true WO2023144865A1 (ja) 2023-08-03

Family

ID=87471119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002564 WO2023144865A1 (ja) 2022-01-25 2022-01-25 制御装置

Country Status (1)

Country Link
WO (1) WO2023144865A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005045140A (ja) * 2003-07-25 2005-02-17 Matsushita Electric Ind Co Ltd 基板検出装置、基板搬送装置、部品実装装置、及び基板検出方法
JP2018107274A (ja) * 2016-12-26 2018-07-05 株式会社Fuji 基板搬送装置
JP2021012964A (ja) * 2019-07-08 2021-02-04 パナソニックIpマネジメント株式会社 物品搬送装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005045140A (ja) * 2003-07-25 2005-02-17 Matsushita Electric Ind Co Ltd 基板検出装置、基板搬送装置、部品実装装置、及び基板検出方法
JP2018107274A (ja) * 2016-12-26 2018-07-05 株式会社Fuji 基板搬送装置
JP2021012964A (ja) * 2019-07-08 2021-02-04 パナソニックIpマネジメント株式会社 物品搬送装置

Similar Documents

Publication Publication Date Title
JP4904237B2 (ja) 基板処理装置、表面実装機、印刷機、検査機、及び塗布機
JP4578299B2 (ja) 部品実装装置
JP2014078580A (ja) 電子部品実装装置および電子部品実装装置における基板位置決め方法
JP5574690B2 (ja) 部品実装装置及び部品実装方法
WO2023144865A1 (ja) 制御装置
JP6232583B2 (ja) 基板の搬送方法及び部品実装装置
JP4957444B2 (ja) 基板搬送装置および基板搬送方法
WO2021152840A1 (ja) 対基板作業機
JP6348037B2 (ja) 部品実装機
JP2007266393A (ja) 基板の位置決め方法、基板の位置決め装置、プラズマディスプレイ用背面板の製造装置。
JP2007173553A (ja) 基板搬送装置
JP2008227303A (ja) 表面実装機
KR200476625Y1 (ko) 물체 수송 장치
JP2012099668A (ja) 基板コンベヤ制御装置
JP4633912B2 (ja) 電子部品装着装置
JP2009043955A (ja) 基板搬送装置および基板搬送方法
JP2009278014A (ja) 部品実装装置および基板搬送方法
JP6826884B2 (ja) 基板搬送装置
JP6906132B2 (ja) 部品実装方法および部品実装装置
JP2003101289A (ja) プリント基板の搬入方法および装置
JP6589137B2 (ja) 部品実装用装置及び基板搬送方法
JP6774380B2 (ja) 基板作業装置および搬送ベルトの状態通知方法
JP7432058B2 (ja) 基板搬送装置および基板搬送方法
JP7394955B2 (ja) 基板作業機
JP2004319854A (ja) 部品搭載装置及び吸着状態検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923734

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023576268

Country of ref document: JP