WO2023142712A1 - 摄像模组及电子设备 - Google Patents

摄像模组及电子设备 Download PDF

Info

Publication number
WO2023142712A1
WO2023142712A1 PCT/CN2022/137599 CN2022137599W WO2023142712A1 WO 2023142712 A1 WO2023142712 A1 WO 2023142712A1 CN 2022137599 W CN2022137599 W CN 2022137599W WO 2023142712 A1 WO2023142712 A1 WO 2023142712A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
shake
carrier
image sensor
drive
Prior art date
Application number
PCT/CN2022/137599
Other languages
English (en)
French (fr)
Inventor
范宇
门凯
谢仲
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023142712A1 publication Critical patent/WO2023142712A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof

Definitions

  • the present application relates to the field of electronic technology, in particular to a camera module and electronic equipment.
  • the application provides a camera module and electronic equipment, which can improve the anti-shake effect of the camera module.
  • the present application provides a camera module, including:
  • the first anti-shake assembly includes a lens, an image sensor and an anti-shake mechanism, the image sensor is arranged opposite to the lens in the direction of the optical axis of the lens, and the anti-shake mechanism is connected to the image sensor and used to drive said image sensor movement; and
  • the second anti-shake component is connected with the first anti-shake component, and the second anti-shake component is used to drive the first anti-shake component to move and move the lens and the image sensor.
  • the present application provides an electronic device, including a casing and a camera module, the camera module is arranged on the casing, and the camera module includes:
  • the first anti-shake assembly includes a lens, an image sensor and an anti-shake mechanism, the image sensor is arranged opposite to the lens in the direction of the optical axis of the lens, and the anti-shake mechanism is connected to the image sensor and used to drive said image sensor movement; and
  • the second anti-shake component is connected with the first anti-shake component, and the second anti-shake component is used to drive the first anti-shake component to move and move the lens and the image sensor.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the first structure of the camera module provided by the embodiment of the present application.
  • FIG. 3 is a schematic diagram of an exploded structure of the camera module shown in FIG. 2 .
  • FIG. 4 is a schematic cross-sectional view of the camera module shown in FIG. 2 .
  • FIG. 5 is a schematic structural diagram of a second anti-shake component provided in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an exploded structure of the second anti-shake component shown in FIG. 5 .
  • FIG. 7 is a schematic cross-sectional view of the second anti-shake assembly shown in FIG. 5 .
  • FIG. 8 is a schematic partial cross-sectional view of the second anti-shake assembly shown in FIG. 5 .
  • FIG. 9 is a schematic diagram of electrical connection of the second anti-shake component shown in FIG. 5 .
  • FIG. 10 is a schematic structural diagram of an anti-shake mechanism provided in an embodiment of the present application.
  • FIG. 11 is a schematic diagram of electrical connection of the anti-shake mechanism shown in FIG. 10 .
  • FIG. 12 is a schematic structural diagram of a focusing mechanism provided by an embodiment of the present application.
  • An embodiment of the present application provides an electronic device.
  • the "electronic device” (or simply referred to as “terminal”) as used herein includes, but is not limited to, configured to be connected via a wired line and/or via a wireless network such as a cellular network, a wireless local A device for receiving/sending communication signals in a communication network.
  • Examples of mobile terminals include, but are not limited to, cellular telephones and conventional laptop and/or palm-type receivers or other electronic devices including radiotelephone transceivers.
  • a mobile phone is an electronic device equipped with a cellular communication module.
  • FIG. 1 is a schematic structural diagram of an electronic device 10 provided in an embodiment of the present application.
  • the electronic device 10 may include a casing 100 , a camera module 200 , a display screen 300 , a battery 400 and a main board 500 .
  • the display screen 300 is arranged on the casing 100, which can be used to display images
  • the camera module 200, the battery 400 and the main board 500 can be arranged in the casing 100, and the camera module 200 can receive light from the external environment to realize For picture shooting, the control circuit of the electronic device 10 can be integrated on the main board 500, the main board 500 can form the control center of the electronic device 10, and the battery 400 can supply power for electronic devices such as the camera module 200, the display screen 300, and the main board 500 of the electronic device 10. .
  • the casing 100 may include a middle frame 110 and a rear case 120 , the display screen 300 may be covered on one side of the middle frame 110 , and the rear case 120 may be covered on the other side of the middle frame 110 .
  • the display screen 300 and the rear case 120 can be covered on two opposite sides of the middle frame 110 by means of bonding, welding, snap-fitting and the like.
  • the camera module 200 can be disposed between the display screen 300 and the rear case 120, and can receive light from the external environment.
  • the rear shell 120 can be the battery 400 cover of the electronic device 10, and its material can be glass, metal, hard plastic, etc., and can also be made of other electrochromic materials.
  • the rear case 120 has a certain structural strength and is mainly used to protect the electronic device 10 .
  • the material of the middle frame 110 may also be glass, metal, hard plastic, and the like.
  • the middle frame 110 also has a certain structural strength, and is mainly used to support and fix the camera module 200 and other functional devices installed between the middle frame 110 and the rear case 120 .
  • the battery 400 , the motherboard 500 and the antenna of the electronic device 10 are examples of the battery 400 , the motherboard 500 and the antenna of the electronic device 10 .
  • the material of the middle frame 110 and the rear case 120 may preferably have certain properties such as wear resistance, corrosion resistance, and scratch resistance, or the middle frame 110 and the rear case
  • the outer surface of the case 120 (that is, the outer surface of the electronic device 10 ) is coated with a layer of functional material for wear resistance, corrosion resistance and scratch resistance.
  • the display screen 300 may include a display module and a circuit for responding to a touch operation on the display module.
  • the display screen 300 may use an organic light-emitting diode (Organic Light-Emitting Diode, OLED for short) screen for image display, or a liquid crystal display (Liquid Crystal Display, LCD for short) screen for image display.
  • OLED Organic Light-Emitting Diode
  • LCD liquid crystal Display
  • the display screen 300 may be a flat screen, a hyperbolic screen, or a four-curved screen in appearance, which is not limited in this embodiment.
  • the above-mentioned flat screen means that the display screen 300 is set in a flat shape as a whole;
  • the above-mentioned hyperbolic screen means that the left and right edge areas of the display screen 300 are set in a curved shape, and other areas are still in a flat shape.
  • Flat-shaped setting can not only reduce the black border of the display screen 300 and increase the visible area of the display screen 300, but also increase the appearance aesthetics and grip of the electronic device 10;
  • the above-mentioned four-curved screen refers to the upper surface of the display screen 300 , lower, left, and right edge areas are all curved, and other areas are still flat, so that not only can the black border of the display 300 be further reduced and the visible area of the display 300 can be increased, but also the electronic device can be further increased. 10's aesthetic appearance and grip feel.
  • the camera module 200 can be used to realize functions of the electronic device 10 such as taking pictures, recording videos, unlocking by face recognition, and paying by scanning codes.
  • the camera module 200 may be a front camera as shown in the figure, or a rear camera, which is not limited in this embodiment. The structure of the camera module 200 will be described in detail below with reference to the accompanying drawings.
  • FIG. 2 is a schematic diagram of the first structure of the camera module 200 provided by the embodiment of the present application
  • FIG. 3 is a schematic diagram of an exploded structure of the camera module 200 shown in FIG. 2
  • FIG. 4 is a schematic cross-sectional view of the camera module 200 shown in FIG. 2
  • the camera module 200 includes a first anti-shake component 210 and a second anti-shake component 220 .
  • the first anti-shake component 210 may include a housing 211 , a lens 212 , an image sensor 213 and an anti-shake mechanism 214 .
  • the housing 211 may include an upper cover 2111 and a rear cover 2112, the upper cover 2111 and the rear cover 2112 may form an accommodating space, the image sensor 213 and the anti-shake mechanism 214 may be arranged in the accommodating space, and part of the lens 212 may be arranged in the accommodating space The other part of the lens 212 can protrude out of the accommodating space.
  • the housing 211 , the lens 212 , the image sensor 213 and the anti-shake mechanism 214 can be formed as a whole.
  • the image sensor 213 may be disposed opposite to the lens 212 in the direction of the optical axis of the lens 212 .
  • the anti-shake mechanism 214 can be connected with the image sensor 213 , and the anti-shake mechanism 214 can drive the image sensor 213 to move.
  • the anti-shake mechanism 214 may drive the image sensor 213 to move in a direction perpendicular to the optical axis of the lens 212 , or the anti-shake mechanism 214 may drive the image sensor 213 to rotate around the optical axis of the lens 212 .
  • the optical axis direction of the lens 212 may be a first direction H1, and the first direction H1 may be a vertical direction, for example, a Z-axis direction among coordinate axes.
  • the direction perpendicular to the optical axis of the lens 212 may be the second direction H2, and the second direction H2 may be any horizontal direction in the horizontal plane, such as the X-axis direction or the Y-axis direction in the coordinate axis.
  • the direction around the optical axis of the lens 212 may be any direction in a plane perpendicular to the optical axis of the lens 212 , for example, any direction in the XOY plane in the coordinate axis.
  • the lens 212 and the image sensor 213 may be stacked up and down along the first direction H1, and the lens 212 and the image sensor 213 may be parallel to each other.
  • the material of the lens 212 may be glass or plastic.
  • the lens 212 is mainly used to change the propagation path of the light and focus the light.
  • the lens 212 may include multiple groups of lenses, which will correct each other and filter light; when the light passes through the lens 212, the multiple groups of lenses filter stray light (such as infrared light) layer by layer, so as to increase the imaging effect of the camera module 200 .
  • the image sensor 213 may be, but not limited to, a charge coupled device (Charge Coupled Device, CCD for short), a complementary metal oxide semiconductor (Complementary Metal Oxide Semiconductor, CMOS for short) type image sensor.
  • CCD Charge Coupled Device
  • CMOS complementary Metal Oxide Semiconductor
  • the image sensor 213 is mainly used to receive the light collected by the lens 212 and convert the light signal into an electrical signal, so as to realize the imaging requirement of the camera module 200 .
  • Both the anti-shake mechanism 214 and the second anti-shake component 220 can be used to improve the imaging effect of the camera module 200 caused by shaking of the user during use, so that the imaging effect of the image sensor 213 can meet the needs of the user.
  • the anti-shake mechanism 214 can provide driving force to drive the image sensor 213 to move.
  • the anti-shake mechanism 214 drives the image sensor 213 to move along the direction perpendicular to the optical axis of the lens 212 or to rotate around the direction of the optical axis of the lens 212
  • the anti-shake mechanism 214 can drive the image sensor 213 to translate along the X axis, along the Y axis, or Rotating in the XOY plane, the anti-shake mechanism 214 can realize the compensation for the shake of the camera module 200 .
  • the anti-shake mechanism 214 can also drive the image sensor 213 to move in other ways, for example, anti-shake
  • the shaking mechanism 214 can also drive the image sensor 213 to move up and down along the optical axis direction of the lens 212 ; or, the anti-shaking mechanism 214 can also drive the image sensor 213 to flip around the direction perpendicular to the optical axis of the lens 212 .
  • the embodiment of the present application does not limit the specific manner in which the anti-shake mechanism 214 drives the movement of the image sensor 213 .
  • the second anti-shake component 220 may be directly or indirectly connected with the first anti-shake component 210 , for example, the second anti-shake component 220 may be connected with the housing 211 .
  • the second anti-shake assembly 220 can realize the anti-shake function as a micro-head structure, and the second anti-shake assembly 220 can drive the first anti-shake assembly 210 to move and can make the image sensor 213 and lens 212 on the first anti-shake assembly 210 sports.
  • the second anti-shake assembly 220 can drive the first anti-shake assembly 210 to turn around the direction perpendicular to the optical axis of the lens 212.
  • the image sensor 213 and the lens 212 on the first anti-shake assembly 210 can also rotate around the The direction of the optical axis of the lens 212 is reversed, so that the second anti-shake assembly 220 can drive the lens 212 and the image sensor 213 to rotate clockwise or counterclockwise along axes in the XOY plane, such as the first axis L1 and the second axis L2.
  • the second anti-shake assembly 220 can also drive the first anti-shake assembly 210 to move in other ways, for example, the second The anti-shake assembly 220 can also drive the first anti-shake assembly 210 to move up and down along the optical axis direction of the lens 212, or the second anti-shake assembly 220 can also drive the first anti-shake assembly 210 to move along the direction perpendicular to the optical axis of the lens 212, or Rotate around the direction of the optical axis of the lens 212 .
  • the embodiment of the present application does not limit the specific manner in which the second anti-shake assembly 220 drives the first anti-shake assembly 210 to move.
  • the second anti-shake assembly 220 drives the entire first anti-shake assembly 210 to turn over, and the second anti-shake assembly 220 does not need to be limited to the inside of the first anti-shake assembly 210
  • the second anti-shake component 220 can be set with a larger stroke due to limited space.
  • the stroke of the camera module 200 in the embodiment of the present application can reach 400 microns, the flip angle can be greater than 3 degrees, the rotation stroke of the image sensor 213 can reach 200 microns, and the rotation angle in the XOY plane of the image sensor 213 can be greater than 1.5 degrees.
  • the flip angle of the camera module 200 in the embodiment of the present application can be greater than 5 degrees, and the rotation angle of the image sensor 213 in the XOY plane The angle can be greater than 3 degrees.
  • the camera module 200 of the embodiment of the present application can implement a large-angle anti-shake function.
  • sensors such as gyroscopes or accelerometers of the electronic device 10 (or camera module 200) can detect the shaking of the lens 212 to generate a shaking signal, and transmit the shaking signal to the electronic device 10 and/or the camera module 200.
  • the processing chip of the module 200, the processing chip of the electronic device 10 and/or the camera module 200 can calculate the amount of displacement that the anti-shake mechanism 214 and the second anti-shake assembly 220 need to compensate, so that the anti-shake mechanism 214, the second anti-shake assembly
  • the shaking component 220 can compensate the lens 212 according to the shaking direction and displacement of the lens 212, so as to improve or the imaging effect of the camera module 200 caused by the user shaking during use.
  • the anti-shake angle is limited, and only a small angle (such as within 1° or within 1.5°) of the optical anti-shake function can be realized.
  • the relative angle between the camera or the image sensor 213 is deflected, and the two are not parallel to each other. At this time, it is difficult for the image sensor 213 to collect a clear image through the camera.
  • the anti-shake mechanism 214 of the first anti-shake assembly 210 can drive the image sensor 213 to move, and the anti-shake mechanism 214 can realize the anti-shake function of the image sensor 213;
  • the second anti-shake assembly 220 can Driving the entire first anti-shake assembly 210 to move the lens 212 and the image sensor 213, the second anti-shake assembly 220 can realize the anti-shake function of the image sensor 213 and the lens 212, thus, the second anti-shake assembly of the embodiment of the present application 220 cooperates with the anti-shake mechanism 214 to realize the multi-function anti-shake of the camera module 200 .
  • the anti-shake mechanism 214 of the first anti-shake assembly 210 drives the image sensor 213 to move along the direction perpendicular to the optical axis of the lens 212 or rotate around the direction of the optical axis of the lens 212
  • the anti-shake mechanism 214 can drive the image sensor 213 to realize the X-axis
  • the second anti-shake component 220 drives the entire first anti-shake component 210 to turn over to realize that the lens 212 and the image sensor 213 turn around the direction of the optical axis perpendicular to the lens 212
  • the second anti-shake assembly 220 can drive the lens 212 and the image sensor 213 to perform flipping motions on the first axis L1 and the second axis L2 in the XOY plane, and the cooperation between the second anti-shake assembly 220 and the anti-shake mechanism 214 can realize a camera module With the five-axis anti-shake function of the
  • the second anti-shake assembly 220 drives the entire first anti-shake assembly 210 to flip, and the second anti-shake assembly 220 does not need to be limited by the space inside the first anti-shake assembly 210.
  • the second anti-shake component 220 can be set with a larger stroke, and the second anti-shake component 220 can drive the lens 212 and the image sensor 213 to realize large-angle flip anti-shake compensation, and the second anti-shake component 220 can greatly improve the camera module 200.
  • the image quality in the shaking state improves the photographing experience of the camera module 200; moreover, the second anti-shake component 220 drives the lens 212 and the image sensor 213 to turn over at the same time, and the lens 212 and the image sensor 213 can still be kept parallel without relative In deflection, during the anti-shake compensation process, the image sensor 213 can clearly collect the light passing through the lens 212, so that the image formed by the image sensor 213 is less likely to be blurred and the image is clearer.
  • FIG. 5 is a schematic structural diagram of the second anti-shake assembly 220 provided in the embodiment of the present application
  • FIG. 6 is the second anti-shake assembly 220 shown in FIG. 5 7 is a schematic cross-sectional view of the second anti-shake assembly 220 shown in FIG. 5
  • FIG. 8 is a schematic partial cross-sectional view of the second anti-shake assembly 220 shown in FIG. 5
  • the second anti-shake assembly 220 includes a positioning seat 221 , a first driving mechanism 222 , a second driving mechanism 223 and a top cover 224 .
  • the positioning seat 221 can carry the first driving mechanism 222 and the second driving mechanism 223.
  • the positioning seat 221 can form the base of the entire camera module 200 and be fixedly connected in the housing 100 of the electronic device 10.
  • the positioning seat 221 can be connected to the electronic device. 10, the middle frame 110, the rear case 120 and other structures are connected.
  • the top cover 224 can be stacked up and down with the positioning seat 221 in the first direction H1 , and the top cover 224 can cover the positioning seat 221 to cover the internal structure of the positioning seat 221 .
  • One or more slide slots 2211 may be provided on the positioning seat 221 .
  • the first driving mechanism 222 may be directly or indirectly connected to the first anti-shake assembly 210 , for example, the first driving mechanism 222 may be connected to the housing 211 of the first anti-shake assembly 210 .
  • the first driving mechanism 222 may include a rolling structure 2221 , and the rolling structure 2221 is limited in the chute 2211 , and the chute 2211 may limit the movement track of the rolling structure 2221 . When the rolling structure 2221 moves in the chute 2211 , the rolling structure 2221 can move according to a predetermined track, so that the first driving mechanism 222 can drive the first anti-shake assembly 210 to move.
  • the first driving mechanism 222 can also include a bracket 2222, and the bracket 2222 can include a plurality of protrusions, and one end of the ball of the rolling structure 2221 can be connected to the protrusions, and the other end can be connected to the protrusions. It is limited in the chute 2211.
  • the bracket 2222 may be a ball suspension structure.
  • the first driving mechanism 222 may not be provided with the bracket 2222 , for example, the rolling structure 2221 may be directly connected with the housing 211 of the first anti-shake assembly 210 , so that the rolling structure 2221 drives the first anti-shake assembly 210 to move.
  • the embodiment of the present application does not limit the specific structure of the first driving mechanism 222 .
  • the second driving mechanism 223 may be directly or indirectly connected to the first driving mechanism 222 .
  • the second drive mechanism 223 can also be directly or indirectly connected with the first anti-shake assembly 210, for example, the second drive mechanism 223 can be directly connected with the shell 211 of the first anti-shake assembly 210, or the second drive mechanism 223 can pass through the first anti-shake assembly 210.
  • the driving mechanism 222 is indirectly connected with the first anti-shake assembly 210 . Therefore, the first anti-shake assembly 210, the first driving mechanism 222 and the second driving mechanism 223 can be connected with each other to form a whole.
  • the second driving mechanism 223 can provide driving force to the first driving mechanism 222, and the first driving mechanism 222 can move under the effect of the driving force.
  • the second driving mechanism 223 can drive the first driving mechanism 222 to move and make the first driving mechanism 222 drive the first anti-shake assembly 210 to flip around the optical axis perpendicular to the lens 212 based on the rolling operation of the rolling structure 2221 .
  • the XOY plane perpendicular to the optical axis direction of the lens 212 may include a first axis L1 and a second axis L2, and the first axis L1 and the second axis L2 may be two axes of the XOY plane. diagonal lines.
  • the second driving mechanism 223 and the first driving mechanism 222 cooperate with each other so that the first driving mechanism 222 can drive the first anti-shake assembly 210 to turn clockwise or counterclockwise around the first axis L1, or turn clockwise or counterclockwise around the second axis L2. Flip counterclockwise.
  • first axis L1 and the second axis L2 are not limited to being diagonal lines of the XOY plane, for example, but not limited to, axes parallel to the X axis and the Y axis in the XOY plane, the first driving mechanism 222 can also drive the first anti-shake assembly 210 to flip along other axes in the XOY plane.
  • the second driving mechanism 223 may, but not limited to, provide driving force for the first driving mechanism 222 by using fuel driving, motor driving, magnetic driving, new energy driving and other driving methods.
  • the embodiment of the present application does not limit the specific structure of the second driving mechanism 223 .
  • the second driving mechanism 223 provides driving force for the first driving mechanism 222, and the rolling structure 2221 of the first driving mechanism 222 can slide along the positioning seat 221 under the action of the driving force.
  • the groove 2211 rolls, and the second anti-shake component 220 can drive the first anti-shake component 210 to flip around the direction perpendicular to the optical axis of the lens 212.
  • the second anti-shake component 220 can perform shake compensation for the flip shake of the camera module 200 , thereby improving the image quality of the camera module 200; on the other hand, the rolling motion of the rolling structure 2221 in the chute 2211 is smoother, and the first driving mechanism 222 drives the first anti-shake assembly 210 to rotate more smoothly, so that the second The anti-shake effect of the anti-shake component 220 is controllable, and the camera module 200 can precisely control the movement of the second anti-shake component 220 .
  • At least two slide grooves 2211 may be provided on the positioning seat 221 .
  • At least two sliding grooves 2211 can be located on an axis perpendicular to the optical axis direction of the lens 212, for example, on the first axis L1, and at least two sliding grooves 2211 can be about the center point O of the first axis L1 (also can be the first The intersection point of the axis L1 and the optical axis of the lens 212) is arranged symmetrically.
  • the rolling structure 2221 may include at least two rolling substructures, so that each rolling substructure can be limited in one slide groove 2211 .
  • the two symmetrically arranged rolling substructures can symmetrically apply force to the first anti-shake assembly 210, compared with the solution in which only one rolling substructure exerts force , the first driving mechanism 222 of the embodiment of the present application can improve the stability of driving the first anti-shake assembly 210 to turn over.
  • At least four sliding grooves 2211 can be provided on the positioning seat 221, and at least two sliding grooves 2211 can be located on an axis perpendicular to the optical axis direction of the lens 212, such as the first axis L1 and relative to the first axis L1.
  • the center point O of the axis L1 is arranged symmetrically, and at least two other slide grooves 2211 may be located on another axis perpendicular to the optical axis direction of the lens 212, such as the second axis L2, and arranged symmetrically with respect to the center point O of the second axis L2,
  • the first axis L1 and the second axis L2 may be two intersecting diagonal lines in the XOY plane.
  • the rolling structure 2221 can include at least four rolling substructures, so that each rolling substructure can be limited in one slide groove 2211 .
  • the first driving mechanism 222 can drive the first anti-shake assembly 210 to turn over along the first axis L1 or turn over along the second axis L2 through at least four sliding grooves 2211 and at least four rolling substructures, and the second anti-shake assembly 210 220 can realize the dual-axis flip of the camera module 200 .
  • the chute 2211 on the positioning seat 221 and the rolling structure 2221 of the first driving mechanism 222 are not limited to the above examples.
  • One or more axes are arranged symmetrically, and with the cooperation of multiple slide grooves 2211 and multiple rolling structures 2221, the first driving mechanism 222 can drive the first anti-shake assembly 210 to turn over along more axes in the XOY plane, so as to The multi-axis flipping of the camera module 200 is realized.
  • the embodiment of the present application does not limit the specific structures of the chute 2211 and the rolling structure 2221 .
  • the slide groove 2211 may include a spherical groove portion.
  • the groove wall of the spherical groove can be adapted to the outer surface of the rolling structure 2221 , so that the sliding groove 2211 can better limit the movement track of the rolling structure 2221 .
  • the spherical groove can be a groove whose groove wall is a spherical surface formed by a process such as a ball cutter, and the distance from any point on the groove wall of the spherical groove to the center of the ball can be equal, and the groove wall of the spherical groove can form a part spherical surface, so that The support 2222 can drive the ball structure to be inserted into the spherical groove.
  • the sliding groove 2211 can be an axisymmetric structure about an axis perpendicular to the optical axis direction of the lens 212, for example, the spherical groove can be an axisymmetric structure about the first axis L1, or it can be about the second axis L2 Symmetrical axisymmetric structure.
  • the rolling structure 2221 moves in the spherical groove, the rolling structure 2221 can either rotate clockwise about the first axis L1 or the second axis L2 along the spherical groove, or counterclockwise about the first axis L1 or the second axis L2 along the spherical groove rotate. Therefore, through the cooperation of the rolling structure 2221 and the spherical groove, the first driving mechanism 222 can drive the first anti-shake assembly 210 to turn clockwise or counterclockwise by the same angle.
  • the chute 2211 may not have an axisymmetric structure, and at this time, the first driving mechanism 222 may drive the first anti-shake assembly 210 to turn clockwise or counterclockwise at different angles.
  • the embodiment of the present application does not limit the specific structure of the chute 2211.
  • the sliding groove 2211 may also include other groove body segments communicating with the spherical groove, such as but not limited to straight groove segments.
  • the rolling structure 2221 can first move a certain distance along the straight groove section and then enter the spherical groove, and then drive the first anti-shake assembly 210 to turn over. It can be understood that the size of the straight groove section can be small, so that the movement of the first anti-shake component 210 along the straight groove section can be neglected.
  • the chute 2211 in the embodiment of the present application may include a spherical groove alone, or may include the above-mentioned spherical groove and other groove body segments.
  • the embodiment of the present application does not limit the specific structure of the chute 2211, but the movement trajectory of the rolling structure 2221 can be limited so that the first anti-shake component 210 can turn around the chute 2211 structure perpendicular to the optical axis direction of the lens 212 All are within the protection scope of the embodiments of the present application.
  • the second driving mechanism 223 may include a first magnetic part 2231 , a first bearing part 2232 and a first conductive part 2233 .
  • the first magnetic member 2231 can be, but not limited to, a permanent magnet, an electromagnet and other magnetic elements that can generate a magnetic field.
  • the first magnetic member 2231 can generate a first magnetic field.
  • the first magnetic part 2231 can be disposed on the first bearing part 2232 .
  • the first carrier 2232 may be located in the first magnetic field, and the first carrier 2232 may be a magnet carrier.
  • an accommodating groove may be provided on the first bearing member 2232, and the first magnetic member 2231 may be located in the accommodating groove.
  • the first bearing part 2232 can also be directly or indirectly connected with the first driving mechanism 222, so that the first magnetic part 2231, the first bearing part 2232 and the first driving mechanism 222 can move synchronously.
  • the first conductive member 2233 can be arranged opposite to the first magnetic member 2231 in a direction perpendicular to the optical axis of the lens 212, and the first conductive member 2233 can interact with the magnetic field generated by the first magnetic member 2231 after being energized. 2233 can generate a first force under the action of the first magnetic part 2231, and the first force can make the first bearing part 2232 move along the optical axis direction of the lens 212, so as to drive the first driving mechanism 222 along the optical axis of the lens 212 direction movement.
  • the first magnetic part 2231 may include one or more sub-magnetic parts.
  • the first magnetic part 2231 may include four sub-magnetic parts, and the four sub-magnetic parts may be evenly spaced around the optical axis direction of the lens 212 and distributed around the first bearing part 2232 .
  • the first conductive part 2233 may also correspondingly include a plurality of sub-conductive parts, so that each sub-conductive part may be disposed opposite to a sub-magnetic part.
  • the embodiment of the present application does not limit the specific structures of the first magnetic member 2231 and the first bearing member 2232 .
  • the first conductive member 2233 may be, but not limited to, a coil of a flexible circuit board structure, and an external power source may energize the coil through the flexible circuit board structure.
  • the second driving mechanism 223 of the embodiment of the present application can make the first driving mechanism 222 move up and down in the vertical direction through the mutual cooperation of the first magnetic part 2231 and the first conductive part 2233.
  • the structure of the second driving mechanism 223 is simple and occupies less space. Smaller, the miniaturization design of the camera module 200 can be realized.
  • the camera module 200 can also include a control chip, such as a second control chip 240, which can be electrically connected to the second anti-shake component 220, for example, the second control chip 240 can be provided with a flexible circuit board with a base and a coil, but not limited to structurally.
  • the second control chip 240 can monitor the movement parameters of the second anti-shake assembly 220 in real time, and the second control chip 240 can control the second anti-shake assembly in real time according to the movement parameters of the second anti-shake assembly 220 and the shake parameters of the camera module 200.
  • the swing of the component 220 makes the shake compensation of the second anti-shake component 220 more accurate, and realizes the closed-loop control of the second anti-shake component 220 .
  • the second control chip 240 implements closed-loop control on the second anti-shake component 220, which can make the shake compensation of the second anti-shake component 220 more accurate.
  • the anti-shake mechanism 214 of the embodiment of the present application may include but not limited to structures such as shape memory alloy motors, suspension wire motors, shrapnel motors, piezoelectric motors, and ball motors.
  • the shaking mechanism 214 is described as an example of a shape memory alloy motor.
  • FIG. 10 is a schematic structural diagram of an anti-shake mechanism 214 provided by an embodiment of the present application.
  • the anti-shake mechanism 214 includes a bottom plate 2141 , a first carrier 2142 , a second carrier 2143 and a plurality of deformation parts 2144 .
  • the image sensor 213 can be disposed on the base plate 2141 , and the base plate 2141 can be connected to the first carrier 2142 , and the first carrier 2142 can carry the image sensor 213 and the base plate 2141 .
  • the second carrier 2143 may be arranged opposite to the first carrier 2142 in the direction of the optical axis of the lens 212 , and the second carrier 2143 and the first carrier 2142 may be stacked up and down along the first direction H1 .
  • One end of each deformable member 2144 can be connected to the first carrier 2142, and the other end can be connected to the second carrier 2143.
  • Each deformable member 2144 can be deformed to drive the image sensor 213 to move, for example, to drive the image sensor 213 along the vertical direction.
  • the image sensor 213 can realize rotation in the X-axis, Y-axis or XOY plane under the action of the anti-shake mechanism 214 .
  • the first carrier 2142 can be, but not limited to, a lower elastic structure.
  • the first carrier 2142 can include a first part 21421, a second part 21422, a third part 21423 and a fourth part 21424 connected end to end, and the first part 21421 and the third part 21423 are arranged oppositely, and the second part 21422 and the fourth part 21424 are arranged oppositely.
  • a first end 21425 and a second end 21426 may be formed between the first part 21421 and the second part 21422
  • a third end 21427 and a fourth end 21428 may be formed between the third part 21423 and the fourth part 21424 .
  • the second carrier 2143 can be, but not limited to, an upper elastic sheet structure.
  • the second carrier 2143 can include a fifth part 21431, a sixth part 21432, a seventh part 21433 and an eighth part 21434 connected end to end, and the fifth part 21431 and the seventh part 21433 are set oppositely, and the sixth part 21432 and the eighth part 21434 are set oppositely.
  • a fifth end 21435 and a sixth end 21436 may be formed between the fifth part 21431 and the eighth part 21434
  • a seventh end 21437 and an eighth end 21438 may be formed between the sixth part 21432 and the seventh part 21433 .
  • the first end 21425, the second end 21426, the third end 21427 and the fourth end 21428 can be located on a diagonal line L3 of the XOY plane; the fifth end 21435, the sixth end 21436 and the fourth end
  • the seventh end portion 21437 and the eighth end portion 21438 may be located on another diagonal line L4 of the XOY plane.
  • the plurality of deformation parts 2144 may include a first deformation part 21441 , a second deformation part 21442 , a third deformation part 21443 and a fourth deformation part 21444 .
  • the first deforming part 21441 can be set corresponding to the first part 21421 and the fifth part 21431
  • the second deforming part 21442 can be set corresponding to the second part 21422 and the sixth part 21432
  • the third deforming part 21443 can be set corresponding to the third part 21423 and the seventh part 21423.
  • part 21433, and the fourth deformation member 21444 may be provided corresponding to the fourth part 21424 and the eighth part 21434.
  • One end of the first deformation member 21441 can be connected to the first end 21425, and the other end can be connected to the fifth end 21435; one end of the second deformation member 21442 can be connected to the second end 21426, and the other end can be connected to the seventh end
  • One end of the third deformation member 21443 can be connected to the third end 21427, and the other end can be connected to the eighth end 21438; one end of the fourth deformation member 21444 can be connected to the fourth end 21428, and the other end Connectable to the sixth end portion 21436 .
  • the material of the first deformable part 21441, the second deformable part 21442, the third deformable part 21443 and the fourth deformable part 21444 is made of shape memory alloy (shape memory alloys, SMA).
  • shape memory alloy shape memory alloys, SMA.
  • SMA shape memory alloys
  • first end 21425 to the fourth end 21428 may be fixed ends and the fifth end 21435 to the eighth end 21438 may be deformed under the action of an external force; or, The fifth end 21435 to the eighth end 21438 may be fixed ends, while the first end 21425 to the fourth end 21428 may be deformed under the action of an external force. Therefore, one end of each deformable member 2144 can be connected with a fixed end and the other end can be connected with a deformable end.
  • the first to eighth ends 21438 may all be deformed under the action of an external force, and at this time, both ends without the deformable member 2144 may be connected to the deformable ends.
  • the embodiment of the present application does not limit specific characteristics of the first to eighth end portions 21438 .
  • the length of the one or more deformable members 2144 can be changed so that it is different from the multiple The first carrier 2142 or the second carrier 2143 connected with the deformation member 2144 translates, so that the image sensor 213 can also translate.
  • the first deformation member 21441 can drive the first carrier 2142 and the image sensor 213 along the Y-axis direction Front translation; if the third deformation member 21443 is energized to make it longer, the third deformation member 21443 can drive the first carrier 2142 and the image sensor 213 to translate backward along the Y-axis direction; if the second deformation member 21442 is energized to make it When lengthening, the first deformation member 21441 can drive the first carrier 2142 and the image sensor 213 to translate to the right along the X-axis direction; The carrier 2142 and the image sensor 213 translate to the left along the X-axis
  • the anti-shake mechanism 214 may also include one or more supports 2146, each support 2146 may be located between the first carrier 2142 and the second carrier 2143, each support 2146 may be disposed on the first carrier 2142 or the second carrier 2143, each support member 2146 can space the first carrier 2142 and the second carrier 2143, so that there is a certain gap between the first carrier 2142 and the second carrier 2143, on the one hand, multiple deformation When the member 2144 is deformed, it is not easy to contact the first carrier 2142 and the second carrier 2143, which can avoid the deformation interference of the first carrier 2142 and the second carrier 2143 to the deformation member 2144; on the other hand, when the first carrier 2142 and the second carrier When the metal structure is provided on the 2143, it can also prevent the first carrier 2142 and the second carrier 2143 from contacting and short circuiting.
  • the anti-shake mechanism 214 of the embodiment of the present application realizes the horizontal movement and horizontal plane rotation of the image sensor 213 through the SMA motor. Compared with other structures, the anti-shake mechanism 214 realizes the drive of the image sensor 213 through the deformation characteristics of the deformation member 2144.
  • the anti-shake mechanism 214 does not need to be equipped with structures such as magnetic drive and motor drive, and the structure of the anti-shake mechanism 214 is simpler and occupies less space.
  • the anti-shake mechanism 214 may also include a flexible circuit board module 2145, the flexible circuit board module 2145 may surround and be connected to the edge of the first carrier 2142, the flexible circuit board module 2145 may be electrically connected to image sensor 213 to power it.
  • the shape of the flexible circuit board can also change to adapt to the movement of the image sensor 213 .
  • the flexible circuit board module 2145 can form a hanging basket structure with the first carrier 2142 and the bottom plate 2141, and the hanging basket structure can make there be a movement space of 0.1 and 0.5 mm between the bottom plate 2141 and the rear cover 2112, so as to prevent shaking Agency 214 Movement.
  • the camera module 200 can also include a control chip such as a first control chip 230, which can be, but not limited to, arranged on the flexible circuit board module 2145, and the first control chip 230 can be electrically connected to the anti-shake mechanism 214,
  • the first control chip 230 can monitor the movement parameters of the anti-shake mechanism 214, and the first control chip 230 can control the swing of the anti-shake mechanism 214 in real time according to the movement parameters of the monitoring anti-shake mechanism 214 and the shake parameters of the camera module 200, so as to facilitate The vibration compensation of the anti-shake mechanism 214 is more precise, and the closed-loop control of the anti-shake mechanism 214 is realized.
  • the first anti-shake component 210 in the embodiment of the present application may further include a focusing mechanism 215 .
  • FIG. 12 is a schematic structural diagram of the focus mechanism 215 provided by the embodiment of the present application.
  • the focus mechanism 215 can be connected with the lens 212 , and the focus mechanism 215 can drive the lens 212 to move along the optical axis direction of the lens 212 .
  • the focus mechanism 215 can be located in the accommodation space formed by the casing 211, the focus mechanism 215 can be arranged opposite to the anti-shake mechanism 214 in the optical axis direction of the lens 212, and the focus mechanism 215 and the anti-shake mechanism 214 can be stacked along the first direction H1.
  • the focusing mechanism 215 may include a second carrier 2151 and a driving member.
  • the second carrier 2151 may carry the lens 212 .
  • the second carrier 2151 may be, but not limited to, a carrier of the lens 212 .
  • the driver may include an elastic structure 2152, which is connected to the casing 211 of the first anti-shake assembly 210, and the elastic structure 2152 may be arranged on the second carrier 2151 along the optical axis direction of the lens 212 and connected to the second carrier 2151. Connected, the elastic structure 2152 can be configured to use the elastic force to enable the second carrier 2151 to move along the optical axis direction of the lens 212, so that the elastic structure 2152 can make the second carrier 2151 and the lens 212 move along the first direction H1 , so as to realize the focusing operation of the lens 212 .
  • the elastic structure 2152 may include an upper reed 21521 and a lower reed 21522, a part of the upper reed 21521 may be connected to the second carrier 2151, and another part may be connected to the housing 211 of the first anti-shake mechanism 214; A part of the lower spring 21522 can be connected with the second carrier 2151 , and another part can be connected with the casing 211 of the first anti-shake mechanism 214 .
  • the elastic structure 2152 drives the second carrier 2151 to move up and down along the first direction H1
  • the part of the upper spring 21521 and the lower spring 21522 connected to the housing 211 can exert a traction force on the second carrier 2151, so that the second carrier
  • the component 2151 can stay at a certain position stably, so as to realize precise focusing of the second carrier 2151 and the lens 212 .
  • the focus mechanism 215 may further include a second magnetic element 2153 and a second conductive element 2154 .
  • the second magnetic part 2153 can generate a second magnetic field
  • the second bearing part 2151 can be located in the second magnetic field.
  • the second conductive member 2154 can be arranged opposite to the first magnetic member 2231 in a direction perpendicular to the optical axis of the lens 212, and the second conductive member 2154 can generate a second force under the action of the second magnetic member 2153.
  • the second force Together with the elastic force generated by the elastic structure 2152 , the second carrier 2151 can move along the optical axis of the lens 212 .
  • the second magnetic member 2153 can be, but is not limited to, a permanent magnet, an electromagnet and other magnetic elements that can generate a magnetic field.
  • the second magnetic part 2153 can be disposed on the second bearing part 2151 .
  • the second conductive member 2154 can be but not limited to a coil structure, and an external power supply can energize the coil, so that the second conductive member 2154 can generate and drive the second bearing member 2151 up and down along the first direction H1 under the action of the second magnetic member 2153 The force of movement.
  • the elastic structure 2152 can also be electrically connected to the second conductive member 2154 , for example, the lower spring 21522 can be electrically connected to the second conductive member 2154 , and an external power supply can supply power to the second conductive member 2154 through the lower spring 21522 .
  • the electric energy of the external power supply can be electrically connected with the lower spring 21522 through the flexible circuit board module 2145 and transmit electric energy.
  • the second magnetic part 2153 may include one or more sub-magnetic parts.
  • the second magnetic part 2153 may include four sub-magnetic parts, and the four sub-magnetic parts may be evenly spaced around the optical axis direction of the lens 212 and distributed around the second bearing part 2151 .
  • the second conductive part 2154 may also correspondingly include a plurality of sub-conductive parts, so that each sub-conductive part may be disposed opposite to a sub-magnetic part.
  • the embodiment of the present application does not limit the specific structures of the second magnetic member 2153 and the second bearing member 2151 .
  • the focus mechanism 215 of the embodiment of the present application can make the second carrier 2151 and the lens 212 move up and down in the vertical direction through the mutual cooperation of the second magnetic component 2153 and the second conductive component 2154.
  • the focus mechanism 215 has a simple structure and occupies less space. , the miniaturization design of the camera module 200 can be realized.
  • the specific structures of the focusing mechanism 215, the anti-shake mechanism 214 and the second anti-shake assembly 220 in the embodiment of the present application are not limited to the descriptions of the above embodiments.
  • the structures of the focusing mechanism 215 , the anti-shake mechanism 214 , and the second anti-shake assembly 220 can learn from each other and combine with each other to realize different movement forms of the focus mechanism 215 , the anti-shake mechanism 214 , and the second anti-shake assembly 220 .
  • the anti-shake mechanism 214 and the second anti-shake assembly 220 can also be equipped with components such as an elastic structure 2152, a second magnetic member 2153, and a second conductive member 2154 like the focusing mechanism 215, so as to realize the light moving up and down along the optical axis of the lens 212 .
  • the anti-shake mechanism 214 and the focus mechanism 215 can also be provided with components such as a chute 2211 and a rolling structure 2221 like the second anti-shake assembly 220 , so as to realize turning around the direction perpendicular to the optical axis of the lens 212 .
  • the focus mechanism 215 and the second anti-shake assembly 220 can also be equipped with a shape memory alloy motor like the anti-shake mechanism 214 to move in a direction perpendicular to the optical axis of the lens 212 or rotate around the optical axis of the lens 212 .
  • the embodiment of the present application does not limit the specific structures of the focusing mechanism 215 , the anti-shake mechanism 214 and the second anti-shake assembly 220 .
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features.
  • a feature defined as “first” or “second” may explicitly or implicitly include one or more of said features.
  • “plurality” means two or more, unless otherwise specifically defined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

摄像模组及电子设备,摄像模组包括第一防抖组件和第二防抖组件,第一防抖组件包括镜头、图像传感器和防抖机构,防抖机构与图像传感器连接并用于驱动图像传感器运动;第二防抖组件用于驱动第一防抖组件运动并使镜头和图像传感器运动。

Description

摄像模组及电子设备
本申请要求于2022年01月25日提交中国专利局、申请号为202210089638.1、发明名称为“摄像模组及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子技术领域,特别涉及一种摄像模组及电子设备。
背景技术
随着电子设备的不断普及,电子设备已经成为人们日常生活中不可或缺的社交工具和娱乐工具,人们对于电子设备的要求也越来越高。以手机为例,人们在使用手机进行拍摄的过程中,存在因手机抖动而导致拍摄的图像模糊、不清晰的问题。
发明内容
本申请提供一种摄像模组及电子设备,可以提高摄像模组的防抖效果。
第一方面,本申请提供一种摄像模组,包括:
第一防抖组件,包括镜头、图像传感器和防抖机构,所述图像传感器在所述镜头的光轴方向上与所述镜头相对设置,所述防抖机构与所述图像传感器连接并用于驱动所述图像传感器运动;及
第二防抖组件,与所述第一防抖组件连接,所述第二防抖组件用于驱动所述第一防抖组件运动并使所述镜头和所述图像传感器运动。
第二方面,本申请提供一种电子设备,包括壳体和摄像模组,所述摄像模组设置在壳体上,所述摄像模组包括:
第一防抖组件,包括镜头、图像传感器和防抖机构,所述图像传感器在所述镜头的光轴方向上与所述镜头相对设置,所述防抖机构与所述图像传感器连接并用于驱动所述图像传感器运动;及
第二防抖组件,与所述第一防抖组件连接,所述第二防抖组件用于驱动所述第一防抖组件运动并使所述镜头和所述图像传感器运动。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还 可以根据这些附图获得其他的附图。
图1为本申请实施例提供的电子设备的一种结构示意图。
图2为本申请实施例提供的摄像模组的第一种结构示意图。
图3为图2所示的摄像模组的一种爆炸结构示意图。
图4为图2所示的摄像模组的一种剖面示意图。
图5为本申请实施例提供的第二防抖组件的一种结构示意图。
图6为图5所示的第二防抖组件的一种爆炸结构示意图。
图7为图5所示的第二防抖组件的一种剖面示意图。
图8为图5所示的第二防抖组件的一种局部剖面示意图。
图9为图5所示的第二防抖组件的一种电连接示意图。
图10为本申请实施例提供的防抖机构的一种结构示意图。
图11为图10所示的防抖机构的一种电连接示意图。
图12为本申请实施例提供的对焦机构的一种结构示意图。
具体实施方式
下面将结合本申请实施例中的图1至图12,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供一种电子设备,作为在此使用的“电子设备”(或简称为“终端”)包括但不限于被设置成经由有线线路连接和/或经由诸如蜂窝网络、无线局域网等无线通信网络接收/发送通信信号的装置。移动终端的示例包括但不限于蜂窝电话以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。手机即为配置有蜂窝通信模块的电子设备。
以电子设备为手机示例,请参考图1,图1为本申请实施例提供的电子设备10的一种结构示意图。电子设备10可以包括壳体100、摄像模组200、显示屏300、电池400和主板500。显示屏300设置在壳体100上,其可以用于显示画面,摄像模组200、电池400和主板500可以设置于壳体100内,摄像模组200能够接受到外部环境射入的光线以实现画面拍摄,主板500上可以集成有电子设备10的控制电路,主板500可以形成电子设备10的控制中心,电池400可为电子设备10的摄像模组200、显示屏300、主板500等电子器件供电。
壳体100可以包括中框110和后壳120,显示屏300可以盖设于中框110的一 面,后壳120盖设于中框110的另一面。例如,显示屏300和后壳120可以通过粘接、焊接以及卡接等方式盖设于中框110相背设置的两面。摄像模组200可以设置于显示屏300和后壳120之间,并能够接受到外部环境射入的光线。
后壳120可以是电子设备10的电池400盖,它的材质可以是玻璃、金属和硬质塑料等,也可以由其它电致变色材料制成。其中,后壳120具有一定的结构强度,主要用于保护电子设备10。相应地,中框110的材质也可以是玻璃、金属和硬质塑料等。中框110也具有一定的结构强度,主要用于支撑和固定摄像模组200以及安装在中框110和后壳120之间的其他功能器件。例如电子设备10的电池400、主板500以及天线等。进一步地,由于中框110和后壳120一般会直接暴露于外界环境,中框110和后壳120的材质可以优选地具有一定的耐磨耐蚀防刮等性能,或者在中框110和后壳120的外表面(也即是电子设备10的外表面)涂布一层用于耐磨耐蚀防刮的功能材料。
显示屏300可以包括显示模组以及用于响应对显示模组进行触控操作的电路等。其中,显示屏300可以是使用有机发光二极管(Organic Light-Emitting Diode,简称OLED)的屏幕进行图像显示,也可以是使用液晶显示器(Liquid Crystal Display,简称LCD)的屏幕进行图像显示。并且显示屏300在外形上可以是平板屏幕,也可以是双曲面屏幕,还可以是四曲面屏幕,本实施例对此不作限定。
需要说明的是,对于手机而言,上述平板屏幕是指显示屏300在整体上呈平板状设置;上述双曲面屏幕是指显示屏300的左、右边缘区域呈弯曲状设置,其他区域依旧呈平板状设置,这样不仅能够减小显示屏300的黑边并增加显示屏300的可视区域,还能够增加电子设备10的外观美感及握持手感;上述四曲面屏幕是指显示屏300的上、下、左、右边缘区域均呈弯曲状设置,其他区域依旧呈平板状设置,这样不仅能够进一步减小显示屏300的黑边并增加显示屏300的可视区域,还能够进一步增加电子设备10的外观美感及握持手感。
摄像模组200可以用于实现电子设备10的拍照、录像、人脸识别解锁、扫码支付等功能。此外,需要说明的是,摄像模组200可以是如图示中所示的前置式摄像头,也可以是后置式摄像头,本实施例对此不作限定。以下结合附图具体说明摄像模组200的结构。
其中,请参考图2至图4,图2为本申请实施例提供的摄像模组200的第一种结构示意图,图3为图2所示的摄像模组200的一种爆炸结构示意图,图4为图2 所示的摄像模组200的一种剖面示意图。摄像模组200包括第一防抖组件210和第二防抖组件220。
第一防抖组件210可以包括外壳211、镜头212、图像传感器213和防抖机构214。外壳211可以包括上盖2111和后盖2112,上盖2111和后盖2112可以形成容置空间,图像传感器213和防抖机构214可以设置于容置空间内,部分镜头212可以设置于容置空间内、另一部分镜头212可以伸出容置空间外。外壳211、镜头212、图像传感器213和防抖机构214可以形成一整体。图像传感器213可以在镜头212的光轴方向上与镜头212相对设置。防抖机构214可与图像传感器213连接,防抖机构214可以驱动图像传感器213运动。例如,防抖机构214可以驱动图像传感器213沿垂直于镜头212的光轴方向移动,或者,防抖机构214可以驱动图像传感器213围绕镜头212的光轴方向转动。
可以理解的是,镜头212的光轴方向可以是第一方向H1,该第一方向H1可以是竖直方向,例如是坐标轴中的Z轴方向。垂直于镜头212的光轴方向可以是第二方向H2,该第二方向H2可以是水平面内的任一水平方向,例如是坐标轴中的X轴方向或Y轴方向。围绕镜头212的光轴方向,可以是垂直于镜头212的光轴的平面内的任一方向,例如是坐标轴中的XOY平面内的任一方向。
镜头212和图像传感器213可以沿第一方向H1上下层叠设置,镜头212与图像传感器213可以相互平行。镜头212的材质可以是玻璃或塑胶等。镜头212主要用于改变光线的传播路径,并对光线进行聚焦。镜头212可以包括多组镜片,多组镜片会相互矫正过滤光线;以在光线通过镜头212时,多组镜片层层过滤杂光(例如红外光),以便于增加摄像模组200的成像效果。图像传感器213可以但不限于是电荷耦合元件(Charge Coupled Device,简称CCD)、互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,简称CMOS)等类型的影像传感器。图像传感器213主要用于接收来自镜头212采集的光线,并将光信号转化为电信号,以便于实现摄像模组200的成像需求。
防抖机构214和第二防抖组件220均可以用于改善摄像模组200因用户在使用过程中发生抖动而产生的成像效果,以使得图像传感器213的成像效果能够满足用户的使用需求。防抖机构214可以提供驱动力,以驱动图像传感器213运动。当防抖机构214驱动图像传感器213沿垂直于镜头212的光轴方向移动或者围绕镜头212的光轴方向转动,防抖机构214可以驱动图像传感器213沿X轴平移、沿Y轴平移、或者在XOY平面内转动,防抖机构214可以实现对摄像模 组200抖动的补偿。
可以理解的是,防抖机构214除了驱动图像传感器213沿垂直于镜头212的光轴方向移动或者围绕镜头212的光轴方向转动外,还可以驱动图像传感器213以其他的方式运动,例如,防抖机构214还可以驱动图像传感器213沿镜头212的光轴方向上下运动;或者,防抖机构214还可以驱动图像传感器213围绕垂直于镜头212的光轴方向翻转。本申请实施例对防抖机构214驱动图像传感器213运动的具体方式不进行限定。
其中,第二防抖组件220可以与第一防抖组件210直接或间接连接,例如,第二防抖组件220可以与外壳211连接。第二防抖组件220可以作为微云台结构而实现防抖功能,第二防抖组件220可以驱动第一防抖组件210运动并可使第一防抖组件210上的图像传感器213和镜头212运动。例如,第二防抖组件220可以驱动第一防抖组件210围绕垂直于镜头212的光轴方向翻转,与此同时,第一防抖组件210上的图像传感器213和镜头212也可以围绕垂直于镜头212的光轴方向翻转,从而第二防抖组件220可以驱动镜头212和图像传感器213以XOY平面内的轴线例如第一轴线L1、第二轴线L2进行顺时针或逆时针的翻转运动。
可以理解的是,第二防抖组件220除了驱动第一防抖组件210围绕垂直于镜头212的光轴方向翻转外,还可以驱动第一防抖组件210以其他的方式运动,例如,第二防抖组件220还可以驱动第一防抖组件210沿镜头212的光轴方向上下运动,或者第二防抖组件220还可以驱动第一防抖组件210沿垂直于镜头212的光轴方向移动或者围绕镜头212的光轴方向转动。本申请实施例对第二防抖组件220驱动第一防抖组件210运动的具体方式不进行限定。
可以理解的是,本申请实施例的摄像模组200,第二防抖组件220带动整个第一防抖组件210翻转,第二防抖组件220不需要受限于第一防抖组件210内部的空间,第二防抖组件220可以设置更大的行程。本申请实施例的摄像模组200的行程可以实现400微米,翻转的角度可以大于3度,图像传感器213的旋转行程可以达到200微米,图像传感器213的XOY平面内旋转的角度可以大于1.5度。并且,当将第一防抖组件210、第二防抖组件220的行程扩大1.67倍时,本申请实施例额摄像模组200的翻转角度可以大于5度,图像传感器213的XOY平面内旋转的角度可以大于3度。本申请实施例的摄像模组200可以实现大角度的防抖功能。
基于光学防抖技术,电子设备10(或摄像模组200)的陀螺仪或加速度计 等传感器可以检测到镜头212的抖动以生成抖动信号,并将该抖动信号传递至电子设备10和/或摄像模组200的处理芯片,电子设备10和/或摄像模组200的处理芯片可以计算出防抖机构214、第二防抖组件220需要补偿的位移量,以使得防抖机构214、第二防抖组件220可以根据镜头212的抖动方向及其位移量对镜头212进行补偿,从而改善或摄像模组200因用户在使用过程中发生抖动而产生的成像效果。
相关技术中,通常仅可以实现摄像头防抖或图像传感器213防抖等单一防抖功能,然而摄像头防抖或图像传感器213防抖等单一防抖结构受电子设备10的结构空间限制所能实现的防抖角度有限,仅能实现小角度(诸如1°以内或1.5°以内)的光学防抖功能。并且,相关技术中通过驱动摄像头或图像传感器213翻转时,摄像头或图像传感器213之间的相对角度发生偏转,二者相互不平行,此时图像传感器213不易通过摄像头采集到清晰的图像。
而本申请实施例的摄像模组200,第一防抖组件210的防抖机构214可以驱动图像传感器213运动,防抖机构214可以实现图像传感器213的防抖功能;第二防抖组件220可以驱动整个第一防抖组件210运动并使镜头212和图像传感器213运动,第二防抖组件220可以实现图像传感器213和镜头212的防抖功能,从而,本申请实施例的第二防抖组件220和防抖机构214相配合可以实现摄像模组200的多功能防抖。例如,当第一防抖组件210的防抖机构214驱动图像传感器213沿垂直于镜头212的光轴方向移动或围绕镜头212的光轴方向转动,防抖机构214可以驱动图像传感器213实现X轴平移、Y轴平移、XOY平面转动的三轴防抖功能;第二防抖组件220驱动整个第一防抖组件210翻转而实现镜头212和图像传感器213围绕垂直于镜头212的光轴方向翻转,第二防抖组件220可以驱动镜头212和图像传感器213以XOY平面内的第一轴线L1、第二轴线L2进行翻转运动,第二防抖组件220和防抖机构214相配合可以实现摄像模组200的五轴防抖功能,摄像模组200可以实现多种抖动场景下的防抖补偿,摄像模组200的适应性更优。
并且,本申请实施例的摄像模组200,第二防抖组件220带动整个第一防抖组件210翻转,第二防抖组件220不需要受限于第一防抖组件210内部的空间,第二防抖组件220可以设置更大的行程,第二防抖组件220可以带动镜头212和图像传感器213实现大角度的翻转防抖补偿,第二防抖组件220可以大幅度改善摄像模组200在抖动状态下的图像质量,提高摄像模组200的拍照体验;而且, 第二防抖组件220同时带动镜头212和图像传感器213翻转,镜头212和图像传感器213之间依然可以保持平行而不发生相对偏转,在防抖补偿的过程中,图像传感器213可以清晰地采集穿过的镜头212的光线,而使得图像传感器213形成的图像不易模糊、图像更清晰。
其中,请结合图4并请参考图5至图8,图5为本申请实施例提供的第二防抖组件220的一种结构示意图,图6为图5所示的第二防抖组件220的一种爆炸结构示意图,图7为图5所示的第二防抖组件220的一种剖面示意图,图8为图5所示的第二防抖组件220的一种局部剖面示意图。第二防抖组件220包括定位座221、第一驱动机构222、第二驱动机构223和顶盖224。
定位座221可以承载第一驱动机构222和第二驱动机构223,定位座221可以形成整个摄像模组200的底座而固定连接在电子设备10的壳体100内,例如定位座221可以与电子设备10的中框110、后壳120等结构连接。顶盖224可以在第一方向H1上与定位座221上下层叠设置,顶盖224可以覆盖在定位座221上方,以遮挡定位座221的内部结构。定位座221上可以设有一个或多个滑槽2211。
第一驱动机构222可与第一防抖组件210直接或间接连接,例如,第一驱动机构222可以与第一防抖组件210的外壳211连接。第一驱动机构222可以包括滚动结构2221,滚动结构2221被限位于滑槽2211内,滑槽2211可以对滚动结构2221的运动轨迹进行限位。当滚动结构2221在滑槽2211内运动时,滚动结构2221可以按照预定的运动轨迹运动,使得第一驱动机构222可以带动第一防抖组件210运动。
可以理解的是,如图5至图8所示,第一驱动机构222还可以包括支架2222,该支架2222可以包括多个突出部,滚动结构2221的滚珠的一端可以连接于突出部、另一端限位于滑槽2211内。该支架2222可以是滚珠悬架结构。当然,第一驱动机构222也可以不设置支架2222,例如,滚动结构2221可以直接与第一防抖组件210的外壳211连接,而实现滚动结构2221带动第一防抖组件210运动。本申请实施例对第一驱动机构222的具体结构不进行限定。
第二驱动机构223可以与第一驱动机构222直接或间接连接。第二驱动机构223也可以与第一防抖组件210直接或间接连接,例如,第二驱动机构223可以直接与第一防抖组件210的外壳211连接,或者第二驱动机构223可以通过第一驱动机构222间接与第一防抖组件210连接。从而,第一防抖组件210、第一驱动机构222和第二驱动机构223可以相互连接形成整体。第二驱动机构223可以 向第一驱动机构222提供驱动力,第一驱动机构222可以在该驱动力的作用下运动。第二驱动机构223可以驱动第一驱动机构222运动并使第一驱动机构222可以基于滚动结构2221的滚动操作而带动第一防抖组件210实现围绕垂直于镜头212的光轴方向翻转。
示例性的,如图5所示,垂直于镜头212的光轴方向的XOY平面内可以包括第一轴线L1和第二轴线L2,该第一轴线L1、第二轴线L2可以是XOY平面的两条对角线。第二驱动机构223和第一驱动机构222相互配合使得第一驱动机构222既可以带动第一防抖组件210围绕第一轴线L1顺时针或逆时针翻转,也可以围绕第二轴线L2顺时针或逆时针翻转。
可以理解的是,第一轴线L1、第二轴线L2并不局限于是XOY平面的对角线,例如还可以但不限于是XOY平面内的平行于X轴、Y轴的轴线,第一驱动机构222还可以带动第一防抖组件210沿XOY平面内其他的轴线翻转。
可以理解的是,第二驱动机构223可以但不限于采用燃料驱动、电机驱动、磁力驱动、新能源驱动等驱动方式为第一驱动机构222提供驱动力。本申请实施例对第二驱动机构223的具体结构不进行限定。
本申请实施例的第二防抖组件220,第二驱动机构223为第一驱动机构222提供驱动力,第一驱动机构222的滚动结构2221在该驱动力的作用下可以沿定位座221的滑槽2211滚动,第二防抖组件220可以驱动第一防抖组件210围绕垂直于镜头212的光轴方向翻转,一方面,第二防抖组件220可以对摄像模组200的翻转抖动进行抖动补偿,从而提高摄像模组200的图像质量;另一方面,滚动结构2221在滑槽2211内的滚动运动更顺畅,第一驱动机构222带动第一防抖组件210的翻转运动更顺畅,从而第二防抖组件220的防抖效果可控,摄像模组200可以精准地控制第二防抖组件220的运动。
其中,定位座221上可以设有至少两个滑槽2211。至少两个滑槽2211可以位于垂直于镜头212的光轴方向的一条轴线上例如第一轴线L1上,至少两个滑槽2211可以关于该第一轴线L1的中心点O(也可以是第一轴线L1与镜头212的光轴的交点)对称设置。此时,滚动结构2221可以包括至少两个滚动子结构,以使得每一滚动子结构可以限位于一个滑槽2211内。当滚动结构2221在滑槽2211内运动时,对称设置的两个滚动子结构可以对称地对第一防抖组件210施加作用力,相较于仅只有一个滚动子结构施加作用力的方案而言,本申请实施例的第一驱动机构222可以提高驱动第一防抖组件210翻转的稳定性。
可以理解的是,定位座221上还可以设有至少四个滑槽2211,至少两个滑槽2211可以位于垂直于镜头212的光轴方向的一条轴线上例如第一轴线L1上并关于第一轴线L1的中心点O对称设置,至少另外两个滑槽2211可以位于垂直于镜头212的光轴方向的另一条轴线上例如第二轴线L2上并关于第二轴线L2的中心点O对称设置,该第一轴线L1和第二轴线L2可以是XOY平面内的两条交叉的对角线。相应的,滚动结构2221可以至少包括四个滚动子结构,以使得每一滚动子结构可以限位于一个滑槽2211内。此时,第一驱动机构222通过至少四个滑槽2211和至少四个滚动子结构,可以驱动第一防抖组件210沿第一轴线L1翻转或沿第二轴线L2翻转,第二防抖组件220可以实现摄像模组200的双轴线翻转。
可以理解的是,定位座221上的滑槽2211以及第一驱动机构222的滚动结构2221还可以不限于上述举例,例如,多个滑槽2211还可以关于垂直于镜头212的光轴方向的其他的一条或多条轴线对称设置,在多个滑槽2211和多个滚动结构2221的配合下,第一驱动机构222可以带动第一防抖组件210沿XOY平面内的更多条轴线翻转,以实现摄像模组200的多轴线翻转。本申请实施例对滑槽2211及滚动结构2221的具体结构不进行限定。
其中,滑槽2211可以包括球形槽部分。球形槽的槽壁可与滚动结构2221的外表面相适应,以使得滑槽2211可以更好地对滚动结构2221的运动轨迹进行限位。
球形槽可以是通过球刀等工艺形成的槽壁为球形面的凹槽,球形槽的槽壁上的任意一点到球心的距离可以相等,该球形槽的槽壁可以形成部分球形面,以便于支架2222可以带动滚珠结构插入球形槽内。
可以理解的是,滑槽2211可以为关于垂直于镜头212的光轴方向的轴线对称的轴对称结构,例如球形槽可以为关于第一轴线L1的轴对称结构,也可以为关于第二轴线L2对称的轴对称结构。当滚动结构2221在球形槽内运动时,滚动结构2221既可以关于第一轴线L1或第二轴线L2沿球形槽顺时针旋转,也可以关于第一轴线L1或第二轴线L2沿球形槽逆时针旋转。从而通过滚动结构2221和球形槽的配合,第一驱动机构222可以带动第一防抖组件210顺时针或逆时针翻转相同的角度。
可以理解的是,滑槽2211也可以不为轴对称结构,此时,第一驱动机构222可以带动第一防抖组件210顺时针或逆时针翻转不同的角度。本申请实施例对 滑槽2211的具体结构不进行限定。
考虑到第二驱动机构223提供的驱动力的方向问题,该滑槽2211除了包括球形槽外,还可以包括与球形槽连通的其他槽体段,例如但不限于直槽段。当第二驱动机构223为第一驱动机构222提供驱动力时,滚动结构2221可以先沿直槽段运动一定距离后进入球形槽内,然后带动第一防抖组件210翻转运动。可以理解的是,该直槽段的尺寸可以较小,以使得第一防抖组件210沿直槽段的运动可以忽略。
需要说明的是,本申请实施例的滑槽2211可以单独包括球形槽,也可以包括上述球形槽和其他槽体段。本申请实施例对滑槽2211的具体结构不进行限定,凡是可对滚动结构2221的运动轨迹进行限位使得第一防抖组件210可以围绕垂直于镜头212的光轴方向翻转的滑槽2211结构均在本申请实施例的保护范围内。
请再次参考图5至图8,第二驱动机构223可以包括第一磁性件2231、第一承载件2232和第一导电件2233。
第一磁性件2231可以但不限定是永磁铁、电磁铁等可以产生磁场的磁性元件。第一磁性件2231可以产生第一磁场。第一磁性件2231可以设置在第一承载件2232上。
第一承载件2232可以位于第一磁场内,第一承载件2232可以是磁石载架。例如,第一承载件2232上可以设有容置槽,第一磁性件2231可以位于容置槽内。第一承载件2232还可以直接或间接与第一驱动机构222连,以使得第一磁性件2231、第一承载件2232和第一驱动机构222可以同步运动。
第一导电件2233可以在垂直于镜头212的光轴方向上与第一磁性件2231相对设置,第一导电件2233在通电后可以与第一磁性件2231产生的磁场相互作用,第一导电件2233在第一磁性件2231的作用下可以产生第一作用力,第一作用力可使第一承载件2232沿镜头212的光轴方向运动,以带动第一驱动机构222沿镜头212的光轴方向运动。
可以理解的是,第一磁性件2231可以包括一个或多个子磁性件。例如,第一磁性件2231可以包括四个子磁性件,四个子磁性件可以均匀间隔地围绕镜头212的光轴方向分布在第一承载件2232的周围。相应的,第一导电件2233也可以对应包括多个子导电件,以使得每一子导电件可以与有一个子磁性件相对设置。本申请实施例对第一磁性件2231和第一承载件2232的具体结构不进行限定。
可以理解的是,该第一导电件2233可以但不限于是柔性电路板结构的线圈, 外部电源可以通过柔性电路板结构为线圈通电。
本申请实施例的第二驱动机构223通过第一磁性件2231和第一导电件2233相互配合可以使第一驱动机构222沿竖直方向上下运动,第二驱动机构223的结构简单、占据的空间较小,可以实现摄像模组200的小型化设计。
其中,请参考图9,图9为图5所示的第二防抖组件的一种电连接示意图。摄像模组200还可以包括控制芯片例如第二控制芯片240,第二控制芯片240可以与第二防抖组件220电连接,例如第二控制芯片240可以但不限于设置底座、线圈的柔性电路板结构上。第二控制芯片240可以实时监控第二防抖组件220的运动参数,第二控制芯片240可以根据监控第二防抖组件220的运动参数与摄像模组200的抖动参数来实时控制第二防抖组件220的摆动,以便于第二防抖组件220的抖动补偿可以更精准,实现第二防抖组件220的闭环控制。
本申请实施例的摄像模组200,通过第二控制芯片240对第二防抖组件220实现闭环控制,可以使得第二防抖组件220的抖动补偿更精准。
其中,请再次参考图1至图4,本申请实施例的防抖机构214可以但不限于包括形状记忆合金式马达、悬丝马达、弹片马达、压电马达、滚珠马达等结构,下面以防抖机构214为形状记忆合金式马达为例进行说明。
请结合图1至图4并请参考图10,图10为本申请实施例提供的防抖机构214的一种结构示意图。防抖机构214包括底板2141、第一载体2142、第二载体2143和多个形变件2144。
图像传感器213可以设置于底板2141上,底板2141可以与第一载体2142连接,第一载体2142可以承载图像传感器213和底板2141。第二载体2143可以在镜头212的光轴方向上与第一载体2142相对设置,第二载体2143和第一载体2142可以沿第一方向H1上下层叠设置。每一形变件2144的一端可以连接第一载体2142、另一端可以连接第二载体2143,每一形变件2144在通电状态度下可以发生形变以带动图像传感器213运动,例如带动图像传感器213沿垂直于镜头212的光轴方向移动或围绕镜头212的光轴方向转动,图像传感器213可以在防抖机构214的作用下实现X轴、Y轴或XOY平面内转动。
第一载体2142可以但不限于是下弹片结构,第一载体2142可以包括首尾相连的第一部21421、第二部21422、第三部21423和第四部21424,第一部21421和第三部21423相对设置,第二部21422和第四部21424相对设置。第一部21421和第二部21422之间可以形成第一端部21425和第二端部21426,第三部21423 和第四部21424之间可以形成第三端部21427和第四端部21428。第二载体2143可以但不限于是上弹片结构,第二载体2143可以包括首尾相连的第五部21431、第六部21432、第七部21433和第八部21434,第五部21431和第七部21433相对设置,第六部21432和第八部21434相对设置。第五部21431和第八部21434之间可以形成第五端部21435和第六端部21436,第六部21432和第七部21433之间可以形成第七端部21437和第八端部21438。从而,第一端部21425、第二端部21426与第三端部21427和第四端部21428可以位于XOY平面的一条对角线L3上;第五端部21435、第六端部21436与第七端部21437和第八端部21438可以位于XOY平面的另一条对角线L4上。
多个形变件2144可以包括第一形变件21441、第二形变件21442、第三形变件21443和第四形变件21444。第一形变件21441可以对应第一部21421和第五部21431设置,第二形变件21442可以对应第二部21422和第六部21432设置,第三形变件21443可以对应第三部21423和第七部21433设置,第四形变件21444可以对应第四部21424和第八部21434设置。第一形变件21441的一端可与第一端部21425连接、另一端可与第五端部21435连接;第二形变件21442的一端可与第二端部21426连接、另一端可与第七端部21437连接;第三形变件21443的一端可与第三端部21427连接、另一端部可与第八端部21438连接;第四形变件21444的一端可与第四端部21428连接、另一端可与第六端部21436连接。在一些实施例中,第一形变件21441、第二形变件21442、第三形变件21443以及第四形变件21444的材料为形状记忆合金(shape memory alloys,SMA)制作形成,形状记忆合金在通电状态下可以使得形状记忆合金被加热并使其变形,变形时可以使得形变件2144的长度发生变化,从而带动与其连接的第一载体2142或第二载体2143移动。
可以理解的是,第一端部21425至第四端部21428可以是固定不变的端部而第五端部21435至第八端部21438可以是在外力作用下产生形变的端部;或者,第五端部21435至第八端部21438可以是固定不变的端部而第一端部21425至第四端部21428可以是在外力作用下产生形变的端部。从而,每一形变件2144的一端可以连接固定不动的端部而另一端连接可形变的端部。当然,第一至第八端部21438也可以均是在外力作用下产生形变的端部,此时没有形变件2144的两端均可以连接可形变的端部。本申请实施例对第一至第八端部21438的具体特性不进行限定。
可以理解的是,当对一个或多个形变件2144进行通电、或者对一个或多个形变件2144传输不同大小的电流时,一个或多个形变件2144的长度可以发生变化而使得与多个形变件2144连接的第一载体2142或第二载体2143平移,以使得图像传感器213也可以平移。
示例性的,当第一载体2142上的端部为固定不变的端部而第二载体2143上的端部为可产生形变的端部时,若对第一形变件21441通电使其变长时(和/或对第三形变件21443通电使其变短,以下形变变化可以参考该状态而不再赘述),第一形变件21441可带动第一载体2142和图像传感器213沿Y轴方向向前平移;若对第三形变件21443通电使其变长时,第三形变件21443可带动第一载体2142和图像传感器213沿Y轴方向向后平移;若对第二形变件21442通电使其变长时,第一形变件21441可带动第一载体2142和图像传感器213沿X轴方向向右平移;若对第四形变件21444通电使其变长时,第四形变件21444可带动第一载体2142和图像传感器213沿X轴方向向左平移;若同时对第一形变件21441和第三形变件21443通电使其变长时,第一形变件21441可带动第一载体2142和图像传感器213沿对角线L3在XOY平面内顺时针转动;若同时对第一形变件21441和第三形变件21443通电使其变短时,第一形变件21441和第三形变件21443可带动第一载体2142和图像传感器213沿对角线L3在XOY平面内逆时针转动;若同时对第二形变件21442和第四形变件21444通电使其变长时,第二形变件21442和第四形变件21444可带动第一载体2142和图像传感器213沿对角线L4在XOY平面内顺时针转动;若同时对第二形变件21442和第四形变件21444通电使其变短时,第二形变件21442和第四形变件21444可带动第一载体2142和图像传感器213沿对角线L4在XOY平面内逆时针转动。
可以理解的是,防抖机构214还可以包括一个或多个支撑件2146,每一支撑件2146可以位于第一载体2142和第二载体2143之间,每一支撑件2146可以设置于第一载体2142或第二载体2143上,每一支撑件2146可以将第一载体2142和第二载体2143间隔,以使得第一载体2142和第二载体2143之间具有一定的间隙,一方面,多个形变件2144发生形变时不易与第一载体2142和第二载体2143接触,可以避免第一载体2142和第二载体2143对形变件2144的形变干扰;另一方面,当第一载体2142和第二载体2143上设有金属结构时,也可以防止第一载体2142和第二载体2143接触而短路。
本申请实施例的防抖机构214通过SMA马达实现图像传感器213的水平移 动及水平面转动,相较于其他的结构而言,防抖机构214通过形变件2144的形变特性实现图像传感器213的驱动,防抖机构214不需要设置磁力驱动、电机驱动等结构,防抖机构214的结构更简单,占用的空间更小。其中,请再次参考图1至图4,防抖机构214还可以包括柔性电路板模组2145,该柔性电路板模组2145可以围设且连接于第一载体2142的边缘,柔性电路板模组2145可与图像传感器213电连接以为其供电。当图像传感器213在多个形变件2144的带动下运动时,柔性电路板的形态也可以产生变化,以适应图像传感器213的运动。并且,柔性电路板模组2145可与第一载体2142和底板2141形成吊篮结构,该吊篮结构可使底板2141与后盖2112之间可以存在0.1和0.5毫米的运动空间,以便于防抖机构214运动。
其中,请参考图11,图11为图10所示的防抖机构的一种电连接示意图。摄像模组200还可以包括控制芯片例如第一控制芯片230,该第一控制芯片230可以但不限于设置在柔性电路板模组2145上,第一控制芯片230可以与防抖机构214电连接,第一控制芯片230可以监控防抖机构214的运动参数,第一控制芯片230可以根据监控防抖机构214的运动参数与摄像模组200的抖动参数来实时控制防抖机构214的摆动,以便于防抖机构214的抖动补偿更精准,实现防抖机构214的闭环控制。
其中,本申请实施例的第一防抖组件210还可以包括对焦机构215。请结合图1至图4并请参考图12,图12为本申请实施例提供的对焦机构215的一种结构示意图。对焦机构215可以与镜头212连接,对焦机构215可以驱动镜头212沿镜头212的光轴方向移动。
对焦机构215可以位于外壳211形成的容置空间内,对焦机构215可以在镜头212的光轴方向与防抖机构214相对设置,对焦机构215和防抖机构214可以沿第一方向H1层叠设置。在一些实施例中,对焦机构215可以包括第二承载件2151和驱动件,该第二承载件2151可以承载镜头212,第二承载件2151可以但不限于是镜头212载体。驱动件可以包括弹性结构2152,该弹性结构2152与第一防抖组件210的外壳211连接,弹性结构2152可以沿镜头212的光轴方向设置在第二承载件2151上并与第二承载件2151连接,弹性结构2152可以被配置为采用弹性作用力能够使得第二承载件2151能沿镜头212的光轴方向移动,从而弹性结构2152可使第二承载件2151和镜头212沿第一方向H1移动,以实现镜头212的对焦操作。
可以理解的是,弹性结构2152可以包括上簧片21521和下簧片21522,上簧片21521的一部分可以与第二承载件2151连接、另一部分可以与第一防抖机构214的外壳211连接;下簧片21522的一部分可以与第二承载件2151连接、另一部分可以与第一防抖机构214的外壳211连接。当弹性结构2152驱动第二承载件2151沿第一方向H1上下移动时,上簧片21521和下簧片21522与外壳211连接的部分可以对第二承载件2151施加一牵引力,以使得第二承载件2151可以稳定的停留在某一位置处,从而实现第二承载件2151和镜头212的精准对焦。
如图12所示,对焦机构215还可以包括第二磁性件2153和第二导电件2154。第二磁性件2153可以产生第二磁场,第二承载件2151可以位于第二磁场内。第二导电件2154可在垂直于镜头212的光轴方向上与第一磁性件2231相对设置,第二导电件2154在第二磁性件2153的作用下可以产生第二作用力,第二作用力和弹性结构2152产生的弹性作用力可以共同使第二承载件2151沿镜头212的光轴方向移动。
可以理解的是,第二磁性件2153可以但不限定是永磁铁、电磁铁等可以产生磁场的磁性元件。第二磁性件2153可以设置在第二承载件2151上。第二导电件2154可以但不限于是线圈结构,外部电源可以为线圈通电,以使得第二导电件2154可以在第二磁性件2153的作用下产生驱动第二承载件2151沿第一方向H1上下移动的作用力。
可以理解的是,弹性结构2152还可以与第二导电件2154电连接,例如下簧片21522可以与第二导电件2154电连接,外部电源可以通过下簧片21522为第二导电件2154供电。在一些实施例中,外部电源的电能可以通过柔性电路板模组2145与下簧片21522电连接并传输电能。
可以理解的是,第二磁性件2153可以包括一个或多个子磁性件。例如,第二磁性件2153可以包括四个子磁性件,四个子磁性件可以均匀间隔地围绕镜头212的光轴方向分布在第二承载件2151的周围。相应的,第二导电件2154也可以对应包括多个子导电件,以使得每一子导电件可以与有一个子磁性件相对设置。本申请实施例对第二磁性件2153和第二承载件2151的具体结构不进行限定。
本申请实施例的对焦机构215通过第二磁性件2153和第二导电件2154相互配合可以使第二承载件2151和镜头212沿竖直方向上下运动,对焦机构215结构简单、占据的空间较小,可以实现摄像模组200的小型化设计。
需要说明的是,本申请实施例的对焦机构215、防抖机构214和第二防抖组 件220的具体结构并不局限于上述实施例的说明。对焦机构215、防抖机构214、第二防抖组件220的结构可以相互借鉴并相互组合,以实现对焦机构215、防抖机构214、第二防抖组件220的不同运动形式。例如,防抖机构214、第二防抖组件220还可以如对焦机构215一样设置弹性结构2152、第二磁性件2153、第二导电件2154等部件,以实现沿镜头212的光轴光线上下运动。再例如,防抖机构214、对焦机构215还可以如第二防抖组件220一样设置滑槽2211、滚动结构2221等部件,以实现围绕垂直于镜头212的光轴方向翻转。又例如,对焦机构215和第二防抖组件220还可以如防抖机构214一样设置形状记忆合金式马达而实现沿垂直于镜头212的光轴方向移动或围绕镜头212的光轴方向转动。本申请实施例对对焦机构215、防抖机构214和第二防抖组件220的具体结构不进行限定。
需要说明的是,在本申请的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
以上对本申请实施例提供的摄像模组及电子设备进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请。同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种摄像模组,包括:
    第一防抖组件,包括镜头、图像传感器和防抖机构,所述图像传感器在所述镜头的光轴方向上与所述镜头相对设置,所述防抖机构与所述图像传感器连接并用于驱动所述图像传感器运动;及
    第二防抖组件,与所述第一防抖组件连接,所述第二防抖组件用于驱动所述第一防抖组件运动并使所述镜头和所述图像传感器运动。
  2. 根据权利要求1所述的摄像模组,其中,所述防抖机构用于驱动所述图像传感器沿垂直于所述镜头的光轴方向移动或围绕所述镜头的光轴方向转动;和/或,
    所述第二防抖组件用于驱动所述第一防抖组件运动并使所述镜头和所述图像传感器围绕垂直于所述镜头的光轴方向翻转。
  3. 根据权利要求1所述的摄像模组,其中,所述第二防抖组件包括:
    定位座,所述定位座上设有滑槽;
    第一驱动机构,与所述第一防抖组件连接,所述第一驱动机构包括滚动结构,所述滚动结构被限位于所述滑槽内;及
    第二驱动机构,与所述第一驱动机构连接,所述第二驱动机构用于驱动所述第一驱动机构运动、并使所述第一驱动机构基于所述滚动结构的滚动操作而带动所述第一防抖组件围绕垂直于所述镜头的光轴方向翻转。
  4. 根据权利要求3所述的摄像模组,其中,所述滑槽为关于垂直于所述镜头的光轴方向的轴线对称的轴对称结构。
  5. 根据权利要求3所述的摄像模组,其中,所述定位座上设有至少两个滑槽,至少两个所述滑槽位于垂直于所述镜头的光轴方向的轴线上,至少两个所述滑槽关于所述轴线的中心点对称设置。
  6. 根据权利要求3所述的摄像模组,其中,所述第二驱动机构包括:
    第一磁性件,用于产生第一磁场;
    第一承载件,位于所述第一磁场内,所述第一承载件与所述第一驱动机构连接;及
    第一导电件,在垂直于所述镜头的光轴方向上与所述第一磁性件相对设置,所述第一导电件在所述第一磁性件的作用下用于产生第一作用力,所述第一作用力用于使所述第一承载件带动所述第一驱动机构沿所述镜头的光轴方向运 动。
  7. 根据权利要求1所述的摄像模组,其中,还包括第一控制芯片,所述第一控制芯片与所述防抖机构电连接,所述第一控制芯片用于监控所述防抖机构的运动参数。
  8. 根据权利要求1所述的摄像模组,其中,还包括第二控制芯片,所述第二控制芯片与所述第二防抖组件电连接,所述第二控制芯片用于监控所述第二防抖组件的运动参数。
  9. 根据权利要求1所述的摄像模组,其中,所述防抖机构包括形状记忆合金式马达。
  10. 根据权利要求9所述的摄像模组,其中,所述防抖机构包括:
    第一载体,用于承载所述图像传感器;
    第二载体,在所述镜头的光轴方向上与所述第一载体相对设置;及
    多个形变件,每一所述形变件的一端连接所述第一载体、另一端连接所述第二载体,所述多个形变件在通电状态下可发生形变以带动所述图像传感器沿垂直于所述镜头的光轴方向移动或围绕所述镜头的光轴方向转动。
  11. 根据权利要求10所述的摄像模组,其中,所述防抖机构还包括柔性电路板模组,所述柔性电路板模组与所述图像传感器电连接。
  12. 根据权利要求10所述的摄像模组,其中,所述防抖机构还包括一个或多个支撑件,所述支撑件位于所述第一载体和所述第二载体之间,所述支撑件用于间隔所述第一载体和所述第二载体。
  13. 根据权利要求1所述的摄像模组,其中,所述第一防抖组件还包括:
    对焦机构,与所述镜头连接,所述对焦机构用于驱动所述镜头移动。
  14. 根据权利要求13所述的摄像模组,其中,所述第一防抖组件还包括外壳,所述对焦机构包括:
    第二承载件,用于承载所述镜头;及
    弹性结构,设置于所述第二承载件上并与所述外壳连接,所述弹性结构被配置为采用弹性作用力使得所述第二承载件带动所述镜头沿所述镜头的光轴方向移动。
  15. 根据权利要求14所述的摄像模组,其中,所述对焦机构还包括:
    第二磁性件,用于产生第二磁场,所述第二承载件位于所述第二磁场内;
    第二导电件,在垂直于所述镜头的光轴方向上与所述第二磁性件相对设置, 所述第二导电件在所述第二磁性件的作用下用于产生第二作用力,所述第二作用力和所述弹性作用力共同用于使所述第二承载件带动所述镜头沿所述镜头的光轴方向移动。
  16. 一种电子设备,包括壳体和摄像模组,所述摄像模组设置在壳体上;所述摄像模组包括:
    第一防抖组件,包括镜头、图像传感器和防抖机构,所述图像传感器在所述镜头的光轴方向上与所述镜头相对设置,所述防抖机构与所述图像传感器连接并用于驱动所述图像传感器运动;及
    第二防抖组件,与所述第一防抖组件连接,所述第二防抖组件用于驱动所述第一防抖组件运动并使所述镜头和所述图像传感器运动。
  17. 根据权利要求16所述的电子设备,其中,所述防抖机构用于驱动所述图像传感器沿垂直于所述镜头的光轴方向移动或围绕所述镜头的光轴方向转动;和/或,
    所述第二防抖组件用于驱动所述第一防抖组件运动并使所述镜头和所述图像传感器围绕垂直于所述镜头的光轴方向翻转。
  18. 根据权利要求16所述的电子设备,其中,所述第二防抖组件包括:
    定位座,所述定位座上设有滑槽;
    第一驱动机构,与所述第一防抖组件连接,所述第一驱动机构包括滚动结构,所述滚动结构被限位于所述滑槽内;及
    第二驱动机构,与所述第一驱动机构连接,所述第二驱动机构用于驱动所述第一驱动机构运动、并使所述第一驱动机构基于所述滚动结构的滚动操作而带动所述第一防抖组件围绕垂直于所述镜头的光轴方向翻转。
  19. 根据权利要求16所述的电子设备,其中,所述防抖机构包括:
    第一载体,用于承载所述图像传感器;
    第二载体,在所述镜头的光轴方向上与所述第一载体相对设置;及
    多个形变件,每一所述形变件的一端连接所述第一载体、另一端连接所述第二载体,所述多个形变件在通电状态下可发生形变以带动所述图像传感器沿垂直于所述镜头的光轴方向移动或围绕所述镜头的光轴方向转动。
  20. 根据权利要求16所述的电子设备,其中,所述第一防抖组件还包括:
    对焦机构,与所述镜头连接,所述对焦机构用于驱动所述镜头移动。
PCT/CN2022/137599 2022-01-25 2022-12-08 摄像模组及电子设备 WO2023142712A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210089638.1A CN114513606B (zh) 2022-01-25 2022-01-25 摄像模组及电子设备
CN202210089638.1 2022-01-25

Publications (1)

Publication Number Publication Date
WO2023142712A1 true WO2023142712A1 (zh) 2023-08-03

Family

ID=81549951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137599 WO2023142712A1 (zh) 2022-01-25 2022-12-08 摄像模组及电子设备

Country Status (2)

Country Link
CN (1) CN114513606B (zh)
WO (1) WO2023142712A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114513606B (zh) * 2022-01-25 2023-10-24 Oppo广东移动通信有限公司 摄像模组及电子设备
CN115396599A (zh) * 2022-08-24 2022-11-25 Oppo广东移动通信有限公司 音圈马达、摄像头模组及电子设备
CN117714824A (zh) * 2022-08-24 2024-03-15 华为技术有限公司 一种电子设备、摄像模块及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006295553A (ja) * 2005-04-11 2006-10-26 Tamron Co Ltd 像振れ防止機能を有する撮像装置
CN107340667A (zh) * 2017-08-25 2017-11-10 高瞻创新科技有限公司 一种整合相机模组的防抖微型云台
CN112702534A (zh) * 2021-01-19 2021-04-23 辽宁中蓝光电科技有限公司 一种微型摄像头三轴shift防抖云台
CN112788217A (zh) * 2020-12-31 2021-05-11 南昌欧菲光电技术有限公司 光学防抖驱动器、摄像模组及电子设备
CN113489886A (zh) * 2021-08-03 2021-10-08 Oppo广东移动通信有限公司 摄像模组以及电子设备
CN113691701A (zh) * 2021-08-03 2021-11-23 Oppo广东移动通信有限公司 摄像头模组及电子设备
CN114513606A (zh) * 2022-01-25 2022-05-17 Oppo广东移动通信有限公司 摄像模组及电子设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9164292B2 (en) * 2013-06-14 2015-10-20 Ian Brooke Track and bogie based optically centered gimbal
CN214228341U (zh) * 2020-12-11 2021-09-17 格科微电子(上海)有限公司 光学防抖摄像头模组
CN112965318B (zh) * 2021-03-02 2022-07-15 维沃移动通信有限公司 基于图像传感器的防抖模组、镜头模组和电子设备
CN112839158A (zh) * 2021-03-09 2021-05-25 南昌欧菲光电技术有限公司 摄像模组和终端
CN113014821A (zh) * 2021-03-22 2021-06-22 维沃移动通信有限公司 摄像模组、电子设备及摄像模组的抖动补偿方法
CN113079303B (zh) * 2021-04-23 2022-09-09 维沃移动通信有限公司 摄像模组及电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006295553A (ja) * 2005-04-11 2006-10-26 Tamron Co Ltd 像振れ防止機能を有する撮像装置
CN107340667A (zh) * 2017-08-25 2017-11-10 高瞻创新科技有限公司 一种整合相机模组的防抖微型云台
CN112788217A (zh) * 2020-12-31 2021-05-11 南昌欧菲光电技术有限公司 光学防抖驱动器、摄像模组及电子设备
CN112702534A (zh) * 2021-01-19 2021-04-23 辽宁中蓝光电科技有限公司 一种微型摄像头三轴shift防抖云台
CN113489886A (zh) * 2021-08-03 2021-10-08 Oppo广东移动通信有限公司 摄像模组以及电子设备
CN113691701A (zh) * 2021-08-03 2021-11-23 Oppo广东移动通信有限公司 摄像头模组及电子设备
CN114513606A (zh) * 2022-01-25 2022-05-17 Oppo广东移动通信有限公司 摄像模组及电子设备

Also Published As

Publication number Publication date
CN114513606B (zh) 2023-10-24
CN114513606A (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
WO2023142712A1 (zh) 摄像模组及电子设备
CN113489886B (zh) 摄像模组以及电子设备
WO2023011173A1 (zh) 防抖机构、拍摄装置以及电子设备
US20220191359A1 (en) Camera device
WO2023010989A1 (zh) 摄像头模组及电子设备
WO2023011119A1 (zh) 光学防抖方法、系统、计算机可读存储介质及电子设备
WO2023142721A1 (zh) 防抖组件、摄像模组及电子设备
CN112788245B (zh) 摄像模组及电子设备
KR102319601B1 (ko) 카메라 모듈
EP4102267A1 (en) Prism actuator
WO2021258999A1 (zh) 摄像模组及电子设备
WO2024082846A1 (zh) 防抖组件、摄像模组及电子设备
WO2023124783A1 (zh) 摄像组件和电子设备
CN215344785U (zh) 防抖机构、拍摄装置以及电子设备
CN115695971A (zh) 电路板、摄像模组及电子设备
TW202244589A (zh) 感測器驅動裝置
CN114222049A (zh) 摄像头机构及电子设备
CN115552883A (zh) 照相机模块
CN218387701U (zh) 防抖组件、摄像模组及电子设备
CN113542579A (zh) 图像传感器防抖组件、摄像装置及电子设备
CN215344794U (zh) 拍摄装置以及电子设备
CN218514442U (zh) 摄像模组及电子设备
CN115225782B (zh) 摄像头模组和电子设备
CN217639710U (zh) 一种潜望式镜头驱动装置、摄像装置和移动设备
CN117979141A (zh) 摄像组件、摄像模组及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923502

Country of ref document: EP

Kind code of ref document: A1