WO2023010989A1 - 摄像头模组及电子设备 - Google Patents

摄像头模组及电子设备 Download PDF

Info

Publication number
WO2023010989A1
WO2023010989A1 PCT/CN2022/096960 CN2022096960W WO2023010989A1 WO 2023010989 A1 WO2023010989 A1 WO 2023010989A1 CN 2022096960 W CN2022096960 W CN 2022096960W WO 2023010989 A1 WO2023010989 A1 WO 2023010989A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera module
lens
optical axis
magnetic
shake
Prior art date
Application number
PCT/CN2022/096960
Other languages
English (en)
French (fr)
Inventor
王伟丞
杨松
范宇
秦佳
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023010989A1 publication Critical patent/WO2023010989A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0264Details of the structure or mounting of specific components for a camera module assembly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position

Definitions

  • the present application relates to the field of electronic technology, in particular to a camera module and electronic equipment.
  • OIS optical image stabilization, optical image stabilization
  • Embodiments of the present application provide a camera module and electronic equipment, which can improve the anti-shake function of the camera module.
  • An embodiment of the present application provides a camera module, which includes:
  • the photosensitive element can convert the acquired light signal into an electrical signal
  • the carrying component is used to carry the lens
  • the first coil is arranged on the side of the carrying assembly away from the photosensitive element, and the first coil can drive the carrying assembly to move in a direction perpendicular to the optical axis of the lens;
  • An anti-shake module is connected with the photosensitive element, and the anti-shake module is used to drive the photosensitive element to move in a plane perpendicular to the optical axis direction of the lens.
  • the embodiment of the present application also provides a camera module, which includes:
  • the photosensitive element can convert the acquired light signal into an electrical signal
  • the first coil is arranged on the side of the carrying assembly away from the photosensitive element, and the first coil can drive the carrying assembly to move in a direction perpendicular to the optical axis of the lens.
  • An embodiment of the present application provides an electronic device, which includes a casing and the camera module as described in the embodiments of the above application, and the camera module is arranged on the casing.
  • FIG. 1 is a schematic structural diagram of an electronic device provided in an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a camera module in the electronic device shown in FIG. 1;
  • Fig. 3 is a structural schematic diagram of the anti-shake mechanism in the camera module shown in Fig. 2;
  • Fig. 4 is a schematic diagram of the explosion structure of the anti-shake mechanism shown in Fig. 2;
  • Fig. 5 is a schematic structural view of the circuit board in the camera module shown in Fig. 4;
  • Fig. 6 is a schematic diagram of the first partial structure of the anti-shake mechanism shown in Fig. 3;
  • Fig. 7 is a schematic structural diagram of the first carrier in the anti-shake mechanism shown in Fig. 4;
  • Fig. 8 is a schematic diagram of the second partial structure of the anti-shake mechanism shown in Fig. 3;
  • Fig. 9 is a schematic diagram of a third partial structure of the anti-shake mechanism shown in Fig. 3;
  • FIG. 10 is a schematic diagram of a fourth partial structure of the anti-shake mechanism shown in FIG. 3;
  • Fig. 11 is a schematic diagram of a fifth partial structure of the anti-shake mechanism shown in Fig. 3;
  • Fig. 12 is a schematic diagram of a sixth partial structure of the anti-shake mechanism shown in Fig. 3;
  • Fig. 13 is a schematic diagram of the cooperative structure of the guide member and the first ball in the anti-shake mechanism shown in Fig. 4;
  • Fig. 14 is a structural schematic diagram of the guide member in the anti-shake mechanism shown in Fig. 4;
  • Fig. 15 is a schematic structural view of the upper cover in the anti-shake mechanism shown in Fig. 4;
  • Fig. 16 is a schematic diagram of a partial explosion structure in the camera module shown in Fig. 2;
  • FIG. 17 is another structural schematic diagram of the camera module in the electronic device shown in FIG. 1;
  • FIG. 18 is a schematic cross-sectional view of the camera module shown in FIG. 17 in the AA direction;
  • FIG. 19 is a schematic cross-sectional view of the camera module shown in FIG. 17 in the direction of BB.
  • Electrode includes, but is not limited to, devices configured to be connected via wired lines and/or receive/send communication signals via wireless communication networks such as cellular networks and wireless local area networks.
  • Examples of mobile terminals include, but are not limited to, cellular telephones and conventional laptop and/or palm-type receivers or other electronic devices including radiotelephone transceivers.
  • a mobile phone is an electronic device equipped with a cellular communication module.
  • Embodiments of the present application provide a camera module and electronic equipment.
  • the technical solutions in the embodiments of the present application will be clearly and completely described below in conjunction with the drawings in the embodiments of the present application.
  • the described embodiments are only some of the embodiments of this application, not all of them. Based on the embodiments in this application, all other embodiments obtained by those skilled in the art without making creative efforts belong to the scope of protection of this application.
  • Fig. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application
  • Fig. 2 is a schematic structural diagram of a camera module in the electronic device shown in Fig. 1
  • the electronic device 1000 provided in the embodiment of the present application may specifically be a portable device such as a mobile phone, a tablet computer, a notebook computer, and a wearable device, and a mobile phone is taken as an example for description below.
  • an electronic device 1000 may include a casing 200 , a camera module 400 and a display screen 600 .
  • the display screen 600 is disposed on the housing 200 and can be used to display pictures.
  • the camera module 400 can be disposed on the housing 200 and can receive light from the external environment to capture pictures.
  • the camera module 400 may include an anti-shake mechanism 420 , a lens 440 , a photosensitive element 460 and an anti-shake module 480 .
  • the lens 440 is disposed on the anti-shake mechanism 420
  • the anti-shake mechanism 420 drives the lens 440 to move to realize the anti-shake function of the lens of the camera module 400 .
  • the photosensitive element 460 is disposed on one side of the anti-shake mechanism 420 and opposite to the lens 440 in an axial direction parallel to the anti-shake mechanism 420 .
  • the anti-shake module 480 and the anti-shake mechanism 420 are arranged on the same side of the photosensitive element 460, and the anti-shake module 480 is connected to the photosensitive element 460, and the anti-shake module 480 is used to drive the photosensitive element 460 in a direction perpendicular to the optical axis of the lens 440
  • the plane movement of the camera module 400 realizes the anti-shake function of the photosensitive element 460 .
  • the camera module 400 can be used to implement functions of the electronic device 1000 such as taking pictures, recording videos, unlocking by face recognition, and paying by scanning a code.
  • the camera module 400 may be a rear camera as shown in the figure, or a front camera, which is not limited in this embodiment.
  • the material of the lens 440 may be glass or plastic.
  • the lens 440 is mainly used to change the propagation path of the light and focus the light.
  • the lens 440 may include multiple groups of lenses, which will correct each other and filter light; when the light passes through the lens 440, the multiple groups of lenses filter stray light (such as infrared light) layer by layer, so as to increase the imaging effect of the camera module 400 .
  • the photosensitive element 460 may specifically be an image sensor such as a CCD (Charge Coupled Device, Charge Coupled Device), or an image sensor such as a CMOS (Complementary Metal Oxide Semiconductor, Complementary Metal Oxide Semiconductor).
  • the photosensitive element 460 can be arranged opposite to the lens 440 in the optical axis direction of the camera module 400 (that is, the optical axis direction of the lens 440, as shown by the dotted line in FIG. 2 ), and is mainly used to receive light collected by the lens 440. And transform the optical signal into an electrical signal, so as to realize the imaging requirement of the camera module 400 .
  • the anti-shake mechanism 420 is mainly used to improve the imaging effect of the camera module 400 caused by the shaking of the user during use, so that the imaging effect of the photosensitive element 460 can meet the user's needs.
  • sensors such as gyroscopes or accelerometers of the electronic device 1000 (or camera module 400) can detect the shaking of the lens 440 to generate a shaking signal, and transmit the shaking signal to the electronic device 1000 and/or the camera
  • the processing chip of the module 400, the processing chip of the electronic device 1000 and/or the camera module 400 can calculate the amount of displacement that the anti-shake mechanism 420 needs to compensate, so that the anti-shake mechanism 420 can
  • the lens 440 is compensated, so as to improve or the imaging effect of the camera module 400 caused by shaking of the user during use.
  • FIG. 3 is a schematic structural diagram of the anti-shake mechanism in the camera module shown in Figure 2
  • Figure 4 is a schematic diagram of the exploded structure of the anti-shake mechanism shown in Figure 2.
  • the anti-shake mechanism 420 may include a bearing component 421 and a first coil 4232 .
  • the carrying assembly 421 is used to carry the lens 440
  • the first coil 4232 is arranged on the side of the carrying assembly 421 away from the photosensitive element, and the first coil 4232 can drive the carrying assembly 421 to move along the direction perpendicular to the optical axis of the lens 440 .
  • the anti-shake module 480 can drive the photosensitive element 460 to move to realize the anti-shake of the photosensitive element 460, and the first coil 4232 can drive the lens 440 to move to realize the anti-shake of the lens 440.
  • the double anti-shake of the photosensitive element 460 and the lens 440 can be achieved, and a larger anti-shake angle can be obtained.
  • the first coil 4232 is disposed on the side of the carrying assembly 421 away from the photosensitive element 460 , which can avoid interference with the anti-shake module 480 and prevent the height of the camera module 400 from being too high.
  • FIG. 5 is a schematic structural diagram of the circuit board in the camera module shown in FIG. 4 .
  • the camera module 400 may further include a circuit board 427 , the circuit board 427 is disposed on the side of the first coil 4232 away from the carrier assembly 421 , and the circuit board 427 is electrically connected to the first coil 4232 .
  • the circuit board 427 can control the on-off of the first coil 4232 .
  • the side of the circuit board 427 away from the bearing assembly 421 may be provided with a first sensing element 4272 , and the first sensing element 4272 is used to obtain shaking information of the camera module 400 .
  • the camera module 400 can control the on-off of the first coil 4232 according to the shaking information, so as to stabilize the lens 440 .
  • the camera module 400 further includes an upper cover 426 , the upper cover 426 covers the circuit board 427 , and the upper cover 426 has an opening 4264 exposing the sensing element 4272 .
  • the exposed sensor element 4272 of the upper cover 426 can reduce the distance between the upper cover 426 and the circuit board 427 , and reduce the overall height of the camera module 400 .
  • the circuit board 427 includes a main body 4274 and a bent part 4276.
  • the main body 4274 is arranged between the upper cover 426 and the carrier assembly 421, and the bent part 4276 is arranged between the main body and the photosensitive element. It can also be understood as a bent part 4276 is bent and extended from the main body 4274 toward the side of the photosensitive element, one end of the bent portion 4276 is bent and connected to the main body 4274 , and the other end of the bent portion 4276 is connected to the carrying assembly 421 .
  • the bent portion 4276 includes a connecting portion 42762, a first bent edge 42764 and a second bent edge 42766 connected in sequence, the first bent edge 42764 extends along the first direction, and the second bent edge 42766 extends along the second direction Extending, the first direction is perpendicular to the second direction, the first bending edge 42764 is bent and connected to the main body portion 4274 through the connecting portion 42762 , and the second bending edge 42766 is connected to the bearing assembly 421 .
  • the bending portion 4276 includes bending edges in at least two directions.
  • the first bending edge 42764 and the second bending edge 42766 may be arranged vertically. It can be understood that the first bending edge 42764 and the second bending edge 42766 can be arranged around the edge of the bearing assembly 421 .
  • An end of the second bent edge 42766 away from the first bent edge 42764 is provided with a second sensing element (not shown in the figure), and the second sensing element is used to acquire focus information of the camera module 400 .
  • the camera module 420 group performs a focusing operation according to the focusing information acquired by the second sensing element.
  • the circuit board 427 also includes an extension portion 4278 protruding from the edge of the main body portion 4274 toward the photosensitive element.
  • the extension portion 4278 is located outside the camera module 400 , and the extension portion 4278 is provided with connecting pins.
  • the extension part 4278 is located on the entire outside of the camera module 400, and the connection pins on the extension part 4278 can be used to connect with external devices, such as electrically connect with the main processor of the electronic device.
  • the end of the second bending edge 42766 provided with the second sensing element can be arranged opposite to the extension part 4278, and the extension part 4278 is located outside the bearing assembly 421, and the end of the second bending edge 42766 provided with the second sensing element can be recessed inward.
  • the end of the second bending part where the second sensing element is disposed can be bent toward the recessed structure.
  • the circuit board can be a flexible circuit board.
  • other components such as the focusing assembly are fixed parts, and the circuit board with the bent part can reduce the relative force of the fixed part. The anti-pull force of the anti-shake action.
  • the anti-shake mechanism 420 may further include a first driving assembly 422 .
  • the first driving assembly 422 is arranged on the carrying assembly 421, the first driving assembly 422 can drive the carrying assembly 421 to move along the direction parallel to the optical axis of the lens 440, when the carrying assembly 421 moves along the direction parallel to the optical axis of the lens 440, it can drive
  • the lens 440 moves together in a direction parallel to the optical axis of the lens 440 , so as to compensate the amount of shaking of the lens 440 in a direction parallel to the optical axis of the lens 440 .
  • the first coil 4232 can drive the carrying assembly 421 to move along the direction perpendicular to the optical axis of the lens 440, and when the carrying assembly 421 moves along the direction perpendicular to the optical axis of the lens 440, it can drive the lens 440 to move together along the direction perpendicular to the optical axis of the lens 440 , so as to compensate the shaking amount of the lens 440 in the direction perpendicular to the optical axis of the lens 440 .
  • the anti-shake module 480 can drive the photosensitive element 460 to move along the direction perpendicular to the optical axis of the lens 440 , so as to compensate the shaking amount of the photosensitive element 460 in the direction perpendicular to the optical axis of the lens 440 .
  • the embodiment of the present application adopts two different drive structures to respectively move the bearing assembly in two different directions.
  • the driving can prevent the damage of the driving parts when the same driving structure realizes the displacement in two different directions at the same time, thereby improving the anti-shake reliability of the anti-shake mechanism 420 and improving the overall performance of the anti-shake mechanism 420 .
  • the shrapnel-type drive motors of some mobile phones usually use the shrapnel structure and the ring structure to realize the horizontal and vertical displacement of the drive motor to drive the horizontal and vertical displacement of the lens.
  • the problem of the shrapnel structure and/or the breakage of the ring wire is easy to occur;
  • the ball-type driving motor of some mobile phones usually uses multiple balls to realize the horizontal and vertical displacement of the driving motor to drive the horizontal direction of the lens
  • the displacement in the vertical direction however, in the process of realizing the displacement in the vertical direction, multiple balls will collide with each other, so that the multiple balls are prone to pits, resulting in the problem of unsmooth rolling.
  • the first driving assembly 422 of the embodiment of the present application includes an elastic structure 4221 configured such that the elastic force can make the bearing assembly 421 move in a direction parallel to the optical axis of the lens 440 .
  • the camera module also includes a rolling structure 4231.
  • the rolling structure 4231 and the first coil 4232 form the second driving assembly 423.
  • the rolling structure 4231 is configured to enable the bearing assembly 421 to achieve a direction perpendicular to the lens 440 based on the rolling operation of the rolling structure 4231. Move in the direction of the optical axis.
  • the first driving assembly 422 in the embodiment of the present application realizes the up and down movement of the bearing assembly 421 through the elastic structure 4221
  • the second driving assembly 423 realizes the left and right movement of the bearing assembly 421 through the rolling structure 4231.
  • it can Avoid the problem that the elastic structure 4221 is easily broken when being pulled by two mutually perpendicular directions such as up and down movement and left and right movement at the same time, and can avoid the problem that the rolling structure 4231 is prone to pits during the up and down movement process, resulting in unsmooth rolling.
  • FIG. 6 is a schematic diagram of the first partial structure of the anti-shake mechanism shown in FIG. and the guide 4213 are both disposed on the first carrier 4211 .
  • the first carrier 4211 can be a regular shape, for example, the first carrier 4211 can be a rectangular frame structure, which can have a first side 42111, a second side 42112, a third side 42113 and a fourth side 42114 connected in sequence , the first side 42111 is set opposite to the third side 42113 , and the second side 42112 is set opposite to the fourth side 42114 .
  • the first carrier 4211 is also provided with a storage space 42115, which is formed by the first side 42111, the second side 42112, the third side 42113 and the fourth side 42114, which can accommodate the anti-shake mechanism 420 part of the device.
  • the first carrier 4211 can also be a rounded rectangle or an irregular shape.
  • the second carrier 4212 can be accommodated in the storage space 42115 , and the second carrier 4212 can also move in the storage space 42115 .
  • the lens 440 can be arranged on the second carrier 4212, and the lens 440 can be driven to move when the second carrier 4212 moves.
  • the second carrier 4212 can also be a rectangular frame structure, which can include a first support part 42121, a second support part 42122, a third support part 42123 and a fourth support part 42124 connected to each other, the first support part 42121
  • the second supporting part 42122 is arranged opposite to the fourth supporting part 42124 and the third supporting part 42123 is arranged oppositely.
  • the second carrier 4212 may be provided with a through hole 42125 , and the lens 440 may pass through the through hole 42125 and be fixed to the wall of the through hole 42125 .
  • the first supporting part 42121 is arranged opposite to the first side 42111
  • the second supporting part 42122 is arranged opposite to the second side 42112
  • the third supporting part 42123 is arranged opposite to the second side 42112.
  • the three sides 42113 are arranged opposite to each other, and the fourth supporting portion 42124 is arranged opposite to the fourth side 42114 .
  • the guide 4213 is stacked on a part of the first carrier 4211 in a direction parallel to the optical axis of the lens 440 , so that a part of the first carrier 4211 is exposed outside the guide 4213 .
  • the guide 4213 may include a first side portion 42131 and a second side portion 42132 connected to each other, which are generally in an "L" shape.
  • the first side 42131 may be stacked on the first side 42111, and the second side 42132 may be stacked on the second side 42112, so that the third side 42113 and the fourth side 42114 are exposed outside the guide 4213, In other words, the third side 42113 and the fourth side 42114 are not stacked with a part of the guide 4213 .
  • the guide 4213 of the embodiment of the present application can reduce the volume of the guide 4213, thereby reducing the space occupied by the guide 4213 on the anti-shake mechanism 420, which is beneficial to the anti-shake mechanism 420 miniaturization.
  • the anti-shake mechanism 420 can also include a magnetic component 424 , which can be a permanent magnet or an electromagnet, which can generate a magnetic field.
  • the magnetic component 424 can be arranged on the bearing component 421, and the magnetic component 424 can include a plurality of magnetic parts, and each magnetic part can include two magnets with opposite magnetic properties.
  • the first driving component 422 is located in the magnetic field generated by the magnetic component 424 , and under the action of the magnetic component 424 , the first driving component 422 can drive the carrying component 421 to move along a direction parallel to the optical axis of the lens 440 .
  • the first drive assembly 422 may further include a first conductive element 4222, which is arranged opposite to the magnetic assembly 424 in a direction perpendicular to the optical axis of the lens 440. Based on Fleming's left-hand rule, the first conductive element After the 4222 is energized, a magnetic field can be generated.
  • the magnetic field generated by the first conductive member 4222 can interact with the magnetic field of the magnetic component 424 to generate a first force (or magnetic force) perpendicular to the optical axis of the lens 440.
  • the elastic structure 4221 can generate an elastic force perpendicular to the lens 440.
  • the first force and the elastic force act on the bearing assembly 421 at the same time.
  • the bearing assembly 421 can move up and down, thereby driving The lens 440 moves up and down, so as to realize the automatic focus of the lens 440 and/or compensate the shaking of the lens 440 in the vertical direction.
  • the first driving assembly 422 may include two first conductive members 4222 , and the two first conductive members 4222 are arranged opposite to the second carrier in a direction perpendicular to the optical axis of the lens 440 On both sides of 4212 , for example, one first conductive member 4222 may be disposed on the first support portion 42121 , and the other first conductive member 4222 may be disposed on the third support portion 42123 .
  • the structures of the two first conductive members 4222 can be the same, for example, the two first conductive members 4222 can both be annular structures as shown in FIG.
  • One first conductive member 4222 can be clamped on the limiting structure of the first supporting part 42121 , and the other first conductive member 4222 can be clamped on the limiting structure of the third supporting part 42123 .
  • the two first conductive members 4222 can also be a single-rod structure or a double-rod structure.
  • the structures of the two first conductive elements 4222 may also be different, for example, one first conductive element 4222 may be a ring structure, and the other first conductive element 4222 may be a single-rod structure or a double-rod structure.
  • the magnetic component 424 may include a first magnetic part 4241 , a second magnetic part 4242 and a third magnetic part 4243 , and the first magnetic part 4241 , the second magnetic part 4242 and the third magnetic part 4243 may be all disposed on the first carrier 4211 .
  • FIG. 3 is a schematic diagram of a third partial structure of the anti-shake mechanism.
  • the first carrier 4211 is provided with a first accommodating groove 42116a, a second accommodating groove 42116b and a third accommodating groove 42116c, the first accommodating groove 42116a is arranged on the first side 42111, and the second accommodating groove 42116b is arranged on the On the third side 42113 , the third accommodating groove 42116 c is disposed on the fourth side 42114 .
  • the first magnetic piece 4241 is arranged in the first accommodation groove 42116a, and is arranged opposite to a first conductive piece 4222 in a direction perpendicular to the optical axis of the lens 440, so that a first conductive piece 4222 is located on the first magnetic piece 4241 In the generated magnetic field, a first conductive member 4222 can generate a magnetic field when energized, and interact with the magnetic field generated by the first magnetic member 4241 to generate a thrust on the second carrier 4212 .
  • the first magnetic part 4241 may include a first magnet 42411 and a second magnet 42412, the magnetism of the first magnet 42411 is opposite to that of the second magnet 42412, for example, the first magnet 42411 may be a south pole, and the second magnet 42412 may be a north pole or the first magnet 42411 can be north pole and the second magnet 42412 can be south pole. Moreover, the first magnet 42411 and the second magnet 42412 are stacked in a direction parallel to the optical axis of the lens. A part of a first conductive member 4222 is arranged opposite to the first magnet 42411 , and a part of a first conductive member 4222 is arranged opposite to the second magnet 42412 .
  • the first conductive member 4222 may include a first part disposed westward perpendicular to the optical axis of the lens 440 , a second part disposed along a direction parallel to the optical axis of the lens 440 For the third part and the fourth part, the first part is set opposite to the first magnet 42411 , and the second part is set opposite to the second magnet 42412 .
  • the second magnetic element 4242 is disposed in the second receiving groove 42116b, and is opposite to the other first conductive element 4222 in a direction perpendicular to the optical axis of the lens 440 . So that the other first conductive part 4222 is located in the magnetic field generated by the second magnetic part 4242, the other first conductive part 4222 can generate a magnetic field when energized, and interact with the magnetic field generated by the second magnetic part 4242, and A thrust is generated on the second carrier 4212 , and the second carrier 4212 moves up and down relative to the first carrier 4211 under the action of the thrust exerted by the two first coils 4232 and the elastic force generated by the elastic structure.
  • the thrust generated by another first conductive member 4222 on the second carrier 4212 can be equal to the thrust generated by one first conductive member 4222 on the second carrier 4212, so that the force on both sides of the second carrier 4212 is balanced to Move up and down at the same speed.
  • the pushing force generated by another first conductive member 4222 on the second carrier 4212 may not be equal to the pushing force generated by one first conductive member 4222 on the second carrier 4212, so that the two sides of the second carrier 4212 are unbalanced. Move up and down at different speeds, thereby realizing the deflection of the second carrier 4212 by a certain angle.
  • the structure of the second magnetic part 4242 can be the same as that of the first magnetic part 4241.
  • the second magnetic part 4242 can include a third magnet 42421 and a fourth magnet 42422.
  • the magnetism of the four magnets 42422 is opposite.
  • the third magnet 42421 can be a south pole, and the fourth magnet 42422 can be a north pole; or the third magnet 42421 can be a north pole, and the fourth magnet 42422 can be a south pole.
  • the third magnet 42421 and the fourth magnet 42422 are stacked in a direction parallel to the optical axis of the lens.
  • a part of the other first conductive part 4222 is arranged opposite to the third magnet 42421, and a part of the other first conductive part 4222 is arranged opposite to the fourth magnet 42422.
  • a part of the other first conductive part 4222 is arranged opposite to the fourth magnet 42422.
  • the third magnetic piece 4243 is disposed in the third receiving groove 42116c.
  • the structure of the third magnetic part 4243 is different from that of the first magnetic part 4241 and the second magnetic part 4242, and it may include a fifth magnet 42431 and a sixth magnet 42432, and the fifth magnet 42431 and the sixth magnet 42432 are perpendicular to the lens 440 The direction of the optical axis is stacked.
  • the magnetism of the fifth magnet 42431 is opposite to that of the sixth magnet 42432.
  • the fifth magnet 42431 can be a south pole
  • the sixth magnet 42432 can be a north pole
  • the sixth magnet 42432 can be a north pole
  • the sixth magnet 42432 can be a south pole.
  • FIG. 10 is a schematic diagram of the fourth partial structure of the anti-shake mechanism shown in FIG. 3
  • FIG. 11 is a schematic diagram of the fifth partial structure of the anti-shake mechanism shown in FIG.
  • the elastic structure 4221 may include an upper elastic piece 42211 and a lower elastic piece 42212.
  • the upper elastic piece 42211 and the lower elastic piece 42212 are respectively arranged on both sides of the second carrier 4212.
  • the second carrier 4212 has a first side and a second side opposite to each other.
  • the upper elastic piece 42211 is arranged on the first side
  • the lower elastic piece 42212 is arranged on the second side.
  • the upper elastic piece 42211 may include a first main body part 42211a and a first connecting part 42211b connected to each other, the first main body part 42211a is disposed on the first side surface of the second carrier 4212, The first connecting portion 42211b is connected to the first carrier 4211 , an elastic force can be generated between the first main body portion 42211a and the first main body portion 42211a, and the elastic force acts on the second carrier 4212 .
  • the upper elastic piece 42211 may include a first main body part 42211a and a first connecting part 42211b connected to each other, the first main body part 42211a is disposed on the first side surface of the second carrier 4212, The first connecting portion 42211b is connected to the first carrier 4211 , an elastic force can be generated between the first main body portion 42211a and the first main body portion 42211a, and the elastic force acts on the second carrier 4212 .
  • the lower elastic piece 42212 may include a second main body part 42212a and a second connecting part 42212b connected to each other.
  • the 42212b is connected to the first carrier 4211, and an elastic force can be generated between the second main body portion 42212a and the second connecting portion 42212b, and the elastic force acts on the second carrier 4212.
  • the elastic force generated by the elastic structure 4221 is the combined force of the elastic force generated by the lower elastic piece 42212 and the elastic force generated by the upper elastic piece 42211 .
  • the second driving component 423 is located in the magnetic field generated by the magnetic component 424 , and the second driving component 423 can drive the carrying component 421 to move along the direction perpendicular to the optical axis of the lens 440 under the action of the magnetic component 424 .
  • the second driving assembly 423 may further include a first coil 4232 , and the first coil 4232 is disposed opposite to the magnetic assembly 424 in a direction parallel to the optical axis of the lens 440 .
  • the first coil 4232 can generate a magnetic field after being energized, and the magnetic field generated by the first coil 4232 can interact with the magnetic field of the magnetic component 424 to generate a second force parallel to the optical axis direction of the lens 440 (or magnetic force), the second force acts on the bearing assembly 421 to drive the bearing assembly 421 to move in a direction perpendicular to the optical axis of the lens 440 based on the rolling structure 4231 to compensate for the shake of the lens 440 in the horizontal direction.
  • FIG. 12 is a schematic diagram of a sixth partial structure of the anti-shake mechanism shown in FIG. 3 .
  • the first coil may include three, in the direction parallel to the optical axis of the lens 440, a first coil 4232 is arranged opposite to the first magnetic member 4241 so that the first coil 4232 is located in the magnetic field generated by the first magnetic member 4241 , the first coil 4232 can generate a magnetic field when energized, interact with the magnetic field generated by the first magnetic member 4241, and generate a thrust to the first carrier 4211, and the first carrier 4211 is based on the rolling structure 4231 under the action of the thrust
  • the rolling operation drives the second carrier 4212 and the guide member 4213 to move together (or move left and right) perpendicular to the optical axis of the lens 440 to compensate for the shake of the lens 440 in the horizontal direction.
  • FIG. 13 is a schematic diagram of the cooperation structure between the guide member and the first ball in the anti-shake mechanism shown in FIG. 4 .
  • the rolling structure 4231 may include a plurality of first balls 42311 and a plurality of second balls 42312, and the plurality of first balls 42311 and the plurality of second balls 42312 are all arranged on the bearing assembly 421, and the second action generated by the first coil 4232
  • the force can drive the bearing assembly 421 to move in the first sub-direction based on the plurality of first balls 42311, and/or drive the bearing assembly 421 to move in the second sub-direction based on the plurality of second balls 42312, the first sub-direction and the second sub-direction Both are perpendicular to the optical axis direction of the lens 440, and the first sub-direction and the second sub-direction are perpendicular to each other.
  • the movement of the lens 440 can be decomposed into movements in three directions such as X, Y and Z directions, wherein the X direction and the Y direction are perpendicular to the Y direction at the same time, and the X direction and the Y direction are on a plane perpendicular to the Z direction. are perpendicular to each other, wherein the Z direction can be understood as the direction parallel to the optical axis of the lens 440, the X direction and the Y direction can be understood as two sub-directions perpendicular to the optical axis direction of the lens 440, and the X direction can be understood as the first sub-direction, The Y direction can be understood as the second sub-direction.
  • the second acting force generated by the first coil 4232 disposed opposite to the first magnetic member 4241 and the first coil 4232 disposed opposite to the second magnetic member 4242 can drive the bearing assembly 421 based on multiple
  • the first ball 42311 moves along the X direction
  • the second force generated by the first coil 4232 disposed opposite to the third magnetic member 4243 can drive the bearing assembly 421 to move along the Y direction based on the plurality of second balls 42312 .
  • a plurality of first balls 42311 are disposed on a side of the guide 4213 facing away from the first carrier 4211 , and a plurality of second balls 42312 are interposed between the guide 4213 and the first carrier 4211 .
  • the first carrier 4211 can move in the first sub-direction (or in the X direction) relative to the base 425 based on the plurality of first balls 42311, and at the same time drive the guide 4213 and the second carrier 4212 in the first sub-direction Move, so that the anti-shake mechanism 420 can compensate the lens 440 in the first sub-direction; and/or the first carrier 4211 can move in the second sub-direction (or Y direction) based on the plurality of second balls 42312 relative to the base 425 ), and at the same time drive the guide 4213 and the second carrier 4212 to move in the second sub-direction, so that the anti-shake mechanism 420 can compensate the lens 440 in the second sub-direction.
  • the guide 4213 can be provided with a plurality of first limiting grooves 42133 along the first sub-direction, a first ball 42311 is accommodated in one first limiting groove 42133, and the first limiting groove 42133 can The rolling direction of the first ball 42311 is restricted so that the first ball 42311 can only roll along the first sub-direction, so as to improve the anti-shake accuracy of the anti-shake mechanism 420 in the first sub-direction.
  • FIG. 14 is a structural schematic diagram of the guide member in the anti-shake mechanism shown in FIG. 4 .
  • the first carrier 4211 can be provided with a plurality of second limiting grooves 42117 along the second sub-direction, and the side of the guide 4213 close to the first carrier 4211 is provided with a plurality of third limiting grooves 42134, and one third limiting groove 42134 and A second limiting groove 42117 is arranged oppositely, and the shapes and sizes of the oppositely arranged second limiting groove 42117 and the third limiting groove 42134 are matched, and a second ball 42312 is clamped between the second limiting groove 42117 and the third limiting groove 42134.
  • a second ball 42312 can be in contact with the groove bottom surface and groove wall surface of the second limiting groove 42117, and can also be in contact with the groove bottom surface and groove wall surface of the third limiting groove 42134, which can improve The anti-shake accuracy of the anti-shake mechanism 420 in the second sub-direction.
  • the first carrier 4211 has a groove 42118 and a protrusion 42119 adjacently arranged, the guide 4213 is accommodated in the groove 42118, and the outer surface of the protrusion 42119 is in contact with the guide The outer surface of the 4213 is approximately flush.
  • the groove 42118 may be disposed on the second side 42112 and the third side 42113
  • the protrusion 42119 may be disposed on the first side 42111 and the fourth side 42114 .
  • the heights of the first side 42111 and the fourth side 42114 in the direction parallel to the optical axis of the lens 440 are greater than the heights of the second side 42112 and the third side 42113, so that the second side 42112 and the third side
  • the three sides 42113 form a groove 42118 , and the part of the first side 42111 and the fourth side 42114 higher than the second side 42112 and the third side 42113 forms a protrusion 42119 .
  • the guide piece 4213 is stacked on the second side 42112 and the third side 42113 and accommodated in the groove 42118, and the outer surface of the guide piece 4213 is substantially flush with the outer surface of the first side 42111 and the fourth side 42114 flat. Wherein, substantially flush can be understood as the two outer surfaces are flush within the allowable error in this field.
  • the rolling structure 4231 may further include third balls 42313, the third balls 42313 are arranged on the bearing assembly 421, and the plurality of third balls 42313 can make the bearing assembly 421 move relative to the base 425 along the first sub-direction and/or the second sub-direction .
  • the third ball 42313 is arranged on the protruding part 42119, for example, the connection position between the third side 42113 and the fourth side 42114 can be provided with a fourth limiting groove 42119a, and the third ball 42313 is accommodated in the fourth limiting groove 42119a and can roll along the first sub-direction or the second sub-direction in the fourth limiting groove 42119a.
  • the second force generated by the first coil 4232 can drive the bearing assembly 421 to move in the first sub-direction based on a plurality of first balls 42311 and third balls 42313, or drive the bearing assembly 421 based on a plurality of second balls 42312 and third The ball 42313 moves along the second sub-direction.
  • the ball driving motor in the related art is usually provided with eight balls, four of which are used to realize the movement of the carrier in the X direction, and the other four balls are used to realize the movement of the carrier in the Y direction.
  • the third ball 42313 that can roll along the first sub-direction (or X direction) and the second sub-direction (or Y direction) can be set, so as to realize more rolling in the first sub-direction.
  • One first ball 42311 and multiple second balls 42312 for rolling in the second sub-direction can share one ball, thereby saving one ball compared with the related art, reducing the parts of the anti-shake mechanism 420, and simplifying the structure of the anti-shake mechanism 420 .
  • the upper cover 426 and the base 425 are connected to each other to form an activity space between the base 425 and the upper cover 426, and the bearing assembly 421 is movably accommodated in the activity space. It can be understood that the bearing assembly 421 can move up and down and/or move left and right in the activity space.
  • a plurality of first balls 42311 are sandwiched between the upper cover 426 and the guide 4213, so that the guide 4213 can move left and right relative to the upper cover 426, and the third balls 42313 are sandwiched between the upper cover 426 and the first carrier 4211, The first carrier 4211 can move left and right relative to the upper cover 426 .
  • FIG. 15 is a schematic structural diagram of the upper cover of the anti-shake mechanism shown in FIG. 4 .
  • the upper cover 426 is provided with a fifth limiting groove 4261 and a plurality of sixth limiting grooves 4262, the fifth limiting groove 4261 is arranged opposite to the fourth limiting groove 42119a in a direction parallel to the optical axis of the lens 440, and both The shape and size of the third ball 42313 are sandwiched between the fourth limiting grooves 42119a.
  • a sixth limiting groove 4262 is set opposite to a first limiting groove 42133 in a direction parallel to the optical axis of the lens 440, and a first ball 42311 is sandwiched between a first limiting groove 42133 and a sixth limiting groove Between 4262.
  • the two first conductive members 4222 can be energized through the circuit board 427, and the two first conductive members 4222 are in the energized state A magnetic field can be generated, and the generated magnetic field interacts with the magnetic fields of the first magnetic part 4241 and the second magnetic part 4242 to generate thrust on the second carrier 4212, thereby driving the second carrier 4212 in the storage space 42115 of the first carrier 4211
  • the second carrier 4212 can drive the lens 440 to move up and down to change the distance between the lens 440 and the photosensitive chip 460 to achieve focusing.
  • the lens 440 moves up and down, it can also compensate for the optical axis of the lens 440 parallel to the lens 440 Jitter in direction.
  • the circuit board 427 can be used to provide two first coils 4232 opposite to the first magnetic part 4241 and the second magnetic part 4242 respectively. One or two of them are energized, and the first coil 4232 can generate a magnetic field in the energized state, and the magnetic field generated by it interacts with the magnetic field of the first magnetic member 4241 and/or the second magnetic member 4242 to exert a force on the first carrier 4211 Generate a thrust to drive the first carrier 4211 to drive the second carrier 4212 and the guide 4213 to move left and right in the first sub-direction (or X direction) relative to the upper cover 426 and the base 425 based on a plurality of first balls 42311 and third balls 42313 Moving, when the second carrier 4212 moves, it can drive the lens 440 to move left and right in the first sub-direction (or X direction), so as to compensate the shaking of the lens 440 in the first sub-direction
  • the first coil 4232 opposite to the third magnetic member 4243 can be energized through the circuit board 427, and the first coil 4232 is energized In this state, a magnetic field can be generated, and the generated magnetic field interacts with the magnetic field of the third magnetic member 4243 to generate thrust on the first carrier 4211 to drive the first carrier 4211 to drive the second carrier 4212 and the guide member 4213 based on a plurality of second balls 42312 and the third ball 42313 move left and right in the second sub-direction (or Y direction) relative to the upper cover 426 and the base 425.
  • the second carrier 4212 moves, it can drive the lens 440 together in the second sub-direction (or Y direction). ) to move left and right, so as to compensate the shaking of the lens 440 in the second sub-direction (or Y direction).
  • FIG. 16 is a schematic diagram of a partial exploded structure of the camera module shown in FIG. 2 .
  • the camera module 400 provided in the embodiment of the present application has an anti-shake mechanism 420 and an anti-shake module 480.
  • the anti-shake mechanism 420 can drive the lens 440 to move to achieve anti-shake of the lens 440.
  • the anti-shake module 480 can drive the photosensitive element 460.
  • the camera module 400 of the embodiment of the present application has dual anti-shake functions. In related technologies, usually only a single anti-shake function such as camera anti-shake or photosensitive chip anti-shake can be realized. However, the single anti-shake structure such as camera anti-shake or photosensitive chip anti-shake is limited by the structural space of the electronic device.
  • the camera module 400 of the embodiment of the present application can realize the anti-shake function of the lens 440 and the photosensitive element 460 at the same time, integrate the anti-shake function of the lens 440 and the anti-shake function of the photosensitive element 460, and can achieve a larger angle of optical anti-shake compared with related technologies , effectively improving the optical image stabilization effect of the camera module 400 .
  • the anti-shake module 480 may include a bottom plate 481 and a deformation member 482, the bottom plate 481 may provide support for other components of the anti-shake module 480, and the deformation member 482 may be deformed to drive the photosensitive element 460 to rotate perpendicular to the lens. 440 in the direction of the optical axis (including the X direction and/or the Y direction), thereby realizing the optical anti-shake function of the photosensitive element 460 .
  • the deformable part 482 may include a fixed part 4821 and a deformable part 4822, the fixed part 4821 is fixedly connected with the bottom plate 481, the deformable part 4822 is connected with the photosensitive element 460, and the deformable part 4822 can be deformed in the electrified state, thereby driving the photosensitive element 460 to be opposite to each other.
  • the bottom plate 481 moves along a direction perpendicular to the optical axis of the lens 440 .
  • the deformable member 482 can also be deformed to drive the photosensitive element 460 to rotate around the optical axis direction of the lens 440 on a plane perpendicular to the optical axis direction of the lens 440, that is, the deformable member 482 drives the photosensitive element 460 in the X direction and The plane where the Y direction is located rotates around the Z direction.
  • the deformable part 4822 can be made of shape memory alloys (shape memory alloys, SMA).
  • shape memory alloy can heat and deform the shape memory alloy in the energized state, and the length of the deformable part 4822 can be changed during deformation. , so as to drive the photosensitive element 460 connected to it to move, and realize the anti-shake function of the photosensitive element 460 .
  • the anti-shake module 480 includes an anti-shake pin 483 protruding from the base 425 , and the base 425 is provided with an escape opening 4252 corresponding to the anti-shake pin 483 .
  • the deformation of the deformation part 4822 can be controlled by the anti-shake pin 483 , so as to control the movement of the photosensitive element 460 .
  • FIG. 17 is another structural schematic view of the camera module in the electronic device shown in FIG. 1, and FIG. 18 is a schematic cross-sectional view of the camera module in the AA direction shown in FIG. , FIG. 19 is a schematic cross-sectional view of the camera module shown in FIG. 17 in the direction of BB.
  • the camera module may include a casing, a lens, a photosensitive element, an anti-shake mechanism and an anti-shake module.
  • the housing has a storage space.
  • the housing may include the base 425 and the upper cover 426 described in the above-mentioned embodiment of the application, and the activity space formed by connecting the base 425 and the upper cover 426 is the storage space described in the embodiment of the application.
  • the lens, photosensitive element, and anti-shake mechanism are all accommodated in the storage space.
  • the photosensitive element is arranged opposite to the lens in the direction of the optical axis of the lens to receive the light collected by the lens.
  • the anti-shake mechanism is connected with the lens.
  • the anti-shake mechanism may include two parts, such as a first part and a second part.
  • the optical axis of the lens moves, wherein the first part may include but not limited to the first drive assembly 422 described in the above embodiment of the application, and the second part may include but not limited to the second drive assembly 423 described in the above application embodiment.
  • the anti-shake module is connected with the photosensitive element, and the anti-shake module is used to drive the photosensitive element to move along the direction perpendicular to the optical axis of the lens. Wherein, for the specific structure of the anti-shake module, reference may be made to the anti-shake module 480 described in the embodiment of the above application, which will not be repeated here.
  • the camera module may only include part of the driving structure, such as the second driving component.
  • the camera module includes a photosensitive element, a bearing component and a second driving component.
  • the second driving assembly includes a first coil, the first coil is arranged on the side of the carrying assembly away from the photosensitive element, and the first coil can drive the carrying assembly to move in a direction perpendicular to the optical axis of the lens.
  • the camera module can also include other driving structures, such as a first driving assembly, the first driving assembly is arranged on the carrying assembly, and the first driving assembly is used to drive the carrying assembly to move in a direction parallel to the optical axis of the lens.
  • a first driving assembly the first driving assembly is arranged on the carrying assembly, and the first driving assembly is used to drive the carrying assembly to move in a direction parallel to the optical axis of the lens.
  • the camera module of the embodiment of the present application can realize the double anti-shake function of the lens and the photosensitive element through the setting of the anti-shake mechanism and the anti-shake module, and the movement of the lens in two directions can be respectively controlled by the anti-shake Two different parts of the mechanism are implemented to prevent the anti-shake mechanism from being easily damaged due to the same part moving in two directions at the same time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

一种摄像头模组及电子设备,包括感光元件;承载镜头的承载组件;第一线圈,设置在承载组件远离感光元件一侧,能够驱动承载组件沿垂直于镜头的光轴方向移动;和防抖模组,与感光元件连接,用于驱动感光元件在沿垂直于镜头的光轴方向的平面移动。实现双重防抖。避免第一线圈与防抖模组干涉,防止摄像头模组的高度过高。

Description

摄像头模组及电子设备
本申请要求于2021年08月03日提交中国专利局、申请号为202110886879.4、申请名称为“摄像头模组及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子技术领域,特别涉及一种摄像头模组及电子设备。
背景技术
随着电子设备的不断普及,电子设备已经成为人们日常生活中不可或缺的社交工具和娱乐工具,人们对于电子设备的要求也越来越高。以手机为例,为了满足人们的拍照需求,多数手机厂商都采用OIS(optical image stabilization,光学防抖)马达来驱动镜头移动从而实现手机摄像头的防抖功能。
发明内容
本申请实施例提供一种摄像头模组以及电子设备,可以提升摄像头模组的防抖功能。
本申请实施例提供一种摄像头模组,其包括:
感光元件,能够将获取的光信号转换为电信号;
承载组件,用于承载镜头;
第一线圈,设置在所述承载组件远离所述感光元件一侧,所述第一线圈能够驱动所述承载组件沿垂直于所述镜头的光轴方向移动;以及
防抖模组,所述防抖模组与所述感光元件连接,所述防抖模组用于驱动所述感光元件在垂直于所述镜头的光轴方向的平面移动。
本申请实施例还提供一种摄像头模组,其包括:
感光元件,能够将获取的光信号转换为电信号;
承载组件,用于承载镜头;以及
第一线圈,设置在所述承载组件远离所述感光元件一侧,所述第一线圈能够驱动所述承载组件沿垂直于所述镜头的光轴方向移动。
本申请实施例提供一种电子设备,其包括壳体和如上申请实施例所述的摄像头模组,所述摄像头模组设置在壳体上。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
图1为本申请实施例提供的电子设备的结构示意图;
图2为图1所示电子设备中摄像头模组的结构示意图;
图3为图2所示摄像头模组中防抖机构的结构示意图;
图4为图2所示防抖机构的爆炸结构示意图;
图5为图4所示摄像头模组中电路板的结构示意图;
图6为图3所示防抖机构的第一种部分结构示意图;
图7为图4所示防抖机构中第一载体的结构示意图;
图8为图3所示防抖机构的第二种部分结构示意图;
图9为图3所示防抖机构的第三种部分结构示意图;
图10为图3所示防抖机构的第四种部分结构示意图;
图11为图3所示防抖机构的第五种部分结构示意图;
图12为图3所示防抖机构的第六种部分结构示意图;
图13为图4所示防抖机构中导向件与第一滚珠的配合结构示意图;
图14为图4所示防抖机构中导向件的结构示意图;
图15为图4所示防抖机构中上盖的结构示意图;
图16为图2所示摄像头模组中的部分爆炸结构示意图;
图17为图1所示电子设备中摄像头模组的另一结构示意图;
图18为图17所示摄像头模组AA方向的截面示意图;
图19为图17所示摄像头模组BB方向的截面示意图。
具体实施方式
作为在此使用的“电子设备”(或简称为“终端”)包括但不限于被设置成经由有线线路连接和/或经由诸如蜂窝网络、无线局域网等无线通信网络接收/发送通信信号的装置。移动终端的示例包括但不限于蜂窝电话以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。手机即为配置有蜂窝通信模块的电子设备。
本申请实施例提出一种摄像头模组及电子设备。下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1和图2,图1为本申请实施例提供的电子设备的结构示意图,图2为图1所示电子设备中 摄像头模组的结构示意图。本申请实施例提供的电子设备1000具体可以是手机、平板电脑、笔记本电脑和穿戴设备等便携设备,下面以手机为例进行说明。如图1所示,电子设备1000可以包括壳体200、摄像头模组400以及显示屏600。显示屏600设置在壳体200上,其可以用于显示画面,摄像头模组400可以设置于壳体200,并能够接受到外部环境射入的光线以实现画面拍摄。
如图2所示,摄像头模组400可以包括防抖机构420、镜头440、感光元件460和防抖模组480。其中,镜头440设置在防抖机构420上,通过防抖机构420驱动镜头440移动而实现摄像头模组400的镜头的防抖功能。感光元件460设置在防抖机构420的一侧,而且在平行于防抖机构420的轴向上与镜头440相对设置。防抖模组480与防抖机构420设置在感光元件460同一侧,并且防抖模组480与感光元件460连接,防抖模组480用于驱动感光元件460在垂直于镜头440的光轴方向的平面移动,从而实现摄像头模组400的感光元件460的防抖功能。在本实施例中,摄像头模组400可以用于实现电子设备1000的拍照、录像、人脸识别解锁、扫码支付等功能。此外,需要说明的是,摄像头模组400可以是如图示中所示的后置式摄像头的,也可以是前置式摄像头,本实施例对此不作限定。
具体地,镜头440的材质可以是玻璃或塑胶等。镜头440主要用于改变光线的传播路径,并对光线进行聚焦。镜头440可以包括多组镜片,多组镜片会相互矫正过滤光线;以在光线通过镜头440时,多组镜片层层过滤杂光(例如红外光),以便于增加摄像头模组400的成像效果。感光元件460具体可以是CCD(Charge Coupled Device,电荷耦合元件)这类影像传感器,也可以是CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)这类影像传感器。感光元件460可以在摄像头模组400的光轴方向(也即是镜头440的光轴方向,如图2中虚线所示)上与镜头440相对设置,主要用于接收来自镜头440采集的光线,并将光信号转化为电信号,以便于实现摄像头模组400的成像需求。防抖机构420则主要用于改善摄像头模组400因用户在使用过程中发生抖动而产生的成像效果,以使得感光元件460的成像效果能够满足用户的使用需求。
基于光学防抖技术,电子设备1000(或摄像头模组400)的陀螺仪或加速度计等传感器可以检测到镜头440的抖动以生成抖动信号,并将该抖动信号传递至电子设备1000和/或摄像头模组400的处理芯片,电子设备1000和/或摄像头模组400的处理芯片可以计算出防抖机构420需要补偿的位移量,以使得防抖机构420可以根据镜头440的抖动方向及其位移量对镜头440进行补偿,从而改善或摄像头模组400因用户在使用过程中发生抖动而产生的成像效果。
下面就防抖机构420的具体结构及其与摄像头模组400中其它结构件之间的配合关系进行详细的说明。
请结合图3至图4,图3为图2所示摄像头模组中防抖机构的结构示意图,图4为图2所示防抖机构的 爆炸结构示意图。防抖机构420可以包括承载组件421和第一线圈4232。其中,承载组件421用于承载镜头440,第一线圈4232设置在承载组件421远离感光元件一侧,并且第一线圈4232能够驱动承载组件421沿垂直于镜头440的光轴方向移动。防抖模组480能够驱动感光元件460进行移动以实现感光元件460的防抖,第一线圈4232能够驱动镜头440进行移动以实现镜头440的防抖,通过防抖模组480和第一线圈4232实现感光元件460和镜头440的双重防抖,能够得到更大的防抖角度。另外,第一线圈4232设置在承载组件421远离感光元件460一侧,可以避免与防抖模组480干涉,同时防止摄像头模组400的高度过高。
请结合图5,图5为图4所示摄像头模组中电路板的结构示意图。摄像头模组400还可以包括电路板427,电路板427设置在第一线圈4232远离所述承载组件421一侧,电路板427与第一线圈4232电连接。电路板427可以控制第一线圈4232的通断。
电路板427远离承载组件421一侧可以设有第一感应元件4272,第一感应元件4272用于获取摄像头模组400的抖动信息。摄像头模组400根据该抖动信息可以控制第一线圈4232的通断从而进行镜头440的防抖。
摄像头模组400还包括上盖426,上盖426盖设于电路板427,上盖426设有露出感应元件4272的开口4264。上盖426露出感应元4272可以降低上盖426和电路板427之间的距离,降低摄像头模组400的整体高度。
电路板427包括主体部4274和弯折部4276,主体部4274设置在上盖426和承载组件421之间,弯折部4276设置在主体部和感光元件之间,也可以理解为,弯折部4276从主体部4274朝向感光元件一侧弯折延伸,弯折部4276一端与主体部4274弯折连接,弯折部4276另一端与所述承载组件421连接。
其中,弯折部4276包括依次连接的连接部42762、第一弯折边42764和第二弯折边42766,第一弯折边42764沿第一方向延伸,第二弯折边42766沿第二方向延伸,第一方向和第二方向垂直,第一弯折边42764通过连接部42762与主体部4274弯折连接,第二弯折边42766与承载组件421连接。
弯折部4276包括至少两个方向的弯折边,为了更好的设置两个弯折边,第一弯折边42764和第二弯折边42766可以垂直设置。可以理解的是,第一弯折边42764和第二弯折边42766可以围绕承载组件421的边缘设置。
第二弯折边42766远离第一弯折边42764的一端设有第二感应元件(图中未示出),第二感应元件用于获取摄像头模组400的对焦信息。摄像头模420组根据第二感应元件获取的对焦信息进行对焦操作。
电路板427还包括自主体部4274边缘朝感光元件突出的延伸部4278,延伸部4278位于摄像头模组400外侧,延伸部4278上设有连接引脚。延伸部4278位于摄像头模组400的整体外侧,延伸部4278上的连接引脚可以用来与外部设备连接,如与电子设备的主处理器电性连接。
其中,第二弯折边42766设置第二感应元件的一端可以和延伸部4278相对设置,延伸部4278位于承载组件421的外侧,第二弯折边42766设置第二感应元件的一端可以向内凹陷设置,如承载组件对应延伸部设有一凹陷结构,第二弯折部设置第二感应元件的一端可以向该凹陷结构弯折设置。
需要说明的是,电路板可以为柔性电路板,当第一线圈驱动承载组件进行防抖作动时,其他部件如对焦组件为固定部,具有弯折部的电路板可以降低相对于固定部的防抖作动的反拉力。
防抖机构420还可以包括第一驱动组件422。第一驱动组件422设置在承载组件421上,第一驱动组件422能够驱动承载组件421沿平行于镜头440的光轴方向移动,当承载组件421沿平行于镜头440的光轴方向移动时可以带动镜头440一起沿平行于镜头440的光轴方向移动,以补偿镜头440在平行于镜头440的光轴方向的抖动量。第一线圈4232能够驱动承载组件421沿垂直于镜头440的光轴方向移动,当承载组件421沿垂直于镜头440的光轴方向移动时可以带动镜头440一起沿垂直于镜头440的光轴方向移动,以补偿镜头440在垂直于镜头440的光轴方向的抖动量。同时,防抖模组480能够驱动感光元件460沿垂直于镜头440的光轴方向移动,以补偿感光元件460在垂直于镜头440的光轴方向的抖动量。
相比于相关技术中仅采用一个弹片式驱动马达或一个滚珠式驱动马达同时实现水平方向和竖直方向的位移,本申请实施例采用两个不同驱动结构分别对承载组件进行两个不同方向的驱动,可以防止由于同一个驱动结构在同时实现两种不同方向的位移时导致驱动部分部件损坏的情况,从而提高防抖机构420的防抖可靠性,提升防抖机构420的整体性能。
此外,经发明人长期研究发现,一些手机的弹片式驱动马达通常运用弹片结构以及吊环线结构实现驱动马达的水平方向以及竖直方向的位移以带动镜头的水平方向以及竖直方向的位移,然而在实现水平方向位移过程中容易出现弹片结构和/或吊环线断裂的问题;一些手机的滚珠式驱动马达通常采用多个滚珠实现驱动马达的水平方向以及竖直方向的位移以带动镜头的水平方向以及竖直方向的位移,然而在实现竖直方向的位移过程中,多个滚珠会相互撞击从而使得多个滚珠容易出现凹坑而导致滚动不顺畅的问题。
基于此,本申请实施例的第一驱动组件422包括弹性结构4221,弹性结构4221被配置为弹性作用力能够使得承载组件421沿平行于镜头440的光轴方向移动。摄像头模组还包括滚动结构4231,滚动结构4231和第一线圈4232组成第二驱动组件423,滚动结构4231被配置为能够使得承载组件421基于滚动结构4231的滚动操作而实现沿垂直于镜头440的光轴方向移动。
可以理解的是,本申请实施例的第一驱动组件422通过弹性结构4221实现承载组件421的上下移动,第二驱动组件423通过滚动结构4231实现承载组件421的左右移动,相对于相关技术,可以避免弹性结构4221同时受到上下移动和左右移动等两个相互垂直的方向的拉扯而容易断裂的问题,以及可以避免滚动 结构4231在实现上下移动过程中容易出现凹坑而导致滚动不顺畅的问题。
需要说明的是,本申请实施例中所有方向性指示(诸如上、下、左、右、前、后)仅用于解释在某一特定姿态下各部件之间的相对位置关系、移动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
结合图5和图6所示,图6为图4所示防抖机构的第一种部分结构示意图,承载组件421可以包括第一载体4211、第二载体4212和导向件4213,第二载体4212和导向件4213均设置在第一载体4211上。第一载体4211可以为规则形状,比如第一载体4211可以为矩形的框架结构,其可以具有依次连接的第一侧边42111、第二侧边42112、第三侧边42113和第四侧边42114,第一侧边42111和第三侧边42113相对设置,第二侧边42112与第四侧边42114相对设置。第一载体4211还设置有收纳空间42115,该收纳空间42115由第一侧边42111、第二侧边42112、第三侧边42113和第四侧边42114围设形成,其可以收纳防抖机构420的部分器件。当然,第一载体4211也可以为圆角矩形或不规则形状。
第二载体4212可以容置在收纳空间42115内,而且第二载体4212还可以在收纳空间42115内移动。其中,镜头440可以设置在第二载体4212上,当第二载体4212移动时可以带动镜头440移动。示例性的,第二载体4212也可以为矩形框架结构,其可以包括相互连接的第一支撑部42121、第二支撑部42122、第三支撑部42123和第四支撑部42124,第一支撑部42121和第三支撑部42123相对设置,第二支撑部42122与第四支撑部42124相对设置。第二载体4212可以设置有通孔42125,镜头440可以穿设于通孔42125,且与通孔42125的孔壁固定。
其中,当第二载体4212容置于收纳空间42115时,第一支撑部42121与第一侧边42111相对设置,第二支撑部42122与第二侧边42112相对设置,第三支撑部42123与第三侧边42113相对设置,第四支撑部42124与第四侧边42114相对设置。
导向件4213在平行于镜头440的光轴方向上层叠设置于第一载体4211的一部分上,以使得第一载体4211的一部分裸露于导向件4213外部。比如,导向件4213可以包括相互连接的第一侧部42131和第二侧部42132,其大致呈“L”型结构。第一侧部42131可以层叠在第一侧边42111上,第二侧部42132可以层叠在第二侧边42112上,以使得第三侧边42113和第四侧边42114裸露在导向件4213外部,或者说第三侧边42113和第四侧边42114未与导向件4213的一部分层叠设置。相比于相关技术中,矩形结构的导向件4213,本申请实施例的导向件4213可以减小导向件4213的体积,从而减少导向件4213对防抖机构420的空间占用,有利于防抖机构420的小型化。
如图4所示,防抖机构420还可以包括磁性组件424,磁性组件424可以为永磁体或者电磁铁,其可以产生磁场。其中磁性组件424可以设置在承载组件421上,而且磁性组件424可以包括多个磁性件,每 一磁性件均可以包括磁性相反的两个磁体。
第一驱动组件422位于磁性组件424所产生的磁场内,而且第一驱动组件422在磁性组件424的作用下能够带动承载组件421沿平行于镜头440的光轴方向移动。比如,第一驱动组件422还可以包括第一导电件4222,第一导电件4222在垂直于镜头440的光轴方向上与磁性组件424相对设置,基于弗莱明左手定则,第一导电件4222通电之后可以产生一个磁场,第一导电件4222所产生的磁场可以与磁性组件424的磁场相互作用而产生垂直于镜头440的光轴方向第一作用力(或者说磁性作用力),弹性结构4221能够产生垂直于镜头440的弹性作用力,第一作用力和弹性作用力同时作用于承载组件421,承载组件421在第一作用力和弹性作用力的驱动下,可以实现上下移动,从而带动镜头440上下移动,以实现镜头440的自动对焦和/或补偿镜头440在竖直方向上的抖动。
示例性的,请参阅图4和图6,第一驱动组件422可以包括两个第一导电件4222,两个第一导电件4222在垂直于镜头440的光轴方向上相对设置于第二载体4212的两侧,比如一个第一导电件4222可以设置在第一支撑部42121上,另一个第一导电件4222可以设置在第三支撑部42123上。两个第一导电件4222的结构可以相同,比如两个第一导电件4222可以均为图5所示的环状结构,第一支撑部42121和第三支撑部42123均可以设置有限位结构,一个第一导电件4222可以卡设在第一支撑部42121的限位结构上,另一个第一导电件4222可以卡设在第三支撑部42123的限位结构上。当然,两个第一导电件4222也可以为单杆结构或双杆结构。在一些实施例中,两个第一导电件4222的结构也可以不同,比如一个第一导电件4222可以为环状结构,另一个第一导电件4222可以为单杆结构或双杆结构等。
磁性组件424可以包括第一磁性件4241、第二磁性件4242和第三磁性件4243,第一磁性件4241、第二磁性件4242和第三磁性件4243可以均设置在第一载体4211上。
比如,结合图7至图9所示,图7为图4所示防抖机构中第一载体的结构示意图,图8为图3所示防抖机构的第二种部分结构示意图,图9为图3所示防抖机构的第三种部分结构示意图。第一载体4211设置有第一容置槽42116a、第二容置槽42116b和第三容置槽42116c,第一容置槽42116a设置在第一侧边42111上,第二容置槽42116b设置在第三侧边42113上,第三容置槽42116c设置在第四侧边42114上。第一磁性件4241设置在第一容置槽42116a中,而且在垂直于镜头440的光轴方向上与一个第一导电件4222相对设置以使得一个第一导电件4222位于第一磁性件4241所产生的磁场内,一个第一导电件4222在通电时可以产生磁场,并与第一磁性件4241所产生的磁场相互作用,并对第二载体4212产生推力。
其中,第一磁性件4241可以包括第一磁体42411和第二磁体42412,第一磁体42411的磁性与第二磁体42412的磁性相反,比如第一磁体42411可以为南极,第二磁体42412可以为北极;或者第一磁体42411可以为北极,第二磁体42412可以为南极。而且第一磁体42411和第二磁体42412沿平行于所述镜头的光 轴方向层叠设置。一个第一导电件4222的一部分与第一磁体42411相对设置,一个第一导电件4222的一部分与第二磁体42412相对设置。以第一导电件4222为环状结构为例,第一导电件4222可以包括沿垂直于镜头440的光轴方西设置的第一部分、第二部分以及沿平行于镜头440的光轴方向设置的第三部分、第四部分,第一部分与第一磁体42411相对设置,第二部分与第二磁体42412相对设置。
第二磁性件4242设置在第二容置槽42116b中,而且在垂直于镜头440的光轴方向上与另一个第一导电件4222相对设置。以使得另一个第一导电件4222位于第二磁性件4242所产生的磁场内,另一个第一导电件4222在通电时可以产生磁场,并与第二磁性件4242所产生的磁场相互作用,并对第二载体4212产生推力,第二载体4212在两个第一线圈4232所施加的推力以及弹性结构所产生的弹性作用力的作用下,从而实现相对于第一载体4211上下移动。
其中,另一个第一导电件4222对第二载体4212所产生的推力可以与一个第一导电件4222对第二载体4212所产生的推力相等,使得第二载体4212的两侧受力平衡而以相同的速度上下移动。当然,另一个第一导电件4222对第二载体4212所产生的推力可以与一个第一导电件4222对第二载体4212所产生的推力不相等,从而使得第二载体4212的两侧不平衡而以不同的速度上下移动,进而实现第二载体4212偏转一定的角度。
本申请实施例中,第二磁性件4242的结构可以与第一磁性件4241的结构相同,比如第二磁性件4242可以包括第三磁体42421和第四磁体42422,第三磁体42421的磁性与第四磁体42422的磁性相反,比如第三磁体42421可以为南极,第四磁体42422可以为北极;或者第三磁体42421可以为北极,第四磁体42422可以为南极。而且第三磁体42421和第四磁体42422沿平行于所述镜头的光轴方向层叠设置。另一个第一导电件4222的一部分与第三磁体42421相对设置,另一个第一导电件4222的一部分与第四磁体42422相对设置,具体可参见上述一个第一导电件4222与第一磁性件4241的相关描述,在此不再赘述。
第三磁性件4243设置在第三容置槽42116c中。第三磁性件4243的结构与第一磁性件4241和第二磁性件4242的结构不同,其可以包括第五磁体42431和第六磁体42432,第五磁体42431和第六磁体42432沿垂直于镜头440的光轴方向层叠设置。第五磁体42431的磁性与第六磁体42432的磁性相反,比如第五磁体42431可以为南极,第六磁体42432可以为北极;或者第六磁体42432可以为北极,第六磁体42432可以为南极。
结合图4以及图10和图11所示,图10为图3所示防抖机构的第四种部分结构示意图,图11为图3所示防抖机构的第五种部分结构示意图。弹性结构4221可以包括上弹片42211和下弹片42212,上弹片42211和下弹片42212分别设置在第二载体4212的两侧,比如第二载体4212具有相背的第一侧面和第二侧面,上弹片42211设置在第一侧面上,下弹片42212设置在第二侧面上。
其中,上弹片42211的一部分和下弹片42212的一部分分别与第一载体4211连接。示例性的,结合图4和图9所示,上弹片42211可以包括相互连接的第一主体部42211a和第一连接部42211b,第一主体部42211a设置在第二载体4212的第一侧面上,第一连接部42211b与第一载体4211连接,第一主体部42211a和第一主体部42211a之间可以产生弹性作用力,该弹性作用力作用于第二载体4212。结合图4和图11所示,下弹片42212可以包括相互连接的第二主体部42212a和第二连接部42212b,第二主体部42212a设置在第二载体4212的第二侧面上,第二连接部42212b与第一载体4211连接,第二主体部42212a和第二连接部42212b之间可以产生弹性作用力,该弹性作用力作用于第二载体4212。弹性结构4221所产生的弹性作用力为下弹片42212所述产生弹性作用力和上弹片42211所产生的弹性作用力的合力。
本申请实施例中,第二驱动组件423位于磁性组件424所产生的磁场内,而且第二驱动组件423在磁性组件424的作用下能够带动承载组件421沿垂直于镜头440的光轴方向移动。比如,第二驱动组件423还可以包括第一线圈4232,第一线圈4232在平行于镜头440的光轴方向上与磁性组件424相对设置。基于弗莱明左手定则,第一线圈4232通电之后可以产生一个磁场,第一线圈4232所产生的磁场可以与磁性组件424的磁场相互作用而产生平行于镜头440的光轴方向第二作用力(或者说磁性作用力),第二作用力作用于承载组件421以带动承载组件421基于滚动结构4231沿垂直于镜头440的光轴方向移动,以补偿镜头440在水平方向上的抖动。
示例性的,结合图4和图12所示,图12为图3所示防抖机构的第六种部分结构示意图。第一线圈可以包括三个,在平行于镜头440的光轴方向上,一个第一线圈4232与第一磁性件4241相对设置以使得该第一线圈4232位于第一磁性件4241所产生的磁场内,该第一线圈4232在通电时可以产生磁场,并于第一磁性件4241所产生的磁场相互作用,并对第一载体4211产生推力,第一载体4211在推力的作用下基于滚动结构4231的滚动操作而带动第二载体4212和导向件4213一起沿垂直于镜头440的光轴方向移动(或者说左右移动),以补偿镜头440在水平方向上的抖动。
其中,结合图3、图8、图10以及图13所示,图13为图4所示防抖机构中导向件与第一滚珠的配合结构示意图。滚动结构4231可以包括多个第一滚珠42311和多个第二滚珠42312,多个第一滚珠42311和多个第二滚珠42312均设置在承载组件421上,第一线圈4232所产生的第二作用力能够驱动承载组件421基于多个第一滚珠42311沿第一子方向移动,和/或驱动承载组件421基于多个第二滚珠42312沿第二子方向移动,第一子方向和第二子方向均垂直于镜头440的光轴方向,而且第一子方向和第二子方向相互垂直。
可以理解的是,可以将镜头440的移动分解为X、Y和Z方向等三个方向的移动,其中X方向和Y方向同时与Y方向垂直,X方向和Y方向在垂直于Z方向的平面上相互垂直,其中Z方向可以理解为平行于 镜头440的光轴方向,X方向和Y方向可以理解为垂直于镜头440的光轴方向的两个子方向,X方向可以理解为第一子方向,Y方向可以理解为第二子方向。三个第一线圈4232中,与第一磁性件4241相对设置的第一线圈4232以及与第二磁性件4242相对设置的第一线圈4232所产生的第二作用力能够驱动承载组件421基于多个第一滚珠42311沿X方向移动,与第三磁性件4243相对设置的第一线圈4232所产生的第二作用力能够驱动承载组件421基于多个第二滚珠42312沿Y方向移动。
具体地,多个第一滚珠42311设置在导向件4213中背离第一载体4211的一面,多个第二滚珠42312夹设在导向件4213与第一载体4211之间。由此,第一载体4211可基于多个第一滚珠42311相对于底座425在第一子方向(或者说在X方向)上移动,同时带动导向件4213和第二载体4212在第一子方向上移动,从而使得防抖机构420能够在第一子方向上对镜头440进行补偿;和/或第一载体4211可基于多个第二滚珠42312相对于底座425在第二子方向(或者说Y方向)上移动,同时带动导向件4213和第二载体4212在第二子方向移动,从而使得防抖机构420能够在第二子方向上对镜头440进行补偿。
如图13所示,导向件4213沿第一子方向可以开设有多个第一限位槽42133,一个第一滚珠42311容置于一个第一限位槽42133,第一限位槽42133可以对第一滚珠42311的滚动方向进行限制以使得第一滚珠42311仅能沿第一子方向滚动,从而提高防抖机构420在第一子方向上的防抖精度。
如图8和图14所示,图14为图4所示防抖机构中导向件的结构示意图。第一载体4211沿第二子方向可以开设有多个第二限位槽42117,导向件4213靠近第一载体4211的一面开设有多个第三限位槽42134,一个第三限位槽42134与一个第二限位槽42117相对设置,而且相对设置的第二限位槽42117和第三限位槽42134的形状大小相适配,一个第二滚珠42312夹设于一个第二限位槽42117和一个第三限位槽42134之间,一个第二滚珠42312可以与第二限位槽42117的槽底面和槽壁面接触,也可以与第三限位槽42134的槽底面和槽壁面接触,可以提高防抖机构420在第二子方向上的防抖精度。
结合图4以及图7至图9所示,第一载体4211具有相邻设置的凹槽42118和凸出部42119,导向件4213容置于凹槽42118,凸出部42119的外表面与导向件4213的外表面大致齐平。具体地,凹槽42118可以设置在第二侧边42112和第三侧边42113上,凸出部42119可以设置在第一侧边42111和第四侧边42114上。或者说第一侧边42111和第四侧边42114在平行于镜头440的光轴方向上的高度均大于第二侧边42112和第三侧边42113的高度,以在第二侧边42112和第三侧边42113形成凹槽42118,第一侧边42111和第四侧边42114高出第二侧边42112和第三侧边42113的部分形成凸出部42119。导向件4213层叠在第二侧边42112和第三侧边42113上且容置在凹槽42118内,而且导向件4213的外表面与第一侧边42111和第四侧边42114的外表面大致齐平。其中,大致齐平可以理解为在本领域的允许误差内两个外表面齐平。
滚动结构4231还可以包括第三滚珠42313,第三滚珠42313设置在承载组件421上,多个第三滚珠 42313可以使得承载组件421沿第一子方向和/或第二子方向相对于底座425移动。第三滚珠42313设置在凸出部42119上,比如第三侧边42113和第四侧边42114的连接位置可以设置有第四限位槽42119a,第三滚珠42313容置在第四限位槽42119a内且可在第四限位槽42119a内沿第一子方向或者第二子方向滚动。第一线圈4232所产生的第二作用力能够驱动承载组件421基于多个第一滚珠42311和第三滚珠42313沿第一子方向移动,或者驱动承载组件421基于多个第二滚珠42312和第三滚珠42313沿第二子方向移动。
相关技术中的滚珠式驱动马达通常设置有八个滚珠,其中四个滚珠用于实现载体在X方向的移动,另外四个滚珠用于实现载体在Y方向的移动。而本申请实施例通过设置即可沿第一子方向(或者说X方向)滚动又可以沿第二子方向(或者说Y方向)滚动的第三滚珠42313,使得实现第一子方向滚动的多个第一滚珠42311和实现第二子方向滚动的多个第二滚珠42312可以共用一个滚珠,从而相对于相关技术可以节省一颗滚珠,减少防抖机构420的部件,简化防抖机构420的结构。
上盖426与底座425相互连接以在底座425和上盖426之间形成活动空间,承载组件421可移动地容置于活动空间。可以理解的是,承载组件421可以在活动空间内进行上下移动和/或左右移动。多个第一滚珠42311夹设在上盖426和导向件4213之间,使得导向件4213可以相对于上盖426左右移动,第三滚珠42313夹设在上盖426和第一载体4211之间,使得第一载体4211可以相对于上盖426左右移动。
其中,请结合图15,图15为图4所示防抖机构中上盖的结构示意图。上盖426设置有第五限位槽4261和多个第六限位槽4262,第五限位槽4261在平行于镜头440的光轴方向上与第四限位槽42119a相对设置,且两者的形状大小相适配,第三滚珠42313夹设在第四限位槽42119a之间。一个第六限位槽4262在平行于镜头440的光轴方向上与一个第一限位槽42133相对设置,一个第一滚珠42311夹设在一个第一限位槽42133和一个第六限位槽4262之间。
当需要实现镜头440的对焦和/或竖直方向(或者说Z方向)的防抖补偿时,可以通过电路板427给两个第一导电件4222通电,两个第一导电件4222在通电状态下可以产生磁场,其所产生的磁场和第一磁性件4241与第二磁性件4242的磁场相互作用以对第二载体4212产生推力,从而驱动第二载体4212在第一载体4211的收纳空间42115内上下移动,第二载体4212移动时可以带动镜头440上下移动以改变镜头440与感光芯片460之间的距离以实现对焦,镜头440上下移动时也可以补偿镜头440在平行于镜头440的光轴方向上的抖动。
当需要实现镜头440在第一子方向(或者说X方向)上的防抖时,可以通过电路板427给分别与第一磁性件4241与第二磁性件4242相对设置的两个第一线圈4232中的一个或两个通电,该第一线圈4232在通电状态下可以产生磁场,其所产生的磁场和第一磁性件4241和/或第二磁性件4242的磁场相互作用以对第一载体4211产生推力以驱动第一载体4211带动第二载体4212和导向件4213基于多个第一滚珠 42311和第三滚珠42313相对于上盖426和底座425在第一子方向(或者说X方向)上左右移动,第二载体4212移动时可以带动镜头440一起在第一子方向(或者说X方向)上左右移动,从而补偿镜头440在第一子方向上的抖动。
当需要实现镜头440在第二子方向(或者说Y方向)上的防抖时,可以通过电路板427给与第三磁性件4243相对设置的第一线圈4232通电,该第一线圈4232在通电状态下可以产生磁场,其所产生的磁场和第三磁性件4243的磁场相互作用以对第一载体4211产生推力以驱动第一载体4211带动第二载体4212和导向件4213基于多个第二滚珠42312和第三滚珠42313相对于上盖426和底座425在第二子方向(或者说Y方向)上左右移动,第二载体4212移动时可以带动镜头440一起在第二子方向(或者说Y方向)上左右移动,从而补偿镜头440在第二子方向(或者说Y方向)上的抖动。
如图16所示,图16为图2所示摄像头模组中的部分爆炸结构示意图。本申请实施例提供的摄像头模组400中同时具有防抖机构420和防抖模组480,防抖机构420能够驱动镜头440移动以实现镜头440防抖,防抖模组480可以驱动感光元件460移动以实现感光芯片460防抖,即本申请实施例的摄像头模组400具有双防抖功能。相关技术中,通常仅可以实现摄像头防抖或感光芯片防抖等单一防抖功能,然而摄像头防抖或感光芯片防抖等单一防抖结构受电子设备的结构空间限制所能实现的防抖角度有限,仅能实现小角度(诸如1°以内或1.5°以内)的光学防抖功能。本申请实施例的摄像头模组400可以同时实现镜头440防抖和感光元件460防抖,集成镜头440防抖功能以及感光元件460防抖功能,相对于相关技术可以实现更大角度的光学防抖,有效提升摄像头模组400的光学防抖效果。
本申请实施例中,防抖模组480可以包括底板481和形变件482,底板481可以为防抖模组480的其他器件提供支撑,形变件482可以发生形变以带动感光元件460在垂直于镜头440的光轴方向(包括X方向和/或Y方向)上移动,进而实现感光元件460的光学防抖功能。其中,形变件482可以包括固定部分4821和形变部分4822,固定部分4821与底板481固定连接,形变部分4822与感光元件460连接,形变部分4822在通电状态下可发生形变,从而带动感光元件460相对于底板481沿垂直于镜头440的光轴方向移动。可选的,形变件482还可以发生形变以带动感光元件460在垂直于镜头440的光轴方向的平面上,围绕镜头440的光轴方向转动,即形变件482带动感光元件460在X方向和Y方向所在的平面,绕Z方向转动。
其中,形变部分4822可以采用形状记忆合金(shape memory alloys,SMA)制作形成,形状记忆合金在通电状态下可以使得形状记忆合金被加热并使其变形,变形时可以使得形变部分4822的长度发生变化,从而带动与其连接的感光元件460移动,实现感光元件460的防抖功能。
防抖模组480包括突出于底座425的防抖引脚483,底座425对应防抖引脚483设有避让口4252。可以通过防抖引脚483控制形变部分4822的形变,从而控制感光元件460的移动。
为了更好的理解本申请,请结合图17至图19,图17为图1所示电子设备中摄像头模组的另一结构示意图,图18为图17所示摄像头模组AA方向的截面示意图,图19为图17所示摄像头模组BB方向的截面示意图。该摄像头模组可以包括外壳、镜头、感光元件、防抖机构和防抖模组。其中,外壳具有收容空间,比如外壳可以包括上述申请实施例所述的底座425和上盖426,底座425和上盖426连接形成的活动空间为本申请实施例所述的收容空间。镜头、感光元件、防抖机构均容置于收容空间。感光元件在镜头的光轴方向上与镜头相对设置以接收镜头所采集到的光线,具体可参见上述申请实施例中关于镜头440和感光元件460的相关描述,在此不再赘述。防抖机构与镜头连接,防抖机构可以包括两个部分,诸如第一部分和第二部分,第一部分用于驱动镜头沿平行于镜头的光轴方向移动,第二部分用于驱动镜头沿垂直于镜头的光轴方向移动,其中第一部分可以包括但不限于上述申请实施例所述的第一驱动组件422,第二部分可以包括但不限于上述申请实施例所述的第二驱动组件423。防抖模组与感光元件连接,防抖模组用于驱动感光元件沿垂直于镜头的光轴方向移动。其中,防抖模组的具体结构可以参见上述申请实施例所述的防抖模组480,在此不再赘述。
需要说明的是,在一些实施例中,摄像头模组可以仅包括部分驱动结构,诸如第二驱动组件。示例性地,摄像头模组包括感光元件、承载组件和第二驱动组件。感光元件、承载组件和第二驱动组件的具体结构可以参见上述申请实施例所述的感光元件、承载组件和第二驱动组件,在此不再赘述。其中,第二驱动组件包括第一线圈,第一线圈设置在所述承载组件远离感光元件一侧,第一线圈能够驱动承载组件沿垂直于镜头的光轴方向移动。当然,摄像头模组还可以包括其他驱动结构,如还包括第一驱动组件,第一驱动组件设置在所述承载组件上,第一驱动组件用于驱动承载组件沿平行于镜头的光轴方向移动。第一驱动组件的具体结构可以参见上述申请实施例所述的第一驱动组件,在此不再赘述。
可以理解的是,本申请实施例的摄像头模组可以通过防抖机构和防抖模组的设置可以实现镜头和感光元件的双防抖功能,而且其中镜头两个方向的移动可以分别通过防抖机构的两个不同的部分实现,防止由于同一部分同时实现两个方向的移动而导致防抖机构容易损坏的情况发生。
以上对本申请实施例提供的摄像头模组以及电子设备进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请。同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种摄像头模组,其中,包括:
    感光元件,能够将获取的光信号转换为电信号;
    承载组件,用于承载镜头;
    第一线圈,设置在所述承载组件远离所述感光元件一侧,所述第一线圈能够驱动所述承载组件沿垂直于所述镜头的光轴方向移动;以及
    防抖模组,所述防抖模组与所述感光元件连接,所述防抖模组用于驱动所述感光元件在垂直于所述镜头的光轴方向的平面移动。
  2. 根据权利要求1所述的摄像头模组,其中,所述摄像头模组还包括:
    电路板,设置在所述第一线圈远离所述承载组件一侧,所述电路板与所述第一线圈电连接。
  3. 根据权利要求2所述的摄像头模组,其中,所述电路板远离所述承载组件一侧设有第一感应元件,所述第一感应元件用于获取摄像头模组的抖动信息。
  4. 根据权利要求3所述的摄像头模组,其中,所述摄像头模组还包括上盖,所述上盖盖设于所述电路板,所述上盖设有露出所述感应元件的开口。
  5. 根据权利要求2所述的摄像头模组,其中,所述电路板包括主体部和弯折部,所述弯折部设置在所述主体部和所述感光元件之间,所述弯折部一端与所述主体部弯折连接,所述弯折部另一端与所述承载组件连接。
  6. 根据权利要求5所述的摄像头模组,其中,所述弯折部包括依次连接的连接部、第一弯折边和第二弯折边,所述第一弯折边沿第一方向延伸,所述第二弯折边沿第二方向延伸,所述第一方向和所述第二方向垂直,所述第一弯折边通过所述连接部与所述主体部弯折连接,所述第二弯折边与所述承载组件连接。
  7. 根据权利要求6所述的摄像头模组,其中,所述第二弯折边远离所述第一弯折边的一端设有第二感应元件,所述第二感应元件用于获取摄像头模组的对焦信息。
  8. 根据权利要求5所述的摄像头模组,其中,所述电路板还包括自所述主体部边缘朝所述感光元件突出的延伸部,所述延伸部位于所述摄像头模组外侧,所述延伸部上设有连接引脚。
  9. 根据权利要求1-8中任一项所述的摄像头模组,其中,所述摄像头模组还包括磁性组件,所述磁性组件能够产生磁场;
    所述第一线圈位于所述磁场内,所述第一线圈在所述磁性组件的作用下能够带动所述承载组件沿垂直于所述镜头的光轴方向移动。
  10. 根据权利要求9所述的摄像头模组,其中,所述摄像头模组还包括滚动结构,所述第一线圈在平行于所述镜头的光轴方向上设置于所述承载组件且与所述磁性组件相对设置,所述滚动结构可相对于所述承载组件滚动,所述第一线圈在所述磁性组件的作用下能够产生垂直于所述镜头的光轴方向的第二作用力以带动所述承载组件基于所述滚动结构沿垂直于所述镜头的光轴方向移动。
  11. 根据权利要求10所述的摄像头模组,其中,所述摄像头模组还包括第一驱动组件,所述第一驱动组件设置在所述承载组件上,所述第一驱动组件位于所述磁场内,所述第一驱动组件在所述磁性组件的作用下能够带动所述承载组件沿平行于所述镜头的光轴方向移动。
  12. 根据权利要求11所述的摄像头模组,其中,所述承载组件包括第一载体和第二载体,所述第一载体设置有收纳空间,所述第二载体容置于所述收纳空间,所述磁性组件容置于所述收纳空间;
    所述第一驱动组件还包括第一导电件和弹性结构,所述第一导电件设置在所述第二载体上且位于所述收纳空间,所述第一导电件在垂直于所述镜头的光轴方向上与所述磁性组件相对设置,所述第一导电件在所述磁性组件的作用下能够产生垂直于所述镜头的光轴方向的第一作用力,所述弹性结构包括上弹片和下弹片,所述上弹片和所述下弹片分别设置在所述第二载体的两侧,所述上弹片的一部分和所述下弹片的一部分分别与所述第一载体连接,所述上弹片和所述下弹片所产生的作用力的合力为垂直于所述镜头的光轴方向的弹性作用力,所述弹性作用力和所述第一作用力共同作用于所述第二载体以带动所述 第二载体相对于所述第一载体移动。
  13. 根据权利要求12所述的摄像头模组,其中,所述第一驱动组件包括两个所述第一导电件,两个所述第一导电件在垂直于所述镜头的光轴方向上相对设置于所述第二载体的两侧,所述磁性组件包括第一磁性件和第二磁性件,所述第一磁性件在垂直于所述镜头的光轴方向上与一个所述第一导电件相对设置,所述第二磁性件在垂直于所述镜头的光轴方向上与另一个所述第一导电件相对设置。
  14. 根据权利要求13所述的摄像头模组,其中,所述第一磁性件包括磁性相反的第一磁体和第二磁体,所述第一磁体和所述第二磁体沿垂直于所述镜头的光轴方向层叠设置,一个所述第一导电件的一部分与所述第一磁体相对设置,一个所述第一导电件的一部分与所述第二磁体相对设置;
    所述第二磁性件包括磁性相反的第三磁体和第四磁体,所述第三磁体和所述第四磁体沿垂直于所述镜头的光轴方向层叠设置,另一个所述第一导电件的一部分与所述第三磁体相对设置,另一个所述第一导电件的一部分与所述第四磁体相对设置。
  15. 根据权利要求4所述的摄像头模组,其中,所述摄像头模组还包括底座,所述底座一端与所述上盖连接,所述承载组件和所述感光元件安装于所述底座,所述感光元件和所述上盖安装于所述底座两侧,所述承载组件设置在所述感光元件和所述上盖之间。
  16. 根据权利要求15所述的摄像头模组,其中,所述防抖模组安装于所述底座远离所述上盖一端,所述防抖模组包括底板和形变件,所述形变件包括固定部分和形变部分,所述固定部分与所述底板连接,所述感光元件与所述形变部分连接,所述形变部分在通电状态下可发生形变以带动所述感光元件相对于所述底板沿垂直于所述镜头的光轴方向移动。
  17. 根据权利要求16所述的摄像头模组,其中,所述防抖模组包括突出于所述底座的防抖引脚,所述底座对应所述防抖引脚设有避让口。
  18. 一种摄像头模组,其中,包括:
    感光元件,能够将获取的光信号转换为电信号;
    承载组件,用于承载镜头;以及
    第一线圈,设置在所述承载组件远离所述感光元件一侧,所述第一线圈能够驱动所述承载组件沿垂直于所述镜头的光轴方向移动。
  19. 根据权利要求18所述的摄像头模组,其中,所述摄像头模组还包括:
    第一驱动组件,设置在所述承载组件上,所述第一驱动组件用于驱动所述承载组件沿平行于所述镜头的光轴方向移动。
  20. 一种电子设备,其中,包括壳体和如权利要求1至19任一项所述的摄像头模组,所述摄像头模组设置在壳体上。
PCT/CN2022/096960 2021-08-03 2022-06-02 摄像头模组及电子设备 WO2023010989A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110886879.4A CN113489888B (zh) 2021-08-03 2021-08-03 摄像头模组及电子设备
CN202110886879.4 2021-08-03

Publications (1)

Publication Number Publication Date
WO2023010989A1 true WO2023010989A1 (zh) 2023-02-09

Family

ID=77945255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096960 WO2023010989A1 (zh) 2021-08-03 2022-06-02 摄像头模组及电子设备

Country Status (2)

Country Link
CN (1) CN113489888B (zh)
WO (1) WO2023010989A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113489888B (zh) * 2021-08-03 2023-05-19 Oppo广东移动通信有限公司 摄像头模组及电子设备
CN113660406B (zh) * 2021-10-19 2022-02-11 江西晶浩光学有限公司 弹性件、摄像模组及电子设备
CN114040086A (zh) * 2021-12-02 2022-02-11 Oppo广东移动通信有限公司 摄像头机构及电子设备
CN114422700B (zh) * 2022-01-25 2024-03-01 Oppo广东移动通信有限公司 防抖组件、摄像模组及电子设备
WO2023155889A1 (zh) * 2022-02-18 2023-08-24 宁波舜宇光电信息有限公司 驱动装置及其组装方法和摄像模组
CN114666486B (zh) * 2022-05-25 2022-09-13 江西晶浩光学有限公司 摄像模组及电子设备
CN115407477A (zh) * 2022-08-30 2022-11-29 维沃移动通信有限公司 摄像模组、电子设备、测试装置和方法
CN115499572B (zh) * 2022-09-15 2024-04-16 Oppo广东移动通信有限公司 一种摄像头模组和电子设备
CN115499571B (zh) * 2022-09-15 2024-05-14 Oppo广东移动通信有限公司 一种摄像头模组、防抖组件和电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209402560U (zh) * 2019-03-14 2019-09-17 南昌欧菲光电技术有限公司 摄像头模组及电子设备
CN110261985A (zh) * 2019-06-01 2019-09-20 瑞声科技(新加坡)有限公司 一种镜头透镜模组
CN211266959U (zh) * 2020-02-13 2020-08-14 南昌欧菲光电技术有限公司 摄像头模组、摄像装置及电子设备
US20210048730A1 (en) * 2019-08-16 2021-02-18 Samsung Electro-Mechanics Co., Ltd. Camera module
CN112839158A (zh) * 2021-03-09 2021-05-25 南昌欧菲光电技术有限公司 摄像模组和终端
CN112887521A (zh) * 2019-11-30 2021-06-01 华为技术有限公司 摄像头模组及电子设备
CN113489888A (zh) * 2021-08-03 2021-10-08 Oppo广东移动通信有限公司 摄像头模组及电子设备
CN113489886A (zh) * 2021-08-03 2021-10-08 Oppo广东移动通信有限公司 摄像模组以及电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5718094B2 (ja) * 2011-02-28 2015-05-13 Hoya株式会社 防振挿脱光学要素の位置制御装置
CN106357990A (zh) * 2016-08-29 2017-01-25 昆山丘钛微电子科技有限公司 具防抖功能的双摄像头装置
CN106982317A (zh) * 2017-05-16 2017-07-25 奇酷互联网络科技(深圳)有限公司 移动终端及其光学防抖的双摄像头
CN113014819A (zh) * 2021-03-11 2021-06-22 维沃移动通信有限公司 摄像模组、电子设备、抖动补偿方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209402560U (zh) * 2019-03-14 2019-09-17 南昌欧菲光电技术有限公司 摄像头模组及电子设备
CN110261985A (zh) * 2019-06-01 2019-09-20 瑞声科技(新加坡)有限公司 一种镜头透镜模组
US20210048730A1 (en) * 2019-08-16 2021-02-18 Samsung Electro-Mechanics Co., Ltd. Camera module
CN112887521A (zh) * 2019-11-30 2021-06-01 华为技术有限公司 摄像头模组及电子设备
CN211266959U (zh) * 2020-02-13 2020-08-14 南昌欧菲光电技术有限公司 摄像头模组、摄像装置及电子设备
CN112839158A (zh) * 2021-03-09 2021-05-25 南昌欧菲光电技术有限公司 摄像模组和终端
CN113489888A (zh) * 2021-08-03 2021-10-08 Oppo广东移动通信有限公司 摄像头模组及电子设备
CN113489886A (zh) * 2021-08-03 2021-10-08 Oppo广东移动通信有限公司 摄像模组以及电子设备

Also Published As

Publication number Publication date
CN113489888A (zh) 2021-10-08
CN113489888B (zh) 2023-05-19

Similar Documents

Publication Publication Date Title
WO2023010989A1 (zh) 摄像头模组及电子设备
US11397370B2 (en) Lens driving module
CN113489886B (zh) 摄像模组以及电子设备
US11656427B2 (en) Lens driving device, and camera module and optical device including same
CN113194241B (zh) 摄像头模组及电子设备
TW201907198A (zh) 光學機構
US20240147069A1 (en) Optical image stabilization method and system, and electronic device
WO2023011173A1 (zh) 防抖机构、拍摄装置以及电子设备
US20220137486A1 (en) Camera device
US20230353858A1 (en) Camera device
WO2023142721A1 (zh) 防抖组件、摄像模组及电子设备
WO2023142712A1 (zh) 摄像模组及电子设备
KR20210092572A (ko) 카메라 모듈
WO2024055743A1 (zh) 摄像头模组和电子设备
CN215344785U (zh) 防抖机构、拍摄装置以及电子设备
WO2023124783A1 (zh) 摄像组件和电子设备
US20230171497A1 (en) Camera module
CN115552877A (zh) 相机装置
KR101886829B1 (ko) 휴대폰용 카메라 모듈 조립체 및 이의 조립장치
CN215344794U (zh) 拍摄装置以及电子设备
US20240171862A1 (en) Motor, camera module, and electronic device
CN215344795U (zh) 防抖机构、拍摄装置以及电子设备
TWI797006B (zh) 潛望式攝像模組及電子裝置
CN218387701U (zh) 防抖组件、摄像模组及电子设备
CN115499572B (zh) 一种摄像头模组和电子设备

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE