WO2023140607A1 - 리튬 이차전지의 양극 제조용 바인더 조성물, 및 이에 의해 제조된 리튬 이차전지의 양극 - Google Patents

리튬 이차전지의 양극 제조용 바인더 조성물, 및 이에 의해 제조된 리튬 이차전지의 양극 Download PDF

Info

Publication number
WO2023140607A1
WO2023140607A1 PCT/KR2023/000851 KR2023000851W WO2023140607A1 WO 2023140607 A1 WO2023140607 A1 WO 2023140607A1 KR 2023000851 W KR2023000851 W KR 2023000851W WO 2023140607 A1 WO2023140607 A1 WO 2023140607A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
secondary battery
lithium secondary
weight
lithium
Prior art date
Application number
PCT/KR2023/000851
Other languages
English (en)
French (fr)
Inventor
정언호
이충현
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230006616A external-priority patent/KR20230112548A/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202380010354.1A priority Critical patent/CN116964785A/zh
Priority to EP23743454.3A priority patent/EP4287325A1/en
Priority to JP2023554045A priority patent/JP2024509221A/ja
Priority to US18/282,498 priority patent/US20240178395A1/en
Publication of WO2023140607A1 publication Critical patent/WO2023140607A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a binder composition for preparing a positive electrode of a lithium secondary battery, and a positive electrode of a lithium secondary battery prepared thereby.
  • lithium-sulfur batteries lithium-selenium batteries, or lithium-air batteries having higher energy densities
  • sulfur and oxygen which are cathode active materials in lithium-sulfur batteries and lithium-air batteries, have similar physical and chemical properties, and are further raising expectations for commercialization due to abundant resource reserves.
  • a lithium-air battery or a lithium-sulfur battery using lithium metal with high reducing power, voltage characteristics, and high reversibility as a negative electrode and using air or sulfur as a positive electrode has a much higher amount of lithium ions per weight and volume stored in the reaction product Li 2 O 2 , LiOH and Li 2 S than LiCoO 2 used as a positive electrode of a lithium ion battery, and by using lithium metal as a negative electrode, it can store more charge than a lithium ion battery using a graphite negative electrode with a maximum Li storage limit of LiC 6 . , can exhibit a theoretical energy density much higher than that of a lithium ion battery. However, despite such a high theoretical energy density, since the actual energy density is as low as 20 to 45% of the theoretical value, lithium-air batteries and lithium-sulfur batteries have not yet reached commercialization and are in the early stages of development.
  • Li + lithium ions
  • O 2 oxygen
  • lithium-sulfur batteries In the case of a lithium-sulfur battery, sulfur constituting the positive electrode and Li 2 S, the final product of the reaction, are electrically insulators. Accordingly, lithium-sulfur batteries use tetraethylene glycol dimethylether (TEGDME)-based electrolytes with high permittivities. As a result, soluble polysulfides move from the anode to the cathode and are reduced to lower monomeric polysulfides, which return to the anode and return to the cathode. A shuttle mechanism occurs. As a result, insoluble Li 2 S and Li 2 S 2 may accumulate on the surface of the anode and other interfaces of the separator.
  • TEGDME tetraethylene glycol dimethylether
  • lithium polysulfide Li 2 S 8
  • a reaction intermediate product has high solubility in the organic electrolyte and is continuously dissolved during the discharge reaction, reducing the amount of the cathode material, resulting in a rapid capacity decrease according to the cycle.
  • sulfur itself since sulfur itself has very low electrical conductivity, it is used together with conductive carbon or polymer, but in this case, the overall energy density of the cell is lowered due to the decrease in sulfur content.
  • Li 2 S an insulator
  • Li 2 S an insulator
  • a binder and a thickener are used for slurry stability and binding of electrode elements.
  • effects such as increased reactivity or increased lifespan cannot be expected by controlling the elution of lithium polysulfide generated in a lithium-sulfur battery.
  • Reactivity can be changed by adding a material having a specific functional group that can control the elution of lithium polysulfide generated from the positive electrode as charging and discharging proceeds, but the specific material is dispersed in the slurry and rather rheological properties are changed, coating and drying. The physical properties of the electrode may be deteriorated.
  • the present inventors have conducted various studies to solve the above problems, and as a result, when a gum arabic-cysteine polymer is added to a binder composition used for preparing a positive electrode of a lithium secondary battery, preferably a lithium-sulfur battery, It was confirmed that the initial discharge capacity and life characteristics of a lithium-sulfur battery can be improved, and the present invention was completed.
  • an object of the present invention is to provide a binder composition for preparing a positive electrode of a lithium secondary battery capable of improving the initial discharge capacity and life characteristics of a lithium-sulfur battery.
  • Another object of the present invention is to provide a positive electrode including the binder composition and a lithium secondary battery including the same.
  • the present invention provides a binder composition for preparing a positive electrode of a lithium secondary battery comprising a binder, a thickener and a gum arabic-cysteine polymer.
  • the present invention is a current collector; And a positive active material layer disposed on at least one surface of the current collector; includes,
  • the cathode active material layer provides a cathode for a lithium secondary battery, characterized in that it comprises the binder composition of the present invention, a cathode active material and a conductive material.
  • the present invention is the positive electrode of the present invention; cathode; a separator interposed between the anode and the cathode; And it provides a lithium secondary battery comprising an electrolyte.
  • the binder composition for preparing a positive electrode of a lithium secondary battery of the present invention includes a gum arabic-cysteine polymer, when applied to a lithium secondary battery, preferably a lithium-sulfur battery, an effect of improving the initial discharge capacity and lifespan characteristics of the battery can be obtained.
  • the present invention relates to a binder composition for preparing a positive electrode of a lithium secondary battery comprising a binder, a thickener and a gum arabic-cysteine polymer.
  • binders and thickeners cannot secure functionality such as controlling the dissolution of lithium polysulfide generated in lithium secondary batteries, preferably lithium-sulfur batteries. Accordingly, positive electrode reactivity of a lithium-sulfur battery including the same may be increased, and initial discharge capacity and lifespan characteristics of a lithium-sulfur battery including the positive electrode may be improved.
  • Gum arabic has a structure represented by Chemical Formula 1 below.
  • cysteine has a structure represented by Chemical Formula 2 below.
  • the gum arabic-cysteine polymer is obtained by grafting gum arabic and cysteine, and may have a structure represented by Chemical Formula 3 below.
  • the polymerization method is not particularly limited as long as it is used in the art.
  • Gum arabic can obtain a stable emulsion in a relatively wide pH range.
  • the gum arabic-cysteine polymer obtained by polymerizing gum arabic and cysteine can adsorb lithium polysulfide generated at the anode of a lithium-sulfur battery due to the structural characteristics of gum arabic and the carboxyl group (-COOH) and amine group (-NH 2 ) of cysteine, thereby controlling the elution of lithium polysulfide. Therefore, when a binder composition containing the same is used in preparing a positive electrode of a lithium secondary battery, preferably a positive electrode of a lithium-sulfur battery, the reactivity of the positive electrode can be increased while maintaining the slurry properties of the positive electrode active material layer. Accordingly, the initial discharge capacity and lifespan characteristics of the lithium-sulfur battery including the positive electrode may be improved.
  • the gum arabic-cysteine polymer may include 95 to 99.9% by weight of gum arabic and 0.1 to 5% by weight of cysteine, based on the total weight of the polymer. Also, preferably, 99 to 99.9% by weight of gum arabic is included, and 0.1 to 1% by weight of cysteine may be included.
  • the amount of gum arabic is included in an amount of less than 95% by weight or the amount of cysteine is greater than 5% by weight, it is difficult to express the structural characteristics of gum arabic, making it difficult to maintain the physical properties of the slurry of the cathode active material layer.
  • the gum arabic-cysteine polymer may be included in an amount of 10 to 65 wt%, preferably 15 to 60 wt%, and most preferably 15 to 30 wt%, based on the total weight of the binder composition. If the amount of the gum arabic-cysteine polymer is less than 10% by weight, it is difficult to obtain an effect such as controlling the dissolution of lithium polysulfide, and if it is included in more than 65% by weight, overvoltage may occur during initial discharge of a lithium-sulfur battery to which it is applied.
  • the gum arabic-cysteine polymer is used as a binder in a binder composition, it is impossible to form a positive electrode active material layer including the binder composition on a current collector due to very low adhesive strength, making it impossible to manufacture a positive electrode.
  • the binder is a material used to improve the adhesion between components of the cathode and the adhesion between the cathode active material and the cathode current collector, and is not particularly limited as long as it is generally used in the related art.
  • An emulsion-type binder may be used so that the binder may be uniformly dispersed in the slurry for preparing the positive electrode.
  • the emulsion type binder is, for example, polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, polytetrafluoroethylene, polyethylene, polypropylene, polybutyl acrylate, polypropyl acrylate, polyethyl acryl latex, polyethylhexyl acrylate, polystyrene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubber, mixtures containing one or more of these,
  • the copolymer includes a random copolymer in which monomers of each polymer are mixed and bonded as well as a block copolymer in which each polymer is bonded.
  • a copolymer of polyethylene and polypropylene is interpreted as a concept including an ethylene-propylene copolymer.
  • the binder may be included in an amount of 20 to 60% by weight, preferably 25 to 60% by weight, and most preferably 40 to 60% by weight, based on the total weight of the binder composition.
  • the binder is included in an amount of less than 20% by weight, the adhesion between the constituent components of the positive electrode and the adhesion between the positive electrode active material and the positive electrode current collector deteriorates, and when the binder exceeds 60% by weight, the performance improvement effect due to the thickener and the gum arabic-cysteine polymer additive cannot be expected.
  • the thickener is basically used to adjust the viscosity, and materials suitable for use with the binder and the gum arabic-cysteine polymer may be selected in terms of properties of the slurry for preparing a positive electrode and further, properties of a lithium-sulfur battery.
  • the thickener may be a cellulose-based polymer, and the cellulose-based polymer is carboxymethyl cellulose (CMC), methyl cellulose (MC), hydroxypropyl cellulose (HPC), methyl hydroxypropyl cellulose (MHPC), ethyl hydroxyethyl cellulose (EHEC), methyl ethyl hydroxyethyl cellulose (methyl ethyl hydroxy It may be one or more selected from the group consisting of ethyl cellulose (MEHEC) and cellulose gum.
  • the thickener may be in a lithiated form, and in the present invention, carboxymethyl cellulose may be preferably used as the thickener, and the cellulose-based polymer may be in a lithiated form.
  • the cellulose-based polymer includes a functional group such as a hydroxyl group or a carboxy group
  • hydrogen of the functional group can be lithiated by substituting lithium, and when the cellulose-based polymer is lithiated, an additional lithium source can be secured, which is helpful in improving the performance of a lithium-sulfur battery.
  • the thickener may be included in an amount of 15 to 35% by weight, preferably 15 to 30% by weight, based on the total weight of the binder composition. If the thickener is included in less than 15% by weight, the viscosity of the slurry for preparing the cathode is low, making it difficult to uniformly disperse the cathode constituents and secure functionality therethrough, and if the thickener is included in an amount exceeding 35% by weight, the fluidity of the slurry for cathode preparation is lowered, making it difficult to uniformly disperse the cathode constituents and secure functionality through this.
  • the present invention is a current collector; And a positive active material layer disposed on at least one surface of the current collector; includes,
  • the cathode active material layer relates to a cathode for a lithium secondary battery, characterized in that it comprises the above-described binder composition of the present invention, a cathode active material and a conductive material.
  • the binder composition in the positive electrode active material layer may be adjusted in a direction that can maximize the performance of the battery based on the basic functionality of bonding the components of the positive electrode.
  • the binder composition may be included in an amount of 3 to 20% by weight, preferably 3 to 15% by weight, and most preferably 3 to 10% by weight based on 100% by weight of the total base solids included in the positive electrode active material layer.
  • the base solid content means the solid components of the positive electrode active material, the conductive agent, and the binder composition excluding the solvent in the positive electrode slurry composition used when preparing the positive electrode active material layer.
  • the functionality is supplemented through the thickener and the gum arabic-cysteine polymer, improved effects in terms of adhesion and battery performance can be expected even when a small amount of the binder composition is used.
  • the binder composition is included in an amount exceeding 20% by weight, the content of the positive electrode active material is relatively reduced, which is not preferable in terms of improving battery performance.
  • the gum arabic-cysteine polymer included in the binder composition may be included in an amount of 0.5% by weight or more and less than 10% by weight, preferably 1 to 5% by weight, based on 100% by weight of the total base solids included in the positive electrode active material layer.
  • the gum arabic-cysteine polymer is included in an amount of less than 0.5% by weight, the adsorption effect of lithium polysulfide is insignificant, so that the positive electrode reactivity cannot be improved, and if it is included in an amount of 10% by weight or more, the content of the positive electrode active material is relatively reduced, and overvoltage may occur during initial discharge of a lithium-sulfur battery including the same.
  • the cathode active material may include at least one selected from the group consisting of elemental sulfur (Elemental sulfur, S 8 ), Li 2 S n (n ⁇ 1, n is an integer), an organic sulfur compound, a carbon-sulfur polymer [(C 2 S x ) n , 2.5 ⁇ x ⁇ 50, n ⁇ 2, x and n are integers], and a sulfur-carbon composite, and preferably may be a sulfur-carbon composite.
  • elemental sulfur elemental sulfur
  • S 8 Li 2 S n (n ⁇ 1, n is an integer)
  • an organic sulfur compound Li 2 S n (n ⁇ 1, n is an integer
  • a carbon-sulfur polymer [(C 2 S x ) n , 2.5 ⁇ x ⁇ 50, n ⁇ 2, x and n are integers]
  • a sulfur-carbon composite and preferably may be a sulfur-carbon composite.
  • the sulfur-carbon composite may include a porous carbon material and sulfur on at least a portion of inner and outer surfaces of the porous carbon material.
  • the sulfur-carbon composite includes a porous carbon material to provide a skeleton to which sulfur can be uniformly and stably fixed and to compensate for the low electrical conductivity of sulfur so that the electrochemical reaction can proceed smoothly.
  • the porous carbon material may be generally prepared by carbonizing various carbon precursors.
  • the porous carbon material includes irregular pores therein, the average diameter of the pores is in the range of 1 to 200 nm, and the porosity or porosity may be in the range of 10 to 90% of the total volume of the porous carbon material. If the average diameter of the pores is less than the above range, the pore size is only at the molecular level, making it impossible to impregnate sulfur.
  • the shape of the porous carbon material may be used without limitation as long as it is spherical, rod, needle, plate, tube, or bulk and is commonly used in lithium secondary batteries.
  • the porous carbon material may have a porous structure or a high specific surface area and may be any one commonly used in the art.
  • the porous carbon material includes graphite; graphene; Carbon black, such as Denka black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; carbon nanotubes (CNTs) such as single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs); carbon fibers such as graphite nanofibers (GNF), carbon nanofibers (CNF), and activated carbon fibers (ACF); It may be at least one selected from the group consisting of natural graphite, artificial graphite, graphite such as expanded graphite, and activated carbon, but is not limited thereto.
  • the porous carbon material may be carbon nanotubes.
  • the sulfur is located on at least one of the inner and outer surfaces of the porous carbon material, and for example, less than 100% of the total inner and outer surfaces of the porous carbon material, preferably 1 to 95%, more preferably 40 to 96%.
  • the sulfur is present on the inner and outer surfaces of the porous carbon material within the above range, the maximum effect may be exhibited in terms of electron transfer area and wettability with the electrolyte.
  • the sulfur since the sulfur is thinly and evenly impregnated into the inner and outer surfaces of the porous carbon material in the above range, the electron transfer contact area may be increased during the charge/discharge process.
  • the porous carbon material is completely covered with sulfur, and the wettability to the electrolyte is lowered and the contact property is lowered, so that it does not receive electron transfer and cannot participate in the electrochemical reaction.
  • the sulfur-carbon composite may include 65 to 90% by weight, preferably 70 to 85% by weight, more preferably 72 to 80% by weight of sulfur based on 100% by weight of the sulfur-carbon composite.
  • content of sulfur is less than the above range, as the content of the porous carbon material in the sulfur-carbon composite is relatively increased, the specific surface area increases, and thus the content of the binder increases during the manufacture of the positive electrode.
  • An increase in the amount of the binder may eventually increase the sheet resistance of the positive electrode and act as an insulator to prevent electron pass, thereby degrading battery performance.
  • the manufacturing method of the sulfur-carbon composite of the present invention is not particularly limited in the present invention, and a method commonly used in the art may be used. As an example, a method of simply mixing the sulfur and the porous carbon material and then heat-treating the composite material may be used.
  • the cathode active material may further include one or more additives selected from transition metal elements, group IIIA elements, group IVA elements, sulfur compounds of these elements, and alloys of these elements and sulfur.
  • the transition metal elements include Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Os, Ir, Pt, Au, or Hg, and the like.
  • the Group IIIA elements include Al, Ga, In, Ti, and the like, and the Group IVA elements include Ge, Sn, Pb, and the like.
  • the positive electrode active material is 50 to 95% by weight, preferably 70 to 95% by weight, more preferably 85 to 95% by weight based on 100% by weight of the total base solids included in the positive electrode active material layer.
  • the content of the cathode active material is less than the above range, it is difficult to sufficiently exhibit the electrochemical reaction of the electrode, and on the contrary, when the content exceeds the above range, there is a problem in that physical properties of the electrode described below are deteriorated.
  • the conductive material serves as a path for electrons to move from a current collector to the positive electrode active material by electrically connecting the electrolyte and the positive electrode active material, and any conductive material may be used without limitation.
  • the conductive material includes carbon black such as Super-P, Denka Black, Acetylene Black, Ketjen Black, Channel Black, Furnace Black, Lamp Black, Summer Black, and Carbon Black; carbon derivatives such as carbon nanotubes and fullerenes; conductive fibers such as carbon fibers and metal fibers; metal powders such as carbon fluoride, aluminum, and nickel powder; Alternatively, conductive polymers such as polyaniline, polythiophene, polyacetylene, and polypyrrole may be used alone or in combination.
  • the content of the conductive material may be 1 to 10% by weight based on 100% by weight of the total base solids included in the positive electrode active material layer.
  • the content of the conductive material is less than the above range, electron transfer between the positive electrode active material and the current collector is not easy, so voltage and capacity are reduced.
  • the content exceeds the above range, the proportion of the positive electrode active material may relatively decrease, and thus the total energy (charge amount) of the battery may decrease. Therefore, it is preferable to determine an appropriate content within the above range.
  • the cathode current collector supports the cathode active material and is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • copper, stainless steel, aluminum, nickel, titanium, palladium, calcined carbon, copper or stainless steel surface treated with carbon, nickel, silver, etc., aluminum-cadmium alloy, etc. may be used.
  • the cathode current collector may form fine irregularities on its surface to enhance bonding strength with the cathode active material, and various forms such as films, sheets, foils, meshes, nets, porous materials, foams, and nonwoven fabrics may be used.
  • the manufacturing method of the positive electrode for a lithium secondary battery is not particularly limited, and a known method or various methods modified thereof may be used by a person skilled in the art.
  • the positive electrode for a lithium-sulfur battery may be prepared by preparing a positive electrode slurry composition containing the above-described composition and then applying the positive electrode slurry composition to at least one surface of the positive electrode current collector to form the positive electrode active material layer.
  • the positive electrode slurry composition includes the positive electrode active material layer composition described above, a positive electrode active material, a binder composition, and a conductive material, and may further include additives and solvents.
  • the solvent one capable of uniformly dispersing the positive electrode active material, the binder composition, and the conductive material is used.
  • water is most preferable as an aqueous solvent, and in this case, the water may be distilled water or deionized water.
  • a lower alcohol that can be easily mixed with water may be used.
  • the lower alcohol includes methanol, ethanol, propanol, isopropanol, and butanol, and the like, preferably mixed with water.
  • the content of the solvent may be contained at a level having a concentration capable of facilitating coating, and the specific content varies depending on the application method and device.
  • the positive electrode slurry composition may additionally contain materials commonly used in the related art for the purpose of improving its functions, if necessary. For example, a viscosity modifier, a glidant, a filler, etc. are mentioned.
  • the coating method of the positive electrode slurry composition is not particularly limited in the present invention, and examples thereof include methods such as doctor blade, die casting, comma coating, and screen printing.
  • the positive electrode slurry may be applied on the positive electrode current collector by a pressing or lamination method.
  • a drying process for solvent removal may be performed.
  • the drying process is performed at a temperature and time at a level capable of sufficiently removing the solvent, and since the conditions may vary depending on the type of solvent, the present invention is not particularly limited.
  • drying by warm air, hot air, low humidity air, vacuum drying, and irradiation of (far) infrared rays and electron beams may be mentioned.
  • the drying speed is usually adjusted so that the solvent can be removed as quickly as possible within a speed range that does not cause cracks in the positive electrode active material layer or peeling of the positive electrode active material layer from the positive electrode current collector due to stress concentration.
  • the density of the positive electrode active material in the positive electrode may be increased by pressing the current collector after the drying.
  • Methods, such as a mold press and a roll press, are mentioned as a press method.
  • the porosity of the cathode specifically, the cathode active material layer prepared by the composition and manufacturing method as described above may be 50 to 80%, preferably 60 to 75%.
  • the porosity of the positive electrode is less than 50%, the filling degree of the positive electrode slurry composition including the positive electrode active material, additives, conductive material, and binder is excessively high, so that sufficient electrolyte capable of exhibiting ion conduction and/or electrical conduction between the positive electrode active materials cannot be maintained, resulting in deterioration in output characteristics or cycle characteristics of the battery, and severe reduction in overvoltage and discharge capacity of the battery.
  • the porosity of the positive electrode has an excessively high porosity of more than 80%, the physical and electrical connection with the current collector is lowered, resulting in a decrease in adhesive strength and a difficult reaction. Since there is a problem that the energy density of the battery may be lowered due to electrolyte filling in the pores inside the positive electrode, it is appropriately adjusted within the above range.
  • the present invention is the anode of the present invention described above; cathode; a separator interposed between the anode and the cathode; And it relates to a lithium secondary battery including an electrolyte.
  • the lithium secondary battery of the present invention may preferably be a lithium-sulfur battery.
  • the negative electrode may include a negative electrode current collector and a negative electrode active material layer coated on one or both surfaces of the negative electrode current collector.
  • the negative electrode may be a lithium metal plate.
  • the anode current collector is for supporting the anode active material layer, as described in the case of the cathode current collector.
  • the anode active material layer may include a conductive material, a binder, and the like in addition to the anode active material.
  • the conductive material and the binder are as described above.
  • the anode active material may include a material capable of reversibly intercalating or deintercalating lithium ions (Li + ), a material capable of reacting with lithium ions to reversibly form a lithium-containing compound, lithium metal, or a lithium alloy.
  • the material capable of reversibly intercalating or deintercalating lithium ions may be, for example, crystalline carbon, amorphous carbon, or a mixture thereof.
  • a material capable of reversibly forming a lithium-containing compound by reacting with the lithium ion (Li + ) may be, for example, tin oxide, titanium nitrate, or silicon.
  • the lithium alloy may be, for example, an alloy of a metal selected from the group consisting of lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr), beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), radium (Ra), aluminum (Al), and tin (Sn).
  • a metal selected from the group consisting of lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr), beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), radium (Ra), aluminum (Al), and tin (Sn).
  • the negative electrode active material may be lithium metal, and specifically, may be in the form of a lithium metal thin film or lithium metal powder.
  • a separator may be interposed between the anode and the cathode.
  • the separator separates or insulates the positive electrode and the negative electrode from each other and enables lithium ion transport between the positive electrode and the negative electrode, and may be made of a porous non-conductive or insulating material, and is generally used as a separator in a lithium secondary battery. It can be used without particular limitation.
  • a separator may be an independent member such as a film, or may be a coating layer added to an anode and/or a cathode.
  • the separator has low resistance to ion migration of the electrolyte and excellent ability to absorb electrolyte.
  • the separator may be made of a porous substrate.
  • the porous substrate any porous substrate commonly used in secondary batteries can be used, and a porous polymer film can be used alone or by laminating them.
  • the porous substrate is not particularly limited in the present invention, and any porous substrate commonly used in an electrochemical device can be used.
  • the porous substrate may include polyolefin such as polyethylene and polypropylene, polyester such as polyethyleneterephthalate and polybutyleneterephthalate, polyamide, polyacetal, polycarbonate, polyimide, polyetheretherketone, polyethersulfone, polyphenyleneoxide, polyphenylenesulfide, polyethylenenaphthalate, polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, polyacrylonitrile, cellulose, nylon, It may include at least one material selected from the group consisting of poly(p-phenylene benzobisoxazole) and polyarylate.
  • the thickness of the porous substrate is not particularly limited, but may be 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m. Although the thickness range of the porous substrate is not limited to the aforementioned range, if the thickness is too thin than the aforementioned lower limit, mechanical properties may deteriorate and the separator may be easily damaged during use of the battery.
  • the average diameter and porosity of the pores present in the porous substrate are also not particularly limited, but may be 0.001 to 50 ⁇ m and 10 to 95%, respectively.
  • the electrolyte includes lithium ions, and is used to cause an electrochemical oxidation or reduction reaction at the positive electrode and the negative electrode through the lithium ion.
  • the electrolyte may be a non-aqueous electrolyte solution or a solid electrolyte that does not react with lithium metal, but is preferably a non-aqueous electrolyte, and includes an electrolyte salt and an organic solvent.
  • the electrolyte salt included in the non-aqueous electrolyte solution is a lithium salt.
  • the lithium salt may be used without limitation as long as it is commonly used in an electrolyte solution for a lithium secondary battery.
  • LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, LiN(SO 2 F) 2 , chloroborane Lithium, lower aliphatic lithium carbonate, lithium 4-phenylborate, lithium imide and the like can be used.
  • the concentration of the lithium salt may be 0.2 to 2 M, specifically 0.4 to 2 M, more specifically 0.4 to 1.7 M, depending on several factors such as the exact composition of the electrolyte solvent mixture, solubility of the salt, conductivity of the dissolved salt, charging and pre-charging conditions of the cell, operating temperature, and other factors known in the lithium battery art. If the concentration of the lithium salt is less than 0.2 M, the conductivity of the electrolyte may be lowered, resulting in deterioration in electrolyte performance, and if the concentration exceeds 2 M, the viscosity of the electrolyte may increase, thereby reducing the mobility of lithium ions.
  • organic solvent included in the non-aqueous electrolyte those commonly used in electrolytes for lithium secondary batteries may be used without limitation, and for example, ethers, esters, amides, linear carbonates, cyclic carbonates, etc. may be used alone or in combination of two or more. Among them, an ether-based compound may be representatively included.
  • the ether-based compound may include non-cyclic ethers and cyclic ethers.
  • the acyclic ether includes dimethyl ether, diethyl ether, dipropyl ether, methylethyl ether, methylpropyl ether, ethylpropyl ether, dimethoxyethane, diethoxyethane, ethylene glycol ethylmethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methylethyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, triethylene glycol methylethyl ether, tetraethylene glycol di At least one selected from the group consisting of methyl ether, tetraethylene glycol diethyl ether, tetraethylene glycol methylethyl ether, polyethylene glycol dimethyl ether, polyethylene glycol diethyl ether, and polyethylene glycol methylethyl ether may be used, but is not limited thereto.
  • the cyclic ether is 1,3-dioxolane, 4,5-dimethyl-dioxolane, 4,5-diethyl-dioxolane, 4-methyl-1,3-dioxolane, 4-ethyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, 2,5-dimethyltetrahydrofuran, 2,5-dimethoxytetrahydrofuran, 2-ethoxytetrahydrofuran, 2-methyl-1,3-dioxolane, 2-vinyl-1,3-dioxolane, 2,2-dimethyl-1,3-dioxolane, 2-methoxy-1,3-dioxolane, 2-ethyl-2-methyl-1,3-dioxolane, tetrahydropyran, 1,4-dioxane, 1,2-dimethoxy benzene, 1, At least one selected from the group
  • any one selected from the group consisting of methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -valerolactone, and ⁇ -caprolactone, or a mixture of two or more thereof may be used, but is not limited thereto.
  • linear carbonate compound examples include, but are not limited to, any one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethylmethyl carbonate (EMC), methylpropyl carbonate and ethylpropyl carbonate, or a mixture of two or more of them.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethylmethyl carbonate
  • methylpropyl carbonate and ethylpropyl carbonate or a mixture of two or more of them.
  • cyclic carbonate compound examples include any one selected from the group consisting of ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, vinylene carbonate, vinylethylene carbonate, and halides thereof, or a mixture of two or more thereof.
  • halides include, for example, fluoroethylene carbonate (FEC) and the like, but are not limited thereto.
  • the electrolyte may further include nitric acid or a nitrous acid-based compound as an additive in addition to the above-described electrolyte salt and organic solvent.
  • the nitric acid or nitrous acid-based compound has an effect of forming a stable film on a lithium metal electrode as an anode and improving charge/discharge efficiency.
  • the nitric acid or nitrite-based compound is not particularly limited in the present invention, lithium nitrate (LiNO 3 ), potassium nitrate (KNO 3 ), cesium nitrate (CsNO 3 ), barium nitrate (Ba(NO 3 ) 2 ), ammonium nitrate (NH 4 NO 3 ), lithium nitrite (LiNO 2 ), potassium nitrite (KNO 2 ), cesium nitrite (CsNO 2 ) , inorganic nitric acid or nitrous acid compounds such as ammonium nitrite (NH 4 NO 2 ); organic nitric acid or nitrous acid compounds such as methyl nitrate, dialkyl imidazolium nitrate, guanidine nitrate, imidazolium nitrate, pyridinium nitrate, ethyl nitrite, propyl nitrite, butyl nitrite, pentyl nit
  • Injection of the electrolyte may be performed at an appropriate stage during the manufacturing process of the electrochemical device according to the manufacturing process and required physical properties of the final product. That is, it may be applied before assembling the electrochemical device or at the final stage of assembling the electrochemical device.
  • the lithium secondary battery according to the present invention is capable of lamination and stacking and folding processes of a separator and an electrode in addition to winding, which is a general process.
  • the shape of the lithium secondary battery is not particularly limited, and may be in various shapes such as a cylindrical shape, a laminated shape, and a coin shape.
  • a gum arabic-cysteine polymer was prepared by mixing gum arabic (product of Daejeong Hwageum Co., Ltd.) and cysteine at a weight ratio of 99:1.
  • a binder composition was prepared by mixing butyl acrylate-styrene copolymer (produced by LG Chemical) as a binder, lithiated carboxymethyl cellulose (produced by GL Chem (GBLi-1000)) as a thickener, and the gum arabic-cysteine polymer.
  • sulfur manufactured by Sigma-Aldrich
  • CNT Carbon Nanotube
  • Denka black As a conductive material, Denka black was prepared.
  • the sulfur-carbon composite, the conductive material, and the binder composition (binder, thickener, and gum arabic-cysteine polymer) were added to water as a solvent and mixed in a bead milling method to prepare a slurry for preparing an anode.
  • the mixing ratio was 90: 5: 2.5: 1.5: 1 of the positive electrode active material: conductive material: binder: thickener: gum arabic-cysteine polymer in weight ratio.
  • the prepared slurry for preparing a positive electrode was applied to an aluminum foil current collector and then dried at 50° C. for 2 hours to prepare a positive electrode (energy density of the positive electrode: 5.5 mAh/cm 2 ).
  • Lithium foil with a thickness of 100 ⁇ m was used as the negative electrode, and a polyethylene film with a thickness of 20 ⁇ m was used as the separator.
  • a lithium-sulfur battery (CR-2032 coin cell) was prepared using an electrolyte in which LiTFSI was mixed at a concentration of 1 M in a mixed solvent (1: 1 v / v) of dioxolane (DOL) and dimethyl ether (DME) and LiNO 3 was added at 1% by weight relative to the electrolyte solution.
  • a lithium-sulfur battery was prepared in the same manner as in Example 1, except that the cathode active material: conductive material: binder: thickener: gum arabic-cysteine polymer was used in a weight ratio of 86: 5: 2.5: 1.5: 5.
  • a lithium-sulfur battery was prepared in the same manner as in Example 1, except that the cathode active material: conductive material: binder: thickener: gum arabic-cysteine polymer was used in a weight ratio of 80: 5: 2.5: 1.5: 10.
  • a lithium-sulfur battery was prepared in the same manner as in Example 3, except that a gum arabic-cysteine polymer was prepared by mixing gum arabic (product of Daejeong Chemical & Gold) and cysteine at a weight ratio of 95:5.
  • a lithium-sulfur battery was prepared in the same manner as in Example 1, except that the gum arabic-cysteine polymer was not used, and the positive electrode active material: conductive material: binder: thickener was used in a weight ratio of 91: 5: 2.5: 1.5.
  • a lithium-sulfur battery was prepared in the same manner as in Example 1, except that gum arabic was used instead of the gum arabic-cysteine polymer.
  • Each of the lithium-sulfur batteries was subjected to 0.1C discharge/charge three times, 0.3C discharge/charge three times, and 0.3C charge and 0.5C discharge within a voltage range of 1.8 to 2.5V.
  • the cycle performance of the battery was evaluated by the number of cycles at the point of being 1000 mAh/gS or less.
  • Example 1 contained 10% by weight of the gum arabic-cysteine polymer based on 100% by weight of the total base solids included in the positive electrode active material layer, and showed lower initial discharge capacity than Examples 1 and 2.
  • Example 4 contains 10% by weight of the gum arabic-cysteine polymer based on 100% by weight of the total base solids included in the positive electrode active material layer, and the gum arabic and cysteine are polymerized in a weight ratio of 95:5.
  • Comparative Example 2 contains only gum arabic instead of the gum arabic-cysteine polymer, and since the gum arabic does not contain cysteine, the carboxyl group and amine group of cysteine cannot obtain the effect of adsorbing lithium polysulfide. Therefore, both the initial discharge capacity and the number of cycles were lower than those of Examples 1 to 4 including the gum arabic-cysteine polymer.
  • a binder composition containing a gum arabic-cysteine polymer when used and applied to a positive electrode of a lithium-sulfur battery, the reactivity of the positive electrode is increased by adsorbing lithium polysulfide, and the initial discharge capacity of the lithium-sulfur battery including the same is improved.
  • the gum arabic-cysteine polymer when included in an amount of 1 wt% or more and less than 10 wt% based on 100 wt% of the total base solid content included in the positive electrode active material layer, not only the initial discharge capacity of the lithium-sulfur battery, but also life characteristics can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

바인더, 증점제 및 아라비아검-시스테인 중합체를 포함하는 리튬 이차전지의 양극 제조용 바인더 조성물이 제공되고, 상기 바인더 조성물을 사용하여 제조된 양극이 제공되며, 상기 양극을 포함하는 리튬 이차전지가 제공된다. 상기 바인더 조성물은 아라비아검-시스테인 중합체를 포함함으로써, 리튬 이차전지에 적용 시 전지의 초기 방전 성능과 수명 특성을 개선할 수 있다.

Description

리튬 이차전지의 양극 제조용 바인더 조성물, 및 이에 의해 제조된 리튬 이차전지의 양극
본 출원은 2022년 1월 20일자 한국 특허출원 제10-2022-0008331호 및 2023년 1월 17일자 한국 특허출원 제10-2023-0006616호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
본 발명은 리튬 이차전지의 양극 제조용 바인더 조성물, 및 이에 의해 제조된 리튬 이차전지의 양극에 관한 것이다.
친환경적인 전기 자동차 및 하이브리드 자동차의 개발 필요성과 스마트 IT 기기의 급속한 발전으로 인해 고용량 고출력 전지에 대한 요구가 급증하고 있다. 현재 상용화된 리튬 이온전지는 기술적 문제에 의해 제한된 에너지 밀도만이 이용되고 있기 때문에, 보다 높은 에너지 밀도를 갖는 리튬-황 전지, 리튬-셀레늄 전지 또는 리튬 공기전지에 대한 개발이 주목받고 있다. 이 중에서도 리튬-황 전지 및 리튬 공기전지에서의 양극 활물질인 황 및 산소는 유사한 물리화학적 특성을 가지며, 풍부한 자원 매장량으로 인해 상용화에 대한 기대를 더욱 높이고 있다.
높은 환원력과 전압 특성, 그리고 높은 가역성을 갖는 리튬 금속을 음극으로 사용하고, 공기 또는 황을 양극으로 사용하는 리튬 공기전지 또는 리튬-황 전지는 반응 생성물인 Li2O2, LiOH 및 Li2S에 저장된 무게당, 부피당 리튬 이온 양이 리튬 이온전지의 양극으로 쓰이는 LiCoO2 보다 훨씬 높고, 또 리튬 금속을 음극으로 사용함으로써 최대 Li 저장 한계가 LiC6인 흑연계 음극을 사용하는 리튬 이온전지에 비해 더 많은 전하를 저장할 수 있기 때문에, 이론적 에너지 밀도가 리튬 이온전지보다도 훨씬 높은 이론적 에너지 밀도를 나타낼 수 있다. 그러나 이러한 높은 이론적 에너지 밀도에도 불구하고 실제 에너지 밀도는 이론 값의 20 내지 45% 수준으로 낮기 때문에 리튬 공기전지와 리튬-황 전지는 아직 상업화에 이르지 못하고, 개발 초기 단계에 있다.
구체적으로 리튬 공기전지의 경우, 충전시 생성된 Li2O2와 Li2O가 리튬 이온(Li+)와 산소(O2)로 분해되기 위해서는 높은 과전압이 필요하며, 리튬 이온전지와는 다르게 외부의 공기가 드나들 수 있는 개방형 구조를 취하기 때문에 외부 공기의 불순물(수분 및 이산화탄소 등)의 유입으로 인해 부반응 및 전해질 휘발이 일어나기 쉽고, 그 결과 성능이 급격하게 저하된다.
리튬-황 전지의 경우, 양극을 이루고 있는 황과 반응 최종 생성물인 Li2S는 전기적으로 부도체 성격을 갖고 있다. 이에 따라 리튬-황 전지에서는 테트라에틸렌글리콜 디메틸에테르(tetraethylenegylcol dimethylether,TEGDME) 계열의 유전율이 강한 전해질을 사용하게 되는데, 이로 인해 용해성 폴리설파이드가 양극에서 음극으로 이동하면서 더 낮은 단량체의 폴리설파이드로 환원되고, 이것이 양극으로 되돌아가 다시 음극으로 돌아오는 셔틀(shuttle) 메커니즘이 발생하게 된다. 그 결과, 불용성 Li2S와 Li2S2가 음극 표면과 그 외의 분리막 계면에 축적될 수 있다. 또 양극에서는 반응 중간 생성물인 리튬 폴리설파이드(Li2S8)가 유기전해액에 대한 용해도가 높아 방전 반응 중에 지속적으로 녹아나오면서 양극 소재의 양이 감소하고, 이로 인해 사이클에 따른 급격한 용량 저하가 발생하게 된다. 또한 황 자체로는 전기 전도도가 매우 낮기 때문에 전도성 카본 또는 고분자 등과 함께 사용되고 있으나, 이 경우 황 함량의 감소로 셀 전체 에너지 밀도가 저하되게 된다.
이 같은 문제를 해결하기 위하여 다공성의 양극 구조의 설계, 과전압 방지를 위한 첨가제 개발 또는 표면 처리층 형성 등의 다양한 방법들이 연구 개발되고 있다. 이중에서도 양극 개발 관점에서, 리튬 공기전지의 경우 방전 생성물인 Li2O2가 치밀한 전도성 매트릭스 내부에 뭉치지 않고 균일하게 분산 분포하도록 함으로써, 원활한 전자 전달과 함께 충전시 리튬이온과 산소 발생 반응률을 극대화하여 충전 과전압을 낮추는 방법이 검토되고 있다. 또한, 리튬-황 전지의 경우 구조적/조성적 최적 설계를 통해, 절연체인 Li2S가 치밀한 전도성 매트릭스에 균일하게 분산되어 분포되도록 함으로써, 전자와 리튬 이온의 전달을 용이하게 하여 충전 과전압을 낮추는 동시에, 양극에서의 리튬 폴리설파이드의 용출을 억제하는 방법이 검토되고 있다.
리튬-황 전지의 양극을 제조시, 슬러리 안정 및 전극 요소의 결착을 위해 바인더 및 증점제를 사용하게 되나, 기존의 리튬 이온전지용 바인더 및 증점제만을 사용하게 될 경우, 리튬-황 전지에서 발생하는 리튬 폴리설파이드 용출 조절을 통한 반응성 증가 또는 수명 증가와 같은 효과를 기대할 수 없다. 충·방전이 진행되면서 양극으로부터 발생하는 리튬 폴리설파이드 용출을 조절할 수 있는 특정 관능기를 가진 물질 첨가를 통해 반응성 변화를 꾀할 수 있으나, 상기 특정 물질이 슬러리 내 분산되어 오히려 유변 물성이 변화해 코팅 및 건조시 전극 물성이 열화될 수 있다.
따라서, 상기 문제점을 해결할 수 있는 바인더 조성물에 대한 연구가 필요한 실정이다.
[선행문헌]
[특허문헌]
대한민국 공개특허 제10-2002-0092029호
이에 본 발명자들은 상기 문제를 해결하고자 다각적으로 연구를 수행한 결과, 리튬 이차전지, 바람직하게는 리튬-황 전지의 양극 제조용으로 사용되는 바인더 조성물에 아라비아검-시스테인 중합체를 첨가하면, 리튬-황 전지의 초기 방전 용량 및 수명 특성을 향상시킬 수 있음을 확인하여 본 발명을 완성하였다.
따라서, 본 발명의 목적은 리튬-황 전지의 초기 방전 용량 및 수명 특성을 향상시킬 수 있는 리튬 이차전지의 양극 제조용 바인더 조성물을 제공하는 것이다.
또한, 본 발명의 다른 목적은 상기 바인더 조성물을 포함하는 양극 및 이를 포함하는 리튬 이차전지를 제공하는 것이다.
상기 목적을 달성하기 위하여,
본 발명은 바인더, 증점제 및 아라비아검-시스테인 중합체를 포함하는 리튬 이차전지의 양극 제조용 바인더 조성물을 제공한다.
또한, 본 발명은 집전체; 및 상기 집전체의 적어도 일면에 배치된 양극 활물질층;을 포함하며,
상기 양극 활물질층은 상기 본 발명의 바인더 조성물, 양극 활물질 및 도전재를 포함하는 것을 특징으로 하는 리튬 이차전지용 양극을 제공한다.
또한, 본 발명은 상기 본 발명의 양극; 음극; 상기 양극과 음극 사이에 개재되는 분리막; 및 전해질을 포함하는 리튬 이차전지를 제공한다.
본 발명의 리튬 이차전지의 양극 제조용 바인더 조성물은 아라비아검-시스테인 중합체를 포함함에 따라, 이를 리튬 이차전지, 바람직하게는 리튬-황 전지에 적용시 전지의 초기 방전 용량 및 수명 특성 향상 효과를 얻을 수 있다.
이하, 본 발명을 보다 자세히 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표면을 포함한다. 본 발명에서, '포함하다' 또는 '가지다’등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에서 사용되고 있는 용어 "폴리설파이드"는 "폴리설파이드 이온(Sx 2-, x = 1~8)" 및 "리튬 폴리설파이드(Li2Sx 또는 LiSx - x = 1~8)"를 모두 포함하는 개념이다.
리튬 이차전지의 양극 제조용 바인더 조성물
본 발명은 바인더, 증점제 및 아라비아검-시스테인 중합체를 포함하는 리튬 이차전지의 양극 제조용 바인더 조성물에 관한 것이다.
종래의 바인더 및 증점제는 리튬 이차전지, 바람직하게는 리튬-황 전지에서 발생하는 리튬 폴리설파이드의 용출 조절과 같은 기능성을 확보할 수 없었으나, 본 발명의 바인더 조성물은 아라비아검-시스테인 중합체를 포함함에 따라 리튬 폴리설파이드를 흡착하여 용출을 조절할 수 있다. 그에 따라 이를 포함하는 리튬-황 전지의 양극 반응성이 증가될 수 있으며, 상기 양극을 포함하는 리튬-황 전지의 초기 방전 용량 및 수명 특성을 개선시킬 수 있다.
아라비아검(arabic gum)은 하기 화학식 1의 구조를 갖는다.
[화학식 1]
Figure PCTKR2023000851-appb-img-000001
또한, 시스테인(cysteine)은 하기 화학식 2의 구조를 갖는다.
[화학식 2]]
Figure PCTKR2023000851-appb-img-000002
상기 아라비아검-시스테인 중합체는 아라비아검과 시스테인(cysteine)을 중합(graft)하여 얻은 것으로, 하기 화학식 3의 구조를 가질 수 있다.
[화학식 3]
Figure PCTKR2023000851-appb-img-000003
상기 중합은 당 업계에서 사용되는 것이라면 그 방법을 특별히 한정하지는 않는다.
아라비아검은 비교적 넓은 pH 범위에서 안정적인 유화물을 얻을 수 있다. 상기 아라비아검과 시스테인을 중합하여 얻은 아라비아검-시스테인 중합체는 아라비아검의 구조적인 특성과 시스테인의 카르복실기(-COOH) 및 아민기(-NH2)로 인해 리튬-황 전지의 양극에서 발생하는 리튬 폴리설파이드를 흡착하여 리튬 폴리설파이드의 용출을 조절할 수 있다. 따라서, 이를 포함하는 바인더 조성물을 리튬 이차전지의 양극, 바람직하게는 리튬-황 전지의 양극 제조시 사용하면 양극 활물질층의 슬러리 물성을 유지하면서도 양극의 반응성을 증가시킬 수 있다. 그로 인하여 상기 양극을 포함하는 리튬-황 전지의 초기 방전 용량 및 수명 특성을 개선시킬 수 있다.
상기 아라비아검-시스테인 중합체는 중합체 총 중량에 대하여 아라비아검을 95 내지 99.9 중량%로 포함하며, 시스테인은 0.1 내지 5 중량%로 포함할 수 있다. 또한, 바람직하게는 아라비아검은 99 내지 99.9 중량%로 포함하며, 시스테인은 0.1 내지 1 중량%로 포함할 수 있다.
상기 아라비아검을 95 중량% 미만으로 포함하거나 시스테인을 5 중량%를 초과하여 포함하면 아라비아검의 구조적 특성을 발현시키기 어려워 양극 활물질층의 슬러리 물성을 유지하기 어려울 수 있으며, 아라비아검을 99.9 중량%를 초과하여 포함하거나 시스테인을 0.1 중량% 미만으로 포함하면 시스테인의 함량이 적어 리튬 폴리설파이드의 흡착 효과가 미미할 수 있다.
또한, 상기 아라비아검-시스테인 중합체는 바인더 조성물 총 중량에 대하여 10 내지 65 중량%, 바람직하게는 15 내지 60 중량%, 가장 바람직하게는 15 내지 30 중량%로 포함될 수 있다. 상기 아라비아검-시스테인 중합체가 10 중량% 미만으로 포함되면 리튬 폴리설파이드의 용출 조절과 같은 효과를 얻기 어려우며, 65 중량%를 초과하여 포함되면 이를 적용한 리튬-황 전지의 초기 방전시 과전압이 발생할 수 있다.
만약, 상기 아라비아검-시스테인 중합체를 바인더 조성물에서 바인더로 사용할 경우, 접착력이 매우 낮아 집전체 상에 상기 바인더 조성물을 포함하는 양극 활물질층을 형성할 수 없어 양극의 제조가 불가능하다.
상기 바인더는 양극의 구성성분 간의 접착력 및 양극 활물질과 양극 집전체와의 접착력을 향상시키기 위해 사용되는 물질로, 해당 기술 분야에서 일반적으로 사용되는 것이면 특별히 한정되지 않는다.
상기 바인더는 양극 제조용 슬러리 내에서 균일하게 분산될 수 있도록 에멀젼형 바인더가 사용될 수 있다. 상기 에멀젼형 바인더는 예를 들어, 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리부틸아크릴레이트, 폴리프로필아크릴레이트, 폴리에틸아크릴레이트, 폴리에틸헥실아크릴레이트, 폴리스티렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 이들 중 1종 이상을 포함하는 혼합물 및 이들 중 1종 이상을 중합한 공중합체로 이루어진 군으로부터 선택되는 것을 들 수 있다. 여기서 상기 공중합체는 각 고분자가 결합된 블록 공중합체 뿐만 아니라 각 고분자의 단량체가 혼합되어 결합된 랜덤 공중합체를 포함한다. 예를 들어, 본 명세서에서는 폴리에틸렌과 폴리프로필렌의 공중합체는 에틸렌-프로필렌 공중합체를 포함하는 개념으로 해석된다.
상기 바인더는 바인더 조성물 총 중량에 대하여 20 내지 60 중량%, 바람직하게는 25 내지 60 중량%, 가장 바람직하게는 40 내지 60 중량%로 포함될 수 있다. 상기 바인더가 20 중량% 미만으로 포함되면 양극의 구성 성분 간의 접착력 및 양극 활물질과 양극 집전체와의 접착력이 저하되며, 상기 바인더가 60 중량%를 초과하면 증점제 및 아라비아검-시스테인 중합체의 첨가제 따른 성능 개선 효과를 기대할 수 없다.
상기 증점제는 기본적으로 점도를 조절하기 위해 사용되는 것으로, 양극 제조용 슬러리의 물성, 나아가 리튬-황 전지의 물성 측면에서 바인더 및 아라비아검-시스테인 중합체과 함께 사용하기에 적절한 물질이 선택될 수 있다. 상기 증점제는 셀룰로오스계 고분자일 수 있고, 상기 셀룰로오스계 고분자는 카르복시메틸 셀룰로오스(carboxy methyl cellulose, CMC), 메틸 셀룰로오스(methyl cellulose, MC), 하이드록시프로필 셀룰로오스(hydroxypropyl cellulose, HPC), 메틸 하이드록시프로필 셀룰로오스(methyl hydroxypropyl cellulose, MHPC), 에틸 하이드록시에틸 셀룰로오스(ethyl hydroxyethyl cellulose, EHEC), 메틸 에틸 하이드록시에틸 셀룰로오스(methyl ethyl hydroxyethyl cellulose, MEHEC) 및 셀룰로오스 검(cellulose gum)으로 이루어진 군으로부터 선택되는 1종 이상인 것일 수 있다. 상기 증점제는 리튬화된 형태일 수 있으며, 본 발명에서는 바람직하게는 상기 증점제로 카르복시메틸 셀룰로오스가 사용될 수 있고, 상기 셀룰로오스계 고분자는 리튬화된 형태일 수 있다. 상기 셀룰로오스계 고분자는 수산화기 또는 카르복시기 등의 작용기를 포함하기 때문에, 상기 작용기의 수소를 리튬으로 치환하여 리튬화할 수 있고, 셀룰로오스계 고분자를 리튬화하는 경우, 추가적인 리튬 소스를 확보할 수 있어, 리튬-황 전지의 성능 개선에 도움이 된다.
상기 증점제는 바인더 조성물 총 중량에 대하여 15 내지 35 중량%, 바람직하게는 15 내지 30 중량%로 포함될 수 있다. 상기 증점제가 15 중량% 미만으로 포함되면 양극 제조용 슬러리의 점도가 낮아 양극 구성 성분의 균일한 분산과 이를 통한 기능성 확보에 용이하지 않으며, 35 중량%를 초과하여 포함되면 양극 제조용 슬러리의 유동성이 낮아져 양극 구성 성분의 균일한 분산과 이를 통한 기능성 확보에 용이하지 않다.
리튬 이차전지용 양극
본 발명은 집전체; 및 상기 집전체의 적어도 일면에 배치된 양극 활물질층;을 포함하며,
상기 양극 활물질층은 상술한 본 발명의 바인더 조성물, 양극 활물질 및 도전재를 포함하는 것을 특징으로 하는 리튬 이차전지용 양극에 관한 것이다.
상기 양극 활물질층에서 바인더 조성물은 양극의 구성 성분을 접착시키는 기본적인 기능성에 기초하여, 전지의 성능을 최대한 향상시킬 수 있는 방향으로 조절될 수 있다.
상기 바인더 조성물은 양극 활물질층에 포함되는 베이스 고형분 전체 100 중량%를 기준으로 3 내지 20 중량%, 바람직하게는 3 내지 15 중량%, 가장 바람직하게는 3 내지 10 중량%로 포함될 수 있다. 여기서, 베이스 고형분이란 양극 활물질층을 제조할 때 사용되는 양극 슬러리 조성물에서 용매를 제외한 양극 활물질, 도전제 및 바인더 조성물의 고체 성분을 의미한다. 증점제 및 아라비아검-시스테인 중합체를 통해 기능성이 보완됨에 따라, 바인더 조성물을 소량으로 사용해도 접착성 및 전지의 성능 측면에서 개선된 효과를 기대할 수 있다. 상기 바인더 조성물이 20 중량%를 초과하여 포함되면 상대적으로 양극 활물질의 함량이 감소하여 전지의 성능 개선 측면에서 바람직하지 못한다.
또한, 상기 바인더 조성물에 포함되는 아라비아검-시스테인 중합체는 양극 활물질층에 포함되는 베이스 고형분 전체 100 중량%를 기준으로 0.5 중량% 이상 10 중량% 미만, 바람직하게는 1 내지 5 중량%로 포함될 수 있다. 상기 아라비아검-시스테인 중합체를 0.5 중량% 미만으로 포함하면 리튬 폴리설파이드의 흡착 효과가 미미하여 양극의 반응성 향상을 기대할 수 없으며, 10 중량% 이상으로 포함하면 양극 활물질의 함량이 상대적으로 감소하고, 이를 포함하는 리튬-황 전지의 초기 방전시 과전압이 발생할 수 있다.
상기 양극 활물질은 황 원소(Elemental sulfur, S8), Li2Sn(n ≥ 1, n은 정수임), 유기 황 화합물, 탄소-황 폴리머[(C2Sx)n, 2.5 ≤ x ≤ 50, n ≥ 2, x 및 n은 정수임] 및 황-탄소 복합체로 이루어진 군에서 선택된 1종 이상을 포함할 수 있으며, 바람직하게는 황-탄소 복합체일 수 있다.
상기 황-탄소 복합체는 다공성 탄소재 및 상기 다공성 탄소재의 내부 및 외부 표면 중 적어도 일부에 황을 포함하는 것일 수 있다.
상기 황-탄소 복합체는 전술한 황이 균일하고 안정적으로 고정될 수 있는 골격을 제공할 뿐만 아니라 황의 낮은 전기 전도도를 보완하여 전기화학적 반응이 원활하게 진행될 수 있도록 다공성 탄소재를 포함한다.
상기 다공성 탄소재는 일반적으로 다양한 탄소 재질의 전구체를 탄화시킴으로써 제조될 수 있다. 상기 다공성 탄소재는 내부에 일정하지 않은 기공을 포함하며, 상기 기공의 평균 직경은 1 내지 200 ㎚ 범위이며, 기공도 또는 공극률은 다공 성 탄소재 전체 체적의 10 내지 90 % 범위일 수 있다. 만일 상기 기공의 평균 직경이 상기 범위 미만인 경우 기공 크기가 분자 수준에 불과하여 황의 함침이 불가능하며, 이와 반대로 상기 범위를 초과하는 경우 다공성 탄소재의 기계적 강도가 약화되어 전극의 제조공정에 적용하기에 바람직하지 않다.
상기 다공성 탄소재의 형태는 구형, 봉형, 침상형, 판상형, 튜브형 또는 벌크형으로 리튬 이차전지에 통상적으로 사용되는 것이라면 제한없이 사용될 수 있다.
상기 다공성 탄소재는 다공성 구조이거나, 비표면적이 높은 것으로 당업계에서 통상적으로 사용되는 것이라면 어느 것이든 무방하다. 예를 들어, 상기 다공성 탄소재로는 그래파이트(graphite); 그래핀(graphene); 덴카 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본 블랙; 단일벽 탄소 나노튜브(SWCNT), 다중벽 탄소 나노튜브(MWCNT) 등의 탄소 나노튜브(CNT); 그라파이트 나노파이버(GNF), 카본 나노파이버(CNF), 활성화 탄소 파이버(ACF) 등의 탄소 섬유; 천연 흑연, 인조 흑연, 팽창 흑연 등의 흑연 및 활성탄소로 이루어진 군으로부터 선택된 1종 이상일 수 있으나, 이에 제한되지 않는다. 바람직하기로 상기 다공성 탄소재는 탄소 나노튜브일 수 있다.
본 발명에 따른 황-탄소 복합체에서 상기 황은 상기 다공성 탄소재의 내부 및 외부 표면 중 적어도 어느 한 곳에 위치하며, 일례로 상기 다공성 탄소재의 내부 및 외부 전체 표면의 100 % 미만, 바람직하게는 1 내지 95 %, 보다 바람직하게는 40 내지 96 % 영역에 존재할 수 있다. 상기 황이 상기 다공성 탄소재의 내부 및 외부 표면에 상기 범위 내로 존재할 때 전자 전달 면적 및 전해질과의 젖음성 면에 서 최대 효과를 나타낼 수 있다. 구체적으로, 상기 황이 전술한 범위 영역에서 상기 다공성 탄소재의 내부 및 외부 표면에 얇고 고르게 함침되므로 충·방전 과정에서 전자 전달 접촉 면적을 증가시킬 수 있다. 만약, 상기 황이 상기 다공성 탄소재의 내부 및 외부 전체 표면의 100 % 영역에 위치하는 경우, 상기 다공성 탄소재가 완전히 황으로 덮여 전해질에 대한 젖음성이 떨어지고 접촉성이 저하되어 전자 전달을 받지 못해 전기화학 반응에 참여할 수 없게 된다.
상기 황-탄소 복합체는 황-탄소 복합체 100 중량%를 기준으로 상기 황을 65 내지 90 중량%, 바람직하기로 70 내지 85 중량%, 보다 바람직하기로 72 내지 80 중량%로 포함할 수 있다. 상기 황의 함량이 전술한 범위 미만인 경우 황-탄소 복합체 내 다공성 탄소재의 함량이 상대적으로 많아짐에 따라 비표면적이 증가하여 양극 제조 시에 바인더의 함량이 증가한다. 이러한 바인더의 사용량 증가는 결국 양극의 면저항을 증가시키고 전자 이동(electron pass)을 막는 절연체 역할을 하게 되어 전지의 성능을 저하시킬 수 있다. 이와 반대로 상기 황의 함량이 전술한 범위를 초과하는 경우 다공성 탄소재와 결합하지 못한 황이 그들끼리 뭉치거나 다공성 탄소재의 표면으로 재용출됨에 따라 전자를 받기 어려워져 전기화학적 반응에 참여하지 못하게 되어 전지의 용량 손실이 발생할 수 있다.
본 발명의 황-탄소 복합체의 제조방법은 본 발명에서 특별히 한정하지 않으며 당 업계에서 통상적으로 사용되는 방법이 사용될 수 있다. 일례로, 상기 황과 다공성 탄소재를 단순 혼합한 다음 열처리하여 복합화하는 방법이 사용될 수 있다.
상기 양극 활물질은 전술한 조성 이외에 전이금속 원소, ⅢA족 원소, ⅣA족 원소, 이들 원소들의 황 화합물, 및 이들 원소들과 황의 합금 중에서 선택되는 하나 이상의 첨가제를 더 포함할 수 있다.
상기 전이금속 원소로는 Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Os, Ir, Pt, Au 또는 Hg 등이 포함되고, 상기 ⅢA족 원소로는 Al, Ga, In, Ti 등이 포함되며, 상기 ⅣA족 원소로는 Ge, Sn, Pb 등이 포함될 수 있다.
본 발명의 리튬 이차전지용 양극에서 상기 양극 활물질은 양극 활물질층에 포함되는 베이스 고형분 전체 100 중량%를 기준으로 50 내지 95 중량%, 바람직하게는 70 내지 95 중량%, 보다 바람직하게는 85 내지 95 중량%로 포함할 수 있다. 상기 양극 활물질의 함량이 상기 범위 미만인 경우 전극의 전기화학적 반응을 충분하게 발휘하기 어렵고, 이와 반대로 상기 범위를 초과하는 경우 후술하는 전극의 물리적 성질이 저하되는 문제가 있다.
상기 도전재는 전해질과 양극 활물질을 전기적으로 연결시켜 주어 집전체(current collector)로부터 전자가 양극 활물질까지 이동하는 경로의 역할을 하는 물질로서, 도전성을 갖는 것이라면 제한없이 사용할 수 있다.
예를 들어 상기 도전재로는 슈퍼 P(Super-P), 덴카 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 카본 블랙 등의 카본 블랙; 탄소 나노튜브나 플러렌 등의 탄소 유도체; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 또는 폴리아닐린, 폴리티오펜, 폴리아세틸렌, 폴리피롤 등의 전도성 고분자를 단독 또는 혼합하여 사용할 수 있다.
상기 도전재의 함량은 양극 활물질층에 포함되는 베이스 고형분 전체 100 중량%를 기준으로 1 내지 10 중량%일 수 있다. 상기 도전재의 함량이 상기 범위 미만이면 양극 활물질과 집전체 간의 전자 전달이 용이하지 않아 전압 및 용량이 감소한다. 이와 반대로, 상기 범위 초과이면 상대적으로 양극 활물질의 비율이 감소하여 전지의 총 에너지(전하량)이 감소할 수 있으므로 상술한 범위 내에서 적정 함량을 결정하는 것이 바람직하다.
상기 양극 집전체는 양극 활물질을 지지하며, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니다. 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티타늄, 팔라듐, 소성 탄소, 구리나 스테인리스 스틸 표면에 카본, 니켈, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.
상기 양극 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질과의 결합력을 강화시킬 수 있으며, 필름, 시트, 호일, 메쉬, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태를 사용할 수 있다.
본 발명에서 상기 리튬 이차전지용 양극의 제조방법은 특별히 한정되지 않으며, 통상의 기술자에 의해 공지의 방법 또는 이를 변형하는 다양한 방법이 사용 가능하다.
일례로, 상기 리튬-황 전지용 양극은 상술한 바의 조성을 포함하는 양극 슬러리 조성물을 제조한 후, 이를 상기 양극 집전체에 적어도 일면에 도포함으로써 상기 양극 활물질층을 형성하여 제조된 것일 수 있다.
상기 양극 슬러리 조성물은 전술한 바의 양극 활물질층 조성물인, 양극 활물질, 바인더 조성물 및 도전재를 포함하며, 이외 첨가제 및 용매를 더 포함할 수 있다.
상기 용매는 양극 활물질, 바인더 조성물 및 도전재를 균일하게 분산시킬 수 있는 것을 사용한다. 이러한 용매로는 수계 용매로서 물이 가장 바람직하며, 이때 물은 증류수, 탈이온수일 수 있다. 다만 반드시 이에 한정하는 것은 아니며, 필요한 경우 물과 쉽게 혼합이 가능한 저급 알코올이 사용될 수 있다. 상기 저급 알코올로는 메탄올, 에탄올, 프로판올, 이소프로판올 및 부탄올 등이 있으며, 바람직하기로 이들은 물과 함께 혼합하여 사용될 수 있다.
상기 용매의 함량은 코팅을 용이하게 할 수 있는 정도의 농도를 갖는 수준으로 함유될 수 있으며, 구체적인 함량은 도포 방법 및 장치에 따라 달라진다.
상기 양극 슬러리 조성물은 필요에 따라 해당 기술분야에서 그 기능의 향상 등을 목적으로 통상적으로 사용되는 물질을 필요에 따라 추가적으로 포함할 수 있다. 예를 들어 점도 조정제, 유동화제, 충진제 등을 들 수 있다.
상기 양극 슬러리 조성물의 도포 방법은 본 발명에서 특별히 한정하지 않으며, 예컨대, 닥터 블레이드(doctor blade), 다이 캐스팅(die casting), 콤마 코팅(comma coating), 스크린 프린팅(screen printing) 등의 방법을 들 수 있다. 또한, 별도의 기재(substrate) 위에 성형한 후 프레싱(pressing) 또는 라미네이션(lamination) 방법에 의해 양극 슬러리를 양극 집전체 상에 도포할 수도 있다.
상기 도포 후, 용매 제거를 위한 건조 공정을 수행할 수 있다. 상기 건조 공정은 용매를 충분히 제거할 수 있는 수준의 온도 및 시간에서 수행하며, 그 조건은 용매의 종류에 따라 달라질 수 있으므로 본 발명에 특별히 제한되지 않는다. 일례로, 온풍, 열풍, 저습풍에 의한 건조, 진공 건조, (원)적외선 및 전자선 등의 조사에 의한 건조법을 들 수 있다. 건조 속도는 통상 응력 집중에 의해 양극 활물질층에 균열이 생기거나 양극 활물질층이 양극 집전체로부터 박리되지 않을 정도의 속도 범위 내에서 가능한 한 빨리 용매를 제거할 수 있도록 조정한다.
추가적으로, 상기 건조 후 집전체를 프레스함으로써 양극 내 양극 활물질의 밀도를 높일 수도 있다. 프레스 방법으로는 금형 프레스 및 롤 프레스 등의 방법을 들 수 있다.
전술한 바의 조성 및 제조방법으로 제조된 상기 양극, 구체적으로 양극 활물질층의 기공도는 50 내지 80 %, 바람직하기로 60 내지 75 %일 수 있다. 상기 양극의 기공도가 50 %에 미치지 못하는 경우에는 양극 활물질, 첨가제, 도전재 및 바인더를 포함하는 양극 슬러리 조성물의 충진도가 지나치게 높아져서 양극 활물질 사이에 이온전도 및/또는 전기 전도를 나타낼 수 있는 충분한 전해질이 유지될 수 없어 전지의 출력특성이나 사이클 특성이 저하될 수 있으며, 전지의 과전압 및 방전용량 감소가 심하게 되는 문제가 있다. 이와 반대로 상기 양극의 기공도가 80%를 초과하여 지나치게 높은 기공도를 갖는 경우 집전체와 물리적 및 전기적 연결이 낮아져 접착력이 저하되고 반응이 어려워지는 문제가 있으며, 양극 내부 기공에 전해질이 충진되어 전지의 에너지 밀도가 낮아질 수 있는 문제가 있으므로 상기 범위에서 적절히 조절한다.
리튬 이차전지
또한, 본 발명은 상술한 본 발명의 양극; 음극; 상기 양극과 음극 사이에 개재되는 분리막; 및 전해질을 포함하는 리튬 이차전지에 관한 것이다.
본 발명의 리튬 이차전지는 바람직하게는 리튬-황 전지일 수 있다.
상기 음극은 음극 집전체 및 상기 음극 집전체의 일면 또는 양면에 도포된 음극 활물질층을 포함할 수 있다. 또는 상기 음극은 리튬 금속판일 수 있다.
상기 음극 집전체는 음극 활물질층의 지지를 위한 것으로, 양극 집전체에서 설명한 바와 같다.
상기 음극 활물질층은 음극 활물질 이외에 도전재, 바인더 등을 포함할 수 있다. 이 때 상기 도전재 및 바인더는 전술한 바를 따른다.
상기 음극 활물질은 리튬 이온(Li+)을 가역적으로 삽입(intercalation) 또는 탈삽입(deintercalation)할 수 있는 물질, 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질, 리튬 금속 또는 리튬 합금을 포함할 수 있다.
상기 리튬 이온(Li+)을 가역적으로 삽입 또는 탈삽입할 수 있는 물질은 예컨대 결정질 탄소, 비정질 탄소 또는 이들의 혼합물일 수 있다. 상기 리튬 이온(Li+)과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질은 예를 들어, 산화주석, 티타늄나이트레이트 또는 실리콘일 수 있다. 상기 리튬 합금은 예를 들어, 리튬(Li)과 나트륨(Na), 칼륨(K), 루비듐(Rb), 세슘(Cs), 프랑슘(Fr), 베릴륨(Be), 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 라듐(Ra), 알루미늄(Al) 및 주석(Sn)으로 이루어지는 군에서 선택되는 금속의 합금일 수 있다.
바람직하게 상기 음극 활물질은 리튬 금속일 수 있으며, 구체적으로, 리튬 금속 박막 또는 리튬 금속 분말의 형태일 수 있다.
상기 양극과 음극 사이에는 분리막이 개재될 수 있다.
상기 분리막은 상기 양극과 음극을 서로 분리 또는 절연시키고, 양극과 음극 사이에 리튬이온 수송을 가능하게 하는 것으로 다공성 비전도성 또는 절연성 물질로 이루어질 수 있고, 통상 리튬 이차전지에서 분리막으로 사용되는 것이라면 특별 한 제한없이 사용 가능하다. 이러한 분리막은 필름과 같은 독립적인 부재일 수도 있고, 양극 및/또는 음극에 부가된 코팅층일 수도 있다.
상기 분리막으로는 전해질의 이온 이동에 대하여 저저항이면서 전해질에 대한 함습 능력이 우수한 것이 바람직하다.
상기 분리막은 다공성 기재로 이루어질 수 있는데 상기 다공성 기재는 통상적으로 이차전지에 사용되는 다공성 기재라면 모두 사용이 가능하고, 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 예를 들어, 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포 또는 폴리올레핀계 다공성 막을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 다공성 기재의 재질로는 본 발명에서 특별히 한정하지 않고, 통상적으로 전기화학소자에 사용되는 다공성 기재라면 모두 사용이 가능하다. 예를 들어, 상기 다공성 기재는 폴리에틸렌(polyethylene), 폴리프로필렌(polypropylene) 등의 폴리올레핀(polyolefin), 폴리에틸렌테레프탈레이트(polyethyleneterephthalate), 폴리부틸렌테레프탈레이트(polybutyleneterephthalate) 등의 폴리에스테르(polyester), 폴리아미드(polyamide), 폴리아세탈(polyacetal), 폴리카보네이트(polycarbonate), 폴리이미드(polyimide), 폴리에테르에테르케톤(polyetheretherketone), 폴리에테르설폰(polyethersulfone), 폴리페닐렌옥사이드(polyphenyleneoxide), 폴리페닐렌설파이드(polyphenylenesulfide), 폴리에틸렌나프탈렌(polyethylenenaphthalate), 폴리테트라플루오로에틸렌(polytetrafluoroethylene), 폴리비닐리덴 플루오라이드(polyvinylidene fluoride), 폴리염화비닐(polyvinyl chloride), 폴리아크릴로니트릴(polyacrylonitrile), 셀룰로오스(cellulose), 나일론(nylon), 폴리파라페닐렌벤조비스옥사졸(poly(p-phenylene benzobisoxazole) 및 폴리아릴레이트(polyarylate)로 이루어진 군에서 선택된 1종 이상의 재질을 포함할 수 있다.
상기 다공성 기재의 두께는 특별히 제한되지 않으나, 1 내지 100 ㎛, 바람직하게는 5 내지 50 ㎛일 수 있다. 상기 다공성 기재의 두께 범위가 전술한 범위로 한정되는 것은 아니지만, 두께가 전술한 하한보다 지나치게 얇을 경우에는 기계적 물성이 저하되어 전지 사용 중 분리막이 쉽게 손상될 수 있다.
상기 다공성 기재에 존재하는 기공의 평균 직경 및 기공도 역시 특별히 제한되지 않으나 각각 0.001 내지 50 ㎛ 및 10 내지 95 %일 수 있다.
상기 전해질은 리튬 이온을 포함하며, 이를 매개로 양극과 음극에서 전기 화학적인 산화 또는 환원 반응을 일으키기 위한 것이다.
상기 전해질은 리튬 금속과 반응하지 않는 비수 전해액 또는 고체 전해질이 가능하나 바람직하게는 비수 전해질이고, 전해질 염 및 유기 용매를 포함한다.
상기 비수 전해액에 포함되는 전해질 염은 리튬염이다. 상기 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것이라면 제한없이 사용될 수 있다. 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, (CF3SO2)2NLi, LiN(SO2F)2, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4-페닐 붕산 리튬, 리튬 이미드 등이 사용될 수 있다.
상기 리튬염의 농도는 전해질 용매 혼합물의 정확한 조성, 염의 용해도, 용 해된 염의 전도성, 전지의 충전 및 전 조건, 작업 온도 및 리튬 배터리 분야에 공지된 다른 요인과 같은 여러 요인에 따라, 0.2 내지 2 M, 구체적으로 0.4 내지 2M, 더욱 구체적으로 0.4 내지 1.7 M일 수 있다. 상기 리튬염의 농도가 0.2 M 미만으로 사용하면 전해질의 전도도가 낮아져서 전해질 성능이 저하될 수 있고, 2 M을 초과하여 사용하면 전해질의 점도가 증가하여 리튬 이온의 이동성이 감소될 수 있다.
상기 비수 전해액에 포함되는 유기 용매로는 리튬 이차전지용 전해액에 통상적으로 사용되는 것들을 제한 없이 사용할 수 있으며, 예를 들면 에테르, 에스테르, 아미드, 선형 카보네이트, 환형 카보네이트 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다. 그 중에서 대표적으로는 에테르계 화합물을 포함할 수 있다.
상기 에테르계 화합물은 비환형 에테르 및 환형 에테르를 포함할 수 있다.
예를 들어, 상기 비환형 에테르로는 디메틸 에테르, 디에틸 에테르, 디프로필 에테르, 메틸에틸 에테르, 메틸프로필 에테르, 에틸프로필 에테르, 디메톡시에탄, 디에톡시에탄, 에틸렌글리콜 에틸메틸에테르, 디에틸렌 글리콜 디메틸 에테르, 디에틸렌 글리콜 디에틸 에테르, 디에틸렌 글리콜 메틸에틸 에테르, 트리에틸렌 글리콜 디메틸 에테르, 트리에틸렌 글리콜 디에틸 에테르, 트리에틸렌 글리콜 메틸에틸 에테르, 테트라에틸렌 글리콜 디메틸 에테르, 테트라에틸렌 글리콜 디에틸 에테르, 테트라에틸렌 글리콜 메틸에틸 에테르, 폴리에틸렌 글리콜 디메틸 에테르, 폴리에틸렌 글리콜 디에틸 에테르, 폴리에틸렌 글리콜 메틸에틸 에테르로 이루어진 군에서 선택되는 1종 이상이 사용될 수 있으나, 이에 한정되는 것은 아니다.
일례로, 상기 환형 에테르는 1,3-디옥솔란, 4,5-디메틸-디옥솔란, 4,5-디에틸-디옥솔란, 4-메틸-1,3-디옥솔란, 4-에틸-1,3-디옥솔란, 테트라하이드로퓨란, 2-메틸테트라하이드로퓨란, 2,5-디메틸테트라하이드로퓨란, 2,5-디메톡시테트라하이드로퓨란, 2-에톡시테트라하이드로퓨란, 2-메틸-1,3-디옥솔란, 2-비닐-1,3-디옥솔란, 2,2-디메틸-1,3-디옥솔란, 2-메톡시-1,3-디옥솔란, 2-에틸-2-메틸-1,3-디옥솔란, 테트라하이드로파이란, 1,4-디옥산, 1,2-디메톡시 벤젠, 1,3-디메톡시 벤젠, 1,4-디메톡시 벤젠, 아이소소바이드 디메틸 에테르(isosorbide dimethyl ether)로 이루어진 군에서 선택되는 1종 이상이 사용될 수 있으나, 이에 한정되는 것은 아니다.
상기 유기 용매 중 에스테르로는 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오 네이트, 에틸 프로피오네이트, 프로필 프로피오네이트, γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤 및 ε-카프로락톤으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 선형 카보네이트 화합물의 구체적인 예로는 디메틸 카보네이트(DMC), 디에틸 카보네이트(DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다.
또한 상기 환형 카보네이트 화합물의 구체적인 예로는 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트, 비닐에틸렌 카보네이트 및 이들의 할로겐화물로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물이 있다. 이들의 할로겐화물로는 예를 들면, 플루오로에틸렌 카보네이트(fluoroethylene carbonate, FEC) 등이 있으며, 이에 한정되는 것은 아니다.
상기 전해질은 전술한 전해질 염과 유기 용매 이외에 첨가제로서 질산 또는 아질산계 화합물을 더 포함할 수 있다. 상기 질산 또는 아질산계 화합물은 음극인 리튬 금속 전극에 안정적인 피막을 형성하고 충방전 효율을 향상시키는 효과가 있다.
이러한 질산 또는 아질산계 화합물로는 본 발명에서 특별히 한정하지는 않으나, 질산리튬(LiNO3), 질산칼륨(KNO3), 질산세슘(CsNO3), 질산바륨(Ba(NO3)2), 질산암모늄(NH4NO3), 아질산리튬(LiNO2), 아질산칼륨(KNO2), 아질산세슘(CsNO2), 아질산암모늄(NH4NO2) 등의 무기계 질산 또는 아질산 화합물; 메틸 니트레이트, 디알킬 이미다졸륨 니트레이트, 구아니딘 니트레이트, 이미다졸륨 니트레이트, 피리디늄 니트레이트, 에틸 니트라이트, 프로필 니트라이트, 부틸 니트라이트, 펜틸 니트라이트, 옥틸 니트라이트 등의 유기계 질산 또는 아질산 화합물; 니트로메탄, 니트로프로판, 니트로부탄, 니트로벤젠, 디니트로벤젠, 니트로 피리딘, 디니트로피리딘, 니트로톨루엔, 디니트로톨루엔 등의 유기 니트로 화합물 및 이들의 조합으로 이루어진 군에서 선택된 1종이 가능하며, 바람직하게는 질산리튬을 사용한다.
상기 전해질의 주입은 최종 제품의 제조 공정 및 요구 물성에 따라, 전기화학소자의 제조 공정 중 적절한 단계에서 행해질 수 있다. 즉, 전기화학소자 조립 전 또는 전기화학소자 조립 최종 단계 등에서 적용될 수 있다.
본 발명에 따른 리튬 이차전지는 일반적인 공정인 권취(winding) 이외에도 분리막과 전극의 적층(lamination, stack) 및 접음(folding) 공정이 가능하다.
상기 리튬 이차전지의 형상은 특별히 제한되지 않으며, 원통형, 적층형, 코인형 등 다양한 형상으로 할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
<리튬-황 전지 제조>
실시예 1.
아라비아검(대정화금 제품) 및 시스테인을 99:1의 중량비로 혼합하여 아라비아검-시스테인 중합체를 제조하였다.
바인더로 부틸 아크릴레이트-스티렌 공중합체(엘지화학 제품), 증점제로 리튬화된 카르복시메틸 셀룰로오스(지엘켐(GBLi-1000) 제품) 및 상기 아라비아검-시스테인 중합체를 혼합하여 바인더 조성물을 제조하였다.
또한, 황(Sigma-Aldrich 제품)을 CNT(Carbon Nanotube)와 함께 볼 밀을 사용하여 75:25의 중량비로 혼합 후 155℃에서 열처리하여 황-탄소 복합체의 양극 활물질을 제조하였다.
도전재로는 덴카 블랙(Denka black)를 준비하였다.
상기 황-탄소 복합체, 도전재 및 바인더 조성물(바인더, 증점제 및 아라비아검-시스테인 중합체)을 용매인 물에 첨가하고, 비드 밀링(beads milling) 방식으로 혼합하여 양극 제조용 슬러리를 제조하였다. 이 때, 혼합 비율은 중량비로 양극 활물질 : 도전재 : 바인더 : 증점제 : 아라비아검-시스테인 중합체가 90 : 5 : 2.5 : 1.5 : 1이 되도록 하였다. 제조한 양극 제조용 슬러리를 알루미늄 호일 집전체에 도포한 후 50℃에서 2시간 건조하여 양극을 제조하였다 (양극의 에너지 밀도: 5.5mAh/㎠).
음극으로 100μm 두께의 리튬 호일을 사용하고, 분리막으로 20μm 두께의 폴리에틸렌막을 사용하였다. 전해질로는 디옥솔란(DOL) 및 디메틸에테르(DME)의 혼합용매(1:1 v/v)에 LiTFSI를 1M 농도로 혼합하고, LiNO3를 전해액 대비 1중량% 로 첨가한 전해질을 사용하여 리튬-황 전지(CR-2032 코인 셀)를 제조하였다.
실시예 2.
양극 활물질 : 도전재 : 바인더 : 증점제 : 아라비아검-시스테인 중합체를 86 : 5 : 2.5 : 1.5 : 5의 중량비로 사용한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 리튬-황 전지를 제조하였다.
실시예 3.
양극 활물질 : 도전재 : 바인더 : 증점제 : 아라비아검-시스테인 중합체를 80 : 5 : 2.5 : 1.5 : 10의 중량비로 사용한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 리튬-황 전지를 제조하였다.
실시예 4.
아라비아검(대정화금 제품) 및 시스테인을 95:5의 중량비로 혼합하여 아라비아검-시스테인 중합체를 제조한 것을 제외하고는 상기 실시예 3과 동일하게 실시하여 리튬-황 전지를 제조하였다.
비교예 1.
아라비아검-시스테인 중합체를 사용하지 않았으며, 양극 활물질 : 도전재 : 바인더 : 증점제를 91 : 5 : 2.5 : 1.5의 중량비로 사용한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 리튬-황 전지를 제조하였다.
비교예 2.
아라비아검-시스테인 중합체 대신에 아라비아검을 사용한 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 리튬-황 전지를 제조하였다.
실험예 1. 리튬-황 전지의 특성 평가
상기 실시예 1 내지 4 및 비교예 1 내지 2의 리튬-황 전지의 초기 방전 용량 및 수명 특성을 측정하였다.
상기 각각의 리튬-황 전지를 1.8 내지 2.5V의 전압 범위 내에서 0.1C 방전/충전 3회, 0.3C 방전/충전 3회 실시하고, 0.3C 충전 및 0.5C 방전을 실시하였다.
전지의 사이클 성능은 1000mAh/gS 이하로 되는 시점의 사이클 횟수로 평가하였다.
초기 방전 용량 및 수명 특성 측정 결과를 하기 표 1에 나타내었다.
아라비아검-시스테인 중합체 함량 초기 방전 용량
(mAh/gS)
사이클 횟수
(cycle)
실시예 1 1 중량%(99:1) 1273 121
실시예 2 5 중량%(99:1) 1277 98
실시예 3 10 중량%(99:1) 1240 98
실시예 4 10 중량%(95:5) 1220 87
비교예 1 - 1145 87
비교예 2 아라비아검 1 중량% 1085 75
표 1의 결과에서, 아라비아검-시스테인 중합체를 포함하는 실시예 1 내지 4의 리튬-황 전지는 이를 포함하지 않는 비교예 1 및 아라비아검을 포함하는 비교예 2의 리튬-황 전지 보다 초기 방전 용량이 우수한 결과를 보였다. 또한, 실시예 1 내지 3은 비교예 1 및 2 보다 수명 특성도 우수한 결과를 보였다. 실시예 3은 아라비아검-시스테인 중합체를 양극 활물질층에 포함되는 베이스 고형분 전체 100 중량%를 기준으로 10 중량%로 포함하고 있는 것으로, 초기 방전 용량이 실시예 1 및 2 보다 낮은 결과를 보였다. 또한, 실시예 4는 아라비아검-시스테인 중합체를 양극 활물질층에 포함되는 베이스 고형분 전체 100 중량%를 기준으로 10 중량%로 포함하며, 아라비아검 및 시스테인이 95:5의 중량비로 중합된 것으로, 초기 방전 용량이 실시예 중 가장 낮은 결과를 보였으며, 사이클 횟수는 비교예 1과 동일한 결과를 보였다.
비교예 2는 아라비아검-시스테인 중합체 대신 아라비아검만을 포함하는 것으로, 상기 아라비아검은 시스테인을 포함하지 않아 시스테인의 카르복실기 및 아민기가 리튬 폴리설파이드를 흡착하는 효과를 얻을 수 없으므로, 아라비아검-시스테인 중합체를 포함하는 실시예 1 내지 4 보다 초기 방전용량 및 사이클 횟수가 모두 낮은 결과를 보였다.
이로부터 아라비아검-시스테인 중합체를 포함하는 바인더 조성물을 사용하고, 이를 리튬-황 전지의 양극에 적용하면 리튬 폴리설파이드를 흡착하여 양극의 반응성이 증가되고, 이를 포함하는 리튬-황 전지의 초기 방전 용량이 개선된다는 것을 알 수 있었다. 또한, 바람직하게는 아라비아검-시스테인 중합체를 양극 활물질층에 포함되는 베이스 고형분 전체 100 중량%를 기준으로 1 중량% 이상 10 중량% 미만으로 포함하면 리튬-황 전지의 초기 방전 용량뿐만 아니라 수명 특성까지 개선시킬 수 있음을 알 수 있었다.

Claims (12)

  1. 바인더, 증점제 및 아라비아검-시스테인 중합체를 포함하는 리튬 이차전지의 양극 제조용 바인더 조성물.
  2. 제1항에 있어서,
    상기 아라비아검-시스테인 중합체는 중합체 총 중량에 대하여 아라비아검 95 내지 99.9 중량% 및 시스테인 0.1 내지 5 중량%로 포함하는 것을 특징으로 하는 리튬 이차전지의 양극 제조용 바인더 조성물.
  3. 제1항에 있어서,
    상기 바인더 조성물은 조성물 총 중량에 대하여 바인더 20 내지 60 중량%, 증점제 15 내지 35 중량% 및 아라비아검-시스테인 중합체 10 내지 65 중량%를 포함하는 것을 특징으로 하는 리튬 이차전지의 양극 제조용 바인더 조성물.
  4. 제1항에 있어서,
    상기 증점제는 리튬화된 형태인 것을 특징으로 하는 리튬 이차전지의 양극 제조용 바인더 조성물.
  5. 제1항에 있어서,
    상기 바인더는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴, 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리부틸아크릴레이트, 폴리프로필아크릴레이트, 폴리에틸아크릴레이트, 폴리에틸헥실아크릴레이트, 폴리스티렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 이들 중 1종 이상을 포함하는 혼합물 및 이들 중 1종 이상을 중합한 공중합체로 이루어진 군으로부터 선택되는 것을 특징으로 하는 리튬 이차전지의 양극 제조용 바인더 조성물.
  6. 제1항에 있어서,
    상기 증점제는 카르복시메틸 셀룰로오스, 메틸 셀룰로오스, 하이드록시프로필 셀룰로오스, 메틸 하이드록시프로필 셀룰로오스, 에틸 하이드록시에틸 셀룰로오스, 메틸 에틸 하이드록시에틸 셀룰로오스 및 셀룰로오스 검으로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 리튬 이차전지의 양극 제조용 바인더 조성물.
  7. 집전체; 및 상기 집전체의 적어도 일면에 배치된 양극 활물질층;을 포함하며,
    상기 양극 활물질층은 제1항 내지 제6항 중 어느 한 항의 바인더 조성물, 양극 활물질 및 도전재를 포함하는 것을 특징으로 하는 리튬 이차전지용 양극.
  8. 제7항에 있어서,
    상기 바인더 조성물은 양극 활물질층에 포함되는 베이스 고형분 전체 100 중량%를 기준으로 3 내지 20 중량%로 포함되는 것을 특징으로 하는 리튬 이차전지용 양극.
  9. 제7항에 있어서,
    상기 아라비아검-시스테인 중합체는 양극 활물질층에 포함되는 베이스 고형분 전체 100 중량%를 기준으로 0.5 중량% 이상 10 중량% 미만으로 포함되는 것을 특징으로 하는 리튬 이차전지용 양극.
  10. 제7항에 있어서,
    상기 양극 활물질은 황 원소(Elemental sulfur, S8), Li2Sn(n ≥ 1, n은 정수임), 유기 황 화합물, 탄소-황 폴리머[(C2Sx)n, 2.5 ≤ x ≤ 50, n ≥ 2, x 및 n은 정수임] 및 황-탄소 복합체로 이루어진 군에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 리튬 이차전지용 양극.
  11. 제7항 내지 제10항 중 어느 한 항의 양극; 음극; 상기 양극과 음극 사이에 개재되는 분리막; 및 전해질을 포함하는 리튬 이차전지.
  12. 제11항에 있어서,
    상기 리튬 이차전지는 리튬-황 전지인 것을 특징으로 하는 리튬 이차전지.
PCT/KR2023/000851 2022-01-20 2023-01-18 리튬 이차전지의 양극 제조용 바인더 조성물, 및 이에 의해 제조된 리튬 이차전지의 양극 WO2023140607A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202380010354.1A CN116964785A (zh) 2022-01-20 2023-01-18 用于制造锂二次电池用正极的粘合剂组合物和由此制造的锂二次电池用正极
EP23743454.3A EP4287325A1 (en) 2022-01-20 2023-01-18 Binder composition for manufacturing lithium secondary battery cathode, and lithium secondary battery cathode manufactured thereby
JP2023554045A JP2024509221A (ja) 2022-01-20 2023-01-18 リチウム二次電池の正極製造用バインダー組成物、及びこれによって製造されたリチウム二次電池の正極
US18/282,498 US20240178395A1 (en) 2022-01-20 2023-01-18 Binder composition for positive electrode of lithium secondary battery, and positive electrode of lithium secondary battery manufactured therewith

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220008331 2022-01-20
KR10-2022-0008331 2022-01-20
KR10-2023-0006616 2023-01-17
KR1020230006616A KR20230112548A (ko) 2022-01-20 2023-01-17 리튬 이차전지의 양극 제조용 바인더 조성물, 및 이에 의해 제조된 리튬 이차전지의 양극

Publications (1)

Publication Number Publication Date
WO2023140607A1 true WO2023140607A1 (ko) 2023-07-27

Family

ID=87349006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/000851 WO2023140607A1 (ko) 2022-01-20 2023-01-18 리튬 이차전지의 양극 제조용 바인더 조성물, 및 이에 의해 제조된 리튬 이차전지의 양극

Country Status (4)

Country Link
US (1) US20240178395A1 (ko)
EP (1) EP4287325A1 (ko)
JP (1) JP2024509221A (ko)
WO (1) WO2023140607A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020092029A (ko) 2001-06-01 2002-12-11 삼성에스디아이 주식회사 리튬-황 전지
CN105470518A (zh) * 2015-11-24 2016-04-06 青岛能迅新能源科技有限公司 一种锂硫电池硫正极浆料及其制备方法、锂硫电池的制备方法
KR20160142823A (ko) * 2014-02-21 2016-12-13 허큘레스 엘엘씨 리튬 이온 배터리를 위한 개질된 구아란 결합제
KR20200036177A (ko) * 2018-09-28 2020-04-07 주식회사 엘지화학 리튬 이차전지의 양극 제조용 바인더 조성물, 및 이에 의해 제조된 리튬 이차전지의 양극
KR20210015499A (ko) * 2019-08-02 2021-02-10 주식회사 엘지화학 양극 접착력 개선용 바인더, 이를 포함하는 리튬 이차전지용 양극 및 상기 양극을 포함하는 리튬 이차전지
KR20220008331A (ko) 2019-06-20 2022-01-20 무라다기카이가부시끼가이샤 반송차
KR20230006616A (ko) 2021-07-03 2023-01-10 주식회사 디에이치산업 열간압연을 이용한 부품 정밀 가공 방법 및 그 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020092029A (ko) 2001-06-01 2002-12-11 삼성에스디아이 주식회사 리튬-황 전지
KR20160142823A (ko) * 2014-02-21 2016-12-13 허큘레스 엘엘씨 리튬 이온 배터리를 위한 개질된 구아란 결합제
CN105470518A (zh) * 2015-11-24 2016-04-06 青岛能迅新能源科技有限公司 一种锂硫电池硫正极浆料及其制备方法、锂硫电池的制备方法
KR20200036177A (ko) * 2018-09-28 2020-04-07 주식회사 엘지화학 리튬 이차전지의 양극 제조용 바인더 조성물, 및 이에 의해 제조된 리튬 이차전지의 양극
KR20220008331A (ko) 2019-06-20 2022-01-20 무라다기카이가부시끼가이샤 반송차
KR20210015499A (ko) * 2019-08-02 2021-02-10 주식회사 엘지화학 양극 접착력 개선용 바인더, 이를 포함하는 리튬 이차전지용 양극 및 상기 양극을 포함하는 리튬 이차전지
KR20230006616A (ko) 2021-07-03 2023-01-10 주식회사 디에이치산업 열간압연을 이용한 부품 정밀 가공 방법 및 그 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QI QI, DENG YAQIAN, GU SICHEN, GAO MIN, HASEGAWA JUN-YA, ZHOU GUANGMIN, LV XIAOHUI, LV WEI, YANG QUAN-HONG: "l-Cysteine-Modified Acacia Gum as a Multifunctional Binder for Lithium–Sulfur Batteries", APPLIED MATERIALS & INTERFACES, AMERICAN CHEMICAL SOCIETY, US, vol. 11, no. 51, 26 December 2019 (2019-12-26), US , pages 47956 - 47962, XP093079789, ISSN: 1944-8244, DOI: 10.1021/acsami.9b17458 *

Also Published As

Publication number Publication date
JP2024509221A (ja) 2024-02-29
EP4287325A1 (en) 2023-12-06
US20240178395A1 (en) 2024-05-30

Similar Documents

Publication Publication Date Title
WO2022060021A1 (ko) 리튬 금속 전극의 제조방법, 이에 의해 제조된 리튬 금속 전극, 및 이를 포함하는 리튬 이차 전지
WO2019212153A1 (ko) 리튬-황 전지용 전해질 용액 및 이를 포함하는 리튬-황 전지
WO2022164107A1 (ko) 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지
WO2019088628A2 (ko) 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
WO2020105981A1 (ko) 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지
WO2022035120A1 (ko) 리튬-황 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬-황 전지
WO2021172879A1 (ko) 리튬 금속 음극의 제조방법, 이에 의해 제조된 리튬 금속 음극 및 이를 포함하는 리튬-황 전지
WO2021210814A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2023121368A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2022211282A1 (ko) 리튬 이차전지
WO2022149913A1 (ko) 황-탄소 복합체, 이의 제조방법, 및 이를 포함하는 리튬-황 전지
WO2021177723A1 (ko) 리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지
WO2020226321A1 (ko) 리튬 이차전지용 분리막 및 이를 포함하는 리튬 이차전지
KR20220136099A (ko) 리튬 이차전지
WO2022092701A1 (ko) 고리형 카보네이트를 함유하는 전해질을 포함하는 리튬-황 이차전지
WO2023140607A1 (ko) 리튬 이차전지의 양극 제조용 바인더 조성물, 및 이에 의해 제조된 리튬 이차전지의 양극
WO2020009333A1 (ko) 황-탄소 복합체, 이의 제조방법, 이를 포함하는 리튬-황 전지용 양극 및 리튬-황 전지
WO2023068621A1 (ko) 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
WO2023287110A1 (ko) 리튬 이차전지
WO2022265234A1 (ko) 리튬-황 전지용 양극 및 이를 포함하는 리튬-황 전지
WO2021194231A1 (ko) 리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지
WO2023282680A1 (ko) 리튬-황 전지용 양극 및 이를 포함하는 리튬-황 전지
WO2021210854A1 (ko) 리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지
WO2022114693A1 (ko) 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지
WO2022255630A1 (ko) 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023743454

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 202380010354.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023554045

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743454

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18282498

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2023743454

Country of ref document: EP

Effective date: 20230828