WO2023140165A1 - 多価アルコール類の製造方法 - Google Patents

多価アルコール類の製造方法 Download PDF

Info

Publication number
WO2023140165A1
WO2023140165A1 PCT/JP2023/000562 JP2023000562W WO2023140165A1 WO 2023140165 A1 WO2023140165 A1 WO 2023140165A1 JP 2023000562 W JP2023000562 W JP 2023000562W WO 2023140165 A1 WO2023140165 A1 WO 2023140165A1
Authority
WO
WIPO (PCT)
Prior art keywords
producing
reaction
crude reaction
mass
polyhydric alcohols
Prior art date
Application number
PCT/JP2023/000562
Other languages
English (en)
French (fr)
Inventor
直登 田島
和明 角南
宏樹 日石
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to KR1020247024557A priority Critical patent/KR20240125650A/ko
Priority to CN202380017896.1A priority patent/CN118574806A/zh
Priority to JP2023504436A priority patent/JP7501778B2/ja
Publication of WO2023140165A1 publication Critical patent/WO2023140165A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/14Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group
    • C07C29/141Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C35/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C35/22Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring polycyclic, at least one hydroxy group bound to a condensed ring system
    • C07C35/37Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring polycyclic, at least one hydroxy group bound to a condensed ring system with a hydroxy group on a condensed system having three rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/58Ring systems containing bridged rings containing three rings
    • C07C2603/60Ring systems containing bridged rings containing three rings containing at least one ring with less than six members
    • C07C2603/66Ring systems containing bridged rings containing three rings containing at least one ring with less than six members containing five-membered rings

Definitions

  • the present invention relates to a method for producing polyhydric alcohols, which comprises distilling and purifying a crude reaction liquid obtained by subjecting a polyhydric aldehyde having an alicyclic structure as a starting material to a reduction reaction.
  • a method of producing polyhydric alcohols by conducting a reduction reaction in the presence of a hydrogenation catalyst and hydrogen using a polyhydric aldehyde as a starting material is known.
  • a method of synthesizing tricyclodecanedimethanol as a polyhydric alcohol by hydrogenating (hydrogenating) dicyclopentadiene as a polyhydric alcohol after hydroformylating it to obtain tricyclodecane dicarbaldehyde as a polyhydric aldehyde Patent Document 1.
  • Distillation is used industrially as a method for purifying the target high-boiling-point alcohol from crude products containing high-boiling-point alcohols as polyhydric alcohols.
  • the number of stages in the distillation column is increased in order to separate and recover high-purity polyhydric alcohols from the crude product, and the bottom temperature of the distillation column must be increased.
  • the polyhydric alcohol is thermally decomposed, resulting in a decrease in the product recovery rate or contamination of the product with thermally decomposed products.
  • Patent Document 1 discloses a technique of adding a sulfur compound to the crude product to suppress the thermal decomposition of the high boiling point alcohol.
  • Patent Document 2 discloses a technique of adding an alkaline earth metal compound to the crude product to make the aldehyde condensate heavy and suppressing distillation in order to separate the aldehyde condensate and the high boiling point alcohol, which have similar boiling points, thereby shortening the heating time and suppressing the thermal decomposition of the high boiling point alcohol.
  • Patent Document 3 discloses a technique in which, in order to separate aldehyde condensates and high boiling point alcohols having similar boiling points, an acid is added to the crude product to make the aldehyde condensates heavy to suppress distillation, thereby shortening the heating time and suppressing the thermal decomposition of the high boiling point alcohols.
  • Patent Documents 4 and 5 disclose techniques for suppressing the decomposition of high-boiling-point alcohols by filtering the hydrogenation catalyst in the crude reaction liquid using a filter.
  • Patent Document 3 With the technology disclosed in Patent Document 3, there is a risk that the added acid will corrode the reactor and process piping.
  • additives such as sulfur compounds, alkaline earth metals, acids, etc. may be mixed into high-boiling-point alcohol products after distillation to contaminate the products. Furthermore, the use of the additive requires equipment for supplying the additive and, in some cases, equipment for removing the additive, which poses problems of complicating the manufacturing process and increasing the manufacturing cost.
  • the purpose of the present invention is to solve these problems.
  • An object of the present invention is to provide a method for producing polyhydric alcohols that can separate and recover high-purity polyhydric alcohols at a high yield by suppressing thermal decomposition of the polyhydric alcohols when distilling and refining the crude reaction liquid obtained by performing a reduction reaction using polyhydric aldehydes having an alicyclic structure as starting materials.
  • the present inventor found that the above problem can be solved by setting the content of the metal element contained in the crude reaction liquid before distillation to a predetermined value or less.
  • the gist of the present invention is as follows.
  • a method for producing a polyhydric alcohol comprising distilling and purifying a crude reaction liquid obtained by subjecting a polyhydric aldehyde having an alicyclic structure as a starting material to a reduction reaction, A method for producing polyhydric alcohols, wherein the distillation purification is performed after the content of the metal element in the crude reaction liquid is adjusted to 30 ppm by mass or less.
  • the present invention it is possible to suppress thermal decomposition of polyhydric alcohols and to separate and recover high-purity polyhydric alcohols at a high yield when distilling and refining a crude reaction liquid obtained by performing a reduction reaction using polyhydric aldehydes having an alicyclic structure as a starting material. Furthermore, according to the present invention, it is possible to perform distillation purification without using additives such as sulfur compounds, alkaline earth metals, acids, etc. disclosed in Patent Documents 1 to 3, so that the product polyhydric alcohols can be prevented from being mixed with additives, corrosion of manufacturing equipment, and an increase in manufacturing costs.
  • additives such as sulfur compounds, alkaline earth metals, acids, etc.
  • the method for producing polyhydric alcohols of the present invention is a method for producing polyhydric alcohols, which comprises distilling and refining a crude reaction liquid obtained by performing a reduction reaction using polyhydric aldehydes having an alicyclic structure as a starting material.
  • polyhydric alcohols refer to alcohols having two or more hydroxyl groups in the molecule.
  • Polyhydric aldehydes having an alicyclic structure which are starting materials for synthesizing polyhydric alcohols in the present invention, are polyhydric aldehydes having a structure having one or more cyclic hydrocarbon groups.
  • polyhydric aldehydes refer to aldehydes having two or more aldehyde groups in the molecule.
  • polyhydric aldehydes include polyhydric aldehydes having 6 to 20 carbon atoms, more preferably 8 to 12 carbon atoms, optionally having substituents or heteroatoms, and having an alicyclic or aromatic skeleton. More specifically, alicyclic dialdehydes such as 1,3-cyclohexanedicarbaldehyde or 1,4-cyclohexanedicarbaldehyde, 3(4),8(9)-tricyclo[5.2.1.0]decanedicarbaldehyde, 2(3),5(6)-bicyclo[2.2.1]heptanedicarbaldehyde; or aromatic dialdehydes such as terephthalaldehyde and isophthalaldehyde. Polyhydric aldehydes are not limited to these.
  • corresponding alicyclic diols such as 1,3-cyclohexanedimethanol or 1,4-cyclohexanedimethanol, 3(4),8(9)-tricyclo[5.2.1.0]decanedimethanol, 2(3),5(6)-bicyclo[2.2.1]heptanedimethanol; or aromatic diols such as p-xylenediol and m-xylenediol are produced.
  • Aromatic diols to be produced are not limited to these.
  • polyhydric alcohols having a boiling point of 300°C or higher under normal pressure are effective as the above polyhydric alcohols having an alicyclic structure.
  • the reduction reaction can be carried out in the presence of a hydrogenation catalyst and hydrogen.
  • transition metal catalysts belonging to the 4th and/or 5th periods of the long period periodic table are preferred.
  • Raney catalysts such as Raney nickel, Raney cobalt, and Raney copper
  • supported catalysts in which hydrogenation-active metals such as nickel, cobalt, platinum, palladium, rhodium, ruthenium, and copper are supported on carriers such as diatomaceous earth, silica, alumina, silica-alumina, clay, titania, zirconia, magnesia, calcia, lanthanum oxide, niobium oxide, and carbon
  • metal complex catalysts composed of metals such as nickel, cobalt, platinum, palladium, rhodium, ruthenium, and copper, and organic or inorganic ligands.
  • hydrogenation catalysts containing ruthenium, rhodium, palladium, and nickel are particularly
  • the hydrogenation catalyst contained in the reaction product liquid containing polyhydric alcohols obtained by such a hydrogenation-reduction reaction is removed by general methods such as filtration, adsorption, and extraction.
  • the liquid after removal of the hydrogenation catalyst is used as a crude reaction liquid for distillation and purification.
  • metal elements Prior to this distillation purification, metal elements are removed so that the content of metal elements in the crude reaction liquid is 30 mass ppm or less, preferably 10 mass ppm or less.
  • the crude reaction liquid obtained by the hydrogenation reduction reaction according to the present invention contains metal elements derived from the hydrogenation catalyst.
  • the content of the metal element in the crude reaction liquid varies depending on the amount of the hydrogenation catalyst used in the hydrogenation reduction reaction, but is usually about 10 to 100 mass ppm.
  • the present inventors have found that the metal element derived from the hydrogenation catalyst decomposes the polyhydric alcohol by heating in the distillation purification step, causing a decrease in the yield and purity of the polyhydric alcohol.
  • thermal decomposition of polyhydric alcohols caused by metal elements in the distillation and purification step is suppressed by removing the metal elements from the crude reaction liquid prior to distillation and purification.
  • the method for removing metal elements from the crude reaction solution to reduce its content there are no particular restrictions on the method for removing metal elements from the crude reaction solution to reduce its content.
  • a method of treating using a known adsorbent can be mentioned.
  • Specific examples of the treatment with an adsorbent include activated carbon treatment, cation exchange resin, silica gel adsorption, and the like, but the activated carbon treatment is preferred because of its removal efficiency and ability to reuse the adsorbent.
  • the method of activated carbon treatment may be a batch process in which activated carbon is added to the crude reaction liquid and stirred, and then solid-liquid separation is performed by filtration or the like, or a continuous process in which the crude reaction liquid is passed through an activated carbon packed tower.
  • the amount of activated carbon to be added to the crude reaction liquid is appropriately determined according to the metal element adsorption capacity of the activated carbon, the metal element content in the crude reaction liquid, and so on.
  • the processing flow rate is not particularly limited, but it may be processed at a space velocity (LHSV) of 1 to 10.
  • LHSV space velocity
  • Such activated carbon treatment may be performed multiple times. That is, the activated carbon-treated solution obtained by subjecting the crude reaction solution to activated carbon treatment may be subjected to activated carbon treatment again. In this case, the type and amount of activated carbon used, treatment conditions, etc. may be changed between the first activated carbon treatment and the second activated carbon treatment.
  • the crude reaction liquid is subjected to activated carbon treatment or the like so that the metal element content in the crude reaction liquid is 30 mass ppm or less, preferably 10 mass ppm or less, and then purified by distillation. From the viewpoint of suppressing the thermal decomposition of polyhydric alcohols, it is preferable that the metal element content of the crude reaction liquid subjected to this distillation purification is as low as possible.
  • the metal element content of the crude reaction liquid to be subjected to distillation purification is preferably 5 ppm by mass or less, more preferably 1 mass ppm or less.
  • the pH of the crude reaction liquid to be subjected to distillation purification is preferably within the range of 6-8. If the lower limit of the pH is 6 or more, the by-production of low-boiling-point compounds that are likely to be caused by dehydration of the product alcohol and the by-production of high-boiling-point compounds that are likely to be caused by dimerization such as etherification are suppressed. On the other hand, if the upper limit of the pH is 8 or less, the distillation purification equipment is less susceptible to alkali corrosion, which is preferable.
  • the pH of the reaction product obtained by the hydrogenation-reduction reaction of polyhydric aldehydes is 6 to 8, and even if this is subjected to hydrogenation catalyst removal treatment and metal element removal treatment, the pH hardly changes.
  • the pH may deviate from the range of 6 to 8 due to acid and alkaline components eluted from the hydrogenation catalyst.
  • the conditions for this distillation purification are not particularly limited, but usually a distillation column having a theoretical plate number of 1 to 30, a bottom temperature of the distillation column of 150 to 250°C, a pressure of 0.1 to 100 kPa, and a reflux ratio of 1 to 30 can be used by a person skilled in the art to appropriately optimize the distillation purification conditions according to the purpose.
  • Such a method for producing polyhydric alcohols of the present invention is a high-boiling compound and requires high-temperature conditions during distillation, is not solid at room temperature, and is difficult to perform another purification such as crystallization. Therefore, it is particularly effective for producing tricyclo[5.2.1.0(2,6)]decanedimethanol by hydrogenation reduction of tricyclodecanedicarbaldehyde.
  • the method for producing tricyclo[5.2.1.0(2,6)]decane dimethanol comprises a step of hydroformylating dicyclopentadiene as a polyhydric aldehyde as a starting material to obtain tricyclodecanedicarbaldehyde, and a step of reducing the tricyclodecanedicarbaldehyde with a hydrogenation catalyst in the presence of hydrogen to obtain a crude reaction liquid containing tricyclo[5.2.1.0(2,6)]decanedimethanol.
  • the content of metal elements in the crude reaction solution is adjusted to 30 mass ppm or less, preferably 10 mass ppm or less, and then purified by distillation as described above.
  • the hydroformylation method of dicyclopentadiene is not particularly limited and can be carried out according to a conventional method.
  • tricyclodecane dicarbaldehyde can be produced by hydroformylating dicyclopentadiene using hydrogen and carbon monoxide in the presence of a catalyst comprising a rhodium compound and an organophosphorus compound in a hydroformylation reaction solvent comprising a hydrocarbon compound, as shown in the following reaction formula (I).
  • the rhodium compound used in this hydroformylation step does not depend on the form of its precursor as long as it forms a complex with the organophosphorus compound and exhibits hydroformylation activity in the presence of hydrogen and carbon monoxide.
  • a catalyst precursor material such as Rh(acac)(CO) 2 , Rh2O3, Rh4 (CO) 12 , Rh6 (CO) 16 , Rh( NO3 ) 3 may be introduced into the reaction mixture together with the organophosphorus compound to form a rhodium metal hydridocarbonyl phosphorus complex having catalytic activity in the reaction vessel, or a rhodium metal hydridocarbonyl phosphorus complex catalyst may be prepared in advance and introduced into the reaction vessel. Good.
  • Rh(acac)(CO) 2 is used as a rhodium precursor material and is reacted with an organophosphorus compound in the presence of a solvent and then introduced into a reactor along with excess free organophosphorus compound to provide a catalytically active rhodium-organophosphorus complex catalyst.
  • Organophosphorus compounds that form catalysts for hydroformylation reactions with rhodium compounds include phosphites and phosphines.
  • the phosphite is preferably a compound represented by the general formula P(--OR 1 ) (--OR 2 ) (--OR 3 ) (wherein R 1 , R 2 and R 3 each represent an optionally substituted aryl group or alkyl group) because it is effective for the hydroformylation reaction of dicyclopentadiene.
  • R 1 , R 2 and R 3 include aryl groups such as phenyl and naphthyl groups optionally substituted with methyl, ethyl, isopropyl, n-butyl, t-butyl, methoxy and the like; aliphatic alkyl groups such as methyl, ethyl, isopropyl, n-butyl and t-butyl; cyclopentyl groups optionally substituted with lower alkyl such as methyl, ethyl, isopropyl, n-butyl and t-butyl; An alicyclic alkyl group such as a cyclohexyl group and the like are included.
  • aryl groups such as phenyl and naphthyl groups optionally substituted with methyl, ethyl, isopropyl, n-butyl, t-butyl, methoxy and the like
  • aliphatic alkyl groups such as methyl
  • Suitable phosphites include tris(2-t-butylphenyl)phosphite, tris(3-methyl-6-t-butylphenyl)phosphite, tris(3-methoxy-6-t-butylphenyl)phosphite, tris(2,4-di-t-butylphenyl)phosphite, di(2-t-butylphenyl)(t-butyl)phosphite and the like.
  • Phosphites are not limited to these. These phosphites may be used alone or in combination of two or more.
  • phosphines sterically hindered alkylphosphines are particularly effective for the hydroformylation reaction of dicyclopentadiene.
  • Typical examples include tricyclopropylphosphine, tricyclobutylphosphine, tricyclopentylphosphine, tricyclohexylphosphine, tricycloheptylphosphine, tricyclooctylphosphine and the like.
  • Phosphines are not limited to these. These phosphines may be used alone or in combination of two or more.
  • tricyclodecane dicarbaldehyde can be obtained at a sufficient hydroformylation reaction rate as long as the organic phosphorus compound is present in the hydroformylation reaction solution in a range of 1 to 400 times by moles, preferably 3 to 200 times by moles, the rhodium metal.
  • hydroformylation reaction of dicyclopentadiene can be carried out without using a solvent, it can be carried out more preferably by using an organic solvent that is inert to the reaction.
  • the hydroformylation reaction solvent is preferably one that separates into layers with the alcohol.
  • solvents include aromatic hydrocarbon compounds, aliphatic hydrocarbon compounds, and alicyclic hydrocarbon compounds.
  • aromatic hydrocarbon compound benzene, methylbenzenes such as toluene, xylene, mesitylene and pseudocumene, ethylbenzenes such as ethylbenzene, diethylbenzene and triethylbenzene, propylbenzenes such as isopropylbenzene, 1,3-diisopropylbenzene and 1,4-diisopropylbenzene, and various other alkylbenzenes can be suitably used.
  • methylbenzenes such as toluene, xylene, mesitylene and pseudocumene
  • ethylbenzenes such as ethylbenzene, diethylbenzene and triethylbenzene
  • propylbenzenes such as isopropylbenzene, 1,3-diisopropylbenzene and 1,4-diisopropylbenzene, and
  • aliphatic hydrocarbon compounds examples include pentane, hexane, heptane, octane, isooctane, dodecane, and decane. Aliphatic hydrocarbon compounds are not limited as long as they are liquid at standard temperature and pressure. As the alicyclic hydrocarbon compound, cyclohexane, cyclooctane, cyclododecane, decalin, methylcyclohexane and the like are preferably used.
  • the amount of the rhodium catalyst used is usually 10 to 5000 ppm by mass, preferably 50 to 2000 ppm by mass as rhodium metal, relative to the raw material dicyclopentadiene. When rhodium is used above 50 ppm, recovery of the catalyst is required.
  • the temperature and pressure of the hydroformylation reaction of dicyclopentadiene are generally 40 to 160°C, preferably 80 to 140°C, and generally 1 to 15 MPa.
  • the hydroformylation reaction is slow, and when it is higher than 160°C, side reactions from dicyclopentadiene and hydroformylation reaction products in the reaction solution proceed, resulting in a decrease in aldehyde yield.
  • the pressure is lower than 1 MPa, the hydroformylation reaction is slow, and when the pressure is higher than 15 MPa, a high-pressure reactor is used, resulting in high equipment cost.
  • the molar ratio of hydrogen and carbon monoxide in the hydrogen/carbon monoxide mixed gas used for the reaction can be selected from the range of 0.2 to 5.0 for the introduced gas composition (hydrogen/carbon monoxide). If the composition of the hydrogen/carbon monoxide mixed gas is out of this range, the hydroformylation reaction activity or aldehyde selectivity will decrease.
  • hydroformylation reaction method a continuous feed method is adopted in which dicyclopentadiene as a starting material alone or as a mixed solution of dicyclopentadiene and a solvent is supplied to a reactor in which a rhodium-organophosphorus complex catalyst, a solvent, and a mixed gas of hydrogen and carbon monoxide exist.
  • a reactor in which a rhodium-organophosphorus complex catalyst, a solvent, and a mixed gas of hydrogen and carbon monoxide exist.
  • the dicyclopentadiene In order to maintain the fluidity of the dicyclopentadiene, it is preferable to dilute it with the above-mentioned solvent and supply it to the reactor at a temperature at which the dicyclopentadiene is not depolymerized to produce cyclopentadiene.
  • the reaction product solution is directly or after being diluted with the hydrocarbon compound or other hydrocarbon compound used in the reaction as a hydroformylation reaction solvent, brought into contact with alcohol to extract the product tricyclodecane dicarbaldehyde while leaving the catalyst component in the hydroformylation reaction solvent layer, and separate the layers.
  • Examples of alcohols include primary alcohols having 1 to 3 carbon atoms and polyhydric alcohols having 2 to 6 carbon atoms.
  • Examples of primary alcohols having 1 to 3 carbon atoms include methanol, ethanol and propanol.
  • Examples of polyhydric alcohols having 2 to 6 carbon atoms include ethylene glycol, 1,3-propanediol, 1,2-propanediol, 1,4-butanediol, 1,2-butanediol, 1,3-butanediol, 2,3-butanediol, isomers of pentanediol, neopentyl glycol, hexanediol, glycerin, pentaerythritol, and trimethylolpropane.
  • methanol, ethylene glycol, propanediol, and butanediol are preferably used because they have relatively low boiling points, are inexpensive, and are easy to handle as liquids.
  • extraction solvents may be used alone or in combination of two or more. Alternatively, the extraction may be carried out in the presence of water in the alcohol. Addition of water facilitates the distribution of aldehydes and catalyst components to each layer.
  • reaction solvent and extraction solvent used in the hydroformylation reaction have different densities in order to achieve effective layer separation.
  • One preferred combination of hydroformylation reaction solvent and extraction solvent containing tricyclodecane dicarbaldehyde is a combination of methylcyclohexane and ethylene glycol, or methylcyclohexane and methanol, and water.
  • the volume ratio between the extraction solvent and the reaction product solution to be used is determined by the solubility of tricyclodecane dicarbaldehyde in the extraction solvent and the amount of tricyclodecane dicarbaldehyde to be extracted.
  • tricyclodecane dicarbaldehyde to be separated exhibits high solubility in the extraction solvent and is present at a low concentration in the reaction solution
  • tricyclodecane dicarbaldehyde can be practically extracted by using an extraction solvent with a low volume ratio (extraction solvent/reaction solution).
  • the volume ratio can vary from 10:1 to 1:10.
  • a hydroformylation reaction solvent such as methylcyclohexane may be added in an amount of about 5 to 20% by mass relative to the reaction product solution. Addition of a hydroformylation reaction solvent can improve the removal rate of the catalyst.
  • the temperature at which the extraction operation is performed is not particularly limited, but it is practical to carry it out below the hydroformylation reaction temperature.
  • an extraction solvent may be added to carry out an extraction operation.
  • the hydroformylation reaction product liquid may be withdrawn from the hydroformylation reactor and an extraction operation may be performed in an extraction tank. It is also possible to add the extraction solvent directly to the hydroformylation reactor to carry out the extraction operation and to carry out the subsequent hydroformylation reaction while retaining the catalyst components in the hydroformylation reactor.
  • the hydroformylation reaction product liquid is withdrawn and the operation is carried out in an extraction tank, the hydrocarbon solvent layer containing the catalyst is returned to the hydroformylation reactor and used again for the reaction.
  • the process can be performed as a batch process or as a continuous process.
  • a tricyclodecane dicarbaldehyde-containing solution containing 10 to 90% by mass of tricyclodecane dicarbaldehyde and 10 to 90% by mass of the extraction solvent can be obtained. Further, when a reaction solvent is added, a tricyclodecane dicarbaldehyde-containing solution containing 5 to 90% by mass of tricyclodecane dicarbaldehyde, 5 to 90% by mass of extraction solvent, and 5 to 90% by mass of reaction solvent can be obtained.
  • the alcohol of the extraction solvent reacts with a portion of the hydroformylation product tricyclodecane dicarbaldehyde to form an acetal compound in which tricyclodecane dicarbaldehyde is acetalized.
  • the content of the acetal compound in tricyclodecane dicarbaldehyde is usually about 0.1 to 50% by mass, more preferably about 1 to 25% by mass.
  • Tricyclodecanedimethanol can be produced in high yield by hydrogenating tricyclodecane dicarbaldehyde converted from the acetal compound, which is preferable.
  • the amount of water present in the hydrogenation-reduction reaction is preferably equal to or greater than the amount of the acetal compound in the hydrogenation-reduction reaction liquid, and is an amount that does not cause phase separation of the reaction liquid.
  • the water content in the hydrogenation reduction reaction is 2% by mass or more, preferably 2 to 30% by mass, more preferably 5 to 25% by mass, particularly preferably 10 to 20% by mass, based on the total reaction solution. When the water content is within the above range, it is possible to effectively obtain the above effects due to the presence of water in the hydrogenation reaction system without layer separation between water and the reaction solvent. This water may be added in the extraction step of separating the catalyst components and polyhydric aldehydes from the hydroformylation reaction product liquid, or may be added to the reaction system immediately before the hydrogenation reduction reaction.
  • the reaction mode a method in which the catalyst is charged as a slurry in a stirring reactor, the reaction is carried out in batch mode, and after the reaction the catalyst is sedimented and filtered to separate it from the product liquid; a perfusion-type reaction in which the shaped catalyst is charged in a tubular reactor and the product liquid and hydrogen gas are flowed over the catalyst;
  • the amount of catalyst used is not particularly limited as long as tricyclodecanedimethanol can be produced with industrially advantageous productivity.
  • the reaction temperature and pressure of the hydrogenation reduction reaction are usually 40-200°C, preferably 70-150°C, and usually 15 MPa or less.
  • the temperature is lower than 40°C, the hydrogenation-reduction reaction is slow, and when it is higher than 200°C, a side reaction from the target tricyclodecanedimethanol proceeds and the yield of tricyclodecanedimethanol decreases.
  • the pressure is higher than 15 MPa, a high-pressure reactor is used, resulting in high equipment cost.
  • the crude reaction solution containing tricyclodecanedimethanol obtained in this way is subjected to a metal element content reduction treatment such as activated carbon treatment after removing the hydrogenation catalyst as described above, and then subjected to distillation purification.
  • a metal element content reduction treatment such as activated carbon treatment
  • the reaction liquid in the reactor was cooled to room temperature, and the residual gas in the reactor was released to obtain 12.5 kg of hydroformylation reaction product liquid.
  • the amount of dicyclopentadiene as a raw material compound contained in the reaction solution before the reaction and the amount of tricyclodecane dicarbaldehyde produced as a product in the reaction product solution after the reaction were analyzed by gas chromatography, and the yield of tricyclodecane dicarbaldehyde was determined to be 99%.
  • ⁇ Extraction operation> 3.77 kg of methanol and 2 kg of water were added to 12.5 kg of the obtained hydroformylation reaction product liquid, and the mixture was stirred for 30 minutes under a nitrogen atmosphere. After that, the mixture was allowed to stand for 30 minutes to separate into two phases for extraction. 0.4 kg of methylcyclohexane was added to the obtained lower phase (a1) and stirred for 30 minutes. After that, it was allowed to stand for 30 minutes, separated into two phases, and an extraction operation was performed to obtain a lower phase (a2) of 13.8 kg.
  • the composition of the obtained lower phase (a2) was analyzed by gas chromatography and found to be 47% by mass of tricyclodecane dicarbaldehyde, 27% by mass of methanol, 14% by mass of water, 7% by mass of methylcyclohexane, and 5% by mass of other components.
  • reaction liquid in the reactor was cooled to room temperature, the residual gas in the reactor was released, and the ruthenium-carrying carbon was separated by filtration using a 5 ⁇ m filter to obtain 14.5 kg of reaction product liquid.
  • the amount of tricyclodecanedicarbardehyd which is a raw material compound contained in the reaction solution before the reaction
  • the amount of tricyclo[5.2.1.0(2,6)]decanedimethanol (hereinafter referred to as "TCDDM”), which is a product in the reaction product solution after the reaction, were analyzed by gas chromatography.
  • TCDDM tricyclo[5.2.1.0(2,6)]decanedimethanol
  • the Ru concentration of the reaction product liquid analyzed by fluorescent X-ray analysis was 36 ppm by mass, and the pH was 7 as measured with pH test paper. This reaction product liquid is called "crude reaction product liquid".
  • Example 1 Powdered activated carbon A was added to 100 g of the crude reaction product liquid obtained in Reference Example 1 so that the content concentration was 1% by mass, and the mixture was stirred at room temperature for 3 hours. Next, the reaction product liquid after stirring was filtered to remove the powdered activated carbon A, and 95 g of an activated carbon-treated liquid was obtained. As a result of analysis by gas chromatography, the composition of this activated carbon-treated liquid was 52% by mass of TCDDM, 25% by mass of methanol, 14% by mass of water, 4% by mass of methylcyclohexane, and 5% by mass of other components. The Ru concentration of the activated carbon-treated liquid analyzed by fluorescent X-ray analysis was 3.5 ppm by mass, and the pH measured by pH test paper was 7.
  • the solvent of the obtained activated carbon-treated liquid was distilled off under reduced pressure, heated at 230°C, which is the distillation temperature for distilling TCDDM, for 5 hours, and then cooled to room temperature.
  • the residual rate of TCDDM was 94% by mass.
  • Example 2 Powdered activated carbon B was added to 100 g of the crude reaction product liquid obtained in Reference Example 1 so that the content concentration was 1% by mass, and the mixture was stirred at room temperature for 3 hours. Next, the reaction product liquid after stirring was filtered to remove the powdered activated carbon B, and 95 g of an activated carbon-treated liquid was obtained.
  • the composition of this activated carbon-treated liquid analyzed in the same manner as in Example 1 was 52% by weight of TCDDM, 25% by weight of methanol, 14% by weight of water, 4% by weight of methylcyclohexane, and 5% by weight of other components.
  • the Ru concentration of the activated carbon treatment liquid was 0.7 ppm by mass, and the pH was 7.
  • Example 1 the content of the metal element (Ru) contained in the activated carbon treatment liquid before the solvent was distilled off under reduced pressure was 30 ppm by mass or less, so the TCDDM residual rate after heating for 5 hours at 230°C, which is the distillation temperature for distilling TCDDM, was high.
  • Comparative Example 1 since the content of the metal element (Ru) contained in the crude reaction product liquid exceeded 30 mass ppm, the TCDDM residual rate after heating for 5 hours at 230°C, which is the distillation temperature for distilling TCDDM, was low. Moreover, from the results of Examples 1 and 2 and Comparative Example 1, it was confirmed that the lower the content of the metal element (Ru), the higher the TCDDM residual ratio.
  • Example 3 0.15 kg of powdered activated carbon B was added to 14.5 kg of the crude reaction product liquid obtained in Reference Example 1, and after stirring for 3.5 hours, the stirring was stopped and filtered to obtain 13 kg of the first activated carbon-treated liquid. 0.13 kg of powdered activated carbon B was added again to this first activated carbon-treated liquid, and after stirring for 3 hours, the mixture was filtered to obtain 12 kg of a second activated carbon-treated liquid.
  • the Ru concentration of the second activated carbon treatment liquid analyzed in the same manner as in Example 1 was 0.4 ppm by mass, and the pH was 7.
  • composition of the second activated carbon-treated liquid was 45% by mass of tricyclodecanedimethanol, 29% by mass of methanol, 14% by mass of water, 7% by mass of methylcyclohexane, and 5% by mass of other components.
  • the content of the metal element (Ru) in the crude reaction liquid to be distilled is 30 ppm by mass or less, preferably 10 ppm by mass or less, thereby reducing loss due to decomposition of TCDDM and producing TCDDM with high yield and high purity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

脂環式構造を有する多価アルデヒド類を出発原料として、水素化触媒と水素の存在下に還元反応を行うことにより得られた粗反応液を蒸留精製することを含む多価アルコール類の製造方法であって、前記粗反応液中の金属元素の含有量を30質量ppm以下、好ましくは10質量ppm以下とした後に前記蒸留精製を行う、多価アルコール類の製造方法。

Description

多価アルコール類の製造方法
 本発明は、脂環式構造を有する多価アルデヒド類を出発原料として、還元反応を行って得られた粗反応液を蒸留精製することを含む多価アルコール類の製造方法に関する。
 多価アルデヒド類を出発原料として、水素化触媒と水素の存在下に還元反応を行って多価アルコール類を製造する方法が知られている。
 具体的には、アルケン類としてジシクロペンタジエンを用いて、これをヒドロホルミル化することにより、多価アルデヒド類としてトリシクロデカンジカルバルデヒドを得た後、これを水素化(水添)することによって、多価アルコール類としてトリシクロデカンジメタノールを合成する方法が挙げられる(特許文献1)。
 多価アルコール類として高沸点アルコールを含む粗生成物から、目的とする高沸点アルコールを精製する方法として、工業的には蒸留法が用いられている。
 前記粗生成物が多価アルコール類(高沸点アルコール)と沸点の近い多価アルデヒド類および多価アルコール類を含む場合、粗生成物から高純度の多価アルコール類を分離・回収するため蒸留塔の段数が高くなり、蒸留塔底温度を高くする必要がある。この場合、多価アルコール類が熱分解して、製品回収率が低下したり、製品中に熱分解物が混入したりする。
 この問題を解決するため、特許文献1には、硫黄化合物を粗生成物に添加して高沸点アルコールの熱分解を抑制する技術が開示されている。
 特許文献2には、沸点の近いアルデヒド縮合物と高沸点アルコールを分離するために、アルカリ土類金属化合物を粗生成物に添加して、アルデヒド縮合物を重質化して留出を抑制することで、加熱時間を短くし、高沸点アルコールの熱分解を抑制する技術が開示されている。
 特許文献3には、沸点の近いアルデヒド縮合物と高沸点アルコールを分離するために、粗生成物に酸を添加して、アルデヒド縮合物を重質化して留出を抑制することで、加熱時間を短くし、高沸点アルコールの熱分解を抑制する技術が開示されている。
 特許文献4、5には、フィルターを用いて粗反応液中の水素添加触媒をろ過することにより、高沸点アルコールの分解を抑制する技術が開示されている。
特開平11-60525公報 特開2002-47225号公報 特開2003-192621号公報 特開2004-196778号公報 国際公開第2011/064184号
 特許文献3に開示された技術では、添加した酸により反応器や工程配管等が腐食される畏れがある。
 特許文献1~3に開示された技術では、硫黄化合物、アルカリ土類金属、酸等の添加剤が、蒸留後の高沸点アルコール製品に混入して、製品が汚染される可能性がある。
 さらに、前記添加物を使用するには、該添加剤の供給設備や、場合によっては添加剤の除去設備等が必要となり、製造工程の複雑化や製造コストの増加が課題となる。
 特許文献4、5に開示された技術のように、フィルターを用いて粗反応液中の水素添加触媒を単にろ過するだけでは、蒸留時における高沸点アルコールの分解を十分に抑制できない。
 本発明はこれらの問題点を解決することを目的とする。
 本発明は、脂環式構造を有する多価アルデヒド類を出発原料として、還元反応を行って得られた粗反応液を蒸留精製するにあたり、多価アルコール類の熱分解を抑制することで、高純度の多価アルコール類を高収率で分離・回収することが可能な多価アルコール類の製造方法を提供することを課題とする。
 本発明者は、蒸留前の粗反応液に含まれる金属元素の含有量を所定値以下とすることにより、上記課題を解決できることを見出した。
 本発明は以下を要旨とする。
[1] 脂環式構造を有する多価アルデヒド類を出発原料として、還元反応を行うことにより得られた粗反応液を蒸留精製することを含む多価アルコール類の製造方法であって、
 前記粗反応液中の金属元素の含有量を30質量ppm以下とした後に前記蒸留精製を行う、多価アルコール類の製造方法。
[2] 前記粗反応液中の金属元素の含有量を10質量ppm以下とした後に前記蒸留精製を行う、[1]に記載の多価アルコール類の製造方法。
[3] 前記還元反応を、水素化触媒と水素の存在下で行う、[1]又は[2]に記載の多価アルコール類の製造方法。
[4] 前記多価アルコール類が、常圧下における沸点が300℃以上である、[1]~[3]のいずれかに記載の多価アルコール類の製造方法。
[5] 前記金属元素が、前記水素化触媒に由来する金属である、[3]又は[4]に記載の多価アルコール類の製造方法。
[6] 前記金属元素が、長周期型周期表第4及び/又は第5周期に属する遷移金属元素である、[1]~[5]のいずれかに記載の多価アルコール類の製造方法。
[7] 前記金属元素が、ルテニウム、ロジウム、パラジウム及びニッケルからなる群より選択される少なくとも1種である、[6]に記載の多価アルコール類の製造方法。
[8] 前記粗反応液のpHを6~8の範囲内とした後に、前記蒸留精製を行う、[1]~[7]のいずれかに記載の多価アルコール類の製造方法。
[9] 前記粗反応液を、吸着剤を用いて処理することで、該粗反応液中の金属元素の含有量を10質量ppm以下とする、[1]~[8]のいずれかに記載のアルコール類の製造方法。
[10] 前記粗反応液を活性炭処理することで、該粗反応液中の金属元素の含有量を10質量ppm以下とする、[9]に記載の多価アルコール類の製造方法。
[11] 前記粗反応液中の金属元素の含有量を1質量ppm以下とした後、前記蒸留精製を行う、[1]~[10]のいずれかに記載の多価アルコール類の製造方法。
[12] 前記多価アルコール類がトリシクロ[5.2.1.0(2,6)]デカンジメタノールである、[1]~[11]のいずれかに記載の多価アルコール類の製造方法。
[13] ジシクロペンタジエンをヒドロホルミル化して、前記多価アルデヒド類としてのトリシクロデカンジカルバルデヒドを得る工程、及び
 該トリシクロデカンジカルバルデヒドを、水素化触媒と水素の存在下に還元反応して、トリシクロ[5.2.1.0(2,6)]デカンジメタノールを含む粗反応液を得る工程を含む、[1]~[12]のいずれかに記載の多価アルコール類の製造方法。
 本発明によれば、脂環式構造を有する多価アルデヒド類を出発原料として、還元反応を行って得られた粗反応液を蒸留精製するにあたり、多価アルコール類の熱分解を抑制でき、且つ、高純度の多価アルコール類を高収率で分離・回収することが可能となる。
 さらに、本発明によれば、特許文献1~3に開示された、硫黄化合物、アルカリ土類金属、酸等の添加剤を用いることなく蒸留精製することが可能であるため、製品多価アルコール類への前記添加剤の混入、製造設備の腐食、及び製造コストの増加を抑制できる。
 以下、本発明につき詳細に説明する。
 本発明の多価アルコール類の製造方法は、脂環式構造を有する多価アルデヒド類を出発原料として、還元反応を行うことにより得られた粗反応液を蒸留精製することを含む多価アルコール類の製造方法であって、前記粗反応液中の金属元素の含有量を30質量ppm以下、好ましくは10質量ppm以下とした後に前記蒸留精製を行うことを特徴とする。
 本発明において多価アルコール類とは、分子中に2以上のヒドロキシル基を有するアルコール類のことをいう。
 本発明において多価アルコール類合成の出発原料となる、脂環式構造を有する多価アルデヒド類とは、環状の炭化水素基を1個以上有する構造を有する多価アルデヒド類である。
 本発明において多価アルデヒド類とは、分子中に2以上のアルデヒド基を有するアルデヒド類のことをいう。
 前記多価アルデヒド類として、具体的には、炭素数6~20、より好ましくは炭素数8~12の、置換基またはヘテロ原子を有していてもよい、脂環式または芳香族骨格を有する多価アルデヒドが挙げられる。より具体的には、1,3-シクロヘキサンジカルバルデヒドもしくは1,4-シクロヘキサンジカルバルデヒド、3(4),8(9)-トリシクロ[5.2.1.0]デカンジカルバルデヒド,2(3),5(6)-ビシクロ[2.2.1]ヘプタンジカルバルデヒドなどの脂環式ジアルデヒド;またはテレフタルアルデヒド、イソフタルアルデヒドなどの芳香族ジアルデヒドが例示される。多価アルデヒド類は、これらに限定されるものではない。
 上記の多価アルデヒドを原料として、それぞれ対応する1,3-シクロヘキサンジメタノールもしくは1,4-シクロヘキサンジメタノール、3(4),8(9)-トリシクロ[5.2.1.0]デカンジメタノール、2(3),5(6)-ビシクロ[2.2.1]ヘプタンジメタノールなどの脂環式ジオール;またはp-キシレンジオール、m-キシレンジオールなどの芳香族ジオールが製造される。製造される芳香族ジオールは、これらに限定されるものではない。
 蒸留する際の蒸留塔底温度を高温に設定する場合は、上記の脂環式構造を有する多価アルコール類として、常圧下における沸点が300℃以上である多価アルコール類が有効である。
 本発明の多価アルコール類の製造方法において、前記還元反応は、水素化触媒と水素の存在下で行うことができる。
 本発明で多価アルコール類合成の還元反応に使用する前記水素化触媒としては、長周期型周期表第4及び/又は第5周期に属する遷移金属触媒が好ましい。例えばラネーニッケル、ラネーコバルト、ラネー銅などのラネー触媒、あるいはニッケル、コバルト、白金、パラジウム、ロジウム、ルテニウム、銅などの水素化活性のある金属を珪藻土、シリカ、アルミナ、シリカアルミナ、粘土、チタニア、ジルコニア、マグネシア、カルシア、酸化ランタン、酸化ニオブ、炭素などの担体に担持した担持触媒、あるいはニッケル、コバルト、白金、パラジウム、ロジウム、ルテニウム、銅などの金属と有機または無機の配位子からなる金属錯体触媒を用いることができる。
 これらのうち、特に、ルテニウム、ロジウム、パラジウム、ニッケルを含む水素化触媒が、水素化触媒活性、触媒コスト及び触媒分離性の観点から好ましく、とりわけルテニウム触媒が好ましい。
 これらの水素化触媒は1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
 多価アルコール類を合成する還元反応における、温度、水素圧力、溶媒、反応方式、反応装置などの条件については特に制限はなく、適宜公知の方法を組み合わせて実施される。具体的な条件としては、トリシクロデカンジカルバルデヒドの水素化還元反応として後述する条件を採用することができる。
 このような水素化還元反応により得られた多価アルコール類を含む反応生成液から、含有される水素化触媒を一般的な、ろ過、吸着、抽出などの方法によりに除去する。
 本発明では、この水素化触媒除去後の液を粗反応液として蒸留精製を行う。この蒸留精製に先立ち、粗反応液中の金属元素含有量が30質量ppm以下、好ましくは10質量ppm以下となるように、金属元素の除去処理を行う。
 本発明に係る水素化還元反応により得られる粗反応液中には、水素化触媒に由来して金属元素が含まれている。この粗反応液中の金属元素含有量は、水素化還元反応に用いた水素化触媒の量によっても異なるが、通常10~100質量ppm程度である。
 本発明者は、この水素化触媒に由来する金属元素が、蒸留精製工程における加熱で多価アルコール類を分解し、多価アルコール類の収率及び純度を低下させる原因となることを知見した。
 本発明では、蒸留精製に先立ち、粗反応液中の金属元素を除去することで、蒸留精製工程における金属元素に起因する多価アルコール類の熱分解を抑制する。
 粗反応液中の金属元素を除去してその含有量を低減する方法としては、特に制限はない。例えば、公知の吸着剤を用いて処理する方法が挙げられる。吸着剤による処理としては、具体的には、活性炭処理、陽イオン交換樹脂、シリカゲル吸着等による処理が挙げられるが、除去効率および吸着剤の再使用が可能であることから活性炭処理が好ましい。
 活性炭処理の方法は、粗反応液に活性炭を添加して攪拌した後、活性炭をろ過等により固液分離するバッチ処理であってもよく、粗反応液を活性炭充填塔に通液する連続処理であってもよい。
 バッチ処理の場合、粗反応液に添加する活性炭の量は、活性炭の金属元素吸着能や、粗反応液中の金属元素含有量等によって適宜決定される。一般的な条件としては、粗反応液に対して活性炭を0.01~10質量%程度の濃度となるように添加して攪拌することが好ましい。
 連続処理の場合は、処理流量は、特に制限されるものではないが、空間速度(LHSV)で1~10で処理すればよい。
 このような活性炭処理は複数回行ってもよい。即ち、粗反応液に対して活性炭処理して得られる活性炭処理液に再度活性炭処理を行ってもよい。この場合において、1回目の活性炭処理と2回目の活性炭処理で用いる活性炭の種類や使用量、処理条件等を変えてもよい。
 本発明においては、粗反応液に活性炭処理等を施すことにより、粗反応液中の金属元素含有量が30質量ppm以下、好ましくは10質量ppm以下とした後蒸留精製を行う。
 この蒸留精製に供する粗反応液の金属元素含有量は、低いほど、多価アルコール類の熱分解抑制の観点から好ましい。蒸留精製に供する粗反応液の金属元素含有量は、特に5質量ppm以下、とりわけ1質量ppm以下とすることが好ましい。
 蒸留精製に供する粗反応液のpHは、6~8の範囲内であることが好ましい。pHの下限は、6以上であれば製品アルコールの脱水に起因すると思われる目的物よりも低沸点化合物の副生や、エーテル化などの二量化に起因すると思われる目的物よりも高沸点化合物の副生が抑えられることから好ましい。一方、pHの上限は、8以下であれば、蒸留精製設備がアルカリ腐食を受けにくいことから好ましい。
 通常、多価アルデヒド類の水素化還元反応で得られる反応生成液のpHは6~8であり、これを水素化触媒の除去処理、金属元素の除去処理に供してもpHは殆ど変わらない。しかし、水素化触媒から溶出した酸、アルカリ成分によりpHが6~8の範囲から外れる場合がある。この場合には、適宜、酸又はアルカリ等のpH調整剤を添加してpH6~8にpH調整することが好ましい。
 金属元素の含有量を30質量ppm以下、好ましくは10質量ppm以下とした粗反応液は、次いで蒸留精製に供する。
 この蒸留精製の条件は、特に制限されるものではないが、通常は理論段数1~30段、蒸留塔の塔底温度150~250℃、圧力0.1~100kPa、還流比1~30の範囲内にある蒸留塔を用いて、この分野の当業者が、目的に応じて前記蒸留精製条件を適宜最適化して実施できる。
 上述した方法で蒸留精製を行うことにより、通常純度98%以上の多価アルコール類を高収率で得ることができる。
 このような本発明の多価アルコール類の製造方法は、高沸点化合物で蒸留時に高温条件が必要であり、常温で固体ではなく晶析などの別の精製を行うことが困難であることから、特にトリシクロデカンジカルバルデヒドの水素化還元によるトリシクロ[5.2.1.0(2,6)]デカンジメタノールの製造に有効である。
 以下に、本発明を採用したトリシクロ[5.2.1.0(2,6)]デカンジメタノールの製造方法について説明する。
[トリシクロ[5.2.1.0(2,6)]デカンジメタノールの製造方法]
 本発明によるトリシクロ[5.2.1.0(2,6)]デカンジメタノールの製造方法は、出発原料としての多価アルデヒド類として、ジシクロペンタジエンをヒドロホルミル化してトリシクロデカンジカルバルデヒドを得る工程、及び、該トリシクロデカンジカルバルデヒドを水素化触媒と水素の存在下に還元反応して、トリシクロ[5.2.1.0(2,6)]デカンジメタノールを含む粗反応液を得る工程を有する。前述の通り、この粗反応液中の金属元素の含有量を30質量ppm以下、好ましくは10質量ppm以下とした後、前述の通り蒸留精製する。
<ジシクロペンタジエンのヒドロホルミル化反応>
 ジシクロペンタジエンのヒドロホルミル化の方法には特に制限はなく、常法に従って行うことができる。
 例えば、特開2001-10999号公報に記載の方法に従って、炭化水素化合物からなるヒドロホルミル化反応溶媒中、ロジウム化合物および有機リン化合物からなる触媒の共存下に、水素と一酸化炭素を用いて、下記反応式(I)の通り、ジシクロペンタジエンをヒドロホルミル化してトリシクロデカンジカルバルデヒドを製造することができる。
Figure JPOXMLDOC01-appb-C000001
 このヒドロホルミル化工程で使用されるロジウム化合物は、有機リン化合物と錯体を形成し、水素と一酸化炭素存在下でヒドロホルミル化活性を示すものであればその前駆体の形態によらない。
 Rh(acac)(CO),Rh,Rh(CO)12,Rh(CO)16,Rh(NOなどの触媒前駆体物質を有機リン化合物と共に反応混合物中に導入し反応容器内で触媒活性を持つロジウム金属ヒドリドカルボニルリン錯体を形成させてもよいし、あらかじめロジウム金属ヒドリドカルボニルリン錯体触媒を調製してそれを反応容器内に導入してもよい。
 本発明の好ましい具体例では、Rh(acac)(CO)をロジウム前駆体物質として使用して溶媒の存在下に有機リン化合物と反応させた後、過剰の遊離有機リン化合物と一緒に反応器に導入し、触媒活性を持つロジウム-有機リン錯体触媒とする。
 ロジウム化合物とヒドロホルミル化反応の触媒を形成する有機リン化合物としてはホスファイトおよびホスフィンが挙げられる。
 このうち、ホスファイトとしては、ジシクロペンタジエンのヒドロホルミル化反応に有効であることから、一般式P(-OR)(-OR)(-OR)(式中、R,RおよびRはそれぞれ置換されていてもよいアリール基又はアルキル基を表す。)で示される化合物が好ましい。R,RおよびRの具体例としては、メチル基、エチル基、イソプロピル基、n-ブチル基、t-ブチル基、メトキシ基などで置換されていてもよいフェニル基およびナフチル基などのアリール基;メチル基、エチル基、イソプロピル基、n-ブチル基、t-ブチル基などの脂肪族アルキル基;メチル基、エチル基、イソプロピル基、n-ブチル基、t-ブチル基などの低級アルキル基で置換されていてもよいシクロペンチル基、シクロヘキシル基などの脂環式アルキル基等が挙げられる。
 好適なホスファイトの具体例としては、トリス(2-t-ブチルフェニル)ホスファイト、トリス(3-メチル-6-t-ブチルフェニル)ホスファイト、トリス(3-メトキシ-6-t-ブチルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、ジ(2-t-ブチルフェニル)(t-ブチル)ホスファイトなどが挙げられる。ホスファイトは、これらに限定されるものではない。これらのホスファイトは単独で使用してもよいし、2種以上を組合わせて使用しても良い。
 ホスフィンとしては、特に立体障害アルキルホスフィンがジシクロペンタジエンのヒドロホルミル化反応に有効である。その代表例としてはトリシクロプロピルホスフィン、トリシクロブチルホスフィン、トリシクロペンチルホスフィン、トリシクロヘキシルホスフィン、トリシクロヘプチルホスフィン、トリシクロオクチルホスフィンなどが挙げられる。ホスフィンは、これらに限定されるものではない。これらのホスフィンは単独で使用してもよいし、2種以上を組合わせて使用しても良い。
 有機リン化合物の使用量は、ヒドロホルミル化反応液中において有機リン化合物がロジウム金属に対し1~400モル倍の範囲、好ましくは3~200モル倍の範囲で存在すれば、十分なヒドロホルミル化反応速度でトリシクロデカンジカルバルデヒドを得ることができる。
 ジシクロペンタジエンのヒドロホルミル化反応は、溶媒を用いずに実施することも可能であるが、反応に不活性な有機溶媒を用いるとより好適に実施できる。
 後述の通り、ヒドロホルミル化反応終了後、トリシクロデカンジカルバルデヒドを含有する反応生成液をアルコールと接触させ、触媒成分をジヒドロホルミル化反応溶媒層に残したまま、トリシクロデカンジカルバルデヒドをアルコールからなる抽出溶媒層に抽出し、層分離を行う。そのためヒドロホルミル化反応溶媒はアルコールと層分離するものが好ましい。このような溶媒としては芳香族炭化水素化合物、脂肪族炭化水素化合物、脂環式炭化水素化合物が挙げられる。
 芳香属炭化水素化合物としては、ベンゼン、およびトルエン、キシレン、メシチレン、プソイドクメンなどのメチルベンゼン類、エチルベンゼン、ジエチルベンゼン、トリエチルベンゼンなどのエチルベンゼン類、イソプロピルベンゼン、1,3-ジイソプロピルベンゼン、1,4-ジイソプロピルベンゼンなどのプロピルベンゼン類、またこれら以外の各種アルキルベンゼン類も好適に使用できる。
 脂肪族炭化水素化合物としては、ペンタン、ヘキサン、ヘプタン、オクタン、イソオクタン、ドデカン、デカンが例示される。脂肪族炭化水素化合物は、標準温度および圧力で液体であればこれらに限定されない。
 脂環式炭化水素化合物としては、シクロヘキサン、シクロオクタン、シクロドデカン、デカリン、メチルシクロヘキサンなどが好適に使用される。
 ロジウム触媒の使用量は、原料のジシクロペンタジエンに対して、ロジウム金属として通常10~5000質量ppmであり、好ましくは50~2000質量ppmである。ロジウムを50ppm以上で用いる場合には、触媒の回収が必要になる。
 ジシクロペンタジエンのヒドロホルミル化反応の温度および圧力は、通常40~160℃、好ましくは80~140℃の反応温度、通常1~15MPaの反応圧力である。温度が40℃より低い場合はヒドロホルミル化の反応が遅く、160℃より高い場合は反応液中におけるジシクロペンタジエンやヒドロホルミル化反応生成物からの副反応が進行しアルデヒドの収率が低下する。圧力が1MPaより低い場合はヒドロホルミル化の反応が遅く、15MPaより高い場合は高圧の反応装置を使用するため装置費用が高くなる。
 反応に用いる水素/一酸化炭素混合ガスにおける水素と一酸化炭素のモル比は導入ガス組成(水素/一酸化炭素)は、0.2~5.0の範囲から選ぶことができる。水素/一酸化炭素混合ガス組成がこの範囲を外れると、ヒドロホルミル化反応の反応活性あるいはアルデヒド選択率が低下する。
 ヒドロホルミル化の反応方式としては、ロジウム-有機リン錯体触媒、溶媒、及び水素と一酸化炭素との混合ガスの存在する反応器へ、原料のジシクロペンタジエン単独で、又はジシクロペンタジエンと溶媒との混合溶液として供給しながら行う連続フィード方式が採用される。この方法を用いると、反応器中でジシクロペンタジエンが熱分解してヒドロホルミル化反応を阻害するシクロペンタジエンの生成を低減でき、良好な反応速度と収率を維持できる。ジシクロペンタジエンの流動性を保持するため前述の溶媒で希釈し、これらが解重合しシクロペンタジエンを生成しない温度で反応器に供給することが好ましい。
<トリシクロデカンジカルバルデヒドの抽出>
 ヒドロホルミル化反応終了後、反応生成液をそのまま、又は、ヒドロホルミル化反応溶媒として反応で使用した炭化水素化合物もしくは他の炭化水素化合物で希釈した後、アルコールと接触させて、触媒成分をヒドロホルミル化反応溶媒層に残したまま、生成物であるトリシクロデカンジカルバルデヒドをアルコールに抽出し、層分離を行う。
 アルコールとしては炭素数1~3の第1級アルコールや炭素数2~6の多価アルコールが挙げられる。
 炭素数1~3の第1級アルコールとしてはメタノール、エタノール、プロパノールが挙げられる。
 炭素数2~6の多価アルコールとしてはエチレングリコール、1,3-プロパンジオール、1,2-プロパンジオール、1,4-ブタンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2,3-ブタンジオール、ペンタンジオールの各異性体、ネオペンチルグリコール、ヘキサンジオール、グリセリン、ペンタエリスリトール、トリメチロールプロパンなどが使用される。
 この中で、メタノールやエチレングリコール、プロパンジオール、ブタンジオールが比較的沸点が低く、価格も安く、液体として取扱もしやすいので好適に使用される。
 これらの抽出溶媒は単独で使用してもよいし、2種以上を組合わせて使用しても良い。
 また、アルコールに水を共存させて抽出を行ってもよい。水の添加によりアルデヒドや触媒成分が各層へ分配し易くなる。
 ヒドロホルミル化反応に使用される反応溶媒と抽出溶媒は効果的な層分離を実現するため密度に差があるほうが好ましい。トリシクロデカンジカルバルデヒドを含むヒドロホルミル化反応溶媒と抽出溶媒の組合わせでひとつの好適な例は、メチルシクロヘキサンとエチレングリコール、或いはメチルシクロヘキサンとメタノール、更に水との組合わせである。
 ヒドロホルミル化反応溶媒と抽出溶媒との間のトリシクロデカンジカルバルデヒドの分配は平衡である。それに対して、触媒成分であるロジウムと有機リン化合物は実質的にヒドロホルミル化反応溶媒にのみ存在し抽出溶媒中には分析限界以下しか存在しない。
 用いる抽出溶媒と反応生成液との体積比率は、トリシクロデカンジカルバルデヒドの抽出溶媒に対する溶解度、抽出すべきトリシクロデカンジカルバルデヒドの量によって決まる。例えば、分離すべきトリシクロデカンジカルバルデヒドが抽出溶媒に対し高い溶解度を示し、反応生成液に低濃度で存在する場合には、低い体積比率(抽出溶媒/反応生成液)の抽出溶媒の使用でトリシクロデカンジカルバルデヒドの実用的抽出が可能である。
 生成物の濃度が高いほど、反応生成液からトリシクロデカンジカルバルデヒドを抽出するための体積比率(抽出溶媒/反応生成液)は高くなる。トリシクロデカンジカルバルデヒドが抽出溶液に比較的低い溶解度を示す場合は、体積比率は10:1~1:10の範囲で変動し得る。
 少ない抽出溶媒使用量でトリシクロデカンジカルバルデヒドの抽出量を多くするため、抽出溶媒を分け、数回の抽出操作を行うことが有効である。
 この場合、最終段階の抽出操作では、メチルシクロヘキサン等のヒドロホルミル化反応溶媒を反応生成液に対して5~20質量%程度添加してもよい。ヒドロホルミル化反応溶媒の添加で触媒の除去率を向上させることができる。
 抽出操作を行う温度は特に制限はないが、ヒドロホルミル化反応温度以下で実施するのが実用的である。ヒドロホルミル化反応器に反応後、抽出溶媒を添加し抽出操作を実施してもよい。ヒドロホルミル化反応器からヒドロホルミル化反応生成液を抜出し、抽出槽で抽出操作を実施してもよい。ヒドロホルミル化反応器に直接抽出溶媒を添加し抽出操作を実施し、触媒成分をヒドロホルミル化反応器にそのまま保持して次のヒドロホルミル化反応を実施することもできる。ヒドロホルミル化反応生成液を抜出し、抽出槽で操作を実施する場合は、触媒を含有する炭化水素溶媒層はヒドロホルミル化反応器に戻され、再度反応に使用される。本プロセスは、バッチプロセスでも連続プロセスでも実施可能である。
 上記のような抽出操作では、トリシクロデカンジカルバルデヒド10~90質量%、抽出溶媒10~90質量%のトリシクロデカンジカルバルデヒド含有溶液を得ることができる。また、反応溶媒を添加した場合はトリシクロデカンジカルバルデヒド5~90質量%、抽出溶媒5~90質量%、反応溶媒5~90質量%のトリシクロデカンジカルバルデヒド含有溶液を得ることができる。
 抽出溶媒のアルコールは、ヒドロホルミル化生成物であるトリシクロデカンジカルバルデヒドの一部と反応してトリシクロデカンジカルバルデヒドをアセタール化したアセタール化合物を生成する。
 トリシクロデカンジカルバルデヒド中のアセタール化合物の含有率は、通常0.1~50質量%程度であり、更に1~25質量%程度である。
<水素化還元反応>
 上記の抽出操作により得られたトリシクロデカンジカルバルデヒドを含む抽出液(トリシクロデカンジカルバルデヒド含有溶液)は、次いで、前述の水素化触媒、好ましくは、ルテニウム(Ru)触媒の存在下に水素化還元を行い、下記反応式(II)の通り、トリシクロデカンジメタノールを製造する。
 この水素化還元反応は、水およびRu触媒の存在下で行うことにより、トリシクロデカンジカルバルデヒドの水素化反応中にアセタール化合物を速やかにトリシクロデカンジカルバルデヒドに変換する。アセタール化合物から変換したトリシクロデカンジカルバルデヒドを水素化することでトリシクロデカンジメタノールを高収率で製造することができ、好ましい。
Figure JPOXMLDOC01-appb-C000002
 水素化還元反応において存在する水は、水素化還元反応液中のアセタール化合物量以上であって、反応液が相分離しない量であることが好ましい。水素化還元反応において存在する水は、反応液全体に対する含水率として2質量%以上、好ましくは2~30質量%、更に好ましくは5~25質量%、特に10~20質量%とすることが好ましい。含水率が前記範囲である場合、水と反応溶媒とが層分離することなく、水素化反応系に水を存在させることによる前述の効果を有効に得ることができる。この水は、ヒドロホルミル化反応生成液からの触媒成分と多価アルデヒド類の分離を行う抽出工程で添加してもよいし、水素化還元反応直前に反応系に添加してもよい。
 反応形態としては、攪拌式反応器に触媒をスラリーとして仕込み、回分式で反応を実施し、反応後触媒を沈降ろ過し生成液と分離する方法;成形された触媒を管型反応器に仕込み、生成液と水素ガスを触媒上に流す灌液型反応;が適時採用される。使用される触媒量は工業的に有利な生産性でトリシクロデカンジメタノールを製造できれば特に制限はない。
 水素化還元反応の反応温度および圧力は通常40~200℃、好ましくは70~150℃の温度、および通常15MPa以下の反応圧力である。温度が40℃より低い場合は水素化還元反応が遅く、200℃より高い場合は目的物であるトリシクロデカンジメタノールからの副反応が進行しトリシクロデカンジメタノールの収率が低下する。圧力が15MPaより高い場合は高圧の反応装置を使用するため装置費用が高くなる。
 このようにして得られたトリシクロデカンジメタノールを含む粗反応液は、前述の通り水素化触媒を除去した後、活性炭処理等の金属元素含有量低減処理を行い、その後蒸留精製に供される。
 以下に実施例を挙げて本発明をより具体的に説明する。本発明はその要旨を超えない限り以下の実施例に限定されるものではない。
 実施例及び比較例で使用した化合物は以下のとおりである。
 ・アセチルアセトナートジカルボニルロジウム(商品名:Rh(acac)(CO)
、エヌ・イー ケムキャット株式会社製)
 ・ルテニウム担持炭素(ドライベースRu含有率5%、含水率56%)(商品名:Ru/C、エヌ・イーケムキャット株式会社製)
 ・トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト(商品名:DBPO、東京化成工業株式会社製)
 ・メチルシクロヘキサン(商品名:メチルシクロヘキサン、富士フィルム和光純薬株式会社製)
 ・ジシクロペンタジエン(富士フィルム和光純薬株式会社製)
 ・粉末活性炭A(商品名:白鷺ANO-2、大阪ガスケミカル株式会社製)
 ・粉末活性炭B(商品名:特性白鷺、大阪ガスケミカル株式会社製)
[参考例1]
<ヒドロホルミル化反応>
 内容量20Lのオートクレーブ反応器に、窒素雰囲気下で、ヒドロホルミル化反応触媒の原料化合物として、Rh(acac)(CO) 2.51g(9.73mmol)、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト188.6g(0.291mol)を量り取り、有機溶媒としてメチルシクロヘキサン3.9kgを仕込んだ。その後、120rpmで攪拌しつつ、反応器内の反応液の温度を70℃まで昇温した。次いで、ガス導入バルブより速やかに水素と一酸化炭素の混合ガス(水素:一酸化炭素=1:1(モル比))を反応器内の圧力が5MPaGとなるように圧入し、この圧力を維持したまま、反応液の温度を100℃まで昇温した。その後、さらに原料化合物としてジシクロペンタジエン4.9kgを5時間かけてフィードし、さらに3時間反応させた。反応中は反応で消費された量の混合ガスを、反応器内の圧力を5MPaGに維持しながら、反応器内に導入し続けた。
 反応終了後、反応器内の反応液を室温まで冷却し、反応器内の残存ガスを放圧し12.5kgのヒドロホルミル化反応生成液を得た。反応前の反応液に含まれる原料化合物のジシクロペンタジエンの量と、反応後の反応生成液中の生成物であるトリシクロデカンジカルバルデヒドの生成量をガスクロマトグラフィーにて分析し、トリシクロデカンジカルバルデヒドの収率を求めた結果、該収率は99%であった。
<抽出操作>
 得られたヒドロホルミル化反応生成液12.5kgに対し、メタノール3.77kg、水2kgを加え、窒素雰囲気下で30分間攪拌した。その後、30分間静置し2相に分離させ抽出操作を行った。得られた下相(a1)にメチルシクロヘキサンを0.4kg加え30分間攪拌した。その後、30分間静置し2相に分離させ抽出操作を行い、13.8kgの下相(a2)を得た。
 得られた下相(a2)の組成をガスクロマトグラフィーにより分析したところ、トリシクロデカンジカルバルデヒド47質量%、メタノール27質量%、水14質量%、メチルシクロヘキサン7質量%、その他成分5質量%であった。
<水素化還元反応>
 内容量20Lのオートクレーブ反応器に、上述した抽出操作により得られた下相(a2)13.8kg、ルテニウム担持炭素0.14kgを仕込んだ後、120rpmで攪拌しつつ、反応器内の反応液の温度を160℃まで昇温した。次いで、ガス導入バルブより水素ガスを反応器内の圧力が5MPaGとなるとなるように圧入し、この圧力と反応液の温度を維持したまま、8時間反応させた。反応中は反応で消費された量の水素ガスを、反応器内の圧力を5MPaGに維持しながら、反応器内に導入し続けた。
 反応終了後、反応器内の反応液を室温まで冷却し、反応器内の残存ガスを放圧し、ルテニウム担持炭素を5μmのフィルターを用いたろ過により分離し、反応生成液14.5kgを得た。
 反応前の反応液に含まれる原料化合物のトリシクロデカンジカルバルデヒドの量と、反応後の反応生成液中の生成物であるトリシクロ[5.2.1.0(2,6)]デカンジメタノール(以下、「TCDDM」という。)の生成量をガスクロマトグラフィーにて分析した結果、TCDDMの収率は94%であった。
 蛍光X線分析により分析した反応生成液のRu濃度は36質量ppmであり、pH試験紙により測定したpHは7であった。この反応生成液を「粗反応生成液」という。
[実施例1]
 参考例1で得られた粗反応生成液100gに、粉末活性炭Aを含有濃度が1質量%となるように添加し、室温で3時間攪拌した。次いで、攪拌後の反応生成液をろ過して、前記粉末活性炭Aを除去し、活性炭処理液95gを得た。
 ガスクロマトグラフィーにて分析した結果、この活性炭処理液の組成はTCDDM52質量%、メタノール25質量%、水14質量%、メチルシクロヘキサン4質量%、その他成分5質量%であった。
 蛍光X線分析により分析した活性炭処理液のRu濃度は3.5質量ppmであり、pH試験紙により測定したpHは7であった。
 蒸留のモデル実験として、得られた活性炭処理液の溶媒を減圧留去し、TCDDMを蒸留する際の蒸留温度である230℃で5時間加熱した後、室温まで冷却した。加熱前及び加熱後の溶媒減圧留去後の活性炭処理液に含まれるTCDDMの量をガスクロマトグラフィーにて分析した結果、TCDDMの残存率は94質量%であった。
[実施例2]
 参考例1で得られた粗反応生成液100gに、粉末活性炭Bを含有濃度が1質量%となるように添加し、室温で3時間攪拌した。次いで、攪拌後の反応生成液をろ過して、前記粉末活性炭Bを除去し、活性炭処理液95gを得た。
 実施例1におけると同様に分析したこの活性炭処理液の組成はTCDDM52質量%、メタノール25質量%、水14質量%、メチルシクロヘキサン4質量%、その他成分5質量%であった。活性炭処理液のRu濃度は0.7質量ppmであり、pHは7であった。
 蒸留のモデル実験として、実施例1と同様にして、得られた活性炭処理液の溶媒を減圧留去し、TCDDMを蒸留する際の蒸留温度である230℃で5時間加熱した後、室温まで冷却し、加熱後のTCDDMの残存率を分析した結果、TCDDMの残存率は97質量%であった。
[比較例1]
 参考例1で得られたRu濃度36ppmの粗反応生成液100gを活性炭処理することなしに、実施例1と同様に、蒸留のモデル実験として溶媒を減圧留去した後加熱して加熱後のTCDDMの残存率を分析したところ、TCDDMの残存率は56質量%であった。
 実施例1、2及び比較例1の評価結果を表1にまとめた。
Figure JPOXMLDOC01-appb-T000003
 実施例1及び実施例2では、溶媒の減圧留去前の活性炭処理液に含まれる金属元素(Ru)の含有量が30質量ppm以下であるため、TCDDMを蒸留する際の蒸留温度である230℃で5時間加熱した後のTCDDM残存率は高位であった。
 一方、比較例1では、粗反応生成液に含まれる金属元素(Ru)の含有量が30質量ppmを超えるため、TCDDMを蒸留する際の蒸留温度である230℃で5時間加熱した後のTCDDM残存率は低位となった。
 また、実施例1及び実施例2並びに比較例1の結果から、金属元素(Ru)の含有量が低いほど、TCDDM残存率は高くなる傾向が確認された。
[実施例3]
 参考例1で得られた粗反応生成液14.5kgに対し、粉末活性炭Bを0.15kg添加し3.5時間攪拌した後、攪拌を停止し、ろ過して第1の活性炭処理液13kgを得た。この第1の活性炭処理液に再度0.13kgの粉末活性炭Bを添加し3時間攪拌した後、ろ過して第2の活性炭処理液12kgを得た。実施例1におけると同様に分析した第2の活性炭処理液のRu濃度は0.4質量ppm、pHは7であった。
 ガスクロマトグラフィーにて分析したところ、第2の活性炭処理液の組成はトリシクロデカンジメタノール45質量%、メタノール29質量%、水14質量%、メチルシクロヘキサン7質量%、その他成分5質量%であった。
 上記第2の活性炭処理液12kgを釜容積35Lのバッチ式蒸留装置に仕込み、溶媒を留去した後、0.3kPa、210℃で蒸留することによりTCDDMを9.5kg、純度99.4質量%で得た。
 一連の蒸留において、加熱前の蒸留原料液(第2の活性炭処理液)および加熱後の留出液と塔底液に含まれるTCDDMの量をガスクロマトグラフィーにて分析した結果、TCDDMの残存率は99質量%であった。
 以上の結果から、本発明の製造方法によれば、TCDDMを蒸留する際に、蒸留に供する粗反応液中の金属元素(Ru)の含有量を30質量ppm以下、好ましくは10質量ppm以下とすることで、TCDDMの分解によるロスを低減し、高収率で高純度のTCDDMを製造することができると期待される。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2022年1月20日付で出願された日本特許出願2022-007310に基づいており、その全体が引用により援用される。

 

Claims (13)

  1.  脂環式構造を有する多価アルデヒド類を出発原料として、還元反応を行うことにより得られた粗反応液を蒸留精製することを含む多価アルコール類の製造方法であって、
     前記粗反応液中の金属元素の含有量を30質量ppm以下とした後に前記蒸留精製を行う、多価アルコール類の製造方法。
  2.  前記粗反応液中の金属元素の含有量を10質量ppm以下とした後に前記蒸留精製を行う、請求項1に記載の多価アルコール類の製造方法。
  3.  前記還元反応を、水素化触媒と水素の存在下で行う、請求項1又は2に記載の多価アルコール類の製造方法。
  4.  前記多価アルコール類が、常圧下における沸点が300℃以上である、請求項1~3のいずれか一項に記載の多価アルコール類の製造方法。
  5.  前記金属元素が、前記水素化触媒に由来する金属である、請求項3又は4に記載の多価アルコール類の製造方法。
  6.  前記金属元素が、長周期型周期表第4及び/又は第5周期に属する遷移金属元素である、請求項1~5のいずれか一項に記載の多価アルコール類の製造方法。
  7.  前記金属元素が、ルテニウム、ロジウム、パラジウム及びニッケルからなる群より選択される少なくとも1種である、請求項6に記載の多価アルコール類の製造方法。
  8.  前記粗反応液のpHを6~8の範囲内とした後に、前記蒸留精製を行う、請求項1~7のいずれか一項に記載の多価アルコール類の製造方法。
  9.  前記粗反応液を、吸着剤を用いて処理することで、該粗反応液中の金属元素の含有量を10質量ppm以下とする、請求項1~8のいずれか一項に記載のアルコール類の製造方法。
  10.  前記粗反応液を活性炭処理することで、該粗反応液中の金属元素の含有量を10質量ppm以下とする、請求項9に記載の多価アルコール類の製造方法。
  11.  前記粗反応液中の金属元素の含有量を1質量ppm以下とした後、前記蒸留精製を行う、請求項1~10のいずれか一項に記載の多価アルコール類の製造方法。
  12.  前記多価アルコール類がトリシクロ[5.2.1.0(2,6)]デカンジメタノールである、請求項1~11のいずれか一項に記載の多価アルコール類の製造方法。
  13.  ジシクロペンタジエンをヒドロホルミル化して、前記多価アルデヒド類としてのトリシクロデカンジカルバルデヒドを得る工程、及び
     該トリシクロデカンジカルバルデヒドを、水素化触媒と水素の存在下に還元反応して、トリシクロ[5.2.1.0(2,6)]デカンジメタノールを含む粗反応液を得る工程を含む、請求項1~12のいずれか一項に記載の多価アルコール類の製造方法。

     
PCT/JP2023/000562 2022-01-20 2023-01-12 多価アルコール類の製造方法 WO2023140165A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247024557A KR20240125650A (ko) 2022-01-20 2023-01-12 다가 알코올류의 제조 방법
CN202380017896.1A CN118574806A (zh) 2022-01-20 2023-01-12 多元醇类的制造方法
JP2023504436A JP7501778B2 (ja) 2022-01-20 2023-01-12 多価アルコール類の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022007310 2022-01-20
JP2022-007310 2022-04-04

Publications (1)

Publication Number Publication Date
WO2023140165A1 true WO2023140165A1 (ja) 2023-07-27

Family

ID=87348785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000562 WO2023140165A1 (ja) 2022-01-20 2023-01-12 多価アルコール類の製造方法

Country Status (5)

Country Link
JP (1) JP7501778B2 (ja)
KR (1) KR20240125650A (ja)
CN (1) CN118574806A (ja)
TW (1) TW202337877A (ja)
WO (1) WO2023140165A1 (ja)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02188540A (ja) * 1989-01-13 1990-07-24 Sumitomo Chem Co Ltd メタノールの精製法
JPH1112209A (ja) * 1997-04-30 1999-01-19 Asahi Chem Ind Co Ltd 環状アルコールの分離取得方法
JPH1180056A (ja) * 1997-07-18 1999-03-23 Asahi Chem Ind Co Ltd 環状アルコールの分離取得方法
JP2000007595A (ja) * 1998-06-26 2000-01-11 New Japan Chem Co Ltd シクロヘキサンジメタノールの製造方法
JP2001010999A (ja) 1999-07-02 2001-01-16 Mitsubishi Gas Chem Co Inc トリシクロデカンジメタノール及び/又はペンタシクロペンタデカンジメタノールの製造法
JP2001172214A (ja) * 1999-12-16 2001-06-26 Mitsubishi Gas Chem Co Inc ジオールの製造方法
JP2002047225A (ja) 2000-07-27 2002-02-12 Mitsubishi Gas Chem Co Inc 多環式ジオール類の蒸留方法
JP2002284771A (ja) * 2001-03-28 2002-10-03 Nof Corp グリシドールの精製方法
JP2003192621A (ja) 2001-12-14 2003-07-09 Celanese Chemicals Europe Gmbh 脂環式アルコールの精製方法
JP2004196778A (ja) 2002-12-04 2004-07-15 Mitsubishi Chemicals Corp アルコールの製造方法
JP2006514087A (ja) * 2003-02-24 2006-04-27 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー 蒸留による1,3−プロパンジオールの精製
JP2010235516A (ja) * 2009-03-31 2010-10-21 Kuraray Co Ltd 精製ジオールの製造方法
WO2011064184A1 (de) 2009-11-26 2011-06-03 Basf Se Verfahren zur herstellung von kunststoffen mit 1,6-hexandiol mit einem aldehydanteil von kleiner 500ppm
JP2013501035A (ja) * 2009-08-07 2013-01-10 ランクセス・ドイチュランド・ゲーエムベーハー トリメチロールプロパンの色数を改善する方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160525A (ja) 1997-08-21 1999-03-02 Kuraray Co Ltd ジオール類の製造方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02188540A (ja) * 1989-01-13 1990-07-24 Sumitomo Chem Co Ltd メタノールの精製法
JPH1112209A (ja) * 1997-04-30 1999-01-19 Asahi Chem Ind Co Ltd 環状アルコールの分離取得方法
JPH1180056A (ja) * 1997-07-18 1999-03-23 Asahi Chem Ind Co Ltd 環状アルコールの分離取得方法
JP2000007595A (ja) * 1998-06-26 2000-01-11 New Japan Chem Co Ltd シクロヘキサンジメタノールの製造方法
JP2001010999A (ja) 1999-07-02 2001-01-16 Mitsubishi Gas Chem Co Inc トリシクロデカンジメタノール及び/又はペンタシクロペンタデカンジメタノールの製造法
JP2001172214A (ja) * 1999-12-16 2001-06-26 Mitsubishi Gas Chem Co Inc ジオールの製造方法
JP2002047225A (ja) 2000-07-27 2002-02-12 Mitsubishi Gas Chem Co Inc 多環式ジオール類の蒸留方法
JP2002284771A (ja) * 2001-03-28 2002-10-03 Nof Corp グリシドールの精製方法
JP2003192621A (ja) 2001-12-14 2003-07-09 Celanese Chemicals Europe Gmbh 脂環式アルコールの精製方法
JP2004196778A (ja) 2002-12-04 2004-07-15 Mitsubishi Chemicals Corp アルコールの製造方法
JP2006514087A (ja) * 2003-02-24 2006-04-27 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー 蒸留による1,3−プロパンジオールの精製
JP2010235516A (ja) * 2009-03-31 2010-10-21 Kuraray Co Ltd 精製ジオールの製造方法
JP2013501035A (ja) * 2009-08-07 2013-01-10 ランクセス・ドイチュランド・ゲーエムベーハー トリメチロールプロパンの色数を改善する方法
WO2011064184A1 (de) 2009-11-26 2011-06-03 Basf Se Verfahren zur herstellung von kunststoffen mit 1,6-hexandiol mit einem aldehydanteil von kleiner 500ppm
JP2013512293A (ja) * 2009-11-26 2013-04-11 ビーエーエスエフ ソシエタス・ヨーロピア アルデヒド含分500ppm未満を有する1,6−ヘキサンジオールを用いたプラスチックの製造方法

Also Published As

Publication number Publication date
CN118574806A (zh) 2024-08-30
TW202337877A (zh) 2023-10-01
JPWO2023140165A1 (ja) 2023-07-27
JP7501778B2 (ja) 2024-06-18
KR20240125650A (ko) 2024-08-19

Similar Documents

Publication Publication Date Title
EP1065194B2 (en) Production of tricyclodecane dicarbaldehyde, pentacyclopentadecane dicarbaldehyde and corresponding dimethanols
EP3696160B1 (en) Extraction process for high-boiling aldehyde product separation and catalyst recovery
CN100400490C (zh) 制备三环癸烷二醛的方法
WO2004050591A1 (ja) アルコールの製造方法
CN103687833B (zh) 制备1,4-环己烷二甲醇的方法
JP7250039B2 (ja) ノルマルブタノール、イソ-ブタノール、及び2-アルキルアルカノールを供給する方法
KR101200288B1 (ko) Tcd-알코올 dm의 제조방법
KR20150031277A (ko) 2-에틸헥산올로부터 출발하는, 구조적으로 분지형인 c9 모노카복실산들의 혼합물의 카복실산 에스테르들의 제조방법, 상기 혼합물의 트리에틸렌 글리콜, 네오펜틸 글리콜 및 1,3-부탄디올의 카복실산 에스테르들 및 이들의 용도
KR20190072568A (ko) 2-알킬알칸올의 제조 방법
JP4573003B2 (ja) トリシクロデカンジメタノール及び/又はペンタシクロペンタデカンジメタノールの製造法
JP7501778B2 (ja) 多価アルコール類の製造方法
JP2022147136A (ja) トリシクロデカンジメタノールの製造方法
JP2672473B2 (ja) α−位においてアルキル残基により置換されたアルデヒドの製法
JP2009506105A (ja) 界面活性剤用アルコールの製造方法
JP4754058B2 (ja) イソプロピルアルコールの製造方法
US20100069678A1 (en) Hydroformylation process
JP2013523799A (ja) 液相中での不斉第二級tert−ブチルアミンの製造方法
JP4573002B2 (ja) トリシクロデカンジカルバルデヒド及び/又はペンタシクロペンタデカンジカルバルデヒドの製造法
JP4431844B2 (ja) ジオールの製造方法
JP2010235516A (ja) 精製ジオールの製造方法
JP2005281255A (ja) 精製アルコールの製造方法
JP3864617B2 (ja) アルコールの製造方法
CN116947611A (zh) 一种氢甲酰化反应的方法和装置
JP4779294B2 (ja) アルコールの製造方法
KR20040065236A (ko) 알데히드의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023504436

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743160

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247024557

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023743160

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2023743160

Country of ref document: EP

Effective date: 20240820