WO2023137819A1 - 一种油溶性导电添加剂及其制备方法 - Google Patents

一种油溶性导电添加剂及其制备方法 Download PDF

Info

Publication number
WO2023137819A1
WO2023137819A1 PCT/CN2022/077214 CN2022077214W WO2023137819A1 WO 2023137819 A1 WO2023137819 A1 WO 2023137819A1 CN 2022077214 W CN2022077214 W CN 2022077214W WO 2023137819 A1 WO2023137819 A1 WO 2023137819A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
oil
lithium
conductive agent
ethyl
Prior art date
Application number
PCT/CN2022/077214
Other languages
English (en)
French (fr)
Inventor
王晓波
李炳
赵改青
刘维民
Original Assignee
中国科学院兰州化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院兰州化学物理研究所 filed Critical 中国科学院兰州化学物理研究所
Priority to EP22921255.0A priority Critical patent/EP4358099A1/en
Publication of WO2023137819A1 publication Critical patent/WO2023137819A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/08Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic sulfur-, selenium- or tellurium-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M177/00Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/281Esters of (cyclo)aliphatic monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/32Esters of carbonic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/28Anti-static
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/14Electric or magnetic purposes
    • C10N2040/16Dielectric; Insulating oil or insulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of conductive agents, in particular to an oil-soluble conductive additive and a preparation method thereof.
  • the conductive lubricant can effectively guide away the static electricity, prevent the equipment from malfunctioning due to the accumulation of static electricity and the breakdown of integrated circuits, and avoid the threat of high-voltage static electricity to property and personal safety.
  • the oil-soluble conductive agent can effectively conduct the circuit between machinery and electrical components, avoid electrostatic discharge accidents caused by excessive static electricity accumulation, and reduce poor contact and contact resistance caused by sliding or rotating joints in the circuit system.
  • the object of the present invention is to provide an oil-soluble conductive additive and a preparation method thereof, the oil-soluble conductive additive has good conductivity and oil solubility.
  • the invention provides an oil-soluble conductive agent, and the preparation raw materials include the following components:
  • the fluorine-containing ion salt is selected from one or more of lithium bistrifluoromethanesulfonyl imide, lithium trifluoromethanesulfonate and lithium tetrafluoroborate.
  • the electrical conductivity of the ethyl caprate ⁇ 10 -9 S/cm
  • the electrical conductivity of the ethyl methyl carbonate is ⁇ 10 ⁇ 9 S/cm.
  • the raw materials of the oil-soluble conductive agent include 20 parts of ethyl caprate, 2 parts of ethyl methyl carbonate and 2 parts of lithium bistrifluoromethanesulfonylimide;
  • ethyl caprate 20 parts of ethyl caprate, 2 parts of ethyl methyl carbonate and 8 parts of lithium bistrifluoromethanesulfonylimide;
  • ethyl caprate 20 parts of ethyl caprate, 4 parts of ethyl methyl carbonate, 2 parts of lithium bistrifluoromethanesulfonyl imide and 2 parts of lithium trifluoromethanesulfonate;
  • ethyl caprate 20 parts of ethyl caprate, 4 parts of ethyl methyl carbonate, 2 parts of lithium bistrifluoromethanesulfonimide and 2 parts of lithium tetrafluoroborate;
  • ethyl caprate 20 parts of ethyl caprate, 6 parts of ethyl methyl carbonate, 2 parts of lithium bistrifluoromethanesulfonimide, 2 parts of lithium trifluoromethanesulfonate and 2 parts of lithium tetrafluoroborate.
  • the present invention provides a method for preparing an oil-soluble conductive agent described in the above technical solution, comprising the following steps:
  • the fluorine-containing ion salt is selected from one or more of lithium bistrifluoromethanesulfonyl imide, lithium trifluoromethanesulfonate and lithium tetrafluoroborate.
  • the invention provides an oil-soluble conductive agent.
  • the raw materials for preparation include the following components: 20 parts by weight of ethyl caprate or bis(2-ethylhexyl) sebacate, 1.8-2.2 parts by weight of ethyl methyl carbonate, and 2-8 parts by weight of fluorine-containing ion salt; the fluorine-containing ion salt is selected from one or more of lithium bistrifluoromethanesulfonyl imide, lithium trifluoromethanesulfonate and lithium tetrafluoroborate.
  • the appearance of the oil-soluble conductive agent is a colorless transparent liquid at 25°C or higher; the conductivity at 25°C reaches 1 ⁇ 10 -4 S/cm.
  • the oil-soluble conductive agent can be completely dissolved in the base oil and improve its conductivity, so that it has the effects of arc suppression, antistatic, cooling, heat transfer and conductivity.
  • Fig. 1 is the infrared spectrogram of the oil-soluble conductive agent prepared by the embodiment of the present invention
  • Fig. 2 is the electrical conductivity of the oil-soluble conductive agent prepared by the embodiment of the present invention and comparative example
  • Fig. 3 is the appearance test diagram of the compatibility of the oil-soluble conductive agent prepared in the embodiment 3 of the present invention in the base oil;
  • Fig. 12 Changes in conductivity of different types of oils after adding different contents of the conductive agent of Example 9.
  • an oil-soluble conductive additive provided by the present invention and its preparation method are described in detail below in conjunction with examples, but they should not be construed as limiting the protection scope of the present invention.
  • Example 3 Take 3mL of the product in Example 3, and test its conductivity at 25°C, 40°C, 60°C, and 80°C with a Leici DDSJ-308A conductivity meter, and evaluate its conductivity with temperature.
  • the test results are shown in Table 1. (Note: The conductivities of ethyl caprate, bis(2-ethylhexyl) sebacate and ethyl methyl carbonate are all ⁇ 10 -9 S/cm).
  • oils were selected as the solvents for the oil solubility test of the product, among which the oil-soluble polyether was from SDM-015A of Nanjing Well Pharmaceutical, the ester oil was from monopentaerythritol ester of Chifeng Ruiyang Chemical, the PAO was from Shanghai Qicheng Industrial Company, and the MVI500 was from Liaohe Petrochemical Company.
  • the products in Example 3 were tested for compatibility with A (oil-soluble polyether), B (ester oil), C (PAO+ester oil (mass ratio 1:1)) and D (MVI500+ester oil (mass ratio 1:1)), and the results are shown in Figure 3.
  • oil-soluble conductive agent prepared in Example 3 can endow the base oil with good conductivity (as shown in Figure 6).
  • the addition amount is 6%wt
  • the conductivity of the ester oil and oil-soluble polyether can be increased to 50 times and 4000 times respectively
  • the conductivity of the ester oil and oil-soluble polyether can be increased to more than 400 times and 16000 times respectively.
  • the conductivity of the oil-soluble polyether reaches 10 -5 S/cm, which is equivalent to the conductivity of semiconductor grade:
  • Example 1 Example 2, and Examples 4-9 were respectively added to different types of base oils described in the above technical solutions.
  • the test results of conductivity are shown in Fig. 4, Fig. 5, Fig. 7-12 respectively.
  • the oil-soluble conductive agents prepared in Example 1, Example 2, and Examples 4-9 can all be well dissolved in the four base oils, and the conductivity of the base oils can be significantly improved.
  • the addition amount of the oil-soluble conductive agent is 6%wt
  • the conductivity of the oil-soluble polyether can be increased by at least 1000 times.
  • the electrical conductivity of other base oils have different degrees of improvement.

Abstract

一种油溶性导电剂及其制备方法,油溶性导电剂的制备原料包括以下组分:癸酸乙酯或双(2-乙基己基)癸二酸酯20重量份、碳酸甲乙酯1.8~2.2重量份和含氟离子盐2~8重量份;所述含氟离子盐选自双三氟甲磺酰亚胺锂、三氟甲磺酸锂和四氟硼酸锂中的一种或多种。该油溶性导电剂在25℃或更高温度下外观表观为无色透明液体;25℃下的电导率达到1×10 -4S/cm。该油溶性导电剂能够完全溶解在基础油中并提高其导电能力,从而具有抑弧、防静电、冷却、传热和导电效果。

Description

一种油溶性导电添加剂及其制备方法
本申请要求于2022年01月24日提交中国专利局、申请号为202210079228.9、发明名称为“一种油溶性导电添加剂及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于导电剂技术领域,尤其涉及一种油溶性导电添加剂及其制备方法。
背景技术
对于机械电气设备的导电元件,如电动机轴承、微电子机械系统、集成电路、电气开关、以及输变电设备、纺织、石油化工等。在打印机、跑步机、代步车等容易产生静电的设备中,导电润滑剂可以有效地将静电导引走,防止设备因静电积累导致故障和集成电路的击穿,避免高压静电对财产和人身的安全威胁,同时给予机械部件润滑保护的作用。对于电力系统内的变电站、输电线路的金属导体连接处、电机轴承等易发生静电积累处,油溶性导电剂可以有效导通机械与电气部件之间的电路,避免过量静电积累导致的静电放电事故,减少电路系统中由于接头处滑动或转动导致的接触不良和接触电阻等。
近年来已经有不少关于新型导电添加剂的合成的报道,如Ge等(Xiangyu Ge,Yanqiu Xia&Zongying Shu.Conductive and Tribological Properties of Lithium-Based Ionic Liquids as Grease Base Oil,Tribology Transactions,2015,58:4,686-690.)合成出一种锂基的离子液体并将其稠化作为导电润滑脂,性能可媲美使用铜粉的导电润滑脂。Fan等(Xiaoqiang Fan and Liping Wang.Highly Conductive Ionic Liquids toward High-Performance Space-Lubricating Greases.ACS Applied Materials&Interfaces 2014 6(16),14660-14671.)将常见离子液体烷基咪唑四氟硼酸盐稠化得到导电润滑脂,提供出色的减摩和抗磨能力。虽然现有这些化合物作为导电添加剂都能在不同程度上提高润滑油脂的导电性,但由于其往往油溶性较差,很多只是物理分散,而且传统亲水性离子液体对金属存在不同程度的腐蚀作用,在实际应用受到较大的限制。因此,获得一种高性能、合成简单且具有良好导电性和油溶性的添加剂具有重要意义。
发明内容
有鉴于此,本发明的目的在于提供一种油溶性导电添加剂及其制备方法,该油溶性导电添加剂具有良好的导电性和油溶性。
本发明提供了一种油溶性导电剂,制备原料包括以下组分:
癸酸乙酯或双(2-乙基己基)癸二酸酯20重量份、碳酸甲乙酯1.8~2.2重量份和含氟离子盐2~8份;
所述含氟离子盐选自双三氟甲磺酰亚胺锂、三氟甲磺酸锂和四氟硼酸锂中的一种或多种。
在本发明中,所述癸酸乙酯的电导率<10 -9S/cm;
所述碳酸甲乙酯的电导率<10 -9S/cm。
在本发明中,所述油溶性导电剂的原料包括癸酸乙酯20份、碳酸甲乙酯2份和2份双三氟甲磺酰亚胺锂;
或包括癸酸乙酯20份、碳酸甲乙酯2份和5份双三氟甲磺酰亚胺锂;
或包括癸酸乙酯20份、碳酸甲乙酯2份和8份双三氟甲磺酰亚胺锂;
或包括双(2-乙基己基)癸二酸酯20份、碳酸甲乙酯2份和2份双三氟甲磺酰亚胺锂;
或包括癸酸乙酯20份、碳酸甲乙酯2份和5份三氟甲磺酸锂;
或包括癸酸乙酯30份、碳酸甲乙酯2份和2份四氟硼酸锂;
或包括癸酸乙酯20份、碳酸甲乙酯4份、2份双三氟甲磺酰亚胺锂和2份三氟甲磺酸锂;
或包括癸酸乙酯20份、碳酸甲乙酯4份、双三氟甲磺酰亚胺锂2份和2份四氟硼酸锂;
或包括癸酸乙酯20份、碳酸甲乙酯6份、双三氟甲磺酰亚胺锂2份、三氟甲磺酸锂2份和四氟硼酸锂2份。
本发明提供了一种上述技术方案所述油溶性导电剂的制备方法,包括以下步骤:
将癸酸乙酯或双(2-乙基己基)癸二酸酯和含氟离子盐混合,再滴加碳酸甲乙酯,在55~105℃下反应1~2h,得到油溶性导电剂;
所述含氟离子盐选自双三氟甲磺酰亚胺锂、三氟甲磺酸锂和四氟硼酸锂中的一种或多种。
本发明提供了一种油溶性导电剂,制备原料包括以下组分:癸酸乙酯或双(2-乙基己基)癸二酸酯20重量份、碳酸甲乙酯1.8~2.2重量份和含氟离子盐2~8重量份;所述含氟离子盐选自双三氟甲磺酰亚胺锂、三氟甲磺酸锂和四氟硼酸锂中的一种或多种。该油溶性导电剂在25℃或更高温度下外观表观为无色透明液体;25℃下的电导率达到1×10 -4S/cm。该油溶性导电剂能够完全溶解在基础油中并提高其导电能力,从而具有抑弧、防静电、冷却、传热和导电效果。
附图说明
图1为本发明实施例制备的油溶性导电剂的红外光谱图;
图2为本发明实施例与对比例制备的油溶性导电剂的电导率;
图3为本发明实施例3制备的油溶性导电剂在基础油中的相容性的外观测试图;
图4不同种类油添加不同含量实施例1的导电剂后的电导率变化;
图5不同种类油添加不同含量实施例2的导电剂后的电导率变化;
图6不同种类油添加不同含量实施例3的导电剂后的电导率变化;
图7不同种类油添加不同含量实施例4的导电剂后的电导率变化;
图8不同种类油添加不同含量实施例5的导电剂后的电导率变化;
图9不同种类油添加不同含量实施例6的导电剂后的电导率变化;
图10不同种类油添加不同含量实施例7的导电剂后的电导率变化;
图11不同种类油添加不同含量实施例8的导电剂后的电导率变化;
图12不同种类油添加不同含量实施例9的导电剂后的电导率变化。
具体实施方式
为了进一步说明本发明,下面结合实施例对本发明提供的一种油溶性导电添加剂及其制备方法进行详细地描述,但不能将它们理解为对本发明保护范围的限定。
1)案例:
实施例1
取2.0g的双三氟甲磺酰亚胺锂加入20.0g癸酸乙酯,待其搅拌分散后,逐滴滴加2g碳酸甲乙酯,然后在60℃油浴控温下搅拌1h,直至溶液完全澄清,之后再经80℃真空干燥12h后,得到澄清透明的油溶性导电剂。
实施例2
取5.0g的双三氟甲磺酰亚胺锂加入20.0g癸酸乙酯,待其搅拌分散后,逐滴滴加2g碳酸甲乙酯,然后在60℃油浴控温下搅拌1h,直至溶液完全澄清,之后再经80℃真空干燥12h后,得到澄清透明的油溶性导电剂。
实施例3
取8.0g的双三氟甲磺酰亚胺锂加入20.0g癸酸乙酯,待其搅拌分散后,逐滴滴加2g碳酸甲乙酯,然后在60℃油浴控温下搅拌1h,直至溶液完全澄清,之后再经80℃真空干燥12h后,得到澄清透明的油溶性导电剂。
实施例4
取5.0g的双三氟甲磺酰亚胺锂加入20.0g双(2-乙基己基)癸二酸酯,待其搅拌分散后,逐滴滴加2g碳酸甲乙酯,然后在60℃油浴控温下搅拌2h,直至溶液完全澄清,之后再经80℃真空干燥12h后,得到澄清透明的油溶性导电剂。
实施例5
取5.0g的三氟甲磺酸锂加入20.0g癸酸乙酯,待其搅拌分散后,逐滴滴加2g碳酸甲乙酯,然后在60℃油浴控温下搅拌2h,直至溶液完全澄清,之后再经80℃真空干燥12h后,得到澄清透明的油溶性导电剂。
实施例6
取2.0g的四氟硼酸锂加入30.0g癸酸乙酯,待其搅拌分散后,逐滴滴加2g碳酸甲乙酯,然后在70℃油浴控温下搅拌2h,直至溶液完全澄清,之后再经80℃真空干燥12h后,得到澄清透明的油溶性导电剂。
实施例7
取2.0g的双三氟甲磺酰亚胺锂和2.0g的三氟甲磺酸锂加入20.0g癸酸乙酯,待其搅拌分散后,逐滴滴加4g碳酸甲乙酯,然后在70℃油浴控温下搅拌2h,直至溶液完全澄清,之后再经80℃真空干燥12h后,得到澄清透明的油溶性导电剂。
实施例8
取2.0g的双三氟甲磺酰亚胺锂和2.0g的四氟硼酸锂加入20.0g癸酸乙酯,待其搅拌分散后,逐滴滴加4g碳酸甲乙酯,然后在70℃油浴控温下搅拌2h,直至溶液完全澄清,之后再经80℃真空干燥12h后,得到澄清透明的油溶性导电剂。
实施例9
分别取双三氟甲磺酰亚胺锂、三氟甲磺酸锂和四氟硼酸锂各2.0g加入20.0g癸酸乙酯,待其搅拌分散后,逐滴滴加6g碳酸甲乙酯,然后在70℃油浴控温下搅拌2h,直至溶液完全澄清,之后再经80℃真空干燥12h后,得到澄清透明的油溶性导电剂。
对比例1
取5.0g的双三氟甲磺酰亚胺锂加入20.0g癸酸乙酯,待其搅拌分散后,在60℃油浴控温下搅拌1h,直至溶液完全澄清,之后再经80℃真空干燥12h后,得到澄清透明的油溶性导电剂。
对比例2
取5.0g的双三氟甲磺酰亚胺锂加入20.0g双(2-乙基己基)癸二酸酯,然后在70℃油浴控温下搅拌1h,直至溶液完全澄清,之后再经80℃真空干燥12h后,得到澄清透明的油溶性导电剂。
对比例3
取5.0g的双三氟甲磺酰亚胺锂加入20.0g双(2-乙基己基)癸二酸酯,待其搅拌分散后,逐滴滴加2g二(2-乙基己基)磷酸酯,然后在60℃油浴控温下搅拌1h,直至溶液完全澄清,之后再经80℃真空干燥12h后,得到澄清透明的油溶性导电剂。
2)合成结构表征
通过Bruker Tensor 27傅里叶红外光谱仪测定实施例1~3中的反应物和产物的红外光谱。如图1所示,其中,1738cm -1处是癸酸乙酯中C=O键的伸缩振动峰;a为癸酸乙酯的红外光谱曲线,b为碳酸甲乙酯的红外光谱曲线,c为双三氟甲磺酰亚胺锂的红外光谱曲线,d为实施例1制备的油溶性导电剂的红外光谱曲线,e为实施例2制备的油溶性导电剂的红外光谱曲线,f为实施例3制备的油溶性导电剂的红外光谱曲线。当加入双三氟甲磺酰亚胺锂后,红 外光谱中出现一处均不属于三种物质的吸收峰,位于1707cm -1处(图1中d),随着双三氟甲磺酰亚胺锂含量的提高,1707cm -1峰变强,而1738cm -1处的吸收峰变得微弱(图1中f)。这是由于双三氟甲磺酰亚胺锂的存在使得C=O键的振动峰向低波数移动,即Li +与羰基氧形成了共轭作用,电子云密度降低,向低波数移动。综上所述,本方案所制备过程原料并不是简单的溶解,而是发生了化学反应生成的新物质。
3)导电性测试
取实施例中产物3mL,利用雷磁DDSJ-308A型电导率仪,在25℃下测试其电导率,评价其导电性。测试结果见图2。(注:癸酸乙酯、双(2-乙基己基)癸二酸酯和碳酸甲乙酯电导率均<10 -9S/cm)。
取实施例3中产物3mL,利用雷磁DDSJ-308A型电导率仪,分别在25℃、40℃、60℃、80℃下测试其电导率,评价其导电性随温度变化规律。测试结果见表1。(注:癸酸乙酯、双(2-乙基己基)癸二酸酯和碳酸甲乙酯电导率均<10 -9S/cm)。
表1实施例3制备的油溶性导电剂的电导率随温度变化规律
Figure PCTCN2022077214-appb-000001
4)油溶性测试:
选取四组油液作为产物油溶性测试的溶剂,其中油溶性聚醚来自南京威尔药业的SDM-015A,酯类油来自赤峰瑞阳化工的单季戊四醇酯,PAO来自上海棋成实业公司,MVI500取自辽河石化公司。取实施例3中产物分别测试与A(油溶性聚醚)、B(酯类油)、C(PAO+酯类油(质量比1:1))和D(MVI500+酯类油(质量比1:1))的相容性,结果见图3。
从图3可以看出:这四种基础油中加入了12%wt(高浓度)的实施例3产物,可以明显观察到所有混合物都是清晰透明的状态,没有出现沉淀和相分离。即使经过长时间的储存,这种澄清透明的状态也没有改变,表明本制备方法中合成的导电化合物具有良好的油溶性。由此证明本发明所制备出的化合物同时具有良好的油溶性和导电性。
将实施例3制备的油溶性导电剂添加到不同种类油A(油溶性聚醚)、B(酯类油)、C(PAO+酯类油)和D(MVI500+酯类油)中,可以赋予基础油以良好的导电性(图6所示)。添加量为6%wt时,可将酯类油和油溶性聚醚的电导率分别提高到50倍和4000倍以上;添加量为12%wt时,可将酯类油和油溶性聚醚的电导率分别提高到400倍和16000倍以上,此时油溶性聚醚的电导率达到10 -5S/cm,相当于半导体级别的电导率:
同理,将实施例1、实施例2、实施例4~9制备的油溶性导电剂分别添加到上述技术方案所述的不同种类基础油中。电导率的测试结果分别见图4、图5、图7~图12。实施例1、实施例2、实施例4~9制备的油溶性导电剂均能够在四种基础油中良好溶解,并且明显提高基础油的电导率。其中,油溶性导电剂添加量为6%wt时,油溶性聚醚电导率可提高至少1000倍。提高油溶性导电剂的添加量,其它基础油导电性均有不同程度的提高。
从图4~图12的数据可以看出,将本发明提供的油溶性导电剂添加至基础油中能够完全溶解,还能提高基础油的导电能力,添加10%wt就可将基础油电导率提高10~10000倍,从而具有抑弧、防静电、冷却、传热和导电效果。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (4)

  1. 一种油溶性导电剂,制备原料包括以下组分:
    癸酸乙酯或双(2-乙基己基)癸二酸酯20重量份、碳酸甲乙酯1.8~2.2重量份和含氟离子盐2~8重量份;
    所述含氟离子盐选自双三氟甲磺酰亚胺锂、三氟甲磺酸锂和四氟硼酸锂中的一种或多种。
  2. 根据权利要求1所述的油溶性导电剂,其特征在于,所述癸酸乙酯的电导率<10 -9S/cm;
    所述碳酸甲乙酯的电导率<10 -9S/cm。
  3. 根据权利要求1所述的油溶性导电剂,其特征在于,所述油溶性导电剂的制备原料包括癸酸乙酯20份、碳酸甲乙酯2份和2份双三氟甲磺酰亚胺锂;
    或包括癸酸乙酯20份、碳酸甲乙酯2份和5份双三氟甲磺酰亚胺锂;
    或包括癸酸乙酯20份、碳酸甲乙酯2份和8份双三氟甲磺酰亚胺锂;
    或包括双(2-乙基己基)癸二酸酯20份、碳酸甲乙酯2份和2份双三氟甲磺酰亚胺锂;
    或包括癸酸乙酯20份、碳酸甲乙酯2份和5份三氟甲磺酸锂;
    或包括癸酸乙酯30份、碳酸甲乙酯2份和2份四氟硼酸锂;
    或包括癸酸乙酯20份、碳酸甲乙酯4份、2份双三氟甲磺酰亚胺锂和2份三氟甲磺酸锂;
    或包括癸酸乙酯20份、碳酸甲乙酯4份、双三氟甲磺酰亚胺锂2份和2份四氟硼酸锂;
    或包括癸酸乙酯20份、碳酸甲乙酯6份、双三氟甲磺酰亚胺锂2份、三氟甲磺酸锂2份和四氟硼酸锂2份。
  4. 一种权利要求1~3任一项所述油溶性导电剂的制备方法,包括以下步骤:
    将癸酸乙酯或双(2-乙基己基)癸二酸酯和含氟离子盐混合,再滴加碳酸甲乙酯,在55~105℃下反应1~2h,得到油溶性导电剂;
    所述含氟离子盐选自双三氟甲磺酰亚胺锂、三氟甲磺酸锂和四氟硼酸锂中的一种或多种。
PCT/CN2022/077214 2022-01-24 2022-02-22 一种油溶性导电添加剂及其制备方法 WO2023137819A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22921255.0A EP4358099A1 (en) 2022-01-24 2022-02-22 Oil-soluble conductive additive and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210079228.9A CN114678156B (zh) 2022-01-24 2022-01-24 一种油溶性导电添加剂及其制备方法
CN202210079228.9 2022-01-24

Publications (1)

Publication Number Publication Date
WO2023137819A1 true WO2023137819A1 (zh) 2023-07-27

Family

ID=82071080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077214 WO2023137819A1 (zh) 2022-01-24 2022-02-22 一种油溶性导电添加剂及其制备方法

Country Status (3)

Country Link
EP (1) EP4358099A1 (zh)
CN (1) CN114678156B (zh)
WO (1) WO2023137819A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117343096A (zh) * 2023-12-04 2024-01-05 瑞浦兰钧能源股份有限公司 一种离子化导电剂及其制备方法和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115584111B (zh) * 2022-10-28 2023-11-14 中国科学院兰州化学物理研究所 一种抗静电自润滑塑料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1768128A (zh) * 2003-04-02 2006-05-03 出光兴产株式会社 导电润滑剂组合物
CN102421879A (zh) * 2009-05-14 2012-04-18 协同油脂株式会社 润滑脂组合物及轴承
CN103160365A (zh) * 2011-12-16 2013-06-19 中国科学院兰州化学物理研究所 一种润滑油组合物及其制备方法
CN105331434A (zh) * 2015-11-23 2016-02-17 北京国电富通科技发展有限责任公司 一种导电润滑脂的组合物及其制备方法
CN107574000A (zh) * 2017-10-10 2018-01-12 广西科技大学 一种导电润滑脂的制备方法
US20190119598A1 (en) * 2017-10-19 2019-04-25 Cosmo Oil Lubricants Co., Ltd. Conductive Lubricating Oil Composition and Spindle Motor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE462355B (sv) * 1988-10-18 1990-06-11 Skf Nova Ab Elektriskt ledande superparamagnetiska vaetskor
KR100794081B1 (ko) * 2000-04-12 2008-01-10 산꼬 가가꾸 고교 가부시끼가이샤 제전성 조성물
JP4407205B2 (ja) * 2003-08-22 2010-02-03 三菱化学株式会社 リチウム二次電池用非水電解液及びそれを用いたリチウム二次電池
JP4751629B2 (ja) * 2005-03-23 2011-08-17 ステラケミファ株式会社 第4級アンモニウム塩、電解質、電解液並びに電気化学デバイス
JP4347869B2 (ja) * 2006-08-16 2009-10-21 住友ゴム工業株式会社 熱可塑性エラストマー組成物、その製造方法及び成形物
JP5462949B2 (ja) * 2010-09-24 2014-04-02 積水化学工業株式会社 電解質、電解液、ゲル電解質、電解質膜、ゲル電解質電池の製造方法及びリチウムイオン二次電池
EP3282505B1 (en) * 2016-08-08 2020-02-05 Samsung Electronics Co., Ltd Positive electrode for metal air battery, metal air battery including the same, and method of preparing the positive electrode for metal air battery
CN111244542A (zh) * 2020-03-21 2020-06-05 湖州安和材料科技有限公司 一种耐低温锂电池电解液及其制备工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1768128A (zh) * 2003-04-02 2006-05-03 出光兴产株式会社 导电润滑剂组合物
CN102421879A (zh) * 2009-05-14 2012-04-18 协同油脂株式会社 润滑脂组合物及轴承
CN103160365A (zh) * 2011-12-16 2013-06-19 中国科学院兰州化学物理研究所 一种润滑油组合物及其制备方法
CN105331434A (zh) * 2015-11-23 2016-02-17 北京国电富通科技发展有限责任公司 一种导电润滑脂的组合物及其制备方法
CN107574000A (zh) * 2017-10-10 2018-01-12 广西科技大学 一种导电润滑脂的制备方法
US20190119598A1 (en) * 2017-10-19 2019-04-25 Cosmo Oil Lubricants Co., Ltd. Conductive Lubricating Oil Composition and Spindle Motor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIANGYU GEYANQIU XIAZONGYING SHU: "Conductive and Tribological Properties of Lithium-Based Ionic Liquids as Grease Base Oil", TRIBOLOGY TRANSACTIONS, vol. 58, no. 4, 2015, pages 686 - 690
XIAOQIANG FANLIPING WANG: "Highly Conductive Ionic Liquids toward High-Performance Space-Lubricating Greases", ACS APPLIED MATERIALS & INTERFACES, vol. 6, no. 16, 2014, pages 14660 - 14671

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117343096A (zh) * 2023-12-04 2024-01-05 瑞浦兰钧能源股份有限公司 一种离子化导电剂及其制备方法和应用
CN117343096B (zh) * 2023-12-04 2024-04-02 瑞浦兰钧能源股份有限公司 一种离子化导电剂及其制备方法和应用

Also Published As

Publication number Publication date
CN114678156B (zh) 2022-11-29
CN114678156A (zh) 2022-06-28
EP4358099A1 (en) 2024-04-24

Similar Documents

Publication Publication Date Title
WO2023137819A1 (zh) 一种油溶性导电添加剂及其制备方法
JP5532265B2 (ja) イオン液体ベースのグリース組成物
CN103525510B (zh) 一种低温润滑脂及其制备方法
Seki et al. Physicochemical and electrochemical properties of 1-ethyl-3-methylimidazolium tris (pentafluoroethyl) trifluorophosphate and 1-ethyl-3-methylimidazolium tetracyanoborate
Song et al. Green ionic liquid lubricants prepared from anti-inflammatory drug
Song et al. Lithium-based ionic liquids functionalized by sym-triazine and cyclotriphosphazene as high temperature lubricants
Fan et al. Laxative inspired ionic liquid lubricants with good detergency and no corrosion
TW200923071A (en) Lubricating oil base oil and lubricating oil composition
US20110070486A1 (en) Ionic liquid
Oparanti et al. AC breakdown analysis of synthesized nanofluids for oil-filled transformer insulation
Xu et al. Weakly coordinating anions, and the exceptional conductivity of their nonaqueous solutions
Destegül et al. Synthesis and structural and thermal properties of cyclotriphosphazene-based ionic liquids: tribological behavior and OFET application
WO2016103240A1 (ja) ガス絶縁開閉装置用潤滑剤及びガス絶縁開閉装置
JP6028200B2 (ja) パーフルオロポリエーテル油の拡散防止剤、並びにフッ素系潤滑剤
US20060275660A1 (en) Process for producing high-strength polypyrrole film
Wei et al. Superior lubricity and corrosion-resistance response of solvated ionic liquids containing lithium and borate
US3063943A (en) Lubricant compositions
JP5957401B2 (ja) 潤滑油基油および潤滑油組成物
Wang et al. Synergistic effects of phosphate ionic liquids and octadecylaminen‐oleoyl sarcosinate as lubricating grease additives
JP5957402B2 (ja) グリース
Reddy et al. Ionic liquids enhance electrical conductivity of greases: an impedance spectroscopy study
CN110846106B (zh) 一种离子液体基导电润滑脂及其制备方法
CN110527581A (zh) 一种架空导线用高温防腐脂及其制备方法
JP6578911B2 (ja) イオン導電性固体電解質
da Silva et al. Natural Eutectic Mixtures of Sodium Salt and Fatty Acids as Electrolytes for Supercapacitors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921255

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022921255

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022921255

Country of ref document: EP

Effective date: 20240117