WO2023136404A1 - 이종 미생물 혼합 발효에 의한 조미소재의 제조방법 - Google Patents

이종 미생물 혼합 발효에 의한 조미소재의 제조방법 Download PDF

Info

Publication number
WO2023136404A1
WO2023136404A1 PCT/KR2022/008399 KR2022008399W WO2023136404A1 WO 2023136404 A1 WO2023136404 A1 WO 2023136404A1 KR 2022008399 W KR2022008399 W KR 2022008399W WO 2023136404 A1 WO2023136404 A1 WO 2023136404A1
Authority
WO
WIPO (PCT)
Prior art keywords
microorganism
acid
fermentation
lysine
producing
Prior art date
Application number
PCT/KR2022/008399
Other languages
English (en)
French (fr)
Inventor
김현호
이선희
김동현
김현숙
박석현
박준현
Original Assignee
대상 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220070271A external-priority patent/KR20230108684A/ko
Application filed by 대상 주식회사 filed Critical 대상 주식회사
Publication of WO2023136404A1 publication Critical patent/WO2023136404A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/14Glutamic acid; Glutamine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/08Lysine; Diaminopimelic acid; Threonine; Valine
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/20Synthetic spices, flavouring agents or condiments
    • A23L27/21Synthetic spices, flavouring agents or condiments containing amino acids
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/20Synthetic spices, flavouring agents or condiments
    • A23L27/21Synthetic spices, flavouring agents or condiments containing amino acids
    • A23L27/22Synthetic spices, flavouring agents or condiments containing amino acids containing glutamic acids
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/20Synthetic spices, flavouring agents or condiments
    • A23L27/24Synthetic spices, flavouring agents or condiments prepared by fermentation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/10Citrulline; Arginine; Ornithine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides
    • C12P19/30Nucleotides
    • C12P19/32Nucleotides having a condensed ring system containing a six-membered ring having two N-atoms in the same ring, e.g. purine nucleotides, nicotineamide-adenine dinucleotide
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium

Definitions

  • the present invention relates to a method for producing a seasoning material using a process of simultaneously fermenting a mixture of two or more kinds of microorganisms having different types of production materials.
  • L-glutamic acid is an acidic amino acid that gives a savory taste and is naturally present in animal foods such as dairy products, meat, and fish as well as plant foods such as kelp, soybean paste, and soy sauce.
  • L-glutamic acid is the most widely used food seasoning material worldwide.
  • monosodium glutamate (MSG) which is prepared by adding salt during the refining process of L-glutamic acid, has an excellent food flavor enhancement effect and is used as a food additive in many processed foods. is being used as In recent years, as consumers' awareness of health has increased, the market for natural seasoning materials such as yeast extract and natural material extracts has been rapidly growing. However, MSG still has excellent flavor compared to natural seasoning materials and has high competitiveness at a low price. Therefore, much effort is required to develop alternatives to MSG.
  • seasoning materials using various amino acids such as L-lysine, L-valine, and L-arginine along with L-glutamic acid are being developed.
  • seasoning materials further containing nucleic acids such as inosinic acid and guanylic acid or organic acids such as succinic acid and lactic acid are being developed.
  • Seasoning materials based on L-glutamic acid are generally prepared by mixing fermentation broths prepared from microorganisms that produce each product, or by mixing separately produced amino acid, nucleic acid, or organic acid powders.
  • the conventional manufacturing method is easy to control the concentration or content of final substances such as L-glutamic acid, but it requires high production costs because the production process must be operated in duplicate before mixing, and a large amount of medium components and fermentation by-products are required for the seasoning material produced. It is difficult to solve the problem of taste and odor because the back remains, and there is still a limit in that it is not enough to produce a rich umami taste. Accordingly, a lot of research and development is required to develop seasoning materials with improved umami.
  • An object of the present invention is to provide a method for producing a seasoning material by mixing and fermenting two or more microorganisms of different types of production materials.
  • Another object of the present invention is to provide a method for producing a seasoning material containing L-glutamic acid and L-lysine by mixing and fermenting glutamic acid-producing microorganisms and lysine-producing microorganisms.
  • an object of the present invention is to provide a seasoning material prepared by the above method.
  • an object of the present invention is to provide a food composition containing the seasoning material.
  • One aspect of the present invention includes preparing a fermentation broth containing amino acids, nucleic acids and/or organic acids by inoculating a first microorganism and a second microorganism in a fermentation medium and then fermenting the first microorganism and the second microorganism
  • a method for producing a seasoning material by producing different products and producing one selected from the group consisting of amino acids, nucleic acids, and organic acids, respectively.
  • seasoning material used in the present invention means a material added to enhance the flavor of food, and is used in a broader concept than general seasoning added in small amounts at the end of the general food cooking process, and is used not only when cooking at home, It can be used to enhance the taste in the process of manufacturing processed foods such as ham, sausage, and ramen.
  • the seasoning material in the present invention refers to a material containing at least one amino acid, nucleic acid, and/or organic acid as a taste component to enrich the umami taste and have excellent sensory properties.
  • the amino acids are L-glutamic acid, L-alanine, L-valine, L-leucine, L-isoleucine, L-proline, L-phenylalanine, L-tryptophan, L-methionine, L- At least one selected from the group consisting of glycine, L-serine, L-threonine, L-cysteine, L-asparagine, L-glutamine, L-aspartic acid, L-lysine, L-arginine and L-histidine it could be
  • the nucleic acid may be at least one selected from the group consisting of inosinic acid, guanylic acid, xanthyl acid, and salts thereof.
  • the nucleic acid may be inosine monophosphate (IMP), guanosine monophosphate (GMP), or xanthosine monophosphate (XMP), but is not limited thereto.
  • IMP inosine monophosphate
  • GMP guanosine monophosphate
  • XMP xanthosine monophosphate
  • the organic acid may be at least one selected from the group consisting of succinic acid (succinic acid), malic acid, citric acid, acetic acid, lactic acid, fumaric acid, tartaric acid, ascorbic acid, gluconic acid, and salts thereof. .
  • succinic acid succinic acid
  • malic acid citric acid
  • acetic acid lactic acid
  • fumaric acid tartaric acid
  • ascorbic acid ascorbic acid
  • gluconic acid and salts thereof.
  • “Fermentation” as used in the present invention is a biological phenomenon in which organic matter contained in a medium is decomposed or changed into other substances by microorganisms, and the inoculated microorganism decomposes or converts nutrients in the fermentation medium into amino acids, nucleic acids, organic acids, etc.
  • “fermentation broth” means to include substances produced from microorganisms through fermentation, and such fermentation broth is obtained by mixing and fermenting two or more kinds of microorganisms that produce different kinds of products, respectively. It includes not only useful substances such as amino acids, nucleic acids, and organic acids produced by microorganisms, but also by-products and media components produced in the metabolic process.
  • the mixed fermentation refers to a process of fermenting heterogeneous microorganisms that produce different types of amino acids, nucleic acids, or organic acids from each other in the microbial fermentation process under the same conditions in one incubator.
  • microorganisms having different types of amino acids, nucleic acids, or organic acids or amino acid-producing microorganisms and nucleic acid-producing microorganisms, amino acid-producing microorganisms and organic acid-producing microorganisms, or organic acid-producing microorganisms and nucleic acid-producing microorganisms may be used. It is not.
  • the fermentation broth produced by such mixed fermentation contains two amino acids, nucleic acids, or organic acids, or one amino acid and one nucleic acid, one amino acid and one organic acid, or one organic acid and one organic acid. It may include, but is not limited to, species nucleic acids.
  • the second microorganism is a lysine-producing microorganism, an arginine-producing microorganism, a histidine-producing microorganism, a tryptophan-producing microorganism, a glycine-producing microorganism, an alanine-producing microorganism, a succinic acid-producing microorganism, or a lactic acid-producing microorganism. It may be a microorganism, a guanylic acid producing microorganism or an inosinic acid producing microorganism.
  • the second microorganism is a lysine-producing microorganism, an arginine-producing microorganism, a histidine-producing microorganism, a tryptophan-producing microorganism, a glycine-producing microorganism, an alanine-producing microorganism, a succinic acid-producing microorganism, a lactic acid-producing microorganism, or It may be a guanylic acid producing microorganism.
  • the step is to further inoculate a third microorganism that produces a product different from that of the first microorganism and the second microorganism and produces one species selected from the group consisting of amino acids, nucleic acids and organic acids can
  • the fermentation broth prepared from the first microorganism, the second microorganism, and the third microorganism contains three kinds of amino acids, nucleic acids, or organic acids, or one kinds of amino acids and two kinds of nucleic acids, two kinds of amino acids and one kind.
  • nucleic acids, 1 amino acid and 2 organic acids, 2 amino acids and 1 organic acid, 1 organic acid and 2 nucleic acids, 2 organic acids and 1 nucleic acid, or 1 amino acid It may include one kind of nucleic acid and one kind of organic acid, but is not limited thereto.
  • the third microorganism may be an inosinic acid-producing microorganism.
  • Microorganisms used in the production of such seasoning materials are microorganisms that produce amino acids, nucleic acids and/or organic acids, and may be wild-type microorganisms obtained in nature or mutant strains modified to improve the production ability of wild-type microorganisms.
  • Microorganisms known in the art may be used without limitation as the amino acid, nucleic acid or organic acid-producing microorganism, for example, Corynebacterium genus, Brevibacterium genus, Lactobacillus genus , Bifidobacterium ( Bifidobacterium ) genus, Bacillus ( Bacillus ) genus and the like. These microorganisms may be of the same genus or species, or may be of different genus or species, and may be selected by a user.
  • the first microorganism, the second microorganism and the third microorganism may be microorganisms of the genus Corynebacterium.
  • the microorganisms of the genus Corynebacterium are Corynebacterium glutamicum , Corynebacterium crudilactis , Corynebacterium deserti, Corynebacterium deserti Rium Kalunae ( Corynebacterium callunae ), Corynebacterium Suranaaeae ( Corynebacterium suranareeae ), Corynebacterium rubricantis ( Corynebacterium lubricantis ), Corynebacterium dusanense ( Corynebacterium doosanense ), Corynebacterium epi Census ( Corynebacterium efficiens ), Corynebacterium utereki ( Corynebacterium uterequi ), Corynebacterium stationis ( Corynebacterium stationis ), Corynebacterium pacaense ( Corynebacterium pacaense ), Corynebacterium singulare ( Corynne
  • each separated and selected microorganism may be used, or a mixture of microorganisms in which they are mixed may be used, and depending on the situation, the separated microorganisms and the mixture of microorganisms may be appropriately mixed and used.
  • Each microorganism grows and produces amino acids. It can be used for fermentation in a state in which the production ability for nucleic acids and / or organic acids is activated, and it is preferable to undergo species culture for activation of microorganisms.
  • the first microorganism, the second microorganism, and the third microorganism may be cultured individually or in a mixed culture medium.
  • seed culture means culturing microorganisms in a low-volume medium before mass-cultivating microorganisms
  • seed culture medium refers to microorganisms and their growth through medium components and seed culture. It means including metabolites, etc.
  • the species culture may be performed according to appropriate media and culture conditions known in the art according to the characteristics of each microorganism, and those skilled in the art can easily adjust and use the media and culture conditions.
  • the medium used for the seed culture contains nutrients necessary for the growth and proliferation of microorganisms, and may be a liquid medium.
  • the incubation temperature in the seed culture may be usually 20 to 45 ° C, for example 25 to 40 ° C, or 27 to 37 ° C, and the incubation period may continue until the microorganism actively grows and proliferates, for example For example, it may be 10 to 160 hours, 18 to 120 hours, or 20 to 80 hours.
  • the pH of the culture medium can be adjusted by adding compounds such as sodium hydroxide, ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid and sulfuric acid to the culture medium or culture medium in an appropriate manner during the culture.
  • the formation of air bubbles can be suppressed by using an antifoaming agent for food additives during cultivation.
  • oxygen or an oxygen-containing gas eg, air may be injected into the culture medium to maintain the aerobic state of the culture medium or culture medium.
  • These species cultures can be cultured according to the concentration of microorganisms desired by the user, and by measuring the OD (optical density) value of the species culture medium, the concentration of microorganisms is estimated and whether or not to continue the culture is determined.
  • OD optical density
  • a fermentation broth containing different types of products can be prepared through mixed fermentation (main fermentation) using each microorganism or its species culture medium.
  • the mixed fermentation is a concept contrary to conventional individual fermentation in which each microorganism is individually cultivated to prepare a fermentation broth containing the product of each microorganism.
  • mixed fermentation for example, L-glutamic acid by a glutamic acid-producing microorganism, L-lysine by a lysine-producing microorganism, L-arginine by an arginine-producing microorganism, and IMP by an inosinic acid-producing microorganism, .
  • L-glutamic acid by a glutamic acid-producing microorganism L-lysine by a lysine-producing microorganism
  • L-arginine by an arginine-producing microorganism
  • IMP by an inosinic acid-producing microorganism
  • the inoculation amount of each microorganism in order to adjust the ratio of products of each microorganism, that is, amino acids, nucleic acids and / or organic acids in the fermentation broth.
  • L-glutamic acid and L-lysine in the fermented broth can be produced through the mixed fermentation of the two microorganisms to produce an appropriate taste as a seasoning material. It can be produced at a ratio of 0.83 to 99:1.
  • L-glutamic acid and L-arginine in the fermentation broth can be produced at a ratio of 1.04 to 99: 1 through mixed fermentation of the two microorganisms.
  • the inoculation ratio of the glutamic acid-producing microorganism and the inosinic acid-producing microorganism is 0.05 to 99.95: 99.95 to 0.05
  • L-glutamic acid and IMP in the fermentation broth can be produced at a ratio of 0.02 to 99.8: 1 through mixed fermentation of the two microorganisms.
  • the inoculum ratio of the inosinic acid-producing microorganism and the lysine-producing microorganism is 0.05 to 99.95: 99.95 to 0.05
  • IMP and L-lysine in the fermentation broth through mixed fermentation of the two microorganisms can be produced at a ratio of 0.01 to 92.3: 1.
  • inoculum ratio of inosinic acid-producing microorganism and arginine production is 65 to 99.95: 35 to 0.05
  • IMP and L-arginine in the fermentation broth through mixed fermentation of the two microorganisms can be produced at a ratio of 1.04 to 95.1: 1.
  • the mixed fermentation may be performed according to an appropriate medium and fermentation conditions known in the art in consideration of the characteristics of each microorganism, and a person skilled in the art may easily adjust and use the medium and fermentation conditions.
  • the fermentation medium used for the mixed fermentation contains nutrients necessary for the growth and proliferation of microorganisms and may be a liquid medium.
  • the fermentation medium is a medium used during main fermentation for mass production of amino acids, nucleic acids and/or organic acids, and contains nutrients necessary for the growth of each microorganism.
  • the fermentation medium since the fermentation broth including the fermentation medium is used as a seasoning material without a separate purification process after fermentation is completed, the fermentation medium is composed of materials usable as food materials and preferably contains the minimum components and amounts required for microbial culture. do.
  • the fermentation medium may contain raw sugar and/or glucose based on molasses.
  • the fermentation medium includes molasses, raw sugar, and glucose as sugar sources and nutrients for microorganisms, and may include 1 to 30% by weight of molasses based on the total equivalent weight.
  • the molasses used herein may be derived from sugar cane or sugar beet.
  • the fermentation medium may further include nutrients for enhancing the nutrition of microorganisms in addition to sugar sources.
  • the fermentation medium may further contain at least one selected from the group consisting of yeast extract, phosphoric acid, and betaine.
  • the fermentation temperature in the mixed fermentation may be usually 20 to 45 ° C, for example 25 to 40 ° C, or 30 to 38 ° C, and the fermentation period may continue until the microorganism actively grows and proliferates, for example For example, it may be 10 to 160 hours, 18 to 120 hours, or 20 to 100 hours.
  • the pH of the culture medium can be adjusted by adding compounds such as sodium hydroxide, ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid and sulfuric acid to the culture medium or culture medium in an appropriate manner during the culture.
  • the formation of air bubbles can be suppressed by using an antifoaming agent for food additives during cultivation.
  • oxygen or an oxygen-containing gas eg, air may be injected into the culture medium to maintain the aerobic state of the culture medium or culture medium.
  • the fermented broth produced through such mixed fermentation becomes the raw material of the seasoning material, is characterized in that it is used as it is without mixing additional ingredients, and contains a large amount of amino acids, nucleic acids and / or organic acids produced from microorganisms.
  • the fermentation broth may contain 3 to 90% by weight of all microbial products out of total solids.
  • the fermentation broth contains 3 to 90% by weight, 10 to 90% by weight, 20 to 90% by weight, 30 to 90% by weight, 40 to 90% by weight of amino acids, nucleic acids and / or organic acids based on the total solid content. , 50 to 90 wt%, 60 to 90 wt%, 70 to wt%, or 80 to 90 wt%.
  • Such a fermentation broth may contain 5 to 150 g/L of amino acids, nucleic acids and/or organic acids.
  • one aspect of the present invention is a seasoning material containing L-glutamic acid and L-lysine, comprising the step of preparing a fermentation broth containing L-glutamic acid and L-lysine by inoculating a fermentation medium with a glutamic acid-producing microorganism and a lysine-producing microorganism and then fermenting the fermentation medium.
  • a seasoning material containing L-glutamic acid and L-lysine comprising the step of preparing a fermentation broth containing L-glutamic acid and L-lysine by inoculating a fermentation medium with a glutamic acid-producing microorganism and a lysine-producing microorganism and then fermenting the fermentation medium.
  • the glutamic acid-producing microorganism and the lysine-producing microorganism may be wild-type microorganisms obtained in nature, or mutant strains modified to improve the amino acid production ability of wild-type microorganisms.
  • Such glutamic acid or lysine-producing microorganisms may be used without limitation microorganisms known in the art, for example Corynebacterium ( Corynebacterium ) genus, Brevibacterium ( Brevibacterium ) genus, Lactobacillus ( Lactobacillus ) genus, bifi It may be the genus Bifidobacterium , the genus Bacillus , and the like.
  • Microorganisms in the present invention may be of the same genus or species, or may be of different genus or species, and may be selected by a user.
  • the glutamate-producing microorganism and the lysine-producing microorganism may be microorganisms of the genus Corynebacterium.
  • Corynebacterium glutamicum was used as a glutamate-producing microorganism and a lysine-producing strain.
  • each separated and selected microorganism may be used, or a microbial mixture in which they are mixed may be used. Depending on the situation, the isolated microorganism and the microbial mixture may be appropriately mixed and used. .
  • These glutamic acid or lysine-producing microorganisms can be used for fermentation in a state in which microbial growth and amino acid production ability are activated, and it is preferable to undergo species culture for microbial activation.
  • the glutamate-producing microorganism and the lysine-producing microorganism may be cultured separately or in a mixed culture medium.
  • the species culture may be performed according to appropriate media and culture conditions known in the art according to the characteristics of each microorganism, and those skilled in the art can easily adjust and use the media and culture conditions.
  • the medium used for the seed culture contains nutrients necessary for the growth and proliferation of microorganisms, and may be a liquid medium.
  • the species culture medium of the microorganism producing glutamate contains 4.5 to 5.5% by weight of molasses, 3% by weight of glucose, 0.85% by weight of yeast extract paste, 100 ppm of methionine, H 3 PO 4 based on the total weight. 0.6% by weight, 0.1% by weight of sodium succinate, 50 ppm of vitamin C, 12 ppm of thiamine HCl, 20 ppb of vitamin B12, 10 ppm of biotin, 0.4% by weight of MgSO 4 , and 0.01% by weight of an antifoaming agent for food.
  • the seed culture medium of the lysine-producing microorganism contains 1.5 to 3% by weight of molasses, 9 to 12% by weight of raw sugar, 1% by weight of yeast extract paste, (NH 4 ) 2 SO 4 1.6% by weight, H 3 PO 4 0.3% by weight, MnSO 4 5H 2 O 7.3 ppm, nicotinamide 14 ppm, thiamine HCl 2.5 ppm, CuSO 4 H 2 O5 1.5 ppm, biotin 0.056 ppm, betaine 0.045 It may be one containing 0.01% by weight and a defoaming agent for food.
  • the incubation temperature in the seed culture may be usually 20 to 45 ° C, for example 25 to 40 ° C, or 27 to 37 ° C, and the incubation period may continue until the microorganism actively grows and proliferates, for example For example, it may be 10 to 160 hours, 18 to 120 hours, or 20 to 80 hours.
  • the pH of the culture medium can be adjusted by adding compounds such as sodium hydroxide, ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid and sulfuric acid to the culture medium or culture medium in an appropriate manner during the culture.
  • the formation of air bubbles can be suppressed by using an antifoaming agent for food additives during cultivation.
  • oxygen or an oxygen-containing gas eg, air may be injected into the culture medium to maintain the aerobic state of the culture medium or culture medium.
  • These species cultures can be cultured according to the concentration of microorganisms desired by the user, and by measuring the OD (optical density) value of the species culture medium, the concentration of microorganisms is estimated and whether or not to continue the culture is determined.
  • OD optical density
  • L-glutamic acid and L-lysine are obtained through mixed fermentation (main fermentation) using the glutamate-producing microorganism or its species culture medium and the lysine-producing microorganism or its species culture medium.
  • a fermentation broth containing all of them can be prepared.
  • the mixed fermentation is a concept opposite to individual fermentation in which each microorganism is individually cultured to produce a fermentation broth containing the product of each microorganism for the production of conventional amino acids.
  • L-glutamic acid is produced by glutamic acid-producing microorganisms and L-lysine is produced by lysine-producing microorganisms through mixed fermentation. It is possible to prepare a fermentation broth capable of producing rich umami and excellent sensory characteristics by adding taste components such as ions, nucleic acids, organic acids, and other peptides.
  • the step may be to adjust the inoculated amounts of the glutamate-producing microorganism and the lysine-producing microorganism in order to adjust the ratio of L-glutamic acid and L-lysine in the fermentation broth.
  • L-glutamic acid and L-lysine in the fermentation broth can be produced at a ratio of 0.83 to 99: 1, and the glutamic acid-producing microorganism and lysine-producing microorganisms at an inoculation ratio of 65:35, L-glutamic acid and L-lysine in the fermentation broth can be produced at a ratio of about 1:1.
  • the mixed fermentation may be performed according to an appropriate medium and fermentation conditions known in the art in consideration of the characteristics of each microorganism, and a person skilled in the art may easily adjust and use the medium and fermentation conditions.
  • the fermentation medium used in the mixed fermentation may be a liquid medium.
  • the fermentation medium is a medium used during the main fermentation for mass production of L-glutamic acid and L-lysine, and contains nutrients necessary for the growth of glutamic acid-producing microorganisms and lysine-producing microorganisms.
  • the fermentation medium since the fermentation broth including the fermentation medium is used as a seasoning material without a separate purification process after fermentation is completed, the fermentation medium is composed of materials usable as food materials and preferably contains the minimum components and amounts required for microbial culture. do.
  • the fermentation medium may contain raw sugar and/or glucose based on molasses.
  • the fermentation medium includes molasses, raw sugar, and glucose as sugar sources and nutrients for microorganisms, and may include 1 to 30% by weight of molasses based on the total equivalent weight.
  • the molasses used herein may be derived from sugar cane or sugar beet.
  • the fermentation medium may further include nutrients for enhancing the nutrition of microorganisms in addition to sugar sources.
  • the fermentation medium may further contain at least one selected from the group consisting of yeast extract, phosphoric acid, and betaine.
  • the fermentation medium contains 1.5 to 3% by weight of molasses, 2.5 to 4% by weight of glucose, 0.4 to 1% by weight of yeast extract paste, and 0.1 to 0.2% by weight of H 3 PO 4 based on the total weight. , 0.05 to 0.12% by weight of betaine and 0.001 to 0.01% by weight of an antifoaming agent for food.
  • the fermentation temperature in the mixed fermentation may be usually 20 to 45 ° C, for example, 25 to 40 ° C, or 30 to 38 ° C, and the fermentation period is when L-glutamic acid and L-lysine are obtained in a desired content or concentration. It may continue up to, for example, 10 to 160 hours, 18 to 120 hours, or 20 to 100 hours.
  • compounds such as sodium hydroxide, ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid and sulfuric acid may be added to the medium or fermentation broth in an appropriate manner to adjust the pH of the fermentation broth.
  • foaming can be suppressed by using an antifoaming agent for food additives during fermentation.
  • oxygen or an oxygen-containing gas eg, air
  • the fermentation starts at 30 ⁇ 33 °C and maintains the temperature at 36 ⁇ 39 °C, pH 6.5 ⁇ 7.5 and dissolved oxygen content of 20 ⁇ 70% in a state of maintaining the milk for 28 ⁇ 40 hours It may be food culture.
  • This fermented broth containing L-glutamic acid and L-lysine becomes the raw material of the seasoning material containing L-glutamic acid and L-lysine, and is characterized in that it is used as it is without mixing additional ingredients, and is characterized by L-glutamic acid and L-lysine. contains a lot of
  • the fermentation broth may contain 3 to 90% by weight of amino acids including L-glutamic acid and L-lysine based on the total solid content.
  • the content of amino acids including L-glutamic acid and L-lysine in the fermentation broth is 3 to 90% by weight, 10 to 90% by weight, 20 to 90% by weight, 30 to 90% by weight, 40 to 90% by weight based on solid content. , 50 to 90 wt%, 60 to 90 wt%, 70 to wt%, or 80 to 90 wt%.
  • This fermentation broth may contain 5 to 150 g/L of L-glutamic acid and L-lysine.
  • the method for producing a seasoning material according to the present invention may further include an additional step for using the fermented liquid as a seasoning material or a seasoning material containing L-glutamic acid and L-lysine.
  • the method may further include separating cells from the fermentation broth (removing cells) and decolorizing.
  • the cell separation can be performed without limitation by applying a cell cell separation method and separation conditions known in the art.
  • An example of the cell separation may be membrane separation, ultrafiltration, centrifugal filtration, etc., but is not limited thereto.
  • the decolorization may be performed without limitation by applying a decolorization method and decolorization conditions known in the art.
  • a decolorization method and decolorization conditions known in the art.
  • activated carbon or the like may be used, but is not limited thereto.
  • step of filtering the decolorized fermentation broth may be further included.
  • the filtration may be performed without limitation by applying a filtration method and filtration conditions known in the art.
  • a filter paper, a filter net, membrane filtration, ultrafiltration, etc. may be used, but is not limited thereto.
  • the step of concentrating the filtered fermentation broth may be further included.
  • the concentration may be performed without limitation by applying a concentration method and concentration conditions known in the art.
  • concentration include heat concentration, reduced pressure concentration, freeze concentration, evaporation concentration, and vacuum low-temperature concentration, but are not limited thereto.
  • a step of drying and pulverizing the concentrated fermentation broth may be further included.
  • the drying may be performed without limitation by applying a drying method and drying conditions known in the art.
  • Examples of the drying include freeze drying, vacuum drying, air drying, blow drying, hot air drying, flow drying, spray drying, infrared drying, high frequency drying, etc., but are not limited thereto.
  • the fermentation broth can be finally obtained in a powder state, and can be used as a food as a natural seasoning material that has not undergone an additional chemical purification process.
  • Another aspect of the present invention provides a seasoning material manufactured by the method for manufacturing a seasoning material using two or more kinds of microorganisms described above.
  • the seasoning material may be a natural seasoning material containing two or three kinds of taste ingredients among amino acids, nucleic acids, and organic acids.
  • amino acids are L-glutamic acid, L-alanine, L-valine, L-leucine, L-isoleucine, L-proline, L-phenylalanine, L-tryptophan, L-methionine, L-glycine, L-serine, and L-threonine.
  • L-cysteine, L-asparagine, L-glutamine, L-aspartic acid, L-lysine, L-arginine and L-histidine may be one or more selected from the group consisting of.
  • the nucleic acid may be at least one selected from the group consisting of inosinic acid, guanylic acid, xanthyl acid, and salts thereof.
  • the nucleic acid may be inosine monophosphate (IMP), guanosine monophosphate (GMP), or xanthosine monophosphate (XMP), but is not limited thereto.
  • IMP inosine monophosphate
  • GMP guanosine monophosphate
  • XMP xanthosine monophosphate
  • the organic acid may be at least one selected from the group consisting of succinic acid, malic acid, citric acid, acetic acid, lactic acid, fumaric acid, tartaric acid, ascorbic acid, gluconic acid, and salts thereof.
  • the seasoning material is glutamic acid; and lysine, arginine, histidine, tryptophan, glycine, alanine, succinic acid, lactic acid, guanylic acid, or inosinic acid.
  • the seasoning material is inosinic acid; and lysine, arginine, histidine, tryptophan, glycine, alanine, succinic acid, lactic acid, or guanylic acid.
  • the seasoning material is glutamic acid; guanylic acid; And it may be one containing inosinic acid.
  • the seasoning material may contain 3 to 90% by weight of a taste component including amino acids, nucleic acids and/or organic acids based on the total solid content.
  • the seasoning material contains 3 to 90% by weight, 10 to 90% by weight, 20 to 90% by weight, 30 to 90% by weight of a taste component including amino acids, nucleic acids and / or organic acids based on the total solid content. , 40 to 90 wt%, 50 to 90 wt%, 60 to 90 wt%, 70 to wt%, or 80 to 90 wt%.
  • another aspect of the present invention provides a seasoning material containing L-glutamic acid and L-lysine prepared by the method for producing a natural seasoning material containing L-glutamic acid and L-lysine using the above-described glutamic acid-producing microorganism and lysine-producing microorganism. .
  • the seasoning material containing L-glutamic acid and L-lysine may be a natural seasoning material.
  • the seasoning material has L-glutamic acid and L-lysine content of 3 to 90% by weight relative to solid content, and contains L-glutamic acid and L-lysine at a ratio of 0.83 to 99: 1 can
  • seasoning ingredients contain L-lysine along with L-glutamic acid, which gives a savory taste, thereby increasing the solubility of L-glutamic acid and reducing the production of ammonium glutamate during fermentation, thereby solving the problem of ammonia odor.
  • metabolites such as produced organic acids, inorganic ion components, proteins and peptides, and vitamins, it has rich umami and strong body and exhibits excellent sensory properties, so it can be added to various foods to maximize the taste of foods.
  • another aspect of the present invention provides a food composition
  • a food composition comprising the above seasoning material or the seasoning material containing L-glutamic acid and L-lysine.
  • Food composition as used in the present invention means a natural product or processed product containing one or more nutrients, preferably means a state that can be eaten directly through a certain degree of processing, and usually means As such, it includes all health functional foods, functional foods, beverages, food additives and beverage additives.
  • the food composition includes a seasoning material prepared without a chemical purification process or a seasoning material containing natural L-glutamic acid and L-lysine, that is, a natural seasoning material, based on the total weight of the seasoning It may contain 0.001 to 90% by weight of the material, more specifically 0.01 to 50% by weight.
  • the food composition in the present invention may be provided in any dosage form suitable for food, and may be, for example, a solution, emulsion, viscous mixture, powder, granule, tablet, capsule, and the like.
  • various bases and / or additives necessary and appropriate for formulation of the formulation may be included within the range of not impairing the main effect intended by the present invention, and fragrance, colorant, and bactericide within the range of not deteriorating the effect.
  • Antioxidants, preservatives, moisturizers, thickeners, inorganic salts may further include additives such as emulsifiers.
  • the blending amount of these additives may be selected within a range not impairing the objects and effects of the present invention depending on the formulation or purpose of use. For example, based on the total weight of the food composition, the additive may be 0.01 to 70% by weight, more specifically 0.1 to 50% by weight.
  • These food compositions can be used as additives to various foods.
  • any food type known in the art can be used without limitation, and for example, meat, sausage, bread, chocolate, candy, snacks, confectionery, pizza, ramen, other noodles, chewing gum, It may be dairy products including ice cream, various soups, beverages, tea, drinks, alcoholic beverages and vitamin complexes, but is not limited thereto.
  • the method for producing seasoning material according to the present invention is a fermentation broth containing amino acids, nucleic acids and/or organic acids by mixing and fermenting heterogeneous microorganisms that produce different products, that is, different types of amino acids, nucleic acids and/or organic acids, thereby producing food products. It is possible to manufacture natural seasoning materials that can improve taste and aroma and improve overall sensory characteristics, and these seasoning materials can be used in various food fields.
  • FIG. 1 is a flowchart of a fermentation process using glutamic acid-producing microorganisms and lysine-producing microorganisms of Production Examples 1 to 3 according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a fermentation process using glutamic acid-producing microorganisms and arginine-producing microorganisms of Production Examples 4 to 6 according to an embodiment of the present invention.
  • Figure 3 is a flow chart of a fermentation process using the glutamic acid-producing microorganisms and inosinic acid-producing microorganisms of Preparation Examples 7 to 9 according to an embodiment of the present invention.
  • Figure 4 is a flow chart of a fermentation process using inosine acid-producing microorganisms and lysine-producing microorganisms of Production Examples 10 to 12 according to an embodiment of the present invention.
  • Figure 5 is a flow chart of a fermentation process using inosinic acid-producing microorganisms and arginine-producing microorganisms of Production Examples 13 to 15 according to an embodiment of the present invention.
  • Example 1 Mixed fermentation of glutamic acid and lysine
  • Corynebacterium glutamicum NFG6 that produces L-glutamic acid (GA) as a glutamic acid-producing microorganism
  • Corynebacterium glutamicum NFL21 that produces L-lysine (LYS) as a lysine-producing microorganism used
  • composition of the seed culture medium used here is shown in Table 1 below.
  • Glutamic Acid Producing Microorganisms seed culture medium Molasses 4.5 ⁇ 5.5%, Glucose 3%, Yeast Extract Paste 0.85%, Methionine 100 ppm, H 3 PO 4 0.6%, Sodium Succinate 0.1%, Vitamin C 50 ppm, Thiamine HCl 12 ppm, Vitamin B12 20 ppb, Biotin 10 ppm , MgSO 4 0.4% and food defoamer 0.01% Lysine-producing microorganisms seed culture medium Molasses 1.5 ⁇ 3%, raw sugar 9 ⁇ 12%, yeast extract paste 1%, (NH 4 ) 2 SO 4 1.6%, H 3 PO 4 0.3%, MnSO 4 5H 2 O 7.3 ppm, nicotinamide 14 ppm, thiamin HCl 2.5 ppm, CuSO 4 5H 2 O 1.5 ppm, biotin 0.056 ppm, betaine 0.045% and food antifoam 0.01%
  • Glutamic acid seed culture and lysine seed culture were inoculated and fermented at various ratios to confirm the ratio of glutamic acid and lysine in the fermentation broth according to the inoculation amount of the glutamic acid seed culture and the lysine seed culture.
  • Fermentation medium composition Molasses 1.5 ⁇ 3%, Glucose 2.5 ⁇ 4%, Yeast extract paste 0.4 ⁇ 1%, H 3 PO 4 0.1 ⁇ 0.2%, Betaine 0.05 ⁇ 0.12% and food defoamer 0.005% fermentation conditions Temperature 32 ⁇ 38°C, pH 6.5 ⁇ 7.5, aeration 0.8 ⁇ 1.2 vvm, internal pressure 0.6 ⁇ 1.0 kg/cm 3 , agitation speed 320 ⁇ 350 rpm, and dissolved oxygen content (DO) 20 ⁇ 70% maintained
  • a seasoning material containing glutamic acid and lysine was prepared by separately fermenting a glutamic acid-producing microorganism and a lysine-producing microorganism, and then mixing an amino acid-containing fermentation broth or a dried product thereof in an appropriate ratio.
  • the components of the glutamic acid-lysine (GA-LYS) fermented powder obtained by each manufacturing method were compared (FIG. 1 reference).
  • the glutamic acid seed culture medium and the lysine seed culture medium used here were prepared in the same manner as in Example 1-1.
  • the glutamic acid seed culture medium or the lysine seed culture medium was transferred to a 50 L fermenter, and then the main fermentation was carried out separately. Thereafter, the cells were separated from each fermentation broth and then subjected to decolorization and filtration processes. The filtrate was concentrated and dried to give dry matter.
  • a fermented powder containing glutamic acid-lysine was prepared by mixing each of the obtained glutamic acid and lysine dried products at a ratio of amino acids of 1:1.
  • Example 1-2 In the mixed fermentation, glutamic acid seed culture medium and lysine seed culture medium in the same manner as in Example 1-2 so that the ratio of each amino acid in the fermentation broth is about 1: 1 as in Preparation Examples 1 and 2 Inoculated at a ratio of 65: 35 based on the inoculation amount and mixed fermentation. Thereafter, the cells were separated from the fermentation broth and subjected to decolorization and filtration processes. The filtrate was concentrated and dried to obtain a glutamic acid-lysine fermented powder.
  • Amino acids (L-glutamic acid and L-lysine) were analyzed by HPLC (GA - 210 nm UV detector, flow rate 0.9 ml/min; LYS - 214 nm, UV detector, flow rate 0.8 ml/min), and organic acids (citric acid, succinic acid, lactic acid) , acetic acid, etc.) was measured by HPLC analysis (HPX-87H column, 214 nm, 25 min). Ions (Na, Mg, K, PO 4 , SO 4 , Cl, NH 4 , etc.) were measured with an ion analyzer (Dionex IcS-1100, Thermo scientific). The results are shown in Table 4 below.
  • Corynebacterium glutamicum NFG6 (KCCM13164P) as a glutamate-producing microorganism and Corynebacterium glutamicum NFA40 (KCCM13165P) producing L-arginine (ARG) as an arginine-producing microorganism were used.
  • a glutamic acid seed culture medium using a glutamic acid-producing microorganism was prepared in the same manner as in Example 1-1.
  • the composition of the seed culture medium used is shown in Table 6 below.
  • Arginine-producing microorganisms seed culture medium Glucose 1.5 ⁇ 4.5%, raw sugar 2 ⁇ 6%, yeast extract paste 2 ⁇ 3%, (NH 4 ) 2 SO 4 0.6%, KH 2 PO 4 0.2%, K 2 HPO 4 0.2%, MnSO 4 5H 2 O 15 ppm, MgSO 4 7H 2 O 0.2%, Thiamine HCl 1 ppm, ZnSO 4 7H 2 O 10 ppm, Biotin 0.3 ppm, FeSO 4 7H 2 O 15 ppm and food defoamer 0.01%
  • Glutamic acid and arginine seed cultures were inoculated and fermented at various ratios in order to check the ratio of glutamic acid and arginine in the fermented broth according to the inoculation amount of the glutamic acid seed culture and the arginine seed culture.
  • Fermentation medium composition Molasses 1.5 ⁇ 3%, glucose 2.5 ⁇ 4%, yeast extract paste 0.4 ⁇ 1%, (NH 4 ) 2 SO 4 0.05 ⁇ 0.3%, H 3 PO 4 0.1 ⁇ 0.2%, betaine 0.05 ⁇ 0.12% and food Defoamer 0.005% fermentation conditions Temperature 32 ⁇ 37°C, pH 6.5 ⁇ 7.5, aeration 0.8 ⁇ 1.2 vvm, internal pressure 0.5 ⁇ 1.0 kg/cm 3 , agitation speed 320 ⁇ 350 rpm, and dissolved oxygen content (DO) 20 ⁇ 70% maintained
  • a seasoning material containing glutamic acid and arginine was prepared by separately fermenting a glutamic acid-producing microorganism and an arginine-producing microorganism, and then mixing an amino acid-containing fermentation broth or a dried product thereof in an appropriate ratio.
  • the components of the glutamic acid-arginine (GA-ARG) fermented powder obtained by each manufacturing method were compared (FIG. 2 reference).
  • the glutamic acid seed culture medium and the arginine seed culture medium used herein were prepared in the same manner as in Example 3-1.
  • the glutamic acid seed culture medium or the arginine seed culture medium was transferred to a 50 L fermentor, and then the main fermentation was carried out separately. Thereafter, the cells were separated from each fermentation broth and then subjected to decolorization and filtration processes. The filtrate was concentrated and dried to give dry matter. Fermented powder containing glutamic acid-arginine was prepared by mixing each of the obtained glutamic acid and arginine dry matter so that the amino acid ratio was 1:1.
  • Example 3-2 In the mixed fermentation, glutamic acid seed culture medium and arginine seed culture medium in the same manner as in Example 3-2 so that the ratio of each amino acid in the fermentation broth is about 1: 1 as in Preparation Examples 4 and 5. Inoculate at a ratio of 30: 70 based on the inoculation amount and mixed fermentation. Thereafter, the cells were separated from the fermentation broth and subjected to decolorization and filtration processes. The filtrate was concentrated and dried to obtain glutamic acid-arginine fermented powder.
  • Amino acids (L-glutamic acid and L-arginine) were determined by HPLC analysis (GA - 210 nm UV detector, flow rate 0.9 ml/min; ARG - 195 nm, UV detector, flow rate 1 ml/min). Organic acids and ions were measured in the same manner as in Example 2-2. The results are shown in Table 9 below.
  • Example 5 Mixed fermentation of glutamic acid and inosinic acid
  • Corynebacterium glutamicum NFG6 (KCCM13164P) as a glutamic acid-producing microorganism and Corynebacterium ammoniagenes NFI545 (KCCM13162P) producing IMP as an inosinic acid-producing microorganism were used.
  • a glutamic acid seed culture medium using a glutamic acid-producing microorganism was prepared in the same manner as in Example 1-1.
  • inosinic acid-producing microorganisms seed culture medium Glucose 4 ⁇ 6%, yeast extract paste 2 ⁇ 4%, (NH 4 ) 2 SO 4 0.3%, KH 2 PO 4 0.2%, K 2 HPO 4 0.2%, adenine 200 ⁇ 300 ppm, guanine 200 ⁇ 300 ppm, MgSO 4 7H 2 O 0.15%, nicotinic acid 10 ppm, Ca-pantothenate 100 ppm, cysteine 15 ppm, thiamine HCl 1 ppm, ZnSO 4 7H 2 O 5 ppm, MnSO 4 5H 2 O 10 ppm, biotin 0.1 ppm, FeSO 4 7H 2 O 15 ppm and food defoamer 0.01%
  • glutamic acid seed culture and inosinic acid seed culture were inoculated and fermented at various ratios.
  • Fermentation medium composition Molasses 1 ⁇ 3%, raw sugar 5 ⁇ 7%, yeast extract paste 2 ⁇ 3%, H 3 PO 4 0.6 ⁇ 1.2%, betaine 0.05 ⁇ 0.1%, adenine 100 ⁇ 200 ppm, guanine 0 ⁇ 150 ppm, MgSO 4 7H 2 O 0.2 ⁇ 0.5%, Ca-pantothenate 50 ⁇ 100 ppm, Vitamin B3 5 ⁇ 15ppm, Thiamine HCl 5 ⁇ 20 ppm, NaOH 0.4 ⁇ 0.8%, FeSO 4 5 ⁇ 10 ppm, MnSO 4 10 ⁇ 20 ppm, ZnSO 4 10 to 20 ppm and food defoamer 0.005% fermentation conditions Temperature 31 ⁇ 32°C, pH 6.5 ⁇ 7.5, aeration 0.8 ⁇ 1.2 vvm, internal pressure 0.6 ⁇ 1.0 kg/cm 3 , agitation speed 320 ⁇ 350 rpm, and dissolved oxygen content (DO) 20 ⁇
  • a seasoning material containing glutamic acid and inosinic acid was prepared by individually fermenting a glutamic acid-producing microorganism and an inosinic acid-producing microorganism and then mixing the fermentation broth or its dried product in an appropriate ratio.
  • the components of the glutamic acid-inosinic acid (GA-IMP) fermented powder obtained by each manufacturing method were compared (FIG. 3 reference).
  • the glutamic acid seed culture medium and the inosine acid seed culture medium used herein were prepared in the same manner as in Example 5-1.
  • the glutamic acid seed culture medium or the inosine acid seed culture medium was transferred to a 50 L fermentor, and then the main fermentation was carried out separately. Thereafter, the cells were separated from each fermentation broth and then subjected to decolorization and filtration processes. The filtrate was concentrated and dried to give dry matter.
  • a fermented powder containing glutamic acid-inosinic acid was prepared by mixing each of the obtained dry products of glutamic acid and inosinic acid in a ratio of 1:1.
  • each of the glutamic acid seed culture medium or the inosine acid seed culture medium was transferred to a 50 L fermenter, and then the main fermentation was carried out separately.
  • Each fermentation broth obtained in this fermentation was mixed in a ratio of 1: 1, and then the cells were separated and then subjected to decolorization and filtration.
  • the filtrate was concentrated and dried to obtain a glutamic acid-inosinic acid fermented powder.
  • the ratio of each amino acid in the fermentation broth is about 1: 1, glutamic acid seed culture medium and inosine acid seed culture medium in the same manner as in Example 5-2 Inoculated at a ratio of 20: 80 based on the inoculation amount and mixed fermentation. Thereafter, the cells were separated from the fermentation broth and subjected to decolorization and filtration processes. The filtrate was concentrated and dried to obtain a glutamic acid-inosinic acid fermented powder.
  • Example 7 Mixed fermentation of inosinic acid and lysine
  • Corynebacterium ammoniagenes NFI545 (KCCM13162P) as an inosinic acid-producing microorganism and Corynebacterium glutamicum NFL21 (KCCM13163P) as a lysine-producing microorganism were used.
  • An inosinic acid seed culture medium using an inosinic acid-producing microorganism and a lysine seed culture medium using a lysine-producing microorganism were prepared in the same manner as in Examples 5-1 and 1-1, respectively.
  • inosinic acid seed culture and lysine seed culture Inoculation of inosinic acid seed culture and lysine seed culture.
  • Fermentation medium composition Molasses 1 ⁇ 3%, raw sugar 5 ⁇ 7%, yeast extract paste 2 ⁇ 3%, H 3 PO 4 0.6 ⁇ 1.2%, betaine 0.05 ⁇ 0.1%, adenine 100 ⁇ 200 ppm, guanine 50 ⁇ 150 ppm, MgSO 4 7H 2 O 0.2 ⁇ 0.5%, Ca-pantothenate 50 ⁇ 100 ppm, Vitamin B3 5 ⁇ 15 ppm, Thiamine HCl 5 ⁇ 20 ppm, (NH 4 ) 2 SO 4 0.4%, NaOH 0.4 ⁇ 0.8%, FeSO 4 5 to 10 ppm, MnSO 4 10 to 20 ppm, ZnSO 4 10 to 20 ppm and food defoamer 0.005% fermentation conditions Temperature 31 ⁇ 32°C, pH 6.5 ⁇ 7.5, aeration 0.8 ⁇ 1.2 vvm, internal pressure 0.6 ⁇ 1.0 kg/cm 3 , agitation speed 320 ⁇ 350 rpm, and
  • Example 8 Comparison of inosinic acid-lysine fermented powder according to differences in fermentation process
  • a seasoning material containing inosinic acid and lysine was prepared by individually fermenting inosinic acid-producing microorganisms and lysine-producing microorganisms, and then mixing the fermentation broth or a dried product thereof in an appropriate ratio.
  • the components of the inosinic acid-lysine (IMP-LYS) fermented powder obtained by each manufacturing method were compared (FIG. 4 reference).
  • the inosinic acid seed culture medium and the lysine seed culture medium used here were prepared in the same manner as in Example 7-1.
  • the inosinic acid seed culture medium or the lysine seed culture medium was transferred to a 50 L fermentor, and then the main fermentation was carried out separately. Thereafter, the cells were separated from each fermentation broth and then subjected to decolorization and filtration processes. The filtrate was concentrated and dried to give dry matter. Fermented powder containing inosinic acid-lysine was prepared by mixing the obtained inosinic acid and lysine dry matter in a ratio of 1:1, respectively.
  • the ratio of inosinic acid and lysine in the fermentation broth is about 1: 1, in the same manner as in Example 7-2, inosinic acid seed culture medium and lysine seed culture medium at a ratio of 80: 20 based on the inoculum amount Inoculated and mixed fermentation.
  • the cells were separated from the fermentation broth and subjected to decolorization and filtration processes. The filtrate was concentrated and dried to obtain an inosinic acid-lysine fermented powder.
  • IMP and L-lysine were measured by HPLC analysis (IMP - 254 nm, UV detector, flow rate 0.9 ml/min; LYS - 214 nm, UV detector, flow rate 0.8 ml/min).
  • Organic acids and ions were measured in the same manner as in Example 2-2. The results are shown in Table 18 below.
  • the LYS + IMP ratio is higher than in the case of individual fermentation (Production Examples 10 and 11), and the organic acid, ion and content, and ammonium nia content are significantly decreased.
  • Example 9 Mixed fermentation of inosinic acid and arginine
  • Corynebacterium ammoniagenes NFI545 (KCCM13162P) as an inosinic acid-producing microorganism and Corynebacterium glutamicum NFA40 (KCCM13165P) as an arginine-producing microorganism were used.
  • An inosinic acid seed culture medium using an inosinic acid-producing microorganism and an arginine seed culture medium using an arginine-producing microorganism were prepared in the same manner as in Examples 5-1 and 3-1, respectively.
  • inocinic acid and arginine seed cultures were inoculated and fermented at various ratios.
  • Fermentation medium composition Molasses 1 ⁇ 3%, raw sugar 5 ⁇ 7%, yeast extract paste 2 ⁇ 3%, H 3 PO 4 0.6 ⁇ 1.2%, betaine 0.05 ⁇ 0.1%, adenine 100 ⁇ 200ppm, guanine 50 ⁇ 150 ppm, MgSO 4 7H 2 O 0.2 ⁇ 0.5%, Ca-Pantothenate 50 ⁇ 100 ppm, Vitamin B3 5 ⁇ 15 ppm, Thiamine HCl 5 ⁇ 20 ppm, (NH 4 ) 2 SO 4 0.4%, NaOH 0.4 ⁇ 0.8%, FeSO 4 5 to 10 ppm, MnSO 4 10 to 20 ppm, ZnSO 4 10 to 20 ppm and food defoamer 0.005% fermentation conditions Temperature 31 ⁇ 32°C, pH 6.5 ⁇ 7.5, aeration 0.8 ⁇ 1.2 vvm, internal pressure 0.6 ⁇ 1.0 kg/cm 3 , agitation speed 320 ⁇ 350 rpm, and
  • Inoculum ratio of seed culture IMP:ARG fermentation time IMP:ARG ratio in fermented broth 99.95 : 0.05 80 hours 95.1:1 80:20 46 hours 5.3:1 70:30 45 hours 2.45:1 65:35 45 hours 1.04:1
  • a seasoning material containing inosinic acid and arginine was prepared by individually fermenting inosinic acid-producing microorganisms and arginine-producing microorganisms, and then mixing the fermentation broth or a dried product thereof in an appropriate ratio.
  • the components of inosinate-arginine (IMP-ARG) fermented powder obtained by each manufacturing method were compared (FIG. 5 reference).
  • the inosinic acid seed culture medium and the arginine seed culture medium used herein were prepared in the same manner as in Example 9-1.
  • the inosinic acid seed culture medium or the arginine seed culture medium was transferred to a 50 L fermentor, and then the main fermentation was carried out separately. Thereafter, the cells were separated from each fermentation broth and then subjected to decolorization and filtration processes. The filtrate was concentrated and dried to give dry matter. Fermented powder containing inosinic acid-arginine was prepared by mixing the obtained inosinic acid and arginine dry matter in a ratio of 1: 1, respectively.
  • the ratio of inosinic acid and arginine in the fermentation broth is about 1: 1 in the same manner as in Example 9-2, inosinic acid seed culture medium and arginine seed culture medium at a ratio of 65: 35 based on the inoculum amount Inoculated and mixed fermentation. Thereafter, the cells were separated from the fermentation broth and subjected to decolorization and filtration processes. The filtrate was concentrated and dried to obtain an inosinic acid-arginine fermented powder.
  • L-arginine and IMP were measured by HPLC analysis (ARG - 195 nm, UV detector, flow rate 1 ml/min; IMP - 254 nm, UV detector, flow rate 0.9 ml/min).
  • Organic acids and ions were measured in the same manner as in Example 2-2. The results are shown in Table 22 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Nutrition Science (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Seasonings (AREA)

Abstract

본 발명은 생산 물질의 종류가 서로 다른 2종 이상의 미생물들을 혼합하여 동시 발효하는 공정을 이용한 조미소재의 제조방법에 관한 것으로, 상기 조미소재의 제조방법은 서로 다른 산물, 즉 종류가 상이한 아미노산, 핵산 및/또는 유기산을 생산하는 이종 미생물을 혼합하여 발효함으로써 아미노산, 핵산 및/또는 유기산을 함유하는 발효액을 통해 식품의 맛과 향을 향상시키고 전체적인 관능 특성을 개선시킬 수 있는 천연 조미소재를 제조할 수 있으며, 이러한 조미소재는 다양한 식품 분야에서 활용될 수 있다.

Description

이종 미생물 혼합 발효에 의한 조미소재의 제조방법
본 발명은 생산 물질의 종류가 서로 다른 2종 이상의 미생물들을 혼합하여 동시 발효하는 공정을 이용한 조미소재의 제조방법에 관한 것이다.
L-글루탐산은 감칠맛을 내는 산성 아미노산으로, 다시마, 된장, 간장 등의 식물성 식품뿐만 아니라 유제품, 육류, 어류 등의 동물성 식품에도 천연으로 존재한다. 이러한 L-글루탐산은 전세계적으로 가장 많이 사용되고 있는 식품 조미소재이며, 특히 L-글루탐산의 정제 과정에서 염을 첨가하여 제조한 MSG(monosodium glutamate)는 식품 풍미 증진 효과가 우수하여 많은 가공식품에 식품첨가제로 사용되고 있다. 최근에는 건강에 대해 소비자의 인식이 높아지면서 효모엑기스, 천연 소재 추출물 등의 천연 조미소재 시장이 급격히 성장하는 추세이나, 여전히 MSG는 천연 조미소재에 비해 감칠맛이 뛰어나고 저렴한 가격으로 높은 경쟁력을 가진다. 따라서 MSG의 대체물을 개발하기 위해서는 많은 노력이 요구된다.
한편, 감칠맛을 증진시킬 목적으로 L-글루탐산과 함께 L-라이신, L-발린, L-아르기닌 등 다양한 아미노산을 이용한 조미소재의 개발이 이루어지고 있다. 또한 이노신산, 구아닐산 등 핵산이나 숙신산, 젖산 등 유기산을 더 포함하는 조미소재도 개발되고 있다. 이러한 L-글루탐산을 기반으로 한 조미소재는 일반적으로 각각의 산물을 생산하는 미생물로부터 제조된 발효액을 혼합하거나, 또는 개별적으로 생산된 아미노산, 핵산 또는 유기산 분말을 혼합하여 제조하게 된다. 종래 제조방법은 L-글루탐산 등 최종 물질의 농도 또는 함량을 조절하기에 용이하지만 혼합 전까지 이중으로 생산 공정을 운영해야하기 때문에 높은 생산비용이 소요되며, 제조된 조미소재에 다량의 배지 성분, 발효 부산물 등이 잔존하여 이미·이취 문제를 해결하기 어렵고 여전히 풍부한 감칠맛을 내기 부족하다는 한계가 있다. 이에, 감칠맛이 향상된 조미소재를 개발하기 위한 많은 연구 및 개발이 필요한 실정이다.
[선행기술문헌]
[특허문헌]
대한민국 등록특허 제10-1758332호
대한민국 등록특허 제10-1328091호
본 발명은 생산 물질의 종류가 서로 다른 2종 이상의 미생물을 혼합 발효하는 조미소재의 제조방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 글루탐산 생산 미생물과 라이신 생산 미생물을 혼합 발효하는 L-글루탐산 및 L-라이신 함유 조미소재의 제조방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 방법으로 제조된 조미소재를 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 조미소재를 포함하는 식품 조성물을 제공하는 것을 목적으로 한다.
본 발명의 일 양상은 발효 배지에 제1 미생물과 제2 미생물을 접종한 후 발효하여 아미노산, 핵산 및/또는 유기산을 함유하는 발효액을 제조하는 단계를 포함하며, 상기 제1 미생물 및 제2 미생물은 서로 다른 산물을 생산하고, 각각 아미노산, 핵산 및 유기산으로 이루어진 군에서 선택된 1종을 생산하는 것인 조미소재의 제조방법을 제공한다.
본 발명에서 사용된 “조미소재”는 식품의 풍미를 증진시키기 위해 첨가되는 소재를 의미하며, 일반 식품 조리 과정에서 마지막에 소량 넣는 일반 조미료보다 더 넓은 개념으로 사용되며, 가정에서 요리할 때뿐만 아니라 햄, 소시지, 라면 등 가공식품을 제조하는 과정에 맛을 끌어올리기 위해 사용 가능하다. 본 발명에서의 조미소재는 정미성분으로 1종 이상의 아미노산, 핵산 및/또는 유기산을 포함하여 감칠맛을 더욱 풍부하게 내며 우수한 관능 특성을 가지는 물질을 말한다.
본 발명의 일 구체예에 따르면, 상기 아미노산은 L-글루탐산, L-알라닌, L-발린, L-류신, L-이소류신, L-프롤린, L-페닐알라닌, L-트립토판, L-메티오닌, L-글리신, L-세린, L-트레오닌, L-시스테인, L-아스파라진, L-글루타민, L-아스파트산, L-라이신, L-아르기닌 및 L-히스티딘으로 이루어진 군에서 선택된 1종 이상인 것인 것일 수 있다.
본 발명의 일 구체예에 따르면, 상기 핵산은 이노신산, 구아닐산, 잔틸산 및 이들의 염 형태로 이루어진 군에서 선택된 1종 이상인 것일 수 있다.
예를 들면, 상기 핵산은 이노신 일인산(inosine monophosphate, IMP), 구아노신 일인산(guanosine monophosphate, GMP), 잔토신 일인산(xanthosine monophosphate, XMP) 등일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 일 구체예에 따르면, 상기 유기산은 숙신산(호박산), 사과산, 구연산, 초산, 젖산, 푸마르산, 주석산, 아스코르브산, 글루콘산 및 이들의 염 형태로 이루어진 군에서 선택된 1종 이상인 것일 수 있다.
본 발명에서 사용된 "발효”는 미생물에 의해 배지에 포함된 유기물이 분해되거나 또는 다른 물질로 변화되는 생물학적 현상으로, 접종된 미생물이 발효 배지 내 영양물질을 아미노산이나 핵산, 유기산 등으로 분해 또는 전환하는 것을 의미한다. 본 발명에서 사용된 "발효액”은 발효를 통해 미생물로부터 생산된 물질을 포함하는 것을 의미하며, 이러한 발효액은 서로 다른 종류의 산물을 생산하는 2종 이상의 미생물들을 혼합하여 발효함으로써 각 미생물이 생산한 아미노산, 핵산, 유기산 등의 유용물질뿐만 아니라 대사 과정에서 생산되는 부산물, 배지 성분 등을 포함한다.
여기서 혼합 발효란, 미생물 발효 과정에서 서로 다른 산물, 즉 종류가 상이한 아미노산, 핵산 또는 유기산을 생산하는 이종(異種) 미생물을 하나의 배양기에서 동일한 조건으로 발효하는 공정을 의미한다.
상기 혼합 발효에서는 아미노산, 핵산 또는 유기산의 종류가 상이한 미생물들이거나, 또는 아미노산 생산 미생물과 핵산 생산 미생물, 아미노산 생산 미생물과 유기산 생산 미생물, 또는 유기산 생산 미생물과 핵산 생산 미생물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
이러한 혼합 발효에 의해 제조된 발효액은 2종의 아미노산, 핵산, 또는 유기산을 포함하거나, 또는 1종의 아미노산과 1종의 핵산, 1종의 아미노산과 1종의 유기산, 또는 1종의 유기산과 1종의 핵산을 포함할 수 있으나, 이에 한정되는 것은 아니다.
일례로는, 상기 제1 미생물이 글루탐산 생산 미생물인 경우, 상기 제2 미생물은 라이신 생산 미생물, 아르기닌 생산 미생물, 히스티딘 생산 미생물, 트립토판 생산 미생물, 글리신 생산 미생물, 알라닌 생산 미생물, 숙신산 생산 미생물, 젖산 생산 미생물, 구아닐산 생산 미생물 또는 이노신산 생산 미생물일 수 있다.
또한, 상기 제1 미생물이 이노신산 생산 미생물인 경우, 상기 제2 미생물은 라이신 생산 미생물, 아르기닌 생산 미생물, 히스티딘 생산 미생물, 트립토판 생산 미생물, 글리신 생산 미생물, 알라닌 생산 미생물, 숙신산 생산 미생물, 젖산 생산 미생물 또는 구아닐산 생산 미생물일 수 있다.
본 발명의 일 구체예에 따르면, 상기 단계는 제1 미생물 및 제2 미생물과 서로 다른 산물을 생산하며, 아미노산, 핵산 및 유기산으로 이루어진 군에서 선택된 1종을 생산하는 제3 미생물을 더 접종하는 것일 수 있다.
보다 구체적으로, 제1 미생물, 제2 미생물 및 제3 미생물로부터 제조된 발효액은 3종의 아미노산, 핵산, 또는 유기산을 포함하거나, 또는 1종의 아미노산과 2종의 핵산, 2종의 아미노산과 1종의 핵산, 1종의 아미노산과 2종의 유기산, 2종의 아미노산과 1종의 유기산, 1종의 유기산과 2종의 핵산, 2종의 유기산과 1종의 핵산, 또는 1종의 아미노산, 1종의 핵산 및 1종의 유기산을 포함할 수 있으나, 이에 한정되는 것은 아니다.
일례로는, 상기 제1 미생물이 글루탐산 생산 미생물이고, 상기 제2 미생물이 구아닐산 생산 미생물인 경우, 상기 제3 미생물은 이노신산 생산 미생물일 수 있다.
이러한 조미소재의 제조에 사용되는 미생물은 아미노산, 핵산 및/또는 유기산을 생산하는 미생물로, 자연상태에서 수득된 야생형 미생물이거나, 또는 야생형 미생물의 생산능이 향상되도록 변형된 변이주일 수 있다. 상기 아미노산, 핵산 또는 유기산 생산 미생물로는 당업계에 공지된 미생물을 제한 없이 이용할 수 있으며, 일례로 코리네박테리움(Corynebacterium) 속, 브레비박테리움(Brevibacterium) 속, 락토바실러스(Lactobacillus) 속, 비피도박테리움(Bifidobacterium) 속, 바실러스(Bacillus) 속 등일 수 있다. 이러한 미생물은 서로 동일한 속(genus) 또는 종(species)이거나, 또는 서로 다른 속(genus) 또는 종(species)일 수 있으며, 사용자에 의해 선택될 수 있다.
본 발명의 일 구체예에 따르면, 상기 제1 미생물, 제2 미생물 및 제3 미생물은 코리네박테리움 속 미생물인 것일 수 있다.
보다 구체적으로, 상기 코리네박테리움 속 미생물은 코리네박테리움 글루타미쿰(Corynebacterium glutamicum), 코리네박테리움 크루디락티스(Corynebacterium crudilactis), 코리네박테리움 데저티(Corynebacterium deserti), 코리네박테리움 칼루나에(Corynebacterium callunae), 코리네박테리움 수라나래에(Corynebacterium suranareeae), 코리네박테리움 루브리칸티스(Corynebacterium lubricantis), 코리네박테리움 두사넨세(Corynebacterium doosanense), 코리네박테리움 이피시엔스(Corynebacterium efficiens), 코리네박테리움 우테레키(Corynebacterium uterequi), 코리네박테리움 스테셔니스(Corynebacterium stationis), 코리네박테리움 파캔세(Corynebacterium pacaense), 코리네박테리움 싱굴라레(Corynebacterium singulare), 코리네박테리움 휴미레듀센스(Corynebacterium humireducens), 코리네박테리움 마리눔(Corynebacterium marinum), 코리네박테리움 할로톨레란스(Corynebacterium halotolerans), 코리네박테리움 스페니스코룸(Corynebacterium spheniscorum), 코리네박테리움 프레이부르겐세(Corynebacterium freiburgense), 코리네박테리움 스트리아툼(Corynebacterium striatum), 코리네박테리움 카니스(Corynebacterium canis), 코리네박테리움 암모니아게네스(Corynebacterium ammoniagenes), 코리네박테리움 레날레(Corynebacterium renale), 코리네박테리움 폴루티솔리(Corynebacterium pollutisoli), 코리네박테리움 이미탄스(Corynebacterium imitans), 코리네박테리움 카스피움(Corynebacterium caspium), 코리네박테리움 테스투디노리스(Corynebacterium testudinoris), 코리네박테리움 슈도펠라지(Corynebacaterium pseudopelargi) 또는 코리네박테리움 플라베스센스(Corynebacterium flavescens)일 수 있으며, 이에 한정되는 것은 아니다.
이러한 2종 이상의 미생물을 혼합 발효하기 위해서는 각각의 분리 및 선별된 미생물을 사용하거나, 또는 이들이 혼합된 미생물 혼합물을 사용할 수 있으며, 상황에 따라 분리 미생물과 미생물 혼합물을 적절히 혼합하여 사용할 수도 있다. 각 미생물은 생육 및 아미노산. 핵산 및/또는 유기산에 대한 생산능이 활성화된 상태에서 발효에 이용될 수 있으며, 미생물 활성화를 위해 종배양을 거치는 것이 바람직하다.
본 발명의 일 구체예에 따르면, 상기 제1 미생물, 제2 미생물 및 제3 미생물은 개별적으로 배양되거나, 또는 혼합 배양된 종배양액 상태인 것일 수 있다.
본 발명에서 사용된 “종배양(seed culture)”은 미생물을 대량 배양하기 전에 적은 용량의 배지에서 미생물을 배양하는 것을 의미하며, “종배양액”은 배지 성분과 종배양을 통해 증식된 미생물 및 이의 대사산물 등을 포함하는 것을 의미한다.
상기 종배양은 각 미생물의 특성에 따라 당업계에 알려진 적절한 배지와 배양 조건에 따라 이루어질 수 있으며, 통상의 기술자라면 배지 및 배양 조건을 용이하게 조정하여 사용할 수 있다.
보다 구체적으로, 상기 종배양에 사용된 배지는 미생물 생장 및 증식에 필요한 영양물질을 포함하며, 액체 배지일 수 있다.
상기 종배양에서의 배양 온도는 통상 20 내지 45℃, 예를 들면 25 내지 40℃, 또는 27 내지 37℃일 수 있고, 배양 기간은 미생물이 활발히 생장 및 증식할 때까지 계속될 수 있으며, 예를 들면 10 내지 160시간, 18 내지 120시간, 또는 20 내지 80시간일 수 있다.
또한, 배양 중에 수산화나트륨, 수산화암모늄, 수산화칼륨, 암모니아, 인산 및 황산과 같은 화합물을 배지 또는 배양액에 적절한 방식으로 첨가하여 배양액의 pH를 조정할 수 있다. 또한, 배양 중에 식품 첨가용 소포제를 사용하여 기포 생성을 억제할 수 있다. 추가적으로, 배지 또는 배양액의 호기 상태를 유지하기 위하여, 배양액 내로 산소 또는 산소-함유 기체 (예, 공기)를 주입할 수 있다.
이러한 종배양은 사용자가 원하는 미생물 농도에 맞춰 배양할 수 있으며, 종배양액의 OD(optical density) 값을 측정하여 미생물 농도를 예상하고 배양 지속 여부를 결정하게 된다.
본 발명의 일 구체예에 따르면, 상기 종배양액은 OD610 = 10 ~ 80인 것일 수 있다.
이러한 2종 이상의 미생물의 발효에 의한 발효액을 제조하는 단계에서는 각 미생물 또는 이의 종배양액을 이용한 혼합 발효 (본발효)를 통해 서로 다른 종류의 산물을 포함하는 발효액을 제조할 수 있다.
상기 혼합 발효는 종래 각 미생물을 개별적으로 배양하여 각 미생물의 산물을 함유한 발효액을 제조하는 개별 발효와 상반되는 개념이다. 본 발명에서는 혼합 발효를 통해 예를 들어, 글루탐산 생산 미생물에 의해 L-글루탐산을, 라이신 생산 미생물에 의해 L-라이신을, 아르기닌 생산 미생물에 의해 L-아르기닌을, 이노신산 생산 미생물에 의해 IMP를 생산하며, 이들 산물 간의 상호작용, 미생물 발효 과정에서 부가적으로 생성되는 이온, 핵산, 유기산, 기타 펩티드 등의 정미성분 등이 더해져 풍부한 감칠맛 및 우수한 관능 특성을 낼 수 있는 발효액을 제조할 수 있다.
본 발명의 일 구체예에 따르면, 상기 단계는 발효액 내 각 미생물의 산물, 즉 아미노산, 핵산 및/또는 유기산의 비율을 조절하기 위해 각 미생물의 접종량을 조절하는 것이 바람직하다.
보다 구체적으로, 2종의 미생물을 접종하는 경우, 제1 미생물과 제2 미생물의 접종 비율은 전체 접종량 중 제1 미생물 : 제2 미생물 = 0.05 ~ 99.95 : 99.95 ~ 0.05의 비율일 수 있다. 3종의 미생물을 접종하는 경우, 제1 미생물, 제2 미생물과 제3 미생물의 접종 비율은 전체 접종되는 접종량 중 제1 미생물 : 제2 미생물 : 제3 미생물 = 0.05 ~ 99.95 : 99.95 ~ 0.05 : 99.95 ~ 0.05의 비율일 수 있다.
예를 들면, 글루탐산 생산 미생물과 라이신 생산 미생물의 접종량비가 50 ~ 99.95 : 50 ~ 0.05인 경우 두 미생물의 혼합 발효를 통해 조미소재로써의 적절한 맛을 낼 수 있도록 발효액 내 L-글루탐산과 L-라이신을 0.83 ~ 99 : 1의 비율로 생산할 수 있다. 글루탐산 생산 미생물과 아르기닌 생산 미생물의 접종량비가 30 ~ 99.95 : 70 ~ 0.05인 경우 두 미생물의 혼합 발효를 통해 발효액 내 L-글루탐산과 L-아르기닌을 1.04 ~ 99 : 1의 비율로 생산할 수 있다. 글루탐산 생산 미생물과 이노신산 생산 미생물의 접종량비가 0.05 ~ 99.95 : 99.95 ~ 0.05인 경우 두 미생물의 혼합 발효를 통해 발효액 내 L-글루탐산과 IMP를 0.02 ~ 99.8 : 1의 비율로 생산할 수 있다. 이노신산 생산 미생물과 라이신 생산 미생물의 접종량비가 0.05 ~ 99.95 : 99.95 ~ 0.05인 경우 두 미생물의 혼합 발효를 통한 발효액 내 IMP와 L-라이신을 0.01 ~ 92.3 : 1의 비율로 생산할 수 있다. 이노신산 생산 미생물과 아르기닌 생산의 접종량비가 65 ~ 99.95 : 35 ~ 0.05인 경우 두 미생물의 혼합 발효를 통한 발효액 내 IMP와 L-아르기닌을 1.04 ~ 95.1 : 1의 비율로 생산할 수 있다.
상기 혼합 발효는 각 미생물의 특성을 고려하여 당업계에 알려진 적절한 배지와 발효 조건에 따라 이루어질 수 있으며, 통상의 기술자라면 배지 및 발효 조건을 용이하게 조정하여 사용할 수 있다.
보다 구체적으로, 상기 혼합 발효에 사용되는 발효 배지는 미생물 생장 및 증식에 필요한 영양물질을 포함하며, 액체 배지일 수 있다.
상기 발효 배지는 아미노산, 핵산 및/또는 유기산을 대량 생산하기 위한 본발효 시 사용되는 배지로, 각 미생물의 생장에 필요한 영양물질을 포함한다. 본 발명에서는 발효가 끝나면 발효 배지를 포함한 발효액을 별도의 정제 공정 없이 조미소재로 이용하므로, 상기 발효 배지는 식품소재로 이용 가능한 물질로 구성되며 미생물 배양에 필요한 최소한의 성분 및 양을 포함하는 것이 바람직하다.
본 발명의 일 구체예에 따르면, 상기 발효 배지는 당밀을 기반으로 원당 및/또는 포도당을 포함하는 것일 수 있다.
보다 구체적으로, 상기 발효 배지는 당밀, 원당 및 포도당을 미생물의 당원이자 영양원으로 포함하며, 전체 당량 중 당밀을 1 ~ 30 중량%를 포함할 수 있다. 여기서 사용된 당밀은 사탕수수 또는 사탕무에서 유래한 것일 수 있다.
상기 발효 배지는 당원 외에 미생물의 영양 강화를 위한 영양물질을 더 포함할 수 있다.
본 발명의 일 구체예에 따르면, 상기 발효 배지는 효모추출물, 인산 및 베타인으로 이루어진 군에서 선택된 1종 이상을 더 포함하는 것일 수 있다.
상기 혼합 발효에서의 발효 온도는 통상 20 내지 45℃, 예를 들면 25 내지 40℃, 또는 30 내지 38℃일 수 있고, 발효 기간은 미생물이 활발히 생장 및 증식할 때까지 계속될 수 있으며, 예를 들면 10 내지 160시간, 18 내지 120시간, 또는 20 내지 100시간일 수 있다.
또한, 배양 중에 수산화나트륨, 수산화암모늄, 수산화칼륨, 암모니아, 인산 및 황산과 같은 화합물을 배지 또는 배양액에 적절한 방식으로 첨가하여 배양액의 pH를 조정할 수 있다. 또한, 배양 중에 식품 첨가용 소포제를 사용하여 기포 생성을 억제할 수 있다. 추가적으로, 배지 또는 배양액의 호기 상태를 유지하기 위하여, 배양액 내로 산소 또는 산소-함유 기체 (예, 공기)를 주입할 수 있다.
이러한 혼합 발효를 통해 제조된 발효액은 조미소재의 원물이 되며, 추가의 성분을 혼합하지 않고 그대로 사용하는 것을 특징으로 하며, 미생물로부터 생산된 아미노산, 핵산 및/또는 유기산을 다량 포함하고 있다.
본 발명의 일 구체예에 따르면, 상기 발효액은 전체 고형분 중 전체 미생물의 산물을 3 내지 90 중량%로 포함하는 것일 수 있다.
보다 구체적으로, 상기 발효액은 전체 고형분 함량을 기준으로 아미노산, 핵산 및/또는 유기산을 3 내지 90 중량%, 10 내지 90 중량%, 20 내지 90 중량%, 30 내지 90 중량%, 40 내지 90 중량%, 50 내지 90 중량%, 60 내지 90 중량%, 70 내지 중량%, 또는 80 내지 90 중량%로 포함할 수 있다. 이러한 발효액은 아미노산, 핵산 및/또는 유기산을 5 ~ 150 g/L을 포함할 수 있다.
또한, 본 발명의 일 양상은 발효 배지에 글루탐산 생산 미생물 및 라이신 생산 미생물을 접종한 후 발효하여 L-글루탐산 및 L-라이신 함유 발효액을 제조하는 단계를 포함하는 L-글루탐산 및 L-라이신 함유 조미소재의 제조방법을 제공한다.
상기 글루탐산 생산 미생물 및 라이신 생산 미생물은 자연상태에서 수득된 야생형 미생물이거나, 또는 야생형 미생물의 아미노산 생산능이 향상되도록 변형된 변이주일 수 있다. 이러한 글루탐산 또는 라이신 생산 미생물로는 당업계에 공지된 미생물을 제한 없이 이용할 수 있으며, 일례로 코리네박테리움(Corynebacterium) 속, 브레비박테리움(Brevibacterium) 속, 락토바실러스(Lactobacillus) 속, 비피도박테리움(Bifidobacterium) 속, 바실러스(Bacillus) 속 등일 수 있다. 본 발명에서의 미생물은 서로 동일한 속(genus) 또는 종(species)이거나, 또는 서로 다른 속(genus) 또는 종(species)일 수 있으며, 사용자에 의해 선택될 수 있다.
본 발명의 일 구체예에 따르면, 상기 글루탐산 생산 미생물 및 라이신 생산 미생물은 코리네박테리움 속 미생물인 것일 수 있다.
본 발명의 일 실시예에서는 글루탐산 생산 미생물 및 라이신 생산 균주로서 코리네박테리움 글루타미쿰을 사용하였다.
상기 글루탐산 생산 미생물과 라이신 생산 미생물을 혼합 발효하기 위해서는 각각의 분리 및 선별된 미생물을 사용하거나, 또는 이들이 혼합된 미생물 혼합물을 사용할 수 있으며, 상황에 따라 분리 미생물과 미생물 혼합물을 적절히 혼합하여 사용할 수도 있다. 이러한 글루탐산 또는 라이신 생산 미생물은 미생물 생육 및 아미노산 생산능이 활성화된 상태에서 발효에 이용될 수 있으며, 미생물 활성화를 위해 종배양을 거치는 것이 바람직하다.
본 발명의 일 구체예에 따르면, 상기 글루탐산 생산 미생물 및 라이신 생산 미생물은 개별적으로 배양되거나, 또는 혼합 배양된 종배양액 상태인 것일 수 있다.
상기 종배양은 각 미생물의 특성에 따라 당업계에 알려진 적절한 배지와 배양 조건에 따라 이루어질 수 있으며, 통상의 기술자라면 배지 및 배양 조건을 용이하게 조정하여 사용할 수 있다.
보다 구체적으로, 상기 종배양에 사용된 배지는 미생물 생장 및 증식에 필요한 영양물질을 포함하며, 액체 배지일 수 있다.
본 발명의 일 구체예에 따르면, 상기 글루탐산 생산 미생물의 종배양 배지는 전체 중량을 기준으로 당밀 4.5 ~ 5.5 중량%, 포도당 3 중량%, 효모추출물 페이스트 0.85 중량%, 메티오닌 100 ppm, H3PO4 0.6 중량%, 숙신산나트륨 0.1 중량%, 비타민C 50 ppm, 티아민 HCl 12 ppm, 비타민 B12 20 ppb, 비오틴 10 ppm, MgSO4 0.4 중량% 및 식품용 소포제 0.01 중량%를 포함하는 것일 수 있다.
또한, 본 발명의 일 구체예에 따르면, 상기 라이신 생산 미생물의 종배양 배지는 전체 중량을 기준으로 당밀 1.5 ~ 3 중량%, 원당 9 ~ 12 중량%, 효모추출물 페이스트 1 중량%, (NH4)2SO4 1.6 중량%, H3PO4 0.3 중량%, MnSO4·5H2O 7.3 ppm, 니코틴아미드 14 ppm, 티아민 HCl 2.5 ppm, CuSO4·H2O5 1.5 ppm, 비오틴 0.056 ppm, 베타인 0.045 중량% 및 식품용 소포제 0.01 중량%를 포함하는 것일 수 있다.
상기 종배양에서의 배양 온도는 통상 20 내지 45℃, 예를 들면 25 내지 40℃, 또는 27 내지 37℃일 수 있고, 배양 기간은 미생물이 활발히 생장 및 증식할 때까지 계속될 수 있으며, 예를 들면 10 내지 160시간, 18 내지 120시간, 또는 20 내지 80시간일 수 있다.
또한, 배양 중에 수산화나트륨, 수산화암모늄, 수산화칼륨, 암모니아, 인산 및 황산과 같은 화합물을 배지 또는 배양액에 적절한 방식으로 첨가하여 배양액의 pH를 조정할 수 있다. 또한, 배양 중에 식품 첨가용 소포제를 사용하여 기포 생성을 억제할 수 있다. 추가적으로, 배지 또는 배양액의 호기 상태를 유지하기 위하여, 배양액 내로 산소 또는 산소-함유 기체 (예, 공기)를 주입할 수 있다.
이러한 종배양은 사용자가 원하는 미생물 농도에 맞춰 배양할 수 있으며, 종배양액의 OD(optical density) 값을 측정하여 미생물 농도를 예상하고 배양 지속 여부를 결정하게 된다.
본 발명의 일 구체예에 따르면, 상기 종배양액은 OD610 = 10 ~ 80인 것일 수 있다.
이러한 글루탐산 생산 미생물 및 라이신 생산 미생물의 발효에 의한 발효액을 제조하는 단계에서는 글루탐산 생산 미생물 또는 이의 종배양액과 라이신 생산 미생물 또는 이의 종배양액을 이용한 혼합 발효 (본발효)를 통해 L-글루탐산과 L-라이신을 모두 포함하는 발효액을 제조할 수 있다.
상기 혼합 발효는 종래 아미노산 생산을 위해 각 미생물을 개별적으로 배양하여 각 미생물의 산물을 함유한 발효액을 제조하는 개별 발효와 상반대되는 개념이다. 본 발명에서는 혼합 발효를 통해 글루탐산 생산 미생물에 의해 L-글루탐산을, 라이신 생산 미생물에 의해 L-라이신을 생산하며, 이들 L-글루탐산과 L-라이신의 상호작용, 미생물 발효 과정에서 부가적으로 생성되는 이온, 핵산, 유기산, 기타 펩티드 등의 정미성분 등이 더해져 풍부한 감칠맛 및 우수한 관능 특성을 낼 수 있는 발효액을 제조할 수 있다.
본 발명의 일 구체예에 따르면, 상기 단계는 발효액 내 L-글루탐산과 L-라이신의 비율을 조절하기 위해 글루탐산 생산 미생물과 라이신 생산 미생물의 접종량을 조절하는 것일 수 있다.
보다 구체적으로, 상기 글루탐산 생산 미생물과 라이신 생산 미생물의 접종 비율은 전체 접종량 중 글루탐산 생산 미생물 : 라이신 생산 미생물 = 0.05 ~ 99.95 : 99.95 ~ 0.05의 비율일 수 있으며, 이러한 비율로 접종된 두 미생물의 혼합 발효를 통해 조미소재로서의 적절한 맛을 낼 수 있게 발효액 내 L-글루탐산과 L-라이신을 1 ~ 99 : 1의 비율로 생산할 수 있다.
예를 들면, 상기 글루탐산 생산 미생물과 라이신 생산 미생물의 접종량비가 50 ~ 99.95 : 50 ~ 0.05인 경우 발효액 내 L-글루탐산과 L-라이신을 0.83 ~ 99 : 1의 비율로 생산할 수 있으며, 상기 글루탐산 생산 미생물과 라이신 생산 미생물을 65 : 35의 접종량비로 조절 시 발효액 내 L-글루탐산과 L-라이신을 약 1 : 1의 비율로 생산할 수 있다.
상기 혼합 발효는 각 미생물의 특성을 고려하여 당업계에 알려진 적절한 배지와 발효 조건에 따라 이루어질 수 있으며, 통상의 기술자라면 배지 및 발효 조건을 용이하게 조정하여 사용할 수 있다.
보다 구체적으로, 상기 혼합 발효에 사용된 발효 배지는 액체 배지일 수 있다.
상기 발효 배지는 L-글루탐산 및 L-라이신을 대량 생산하기 위한 본발효 시 사용되는 배지로, 글루탐산 생산 미생물과 라이신 생산 미생물의 생장에 필요한 영양물질을 포함한다. 본 발명에서는 발효가 끝나면 발효 배지를 포함한 발효액을 별도의 정제 공정 없이 조미소재로 이용하므로, 상기 발효 배지는 식품소재로 이용 가능한 물질로 구성되며 미생물 배양에 필요한 최소한의 성분 및 양을 포함하는 것이 바람직하다.
본 발명의 일 구체예에 따르면, 상기 발효 배지는 당밀을 기반으로 원당 및/또는 포도당을 포함하는 것일 수 있다.
보다 구체적으로, 상기 발효 배지는 당밀, 원당 및 포도당을 미생물의 당원이자 영양원으로 포함하며, 전체 당량 중 당밀을 1 ~ 30 중량%를 포함할 수 있다. 여기서 사용된 당밀은 사탕수수 또는 사탕무에서 유래한 것일 수 있다.
상기 발효 배지는 당원 외에 미생물의 영양 강화를 위한 영양물질을 더 포함할 수 있다.
본 발명의 일 구체예에 따르면, 상기 발효 배지는 효모추출물, 인산 및 베타인으로 이루어진 군에서 선택된 1종 이상을 더 포함하는 것일 수 있다.
본 발명의 일 구체예에 따르면, 상기 발효 배지는 전체 중량을 기준으로 당밀 1.5 ~ 3 중량%, 포도당 2.5 ~ 4 중량%, 효모추출물 페이스트 0.4 ~ 1 중량%, H3PO4 0.1 ~ 0.2 중량%, 베타인 0.05 ~ 0.12 중량% 및 식품용 소포제 0.001 ~ 0.01 중량%를 포함하는 것일 수 있다.
상기 혼합 발효에서의 발효 온도는 통상 20 내지 45℃, 예를 들면 25 내지 40℃, 또는 30 내지 38℃일 수 있고, 발효 기간은 L-글루탐산 및 L-라이신을 원하는 함량 또는 농도로 수득할 때까지 계속될 수 있으며, 예를 들면 10 내지 160시간, 18 내지 120시간, 또는 20 내지 100시간일 수 있다.
또한, 발효 중에 수산화나트륨, 수산화암모늄, 수산화칼륨, 암모니아, 인산 및 황산과 같은 화합물을 배지 또는 발효액에 적절한 방식으로 첨가하여 발효액의 pH를 조정할 수 있다. 또한, 발효 중에 식품 첨가용 소포제를 사용하여 기포 생성을 억제할 수 있다. 추가적으로, 배지 또는 발효액의 호기 상태를 유지하기 위하여, 발효액 내로 산소 또는 산소-함유 기체 (예, 공기)를 주입할 수 있다.
본 발명의 일 구체예에 따르면, 상기 발효는 온도를 30 ~ 33℃에서 시작하여 36 ~ 39℃로 유지하고, pH 6.5 ~ 7.5 및 용존산소량 20 ~ 70%를 유지하는 상태에서 28 ~ 40시간 유가식 배양하는 것일 수 있다.
이러한 L-글루탐산 및 L-라이신을 함유하는 발효액은 L-글루탐산 및 L-라이신 함유 조미소재의 원물이 되며, 추가의 성분을 혼합하지 않고 그대로 사용하는 것을 특징으로 하며, L-글루탐산 및 L-라이신을 다량 포함하고 있다.
본 발명의 일 구체예에 따르면, 상기 발효액은 전체 고형분 중 L-글루탐산 및 L-라이신을 포함한 아미노산을 3 내지 90 중량%로 포함하는 것일 수 있다.
보다 구체적으로, 상기 발효액 내 L-글루탐산 및 L-라이신을 포함한 아미노산 함량은 고형분 대비 3 내지 90 중량%, 10 내지 90 중량%, 20 내지 90 중량%, 30 내지 90 중량%, 40 내지 90 중량%, 50 내지 90 중량%, 60 내지 90 중량%, 70 내지 중량%, 또는 80 내지 90 중량%로 포함할 수 있다. 이러한 발효액은 L-글루탐산 및 L-라이신을 5 ~ 150 g/L을 포함할 수 있다.
한편, 본 발명에 따른 조미소재의 제조방법은 상기 발효액을 조미소재 또는 L-글루탐산 및 L-라이신 함유 조미소재로 이용하기 위한 추가 공정을 더 포함할 수 있다.
보다 구체적으로, 상기 방법은 상기 발효액으로부터 균체 분리 (균체 제거) 및 탈색하는 단계를 더 포함할 수 있다.
상기 균체 분리는 당업계에 공지된 균체 분리법 및 분리 조건을 적용하여 제한 없이 수행할 수 있다. 상기 균체 분리의 일례로는 막분리, 한외여과, 원심분리여과 등일 수 있으나, 이에 한정되는 것은 아니다.
상기 탈색은 당업계에 공지된 탈색법 및 탈색 조건을 적용하여 제한 없이 수행할 수 있다. 상기 탈색의 일례로는 활성탄 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
또한, 상기 탈색된 발효액을 여과하는 단계를 더 포함할 수 있다.
상기 여과는 당업계에 공지된 여과법 및 여과 조건을 적용하여 제한 없이 수행할 수 있다. 상기 여과의 일례로는 여과지, 여과망, 막여과, 한외여과 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
또한, 상기 여과된 발효액을 농축하는 단계를 더 포함할 수 있다.
상기 농축은 당업계에 공지된 농축법 및 농축 조건을 적용하여 제한 없이 수행할 수 있다. 상기 농축의 일례로는 가열 농축, 감압 농축, 동결 농축, 증발 농축, 진공저온 농축 등이 있으나, 이에 한정되는 것은 아니다.
또한, 상기 농축된 발효액을 건조하여 분말화하는 단계를 더 포함할 수 있다.
상기 건조는 당업계에 공지된 건조법 및 건조 조건을 적용하여 제한 없이 수행할 수 있다. 상기 건조의 일례로는 동결 건조, 진공 건조, 통기 건조, 송풍 건조, 열풍 건조, 유동 건조, 분무 건조, 적외선 건조, 고주파 건조 등이 있으나, 이에 한정되는 것은 아니다.
이와 같은 방법을 통해 발효액은 최종적으로 분말 상태로 수득될 수 있으며, 추가 화학적 정제 과정을 거치지 않은 천연 조미소재로서 식품으로 이용가능하다.
본 발명의 다른 일 양상은 전술한 2종 이상의 미생물을 이용한 조미소재의 제조방법으로 제조된 조미소재를 제공한다.
본 발명의 일 구체예에 따르면, 상기 조미소재는 아미노산, 핵산 및 유기산 중 2종 또는 3종의 정미성분을 포함하는 천연 조미소재인 것일 수 있다.
상기 아미노산은 L-글루탐산, L-알라닌, L-발린, L-류신, L-이소류신, L-프롤린, L-페닐알라닌, L-트립토판, L-메티오닌, L-글리신, L-세린, L-트레오닌, L-시스테인, L-아스파라진, L-글루타민, L-아스파트산, L-라이신, L-아르기닌 및 L-히스티딘으로 이루어진 군에서 선택된 1종 이상인 것일 수 있다.
상기 핵산은 이노신산, 구아닐산, 잔틸산 및 이들의 염 형태로 이루어진 군에서 선택된 1종 이상인 것일 수 있다.
예를 들면, 상기 핵산은 이노신 일인산(inosine monophosphate, IMP), 구아노신 일인산(guanosine monophosphate, GMP), 잔토신 일인산(xanthosine monophosphate, XMP) 등일 수 있으나, 이에 한정되는 것은 아니다.
상기 유기산은 숙신산, 사과산, 구연산, 초산, 젖산, 푸마르산, 주석산, 아스코르브산, 글루콘산 및 이들의 염 형태로 이루어진 군에서 선택된 1종 이상인 것일 수 있다.
일례로는, 2종의 정미성분을 포함하는 경우, 상기 조미소재는 글루탐산; 및 라이신, 아르기닌, 히스티딘, 트립토판, 글리신, 알라닌, 숙신산, 젖산, 구아닐산, 또는 이노신산을 포함할 수 있다. 또한, 상기 조미소재는 이노신산; 및 라이신, 아르기닌, 히스티딘, 트립토판, 글리신, 알라닌, 숙신산, 젖산, 또는 구아닐산을 포함할 수 있다.
다른 일례로는, 3종의 정미성분을 포함하는 경우, 상기 조미소재는 글루탐산; 구아닐산; 및 이노신산을 포함하는 것일 수 있다.
본 발명의 일 구체예에 따르면, 상기 조미소재는 전체 고형분 함량을 기준으로 아미노산, 핵산 및/또는 유기산을 포함하는 정미성분을 3 내지 90 중량%로 포함하는 것일 수 있다.
보다 구체적으로, 상기 조미소재는 전체 고형분 함량을 기준으로 아미노산, 핵산 및/또는 유기산을 포함하는 정미성분을 3 내지 90 중량%, 10 내지 90 중량%, 20 내지 90 중량%, 30 내지 90 중량%, 40 내지 90 중량%, 50 내지 90 중량%, 60 내지 90 중량%, 70 내지 중량%, 또는 80 내지 90 중량%로 포함할 수 있다.
또한, 본 발명의 다른 일 양상은 전술한 글루탐산 생산 미생물 및 라이신 생산 미생물을 이용한 L-글루탐산 및 L-라이신 함유 천연 조미소재의 제조방법으로 제조된 L-글루탐산 및 L-라이신 함유 조미소재를 제공한다.
본 발명의 일 구체예에 따르면, 상기 L-글루탐산 및 L-라이신 함유 조미소재는 천연 조미소재인 것일 수 있다.
본 발명의 일 구체예에 따르면, 상기 조미소재는 L-글루탐산 및 L-라이신 함량이 고형분 대비 3 내지 90 중량%이며, L-글루탐산과 L-라이신을 0.83 ~ 99 : 1의 비율로 포함하는 것일 수 있다.
이러한 조미소재는 감칠맛을 내는 L-글루탐산과 함께 L-라이신을 포함함으로써 L-글루탐산의 용해도를 높이고 발효 과정 중 암모늄 글루탐산(ammonium glutamate)의 생성을 감소시켜 암모니아취 문제를 해결할 수 있으며, 발효 과정에서 생산된 유기산, 무기이온성분, 단백질 및 펩티드류, 비타민 등의 대사산물 또한 포함함으로써 풍부한 감칠맛과 강한 바디감을 가지며 우수한 관능 특성을 나타내어 다양한 식품에 첨가되어 식품의 맛을 극대화시킬 수 있다.
또한, 본 발명의 다른 일 양상은 전술한 조미소재 또는 L-글루탐산 및 L-라이신 함유 조미소재를 포함하는 식품 조성물을 제공한다.
본 발명에서 사용된 “식품 조성물”은 영양소를 한 가지 또는 그 이상 함유하고 있는 천연물 또는 가공품을 의미하며, 바람직하게는 어느 정도의 공정을 거쳐 직접 먹을 수 있는 상태가 된 것을 의미하며, 통상적인 의미로서 건강기능식품, 기능성식품, 음료, 식품 첨가제 및 음료 첨가제를 모두 포함한다.
본 발명의 일 구체예에 따르면, 상기 식품 조성물은 화학적 정제 과정 없이 제조된 조미소재 또는 천연 L-글루탐산 및 L-라이신 함유 조미소재, 즉 천연 조미소재를 포함하는 것으로, 전체 중량을 기준으로 상기 조미소재를 0.001 ~ 90 중량%, 보다 구체적으로는 0.01 ~ 50 중량%를 포함하는 것일 수 있다.
본 발명에서의 식품 조성물은 식품에 적합한 모든 제형으로 제공될 수 있으며, 일례로 용액, 유탁액, 점성형 혼합물, 분말, 과립, 정제, 캡슐 등일 수 있다. 이때, 본 발명이 목적으로 하는 주 효과를 손상시키지 않는 범위 내에서 제형의 제제화에 필요하고 적절한 각종 기제 및/또는 첨가물을 포함할 수 있으며, 그 효과를 떨어뜨리지 않는 범위 내에서 향료, 색소, 살균제, 산화방지제, 방부제, 보습제, 점증제, 무기염류, 유화제 등의 첨가제를 더 포함할 수 있다. 이러한 첨가제들의 배합량은 제형 또는 사용 목적에 따라 본 발명의 목적 및 효과를 손상시키지 않는 범위 내에서 선택될 수 있다. 예를 들면, 식품 조성물의 전체 중량을 기준으로, 첨가제 0.01 ~ 70 중량%, 보다 구체적으로는 0.1 ~ 50 중량%일 수 있다.
이러한 식품 조성물은 각종 식품의 첨가물로 이용될 수 있다. 이러한 식품 조성물을 첨가할 수 있는 식품으로는 당업계에 공지된 식품 종류라면 제한 없이 이용 가능하며, 일례로 육류, 소시지, 빵, 초콜릿, 캔디류, 스낵류, 과자류, 피자, 라면, 기타 면류, 껌류, 아이스크림류를 포함한 낙농제품, 각종 스프, 음료수, 차, 드링크제, 알콜 음료 및 비타민 복합제 등일 수 있으나, 이에 제한되는 것이 아니다.
본 발명에 따른 조미소재의 제조방법은 서로 다른 산물, 즉 종류가 상이한 아미노산, 핵산 및/또는 유기산을 생산하는 이종 미생물을 혼합하여 발효함으로써 아미노산, 핵산 및/또는 유기산을 함유하는 발효액을 통해 식품의 맛과 향을 향상시키고 전체적인 관능 특성을 개선시킬 수 있는 천연 조미소재를 제조할 수 있으며, 이러한 조미소재는 다양한 식품 분야에서 활용될 수 있다.
도 1은 본 발명의 일 실시예에 따른 제조예 1 내지 3의 글루탐산 생산 미생물과 라이신 생산 미생물을 이용한 발효 공정의 흐름도이다.
도 2는 본 발명의 일 실시예에 따른 제조예 4 내지 6의 글루탐산 생산 미생물과 아르기닌 생산 미생물을 이용한 발효 공정의 흐름도이다.
도 3은 본 발명의 일 실시예에 따른 제조예 7 내지 9의 글루탐산 생산 미생물과 이노신산 생산 미생물을 이용한 발효 공정의 흐름도이다.
도 4는 본 발명의 일 실시예에 따른 제조예 10 내지 12의 이노신산 생산 미생물과 라이신 생산 미생물을 이용한 발효 공정의 흐름도이다.
도 5는 본 발명의 일 실시예에 따른 제조예 13 내지 15의 이노신산 생산 미생물과 아르기닌 생산 미생물을 이용한 발효 공정의 흐름도이다.
이하, 첨부된 도면을 참조하며 본 발명을 보다 상세하게 설명한다. 그러나, 이러한 설명은 본 발명의 이해를 돕기 위하여 예시적으로 제시된 것일 뿐, 본 발명의 범위가 이러한 예시적인 설명에 의하여 제한되는 것은 아니다.
실시예 1. 글루탐산 및 라이신의 혼합 발효
1-1. 종배양
글루탐산 생산 미생물로서 L-글루탐산(GA)을 생산하는 코리네박테리움 글루타미쿰 NFG6 (KCCM13164P) 및 라이신 생산 미생물로서 L-라이신(LYS)을 생산하는 코리네박테리움 글루타미쿰 NFL21 (KCCM13163P)를 사용하였다.
글루탐산 생산 미생물을 종배양하기 위해, 종배양 배지 0.2 L가 담긴 2 L 플라스크에 글루탐산 생산 미생물을 접종하여 30℃, 140 rpm에서 22 내지 24시간 동안 1차 배양하였다 (OD610 = 10 ~ 15). 이후 5 L 배양기 (jar fermenter)에 1차 배양액 2 ~ 3%를 접종하고 종배양 배지 2 ~ 2.5 L를 첨가하여 32℃, pH 6.9, 600 rpm 및 통기량 1.0 vvm 조건에서 22 ~ 24시간 2차 배양하였고 (OD610 = 20 ~ 60), 글루탐산 종배양액을 준비하였다.
라이신 생산 미생물을 종배양하기 위해, 종배양 배지 0.2 L가 담긴 2 L 플라스크에 라이신 생산 미생물을 접종하여 30℃, 140 rpm에서 16 내지 18시간 동안 1차 배양하였다 (OD610 = 11 ~ 12). 5 L 배양기 (jar fermenter)에 1차 배양액 5%를 접종하고 종배양 배지 2 ~ 2.5 L를 첨가하여 32℃, pH 7.0, 650 rpm 및 통기량 2.0 vvm 조건에서 21 내지 24시간 2차 배양하였고 (OD610 = 20 ~ 60), 라이신 종배양액을 준비하였다.
여기서 사용된 종배양 배지의 조성은 하기 표 1에 나타내었다.
조성
글루탐산 생산 미생물
종배양 배지
당밀 4.5 ~ 5.5%, 포도당 3%, 효모추출물 페이스트 0.85%, 메티오닌 100 ppm, H3PO4 0.6%, 숙신산나트륨 0.1%, 비타민C 50 ppm, 티아민 HCl 12 ppm, 비타민 B12 20 ppb, 비오틴 10 ppm, MgSO4 0.4% 및 식품용 소포제 0.01%
라이신 생산 미생물
종배양 배지
당밀 1.5 ~ 3%, 원당 9 ~ 12%, 효모추출물 페이스트 1%, (NH4)2SO4 1.6%, H3PO4 0.3%, MnSO4·5H2O 7.3 ppm, 니코틴아미드 14 ppm, 티아민 HCl 2.5 ppm, CuSO4·5H2O 1.5 ppm, 비오틴 0.056 ppm, 베타인 0.045% 및 식품용 소포제 0.01%
1-2. 본발효
글루탐산 종배양액과 라이신 종배양액의 접종량에 따른 발효액 내 글루탐산과 라이신의 비율을 확인하기 위해 다양한 비율로 글루탐산 종배양액과 라이신 종배양액을 접종하여 발효하였다.
본발효에서는 50 L 발효조에 발효 배지 14 ~ 18 L를 첨가하고, 글루탐산 종배양액과 라이신 종배양액을 50 ~ 99.95 : 50 ~ 0.05의 접종량 비율로 총 종배양액 1.2 ~ 1.8 L를 접종하여 28 ~ 40시간 동안 유가식 배양으로 혼합 발효하였다. 여기서 사용된 발효 배지 조성 및 조건은 하기 표 2에 나타내었다.
발효 배지 조성 당밀 1.5 ~ 3%, 포도당 2.5 ~ 4%, 효모추출물 페이스트 0.4 ~ 1%, H3PO4 0.1 ~ 0.2%, 베타인 0.05 ~ 0.12% 및 식품용 소포제 0.005%
발효 조건 온도 32→38℃, pH 6.5 ~ 7.5, 통기 0.8 ~ 1.2 vvm, 내압 0.6 ~ 1.0 kg/cm3, 교반속도 320 ~ 350 rpm 및 용존산소량(DO) 20 ~ 70% 유지
이러한 혼합 발효를 총 3회 실시하여 평균 값을 계산하였고, 그 결과는 표 3에 나타내었다.
종배양액의 접종량 비율
GA : LYS
발효 시간 발효액 내 GA : LYS 비율
99.95 : 0.05 31시간 99 : 1
75 : 25 29시간 1.48 : 1
70 : 30 29시간 1.30 : 1
67 : 33 30시간 1.10 : 1
65 : 35 30시간 1.01 : 1
60 : 40 29시간 0.93 : 1
50 : 50 28시간 0.83 : 1
상기 표 3을 참조하면, 각 아미노산 미생물의 종배양액을 글루탐산 생산 미생물 : 라이신 생산 미생물 = 50 ~ 99.95 : 50 ~ 0.05의 비율로 접종 시 발효액 내 L-글루탐산과 L-라이신이 0.83 ~ 99 : 1의 비율로 생산됨을 확인하였다.
실시예 2. 발효 공정 차이에 따른 글루탐산-라이신 발효 분말 비교
2-1. 글루탐산-라이신 발효 분말의 제조
종래에는 글루탐산 생산 미생물과 라이신 생산 미생물을 개별적으로 발효한 후 아미노산 함유 발효액 또는 이의 건조물을 적정 비율로 혼합하여 글루탐산과 라이신을 함유한 조미소재를 제조하였다. 이러한 종래 개별 발효 방법과 글루탐산 생산 미생물 및 라이신 생산 미생물을 혼합 발효하는 방법 간의 맛 차이를 비교하기 위해, 각 제조 방법에 의해 얻어진 글루탐산-라이신(GA-LYS) 발효 분말의 성분을 비교하였다 (도 1 참조).
여기서 사용된 글루탐산 종배양액 및 라이신 종배양액은 실시예 1-1과 동일한 방법으로 준비하였다.
① 개별 발효 (제조예 1)
종래 방법 중 개별 건조물을 혼합하는 방법에서는 글루탐산 종배양액 또는 라이신 종배양액을 각각 50 L 발효조로 옮긴 후 개별적으로 본발효를 실시하였다. 이후 각각의 발효액에서 균체를 분리한 후 탈색 및 여과 공정을 거쳤다. 여과물을 농축하고 건조하여 건조물을 수득하였다. 각각 수득된 글루탐산과 라이신 건조물을 각각 아미노산의 비율이 1 : 1이 되도록 혼합하여 글루탐산-라이신을 함유한 발효 분말을 제조하였다.
② 개별 발효 후 발효액 혼합 (제조예 2)
종래 방법 중 개별 발효액을 혼합하는 방법에서는 글루탐산 종배양액 또는 라이신 종배양액을 각각 50 L 발효조로 옮긴 후 개별적으로 본발효를 실시하였다. 본발효에서 수득된 각각의 발효액을 각각 아미노산의 비율이 1 : 1이 되도록 혼합한 후 균체를 분리한 후 탈색 및 여과 공정을 거쳤다. 여과물을 농축하고 건조하여 글루탐산-라이신 발효 분말을 수득하였다.
③ 혼합 발효 (제조예 3)
혼합 발효에서는 제조예 1 및 2와 동일하게 발효액 내 각 아미노산의 비율이 약 1 : 1이 되도록 실시예 1-2와 동일한 방법으로 글루탐산 종배양액과 라이신 종배양액을 접종량 기준 65 : 35의 비율로 접종하여 혼합 발효하였다. 이후 발효액에서 균체를 분리한 탈색 및 여과 공정을 거쳤다. 여과물을 농축하고 건조하여 글루탐산-라이신 발효 분말을 수득하였다.
2-2. 글루탐산-라이신 발효 분말의 성분 비교
제조예 1 및 2의 개별 발효에서 수득된 글루탐산-라이신 발효 분말과 제조예 3의 혼합 발효에서 수득된 글루탐산-라이신 발효 분말에 대해 성분 분석을 실시하였다.
아미노산 (L-글루탐산 및 L-라이신)은 HPLC 분석 (GA - 210 nm UV 검출기, 유속 0.9 ml/min; LYS - 214 nm, UV 검출기, 유속 0.8 ml/min)으로, 유기산 (시트르산, 숙신산, 젖산, 아세트산 등)은 HPLC 분석 (HPX-87H 컬럼, 214 nm, 25 min)으로 측정하였다. 이온류 (Na, Mg, K, PO4, SO4, Cl, NH4 등)에 대해서는 이온분석기 (Dionex IcS-1100, Thermo scientific)로 측정하였다. 그 결과는 하기 표 4에 나타내었다.
항목 제조예 1 제조예 2 제조예 3
GA 22% 35% 43%
LYS 22% 35% 43%
AA/TS* 47% 72% 88%
총 질소 9.0% 12.2% 11.8%
유기산 3.1% 2.6% 1.5%
이온 8.1% 10.2% 2%
암모늄 3.8% 2.5% 0.7%
*AA/TS: 총 고형분에 대한 아미노산(GA+LYS) 비율
상기 표 4를 참조하면, 혼합 발효한 경우 (제조예 3)에는 개별 발효한 경우 (제조예 1 및 2)에 비해 높은 아미노산 비율을 나타내며, 유기산, 이온 및 암모늄 함량이 현저히 감소하였다.
2-3. 개별 발효와 혼합 발효의 관능 비교
제조예 1 및 2의 개별 발효에서 수득된 글루탐산-라이신 발효 분말과 제조예 3의 혼합 발효에서 수득된 글루탐산-라이신 발효 분말에 대해 관능 평가를 진행하였다.
글루탐산-라이신 발효 분말에 대한 관능 평가는 10 ~ 15명의 관능평가 수행 전문패널을 대상으로 분말 그대로 또는 미온수에 1 ~ 5%로 희석하여 시료의 감칠맛, 감칠맛 지속성, 짠맛, 신맛, 쓴맛 및 단맛을 평가하였다. 그 결과를 하기 표 5에 나타내었다.
항목 제조예 1
(개별 발효)
제조예 2
(개별 발효)
제조예 3
(혼합 발효)
선미 감칠맛 +++ ++++ ++++
후미 지속성 ++ +++ ++++
짠맛 - + ++
신맛 ++ + -
쓴맛 ++ + -
단맛 + + ++
상기 표 5를 참조하면, 상기 표 4와 같은 글루탐산-라이신 발효 분말의 성분 차이로 인해 개별 발효 후 혼합하는 공정으로 제조된 샘플의 맛은 혼합 발효로 제조된 샘플에 비해 감칠맛이 약하고 쓴맛, 신맛이 높아졌다. 그리고 상기 표 4에서와 같이 유기산과 같은 부산물 증가 및 이온류 증가는 관능에도 영향을 주기 때문에 개별 발효 후 혼합하는 것보다는 혼합 발효 공정이 맛 측면이나 공정 간소화 부분에서 효과적이다.
실시예 3. 글루탐산 및 아르기닌의 혼합 발효
3-1. 종배양
글루탐산 생산 미생물로서 코리네박테리움 글루타미쿰 NFG6 (KCCM13164P) 및 아르기닌 생산 미생물로서 L-아르기닌(ARG)을 생산하는 코리네박테리움 글루타미쿰 NFA40 (KCCM13165P)을 사용하였다.
글루탐산 생산 미생물을 이용한 글루탐산 종배양액은 실시예 1-1과 동일한 방법으로 준비하였다.
아르기닌 생산 미생물을 종배양하기 위해, 종배양 배지 0.2 L가 담긴 2 L 플라스크에 아르기닌 생산 미생물을 접종하여 30℃, 140 rpm에서 16 내지 18시간 동안 1차 배양하였다 (OD610 = 12 ~ 18). 5 L 배양기 (jar fermenter)에 1차 배양액 2 ~ 4%를 접종하고 종배양 배지 2 ~ 2.5 L를 첨가하여 32℃, pH 6.7, 600 rpm 및 통기량 1.0 vvm 조건에서 16 내지 24시간 2차 배양하였고 (OD610 = 20 ~ 60), 아르기닌 종배양액을 준비하였다. 사용된 종배양 배지의 조성은 하기 표 6에 나타내었다.
조성
아르기닌 생산 미생물
종배양 배지
포도당 1.5 ~ 4.5%, 원당 2 ~ 6%, 효모추출물 페이스트 2 ~ 3%, (NH4)2SO4 0.6%, KH2PO4 0.2%, K2HPO4 0.2%, MnSO4·5H2O 15 ppm, MgSO4·7H2O 0.2%, 티아민 HCl 1 ppm, ZnSO4·7H2O 10 ppm, 비오틴 0.3 ppm, FeSO4·7H2O 15ppm 및 식품용 소포제 0.01%
3-2. 본발효
글루탐산 종배양액과 아르기닌 종배양액의 접종량에 따른 발효액 내 글루탐산과 아르기닌의 비율을 확인하기 위해 다양한 비율로 글루탐산 종배양액과 아르기닌 종배양액을 접종하여 발효하였다.
본발효에서는 50 L 발효조에 발효 배지 14 ~ 18 L를 첨가하고, 글루탐산 종배양액과 아르기닌 종배양액을 30 ~ 99.95 : 70 ~ 0.05의 접종량 비율로 총 종배양액 1.2 ~ 1.8 L를 접종하여 31 ~ 60시간 동안 유가식 배양으로 혼합 발효하였다. 여기서 사용된 발효 배지 조성 및 조건은 하기 표 7에 나타내었다.
발효 배지 조성 당밀 1.5 ~ 3%, 포도당 2.5 ~ 4%, 효모추출물 페이스트 0.4 ~ 1%, (NH4)2SO4 0.05 ~ 0.3%, H3PO4 0.1 ~ 0.2%, 베타인 0.05 ~ 0.12% 및 식품용 소포제 0.005%
발효 조건 온도 32 ~ 37℃, pH 6.5 ~ 7.5, 통기 0.8 ~ 1.2 vvm, 내압 0.5 ~ 1.0 kg/cm3, 교반속도 320 ~ 350 rpm 및 용존산소량(DO) 20 ~ 70% 유지
이러한 혼합 발효를 총 3회 실시하여 평균 값을 계산하였고, 그 결과는 표 8에 나타내었다.
종배양액의 접종량 비율
GA : ARG
발효 시간 발효액 내 GA : ARG 비율
99.95 : 0.05 31시간 99.0 : 1
90 : 10 31시간 12.2 : 1
80 : 20 34시간 4.36 : 1
70 : 30 36시간 2.41 : 1
60 : 40 38시간 1.96 : 1
50 : 50 40시간 1.57 : 1
40 : 60 44시간 1.21 : 1
30 : 70 45시간 1.04 : 1
상기 표 8을 참조하면, 각 아미노산 미생물의 종배양액을 글루탐산 생산 미생물 : 아르기닌 생산 미생물 = 30 ~ 99.95 : 70 ~ 0.05의 비율로 접종 시 발효액 내 L-글루탐산과 L-아르기닌이 1.04 ~ 99 : 1의 비율로 생산됨을 확인하였다.
실시예 4. 발효 공정 차이에 따른 글루탐산-아르기닌 발효 분말 비교
4-1. 글루탐산-아르기닌 발효 분말의 제조
종래에는 글루탐산 생산 미생물과 아르기닌 생산 미생물을 개별적으로 발효한 후 아미노산 함유 발효액 또는 이의 건조물을 적정 비율로 혼합하여 글루탐산과 아르기닌을 함유한 조미소재를 제조하였다. 이러한 종래 개별 발효 방법과 글루탐산 생산 미생물 및 아르기닌 생산 미생물을 혼합 발효하는 방법 간의 맛 차이를 비교하기 위해, 각 제조 방법에 의해 얻어진 글루탐산-아르기닌(GA-ARG) 발효 분말의 성분을 비교하였다 (도 2 참조).
여기서 사용된 글루탐산 종배양액 및 아르기닌 종배양액은 실시예 3-1과 동일한 방법으로 준비하였다.
① 개별 발효 (제조예 4)
종래 방법 중 개별 건조물을 혼합하는 방법에서는 글루탐산 종배양액 또는 아르기닌 종배양액을 각각 50 L 발효조로 옮긴 후 개별적으로 본발효를 실시하였다. 이후 각각의 발효액에서 균체를 분리한 후 탈색 및 여과 공정을 거쳤다. 여과물을 농축하고 건조하여 건조물을 수득하였다. 각각 수득된 글루탐산과 아르기닌 건조물을 각각 아미노산의 비율이 1 : 1이 되도록 혼합하여 글루탐산-아르기닌을 함유한 발효 분말을 제조하였다.
② 개별 발효 후 발효액 혼합 (제조예 5)
종래 방법 중 개별 발효액을 혼합하는 방법에서는 글루탐산 종배양액 또는 아르기닌 종배양액을 각각 50 L 발효조로 옮긴 후 개별적으로 본발효를 실시하였다. 본발효에서 수득된 각각의 발효액을 각각 아미노산의 비율이 1 : 1이 되도록 혼합한 후 균체를 분리한 후 탈색 및 여과 공정을 거쳤다. 여과물을 농축하고 건조하여 글루탐산-아르기닌 발효 분말을 수득하였다.
③ 혼합 발효 (제조예 6)
혼합 발효에서는 제조예 4 및 5와 동일하게 발효액 내 각 아미노산의 비율이 약 1 : 1이 되도록 실시예 3-2와 동일한 방법으로 글루탐산 종배양액과 아르기닌 종배양액을 접종량 기준 30 : 70의 비율로 접종하여 혼합 발효하였다. 이후 발효액에서 균체를 분리한 탈색 및 여과 공정을 거쳤다. 여과물을 농축하고 건조하여 글루탐산-아르기닌 발효 분말을 수득하였다.
4-2. 글루탐산-아르기닌 발효 분말의 성분 비교
제조예 4 및 5의 개별 발효에서 수득된 글루탐산-아르기닌 발효 분말과 제조예 6의 혼합 발효에서 수득된 글루탐산-아르기닌 발효 분말에 대해 성분 분석을 실시하였다.
아미노산 (L-글루탐산 및 L-아르기닌)은 HPLC 분석 (GA - 210 nm UV 검출기, 유속 0.9 ml/min; ARG - 195 nm, UV 검출기, 유속 1 ml/min)으로 측정하였다. 유기산 및 이온류는 실시예 2-2와 동일한 방법으로 측정하였다. 그 결과는 하기 표 9에 나타내었다.
항목 제조예 4 제조예 5 제조예 6
GA 22% 35% 42%
ARG 22% 34% 42%
AA/TS* 48% 71% 86%
총 질소 9.4% 12.0% 11.7%
유기산 3.6% 2.5% 1.8%
이온 8.3% 9.9% 2.1%
암모늄 4.0% 2.6% 0.9%
*AA/TS: 총 고형분에 대한 아미노산(GA+ARG) 비율
상기 표 9를 참조하면, 혼합 발효한 경우 (제조예 6)에는 개별 발효한 경우 (제조예 4 및 5)에 비해 높은 아미노산 비율을 나타내며, 유기산, 이온 및 암모늄 함량이 현저히 감소하였다.
4-3. 개별 발효와 혼합 발효의 관능 비교
제조예 4 및 5의 개별 발효에서 수득된 글루탐산-아르기닌 발효 분말과 제조예 6의 혼합 발효에서 수득된 글루탐산-아르기닌 발효 분말에 대해 관능 평가를 진행하였다.
관능 평가는 실시예 2-3과 동일한 방법으로 실시하였다. 그 결과를 하기 표 10에 나타내었다.
항목 제조예 4
(개별 발효)
제조예 5
(개별 발효)
제조예 6
(혼합 발효)
선미 감칠맛 ++ +++ ++++
후미 지속성 + ++ ++++
짠맛 - + ++
신맛 + + -
쓴맛 ++ ++ -
단맛 - - -
상기 표 10를 참조하면, 상기 표 9와 같은 글루탐산-아르기닌 발효 분말의 성분 차이로 인해 개별 발효 후 혼합하는 공정으로 제조된 샘플의 맛은 혼합 발효로 제조된 샘플에 비해 감칠맛이 약하고 쓴맛이 높아졌다. 그리고 상기 표 9에서와 같이 유기산과 같은 부산물 증가 및 이온류 증가는 관능에도 영향을 주기 때문에 개별 발효 후 혼합하는 것보다는 혼합 발효 공정이 맛 측면이나 공정 간소화 부분에서 효과적이다.
실시예 5. 글루탐산 및 이노신산의 혼합 발효
5-1. 종배양
글루탐산 생산 미생물로서 코리네박테리움 글루타미쿰 NFG6 (KCCM13164P) 및 이노신산 생산 미생물로서 IMP를 생산하는 코리네박테리움 암모니아게네스 NFI545 (KCCM13162P)를 사용하였다.
글루탐산 생산 미생물을 이용한 글루탐산 종배양액은 실시예 1-1과 동일한 방법으로 준비하였다.
이노신산 생산 미생물을 종배양하기 위해, 종배양 배지 0.3 L가 담긴 2 L 플라스크에 이노신산 생산 미생물을 접종하여 31℃, 150 rpm에서 20 내지 24시간 동안 1차 배양하였다 (OD610 = 15 ~ 20). 5 L 배양기 (jar fermenter)에 1차 배양액 1%를 접종하고 종배양 배지 2 ~ 2.5 L를 첨가하여 31℃, pH 7.1, 600 rpm 및 통기량 1.0 vvm 조건에서 21 내지 24시간 2차 배양하였고 (OD610 = 20 ~ 40), 이노신산 종배양액을 준비하였다. 사용된 종배양 배지의 조성은 하기 표 11에 나타내었다.
조성
이노신산 생산 미생물
종배양 배지
포도당 4 ~ 6%, 효모추출물 페이스트 2 ~ 4%, (NH4)2SO4 0.3%, KH2PO4 0.2%, K2HPO4 0.2%, 아데닌 200 ~ 300 ppm, 구아닌 200 ~ 300ppm, MgSO4·7H2O 0.15%, 니코틴산 10 ppm, Ca-판토테네이트 100 ppm, 시스테인 15ppm, 티아민 HCl 1 ppm, ZnSO4·7H2O 5 ppm, MnSO4·5H2O 10 ppm, 비오틴 0.1 ppm, FeSO4·7H2O 15 ppm 및 식품용 소포제 0.01%
5-2. 본발효
글루탐산 종배양액과 이노신산 종배양액의 접종량에 따른 발효액 내 글루탐산과 이노신산의 비율를 확인하기 위해 다양한 비율로 글루탐산 종배양액과 이노신산 종배양액을 접종하여 발효하였다.
본발효에서는 50 L 발효조에 발효 배지 14 ~ 18 L를 첨가하고, 글루탐산 종배양액과 이노신산 종배양액을 0.05 ~ 99.95 : 99.95 ~ 0.05의 접종량 비율로 총 종배양액 1.2 ~ 1.8 L를 접종하여 30 ~ 90시간 동안 유가식 배양으로 혼합 발효하였다. 여기서 사용된 발효 배지 조성 및 조건은 하기 표 12에 나타내었다.
발효 배지 조성 당밀 1 ~ 3%, 원당 5 ~ 7%, 효모추출물 페이스트 2 ~ 3%, H3PO4 0.6 ~ 1.2%, 베타인 0.05 ~ 0.1%, 아데닌 100 ~ 200 ppm, 구아닌 0 ~ 150 ppm, MgSO4·7H2O 0.2 ~ 0.5%, Ca-판토테네이트 50 ~ 100 ppm, 비타민 B3 5 ~ 15ppm, 티아민 HCl 5 ~ 20 ppm, NaOH 0.4 ~ 0.8%, FeSO4 5 ~ 10 ppm, MnSO4 10 ~ 20 ppm, ZnSO4 10 ~ 20 ppm 및 식품용 소포제 0.005%
발효 조건 온도 31 ~ 32℃, pH 6.5 ~ 7.5, 통기 0.8 ~ 1.2 vvm, 내압 0.6 ~ 1.0 kg/cm3, 교반속도 320 ~ 350 rpm 및 용존산소량(DO) 20 ~ 70% 유지
이러한 혼합 발효를 총 3회 실시하여 평균 값을 계산하였고, 그 결과는 표 13에 나타내었다.
종배양액의 접종량 비율
GA : IMP
발효 시간 발효액 내 GA : IMP 비율
99.95 : 0.05 33시간 99.8 : 1
80 : 20 42시간 51.3 : 1
70 : 30 48시간 31.2 : 1
50 : 50 60시간 16.8 : 1
20 : 80 83시간 1.04 : 1
0.05 : 99.95 90시간 0.02 : 1
상기 표 13을 참조하면, 각 미생물의 종배양액을 글루탐산 생산 미생물 : 이노신산 생산 미생물 = 0.05 ~ 99.95 : 99.95 ~ 0.05의 비율로 접종 시 발효액 내 L-글루탐산과 IMP가 0.02 ~ 99.8 : 1의 비율로 생산됨을 확인하였다.
실시예 6. 발효 공정 차이에 따른 글루탐산-이노신산 발효 분말 비교
6-1. 글루탐산-이노신산 발효 분말의 제조
종래에는 글루탐산 생산 미생물과 이노신산 생산 미생물을 개별적으로 발효한 후 발효액 또는 이의 건조물을 적정 비율로 혼합하여 글루탐산과 이노신산을 함유한 조미소재를 제조하였다. 이러한 종래 개별 발효 방법과 글루탐산 생산 미생물 및 이노신산 생산 미생물을 혼합 발효하는 방법 간의 맛 차이를 비교하기 위해, 각 제조 방법에 의해 얻어진 글루탐산-이노신산(GA-IMP) 발효 분말의 성분을 비교하였다 (도 3 참조).
여기서 사용된 글루탐산 종배양액 및 이노신산 종배양액은 실시예 5-1과 동일한 방법으로 준비하였다.
① 개별 발효 (제조예 7)
종래 방법 중 개별 건조물을 혼합하는 방법에서는 글루탐산 종배양액 또는 이노신산 종배양액을 각각 50 L 발효조로 옮긴 후 개별적으로 본발효를 실시하였다. 이후 각각의 발효액에서 균체를 분리한 후 탈색 및 여과 공정을 거쳤다. 여과물을 농축하고 건조하여 건조물을 수득하였다. 각각 수득된 글루탐산과 이노신산 건조물을 각각 비율이 1 : 1이 되도록 혼합하여 글루탐산-이노신산을 함유한 발효 분말을 제조하였다.
② 개별 발효 후 발효액 혼합 (제조예 8)
종래 방법 중 개별 발효액을 혼합하는 방법에서는 글루탐산 종배양액 또는 이노신산 종배양액을 각각 50 L 발효조로 옮긴 후 개별적으로 본발효를 실시하였다. 본발효에서 수득된 각각의 발효액을 각각 비율이 1 : 1이 되도록 혼합한 후 균체를 분리한 후 탈색 및 여과 공정을 거쳤다. 여과물을 농축하고 건조하여 글루탐산-이노신산 발효 분말을 수득하였다.
③ 혼합 발효 (제조예 9)
혼합 발효에서는 제조예 7 및 8과 동일하게 발효액 내 각 아미노산의 비율이 약 1 : 1이 되도록 실시예 5-2와 동일한 방법으로 글루탐산 종배양액과 이노신산 종배양액을 접종량 기준 20 : 80의 비율로 접종하여 혼합 발효하였다. 이후 발효액에서 균체를 분리한 탈색 및 여과 공정을 거쳤다. 여과물을 농축하고 건조하여 글루탐산-이노신산 발효 분말을 수득하였다.
6-2. 글루탐산-이노신산 발효 분말의 성분 비교
제조예 7 및 8의 개별 발효에서 수득된 글루탐산-이노신산 발효 분말과 제조예 9의 혼합 발효에서 수득된 글루탐산-이노신산 발효 분말에 대해 성분 분석을 실시하였다.
L-글루탐산 및 IMP는 HPLC 분석 (GA - 210 nm UV 검출기, 유속 0.9 ml/min; IMP - 254 nm UV 검출기, 유속 0.9 ml/min)로 측정하였다. 유기산 및 이온류는 실시예 2-2와 동일한 방법으로 측정하였다. 그 결과는 하기 표 14에 나타내었다.
항목 제조예 7 제조예 8 제조예 9
GA 22% 31% 37%
IMP 20% 31% 36%
(GA+IMP)/TS* 42% 62% 73%
총 질소 8.6% 9.7% 10.5%
유기산 4.0% 3.3% 3.1%
이온 10.4% 8.8% 4.2%
암모늄 4.0% 3.0% 1.7%
*(GA+IMP)/TS: 총 고형분에 대한 생산물의 비율
6-3. 개별 발효와 혼합 발효의 관능 비교
제조예 7 및 8의 개별 발효에서 수득된 글루탐산-이노신산 발효 분말과 제조예 9의 혼합 발효에서 수득된 글루탐산-이노신산 발효 분말에 대해 관능 평가를 진행하였다.
관능 평가는 실시예 2-3과 동일한 방법으로 실시하였다. 그 결과를 하기 표 15에 나타내었다.
항목 제조예 7
(개별 발효)
제조예 8
(개별 발효)
제조예 9
(혼합 발효)
선미 감칠맛 +++ ++++ ++++
후미 지속성 + +++ ++++
코쿠미 + ++ +++
짠맛 + ++ ++
신맛 ++ ++ +
쓴맛 ++ + -
단맛 + + ++
상기 표 15를 참조하면, 상기 표 14와 같은 글루탐산-이노신산 발효 분말의 성분 차이로 인해 개별 발효 후 혼합하는 공정으로 제조된 샘플의 맛은 혼합 발효로 제조된 샘플에 비해 감칠맛 및 후미 지속성이 약하고 쓴맛이 높아졌다. 그리고 상기 표 14에서와 같이 유기산과 같은 부산물 증가 및 이온류 증가는 관능에도 영향을 주기 때문에 개별 발효 후 혼합하는 것보다는 혼합 발효 공정이 맛 측면이나 공정 간소화 부분에서 효과적이다.
실시예 7. 이노신산 및 라이신의 혼합 발효
7-1. 종배양
이노신산 생산 미생물로서 코리네박테리움 암모니아게네스 NFI545 (KCCM13162P) 및 라이신 생산 미생물로서 코리네박테리움 글루타미쿰 NFL21 (KCCM13163P)를 사용하였다.
이노신산 생산 미생물을 이용한 이노신산 종배양액 및 라이신 생산 미생물을 이용한 라이신 종배양액은 각각 실시예 5-1 및 1-1과 동일한 방법으로 준비하였다.
7-2. 본발효
이노신산 종배양액과 라이신 종배양액의 접종 접종량에 따른 발효액 내 이노신산과 라이신의 비율을 확인하기 위해 다양한 비율로 이노신산 종배양액과 라이신 종배양액을 접종하여 발효하였다.
본발효에서는 50 L 발효조에 발효 배지 14 ~ 18 L를 첨가하고, 이노신산 종배양액과 라이신 종배양액을 0.05 ~ 99.95 : 99.95 ~ 0.05의 접종량 비율로 총 종배양액 1.2 ~ 1.8 L를 접종하여 45 ~ 90시간 동안 유가식 배양으로 혼합 발효하였다. 여기서 사용된 발효 배지 조성 및 조건은 하기 표 16에 나타내었다.
발효 배지 조성 당밀 1 ~ 3%, 원당 5 ~ 7%, 효모추출물 페이스트 2 ~ 3%, H3PO4 0.6 ~ 1.2%, 베타인 0.05 ~ 0.1%, 아데닌 100 ~ 200 ppm, 구아닌 50 ~ 150 ppm, MgSO4·7H2O 0.2 ~ 0.5%, Ca-판토테네이트 50 ~ 100 ppm, 비타민 B3 5 ~ 15 ppm, 티아민 HCl 5 ~ 20 ppm, (NH4)2SO4 0.4%, NaOH 0.4 ~ 0.8%, FeSO4 5 ~ 10 ppm, MnSO4 10 ~ 20 ppm, ZnSO4 10 ~ 20 ppm 및 식품용 소포제 0.005%
발효 조건 온도 31 ~ 32℃, pH 6.5 ~ 7.5, 통기 0.8 ~ 1.2 vvm, 내압 0.6 ~ 1.0 kg/cm3, 교반속도 320 ~ 350 rpm 및 용존산소량(DO) 20 ~ 70% 유지
이러한 혼합 발효를 총 3회 실시하여 평균 값을 계산하였고, 그 결과는 표 17에 나타내었다.
종배양액의 접종량 비율
IMP : LYS
발효 시간 발효액 내 IMP : LYS 비율
99.95 : 0.05 90시간 92.3 : 1
80 : 20 73시간 1.01 : 1
50 : 50 61시간 0.05 : 1
20 : 80 48시간 0.02 : 1
0.05 : 99.95 45시간 0.01 : 1
상기 표 17을 참조하면, 각 미생물의 종배양액을 이노신산 생산 미생물 : 라이신 생산 미생물 = 0.05 ~ 99.95 : 99.5 ~ 0.05의 비율로 접종 시 발효액 내 IMP와 L-라이신이 0.01 ~ 92 : 1의 비율로 생산됨을 확인하였다
실시예 8. 발효 공정 차이에 따른 이노신산-라이신 발효 분말 비교
8-1. 이노신산-라이신 발효 분말의 제조
종래에는 이노신산 생산 미생물과 라이신 생산 미생물을 개별적으로 발효한 후 발효액 또는 이의 건조물을 적정 비율로 혼합하여 이노신산과 라이신을 함유한 조미소재를 제조하였다. 이러한 종래 개별 발효 방법과 이노신산 생산 미생물 및 라이신 생산 미생물을 혼합 발효하는 방법 간의 맛 차이를 비교하기 위해, 각 제조 방법에 의해 얻어진 이노신산-라이신(IMP-LYS) 발효 분말의 성분을 비교하였다 (도 4 참조).
여기서 사용된 이노신산 종배양액 및 라이신 종배양액은 실시예 7-1과 동일한 방법으로 준비하였다.
① 개별 발효 (제조예 10)
종래 방법 중 개별 건조물을 혼합하는 방법에서는 이노신산 종배양액 또는 라이신 종배양액을 각각 50 L 발효조로 옮긴 후 개별적으로 본발효를 실시하였다. 이후 각각의 발효액에서 균체를 분리한 후 탈색 및 여과 공정을 거쳤다. 여과물을 농축하고 건조하여 건조물을 수득하였다. 각각 수득된 이노신산과 라이신 건조물을 각각 비율이 1 : 1이 되도록 혼합하여 이노신산-라이신을 함유한 발효 분말을 제조하였다.
② 개별 발효 후 발효액 혼합 (제조예 11)
종래 방법 중 개별 발효액을 혼합하는 방법에서는 이노신산 종배양액 또는 라이신 종배양액을 각각 50 L 발효조로 옮긴 후 개별적으로 본발효를 실시하였다. 본발효에서 수득된 각각의 발효액을 각각 비율이 1 : 1이 되도록 혼합한 후 균체를 분리한 후 탈색 및 여과 공정을 거쳤다. 여과물을 농축하고 건조하여 이노신산-라이신 발효 분말을 수득하였다.
③ 혼합 발효 (제조예 12)
혼합 발효에서는 제조예 10 및 11과 동일하게 발효액 내 이노신산 및 라이신의 비율이 약 1 : 1이 되도록 실시예 7-2와 동일한 방법으로 이노신산 종배양액과 라이신 종배양액을 접종량 기준 80 : 20의 비율로 접종하여 혼합 발효하였다. 이후 발효액에서 균체를 분리한 탈색 및 여과 공정을 거쳤다. 여과물을 농축하고 건조하여 이노신산-라이신 발효 분말을 수득하였다.
8-2. 라이신-이노신산 발효 분말의 성분 비교
제조예 10 및 11의 개별 발효에서 수득된 이노신산-라이신 발효 분말과 제조예 12의 혼합 발효에서 수득된 이노신산-라이신 발효 분말에 대해 성분 분석을 실시하였다.
IMP 및 L-라이신은 HPLC 분석 (IMP - 254 nm, UV 검출기, 유속 0.9 ml/min; LYS - 214 nm, UV 검출기, 유속 0.8 ml/min)으로 측정하였다. 유기산 및 이온류는 실시예 2-2와 동일한 방법으로 측정하였다. 그 결과는 하기 표 18에 나타내었다.
항목 제조예 10 제조예 11 제조예 12
LYS 26% 32% 38%
IMP 24% 30% 33%
(LYS+IMP)/TS* 45% 62% 71%
총 질소 9.7% 11.3% 12.5%
유기산 5.0% 4.1% 3.7%
이온 9.2% 8.2% 5.6%
암모늄 3.9% 3.5% 1.9%
*(LYS+IMP)/TS: 총 고형분에 대한 생산물의 비율
상기 표 18을 참조하면, 혼합 발효한 경우 (제조예 12)에는 개별 발효한 경우 (제조예 10 및 11)에 비해 높은 LYS+IMP 비율을 나타내며, 유기산, 및 이온 및 함량, 암모늄니아 함량이 현저히 감소하였다.
8-3. 개별 발효와 혼합 발효의 관능 비교
제조예 10 및 11 개별 발효에서 수득된 이노신산-라이신 발효 분말과 제조예 12의 혼합 발효에서 수득된 이노신산-라이신 발효 분말에 대해 관능 평가를 진행하였다.
관능 평가는 실시예 2-3과 동일한 방법으로 실시하였다. 그 결과를 하기 표 19에 나타내었다.
항목 제조예 10
(개별 발효)
제조예 12
(개별 발효)
제조예 13
(혼합 발효)
선미 감칠맛 + ++ ++
후미 지속성 + +++ ++++
코쿠미 + ++ +++
짠맛 + ++ ++
신맛 ++ ++ +
쓴맛 ++ ++ -
단맛 + + ++
상기 표 19를 참조하면, 상기 표 18과 같은 이노신산-라이신 발효 분말의 성분 차이로 인해 개별 발효 후 혼합하는 공정으로 제조된 샘플의 맛은 혼합 발효로 제조된 샘플에 비해 후미 지속성이 약하고 쓴맛이 높아졌다. 그리고 상기 표 18에서와 같이 유기산과 같은 부산물 증가 및 이온류 증가는 관능에도 영향을 주기 때문에 개별 발효 후 혼합하는 것보다는 혼합 발효 공정이 맛 측면이나 공정 간소화 부분에서 효과적이다.
실시예 9. 이노신산 및 아르기닌의 혼합 발효
9-1. 종배양
이노신산 생산 미생물로서 코리네박테리움 암모니아게네스 NFI545 (KCCM13162P) 및 아르기닌 생산 미생물로서 코리네박테리움 글루타미쿰 NFA40 (KCCM13165P)을 사용하였다.
이노신산 생산 미생물을 이용한 이노신산 종배양액 및 아르기닌 생산 미생물을 이용한 아르기닌 종배양액은 각각 실시예 5-1 및 3-1과 동일한 방법으로 준비하였다.
9-2. 본발효
이노신산 종배양액과 아르기닌 종배양액의 접종량에 따른 발효액 내 이노신산과 아르기닌의 비율을 확인하기 위해 다양한 비율로 이노신산 종배양액과 아르기닌 종배양액을 접종하여 발효하였다.
본발효에서는 50 L 발효조에 발효 배지 14 ~ 18 L를 첨가하고, 이노신산 종배양액과 아르기닌 종배양액을 65 ~ 99.95 : 35 ~ 0.05의 접종량 비율로 총 종배양액 1.2 ~ 1.8 L를 접종하여 45 ~ 80시간 동안 유가식 배양으로 혼합 발효하였다. 여기서 사용된 발효 배지 조성 및 조건은 하기 표 20에 나타내었다.
발효 배지 조성 당밀 1 ~ 3%, 원당 5 ~ 7%, 효모추출물 페이스트 2 ~ 3%, H3PO4 0.6 ~ 1.2%, 베타인 0.05 ~ 0.1%, 아데닌 100 ~ 200ppm, 구아닌 50 ~ 150 ppm, MgSO4·7H2O 0.2 ~ 0.5%, Ca-판토테네이트 50 ~ 100 ppm, 비타민 B3 5 ~ 15 ppm, 티아민 HCl 5 ~ 20 ppm, (NH4)2SO4 0.4%, NaOH 0.4 ~ 0.8%, FeSO4 5 ~ 10 ppm, MnSO4 10 ~ 20 ppm, ZnSO4 10 ~ 20 ppm 및 식품용 소포제 0.005%
발효 조건 온도 31 ~ 32℃, pH 6.5 ~ 7.5, 통기 0.8 ~ 1.2 vvm, 내압 0.6 ~ 1.0 kg/cm3, 교반속도 320 ~ 350 rpm 및 용존산소량(DO) 20 ~ 70% 유지
이러한 혼합 발효를 총 3회 실시하여 평균 값을 계산하였고, 그 결과는 표 21에 나타내었다.
종배양액의 접종량 비율
IMP : ARG
발효 시간 발효액 내 IMP : ARG 비율
99.95 : 0.05 80시간 95.1 : 1
80 : 20 46시간 5.3 : 1
70 : 30 45시간 2.45 : 1
65 : 35 45시간 1.04 : 1
상기 표 21을 참조하면, 각 미생물의 종배양액을 이노신산 생산 미생물 : 아르기닌 생산 미생물 = 65 ~ 99.95 : 35 ~ 0.05의 비율로 접종 시 발효액 내 IMP와 L-아르기닌이 1.04 ~ 95.1 : 1의 비율로 생산됨을 확인하였다.
실시예 10. 발효 공정 차이에 따른 이노신산-아르기닌 발효 분말 비교
10-1. 이노신산-아르기닌 발효 분말의 제조
종래에는 이노신산 생산 미생물과 아르기닌 생산 미생물을 개별적으로 발효한 후 발효액 또는 이의 건조물을 적정 비율로 혼합하여 이노신산과 아르기닌을 함유한 조미소재를 제조하였다. 이러한 종래 개별 발효 방법과 이노신산 생산 미생물 및 아르기닌 생산 미생물을 혼합 발효하는 방법 간의 맛 차이를 비교하기 위해, 각 제조 방법에 의해 얻어진 이노신산-아르기닌(IMP-ARG) 발효 분말의 성분을 비교하였다 (도 5 참조).
여기서 사용된 이노신산 종배양액 및 아르기닌 종배앵액은 실시예 9-1과 동일한 방법으로 준비하였다.
① 개별 발효 (제조예 13)
종래 방법 중 개별 건조물을 혼합하는 방법에서는 이노신산 종배양액 또는 아르기닌 종배양액을 각각 50 L 발효조로 옮긴 후 개별적으로 본발효를 실시하였다. 이후 각각의 발효액에서 균체를 분리한 후 탈색 및 여과 공정을 거쳤다. 여과물을 농축하고 건조하여 건조물을 수득하였다. 각각 수득된 이노신산과 아르기닌 건조물을 각각 비율이 1 : 1이 되도록 혼합하여 이노신산-아르기닌을 함유한 발효 분말을 제조하였다.
② 개별 발효 후 발효액 혼합 (제조예 14)
종래 방법 중 개별 발효액을 혼합하는 방법에서는 이노신산 종배양액 또는 라이신 종배양액을 각각 50 L 발효조로 옮긴 후 개별적으로 본발효를 실시하였다. 본발효에서 수득된 각각의 발효액을 각각 비율이 1 : 1이 되도록 혼합한 후 균체를 분리한 후 탈색 및 여과 공정을 거쳤다. 여과물을 농축하고 건조하여 이노신산-아르기닌 발효 분말을 수득하였다.
③ 혼합 발효 (제조예 15)
혼합 발효에서는 제조예 13 및 14와 동일하게 발효액 내 이노신산 및 아르기닌의 비율이 약 1 : 1이 되도록 실시예 9-2와 동일한 방법으로 이노신산 종배양액과 아르기닌 종배양액을 접종량 기준 65 : 35의 비율로 접종하여 혼합 발효하였다. 이후 발효액에서 균체를 분리한 탈색 및 여과 공정을 거쳤다. 여과물을 농축하고 건조하여 이노신산-아르기닌 발효 분말을 수득하였다.
10-2. 이노신산-아르기닌 발효 분말의 성분 비교
제조예 13 및 14의 개별 발효에서 수득된 이노신산-아르기닌 발효 분말과 제조예 15의 혼합 발효에서 수득된 이노신산-아르기닌 발효 분말에 대해 성분 분석을 실시하였다.
L-아르기닌 및 IMP는 HPLC 분석 (ARG - 195 nm, UV 검출기, 유속 1 ml/min; IMP - 254 nm, UV 검출기, 유속 0.9 ml/min)으로 측정하였다. 유기산 및 이온류는 실시예 2-2와 동일한 방법으로 측정하였다. 그 결과는 하기 표 22에 나타내었다.
항목 제조예 13 제조예 14 제조예 15
ARG 24% 31% 34%
IMP 24% 31% 33%
(ARG+IMP)/TS* 48% 62% 76%
총 질소 9.7% 11.3% 14.1%
유기산 4.7% 3.8% 2.5%
이온 7.5% 6.2% 3.8%
암모늄 3.1% 2.5% 0.8%
*(ARG+IMP)/TS: 총 고형분에 대한 생산물의 비율
10-3. 개별 발효와 혼합 발효의 관능 비교
제조예 13 및 14의 개별 발효에서 수득된 이노신산-아르기닌 발효 분말과 제조예 15의 혼합 발효에서 수득된 이노신산-아르기닌 발효 분말에 대해 관능 평가를 진행하였다.
관능 평가는 실시예 2-3과 동일한 방법으로 실시하였다. 그 결과를 하기 표 23에 나타내었다.
항목 제조예 13
(개별 발효)
제조예 14
(개별 발효)
제조예 15
(혼합 발효)
선미 감칠맛 + ++ ++
후미 지속성 + +++ ++++
코쿠미 + ++ +++
짠맛 + ++ ++
신맛 ++ ++ +
쓴맛 ++ ++ -
단맛 - - -
상기 표 23을 참조하면, 상기 표 22와 같은 이노신산-아르기닌 발효 분말의 성분 차이로 인해 개별 발효 후 혼합하는 공정으로 제조된 샘플의 맛은 혼합 발효로 제조된 샘플에 비해 후미 지속성이 약하고 쓴맛이 높아졌다. 그리고 상기 표 22에서와 같이 유기산과 같은 부산물 증가 및 이온류 증가는 관능에도 영향을 주기 때문에 개별 발효 후 혼합하는 것보다는 혼합 발효 공정이 맛 측면이나 공정 간소화 부분에서 효과적이다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.
[수탁번호]
기탁기관명 : 한국미생물보존센터(KCCM)
수탁번호 : KCCM13162P
수탁일자 : 20220421
기탁기관명 : 한국미생물보존센터(KCCM)
수탁번호 : KCCM13163P
수탁일자 : 20220421
기탁기관명 : 한국미생물보존센터(KCCM)
수탁번호 : KCCM13164P
수탁일자 : 20220421
기탁기관명 : 한국미생물보존센터(KCCM)
수탁번호 : KCCM13165P
수탁일자 : 20220421
Figure PCTKR2022008399-appb-img-000001
Figure PCTKR2022008399-appb-img-000002
Figure PCTKR2022008399-appb-img-000003
Figure PCTKR2022008399-appb-img-000004

Claims (22)

  1. 발효 배지에 제1 미생물과 제2 미생물을 접종한 후 발효하여 아미노산, 핵산 및/또는 유기산을 함유하는 발효액을 제조하는 단계를 포함하며,
    상기 제1 미생물 및 제2 미생물은 서로 다른 산물을 생산하고, 각각 아미노산, 핵산 및 유기산으로 이루어진 군에서 선택된 1종을 생산하는 것인 조미소재의 제조방법.
  2. 청구항 1에 있어서,
    상기 아미노산은 L-글루탐산, L-알라닌, L-발린, L-류신, L-이소류신, L-프롤린, L-페닐알라닌, L-트립토판, L-메티오닌, L-글리신, L-세린, L-트레오닌, L-시스테인, L-아스파라진, L-글루타민, L-아스파트산, L-라이신, L-아르기닌 및 L-히스티딘으로 이루어진 군에서 선택된 1종 이상인 것인 방법.
  3. 청구항 1에 있어서,
    상기 핵산은 이노신산, 구아닐산, 잔틸산 및 이들의 염 형태로 이루어진 군에서 선택된 1종 이상인 것인 방법.
  4. 청구항 1에 있어서,
    상기 유기산은 숙신산, 사과산, 구연산, 초산, 젖산, 푸마르산, 주석산, 아스코르브산, 글루콘산 및 이들의 염 형태로 이루어진 군에서 선택된 1종 이상인 것인 방법.
  5. 청구항 1에 있어서,
    상기 제1 미생물은 글루탐산 생산 미생물이고,
    상기 제2 미생물은 라이신 생산 미생물, 아르기닌 생산 미생물, 히스티딘 생산 미생물, 트립토판 생산 미생물, 글리신 생산 미생물, 알라닌 생산 미생물, 숙신산 생산 미생물, 젖산 생산 미생물, 구아닐산 생산 미생물 또는 이노신산 생산 미생물인 것인 방법.
  6. 청구항 1에 있어서,
    상기 제1 미생물은 이노신산 생산 미생물이고,
    상기 제2 미생물은 라이신 생산 미생물, 아르기닌 생산 미생물, 히스티딘 생산 미생물, 트립토판 생산 미생물, 글리신 생산 미생물, 알라닌 생산 미생물, 숙신산 생산 미생물, 젖산 생산 미생물 또는 구아닐산 생산 미생물인 것인 방법.
  7. 청구항 1에 있어서,
    상기 단계는 제1 미생물 및 제2 미생물과 서로 다른 산물을 생산하며, 아미노산, 핵산 및 유기산으로 이루어진 군에서 선택된 1종을 생산하는 제3 미생물을 더 접종하는 것인 방법.
  8. 청구항 1 또는 7에 있어서,
    상기 제1 미생물은 글루탐산 생산 미생물이고,
    상기 제2 미생물은 구아닐산 생산 미생물이고,
    상기 제3 미생물은 이노신산 생산 미생물인 것인 방법.
  9. 청구항 1 또는 7에 있어서,
    상기 제1 미생물, 제2 미생물 및 제3 미생물은 코리네박테리움(Corynebacterium) 속 미생물인 것인 방법.
  10. 청구항 1 또는 7에 있어서,
    상기 제1 미생물, 제2 미생물 및 제3 미생물은 개별적으로 배양되거나, 또는 혼합 배양된 종배양액 상태인 것인 방법.
  11. 청구항 1 또는 7에 있어서,
    상기 단계는 발효액 내 각 미생물의 산물의 비율을 조절하기 위해 각 미생물의 접종량을 조절하는 것인 방법.
  12. 청구항 1 또는 7에 있어서,
    상기 발효액은 전체 고형분 중 전체 미생물의 산물을 3 내지 90 중량%로 포함하는 것인 방법.
  13. 발효 배지에 글루탐산 생산 미생물 및 라이신 생산 미생물을 접종한 후 발효하여 L-글루탐산 및 L-라이신 함유 발효액을 제조하는 단계를 포함하는 L-글루탐산 및 L-라이신 함유 조미소재의 제조방법.
  14. 청구항 13에 있어서,
    상기 글루탐산 생산 미생물 및 라이신 생산 미생물은 코리네박테리움(Corynebacterium) 속 미생물인 것인 방법.
  15. 청구항 13에 있어서,
    상기 글루탐산 생산 미생물 및 라이신 생산 미생물은 개별적으로 배양되거나, 또는 혼합 배양된 종배양액 상태인 것인 방법.
  16. 청구항 13에 있어서,
    상기 단계는 발효액 내 L-글루탐산과 L-라이신의 비율을 조절하기 위해 글루탐산 생산 미생물과 라이신 생산 미생물의 접종량을 조절하는 것인 방법.
  17. 청구항 13에 있어서,
    상기 발효액은 전체 고형분 중 L-글루탐산 및 L-라이신을 포함한 아미노산을 3 내지 90 중량%로 포함하는 것인 방법.
  18. 청구항 1 또는 7의 방법으로 제조된 조미소재.
  19. 청구항 13의 방법으로 제조된 L-글루탐산 및 L-라이신 함유 조미소재.
  20. 청구항 19에 있어서,
    상기 조미소재는 L-글루탐산 및 L-라이신 함량이 고형분 대비 3 내지 90 중량%인 것인 L-글루탐산 및 L-라이신 함유 조미소재.
  21. 청구항 18의 조미소재를 포함하는 식품 조성물.
  22. 청구항 19의 L-글루탐산 및 L-라이신 함유 조미소재를 포함하는 식품 조성물.
PCT/KR2022/008399 2022-01-11 2022-06-14 이종 미생물 혼합 발효에 의한 조미소재의 제조방법 WO2023136404A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0004003 2022-01-11
KR20220004003 2022-01-11
KR10-2022-0070271 2022-06-09
KR1020220070271A KR20230108684A (ko) 2022-01-11 2022-06-09 이종 미생물 혼합 발효에 의한 조미소재의 제조방법

Publications (1)

Publication Number Publication Date
WO2023136404A1 true WO2023136404A1 (ko) 2023-07-20

Family

ID=82608720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/008399 WO2023136404A1 (ko) 2022-01-11 2022-06-14 이종 미생물 혼합 발효에 의한 조미소재의 제조방법

Country Status (3)

Country Link
US (1) US20230220429A1 (ko)
EP (1) EP4209580A1 (ko)
WO (1) WO2023136404A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930013089A (ko) * 1991-12-19 1993-07-21 김정순 복수 아미노산을 동시에 생산하는 미생물 및 그 발효액을 이용한 l-라이신의 제조방법
KR960005057B1 (ko) * 1989-11-27 1996-04-20 소시에떼 데 프로듀어 네슬레 소시에떼 아노님 향미료의 제조방법
KR20020067226A (ko) * 2001-02-16 2002-08-22 변유량 혼합배양에 의한 미생물 셀룰로오스의 생산방법
KR20090114456A (ko) * 2007-02-20 2009-11-03 아지노모토 가부시키가이샤 L-아미노산 또는 핵산의 제조방법
KR20130051618A (ko) * 2011-11-10 2013-05-21 씨제이제일제당 (주) L-글루탐산을 함유하는 조미료 및 그 제조 방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3245881B2 (ja) * 1990-02-15 2002-01-15 味の素株式会社 塩基性アミノ酸と酸性アミノ酸の同時発酵法
KR101328091B1 (ko) 2011-12-28 2013-11-13 대상 주식회사 L-글루탐산 및 l-라이신을 포함하는 아미노산 조미료 조성물
KR101758332B1 (ko) 2015-01-22 2017-07-27 대상 주식회사 L-라이신 및 l-글루타민산을 포함하는 감미증강용 아미노산 조미료 조성물
KR20160055743A (ko) * 2016-04-29 2016-05-18 서희동 메주를 만드는 방법
CN113424943A (zh) * 2021-05-21 2021-09-24 广东肇庆星湖生物科技股份有限公司 一种调味料的制备方法及所得的产品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960005057B1 (ko) * 1989-11-27 1996-04-20 소시에떼 데 프로듀어 네슬레 소시에떼 아노님 향미료의 제조방법
KR930013089A (ko) * 1991-12-19 1993-07-21 김정순 복수 아미노산을 동시에 생산하는 미생물 및 그 발효액을 이용한 l-라이신의 제조방법
KR20020067226A (ko) * 2001-02-16 2002-08-22 변유량 혼합배양에 의한 미생물 셀룰로오스의 생산방법
KR20090114456A (ko) * 2007-02-20 2009-11-03 아지노모토 가부시키가이샤 L-아미노산 또는 핵산의 제조방법
KR20130051618A (ko) * 2011-11-10 2013-05-21 씨제이제일제당 (주) L-글루탐산을 함유하는 조미료 및 그 제조 방법

Also Published As

Publication number Publication date
US20230220429A1 (en) 2023-07-13
EP4209580A1 (en) 2023-07-12

Similar Documents

Publication Publication Date Title
WO2012091479A9 (en) Methods for production of l-methionine and related products
WO2016190511A1 (ko) 한국 전통 누룩으로부터 분리한 제빵용 신규의 토종 천연 효모 및 토종 천연 유산균
WO2015020292A1 (en) Method for preparing imp fermented broth or glutamic acid fermented broth as raw material for preparation of natural flavor
WO2011158998A1 (ko) 비타민 k2 생성능이 높은 바실러스 아미로리퀴파시엔스 균주
WO2016190513A1 (ko) 한국 전통 누룩으로부터 분리한 제빵용 신규의 토종 천연 유산균
WO2019164348A1 (ko) 신규 l-트립토판 배출 단백질 및 이를 이용한 l-트립토판을 생산하는 방법
WO2017014532A1 (ko) 퓨트레신 또는 오르니틴 생산 미생물 및 이를 이용한 퓨트레신 또는 오르니틴 생산방법
WO2020204427A1 (ko) 신규 l-트립토판 배출 단백질 변이체 및 이를 이용한 l-트립토판을 생산하는 방법
WO2010030091A2 (ko) 생물학적 헴철 생산 방법 및 그에 의해 생산된 헴철 추출물을 포함하는 철분보충 조성물
WO2009125924A2 (ko) 퓨트레신 고생성능을 가지는 변이 미생물 및 이를 이용한 퓨트레신의 제조방법
WO2021150029A1 (ko) Nadp 의존적 글리세르알데하이드-3-포스페이트 디하이드로지나제를 포함하는 미생물을 이용하여 l-아미노산을 생산하는 방법
WO2016190512A1 (ko) 한국 전통 누룩으로부터 분리한 제빵용 신규의 토종 천연 유산균
WO2015012465A1 (en) Method for preparing natural kokumi flavor
WO2022163951A1 (ko) 신규한 단백질 변이체 및 이를 이용한 l-라이신 생산 방법
WO2017069578A1 (ko) L-이소루신 생산능을 가지는 코리네박테리움 속 미생물 및 이를 이용하여 l-이소루신을 생산하는 방법
WO2021049866A1 (ko) L-쓰레오닌 배출 단백질의 변이체 및 이를 이용한 l-쓰레오닌 생산 방법
WO2023136404A1 (ko) 이종 미생물 혼합 발효에 의한 조미소재의 제조방법
WO2021085999A1 (ko) 외래 metZ 유전자에 의해 코딩되는 단백질이 도입된 L-메티오닌 생산 미생물 및 이를 이용한 L-메티오닌 생산방법
WO2019135639A1 (ko) 신규 폴리펩타이드 및 이를 이용한 imp 생산방법
WO2020226341A1 (ko) L-아미노산을 생산하는 미생물 및 이를 이용한 l-아미노산을 생산하는 방법
WO2011159092A2 (ko) 신규 토양 미생물과 상기 토양 미생물로부터 분리된 신규한 산화환원효소, 상기 산화환원 효소를 암호화하는 유전자 및 이들을 이용한 비당체의 생산방법
WO2015199386A1 (ko) 가용성 단백질 발현량이 증대된 헬리코박터 파일로리 유래 α-1,2 푸코실 전달효소의 유전자와 단백질 및 α-1,2 푸코실올리고당 생산에의 응용
WO2018182361A1 (ko) CRISPR/Cas 시스템과 재조합 효소 및 단일가닥 올리고디옥시리보핵산을 이용한 코리네박테리움 변이균주 제조방법
EP3362573A1 (en) Bio-based n-acetyl-l-methionine and use thereof
WO2022164118A1 (ko) 프리페네이트 탈수 효소 변이체 및 이를 이용한 분지쇄 아미노산 생산 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920737

Country of ref document: EP

Kind code of ref document: A1