WO2023135914A1 - プレス成形解析方法、プレス成形解析装置及びプレス成形解析プログラム - Google Patents

プレス成形解析方法、プレス成形解析装置及びプレス成形解析プログラム Download PDF

Info

Publication number
WO2023135914A1
WO2023135914A1 PCT/JP2022/041724 JP2022041724W WO2023135914A1 WO 2023135914 A1 WO2023135914 A1 WO 2023135914A1 JP 2022041724 W JP2022041724 W JP 2022041724W WO 2023135914 A1 WO2023135914 A1 WO 2023135914A1
Authority
WO
WIPO (PCT)
Prior art keywords
shape
press
blank
amount
model
Prior art date
Application number
PCT/JP2022/041724
Other languages
English (en)
French (fr)
Inventor
剛史 小川
智史 澄川
雄司 山▲崎▼
豊久 新宮
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022021763A external-priority patent/JP7392747B2/ja
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Publication of WO2023135914A1 publication Critical patent/WO2023135914A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/22Moulding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Definitions

  • the present invention is a press forming analysis for estimating the influence of shape variation of a blank taken from a metal sheet having shape variation and press-molding the blank. ) method, press forming analysis apparatus (apparatus) and press forming analysis program.
  • the actual metal plates from which blanks are taken to obtain press-formed products are not completely flat, and have a waveform (shape variation). Therefore, the actual blank taken from the metal plate is also not necessarily flat and may have shape variations.
  • a press-formed product obtained after press-forming an automotive part using a blank obtained by punching or shearing from such a wave-shaped metal plate may deviate from the target dimensional accuracy due to the influence of their shape variations.
  • Patent Documents 1 and 2 disclose techniques for selecting press-formed products that do not meet the target dimensional accuracy.
  • Patent Document 1 or Patent Document 2 compares the shapes of press-formed products with each other, and measures the influence of the shape variation of the blank before press-forming on the press-formed product after press-forming. Not predictable. Conventionally, it has not been possible to predict the effect of blank shape variation on the shape of a press-formed product, and it is difficult to predict which portion of a press-formed product is likely to be affected by blank shape variation. No identification was made.
  • the present invention has been made to solve the above problems, and its object is to predict the influence of shape variation of a blank taken from a metal plate with shape variation when press-molding.
  • An object of the present invention is to provide a forming analysis method, a press forming analysis device, and a press forming analysis program.
  • a press forming analysis method is a method for predicting the influence of shape variation of a blank when press forming is performed using a blank taken from a metal plate with shape variation, and a predetermined shape corresponding to the shape variation
  • a first shape acquisition step of performing press forming analysis when press forming is performed with a model and acquiring the shape of the press-formed product after die release as the first shape, and a wave shape in the reference wave shape blank model
  • the reference wave-shaped blank model generated in the first blank generating step is preferably a blank model generated based on measurement results of measuring the shape of an actual blank taken from the metal plate.
  • the divergence amount acquiring step calculates a difference between a springback amount of a predetermined portion of the first shape and a springback amount of the same portion of the first shape as the predetermined portion of the second shape. It should be obtained as a quantity.
  • a press forming analysis apparatus predicts the influence of shape variation of a blank taken from a metal plate with shape variation and press forming using the blank.
  • a first blank generation unit that generates a reference waveform blank model having a waveform with a wavelength and a predetermined amplitude, and a press molding analysis when press molding is performed with a predetermined mold model using the reference waveform blank model.
  • a second shape acquisition unit that acquires the shape of the press-formed product as a second shape, compares the first shape with one or more types of the second shape, and determines the part where both shapes diverge and the amount of deviation and a deviance amount acquisition unit to be obtained.
  • the reference wave-shaped blank model generated in the first blank generation unit is preferably a blank model generated based on the measurement result of measuring the shape of the actual blank taken from the metal plate.
  • the divergence amount obtaining unit obtains, as the divergence amount, a difference between a springback amount of a predetermined portion of the first shape and a springback amount of a portion of the second shape that is the same as the predetermined portion of the first shape. good.
  • an identification unit that identifies a portion where the amount of deviation exceeds a preset threshold as a portion requiring countermeasures.
  • the press forming analysis program according to the present invention causes a computer to function as the press forming analysis device according to the present invention.
  • the portion where the shape variation of the blank has a large effect on the shape of the press-formed product after springback specifically, the difference in the shape variation (concavity and convexity) of each blank causes the press-formed product It is possible to know the part where the shape after springback is likely to deviate and the amount of deviation.
  • the portion of the blank that has a particularly large influence based on the amount of deviation and the predetermined threshold value countermeasures can be quickly taken, leading to an improvement in productivity.
  • FIG. 1 is an explanatory diagram of each step of the press forming analysis method according to Embodiment 1.
  • FIG. FIG. 2 is an external view of a component targeted in the first embodiment.
  • FIG. 3 is an explanatory diagram of a reference waveform blank model having a periodic waveform.
  • FIG. 4 is an explanatory diagram (FIG. 4(a)) of the first shape analyzed by press forming using the reference waveform blank model of FIG. 3, and the amount of shape change in FIG. is a diagram (FIG. 4(b)) shown corresponding to .
  • FIG. 5 is an explanatory diagram of a period-shifted waveform blank model having a waveform having the same amplitude as the waveform in the reference waveform blank model of FIG. 3 but having a shifted period.
  • FIG. 6 is an explanatory diagram (FIG. 6(a)) of the second shape analyzed by press forming using the period-shifted wave-shaped blank model of FIG. 5, and shows the amount of change in FIG. 6(b)).
  • FIG. 7 is a diagram showing the amount of divergence when the first shape of FIG. 4 and the second shape of FIG. 6 are compared.
  • FIG. 8 is an explanatory diagram of a press forming analysis device according to Embodiment 2.
  • FIG. FIG. 9 is an explanatory diagram of a period-shifted waveform blank model according to the example.
  • FIG. 10 is an explanatory diagram (FIG. 10(a)) of the second shape analyzed by press forming using the period-shifted wave-shaped blank model of FIG. 9, and shows the amount of change in FIG. 10(b)).
  • FIG. 11 is a diagram showing the amount of divergence when the first shape of FIG. 4 and the second shape of FIG. 10 are compared.
  • the press forming analysis method according to the present embodiment includes a first blank generation step S1, which is a generation step of a standard waveform blank model.
  • a first shape acquisition step S3 which is a shape acquisition step of press-formed part using standard waveform blank, and a period deviation waveform blank model generation step ( generation step of cycle deviation waveform blank model), and a shape acquisition step of press-formed part using cycle deviation waveform blank ) and a deviation amount acquisition step S9.
  • a first shape acquisition step S3 which is a shape acquisition step of press-formed part using standard waveform blank, and a period deviation waveform blank model generation step ( generation step of cycle deviation waveform blank model), and a shape acquisition step of press-formed part using cycle deviation waveform blank ) and a deviation amount acquisition step S9.
  • the first blank generation step S1 is a step of generating a reference wave-shaped blank model 3 (see FIG. 3(a)) having a shape corresponding to the shape variation of the metal plate, for example, the uneven wave shape. A specific shape will be described below.
  • FIG. 3(a) is a blank model having a periodic wave shape with a predetermined wavelength and a predetermined amplitude, and the shade of color in FIG. 3(a) expresses unevenness.
  • FIG. 3(b) is a state in which FIG. 3(a) is viewed from the direction of the white arrow, and FIG. 3(c) is a partially enlarged view thereof.
  • the plate thickness is 1.2 mm
  • the amplitude of the unevenness of the shape is ⁇ 1.0 mm
  • the wavelength of the unevenness is 320 mm.
  • FIG. 3(e) emphasizes the uneven portions of the shape of FIG. 3(a).
  • the starting and ending positions of the unevenness set in the blank need not be the blank edge.
  • the reference waveform blank model 3 generated in the first blank generation step S1 is a three-dimensional shape measuring instrument ( 3D shape measuring instrument), etc., and may be generated based on the measurement results (for example, using representative wavelengths and amplitudes for setting).
  • First shape acquisition step> In the first shape acquisition step S3, using the reference wave blank model 3, press-molding analysis is performed when press-molding is performed with a predetermined mold model, and the shape of the press-molded product after mold release is acquired as the first shape. is a step.
  • CAE analysis such as finite element method (FEM) is usually performed.
  • FEM finite element method
  • Forming by CAE analysis may be either form forming or draw forming, but in the present embodiment, the case of form forming will be described as an example.
  • "Press molding analysis” in this description includes both analysis for obtaining the shape of the bottom dead center of molding and analysis for obtaining the shape after releasing from the mold, that is, after springback.
  • Fig. 4(a) shows the first shape 5, which is the shape after release from the press forming analysis using the reference wave blank model 3.
  • the amount of change from the bottom dead center of molding is indicated by color densities.
  • the amount of change is the value obtained by subtracting the height of the part corresponding to the shape of the bottom dead point of the forming from the height of each part of the shape of the press-formed product after releasing the mold after press forming and springing back in the press forming direction. , which corresponds to the amount of springback in the press forming direction.
  • the molding will be bottom dead center.
  • the shape is concave.
  • the color of the portion that is concave from the bottom dead center of the molding is lightened, and the color of the portion that is convex is darker.
  • + indicates the amount of change in the convex direction
  • - indicates the amount of change in the concave direction
  • the unit is mm.
  • the amount of change at the left end of the first shape 5 is 4.5 mm
  • the bottom portion is 2.6 mm
  • the center portion in the longitudinal direction is 2.3 mm.
  • mm and the right end was -2.5 mm.
  • the second blank generation step S5 generates a period-shifted waveform blank model 7 (see FIG. 5A) having a waveform having the same wavelength and amplitude as the waveform in the reference waveform blank model 3 but having a shifted period. is a step. A specific shape will be described below.
  • FIG. 5(a) is a blank model having a periodic wave shape with a predetermined wavelength and a predetermined amplitude, and the shading in FIG. 5(a) expresses unevenness.
  • FIG. 5(b) is a state in which FIG. 5(a) is viewed from the direction of the white arrow, and FIG. 5(c) is a partially enlarged view thereof.
  • the example shown in FIG. 5 has a plate thickness of 1.2 mm, and the amplitude and wavelength of the unevenness are the same as those of the reference wave shaped blank model 3 of FIG. It is shifted to the right side of the paper by the wavelength (see FIGS. 5(d) and 5(e)).
  • FIG. 6(a) shows the amount of change in the left end of the second shape 9 in correspondence with the blank shape.
  • the divergence amount acquisition step S9 is a step of comparing the first shape 5 and the second shape 9 and obtaining a divergence portion and the divergence amount between the two shapes.
  • the shape of the press-formed product at the bottom dead center of the forming is used as a reference shape, and the amount of change (springback amount) from the reference shape at each part of the press-formed product obtained by CAE analysis is obtained. Then, the amount of change when the blank was changed was compared, and the difference in the amount of change due to the change of the blank was obtained as the amount of divergence. That is, the divergence amount obtained in the divergence amount acquisition step S9 is the amount of change in the second shape 9 using the period-shifted waveform blank model 7 ( FIG. 6 ), the first shape 5 using the reference waveform blank model 3 is the value obtained by subtracting the amount of change in (Fig. 4).
  • the relevant portion of the second shape 9 has a convex shape compared to the first shape 5, and the difference in the amount of change (amount of divergence) is -( minus), the relevant portion of the second shape 9 is recessed compared to the first shape 5 .
  • FIG. 7( a ) and FIG. 7( b ) show the correspondence between the amount of divergence obtained as described above and the corrugated shape of the unevenness of the period-shifted corrugated blank model 7 .
  • Max in the figure indicates the maximum value of the convex shape
  • Min indicates the maximum value (minimum numerical value) of the concave shape.
  • the deviation amount of the left end of the first shape 5 and the second shape 9 is -0.7 mm
  • the bottom is -0.9 mm
  • the longitudinal center is -0.5 mm
  • the right end was 3.0 mm. Therefore, it was found that even with blanks having corrugations of the same wavelength and amplitude, if there is a variation in which the period is shifted by 1/4 wavelength, the shape of the right end of the press-molded product is particularly affected.
  • the first shape 5 and the second shape 9 for which the amount of deviation is obtained are developed into a blank by reverse forming analysis (analysis of reverse press-forming), and the reference waveform blank model 3 and the periodic deviation wave that affect the amount of deviation are obtained.
  • a portion of the shape blank model 7 may be specified.
  • a difference occurs in the portion where the shape variation in the blank has a large effect on the shape of the press-formed product after springback, specifically, in the shape variation (the portion exhibiting unevenness) of each blank.
  • a step to identify portions requiring countermeasures is provided to determine the quality of the press-formed product based on the amount of deviation and a predetermined threshold value, thereby predicting the quality of the blank. good too.
  • period-shifted waveform blank model Although only one type of period-shifted waveform blank model was generated in the above, multiple types of period-shifted waveform blank models may be generated. In that case, the wavy shapes of the off-cycle wavy blank models are shifted from each other (the wavelength and amplitude are common to the off-cycle wavy blank models and all the off-cycle wavy blank models). By increasing the number of blank model patterns assuming shape-variable blanks, it is possible to perform an analysis that more specifically considers the difference in shape variation of actual blanks.
  • the difference in the amount of change (springback amount) from the forming bottom dead center in the press forming direction was used as the amount of divergence. It is not limited to this.
  • the difference obtained by directly subtracting the height may be used as the divergence amount.
  • the amount of deviation may vary depending on how the fixed point is selected.
  • Embodiment 2 The press forming analysis method described in Embodiment 1 can be realized by causing a computer to execute a preset program.
  • a press forming analysis device which is an example of such a device, will be described in the present embodiment.
  • the press forming analysis apparatus 11 is configured by a computer such as a PC (personal computer), and includes a display device 13, an input device 15, and a storage device. (memory storage) 17, a working data memory (working data memory) 19, and an arithmetic processing unit (arithmetic processing device) 21.
  • the display device 13, the input device 15, the storage device 17, and the work data memory 19 are connected to the arithmetic processing section 21, and their respective functions are executed by commands from the arithmetic processing section 21.
  • FIG. Hereinafter, each configuration of the press-forming analysis apparatus according to the present embodiment will be described with the press-formed product 1 shown in FIG. 2 as the object of analysis.
  • the display device 13 is used for displaying analysis results, etc., and is composed of a liquid crystal monitor (LCD monitor) or the like.
  • the input device 15 is used for displaying instructions for blanks, press-molded products, etc., for inputting conditions by an operator, etc., and is composed of a keyboard, a mouse, and the like.
  • the storage device 17 is used to store various files such as the shape file 33 of blanks and press-molded products, and is composed of a hard disk or the like.
  • the working data memory 19 is used for temporary storage of data used by the arithmetic processing unit 21 and for arithmetic operations, and is composed of a RAM (Random Access Memory) or the like.
  • the arithmetic processing unit 21 includes a first blank generation unit 23 which is a generation unit of standard waveform blank model, and a reference waveform blank press
  • a first shape acquisition unit 25 which is a shape acquisition unit of press-formed part using standard waveform blank
  • a generation unit of cycle deviation waveform
  • a second blank generation unit 27 that is a blank model
  • a second shape that is a shape acquisition unit of press-formed part using cycle deviation waveform blank
  • It has an acquisition unit (2nd shape acquisition unit) 29 and a deviation amount acquisition unit (deviation amount acquisition unit) 31, and is configured by a CPU (central processing unit).
  • identification unit may further include a countermeasure-required site identification unit (hereinafter abbreviated as identification unit).
  • identification unit functions when the CPU executes a predetermined program. Functions of the above-described units in the arithmetic processing unit 21 will be described below.
  • the first blank generation unit 23 executes the first blank generation step S1 described in the first embodiment.
  • the first shape acquisition unit 25 performs the first shape acquisition step S3
  • the second blank generation unit 27 performs the second blank generation step S5
  • the second shape acquisition unit 29 performs the second shape acquisition step S7
  • the obtaining unit 31 executes the divergence amount obtaining step S9
  • the specifying unit performs the specifying step.
  • the portion where the shape variation in the blank greatly affects the shape of the press-formed product, specifically, the shape of each blank It is possible to know the part where the shape of the press-formed product after springback tends to deviate and the amount of deviation due to the difference in variation. Also, the quality of the press-formed product can be determined based on the amount of deviation and the predetermined threshold value, and the quality of the blank can be predicted based on this.
  • an identification unit that identifies a portion where the amount of deviation exceeds a preset threshold as a portion that requires countermeasures, if it is predicted that the impact of blank shape fluctuations will be large, countermeasures by the shape of the mold or molding It is possible to specify the parts to take countermeasures by changing the product shape.
  • the press-forming analysis program comprises a computer including the first blank generation unit 23, the first shape acquisition unit 25, the second blank generation unit 27, the second shape acquisition unit 29, the divergence amount acquisition unit 31, and the It can be specified that it functions as a specifying part.
  • the press forming analysis method explained in Fig. 1 was implemented.
  • the press molding by CAE analysis in this example was foam molding as in the above embodiment.
  • a blank model of a 1.5 GPa grade steel plate with a thickness of 1.2 mm was used.
  • the first blank generation step S1 and the first shape acquisition step S3 were performed in the same manner as in the first embodiment. Therefore, since the reference wave-shaped blank model 3 and the first shape 5 are the same as those in FIGS. 3 and 4, the description thereof will be omitted, and the second blank generation step S5 and subsequent steps will be described below with reference to FIGS. 9 to 11.
  • FIG. Numerical values, gradation, convexity, depression, Max, and Min shown in FIGS. 9 to 11 are synonymous with those shown in the first embodiment.
  • FIG. 9(a) shows the period-shifted waveform blank model 35 generated in the second blank generation step S5 of this embodiment
  • FIG. 9(b) shows the state of FIG. is.
  • FIG. 9(c) is a partially enlarged view of FIG. 9(b).
  • the plate thickness, amplitude and wavelength of the corrugated shape (unevenness) are the same as those of the reference corrugated blank model 3 of FIG. They are shifted by two wavelengths (see FIGS. 9(d) and 9(e)).
  • FIG. 10(a) shows the second shape 37 obtained by performing the second shape obtaining step S7 using the period-shifted waveform blank model 35 of FIG.
  • the variation of the second shape 37 was -2.1 mm at the left end, 1.9 mm at the bottom, 1.6 mm at the center in the longitudinal direction, and 2.8 mm at the right end.
  • FIG. 10(b) shows the amount of change in each part in correspondence with the blank shape.
  • the deviation amount acquisition step S9 the deviation amount when the first shape 5 and the second shape 37 are compared with the uneven shape of the period-shifted wave shape blank model 35 are associated with each other, and are shown in FIGS. ).
  • the deviation amount of the left end of the first shape 5 and the second shape 37 is -6.6 mm
  • the bottom is -0.7 mm
  • the longitudinal center is -0.7 mm
  • the right end is -0.7 mm. was 5.3 mm.
  • the amount of divergence between the left end and right end of the press-formed product was large. Therefore, it was found that even if the blank has a corrugated shape with the same wavelength and amplitude, if there is a variation in which the period is shifted by 1/2 wavelength, it particularly affects the shape of the left end and right end of the press-molded product. . Therefore, by taking countermeasures such as correcting the mold corresponding to the part concerned, it is possible to stably manufacture a press-formed product with a good shape.
  • the present invention it is possible to predict the influence of the shape variation of the blank on the dimensional accuracy of the press-formed product when press-molding the blank taken from the metal plate with the shape variation, and to quickly improve the dimensional accuracy. It is possible to improve the productivity of press-formed products by taking measures to prevent

Abstract

本発明に係るプレス成形解析方法は、基準波形状ブランクモデル3を生成する第一ブランク生成ステップS1と、基準波形状ブランクプレス成形品形状である第一形状5を取得する第一形状取得ステップS3と、周期ずれ波形状ブランクモデル7を生成する第二ブランク生成ステップS5と、周期ずれ波形状ブランクプレス成形品形状である第二形状9を取得する第二形状取得ステップS7と、第一形状5と第二形状9を比較し、両形状の乖離する部位と、乖離量とを求める乖離量取得ステップS9と、を含む。

Description

プレス成形解析方法、プレス成形解析装置及びプレス成形解析プログラム
 本発明は、形状変動(shape variation)のある金属板(metal sheet)から採取したブランク(blank)を用いてプレス成形した際の前記ブランクの形状変動の影響を予測するプレス成形解析(press forming analysis)方法、プレス成形解析装置(apparatus)及びプレス成形解析プログラムに関する。
 自動車の衝突安全性(collision safety)基準の厳格化により自動車車体(automotive body)の衝突安全性の向上が進展する中で、昨今の二酸化炭素排出規制を受けて自動車の燃費向上(improvement of fuel efficiency)を図るため、車体の軽量化(weight reduction of automotive body)も必要とされている。これら衝突安全性能と車体の軽量化を両立するために、従来よりさらに高強度(high-strength)な金属板が車体に採用されつつある。
 従来から、プレス成形品を得るためのブランクを採取する実際の金属板は、完全に平坦なものはなく、波形状(waveform)(形状変動)を有している。したがって、金属板から採取した実際のブランクもまた、必ずしも平坦であるとは限らず、形状変動を有する場合がある。
 このような波打ち形状(waveform)の金属板から打ち抜き(punching)やせん断(shearing)によって採取したブランクを用いて、車体部品(automotive part)にプレス成形した場合、プレス成形後に得られたプレス成形品(press-formed part)は、その形状変動が影響して、目標となる寸法精度(dimensional accuracy)から外れることが危惧される。
 目標となる寸法精度から外れたプレス成形品を選別する技術として、例えば特許文献1、2が開示されている。
特開昭62-047504号公報 特開2019-002834号公報
 特許文献1または特許文献2に開示の技術は、プレス成形後の成形品同士の形状を比較するものであって、プレス成形前のブランクの形状変動によるプレス成形後のプレス成形品への影響を予測できるものではない。従来は、ブランクの形状変動によるプレス成形品の形状への影響を予測することは行われておらず、また、プレス成形品のどの部位(portion)がブランクの形状変動の影響を受けやすいかを特定することも行われていなかった。
 さらに、ブランクは一つの金属板から複数採取されるので、同じ金属板から採取したブランクであっても、採取した位置の違いによって、個々のブランクで凹凸(unevenness)を呈する部位が変動する。ブランクの形状変動(凹凸)に差異があれば、プレス成形後のプレス成形品の形状にも差異が生じる。したがって、ブランクの形状変動によるプレス成形品への影響を予測するにあたっては、個々のブランクの形状変動に差異があることも考慮する必要がある。
 本発明は、以上の問題を解決すべくなされたものであり、その目的は、形状変動のある金属板から採取したブランクを用いてプレス成形した際の前記ブランクの形状変動の影響を予測するプレス成形解析方法、プレス成形解析装置及びプレス成形解析プログラムを提供することにある。
 本発明に係るプレス成形解析方法は、形状変動のある金属板から採取したブランクを用いてプレス成形した際の前記ブランクの形状変動の影響を予測する方法であって、前記形状変動に対応した所定の波長(wavelength)と所定の振幅(amplitude)の波形状を有する基準波形状ブランクモデルを生成する第一ブランク生成ステップと、前記基準波形状ブランクモデルを用いて、所定の金型(tool of press forming)モデルでプレス成形したときのプレス成形解析を行い、離型(die release)後のプレス成形品形状を第一形状として取得する第一形状取得ステップと、前記基準波形状ブランクモデルにおける波形状と振幅が同じで周期(cycle)がずれた波形状を有する周期ずれ波形状ブランクモデルを一種類又は複数種類生成する第二ブランク生成ステップと、前記周期ずれ波形状ブランクモデルを用いて、前記所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を第二形状として取得する第二形状取得ステップと、前記第一形状と一種類又は複数種類の前記第二形状を比較し、両形状の乖離する部位と、乖離量(deviation amount of shape change)とを求める乖離量取得ステップ(deviation amount acquisition step)と、を含む。
 前記第一ブランク生成ステップにおいて生成する基準波形状ブランクモデルは、前記金属板から採取した実ブランク(actual blank)の形状を測定した測定結果に基づいて生成したブランクモデルであるとよい。
 前記乖離量取得ステップは、前記第一形状における所定部位のスプリングバック(springback amount)量と、前記第二形状における前記第一形状の前記所定部位と同一部位のスプリングバック量との差を前記乖離量として取得するとよい。
 前記乖離量が予め設定した閾値(threshold)を超えた部位を、要対策部位(portion requiring countermeasures)として特定する特定ステップをさらに含むとよい。
 本発明に係るプレス成形解析装置は、形状変動のある金属板から採取したブランクを用いてプレス成形した際の前記ブランクの形状変動の影響を予測するものであって、前記形状変動に対応した所定の波長と所定の振幅の波形状を有する基準波形状ブランクモデルを生成する第一ブランク生成部と、前記基準波形状ブランクモデルを用いて、所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を第一形状として取得する第一形状取得部と、前記基準波形状ブランクモデルにおける波形状と振幅が同じで周期がずれた波形状を有する周期ずれ波形状ブランクモデルを一種類又は複数種類生成する第二ブランク生成部と、前記周期ずれ波形状ブランクモデルを用いて、前記所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を第二形状として取得する第二形状取得部と、前記第一形状と一種類又は複数種類の前記第二形状を比較し、両形状の乖離する部位と、乖離量とを求める乖離量取得部と、を備える。
 前記第一ブランク生成部において生成する基準波形状ブランクモデルは、前記金属板から採取した実ブランクの形状を測定した測定結果に基づいて生成したブランクモデルであるとよい。
 前記乖離量取得部は、前記第一形状における所定部位のスプリングバック量と、前記第二形状における前記第一形状の前記所定部位と同一部位のスプリングバック量との差を前記乖離量として取得するとよい。
 前記乖離量が予め設定した閾値を超えた部位を、要対策部位として特定する特定部をさらに備えるとよい。
 本発明に係るプレス成形解析プログラムは、コンピュータを本発明に係るプレス成形解析装置として機能させる。
 本発明によれば、ブランクの形状変動がプレス成形品のスプリングバック後の形状に与える影響の大きい部位、具体的には、個々のブランクの形状変動(凹凸)に差異が生ずることでプレス成形品のスプリングバック後の形状が乖離しやすい部位とその乖離量を知ることができる。また、乖離量と予め定めた閾値とに基づいて影響が特に大きいブランクの部位を特定することで、早急にその対策も採れるようになり、生産性の向上にもつながる。
図1は、実施の形態1に係るプレス成形解析方法の各ステップの説明図である。 図2は、実施の形態1で対象とした部品の外観図である。 図3は、周期的な波形状を有する基準波形状ブランクモデルの説明図である。 図4は、図3の基準波形状ブランクモデルを用いてプレス成形解析した第一形状の説明図(図4(a))及び図4(a)の変化量(amount of shape change)をブランク形状に対応させて示した図(図4(b))である。 図5は、図3の基準波形状ブランクモデルにおける波形状と振幅が同じで周期がずれた波形状を有する周期ずれ波形状ブランクモデルの説明図である。 図6は、図5の周期ずれ波形状ブランクモデルを用いてプレス成形解析した第二形状の説明図(図6(a))及び図6(a)の変化量をブランク形状に対応させて示した図(図6(b))である。 図7は、図4の第一形状と図6の第二形状とを比較したときの乖離量を示す図である。 図8は、実施の形態2に係るプレス成形解析装置の説明図である。 図9は、実施例に係る周期ずれ波形状ブランクモデルの説明図である。 図10は、図9の周期ずれ波形状ブランクモデルを用いてプレス成形解析した第二形状の説明図(図10(a))及び図10(a)の変化量をブランク形状に対応させて示した図(図10(b))である。 図11は、図4の第一形状と図10の第二形状とを比較したときの乖離量を示す図である。
[実施の形態1]
 本実施の形態に係るプレス成形解析方法は、形状変動(凹凸の波形状)のある金属板から採取したブランクを用いてプレス成形(フォーム成形(crash forming)やドロー成形(deep drawing)等)した際のブランクの形状変動の影響を予測する方法である。図1に示すように、本実施の形態に係るプレス成形解析方法は、基準波形状ブランクモデル生成ステップ(generation step of standard waveform blank model)である第一ブランク生成ステップ(1st blank generation step)S1と、基準波形状ブランクプレス成形品形状取得ステップ(shape acquisition step of press-formed part using standard waveform blank)である第一形状取得ステップ(1st shape acquisition step)S3と、周期ずれ波形状ブランクモデル生成ステップ(generation step of cycle deviation waveform blank model)である第二ブランク生成ステップ(2nd blank generation step)S5と、周期ずれ波形状ブランクプレス成形品形状取得ステップ(shape acquisition step of press-formed part using cycle deviation waveform blank)である第二形状取得ステップ(2nd shape acquisition step)S7と、乖離量取得ステップ(deviation amount acquisition step)S9と、を含む。図2に示すプレス成形品1を目標形状としてプレス成形する場合を例に挙げて、以下、各構成を詳細に説明する。本実施形態では板厚(sheet thickness)1.2mmの1.5GPa級鋼板(GPa-class steel sheet)のブランクモデルを用いたが、これにこだわるものではない。
<第一ブランク生成ステップ>
 第一ブランク生成ステップS1は、金属板の形状変動、例えば凹凸の波形状に対応した形状の基準波形状ブランクモデル3(図3(a)参照)を生成するステップである。具体的な形状を以下に説明する。
 図3(a)に示す例は、所定の波長と所定の振幅を有する周期的な波形状を有するブランクモデルであり、図3(a)における濃淡(shade of color)が凹凸を表現している。図3(a)を白抜き矢印の方向から見た状態が図3(b)であり、その一部拡大図が図3(c)である。図3に示す例は、板厚1.2mmで、形状の凹凸の振幅が±1.0mm、凹凸の波長(図3(d)参照)が320mmである。図3(e)に図3(a)の形状の凹凸部位を強調して示した。また、ブランクに設定する凹凸の開始位置や終了位置はブランクの端(blank edge)である必要はない。
 第一ブランク生成ステップS1において生成する基準波形状ブランクモデル3は、形状変動のある金属板の所定位置から採取した実ブランクの形状を、例えばレーザ距離計(laser rangefinder)による3次元形状測定器(3D shape measuring instrument)などによって測定し、測定結果に基づいて(例えば代表的な波長と振幅を設定に用いるなどして)生成するようにしてもよい。
<第一形状取得ステップ>
 第一形状取得ステップS3は、基準波形状ブランクモデル3を用いて、所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を第一形状として取得するステップである。
 プレス成形解析は、通常、有限要素法(finite element method)(FEM)などのCAE解析が行われる。CAE解析による成形はフォーム成形でもドロー成形でもよいが、本実施の形態ではフォーム成形の場合を例に挙げて説明する。本説明の「プレス成形解析」とは、成形下死点(bottom dead center)の形状を取得する解析と、離型後、即ちスプリングバックした後の形状を取得する解析の双方を含むものとする。
 基準波形状ブランクモデル3を用いたプレス成形解析における離型後の形状である第一形状5を図4(a)に示す。図4(a)では、形状に加えて成形下死点からの変化量を色の濃淡で示している。変化量とは、プレス成形方向において、プレス成形後に離型しスプリングバックした後のプレス成形品形状の各部位の高さから、成形下死点の形状の対応する部位の高さを差し引いた値であり、プレス成形方向のスプリングバック量に相当する。高さの差(変化量)が+(プラス)の場合は成形下死点形状より凸状(convex shape)となり、高さの差(変化量)が-(マイナス)の場合は成形下死点形状より凹み状となる。図4(a)においては、成形下死点よりも凹み状(concave shape)になる部位の色を薄くし、凸状になる部位の色を濃くしている。また、図中に表示した数字は、+が凸方向への変化量、-が凹方向への変化量で、単位はmmである。
 本例においては、図4(a)に示すように、第一形状5の左端部の変化量は4.5mmであり、底部(bottom portion)は2.6mm、長手方向中央部(center portion)は2.3mm、右端部は-2.5mmであった。プレス成形前のブランク形状とスプリングバック後の変化量との対応関係を示すため、図4(b)に、各部位の変化量をブランク形状に対応させて示す。
<第二ブランク生成ステップ>
 第二ブランク生成ステップS5は、基準波形状ブランクモデル3における波形状と波長及び振幅が同じで周期がずれた波形状を有する周期ずれ波形状ブランクモデル7(図5(a)参照)を生成するステップである。具体的な形状を以下に説明する。
 図5(a)に示す例は、所定の波長と所定の振幅を有する周期的な波形状を有するブランクモデルであり、図5(a)における濃淡が凹凸を表現している。図5(a)を白抜き矢印の方向から見た状態が図5(b)であり、その一部拡大図が図5(c)である。図5に示す例は、板厚1.2mmで、凹凸の振幅と波長が図3の基準波形状ブランクモデル3と同じであるが、波形状の周期が基準波形状ブランクモデル3よりも1/4波長分紙面右側にずれている(図5(d)、図5(e)参照)。
<第二形状取得ステップ>
 第二形状取得ステップS7は、周期ずれ波形状ブランクモデル7を用いて、所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を第二形状として取得するステップである。第二形状9を図6(a)に示す。図6(a)に示す、色や数値は図4(a)と同義である。
 本例においては、図6(a)に示すように、第二形状9の左端部の変化量は3.8mmであり、底部は1.7mm、長手方向中央部は1.8mm、右端部は0.5mmであった。図6(b)に、各部位の変化量をブランク形状に対応させて示す。
<乖離量取得ステップ>
 乖離量取得ステップS9は、第一形状5と第二形状9を比較し、両形状の乖離する部位と、乖離量とを求めるステップである。
 本実施の形態では、成形下死点におけるプレス成形品の形状を基準形状(reference shape)として、CAE解析により求めたプレス成形品の各部位における基準形状からの変化量(スプリングバック量)を求めて、ブランクを変更した場合の変化量を比較し、ブランクの変更による変化量の差を乖離量として求めた。すなわち、乖離量取得ステップS9で求める乖離量とは、周期ずれ波形状ブランクモデル7を用いた第二形状9の変化量(図6)から、基準波形状ブランクモデル3を用いた第一形状5の変化量(図4)を差し引いた値となる。したがって、変化量の差(乖離量)が+(プラス)の場合は、第二形状9の当該部位は、第一形状5に比べて凸形状となり、変化量の差(乖離量)が-(マイナス)の場合は、第二形状9の当該部位は、第一形状5に比べて凹み形状となる。
 上記のように求めた乖離量と、周期ずれ波形状ブランクモデル7の凹凸の波形状を対応させて、図7(a)、図7(b)に示す。図中のMaxは凸形状の最大値であることを示し、Minは凹み形状の最大値(数値では最小)であることを示している。図7(a)に示されるように、第一形状5と第二形状9の左端部の乖離量は-0.7mmであり、底部は-0.9mm、長手方向中央部は-0.5mm、右端部は3.0mmであった。したがって、同じ波長と振幅の波形状を有するブランクであっても、周期が1/4波長分ずれる変動があると、プレス成形品の右端部の形状に特に影響を与えることが分かった。
 乖離量を求めた第一形状5及び第二形状9について、逆成形解析(analysis of revere press-forming)によりブランクに展開して、前記乖離量に影響する基準波形状ブランクモデル3及び周期ずれ波形状ブランクモデル7の部位を特定してもよい。
 本実施の形態によれば、ブランクにおける形状変動がプレス成形品のスプリングバック後の形状に与える影響の大きい部位、具体的には、個々のブランクの形状変動(凹凸を呈する部位)に差異が生ずることでプレス成形品のスプリングバック後の形状が乖離しやすい部位とその乖離量を知ることができる。また、要対策部位ステップ(step to identify portions requiring countermeasures)(特定ステップ)を設けて乖離量と予め定めた閾値とに基づいてプレス成形品の良否を判定し、これによってブランクの良否を予測してもよい。例えば、複数のプレス成形品を重ね合わせて接合(joining)して車体のメンバー類(members)に組み立てる際など、特にフランジ部分(flange portion)の乖離量が大きいとプレス成形品同士の接合が困難になる。そこで、乖離量に所定の閾値を設けておき、乖離量が閾値を超える部位を要対策部位として特定することで、金型の形状等による対策を講じることができるようになり、プレス成形品の生産性(productivity)の向上にもつながる。例えば、図7において、乖離量の閾値を±1.0mmとすると、プレス成形品形状の右端部がブランクの形状の変動の影響を受けやすい部位であると特定できるので、該当部分の金型の一部を修正するなどの対策をとることができる。
 上記は周期ずれ波形状ブランクモデルを一種類だけ生成したものであったが、周期ずれ波形状ブランクモデルを複数種類生成してもよい。その場合、周期ずれ波形状ブランクモデルの波形状は、互いに周期がずれるようにする(波長及び振幅は波形状ブランクモデル及びすべての周期ずれ波形状ブランクモデルで共通とする)。形状変動ブランクを想定したブランクモデルのパターンを増やすことで、実際のブランクの形状変動の差異をより具体的に考慮した解析が可能となる。
 また、上記の説明では、第一形状5と第二形状9を比較するにあたり、プレス成形方向における成形下死点からの変化量(スプリングバック量)の差を乖離量としたが、本発明はこれに限らない。例えば、プレス成形方向において、基準波形状ブランクモデル3を用いた場合の離型後(スプリングバック後)のプレス成形品形状の各部位の高さから、周期ずれ波形状ブランクモデル7を用いた場合の離型後(スプリングバック後)のプレス成形品形状の各部位の高さについて、直接差し引いた差を乖離量としてもよい。もっとも、この場合は、二つのプレス成形品形状に共通する固定点(fixed point)を設定する必要があり、固定点の選び方によって、乖離量が変動する場合がある。この点、本実施の形態のように、成形下死点形状との変化量同士を比較するようにすれば、安定した基準に基づいて乖離量を求めることができて好ましい。
[実施の形態2]
 実施の形態1で説明したプレス成形解析方法は、予め設定されたプログラムをコンピュータに実行させることで実現できる。そのような装置の一例であるプレス成形解析装置を本実施の形態で説明する。本実施の形態に係るプレス成形解析装置11は、図8に示すように、PC(パーソナルコンピュータ)等のコンピュータによって構成され、表示装置(display device)13、入力装置(input device)15、記憶装置(memory storage)17、作業用データメモリ(working data memory)19及び演算処理部(arithmetic processing device)21を有している。そして、表示装置13、入力装置15、記憶装置17及び作業用データメモリ19は、演算処理部21に接続され、演算処理部21からの指令によってそれぞれの機能が実行される。以下、図2に示すプレス成形品1を解析対象とし、本実施の形態に係るプレス成形解析装置の各構成について説明する。
≪表示装置≫
 表示装置13は、解析結果の表示等に用いられ、液晶モニター(LCD monitor)等で構成される。
≪入力装置≫
 入力装置15は、ブランクやプレス成形品等の表示指示や操作者の条件入力等に用いられ、キーボードやマウス等で構成される。
≪記憶装置≫
 記憶装置17は、ブランク及びプレス成形品の形状ファイル33等の各種ファイルの記憶等に用いられ、ハードディスク等で構成される。
≪作業用データメモリ≫
 作業用データメモリ19は、演算処理部21で使用するデータの一時保存や演算に用いられ、RAM(Random Access Memory)等で構成される。
≪演算処理部≫
 演算処理部21は、図8に示すように、基準波形状ブランクモデル生成部(generation unit of standard waveform blank model)である第一ブランク生成部(1st blank generation unit)23と、基準波形状ブランクプレス成形品形状取得部(shape acquisition unit of press-formed part using standard waveform blank)である第一形状取得部(1st shape acquisition unit)25と、周期ずれ波形状ブランクモデル生成部(generation unit of cycle deviation waveform blank model)である第二ブランク生成部(2nd blank generation unit)27と、周期ずれ波形状ブランクプレス成形品形状取得部(shape acquisition unit of press-formed part using cycle deviation waveform blank)である第二形状取得部(2nd shape acquisition unit)29と、乖離量取得部(deviation amount acquisition unit)31と、を有し、CPU(中央演算処理装置(central processing unit))によって構成される。また、要対策部位特定部(以下、特定部と略記)をさらに有してもよい。これらの各部は、CPUが所定のプログラムを実行することによって機能する。演算処理部21における上記の各部の機能を以下に説明する。
 第一ブランク生成部23は、実施の形態1において説明した第一ブランク生成ステップS1を実行するものである。同様に、第一形状取得部25は第一形状取得ステップS3を、第二ブランク生成部27は第二ブランク生成ステップS5を、第二形状取得部29は第二形状取得ステップS7を、乖離量取得部31は乖離量取得ステップS9を、特定部は特定ステップを、それぞれ実行する。
 本実施の形態に係るプレス成形解析装置11によれば、実施の形態1と同様に、ブランクにおける形状変動がプレス成形品の形状に与える影響の大きい部位、具体的には、個々のブランクにおける形状変動に差異が生ずることでプレス成形品のスプリングバック後の形状が乖離しやすい部位とその乖離量を知ることができる。また、乖離量と予め定めた閾値とに基づいてプレス成形品の良否を判定し、これによってブランクの良否を予測できる。さらに、乖離量が予め設定した閾値を超えた部位を、要対策部位として特定する特定部を備えることで、ブランクの形状変動の影響が大きいと予測される場合に金型の形状による対策や成形品形状の変更による対策を講じる部位を特定できる。
 上述したように、本実施の形態のプレス成形解析装置11における第一ブランク生成部23、第一形状取得部25、第二ブランク生成部27、第二形状取得部29及び乖離量取得部31、さらに特定部は、CPUが所定のプログラムを実行することで実現されるものである。したがって、本発明に係るプレス成形解析プログラムは、コンピュータを、第一ブランク生成部23、第一形状取得部25、第二ブランク生成部27、第二形状取得部29及び乖離量取得部31、さらに特定部として機能させるもの、と特定することができる。
 本発明の効果を確認するために、図1で説明したプレス成形解析方法を実施した。本実施例におけるCAE解析によるプレス成形は、上記実施の形態と同様にフォーム成形とした。本実施例では板厚1.2mmの1.5GPa級鋼板のブランクモデルを用いた。また、本実施例では、第一ブランク生成ステップS1及び第一形状取得ステップS3を実施の形態1と同様に実施した。したがって、基準波形状ブランクモデル3及び第一形状5は図3、図4と同様であるので説明を省略し、第二ブランク生成ステップS5以降について以下、図9~図11を用いて説明する。図9~図11において示している数値、濃淡、凸状、凹み状、Max、Minは上記の実施の形態1で示したものと同義である。
 図9(a)は本実施例の第二ブランク生成ステップS5で生成した周期ずれ波形状ブランクモデル35であり、図9(a)を白抜き矢印の方向から見た状態が図9(b)である。また、図9(b)の一部拡大図が図9(c)である。図9に示す例は、板厚、波形状(凹凸)の振幅と波長が図3の基準波形状ブランクモデル3と同じであるが、波形状の周期が基準波形状ブランクモデル3よりも1/2波長分ずれている(図9(d)、図9(e)参照)。
 図9の周期ずれ波形状ブランクモデル35を用いて第二形状取得ステップS7を行って取得した第二形状37を図10(a)に示す。図10(a)に示すように、第二形状37の左端部の変化量は-2.1mmであり、底部は1.9mm、長手方向中央部は1.6mm、右端部は2.8mmであった。図10(b)に、各部位の変化量をブランク形状に対応させて示す。
 乖離量取得ステップS9において、第一形状5と第二形状37とを比較したときの乖離量と、周期ずれ波形状ブランクモデル35の凹凸形状を対応させて図11(a)、図11(b)に示す。図11(a)に示されるように、第一形状5と第二形状37の左端部の乖離量は-6.6mmであり、底部は-0.7mm、長手方向中央部は-0.7mm、右端部は5.3mmであった。
 本例ではプレス成形品の左端部と右端部の乖離量が大きくなった。したがって、同じ波長と振幅の波形状を有するブランクであっても、周期が1/2波長分ずれる変動があると、プレス成形品の左端部と右端部の形状に特に影響を与えることが分かった。そこで、当該部位に対応する金型を修正するなどの対策を講じ、安定して良好な形状のプレス成形品が製造できる。
 本発明によれば、形状変動のある金属板から採取したブランクを用いてプレス成形した際の前記プレス成形品の寸法精度に及ぼすブランクの形状変動の影響を予測できて、早急に寸法精度を向上させる対策がとれて、プレス成形品の生産性を向上できる。
 1 プレス成形品(目標形状)
 3 基準波形状ブランクモデル
 5 基準波形状ブランクプレス成形品形状(第一形状)
 7 周期ずれ波形状ブランクモデル
 9 周期ずれ波形状ブランクプレス成形品形状(第二形状)
 11 プレス成形解析装置
 13 表示装置
 15 入力装置
 17 記憶装置
 19 作業用データメモリ
 21 演算処理部
 23 基準波形状ブランクモデル生成部(第一ブランク生成部)
 25 基準波形状ブランクプレス成形品形状取得部(第一形状取得部)
 27 周期ずれ波形状ブランクモデル生成部(第二ブランク生成部)
 29 周期ずれ波形状ブランクプレス成形品形状取得部(第二形状取得部)
 31 乖離量取得部
 33 ブランク及びプレス成形品の形状ファイル
 35 周期ずれ波形状ブランクモデル(実施例)
 37 周期ずれ波形状ブランクプレス成形品形状(実施例)

Claims (9)

  1.  形状変動のある金属板から採取したブランクを用いてプレス成形した際の前記ブランクの形状変動の影響を予測するプレス成形解析方法であって、
     前記形状変動に対応した所定の波長と所定の振幅の波形状を有する基準波形状ブランクモデルを生成する第一ブランク生成ステップと、
     前記基準波形状ブランクモデルを用いて、所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を第一形状として取得する第一形状取得ステップと、
     前記基準波形状ブランクモデルにおける波形状と振幅が同じで周期がずれた波形状を有する周期ずれ波形状ブランクモデルを一種類又は複数種類生成する第二ブランク生成ステップと、
     前記周期ずれ波形状ブランクモデルを用いて、前記所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を第二形状として取得する第二形状取得ステップと、
     前記第一形状と一種類又は複数種類の前記第二形状を比較し、両形状の乖離する部位と、乖離量とを求める乖離量取得ステップと、
     を含む、プレス成形解析方法。
  2.  前記第一ブランク生成ステップにおいて生成する基準波形状ブランクモデルは、前記金属板から採取した実ブランクの形状を測定した測定結果に基づいて生成したブランクモデルである、請求項1に記載のプレス成形解析方法。
  3.  前記乖離量取得ステップは、前記第一形状における所定部位のスプリングバック量と、前記第二形状における前記第一形状の前記所定部位と同一部位のスプリングバック量との差を前記乖離量として取得する、請求項1又は2に記載のプレス成形解析方法。
  4.  前記乖離量が予め設定した閾値を超えた部位を、要対策部位として特定する特定ステップをさらに含む、請求項1乃至3のうち、いずれか一項に記載のプレス成形解析方法。
  5.  形状変動のある金属板から採取したブランクを用いてプレス成形した際の前記ブランクの形状変動の影響を予測するプレス成形解析装置であって、
     前記形状変動に対応した所定の波長と所定の振幅の波形状を有する基準波形状ブランクモデルを生成する第一ブランク生成部と、
     前記基準波形状ブランクモデルを用いて、所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を第一形状として取得する第一形状取得部と、
     前記基準波形状ブランクモデルにおける波形状と振幅が同じで周期がずれた波形状を有する周期ずれ波形状ブランクモデルを一種類又は複数種類生成する第二ブランク生成部と、
     前記周期ずれ波形状ブランクモデルを用いて、前記所定の金型モデルでプレス成形したときのプレス成形解析を行い、離型後のプレス成形品形状を第二形状として取得する第二形状取得部と、
     前記第一形状と一種類又は複数種類の前記第二形状を比較し、両形状の乖離する部位と、乖離量とを求める乖離量取得部と、
     を備える、プレス成形解析装置。
  6.  前記第一ブランク生成部において生成する基準波形状ブランクモデルは、前記金属板から採取した実ブランクの形状を測定した測定結果に基づいて生成したブランクモデルである、請求項5に記載のプレス成形解析装置。
  7.  前記乖離量取得部は、前記第一形状における所定部位のスプリングバック量と、前記第二形状における前記第一形状の前記所定部位と同一部位のスプリングバック量との差を前記乖離量として取得する、請求項5又は6に記載のプレス成形解析装置。
  8.  前記乖離量が予め設定した閾値を超えた部位を、要対策部位として特定する特定部をさらに備える、請求項5乃至7のうち、いずれか一項に記載のプレス成形解析装置。
  9.  コンピュータを請求項5乃至8のうち、いずれかに記載のプレス成形解析装置として機能させる、プレス成形解析プログラム。
PCT/JP2022/041724 2022-01-17 2022-11-09 プレス成形解析方法、プレス成形解析装置及びプレス成形解析プログラム WO2023135914A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-004757 2022-01-17
JP2022004757 2022-01-17
JP2022021763A JP7392747B2 (ja) 2022-01-17 2022-02-16 プレス成形解析方法、プレス成形解析装置及びプレス成形解析プログラム
JP2022-021763 2022-02-16

Publications (1)

Publication Number Publication Date
WO2023135914A1 true WO2023135914A1 (ja) 2023-07-20

Family

ID=87278896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041724 WO2023135914A1 (ja) 2022-01-17 2022-11-09 プレス成形解析方法、プレス成形解析装置及びプレス成形解析プログラム

Country Status (1)

Country Link
WO (1) WO2023135914A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08243657A (ja) * 1995-03-13 1996-09-24 Honda Motor Co Ltd 板材のプレス成形方法
JP4052211B2 (ja) * 2003-09-10 2008-02-27 日産自動車株式会社 プレスシミュレーション用モデルの初期形状作成装置、プレスシミュレーション装置、プレスシミュレーション用モデルの初期形状作成方法、およびシミュレーション方法
JP2012250245A (ja) * 2011-06-01 2012-12-20 Nippon Steel & Sumitomo Metal Corp 円筒深絞りの成形シミュレーション方法、装置及びプログラム
WO2019167793A1 (ja) * 2018-02-28 2019-09-06 Jfeスチール株式会社 プレス部品の製造方法、プレス成形装置、及びプレス成形用の金属板
JP2020146755A (ja) * 2019-03-05 2020-09-17 新明工業株式会社 プレス成形製品及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08243657A (ja) * 1995-03-13 1996-09-24 Honda Motor Co Ltd 板材のプレス成形方法
JP4052211B2 (ja) * 2003-09-10 2008-02-27 日産自動車株式会社 プレスシミュレーション用モデルの初期形状作成装置、プレスシミュレーション装置、プレスシミュレーション用モデルの初期形状作成方法、およびシミュレーション方法
JP2012250245A (ja) * 2011-06-01 2012-12-20 Nippon Steel & Sumitomo Metal Corp 円筒深絞りの成形シミュレーション方法、装置及びプログラム
WO2019167793A1 (ja) * 2018-02-28 2019-09-06 Jfeスチール株式会社 プレス部品の製造方法、プレス成形装置、及びプレス成形用の金属板
JP2020146755A (ja) * 2019-03-05 2020-09-17 新明工業株式会社 プレス成形製品及びその製造方法

Similar Documents

Publication Publication Date Title
US7957918B2 (en) Member designing method and apparatus
KR101088115B1 (ko) 스프링백 발생 원인 특정 방법, 스프링백 영향도 표시 방법, 스프링백 발생 원인 부위 특정 방법, 스프링백 대책 위치 특정 방법, 그 장치, 및 그 프로그램
US9925578B2 (en) Method for reducing springback and apparatus for analyzing springback of press formed parts
CN104582868B (zh) 回弹抑制对策部件及其制造方法
De Souza et al. Characterising material and process variation effects on springback robustness for a semi-cylindrical sheet metal forming process
CN107427885B (zh) 坯料形状决定方法、坯料、冲压成型品、冲压成型方法、计算机程序以及存储介质
WO2023135914A1 (ja) プレス成形解析方法、プレス成形解析装置及びプレス成形解析プログラム
WO2023106013A1 (ja) プレス成形解析方法、プレス成形解析装置及びプレス成形解析プログラム
JP7392747B2 (ja) プレス成形解析方法、プレス成形解析装置及びプレス成形解析プログラム
WO2023135913A1 (ja) プレス成形解析方法、プレス成形解析装置及びプレス成形解析プログラム
JP2005266894A (ja) 金型設計支援システム及び方法並びに金型設計支援用プログラム
JP7392746B2 (ja) プレス成形解析方法、プレス成形解析装置及びプレス成形解析プログラム
JP7410460B2 (ja) プレス成形解析方法、プレス成形解析装置及びプレス成形解析プログラム
WO2023119915A1 (ja) プレス成形解析方法、プレス成形解析装置及びプレス成形解析プログラム
JP6044606B2 (ja) 見込み金型形状作成方法及び装置
CN114423671A (zh) 汽车的面板部件的振动噪音降低解析方法及解析装置
JP7371711B2 (ja) プレス成形解析方法、プレス成形解析装置及びプレス成形解析プログラム
JP4041766B2 (ja) プレス成形金属部品を含む構造体の特性解析方法、特性解析プログラム及びそのプログラムを記録した記憶媒体
JP6841295B2 (ja) スプリングバック量乖離要因部位特定方法および装置
JP5294487B2 (ja) パネル部材の剛性評価方法
JP6852750B2 (ja) スプリングバック量乖離要因部位特定方法および装置
WO2023139900A1 (ja) プレス成形解析の解析精度評価方法
JP7409583B1 (ja) プレス成形品の製造方法
JP7405319B1 (ja) プレス成形品の製造方法
WO2024019168A1 (ja) プレス成形品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920435

Country of ref document: EP

Kind code of ref document: A1