WO2019167793A1 - プレス部品の製造方法、プレス成形装置、及びプレス成形用の金属板 - Google Patents

プレス部品の製造方法、プレス成形装置、及びプレス成形用の金属板 Download PDF

Info

Publication number
WO2019167793A1
WO2019167793A1 PCT/JP2019/006553 JP2019006553W WO2019167793A1 WO 2019167793 A1 WO2019167793 A1 WO 2019167793A1 JP 2019006553 W JP2019006553 W JP 2019006553W WO 2019167793 A1 WO2019167793 A1 WO 2019167793A1
Authority
WO
WIPO (PCT)
Prior art keywords
vertical wall
shape
wall portion
boundary
flange
Prior art date
Application number
PCT/JP2019/006553
Other languages
English (en)
French (fr)
Inventor
三宅 弘人
新宮 豊久
雄司 山▲崎▼
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020207024565A priority Critical patent/KR102356422B1/ko
Priority to EP19760805.2A priority patent/EP3760332A4/en
Priority to US16/975,601 priority patent/US11712729B2/en
Priority to MX2020008962A priority patent/MX2020008962A/es
Priority to CN201980015815.8A priority patent/CN111836689B/zh
Priority to JP2019521505A priority patent/JP6551637B1/ja
Publication of WO2019167793A1 publication Critical patent/WO2019167793A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/26Deep-drawing for making peculiarly, e.g. irregularly, shaped articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/88Making other particular articles other parts for vehicles, e.g. cowlings, mudguards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D19/00Flanging or other edge treatment, e.g. of tubes
    • B21D19/08Flanging or other edge treatment, e.g. of tubes by single or successive action of pressing tools, e.g. vice jaws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D24/00Special deep-drawing arrangements in, or in connection with, presses

Definitions

  • the present invention is a technique relating to the manufacture of a pressed part having a hat-shaped cross section having one or more curved portions that are convex toward the flange side (concave toward the top plate side) along the longitudinal direction when viewed from the side.
  • the present invention is a technique particularly suitable for manufacturing an automobile skeleton component having a portion curved toward the top plate portion in a side view.
  • An automobile skeleton component has, for example, a top plate portion, a vertical wall portion and a flange portion that are continuous in the left-right width direction of the top plate portion, and a curved portion that is curved in the longitudinal direction when viewed from the side. It has a shape to have.
  • a part of the part may be cracked or wrinkled, which may cause molding defects.
  • problems such as reduction in dimensional accuracy due to elastic recovery in molding after release.
  • the use of thin high-strength steel sheets is increasing in order to achieve both weight reduction and collision safety.
  • a curved portion that has a top plate portion, a vertical wall portion and a flange portion continuous to the top plate portion, and is curved so as to be convex on the flange portion side (concave on the top plate portion side) when viewed from the side.
  • wrinkles are generated due to the surplus of material on the top plate portion side
  • cracks are generated due to insufficient material on the flange portion side.
  • the curved shape of the curved portion as viewed from the side is relaxed due to the longitudinal stress difference generated in the top plate portion and the flange portion (the curvature of the curvature is reduced).
  • Dimensional accuracy defects such that the end in the longitudinal direction of the component falls in the direction are likely to occur. Conventionally, several countermeasure techniques have been proposed for these molding defects.
  • Patent Document 1 discloses a countermeasure against springback after mold release in a press part shape having a curved portion that is convex on the flange side (concave on the top plate portion side) in the longitudinal direction when viewed from the side. There is a technology. Patent Document 1 proposes a method of increasing the rigidity of the entire component by providing a step in the vertical wall portion so that the cross section of the entire longitudinal direction extends toward the flange.
  • Patent Document 1 since it is necessary to provide a stepped shape in the vertical wall portion, there is a possibility that the cross-section of the target press part shape may change greatly, and the scope of application to press molding is limited.
  • the present invention has been made paying attention to the above-described problems, and has a hat-shaped cross section having at least one curved shape that is convex toward the flange portion when viewed from the side. It is an object of the present invention to propose a press molding technique capable of reducing molding defects such as cracks, wrinkles, and dimensional accuracy of molded parts.
  • the present inventor has a top plate portion, a vertical wall portion and a flange portion continuous with the top plate portion, and is convex on the flange portion side (concave on the top plate portion side) when viewed in side view.
  • the present inventors have intensively studied a press molding method capable of forming a pressed part shape having at least one curved shape without cracking and wrinkling and suppressing spring back.
  • the present inventor found that the surplus of the material of the top plate part and the lack of material of the flange part, which are the cause stress of cracks, wrinkles, and springback, are in the pre-process of the process of forming into a pressed part shape, We obtained the knowledge that it can be reduced by pre-extrusion molding at a predetermined location and earning a wire length that is assumed to be insufficient for the material. The present invention has been made based on such findings.
  • one aspect of the present invention is a cross-sectional hat shape having a vertical wall portion and a flange portion on both sides in the width direction of the top plate portion, and 1 along the longitudinal direction of the top plate portion.
  • a press part manufacturing method for manufacturing a press part in a press part shape having a curved part curved so as to protrude toward the flange part when viewed in a side view at two or more locations by press-molding a metal plate A first molding step of press-molding the metal plate on the intermediate molded product having a corrugated shape formed in the regions to be the vertical wall portion and the flange portion, and bending the intermediate molded product.
  • the shape in the plate thickness direction has a shape that increases from a position corresponding to the boundary between the top plate portion and the vertical wall portion toward a position corresponding to the boundary between the vertical wall portion and the flange portion,
  • Summary of the invention is to set the corrugated shape so that the difference between the length of the wire and the length of the pressed part is 10% or less of the length of the longitudinal wall at the boundary between the vertical wall and the flange.
  • one aspect of the present invention is a press forming apparatus used in the second forming step in the method for manufacturing a pressed part according to the above aspect, wherein the vertical wall portion and the flange portion are formed by bending a metal plate at the position of the ridgeline portion.
  • the gist of the present invention is the configuration for performing the bending.
  • One embodiment of the present invention is a hat-shaped cross section having a vertical wall portion and a flange portion on both sides in the width direction of the top plate portion, and at one or two or more locations along the longitudinal direction of the top plate portion.
  • a metal plate for press molding formed into a pressed part shape having a curved portion that is curved so as to be convex toward the flange portion when viewed from the side, and the region to be the vertical wall portion and the flange portion And the vertical wall portion and the flange from the position corresponding to the boundary between the top plate portion and the vertical wall portion.
  • a wavy shape that increases as it goes to the position corresponding to the boundary with the part, the line length in the longitudinal direction at the position corresponding to the boundary between the vertical wall part and the flange part, and the press part shape Line length in the longitudinal direction of the boundary between the vertical wall and the flange
  • the wavy shape is set so that the difference in line length is less than 10% of the line length in the longitudinal direction of the boundary between the vertical wall portion and the flange portion in the pressed part shape. It is a metal plate.
  • FIG. 1 It is a figure which shows the press part shape and shape parameter which concern on embodiment based on this invention, Comprising: (a) is a perspective view, (b) is sectional shape, (c) is a side view. It is a figure which shows an example of the press part shape which can apply this invention. It is a figure which shows the example of the shaping
  • 2A and 2B are diagrams showing an example of an intermediate molded product, in which FIG.
  • FIG. 1A is a perspective view
  • FIG. 2B is a cross-sectional view taken along the line AA ′
  • FIG. 1 a cross-sectional hat shape having a top plate portion 2 and a vertical wall portion 3 and a flange portion 4 that are respectively continuous on both sides in the left-right width direction of the top plate portion 2.
  • a metal plate is press-molded into a pressed part shape 1 curved so that the flange portion side is convex along the longitudinal direction (the top plate portion side is concave) Will be described.
  • the present invention is not limited only to a shape whose entire longitudinal direction is curved so as to be convex toward the flange portion when viewed in a side view as shown in FIG.
  • there are two or more combined press part shapes having a curved shape that is convex on the top plate portion side and a curved shape that is concave on the top plate portion side, and two or more shapes that are convex on the flange portion side.
  • the present invention can be applied even to existing press part shapes.
  • the present invention is a press having a straight portion that extends linearly along the longitudinal direction, continuous with the curved portion curved so that the flange portion side is convex along the longitudinal direction (the top plate portion side is concave).
  • FIG. 2 shows an example of a pressed part shape 1 to which the present invention can be applied.
  • Metal plate 10 There is no restriction
  • the metal plate shape an unfolded shape in which the target press part shape 1 is developed on a plane or a simple rectangular plate shape may be employed. In this description, an example using a rectangular metal plate 10 will be described.
  • the material of the metal plate 10 is not particularly limited, but the present embodiment is suitably effective when the metal plate is a high-strength material, particularly a metal plate made of a steel material having a tensile strength of 590 MPa or more.
  • the method for manufacturing a pressed part according to the present embodiment includes at least a first molding step 9A and a second molding step 9B.
  • a trimming step is provided after the second forming step 9B.
  • the trimming process is not necessarily required.
  • a ridge line pre-processing step may be included as a process prior to the second forming step 9B.
  • the ridge line pre-processing step corresponds to a position 16 corresponding to the ridge line 6 between the top plate part 2 and the vertical wall part 3 and a ridge line 7 between the vertical wall part 3 and the flange part 4 as shown in FIG.
  • at least one bead shape 20, 21 or crease shape extending in a direction along a corresponding ridge line is formed on at least one position 17 in the metal plate 10.
  • This ridgeline pre-processing step may be performed at the time of the first forming step 9A, or may be provided as a separate step before and after the first forming step 9A.
  • FIG. 4 illustrates the case where the bead shapes 20 and 21 are given, but a crease shape may be provided instead of the bead shapes 20 and 21. Further, the bead shapes 20 and 21 and the crease shape may be used in combination so that the bead shapes 20 and 21 are provided in part and the crease shape is provided in other portions. Moreover, you may form bead shape 20, 21 or a crease
  • the combined length of the bead shapes 20 and 21 is preferably set to be 1/3 or more of the total length of the corresponding ridgeline.
  • a molding process for the purpose of, for example, re-striking is performed as the next process of the second molding process 9B. You can add it.
  • the intermediate molded product 40 has a concavo-convex shape continuous in the longitudinal direction in the regions (the vertical wall portion forming position 13 and the flange portion forming position 14) that become the vertical wall portion 3 and the flange portion 4.
  • the wavy shape in which the amplitude in the plate thickness direction increases from the position corresponding to the boundary between the top plate portion 2 and the vertical wall portion 3 toward the position corresponding to the boundary 7 between the vertical wall portion 3 and the flange portion 4 are parts formed on the plate 10.
  • the corrugated shape includes a line length in the longitudinal direction at a position 17 corresponding to the boundary 7 between the vertical wall portion 3 and the flange portion 4, and a boundary between the vertical wall portion 3 and the flange portion 4 in the press part shape 1 (ridge line 7 ) Is set (designed) so that the difference between the longitudinal length and the longitudinal length of the boundary between the vertical wall portion 3 and the flange portion 4 in the pressed part shape 1 is 10% or less.
  • the line length is increased by adjusting the magnitude of the amplitude and the number of waves made of irregularities.
  • the wavy shape is formed on the entire surface of the vertical wall portion forming position 13 and the flange portion forming position 14 as an example.
  • the wavy shape is formed only in a partial region in the longitudinal direction. May be.
  • the corrugated shape is preferably provided in a range of 2/3 or more of the length of the metal plate 10 in the longitudinal direction.
  • the height of the amplitude of each unevenness and the interval between waves do not need to be equal.
  • the length in the longitudinal direction of the metal plate 10 is the length in the longitudinal direction of the top plate portion 2 of the target press part shape 1.
  • a case where a plate having the same length as that of the plate is used will be described as an example.
  • the manufacturing method of this embodiment is applicable even if the length in the longitudinal direction of the metal plate 10 is different from the length in the longitudinal direction of the top plate portion 2 of the target press part shape 1.
  • the line length L1 in the longitudinal direction of the top plate portion 2 in the press part shape 1 is obtained by the following equation (1).
  • the height of the vertical wall in the target pressed part shape 1 is H (mm)
  • the radius of curvature of the longitudinal direction of the top plate part 2 is R (mm)
  • the bend angle is assumed to be ⁇ (degrees).
  • L1 2 ⁇ R ⁇ ( ⁇ / 360) (1)
  • the line length L2 in the longitudinal direction of the flange portion 4 in the press part shape 1 is obtained by the following equation (2).
  • L2 2 ⁇ (R + H) ⁇ ( ⁇ / 360) (2)
  • the line length difference ⁇ L generated between the top plate portion 2 and the flange portion 4 is expressed by the following equation.
  • the shape (wave shape) of the intermediate molded product 40 in the first molding step 9A necessary for obtaining the above-described line length ⁇ L is designed (set). .
  • the shaping method of a wave shape is not limited to the design method shown below.
  • the corrugated shape can be designed so that the difference between the longitudinal length and the longitudinal length of the boundary 7 between the vertical wall portion 3 and the flange portion 4 in the pressed part shape 1 is 10% or less.
  • the wavy shape may be designed by other methods.
  • corrugated shape is more preferable the outline shape which does not have the curvature steep part where a curvature is steep.
  • the contour shape does not need to be formed only by a curve, and may have a straight line portion in part.
  • the surface of the rectangular metal plate 10 to be press-formed is virtually divided into regions of a top plate portion forming position 12, a vertical wall portion forming position 13, and a flange portion forming position 14. .
  • the length in the longitudinal direction of the metal plate 10 is set to be equal to the length of the top plate portion 2 in the target press part shape 1. For this reason, since there is no excess or deficiency of the material at the top plate forming position 12, it is not necessary to provide an overhanging shape for increasing the line length.
  • the vertical wall portion 3 is formed into a pressed part shape 1 for a flat metal plate 10 so that the longitudinal wall portion 3 becomes longer as it goes from the boundary 6 with the top plate portion 2 to the boundary 7 with the flange portion 4.
  • the line length along the direction will gradually increase.
  • the intermediate molded product 40 in consideration of this, from the boundary 6 between the top plate portion 2 and the vertical wall portion 3 toward the boundary 7 between the vertical wall portion 3 and the flange portion 4, that is, in the width direction. It was considered to give the metal plate a shape in which the line length in the longitudinal direction gradually increases along the metal plate. At this time, the line length in the longitudinal direction at the position 17 that becomes the boundary 7 between the vertical wall portion 3 and the flange portion 4 is designed to be longer than the line length of the top plate portion 2 by the above ⁇ L.
  • the line length in the longitudinal direction at the position 17 that becomes the boundary 7 between the vertical wall portion 3 and the flange portion 4, and the line length in the longitudinal direction at the boundary 7 between the vertical wall portion 3 and the flange portion 4 in the press part shape 1 Is set so that the line length in the longitudinal direction at the boundary 7 between the vertical wall portion 3 and the flange portion 4 in the pressed part shape 1 is 10% or less, preferably 0.5% or less.
  • the amplitude at the flange portion forming position 14 is the largest with respect to the regions of the vertical wall portion forming position 13 and the flange portion forming position 14. A wavy shape consisting of repeated unevenness is given.
  • This design is designed so as to earn a necessary line length ⁇ L by a corrugated shape having a plurality of irregularities along the longitudinal direction at a position 17 that becomes a boundary 7 between the vertical wall portion 3 and the flange portion 4.
  • 2n + 1 (n is an integer of 1 or more) control points along a position 17 corresponding to the boundary 7 between the vertical wall portion 3 and the flange portion 4 in the target press part shape 1.
  • 30 is set at equal intervals.
  • the intervals at which the control points 30 are provided are not necessarily set at equal intervals.
  • a plurality of control points 30 be arranged so that the distance between adjacent control points 30 is 10% or more of the component length.
  • the control points 30 at even positions or odd positions along the longitudinal direction of the plurality of control points 30 are displaced in the plate thickness direction. That is, the control point 30 is displaced in the thickness direction of the metal plate 10 by skipping one.
  • the displacement directions of the control points to be displaced are alternately displaced in the opposite direction is illustrated, but the displacement directions of the control points to be displaced may all be the same direction.
  • a line 31 is created by smoothly connecting all of the 2n + 1 control points 30 with a spline curve.
  • the displacement amount of each control point 30 to be displaced is illustrated as being constant, but each displacement amount may be different.
  • the displacement amount may be set so as to be closer to the center of the curved portion.
  • the flange part formation position 14 it sets so that the amplitude of an unevenness
  • a corrugated surface shape is designed by a surface that smoothly connects the line 31 created by the above spline curve and the position 16 that becomes the boundary 6 between the top plate portion 2 and the vertical wall portion 3 in the width direction.
  • the wave amplitude is zero at the boundary 6 between the top plate 2 and the vertical wall 3.
  • the amplitude of the uneven shape in the thickness direction increases from a position corresponding to the boundary between the top plate portion 2 and the vertical wall portion 3 toward a position corresponding to the boundary between the vertical wall portion 3 and the flange portion 4. It becomes a wavy shape.
  • the direction from the position corresponding to the boundary between the top plate portion 2 and the vertical wall portion 3 to the position corresponding to the boundary between the vertical wall portion 3 and the flange portion 4 is also the width direction of the top plate portion forming position 12. It may be a direction inclined in the longitudinal direction by a preset angle with respect to the width direction. In short, the vertical wall portion forming position 13 may be in a direction that intersects the width direction.
  • FIG. 6 when three uneven shapes (waveform shapes) are created, seven control points 30 are set, the end points of the control points 30 are fixed, and one control is skipped.
  • the concavo-convex shape (waveform shape) at the boundary between the vertical wall portion forming position 13 and the flange portion forming position 14 is determined by displacing the point 30 by a certain distance in the thickness direction.
  • the shape of the intermediate molded product 40 designed under these conditions is shown in FIG. In addition to the shape shown in FIG.
  • the wavy shape is configured only by a shape in which the direction of the unevenness is reversed, a shape in which the uneven shape is deviated anti-periodically, a convex shape, or a concave shape, as shown in FIG. 8. It may have a shape in which the number of irregularities, the number of irregularities is changed, or a shape in which the amplitude of the irregularities is changed. It is only necessary that the wavy shape) has a line length of ⁇ L.
  • the mold used in the first molding step 9A is, for example, an upper mold composed of a die 50, and a wrinkle presser 51 that clamps the punch 52 and a portion of the top plate portion 2 in the target press part shape 1 together with the die 50. It is a metal mold
  • ⁇ Second forming step 9B> the intermediate molded product 40 molded in the first molding step 9A is subjected to a bending process, and the space between the top plate portion 2 and the vertical wall portion 3 in the target pressed part shape 1 is determined.
  • the ridgeline 6 and the ridgeline 7 between the vertical wall portion 3 and the flange portion 4 are formed, and the intermediate molded product 40 is formed into the desired pressed part shape 1.
  • a bending mold having an upper mold composed of a die 60 and a bending blade 61 for bending a ridge line position as shown in FIG. Is used.
  • the left and right bending blades 61 are moved toward the punch to the bottom dead center of the molding, whereby the vertical wall The part 3 and the vertical wall part 3 are bent.
  • the bending blade 61 has an angle ⁇ in the range of 0 ° to 90 °, preferably 0 ° to 45 °, in the direction away from the punch 63 with respect to the normal press angle. Further, it is preferable that the molding is performed by moving at an angle ⁇ in the range of 5 degrees to 40 degrees.
  • the region that becomes the vertical wall portion 3 and the flange portion 4 has an uneven shape that continues along the longitudinal direction, and the amplitude of the uneven shape in the plate thickness direction is Intermediate molding in which a corrugated shape is formed which increases from a position 16 corresponding to the boundary 6 between the top plate portion 2 and the vertical wall portion 3 toward a position 17 corresponding to the boundary 7 between the vertical wall portion 3 and the flange portion 4.
  • the corrugated shape is set so that the difference in length between the longitudinal length of 7 and the longitudinal length of the boundary 7 between the vertical wall portion 3 and the flange portion 4 in the pressed part shape 1 is 10% or less.
  • the difference in length between the longitudinal length of 7 and the longitudinal length of the boundary 7 between the vertical wall portion 3 and the flange portion 4 in the pressed part shape 1 is 10% or less.
  • the longitudinal line length at the position corresponding to the boundary between the vertical wall portion 3 and the flange portion 4 in the intermediate part is equal to the longitudinal direction of the position of the metal plate before forming the intermediate part. It is preferable to set the wavy shape so as to be longer than the line length by ⁇ L defined by the following formula.
  • the wavy shape is set to n (n ⁇ 3) control points 30 along the longitudinal direction of the position 17 corresponding to the boundary 7 between the vertical wall portion 3 and the flange portion 4, and the even number thereof. After displacing the control point 30 at the position or odd number position in the thickness direction, a line smoothly connecting the n control points 30 with a spline curve or the like is formed at the boundary 7 between the vertical wall portion 3 and the flange portion 4.
  • the surface has a concavo-convex shape at the corresponding position 17 and has a surface shape that smoothly connects the line 31 connected by a spline curve or the like and the line 31 corresponding to the boundary line between the top plate portion 2 and the vertical wall portion 3 in the width direction. Set the wavy shape to. According to this configuration, a desired corrugated shape can be easily set.
  • At least one bead shape 20 or 21 or a crease shape extending in a direction along the corresponding ridge line is formed for at least one position 17 corresponding to the ridge line 7 between the portion 3 and the flange portion 4. According to this structure, the moldability in the second molding step 9B is improved.
  • an upper die having a bending blade 61 for bending the metal plate 10 at the position of the ridge line portion and bending the vertical wall portion 3 and the flange portion 4; It has a lower die having a punch 63, and the bending blade 61 is bent at an angle ⁇ set in a range of 0 ° to 90 ° with respect to the press direction. According to this configuration, it is possible to perform the bending in the second forming step 9B with good formability.
  • the bent metal plate 10 has a concave-convex shape continuous in the longitudinal direction in the region that becomes the vertical wall portion 3 and the flange portion 4, and the amplitude in the thickness direction of the concave-convex shape is the top plate portion.
  • 2 has a corrugated shape that increases from the position corresponding to the boundary between the vertical wall portion 3 and the vertical wall portion 3 toward the position corresponding to the boundary between the vertical wall portion 3 and the flange portion 4.
  • the difference between the line length in the longitudinal direction at the position 17 corresponding to the boundary 7 and the line length in the longitudinal direction of the boundary 7 between the vertical wall portion 3 and the flange portion 4 in the pressed part shape 1 is the pressed part shape.
  • the metal plate 10 for press forming in which the corrugated shape is set so as to be equal to or less than 10% of the line length in the longitudinal direction of the boundary 7 between the vertical wall portion 3 and the flange portion 4 at 1, is adopted. According to this configuration, it is possible to improve the formability of processing by normal bending.
  • the vertical wall portion has a concavo-convex shape that is convex upward, convex downward, convex upward as seen from the position of the top plate portion 2.
  • the amplitude of the concavo-convex shape was unified at 26 mm for any concavo-convex shape.
  • the line length at the boundary between the vertical wall portion forming position 13 and the flange portion forming position 14 is about 550 mm, which is substantially equal to the necessary line length obtained by the above calculation.
  • the wrinkle pressing force was 50 tons.
  • the intermediate molded product 40 was subjected to bending analysis using the bending mold shown in FIG.
  • the bending blade 61 that bends the ridgeline was molded using a cam mechanism that bends at an angle of 30 degrees with respect to the press direction.
  • the pad pressure at this time was 5 tons.
  • a molding analysis with a mold for wrist-like molding as shown in FIG. 12 was performed after the second molding step 9B.
  • This wrist-like mold is composed of an upper mold constituted by a die 70 and a lower mold constituted by a punch 71, and by giving a chamfered shape of about C12 to a bending portion adjacent to the top plate portion 2, This is intended to suppress the opening.
  • the pad bending mold used at this time is shown in FIG.
  • the pad bending mold is composed of an upper mold composed of a die 80 and a pad 81 and a lower mold composed of a punch, and the top plate portion forming position 12 is clamped between the pad 81 and the punch 82 while the upper mold is lowered.
  • the pad pressure was 5 ton.
  • the plate thickness center stress distribution in the longitudinal direction at the bottom dead center of the molding in the conventional pad bending and the method according to the present invention was determined.
  • a large compressive stress ⁇ 1.134E 3 on the longitudinal center side
  • a large tensile stress on the longitudinal center portion side
  • the compressive stress of the top plate portion 2 is greatly reduced to ⁇ 861.7 on the longitudinal center side, and further, the tensile stress on the flange portion 4 hardly occurs and the longitudinal center side It was a low value of 455.9.
  • the distribution of the deviation from the target pressed part shape 1 after mold release in the conventional pad bending molding and the method according to the present invention was determined.
  • the end in the longitudinal direction falls due to a large difference in the thickness center stress in the longitudinal direction between the top plate portion 2 and the flange portion 4. I spring back a lot.
  • the spring back in which the longitudinal end is lifted due to the large reduction in the difference in the thickness center stress in the longitudinal direction between the top plate portion 2 and the flange surface is the conventional pad bending molding. It was confirmed that it was greatly suppressed compared to the parts molded with

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

側面視で見たときに、フランジ部側に凸となるように湾曲した形状を有する断面ハット型形状の成形部品に対する成形不良を低減し得るプレス成形技術を提供する。縦壁部形成位置(13)及びフランジ部形成位置(14)に、長手方向に沿って連続する凹凸形状を有し、凹凸形状の板厚方向の振幅が縦壁部(3)とフランジ部(4)との境界に対応する位置に向かうほど大きくなる波打ち形状を有する中間成形品(40)に、金属板(10)をプレス成形する第1の成形工程(9A)と、中間成形品(40)に曲げ加工を施す第2の成形工程(9B)とを有する。中間成形品(40)における縦壁部(3)とフランジ部(4)との境界に対応する位置での長手方向の線長と、プレス部品形状(1)での縦壁部(3)とフランジ部(4)との境界の長手方向の線長とが一致若しくは近づける。

Description

プレス部品の製造方法、プレス成形装置、及びプレス成形用の金属板
 本発明は、側面視で見て長手方向に沿ってフランジ部側に凸(天板部側に凹)となった湾曲部を1以上有するハット型断面形状のプレス部品の製造に関する技術である。本発明は、特に、側面視で天板部側に湾曲した部分を有する自動車骨格部品の製造に好適な技術である。
 自動車骨格部品は、例えば、天板部と、天板部の左右幅方向にそれぞれ連続する縦壁部及びフランジ部を有し、かつ、側面視で見たときに長手方向で湾曲した湾曲部を有する形状となっている。このような自動車骨格部品を平坦な金属板からプレス成形で製造する場合、部品の一部に割れやシワが生じ、成形不良を起こす可能性がある。さらに、離型後の成形が弾性回復により寸法精度が低下するなどの問題も生じるおそれがある。
 特に近年の自動車骨格部品は、車体軽量化と衝突安全性の両方をともに達成するために、薄肉の高張力鋼板の使用が増加している。しかし、金属板の材料強度(引張強度)が増加するにつれて金属板の延性は低下し、プレス成形後の製品でスプリングバックが大きくなる。このため、高張力鋼板を単純にプレス成形した場合、割れやシワ、スプリングバックといった問題が顕在化している。
 例えば、天板部と、それに連続する縦壁部及びフランジ部を有し、かつ、側面視で見たときにフランジ部側に凸(天板部側に凹)となるように湾曲した湾曲部形状を少なくとも一カ所以上有する部品形状では、天板部側での材料の余りによってシワが発生したり、フランジ部側では材料が不足することで割れが発生したりする。更に、スプリングバックに伴う断面の開きと共に、天板部とフランジ部に発生する長手方向の応力差に起因して側面視で見た湾曲部形状の湾曲が緩くなる(湾曲の曲率が小さくなる)方向に部品長手方向の端部が落ち込むような寸法精度の不良も発生しやすい。これらの成形不良に対して、従来、いくつかの対策技術が提案されている。
 長手方向に、側面視で見てフランジ側に凸(天板部側に凹)になるよう湾曲部を有するプレス部品形状における、離型後のスプリングバックへの対策として、例えば特許文献1に記載の技術がある。特許文献1では、長手方向全体に渡って断面がフランジに向かって末広がりになるように、縦壁部に段差を設けることで部品全体としての剛性を上げる方法が提案されている。
特許第4021793号公報
 しかし、特許文献1では、縦壁部に段差形状を設ける必要があるため、目的とするプレス部品形状の断面が大きく変わる可能性があり、プレス成形への適用範囲に限界がある。
 本発明は、上記のような課題に着目してなされたものであり、側面視で見たときに、フランジ部側に凸となるように湾曲した形状を少なくとも一カ所以上有する断面ハット型形状の成形部品を割れやシワ、寸法精度低下といった成形不良を低減し得るプレス成形技術を提案することを目的とする。
 本発明者は、天板部と、それに連続する縦壁部およびフランジ部を有し、かつ、側面視で見たときに、フランジ部側に凸(天板部側に凹)となるように湾曲した形状を少なくとも一カ所以上有するプレス部品形状を、割れ、シワなく成形でき、かつ、スプリングバックを抑制可能なプレス成形方法について、鋭意検討を行った。その検討の結果、本発明者は、割れやシワ、スプリングバックの発生要因応力である天板部の材料の余り及びフランジ部の材料の不足は、プレス部品形状に成形する工程の前工程において、所定の場所に予め張出し成形を行い、材料の不足が想定される線長を稼いでおくことで低減可能であるという知見を得た。
 本発明は、このような知見に基づきなされたものである。
 課題を解決するために、本発明の一態様は、天板部の幅方向両側に縦壁部及びフランジ部を有する断面ハット型形状であり、且つ、上記天板部の長手方向に沿った1又は2以上の箇所に、側面視で見て上記フランジ部側に凸となるように湾曲した湾曲部を有するプレス部品形状のプレス部品を、金属板をプレス成形して製造するプレス部品の製造方法であって、上記縦壁部及びフランジ部となる領域に対し波打ち形状が形成された中間成形品に、上記金属板をプレス成形する第1の成形工程と、上記中間成形品に曲げ加工を施して、上記プレス部品形状での上記天板部と縦壁部との間の稜線及び上記縦壁部とフランジ部の間の稜線を形成する第2の成形工程と、を有し、上記波打ち形状は、長手方向に沿って並ぶ凹凸形状を有し、その凹凸形状の板厚方向の振幅が、上記天板部と上記縦壁部との境界に対応する位置から上記縦壁部と上記フランジ部との境界に対応する位置に向かうにつれて大きくなる形状であり、上記中間成形品における上記縦壁部と上記フランジ部との境界に対応する位置での長手方向の線長と、上記プレス部品形状での上記縦壁部と上記フランジ部との境界の長手方向の線長との線長差が、上記プレス部品形状での上記縦壁部と上記フランジ部との境界の長手方向の線長の一割以下となるように、上記波打ち形状を設定することを要旨とする。
 また、本発明の一態様は、上記の態様のプレス部品の製造方法における、第2の成形工程で使用するプレス成形装置であって、金属板を稜線部位置で曲げて縦壁部及びフランジ部を曲げ成形するための曲げ刃を有する上型と、パンチを有する下型とを有し、上記曲げ刃は、プレス方向に対して0度以上90度以下の範囲で設定された角度で移動して、上記曲げ成形を行う構成であることを要旨とする。
 また、本発明の一態様は、天板部の幅方向両側に縦壁部及びフランジ部を有する断面ハット型形状であり、且つ、天板部の長手方向に沿った1又は2以上の箇所に、側面視で見て上記フランジ部側に凸となるように湾曲した湾曲部を有するプレス部品形状に成形される、プレス成形用の金属板であって、上記縦壁部及びフランジ部となる領域に、長手方向に沿って連続する凹凸形状を有し、上記凹凸形状の板厚方向の振幅が、上記天板部と上記縦壁部との境界に対応する位置から上記縦壁部と上記フランジ部との境界に対応する位置に向かうにつれて大きくなる波打ち形状を有し、上記縦壁部と上記フランジ部との境界に対応する位置での長手方向の線長と、上記プレス部品形状での上記縦壁部と上記フランジ部との境界の長手方向の線長との線長差が、上記プレス部品形状での上記縦壁部と上記フランジ部との境界の長手方向の線長の一割以下となるように、上記波打ち形状が設定されている、プレス成形用の金属板である。
 本発明の態様によれば、側面視で見たときに、フランジ部側に凸となるように湾曲した形状を少なくとも一カ所以上有する断面ハット型形状の成形部品について、割れやシワ、寸法精度低下といった成形不良を低減して製造可能となる。そして、本発明の態様によれば、例えば、天板部とフランジ部の長手方向の応力差に起因するスプリングバックを抑制することが可能となる。
本発明に基づく実施形態に係るプレス部品形状と形状パラメータを示す図であって、(a)が斜視図、(b)は断面形状、(c)は側面図である。 本発明の適用が可能なプレス部品形状の一例を示す図である。 本発明に基づく実施形態に係る成形工程の例を示す図である。 金属板の他の例を示す図である。 制御点の設定例を示す図である。 制御点の変位例とそのスプライン線の例を示す図である。 中間成形品の例を示す図であって、(a)は斜視図、(b)はそのA-A′断面図、(c)はそのB-B′断面図である。 凹凸形状の他の例を示す図である。 第1の成形工程で使用する金型の例を示す図である。 第2の成形工程で使用する金型の例を示す図である。 曲げ加工時の曲げ刃の移動方向の例を示す図である。 第3の成形加工に使用した金型を示す図である。 従来の曲げ成形用の金型を示す図である。 従来の曲げ成形時の成形性評価の図である。 本発明に基づく成形時の成形性評価の図である。
 次に、本発明の実施形態について図面を参照しつつ説明する。
 ここで、以下の説明では、図1に示すような、天板部2と、天板部2の左右幅方向両側にそれぞれ連続する縦壁部3及びフランジ部4を有する断面ハット型形状であって、かつ、側面視で見たときに、長手方向に沿ってフランジ部側が凸に(天板部側が凹)となるように湾曲したプレス部品形状1に、金属板をプレス成形する場合を例に挙げて説明する。
 本発明は、図1に示したような、側面視で見たときに、フランジ部側に凸となるように長手方向全体が湾曲した形状のみに限定されない。本発明は、天板部側に凸となる湾曲形状と天板部側に凹となる湾曲形状とを有する複合したプレス部品形状や、フランジ部側に凸となる湾曲部の形状が二カ所以上存在するプレス部品形状であっても適用することができる。また、本発明は、長手方向に沿ってフランジ部側が凸に(天板部側が凹)となるように湾曲した湾曲部に連続して、長手方向に沿って直線状に延びる直線部を有するプレス部品形状であっても適用可能である。なお、直線部自体は、曲げ成形の際に、長手方向の線長が変化しないか、変化が少ない部分である。図2に、本発明が適用可能なプレス部品形状1の一例を示す。
 <金属板10>
 本実施形態のプレス成形に用いる金属板10の形状について特に制約はない。例えば、金属板形状として、目的とするプレス部品形状1を平面に展開した展開形状や、単純な長方形の板形状を採用すれば良い。本説明では長方形の金属板10を使用した例で説明する。
 また、金属板10の材質についても特に限定はないが、本実施形態は、高強度材、特に材料の引張強度が590MPa以上の鋼材からなる金属板である場合に、好適に効果を奏する。
 <成形方法>
 本実施形態に係るプレス部品の製造方法は、図3に示すように、少なくとも第1の成形工程9Aと第2の成形工程9Bとを有する。本実施形態では、金属板10に長方形形状の板材を用いるため、第2の成形工程9B後に、トリミング工程を有する。金属板10として展開形状の板材を使用した場合には、必ずしもトリミング工程は必要ない。
 また、第2の成形工程9Bでの曲げ成形の精度を向上させる目的で、第2の成形工程9Bよりも前の処理として、稜線前加工工程を有しても良い。稜線前加工工程は、図4に示すように、天板部2と縦壁部3との間の稜線6に対応する位置16及び縦壁部3とフランジ部4の間の稜線7に対応する位置17の少なくとも一つの位置に対し、対応する稜線に沿った方向に延びるビード形状20、21若しくは折り目形状を、金属板10に対し少なくとも1つ以上形成する工程である。この稜線前加工工程は、第1の成形工程9Aのときに行っても良いし、第1の成形工程9Aの前後の別工程として設けてもよい。
 図4では、ビード形状20、21を付与する場合を例示しているが、ビード形状20、21の代わりに、折り目形状を設けても良い。また、一部にビード形状20、21を設け、他の部分に折り目形状を設けるように、ビード形状20、21と折り目形状とを併用しても良い。また、稜線位置のうちの一部の稜線にだけビード形状20、21又は折り目形状を形成しても良い。また、一つの稜線の全長に渡ってビード形状又は折り目形状を形成する必要はなく、稜線に沿って断続的に形成してもよい。稜線の全長の一部にビード形状20、21を形成する場合には、例えば合算したビード形状20、21の長さが、対応する稜線の全長の1/3以上となるようにすることが好ましい。
 また、寸法精度を更に高めたい場合や、部品に対し必要な形状(エンボス形状など)を付与したい場合には、第2の成形工程9Bの次工程として、例えばリストライクを目的とした成形工程を追加しても構わない。
 <第1の成形工程9A>
 第1の成形工程9Aでは、長方形の金属板10に張出し成形を施し、中間成形品40を作製する。
 中間成形品40は、縦壁部3及びフランジ部4となる領域(縦壁部形成位置13及びフランジ部形成位置14)に、長手方向に沿って連続する凹凸形状を有し、その凹凸形状の板厚方向の振幅が、天板部2と縦壁部3との境界に対応する位置から縦壁部3とフランジ部4との境界7に対応する位置に向かうにつれて大きくなる波打ち形状を、金属板10に形成した部品である。
 (波打ち形状)
 波打ち形状は、縦壁部3とフランジ部4との境界7に対応する位置17での長手方向の線長と、プレス部品形状1での縦壁部3とフランジ部4との境界(稜線7)の長手方向の線長との線長差が、プレス部品形状1での縦壁部3とフランジ部4との境界の長手方向の線長の一割以下となるように設定(設計)する。例えば、波打ち形状について、振幅の大きさや凹凸からなる波の数を調整することで線長の増加を稼ぐ。
 本実施形態では、縦壁部形成位置13及びフランジ部形成位置14の領域の全面に対し波打ち形状を形成する場合を例に説明するが、長手方向の一部の領域にだけ波打ち形状を形成しても良い。ただし、波打ち形状を形成する領域の長手方向の長さが短いほど、振幅を高くしたり、波のピッチを短くしたりする必要がある。このため、波打ち形状は、金属板10の長手方向の長さの2/3以上の範囲に設けることが好ましい。また、各凹凸の振幅の高さや波の間隔は等間隔とする必要は無い。ただし、各凹凸の振幅の高さや波の間隔を等間隔とする方が、波打ち形状のための型形成などが容易となる。
 ここで、本実施形態では、第1の成形工程9Aで成形される金属板10として、金属板10の長手方向の長さが、目的とするプレス部品形状1の天板部2の長手方向長さと同じ長さの板を使用する場合を例に挙げて説明する。但し、本実施形態の製造方法は、金属板10の長手方向の長さが、目的とするプレス部品形状1の天板部2の長手方向長さと異なっていても適用可能である。
 金属板10を目的とするプレス部品形状1に成形しようとすると、図1(c)に示すように、目的とするプレス部品形状1において、天板部2での長手方向の線長と、フランジ部4での長手方向の線長とには差が生じる。プレス部品形状1での天板部2の長手方向の線長L1は下記(1)式で求められる。ここで、目的とするプレス部品形状1における縦壁の高さをH(mm)、天板部2の長手方向の曲率半径をR(mm)、側面視で見たときの湾曲部の長手方向の曲り角度をα(度)とする。
  L1 =2πR×(α/360) ・・・(1)
 同様に、プレス部品形状1でのフランジ部4の長手方向の線長L2は下記(2)式で求められる。
   L2 =2π(R+H)×(α/360) ・・・(2)
 したがって、目的とするプレス部品形状1において、天板部2とフランジ部4で生じる線長の差分ΔLは、次の式で表される。
   ΔL =L2 -L1 =2πH×(α/360) ・・・(3)
 これに基づき、本実施形態では、フランジ部4側において、上記の線長ΔLを稼ぐために必要な、第1の成形工程9Aにおける中間成形品40の形状(波打ち形状)を設計(設定)する。
 なお、波打ち形状の成形方法は、以下に示す設計方法に限定されない。中間成形品40における縦壁部3とフランジ部4との境界7に対応する位置17での長手方向の線長と、プレス部品形状1での縦壁部3とフランジ部4との境界7の長手方向の線長との線長差が、プレス部品形状1での縦壁部3とフランジ部4との境界7の長手方向の線長の一割以下となるように、波打ち形状が設計できれば、他の方法によって波打ち形状を設計しても良い。なお、凹凸形状からなる波形は、曲率が急峻する曲率急峻部がない輪郭形状の方が好ましい。またその輪郭形状は、曲線のみで形成する必要は無く、一部に直線部分を有していても良い。
 まず、プレス成形される長方形の金属板10の面を、図5に示すように、天板部形成位置12、縦壁部形成位置13、及びフランジ部形成位置14の領域に仮想的に分割する。
 このとき、本実施形態では、金属板10の長手方向の長さは、目的とするプレス部品形状1における天板部2の長さと等しい長さに設定した。このため、天板部形成位置12では、材料の過不足がないので、線長を稼ぐための張出し形状の付与は不要である。
 一方で、縦壁部3は、平板形状の金属板10を目的とするプレス部品形状1に成形することで、天板部2との境界6からフランジ部4との境界7に向かうにつれて、長手方向に沿った線長が徐々に増加することになる。
 本実施形態では、このことを考慮して、中間成形品40では、天板部2と縦壁部3の境界6から縦壁部3とフランジ部4の境界7に向かって、つまり幅方向に沿って長手方向の線長が徐々に増加するような形状を金属板に付与することが考えた。この際に、縦壁部3とフランジ部4の境界7となる位置17での長手方向の線長が、天板部2の線長よりも上記ΔLだけ長くなるように設計する。すなわち、縦壁部3とフランジ部4の境界7となる位置17での長手方向の線長と、プレス部品形状1における縦壁部3とフランジ部4の境界7での長手方向の線長との線長差が、プレス部品形状1における縦壁部3とフランジ部4の境界7での長手方向の線長の一割以下、好ましくは0.5割以下となるように設定する。
 このような、2つの条件を満たすような形状を付与するために、本実施形態では、縦壁部形成位置13及びフランジ部形成位置14の領域に対し、フランジ部形成位置14で一番振幅が大きくなるような凹凸の繰り返しからなる波打ち形状を付与する。
 次に、その波打ち形状の具体的な設計例を説明する。
 本設計は、縦壁部3とフランジ部4の境界7となる位置17において、長手方向に沿った複数の凹凸を有する波打ち形状によって、必要な線長ΔLを稼ぐように設計する。
 まず、図5に示すように、目的とするプレス部品形状1における縦壁部3とフランジ部4の境界7に対応する位置17に沿って、2n+1個(nは1以上の整数)の制御点30を等間隔に設定する。図5では、手前側の領域側だけ図示して説明するが、奥側の領域についても、同様に波打ち形状を付与して線長を稼ぐ。また制御点30を設ける間隔は、必ずしも等間隔に設定する必要はない。
 また、隣り合う制御点30の間が部品長さの10%以上となるように設計して、複数の制御点30を配列させることが好ましい。
 次に、この複数の制御点30における、長手方向に沿った偶数位置若しくは奇数位置の制御点30を板厚方向に変位させる。つまり、この制御点30を一つ飛ばしに金属板10の板厚方向に向けて変位させる。この例では、変位させる制御点の変位方向を、交互に逆方向へ変位させた場合を例示しているが、変位させる制御点の変位方向を全て同方向としても良い。その後に、その2n+1個の制御点30全てをスプライン曲線で滑らかに結んだ線31を作成する。本実施形態では、変位させる各制御点30の変位量を一定の場合で例示するが、各変位量が異なっていても良い。例えば、湾曲部中央に近いほど変位量が大きくなるように設定しても良い。
 なお、フランジ部形成位置14においては、例えば、外縁に向けて、つまり幅方向に沿って凹凸の振幅が一定となるように設定する。
 次に、上記のスプライン曲線で作成した線31と、天板部2と縦壁部3の境界6となる位置16とを幅方向で滑らかにつなぐ面によって波打ち形状の面形状を設計する。なお、天板部2と縦壁部3の境界6で波の振幅はゼロである。これによって、凹凸形状の板厚方向の振幅が、天板部2と縦壁部3との境界に対応する位置から縦壁部3とフランジ部4との境界に対応する位置に向かうにつれて大きくなる波打ち形状となる。ここで、天板部2と縦壁部3との境界に対応する位置から縦壁部3とフランジ部4との境界に対応する位置に向かう方向は、天板部形成位置12の幅方向でも良いし、その幅方向に対し、予め設定した角度だけ長手方向に傾いた方向であっても良い。要は、縦壁部形成位置13を幅方向に交差する方向であればよい。
 例えば図6に示すように、3個の凹凸形状(波形形状)を作成する場合は、7個の制御点30を設定し、制御点30のうちの端点は固定して、一つ飛ばしに制御点30を一定距離だけ板厚方向へ変位させて、縦壁部形成位置13とフランジ部形成位置14との境界での凹凸形状(波形形状)を決定する。この条件により設計した中間成形品40の形状を図7に示す。
 また、波打ち形状)は、図7で示した形状の他に、図8に示すように、凹凸の方向が反転した形状や、凹凸形状が反周期ずれた形状、凸形状若しくは凹形状のみで構成された形状や、凹凸の数が変化した形状、また、凹凸形状の振幅がそれぞれ変化した形状を有していても良い。波打ち形状)は、上記ΔLの線長が稼げていればよい。
 (第1の成形工程9A用の金型)
 上記のように設計された中間成形品40を成形するための金型を図9に示す。
 第1の成形工程9Aで使用する金型は例えば、ダイ50で構成される上型と、パンチ52及び目的とするプレス部品形状1における天板部2の部分をダイ50と共に挟圧するしわ押え51で構成される下型を有する金型である。
 そして、平坦な形状を有する金属板10の天板部形成位置12を、上型のダイ50と下型のしわ押え51で挟圧した後、更に上型を下降させて、ダイ50とパンチ52によって、縦壁部形成位置13及びフランジ部形成位置14に、上記設計した波打ち形状からなる凹凸の形状を張出し成形する。
 <第2の成形工程9B>
 第2の成形工程9Bは、第1の成形工程9Aで成形された中間成形品40に曲げ加工を施して、目的とするプレス部品形状1での天板部2と縦壁部3との間の稜線6及び縦壁部3とフランジ部4の間の稜線7を形成して、中間成形品40を目的のプレス部品形状1に成形する工程である。
 第2の成形工程9Bでは、例えば図10に示されるような稜線部位置を曲げ加工するダイ60及び曲げ刃61で構成される上型とパンチ63で構成される下型を有する曲げ成形金型を使用する。
 この曲げ成形金型では、パンチとダイで金属板10の天板部形成位置12を挟圧した状態で、左右の曲げ刃61をパンチに向けて成形下死点まで移動させることで、縦壁部3及び縦壁部3を曲げ成形する。
 このとき、曲げ刃61は、図11に示すように、通常のプレス角度に対して、パンチ63から離れる方向に向けて0度以上90度以下、好ましくは0度以上45度の範囲の角度γ、更に好ましくは5度以上40度以下の範囲の角度γで移動することで成形を行うように構成することが好ましい。
 (作用その他)
 (1)本実施形態のプレス部品の製造方法では、縦壁部3及びフランジ部4となる領域に、長手方向に沿って連続する凹凸形状を有し、その凹凸形状の板厚方向の振幅が、天板部2と縦壁部3との境界6に対応する位置16から縦壁部3とフランジ部4との境界7に対応する位置17に向かうにつれて大きくなる波打ち形状が形成された中間成形品40に、金属板10をプレス成形する第1の成形工程9Aと、中間成形品40に曲げ加工を施して、プレス部品形状1での天板部2と縦壁部3との間の稜線6及び縦壁部3とフランジ部4の間の稜線7を形成する第2の成形工程9Bと、を有する。そして、中間成形品40における縦壁部3とフランジ部4との境界7に対応する位置17での長手方向の線長と、プレス部品形状1での縦壁部3とフランジ部4との境界7の長手方向の線長との線長差が、プレス部品形状1での縦壁部3とフランジ部4との境界7の長手方向の線長の一割以下となるように、波打ち形状を設定する。
 この構成によれば、側面視で見たときに、フランジ部側に凸となるように湾曲した形状を少なくとも一カ所以上有する断面ハット型形状の成形部品について、割れやシワ、寸法精度低下といった成形不良を低減して製造可能となる。そして、本発明の態様によれば、例えば、天板部2とフランジ部4の長手方向の応力差に起因するスプリングバックを抑制することが可能となる。
 (2)このとき、縦壁部3の垂直高さをH(mm)、側面視で見てプレス部品形状1における湾曲部で天板部2が成す角度をα(度)としたとき、第1の成形工程9Aにおいて、中間部品における縦壁部3とフランジ部4との境界に対応する位置での長手方向の線長が、中間部品を成形する前の金属板の当該位置の長手方向の線長よりも、下記式で定義されるΔLだけ長くなるように、波打ち形状を設定することが好ましい。
 0.9×2πH×(α/360) ≦ ΔL ≦ 1.1×2πH×(α/360)
 この構成によれば、より確実に割れやシワ、寸法精度低下といった成形不良を低減して製造可能となる。
 (3)また、波打ち形状は、縦壁部3とフランジ部4との境界7に対応する位置17の長手方向に沿って、n個(n≧3)の制御点30を設定し、その偶数位置若しくは奇数位置の制御点30を板厚方向に変位させた後に、そのn個の制御点30をスプライン曲線などで滑らかに結んだ線を、縦壁部3とフランジ部4との境界7に対応する位置17での凹凸形状とし、スプライン曲線などで結んだ線31と、天板部2と縦壁部3の境界線に対応する線31とを幅方向で滑らかにつなぐ面形状となるように波打ち形状を設定する。
 この構成によれば、簡易に目的とする波打ち形状を設定することができる。
 (4)本実施形態のプレス部品の製造方法では、第2の成形工程9Bよりも前の処理で、天板部2と縦壁部3との間の稜線6に対応する位置16及び縦壁部3とフランジ部4の間の稜線7に対応する位置17の少なくとも一つの位置に対し、対応する稜線に沿った方向に延びるビード形状20、21若しくは折り目形状を、少なくとも1つ以上形成する。
 この構成によれば、第2の成形工程9Bでの成形性が向上する。
 (5)第2の成形工程9Bで使用するプレス成形装置として、金属板10を稜線部位置で曲げて縦壁部3及びフランジ部4を曲げ成形するための曲げ刃61を有する上型と、パンチ63を有する下型とを有し、曲げ刃61を、プレス方向に対して0度以上90度以下の範囲で設定された角度γで移動して、曲げ成形を行う構成である。
 この構成によれば、第2の成形工程9Bでの曲げ成形を成形性良く実施可能となる。
 (6)曲げ成形の金属板10として、縦壁部3及びフランジ部4となる領域に、長手方向に沿って連続する凹凸形状を有し、凹凸形状の板厚方向の振幅が、天板部2と縦壁部3との境界に対応する位置から縦壁部3とフランジ部4との境界に対応する位置に向かうにつれて大きくなる波打ち形状を有し、縦壁部3とフランジ部4との境界7に対応する位置17での長手方向の線長と、プレス部品形状1での縦壁部3とフランジ部4との境界7の長手方向の線長との線長差が、プレス部品形状1での縦壁部3とフランジ部4との境界7の長手方向の線長の一割以下となるように、波打ち形状が設定されている、プレス成形用の金属板10を採用する。
 この構成によれば、通常の曲げ成形による加工の成形性を向上させることが可能となる。
 次に本実施形態の実施例を説明する。
 1180MPa級冷延鋼板(板厚1.4mm)を想定して、図1に示すような形状を有する部品のプレス成形解析を行った。
 本実施例において、部品形状1を規定する形状パラメータは以下のように設定した。
 <断面形状パラメータ>
天板部幅W :100mm
縦壁高さH :50mm
縦壁角度θ :10度
フランジ長さf:30mm
 <平面視曲がりパラメータ>
曲がり角度α :30度
天板部曲率半径R :1000mm
 成形に使用する金属板10は、長手方向の長さが目的とするプレス部品形状1における天板部2の長手方向長さと等しくなるように設定した。具体的には、上記の(1)式に基づき、金属板10の長手方向長さを523.6mmとした。また、幅は約260mmとした。
 次に、目的とするプレス部品形状1におけるフランジ部4の長さを、上記の(2)式から求めると549.8mmであった。
 したがって、中間成形品40において、縦壁部形成位置13とフランジ部形成位置14の境界での長手方向の長さがΔL=26.2mm長くなるような中間成形品40を設計することとした。
 上記計算で求めた線長を稼ぐため、図6に示したように、天板部2の位置から見て上に凸、下に凸、上に凸となるような凹凸形状を、縦壁部形成位置13及びフランジ部形成位置14の領域に長手方向に沿って3個設計した。凹凸形状の振幅はいずれの凹凸においても26mmで統一した。このときの、縦壁部形成位置13とフランジ部形成位置14の境界での線長は約550mmであり、上記計算で求めた必要な線長とほぼ同等である。
 次に、図9に示す金型を使用して金属板10の成形解析を行い、中間成形品40を取得した。この成形解析において、しわ押え力は50tonとした。
 次に第2の成形工程9Bにおいて、中間成形品40を図10に示す曲げ成形金型で曲げ成形解析を実施した。本成形では、稜線を曲げる曲げ刃61は、プレス方向に対して30度だけ傾いた角度で曲げるカム機構を用いて成形した。また、このときのパッド圧力は5tonとした。
 さらに、第3の成形工程として、断面の開きを引き起こすスプリングバックを抑制するため、図12に示すようなリストライク成形用金型での成形解析を第2の成形工程9Bの後に実施した。このリストライク金型は、ダイ70で構成される上型とパンチ71で構成される下型からなり、天板部2に隣接する曲げ部にC12程度の面取り形状を付与することで、断面の開きの抑制を図ったものである。
 また、本発明に基づく工法に対する比較例として、従来から行われているパッド曲げ成形による成形解析も合わせて実施した。このときに使用したパッド曲げ成形用の金型を図13に示す。パッド曲げ成形金型はダイ80及びパッド81で構成される上型と、パンチで構成される下型からなり、上型を下降させながら天板部形成位置12をパッド81とパンチ82で挟圧しながら稜線を曲げる成形方法であり、パッド圧力は5tonとした。
 上記条件で成形解析を実施し、従来のパッド曲げ成形、及び本発明に基づく工法での成形下死点における成形性の評価分布をそれぞれ求めてみた。
 その成形性の評価分布によると、従来の曲げ成形では、プレス部品形状1の天板部2で材料が余ってしまうため、図14に示すように、シワ傾向の評価となっている。更に天板部2と隣接する曲げ稜線の両端付近では割れ傾向も確認された。
 一方で、本発明に基づく工法では、図15に示すように、天板部2のシワ傾向及び割れ傾向発生せずに成形することができた。
 次に、従来パッド曲げ及び本発明に基づく工法での成形下死点における長手方向の板厚中心応力分布をそれぞれ求めてみた。
 従来のパッド曲げ成形においては、天板部2に大きな圧縮応力(長手方向中央部側で-1.134E)が作用し、反対にフランジ部4には大きな引張応力(長手方向中央部側で1.009E)が作用していた。一方で、本発明に基づく工法では、天板部2の圧縮応力が大きく低減し長手方向中央部側で-861.7となり、更にフランジ部4の引張応力はほとんど発生せず長手方向中央部側で455.9と低い値となっていた。
 続いて、従来のパッド曲げ成形及び本発明に基づく工法での離型後における目的とするプレス部品形状1からの乖離量分布をそれぞれ求めてみた。
 従来のパッド曲げ成形で成形した部品では、天板部2とフランジ部4で長手方向の板厚中心応力に大きな差が発生していたことに起因して、長手方向の端部が落ち込むように大きくスプリングバックした。一方で、本発明に基づく工法では、天板部2とフランジ面の長手方向の板厚中心応力差が大きく減少したことによって、長手方向端部が持ち上がるようなスプリングバックが、従来のパッド曲げ成形で成形した部品に比べて、大きく抑制されたことを確認した。
 ここで、発明に基づく例では、第3の成形工程を有する場合であったが、この第3の工程を行わない場合であっても、天板部2のシワ傾向及び割れ傾向発生せずに成形でき、従来の曲げ成形で成形する場合に比べて、離型後における目的とするプレス部品形状1からの乖離量も小さいことを確認した。
 ここで、本願が優先権を主張する、日本国特許出願2018-034571(2018年 2月28日出願)の全内容は、参照により本開示の一部をなす。ここでは、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく各実施形態の改変は当業者にとって自明なことである。
1 プレス部品形状
2 天板部
3 縦壁部
4 フランジ部
6、7 境界(稜線)
9A 第1の成形工程
9B 第2の成形工程
10 金属板
12 天板部形成位置
13 縦壁部形成位置
14 フランジ部形成位置
20、21 ビード形状
30 制御点
31 スプライン曲線
40 中間成形品

Claims (8)

  1.  天板部の幅方向両側に縦壁部及びフランジ部を有する断面ハット型形状であり、且つ、上記天板部の長手方向に沿った1又は2以上の箇所に、側面視で見て上記フランジ部側に凸となるように湾曲した湾曲部を有するプレス部品形状のプレス部品を、金属板をプレス成形して製造するプレス部品の製造方法であって、
     上記縦壁部及びフランジ部となる領域に対し波打ち形状が形成された中間成形品に、上記金属板をプレス成形する第1の成形工程と、
     上記中間成形品に曲げ加工を施して、上記プレス部品形状での上記天板部と縦壁部との間の稜線及び上記縦壁部とフランジ部の間の稜線を形成する第2の成形工程と、を有し、
     上記波打ち形状は、長手方向に沿って並ぶ凹凸形状を有し、その凹凸形状の板厚方向の振幅が、上記天板部と上記縦壁部との境界に対応する位置から上記縦壁部と上記フランジ部との境界に対応する位置に向かうにつれて大きくなる形状であり、
     上記中間成形品における上記縦壁部と上記フランジ部との境界に対応する位置での長手方向の線長と、上記プレス部品形状での上記縦壁部と上記フランジ部との境界の長手方向の線長との線長差が、上記プレス部品形状での上記縦壁部と上記フランジ部との境界の長手方向の線長の一割以下となるように、上記波打ち形状を設定することを特徴とするプレス部品の製造方法。
  2.  上記縦壁部の垂直高さをH(mm)、側面視で見て上記プレス部品形状における上記湾曲部で天板部が成す角度をα(度)としたとき、
     第1の成形工程において、上記中間成形品における上記縦壁部と上記フランジ部との境界に対応する位置での長手方向の線長が、上記中間成形品を成形する前の金属板での当該位置の長手方向の線長よりも、下記式で定義されるΔLだけ長くなるように上記波打ち形状を設定することを特徴とする請求項1に記載したプレス部品の製造方法。
     0.9×2πH×(α/360) ≦ ΔL ≦ 1.1×2πH×(α/360)
  3.  上記波打ち形状は、上記縦壁部と上記フランジ部との境界に対応する位置の長手方向に沿って並ぶようにn個(n≧3)の制御点を設定し、その複数の制御点のうちの偶数位置若しくは奇数位置の制御点を板厚方向に変位させた後に、そのn個の制御点を滑らかに結んだ線を、上記縦壁部と上記フランジ部との境界に対応する位置での凹凸形状とし、
     上記滑らかに結んだ線と、上記天板部と縦壁部の境界線に対応する線とを幅方向で滑らかにつなぐ面形状となるように上記波打ち形状を設定することを特徴とする請求項1又は請求項2に記載したプレス部品の製造方法。
  4.  上記第2の成形工程よりも前の処理で、上記天板部と上記縦壁部との間の稜線に対応する位置及び上記縦壁部と上記フランジ部の間の稜線に対応する位置の少なくとも一つの位置に対し、対応する稜線に沿った方向に延びるビード形状若しくは折り目形状を、少なくとも1つ以上形成することを特徴とする請求項1~請求項3のいずれか1項に記載したプレス部品の製造方法。
  5.  上記プレス成形される金属板は、引張強度が590MPa以上の鋼材であることを特徴とする請求項1~請求項4のいずれか1項に記載したプレス部品の製造方法。
  6.  請求項1~請求項5のいずれか1項に記載したプレス部品の製造方法における、第2の成形工程で使用するプレス成形装置であって、
     金属板を稜線部位置で曲げて縦壁部及びフランジ部を曲げ成形するための曲げ刃を有する上型と、パンチを有する下型とを有し、
     上記曲げ刃は、プレス方向に対して0度以上90度以下の範囲で設定された角度で移動して、上記曲げ成形を行う構成であることを特徴とするプレス成形装置。
  7.  天板部の幅方向両側に縦壁部及びフランジ部を有する断面ハット型形状であり、且つ、上記天板部の長手方向に沿った1又は2以上の箇所に、側面視で見て上記フランジ部側に凸となるように湾曲した湾曲部を有するプレス部品形状に成形される、プレス成形用の金属板であって、
     上記縦壁部及びフランジ部となる領域に、長手方向に沿って連続する凹凸形状を有し、上記凹凸形状の板厚方向の振幅が、上記天板部と上記縦壁部との境界に対応する位置から上記縦壁部と上記フランジ部との境界に対応する位置に向かうにつれて大きくなる波打ち形状を有し、
     上記縦壁部と上記フランジ部との境界に対応する位置での長手方向の線長と、上記プレス部品形状での上記縦壁部と上記フランジ部との境界の長手方向の線長との線長差が、上記プレス部品形状での上記縦壁部と上記フランジ部との境界の長手方向の線長の一割以下となるように、上記波打ち形状が設定されている、プレス成形用の金属板。
  8.  請求項7に記載の金属板に曲げ加工を施して、上記プレス部品形状での上記天板部と縦壁部との間の稜線及び上記縦壁部とフランジ部の間の稜線を成形するプレス部品の製造方法であって、
     金属板を稜線部の位置で曲げて縦壁部及びフランジ部を曲げ成形するための曲げ刃を、プレス方向に対して0度以上90度以下の範囲で設定された角度で移動させることを特徴とするプレス部品の製造方法。
PCT/JP2019/006553 2018-02-28 2019-02-21 プレス部品の製造方法、プレス成形装置、及びプレス成形用の金属板 WO2019167793A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020207024565A KR102356422B1 (ko) 2018-02-28 2019-02-21 프레스 부품의 제조 방법, 프레스 성형 장치 및, 프레스 성형용의 금속판
EP19760805.2A EP3760332A4 (en) 2018-02-28 2019-02-21 PRESS MOLDING PRODUCTION PROCESS, PRESS MOLDING DEVICE AND METAL PLATE FOR PRESS MOLDING
US16/975,601 US11712729B2 (en) 2018-02-28 2019-02-21 Production method for pressed components, press forming device, and metal sheet for press forming
MX2020008962A MX2020008962A (es) 2018-02-28 2019-02-21 Metodo de produccion para componentes prensados, dispositivo de moldeado por prensado, y lamina de metal para moldeado por prensado.
CN201980015815.8A CN111836689B (zh) 2018-02-28 2019-02-21 冲压部件的制造方法、冲压成型装置以及冲压成型用的金属板
JP2019521505A JP6551637B1 (ja) 2018-02-28 2019-02-21 プレス部品の製造方法、プレス成形装置、及びプレス成形用の金属板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-034571 2018-02-28
JP2018034571 2018-02-28

Publications (1)

Publication Number Publication Date
WO2019167793A1 true WO2019167793A1 (ja) 2019-09-06

Family

ID=67805727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006553 WO2019167793A1 (ja) 2018-02-28 2019-02-21 プレス部品の製造方法、プレス成形装置、及びプレス成形用の金属板

Country Status (3)

Country Link
US (1) US11712729B2 (ja)
EP (1) EP3760332A4 (ja)
WO (1) WO2019167793A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023135914A1 (ja) * 2022-01-17 2023-07-20 Jfeスチール株式会社 プレス成形解析方法、プレス成形解析装置及びプレス成形解析プログラム
WO2023135913A1 (ja) * 2022-01-14 2023-07-20 Jfeスチール株式会社 プレス成形解析方法、プレス成形解析装置及びプレス成形解析プログラム
WO2023139900A1 (ja) * 2022-01-21 2023-07-27 Jfeスチール株式会社 プレス成形解析の解析精度評価方法
JP2023103926A (ja) * 2022-01-14 2023-07-27 Jfeスチール株式会社 プレス成形解析方法、プレス成形解析装置及びプレス成形解析プログラム
JP2023104830A (ja) * 2022-01-17 2023-07-28 Jfeスチール株式会社 プレス成形解析方法、プレス成形解析装置及びプレス成形解析プログラム
JP2023107176A (ja) * 2022-01-21 2023-08-02 Jfeスチール株式会社 プレス成形解析の解析精度評価方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210155437A (ko) * 2020-06-15 2021-12-23 삼성디스플레이 주식회사 윈도우 성형 장치 및 이를 이용한 윈도우 성형 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004174531A (ja) * 2002-11-26 2004-06-24 Nisshin Steel Co Ltd 薄鋼板のプレス成形方法およびその金型装置
JP4021793B2 (ja) 2003-04-16 2007-12-12 新日本製鐵株式会社 形状凍結性に優れたハット型成形部品のプレス成形方法
WO2016075937A1 (ja) * 2014-11-12 2016-05-19 新日鐵住金株式会社 プレス成形品の製造方法および製造装置
WO2018030240A1 (ja) * 2016-08-09 2018-02-15 Jfeスチール株式会社 プレス成形品の製造方法
JP2018034571A (ja) 2016-08-30 2018-03-08 株式会社イノアックコーポレーション 吸気ダクト

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4367543B2 (ja) 2007-09-21 2009-11-18 トヨタ自動車株式会社 車体構造材用成形品
JP2009241109A (ja) 2008-03-31 2009-10-22 Kobe Steel Ltd チャンネル部材の曲げ成形方法
JP5380890B2 (ja) * 2008-04-15 2014-01-08 新日鐵住金株式会社 形状凍結性に優れたプレス成形方法およびその装置
CN202861089U (zh) 2012-09-05 2013-04-10 成都中弘轨道交通环保产业股份有限公司 密盲孔板冲压成型装置
JP5962774B2 (ja) 2013-01-07 2016-08-03 新日鐵住金株式会社 プレス成形品の製造方法
DE102013011951A1 (de) 2013-07-18 2015-01-22 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Verfahren zum Fertigen von Kraftfahrzeug-Karosserieteilen
CA3018484C (en) 2016-03-28 2019-04-30 Nippon Steel & Sumitomo Metal Corporation Method for producing press-formed product
WO2018012405A1 (ja) * 2016-07-15 2018-01-18 Jfeスチール株式会社 プレス成形用の金属板及びその製造方法、並びにプレス品製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004174531A (ja) * 2002-11-26 2004-06-24 Nisshin Steel Co Ltd 薄鋼板のプレス成形方法およびその金型装置
JP4021793B2 (ja) 2003-04-16 2007-12-12 新日本製鐵株式会社 形状凍結性に優れたハット型成形部品のプレス成形方法
WO2016075937A1 (ja) * 2014-11-12 2016-05-19 新日鐵住金株式会社 プレス成形品の製造方法および製造装置
WO2018030240A1 (ja) * 2016-08-09 2018-02-15 Jfeスチール株式会社 プレス成形品の製造方法
JP2018034571A (ja) 2016-08-30 2018-03-08 株式会社イノアックコーポレーション 吸気ダクト

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3760332A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023135913A1 (ja) * 2022-01-14 2023-07-20 Jfeスチール株式会社 プレス成形解析方法、プレス成形解析装置及びプレス成形解析プログラム
JP2023103926A (ja) * 2022-01-14 2023-07-27 Jfeスチール株式会社 プレス成形解析方法、プレス成形解析装置及びプレス成形解析プログラム
JP7392746B2 (ja) 2022-01-14 2023-12-06 Jfeスチール株式会社 プレス成形解析方法、プレス成形解析装置及びプレス成形解析プログラム
WO2023135914A1 (ja) * 2022-01-17 2023-07-20 Jfeスチール株式会社 プレス成形解析方法、プレス成形解析装置及びプレス成形解析プログラム
JP2023104830A (ja) * 2022-01-17 2023-07-28 Jfeスチール株式会社 プレス成形解析方法、プレス成形解析装置及びプレス成形解析プログラム
JP7392747B2 (ja) 2022-01-17 2023-12-06 Jfeスチール株式会社 プレス成形解析方法、プレス成形解析装置及びプレス成形解析プログラム
WO2023139900A1 (ja) * 2022-01-21 2023-07-27 Jfeスチール株式会社 プレス成形解析の解析精度評価方法
JP2023107176A (ja) * 2022-01-21 2023-08-02 Jfeスチール株式会社 プレス成形解析の解析精度評価方法
JP7416106B2 (ja) 2022-01-21 2024-01-17 Jfeスチール株式会社 プレス成形解析の解析精度評価方法

Also Published As

Publication number Publication date
EP3760332A1 (en) 2021-01-06
EP3760332A4 (en) 2021-04-14
US20200398328A1 (en) 2020-12-24
US11712729B2 (en) 2023-08-01

Similar Documents

Publication Publication Date Title
WO2019167793A1 (ja) プレス部品の製造方法、プレス成形装置、及びプレス成形用の金属板
JP6631759B1 (ja) プレス部品の製造方法、プレス成形装置及びプレス成形用の金属板
JP6551637B1 (ja) プレス部品の製造方法、プレス成形装置、及びプレス成形用の金属板
JP6590071B2 (ja) プレス成形品の製造方法
US11383286B2 (en) Metal sheet for press forming, press forming device, and production method for pressed component
WO2016203904A1 (ja) 伸びフランジ成形部品の製造方法
JP2009241109A (ja) チャンネル部材の曲げ成形方法
JP5020858B2 (ja) 部材長手方向の平面内に屈曲部を有する金属製断面ハット型形状部材およびそのプレス成形方法
JP6075463B2 (ja) 自動車車体用構造部材
JP2008119736A (ja) プレス成形金型装置およびプレス成形方法
WO2014112391A1 (ja) 立体縁付き金属部品の製造方法および製造用金型
JP6112226B2 (ja) プレス成形方法、及びプレス成形部品の製造方法
JP6323414B2 (ja) プレス成形方法
JP2021176646A (ja) プレス部品の製造方法、プレス成形用の金属板、及び高張力鋼板
US20210023601A1 (en) Method of designing press-formed product, press-forming die, press-formed product, and method of producing press-formed product
JP4907590B2 (ja) 部材長手方向の平面外で屈曲部を有する金属製断面ハット型形状部材およびそのプレス成形方法
JP6022363B2 (ja) 立体縁付き金属部品の製造用金型
JP6907911B2 (ja) プレス成形品の製造方法
JP6741268B2 (ja) エンボス形状を有する鋼板の製造方法及び製造装置
JP6330766B2 (ja) プレス成形方法
JP6022364B2 (ja) 立体縁付き金属部品の製造用金型
JP7522994B2 (ja) プレス部品の製造方法、プレス成形用の板材、予成形形状成形用の金型、及びプログラム
JP7243670B2 (ja) プレス部品の製造方法、及び金属板
JP2022139485A (ja) プレス成形品の製造方法及び製造設備
JP2024035883A (ja) プレス成形品の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019521505

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760805

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207024565

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019760805

Country of ref document: EP

Effective date: 20200928