WO2023135817A1 - 集電体、蓄電デバイス用電極およびリチウムイオン二次電池、ならびに集電体の製造方法 - Google Patents

集電体、蓄電デバイス用電極およびリチウムイオン二次電池、ならびに集電体の製造方法 Download PDF

Info

Publication number
WO2023135817A1
WO2023135817A1 PCT/JP2022/001467 JP2022001467W WO2023135817A1 WO 2023135817 A1 WO2023135817 A1 WO 2023135817A1 JP 2022001467 W JP2022001467 W JP 2022001467W WO 2023135817 A1 WO2023135817 A1 WO 2023135817A1
Authority
WO
WIPO (PCT)
Prior art keywords
current collector
metal layer
layer
resin layer
yield stress
Prior art date
Application number
PCT/JP2022/001467
Other languages
English (en)
French (fr)
Inventor
鳴宇 陳
誠 遠藤
義広 上林
敬 佐藤
菜摘 香西
喜彦 田邊
修司 塚本
みゆき 柳田
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to CN202280088879.2A priority Critical patent/CN118679609A/zh
Priority to JP2023573812A priority patent/JPWO2023135817A1/ja
Priority to PCT/JP2022/001467 priority patent/WO2023135817A1/ja
Publication of WO2023135817A1 publication Critical patent/WO2023135817A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to current collectors, electrodes for power storage devices, lithium ion secondary batteries, and methods for manufacturing current collectors.
  • Patent Document 1 It has been proposed to use a composite material in which a metal layer is formed on both sides of a resin film as a current collector for a secondary battery.
  • Embodiments of the present disclosure provide current collectors that can have suitable mechanical properties, electrodes for power storage devices and lithium-ion secondary batteries that use such current collectors.
  • a current collector is a current collector including a resin layer having a first surface and a second surface located opposite to the first surface, and a metal layer containing copper, , the metal layer includes a first metal layer located on the first surface side of the resin layer, the yield stress ⁇ Y1 [MPa] of the current collector is the yield stress ⁇ Y2 [MPa] of the resin layer, the From the thickness D2 [ ⁇ m] of the resin layer, the yield stress ⁇ Y3 [MPa] of the metal layer, and the thickness D3 [ ⁇ m] of the metal layer, the following equations (1) and (2) is the value determined by The yield stress ⁇ Y3 [MPa] of the metal layer is obtained by the following formula (3) from the half width ⁇ [°] of the X-ray diffraction peak with the highest intensity in the X-ray diffraction pattern of the metal layer. It is a value obtained by
  • a current collector that can have suitable mechanical properties, an electrode for a power storage device using such a current collector, and a lithium ion secondary battery are provided.
  • FIG. 1 is a schematic cross-sectional view of a current collector according to embodiments of the present disclosure
  • FIG. 4 is a schematic cross-sectional view of another current collector according to an embodiment
  • FIG. 4 is a diagram showing the relationship between the half width ⁇ of the X-ray diffraction peak of a copper film and the yield stress ⁇ Y3
  • FIG. 4 is a schematic cross-sectional view showing a state in which a tensile load is applied to the current collector of Reference Example.
  • FIG. 4 is a schematic cross-sectional view showing a state in which a tensile load is applied to the current collector of Reference Example.
  • FIG. 4 is a schematic cross-sectional view showing a state in which a tensile load is applied to the current collector of Reference Example.
  • FIG. 4 is a schematic cross-sectional view showing a state in which a tensile load is applied to the current collector of Reference Example.
  • 4 is a schematic cross-sectional view showing a state in which a tensile load is applied to the current collector of the embodiment;
  • FIG. 4 is a schematic cross-sectional view showing a state in which a tensile load is applied to the current collector of the embodiment;
  • FIG. 4 is a schematic cross-sectional view showing a state in which a tensile load is applied to the current collector of the embodiment;
  • FIG. FIG. 4 is a schematic cross-sectional view of a current collector of a modified example;
  • FIG. 10 is a schematic cross-sectional view of another current collector of a modified example;
  • FIG. 3 is a diagram showing an example of stress-strain curves of resin layers used in current collectors of Examples and Comparative Examples.
  • FIG. 4 is a diagram showing the relationship between the ratio B and the thickness ratio A and the half width ⁇ of the metal layers in current collectors of Examples and Comparative Examples.
  • 1 is a diagram showing an example of a stress-strain curve of a current collector of Example 1.
  • FIG. 3 is a diagram showing an example of a stress-strain curve of a current collector of Comparative Example 1.
  • FIG. 1 is an exploded perspective view of an electricity storage device electrode according to an embodiment of the present disclosure;
  • FIG. 11B is a cross-sectional view showing a part of the electricity storage device electrode shown in FIG. 11A.
  • FIG. 3 is a cross-sectional view showing a part of another electricity storage device electrode.
  • 1 is a schematic external view of a lithium-ion secondary battery according to an embodiment of the present disclosure
  • FIG. 14 is an exploded perspective view showing a cell taken out from the lithium ion secondary battery shown in FIG. 13.
  • the term “cell” refers to a structure in which at least a pair of a positive electrode and a negative electrode are assembled together.
  • the term “battery” as used herein is used as an umbrella term for various forms such as battery modules, battery packs, etc., having one or more “cells” electrically connected to each other.
  • the present inventors have found that in a current collector using a composite material containing a resin layer and a metal layer, by increasing the elongation rate (elongation at break) as a current collector, It was found that breakage of the current collector and the like during battery operation can be suppressed. Based on this finding, the present inventors investigated a novel current collector structure capable of increasing the breaking elongation, and came up with the embodiments of the present disclosure.
  • FIG. 1 is a schematic cross-sectional view showing an example of the current collector of this embodiment.
  • the current collector of the present embodiment can be used as a current collector for both positive and negative electrodes of an electric storage device such as a lithium ion secondary battery.
  • FIG. 1 shows arrows indicating three mutually orthogonal directions, the X-direction, the Y-direction and the Z-direction.
  • FIG. 1 shows a cross section perpendicular to the Y direction.
  • the current collector 101 shown in FIG. 1 includes a resin layer 20 and at least one metal layer 30 containing copper.
  • the resin layer 20 and at least one metal layer 30 are laminated in the thickness direction of the resin layer 20 (here, the Z direction).
  • the resin layer 20 functions as a support for the metal layer 30 in the current collector 101 .
  • the resin layer 20 has a first surface 20a and a second surface 20b opposite to the first surface 20a.
  • the resin layer 20 has a thickness D2.
  • the thickness of each layer refers to the average distance in the Z direction between the top and bottom surfaces of that layer. That is, the thickness D2 of the resin layer 20 is the average distance between the first surface 20a and the second surface 20b.
  • At least one metal layer 30 includes a first metal layer 31 located on the first surface 20a side of the resin layer 20 .
  • the first metal layer 31 has a first surface 31a located on the resin layer 20 side and a second surface 31b located on the opposite side of the first surface 31a.
  • the first metal layer 31 has a thickness D31.
  • the upper surface of the current collector 101 is the second surface 31 b of the first metal layer 31 and the lower surface of the current collector 101 is the second surface 20 b of the resin layer 20 .
  • current collector 101 may further include layers other than first metal layer 31 and resin layer 20 .
  • the current collector 101 of this embodiment is configured such that the yield stress ⁇ Y1 of the current collector 101 is smaller than the tensile breaking stress ⁇ B2 of the resin layer 20 .
  • the tensile breaking stress ⁇ B2 is measured according to JIS K7127:1999.
  • the yield stress ⁇ Y1 of the current collector 101 is a value obtained from the yield stress ⁇ Y2 of the resin layer 20, the yield stress ⁇ Y3 of the metal layer 30, and the thickness ratio A of the metal layer 30 by the following formula (1).
  • "x" represents multiplication.
  • the yield stress ⁇ Y2 of the resin layer 20 in formula (1) is the tensile yield stress measured according to JIS K7127:1999.
  • the thickness ratio A of the metal layer 30 in formula (1) is the ratio of the thickness D3 of the metal layer 30 to the total thickness of the resin layer 20 and the metal layer 30, and is a value obtained by the following formula (2). .
  • the value of thickness ratio A is calculated as D31/(D2+D31).
  • the yield stress ⁇ Y3 [MPa] of the metal layer 30 in Equation (1) is the half width of the X-ray diffraction peak with the highest intensity in the X-ray diffraction pattern of the metal layer 30 (hereinafter abbreviated as “half width”) ⁇ [ °], it is a value obtained by the following formula (3).
  • the X-ray diffraction peak with the highest intensity is, for example, the X-ray diffraction peak of the (111) plane when the metal layer 30 is a copper layer.
  • Formula (3) is a formula derived by the present inventor by focusing on the crystallinity of the metal layer and measuring the relationship between the crystallinity of the metal layer and the yield stress. Using the formula (3), it is possible to calculate the yield stress ⁇ Y3 of the metal layer 30 by performing X-ray diffraction of the metal layer 30 . A method of deriving Equation (3) will be described later.
  • the yield stress ⁇ Y3 of the metal layer 30 is the It is the yield stress
  • the current collector of this embodiment may have two or more metal layers each containing copper. In that case, the thickness D3 in the above formula (2) is the total thickness of those metal layers.
  • FIG. 2 is a schematic cross-sectional view showing another example of the current collector of this embodiment.
  • the current collector 102 shown in FIG. 2 is different from the current collector 101 shown in FIG. 1 in that it further includes a second metal layer 32 located on the second surface 20b side of the resin layer 20 .
  • Such a current collector 102 can be used, for example, in stacked cells.
  • the first metal layer 31, the resin layer 20 and the second metal layer 32 are laminated in the Z direction.
  • the second metal layer 32 contains copper.
  • the material of the second metal layer 32 is, for example, the same as the material of the first metal layer 31 .
  • the material of the second metal layer 32 only needs to contain copper, and may be different from the material of the first metal layer 31 .
  • the second metal layer 32 has a thickness D32.
  • the thickness D32 may be the same as or different from the thickness D31 of the first metal layer 31 .
  • the current collector 102 is also configured such that the yield stress ⁇ Y1 obtained from the above formulas (1) to (3) is smaller than the tensile breaking stress ⁇ B2 of the resin layer 20.
  • the second metal layer 32 is formed using the same material and under the same conditions as the first metal layer 31, and the second metal layer 32 and the first metal layer 31 have substantially the same crystallinity (that is, the half-value width ⁇ is substantially the same), the half-value width obtained by X-ray diffraction of the first metal layer 31 or the second metal layer 32 is used as the half-value width ⁇ of the metal layer 30 in formula (3). good too.
  • Metals such as copper are typically polycrystalline, consisting of multiple grains. It is known that in polycrystalline bodies, the grain size has a significant effect on the yield strength of the polycrystalline body, with smaller grain sizes (i.e., increasing proportion of grain boundaries) yielding higher yield strengths. ing.
  • the relationship between the yield stress and the crystal grain size is expressed by the following Hall-Petch relationship.
  • ⁇ y is the yield stress
  • ⁇ 0 is the frictional stress
  • k is the constant indicating the resistance to sliding of the grain boundary
  • d is the grain size. It is known that the relationship between the yield stress and grain size of copper or copper alloys also follows the Hall-Petch formula.
  • the present inventors found that the yield stress ⁇ Y3 of the metal layer (corresponding to the yield stress ⁇ y in the Hall-Petch formula) and the maximum intensity in the X-ray diffraction pattern of the metal layer A relational expression between the half width ⁇ of the high X-ray diffraction peak was derived from the experimental results shown below. It is known that the half width ⁇ of the metal layer is inversely proportional to the grain size (crystallite size) of the metal layer (Scherrer equation).
  • each current collector sample was produced by forming copper films on both sides of the resin layer by electroplating.
  • a polyethylene terephthalate (PET) film having a thickness of 4.5 ⁇ m was used as the resin layer.
  • the thickness of each copper film was set to 1.0 ⁇ m.
  • each current collector sample was subjected to X-ray diffraction measurement, and the half width ⁇ of the X-ray diffraction peak with the highest intensity was obtained. Further, each current collector sample was subjected to a tensile test in accordance with JIS K7127:1999 to obtain a stress-strain curve. Then, from the stress-strain curve of the current collector sample, the portion dependent on the PET film was subtracted to obtain the stress-strain curve of only the copper film, thereby obtaining the yield stress ⁇ Y3 of the copper film.
  • FIG. 3 is a diagram plotting the relationship between the half width ⁇ of the copper film and the yield stress ⁇ Y3 in each current collector sample.
  • the horizontal axis is the positive square root of the half width ⁇ [°]
  • the vertical axis is the yield stress ⁇ Y3 [MPa]. From the results shown in FIG. 3, it is confirmed that the larger the half-value width ⁇ , that is, the smaller the crystallite size, the larger the yield stress ⁇ Y3.
  • the measured value of the yield stress ⁇ Y3 is roughly proportional to the square root ( ⁇ ) of the half width ⁇ . This trend is similar to the Hall-Petch formula described above.
  • the current collectors 101 and 102 of this embodiment are configured such that the yield stress ⁇ Y1 obtained by the above formulas (1) to (3) is smaller than the tensile breaking stress ⁇ B2 of the resin layer 20.
  • FIG. By satisfying the relationship ⁇ Y1 ⁇ B2, the elongation rate (fracture elongation) of the current collectors 101 and 102 can be increased, as will be described later.
  • the breaking elongation of the current collectors 101 and 102 can be increased up to the same extent as the breaking elongation of the resin layer 20 .
  • the current collectors 101 and 102 it is possible to suppress breakage of the current collectors 101 and 102 in the current collector transporting process, the calendering process, and the like when manufacturing an electrode for an electricity storage device, so that the process defect rate can be improved.
  • the current collectors 101 and 102 even when a large force is locally applied to the current collectors 101 and 102 due to the expansion and contraction of the active material during charging and discharging, the current collectors 101 and 102 It is possible to suppress deformation of the battery, deterioration of battery characteristics (increase in resistance) and/or variation in characteristics due to breakage or tearing of the battery.
  • breakage occurs in the current collector refers to a state in which the entire thickness of the current collector including the metal layer and the resin layer is broken or torn. Does not include the state in which a broken part has occurred.
  • breakage occurs in the current collector includes a state in which a part of the current collector is broken or torn in the thickness direction of the current collector, and does not necessarily mean that the current collector (e.g., a battery current collector) is completely separated into two or more parts. Note that, among the fractured portions of the current collector, the fractured portion extending linearly in a plan view is sometimes referred to as a “tear”.
  • the breaking elongation of the current collectors 101 and 102 is not particularly limited, but may be greater than the breaking elongation (for example, about 3 to 5%) of the metal layer 30 and equal to or less than the breaking elongation of the resin layer 20. .
  • the breaking elongation of the current collectors 101 and 102 is preferably, for example, greater than 6%, and may be, for example, 20% or more.
  • 4A to 4C show the metal layer 930 and the resin layer 920 when a tensile load is applied to the current collector 900 of the reference example in which the yield stress ⁇ Y1 is greater than the tensile breaking stress ⁇ B2 of the resin layer 920 ( ⁇ Y1> ⁇ B2).
  • 2 is an enlarged cross-sectional view schematically illustrating the state of FIG.
  • a tensile load F is applied to the current collector 900 in the X-axis direction shown in the figure.
  • the metal layer 930 is partially thinned to form the constricted portion 131 .
  • Such a phenomenon is called "necking" or “necking phenomenon”. Necking may occur, for example, in portions where adhesion between the metal layer 930 and the resin layer 920 is low.
  • a crack extending in a direction intersecting the X-axis direction (for example, a direction substantially parallel to the Y-axis direction) may be generated on the upper surface of the metal layer 930 at the portion where the necking occurs.
  • portion 131 that is, the point at which the fracture occurs is the yield point of current collector 900.
  • the full load applied to the constricted portion 131 is applied to the portion 21 of the resin layer 920 located below the broken portion 132 .
  • the yield stress ⁇ Y1 is greater than the tensile breaking stress ⁇ B2 of the resin layer 920, so that the stress exceeding the tensile breaking stress ⁇ B2 is applied to the portion 21 of the resin layer 920 immediately after the metal layer 930 breaks. It takes.
  • FIG. 4C the portion 21 of the resin layer 920 is also broken, and the current collector 900 can be broken (see the stress-strain curve of FIG. 10B).
  • the current collector 900 breaks without stretching when the fracture portion 132 occurs in the metal layer 930 (that is, the current collector 900 yields).
  • the elongation at break of body 900 is considered to be small.
  • 5A to 5C show the states of the metal layer 30 and the resin layer 20 when a tensile load is applied to the current collector 101, the yield stress ⁇ Y1 of which is set to be smaller than the tensile breaking stress ⁇ B2 of the resin layer 20.
  • 1 is an enlarged cross-sectional view schematically illustrating the .
  • the constriction 131 is formed in the metal layer 30.
  • the stress applied to the current collector 101 by the tensile load F reaches the yield stress ⁇ Y1
  • the constricted portion 131 may break.
  • the stress applied to the portion 21 of the resin layer 20 immediately after the fracture portion 132 is generated is smaller than the tensile fracture stress ⁇ B2 of the resin layer 20, so the resin layer 20 is not fractured at this point.
  • the resin layer 20 As shown in FIG. 5C, as the tensile load F increases, the resin layer 20 further extends in the X-axis direction. Therefore, the current collector 101 has a higher breaking elongation than the current collector 900 of the reference example shown in FIGS. 4A to 4C.
  • the resin layer 20 can be stretched without breaking until the stress applied to the portion 21 of the resin layer 20 reaches the tensile breaking stress ⁇ B2 (see the stress-strain curve in FIG. 10A). Therefore, the current collector 101 can have a breaking elongation substantially equal to the breaking elongation of the resin layer 20 at maximum.
  • the current collectors 101 and 900 in which the metal layer 30 is arranged only on one side of the resin layer 20 are described as examples, but the same tendency is obtained even if the metal layers are arranged on both sides of the resin layer 20. be done.
  • the resin layer 920 which is the base material
  • the metal layer 930 and the resin layer 920 may break due to the stress received from the active material, resulting in deterioration of battery characteristics (for example, increase in resistance) or deformation of the electrodes. be.
  • the current collector 101 of the present embodiment even if the metal layer 30 is finely broken during calendering, the resin layer 20 does not break at the same time, and tearing of the current collector 101 is suppressed. Therefore, process defects are less likely to occur. Similarly, even if a minute breakage occurs in the metal layer 30 during battery operation, deterioration in battery characteristics and deformation of the electrode can be suppressed as compared to the reference example.
  • the mechanical properties (yield stress, tensile breaking stress) of the resin layer, the crystallinity and thickness of the metal layer are adjusted so that the yield stress ⁇ Y1 is smaller than the tensile breaking stress ⁇ B2 of the resin layer ( ⁇ Y1 ⁇ B2).
  • a ratio A is set.
  • the current collector of this embodiment can be manufactured by controlling the film structure, material, thickness, formation method, etc. of each layer constituting the laminated structure. These regulatory factors are related to each other. For example, if the thickness of the metal layer is different, the appropriate conditions for forming the metal layer, the appropriate thickness of the resin layer, and the like may be different.
  • the thickness ratio A of the metal layer to the thickness of the entire current collector is increased. It is thought that there are many things. In this case, the thickness ratio A of the metal layer in formula (2) increases. As a result, the term “A ⁇ Y3” in equation (1) becomes large, making it difficult to make the yield stress ⁇ Y1 of the current collector smaller than the tensile breaking stress ⁇ B2 of the resin layer.
  • the current collector is designed so as to satisfy the relationship ⁇ Y1 ⁇ B2.
  • the metal layer 30 having a relatively large crystallite size (that is, having a small half-value width ⁇ ) and not increasing the thickness of the metal layer 30, "A ⁇ Y3" in the formula (1) can be terms can be made smaller. As a result, the relationship ⁇ Y1 ⁇ B2 can be satisfied, and a high elongation at break can be obtained. Furthermore, the metal layer 30 with a small half width ⁇ can have excellent crystallinity and low electrical resistance (sheet resistance). Therefore, even when the thicknesses of the current collectors 101 and 102 are suppressed from the viewpoint of increasing the elongation at break, sufficient electrical properties can be ensured.
  • the yield stress ⁇ Y2, the tensile breaking stress ⁇ B2, the thickness D2, the thickness ratio A of the metal layer 30, the thickness D3 of the metal layer 30, and the like of the resin layer 20 of the current collectors 101 and 102 of the present embodiment are ⁇ Y1 ⁇ B2. is not particularly limited as long as it is set so as to satisfy
  • the thickness D2 of the resin layer 20 may be, for example, 3 ⁇ m or more, preferably 4 ⁇ m or more. Thereby, the strength of the current collectors 101 and 102 can be ensured more reliably. Further, by increasing the thickness of the resin layer 20, it is easy to adjust the thickness ratio A of the metal layer 30 within a desired range. On the other hand, from the viewpoint of improving the energy density, the thickness of the resin layer 20 may be, for example, 12 ⁇ m or less, preferably 6 ⁇ m or less.
  • the yield stress ⁇ Y2 of the resin layer 20 may be, for example, 120 MPa or less.
  • the tensile breaking stress ⁇ B2 may be, for example, 150 MPa or more.
  • the thickness (total thickness) D3 of the metal layer 30 may be, for example, 0.1 ⁇ m or more. Thereby, sheet resistance can be made lower. On the other hand, the thickness D3 of the metal layer 30 may be, for example, 6 ⁇ m or less, preferably 3 ⁇ m or less. Accordingly, an increase in the weight of the current collector 101 can be suppressed. In addition, it becomes easier to adjust the thickness ratio A of the metal layer 30 within a desired range.
  • the thickness D3 of the metal layer 30 may be smaller than the thickness D2 of the resin layer 20 .
  • the thickness of each of the first metal layer 31 and the second metal layer 32 is, for example, 0.5. It may be 05 ⁇ m or more and 1.5 ⁇ m or less.
  • the half width ⁇ of the X-ray diffraction peak with the highest intensity in the X-ray diffraction pattern of the metal layer 30 may be, for example, 0.33° or less, more preferably 0.25° or less.
  • the yield stress of the metal layer 30 is believed to follow the Hall-Petch equation discussed above. From this, it is considered that the yield stress ⁇ Y3 of the metal layer 30 decreases as the crystallite size in the metal layer 30 increases, that is, as the half width ⁇ decreases.
  • the half-value width ⁇ is set smaller than the tensile breaking stress ⁇ B2 of the resin layer. It's easy to do.
  • the half width ⁇ may be, for example, 0.08° or more. Thereby, a decrease in sheet resistance due to deformation (plastic deformation) or cracking of the metal layer 30 can be suppressed.
  • the thickness ratio A of the metal layer 30 may be, for example, 0.44 or less. As a result, the yield stress ⁇ Y1 of the current collectors 101 and 102 can be reduced, and the elongation at break can be easily increased. Moreover, an increase in the weight of the current collectors 101 and 102 can be suppressed. On the other hand, the thickness ratio A of the metal layer 30 may be, for example, 0.02 or more. If it is 0.02 or more, the sheet resistance of the metal layer 30 can be reduced.
  • the resin layer 20 is, for example, a sheet whose base material is a thermoplastic resin.
  • polyolefin resins include polyethylene (PE) and polypropylene (PP).
  • the polyolefin-based resin may be an acid-modified polyolefin-based resin.
  • polyester resins include polybutylene terephthalate (PBT) and polyethylene naphthalate.
  • polyamide-based resins include nylon 6, nylon 66 and polymetaxylylene adipamide (MXD6).
  • a uniaxially oriented sheet or biaxially oriented sheet of polyethylene terephthalate, or a biaxially oriented sheet of polypropylene can be suitably used for the resin layer.
  • the resin layer 20 preferably contains at least one of polyethylene terephthalate, polyimide, polypropylene, polycarbonate, polyamide and polyvinyl chloride.
  • the resin layer 20 is not limited to a single layer film.
  • the resin layer 20 may have a laminated structure including a plurality of resin films.
  • the tensile breaking stress and yield stress of the thickest main layer in the laminated structure can be used as the tensile breaking stress ⁇ B2 and yield stress ⁇ Y2 of the resin layer 20 .
  • the yield stress ⁇ Y2 (or tensile breaking stress ⁇ B2) of the resin layer 20 the yield stress (or tensile stress) of each layer constituting the resin layer 20 is weighted by the thickness ratio, and a value obtained by adding them is used.
  • the yield stress of the entire resin layer 20 can be obtained as the sum of “(ratio to the thickness of the entire resin layer 20) ⁇ yield stress” of each layer constituting the resin layer 20 .
  • Metal layer 30 preferably contains copper as a main component. "Contains as a main component” includes a metal layer having a copper content of more than 50% by weight. The content of copper in metal layer 30 may be 80% by weight or more. Metal layer 30 may include an alloy based on copper. Examples of the metal layer 30 include a copper layer, a copper alloy layer such as Cu—Sn, and Cu—Ni.
  • the metal layer 30 preferably has a low sheet resistance.
  • Sheet resistance is, for example, 60 m ⁇ / ⁇ or less, preferably 30 m ⁇ / ⁇ or less.
  • the metal layer 30 may include a plurality of metal films with different materials, composition ratios, formation methods, and the like.
  • the yield stress of each metal film included in the metal layer 30 is weighted by the ratio of the thicknesses, and the weighted values are added to obtain the yield stress of the metal layer 30. Stress may be determined.
  • the first metal layer 31 and the second metal layer 32 may be made of different materials.
  • the yield stress ⁇ Y3 of the metal layer 30 is the yield stress ⁇ Y31 of the first metal layer 31 determined from the half-value width ⁇ of the first metal layer 31 and the yield stress ⁇ Y31 of the first metal layer 31 determined from the half-value width ⁇ of the second metal layer 32.
  • the yield stress of the two metal layers 32 can be obtained from the following equations (4) and (5) using the yield stress ⁇ Y32 and the yield stress ⁇ Y32.
  • first metal layer 31 and/or the second metal layer 32 may be a single layer film or a laminated film.
  • the yield stress of the thickest main layer among the laminated structures of the metal layers 31 and 32 is used as the yield stress ⁇ Y31 and ⁇ Y32 in the above formula (4).
  • An undercoat layer or the like may be interposed between the first metal layer 31 , the second metal layer 32 and the resin layer 20 .
  • a protective layer or the like may be provided on the surfaces of the first metal layer 31 and the second metal layer 32 .
  • the current collector of this embodiment may further include another solid layer positioned between the resin layer and the metal layer.
  • Such a solid layer is called an "intervening layer”.
  • 6 and 7 are schematic cross-sectional views each showing another example of the current collector of the present embodiment.
  • the current collector 103 shown in FIG. 6 is different from the current collector 101 shown in FIG. 1 in that it further includes a first intervening layer 41 between the first surface 20a of the resin layer 20 and the first metal layer 31. .
  • the first intervening layer 41 contains a metal other than copper as a main component.
  • the intervening layer 41 may be a single layer film or a laminated film.
  • the intervening layer 41 may be, for example, an undercoat layer or an anchor coat layer for strengthening the bond between the resin layer 20 and the metal material.
  • the undercoat layer or anchor coat layer may be an organic layer such as acrylic resin or polyolefin resin, or may be a metal layer formed by a sputtering method or the like.
  • the current collector 104 shown in FIG. 7 includes a first intervening layer 41 positioned between the first surface 20a of the resin layer 20 and the first metal layer 31, and a second surface 20b of the resin layer 20 and the second metal layer. 2 in that it further includes a second intervening layer 42 positioned between the current collector 102 and the current collector 102 shown in FIG.
  • the first intervening layer 41 and the second intervening layer 42 contain metals other than copper as main components.
  • the materials and functions of the first intermediate layer 41 and the second intermediate layer 42 may be the same as those of the first intermediate layer 41 of the current collector 103 shown in FIG.
  • the materials of the first intervening layer 41 and the second intervening layer 42 may be the same or different.
  • the thicknesses of the first intervening layer 41 and the second intervening layer 42 in the current collectors 103 and 104 are appropriately selected according to the functions of the intervening layers, and are not particularly limited.
  • the first intervening layer 41 is preferably thinner than the resin layer 20 and the first metal layer 31 .
  • the second intervening layer 42 is preferably thinner than the resin layer 20 and the second metal layer 32 .
  • the thickness of the first intervening layer 41 and the thickness of the second intervening layer 42 may be the same or different.
  • the current collector of this modified example only needs to have at least one intervening layer located between the resin layer 20 and the metal layer 30 .
  • the current collector of this modification may have an intervening layer between only one of the first metal layer 31 and the second metal layer 32 and the resin layer 20 .
  • the thickness (total thickness) D4 of the intervening layers in the current collector may satisfy, for example, the following formula.
  • the thickness D4 in the above formula is the total thickness of the intervening layers in the current collector. That is, the thickness D4 is the thickness of the first intervening layer 41 in the current collector 103 and the total thickness of the first intervening layer 41 and the second intervening layer 42 in the current collector 104 .
  • the resin layer 20 is prepared.
  • the resin layer 20 is, for example, a polyethylene terephthalate film.
  • Metal layer 30 is formed on the surface of the resin layer 20.
  • Metal layer 30 can be formed by a known semiconductor process. For example, vapor deposition, sputtering, electrolytic plating, electroless plating, etc. may be used.
  • the metal layer 30 may be formed by forming a seed layer on the surface of the resin layer and then forming a copper film on the seed layer by electroplating.
  • a metal foil containing copper such as copper foil may be attached to the surface of the resin layer 20 .
  • the first metal layer 31 is formed on the first surface 20 a of the resin layer 20 and the second metal layer 32 is formed on the second surface 20 b of the resin layer 20 .
  • a copper film is formed as the first metal layer 31 and the second metal layer 32 .
  • a copper film may be formed on the seed layers by electroplating.
  • the formation conditions and thicknesses of the metal films that become the first metal layer 31 and the second metal layer 32 are such that the yield stress ⁇ Y1 obtained by the formulas (1) to (3) is smaller than the tensile breaking stress ⁇ B2 of the resin layer 20. conditions can be adjusted.
  • the conditions for forming the metal film include the substrate temperature during vapor deposition, the purity of the vapor deposition raw material, the vapor deposition rate, the vapor deposition time, and the like.
  • plating the current density, growth rate, plating time, material of the underlying seed layer, conditions for forming the seed layer, types and amounts of additives, and the like are included.
  • the target purity, ultimate vacuum in the chamber, sputtering atmosphere, sputtering pressure, sputtering power, deposition rate, substrate temperature, deposition time, and the like are included.
  • the half width of the metal film ⁇ can be reduced (crystal grain size can be increased).
  • the plating current density is increased, first, a metal film with high internal stress grows. This internal stress acts as a driving force to promote recrystallization of the metal film, thereby enhancing crystallinity and forming a metal film having a large crystal grain size.
  • the seed layer is deposited with high sputtering power, the seed layer heats up, which promotes recrystallization of the seed layer and enhances the crystallinity.
  • a seed layer with high crystallinity it becomes possible to form a metal film with high crystallinity, ie, a large crystal grain size, on the seed layer.
  • the present embodiment includes a step of designing the yield stress and thickness of each layer constituting the laminated structure of the current collector such that the yield stress ⁇ Y1 of the current collector is smaller than the tensile breaking stress ⁇ B2 of the resin layer. is preferred.
  • the yield stress ⁇ Y1 of the current collector may be obtained by the sum of "thickness ratio a ⁇ yield stress ⁇ Y" of each layer constituting the current collector.
  • the "thickness ratio a" is the ratio of the thickness of the layer to the total thickness of the multiple layers that make up the current collector (including the metal layer 30 and the resin layer 20 shown in FIGS. 1 and 2). be. In the design process, among the layers constituting the current collector, a layer that is thinner than the other layers (a layer having a smaller thickness ratio a) may be ignored.
  • a value measured by a tensile test may be used as the value of the tensile breaking stress ⁇ B2 of the resin layer.
  • the design process may include a process of measuring the tensile breaking stress ⁇ B2 of the resin layer.
  • the design process may include a process of designing the yield stress ⁇ Y3 of the metal layer based on the half width ⁇ of the X-ray diffraction peak with the highest intensity in the X-ray diffraction pattern of the metal layer.
  • the design process may include a process of deriving a relational expression between the yield stress ⁇ Y3 of the metal layer and the half width ⁇ .
  • the method of deriving the relational expression is the same as the method described above with reference to FIG.
  • the crystal grain size (or crystallite size) of the metal layer 30 may be measured by a method other than the X-ray diffraction method, and the yield stress ⁇ Y3 of the metal layer may be designed based on the measured crystal grain size.
  • Examples and Comparative Examples A current collector of an example and a current collector of a comparative example were produced, and the breaking elongation of the current collector was evaluated.
  • a resin layer 20 (width: 500 mm, length: 100 m) was prepared.
  • PET polyethylene terephthalate
  • PP polypropylene
  • Table 1 shows the thickness D2 of the resin layer 20 of each example and comparative example.
  • a copper layer with a thickness of 50 nm was formed as a seed layer on the first surface 20a and the second surface 20b of the resin layer 20 by sputtering.
  • the temperature of the base material (resin layer 20) during sputtering was set to room temperature when the base material was a PET film, and -20° C. when the base material was a PP film.
  • copper layers were formed by electrolytic plating as the first metal layer 31 and the second metal layer 32 on the seed layers on the first surface 20a side and the second surface 20b side of the resin layer 20, respectively.
  • the plating temperature was set to 40°C.
  • Sputtering power (film formation power) when forming the seed layer, plating current density when forming the first metal layer 31 and the second metal layer 32, and the first metal layer in each example and each comparative example The total thickness D3 of 31 and the second metal layer 32 is shown in Table 1.
  • the thicknesses of the first metal layer 31 and the second metal layer 32 were set to 1/2 of the total thickness D3.
  • FIG. 8 is a diagram showing an example of stress-strain curves of PET films used in the current collectors of Examples 1-8 and Comparative Examples 1-3. From FIG. 8, it can be seen that the PET film has a yield stress ⁇ Y2 of about 110 MPa and a tensile breaking stress ⁇ B2 of about 225 MPa. In the example shown in FIG. 8, the elongation at break was approximately 35%, but the elongation at break of the PET film varied among the measured samples and was generally within the range of 25 to 35%.
  • the higher the plating current density and the higher the sputtering power when forming the seed layer the smaller the half width ⁇ . This is because, as described above, setting the plating current density to a high value causes a metal film with large internal stress (copper film in this case) to grow, and recrystallization of the metal film proceeds with the internal stress as a driving force. , the crystallinity was enhanced, and a metal film with a small half-value width ⁇ was obtained.
  • the sputtering power at the time of forming the seed layer (copper film in this case) to a high value
  • the deposited seed layer was recrystallized by heat, and a seed layer with a large crystal grain size was obtained. Conceivable. By increasing the crystal grain size of the seed layer, a metal film having a large crystal grain size can be grown on the seed layer.
  • test samples were cut out from the current collector of Example 1.
  • sampling was performed from a portion of the current collector having a width of 500 mm, excluding a region within 50 mm from the edge (edge region).
  • edge region is the region that is usually removed when manufacturing the battery.
  • each test sample was subjected to a tensile test to determine the elongation at break.
  • the tensile test was performed according to JIS K7127:1999.
  • the ratio B of the test samples having a breaking elongation of 6% or less among the 40 test samples was determined.
  • B ⁇ (number of test samples with breaking elongation of 6% or less) / 40 ⁇ x 100
  • test samples were similarly subjected to a tensile test, and the proportion B of test samples with a breaking elongation of 6% or less was determined.
  • the reason for setting 6% as the standard is that when the resin layer 20 hardly stretches after the metal layer 30 breaks (see FIG. 4C), the breaking elongation of the current collector is the breaking elongation of the metal layer. This is because it is thought that it will be about 3 to 5%, and will be 6% or less.
  • the breaking elongation of the current collector is sufficiently larger than the breaking elongation of the metal layer. This is close to the breaking elongation of layer 20 and is believed to be greater than 6%.
  • the breaking elongation of the current collector can be controlled by the relationship between the yield stress ⁇ Y1 of the current collector and the tensile breaking stress ⁇ B2 of the resin layer 20, which is obtained by the formulas (1) to (3).
  • the thickness D3 of the metal layer 30 exceeds 3.0 ⁇ m and the half width ⁇ exceeds 0.25°. , the ratio B tends to increase. For this reason, it is preferable that the thickness D3 is, for example, 3.0 ⁇ m or less, and/or the half width ⁇ is, for example, 0.25° or less.
  • the thickness D3 of the metal layer 30 is preferably 0.1 ⁇ m or more, for example.
  • the thickness D2 of the resin layer 20 4 ⁇ m or more and 6 ⁇ m or less
  • the thickness D3 of the metal layer 30 0.1 ⁇ m or more and 3.0 ⁇ m or less
  • the half value width ⁇ : 0.25° or less are all satisfied.
  • the ratio B is 5% or less, and it can be seen that the breaking elongation is more reliably improved.
  • the yield stress ⁇ Y1 can be reduced by appropriately setting the thickness D2 and the half width ⁇ of the metal layer 30. It can also be confirmed that the breaking stress can be made lower than ⁇ B2 and a high breaking elongation can be achieved.
  • FIG. 9 is a diagram plotting the thickness ratio A of the metal layer and the half-value width ⁇ in the current collectors of Examples 1 to 8 and Comparative Examples 1 to 3 using a polyethylene terephthalate film as the resin layer 20 .
  • a “ ⁇ ” indicates that the ratio B is less than 15%
  • a " ⁇ ” indicates that it is between 15% and 20%
  • an "x” indicates that it exceeds 20%.
  • a curve f2 in FIG. 9 indicates a set of half width ⁇ and thickness ratio A when the yield stress ⁇ Y1 is equal to 225 MPa, which is the tensile stress of the polyethylene terephthalate film.
  • the region above the curve f2 is a region where ⁇ Y1> ⁇ B2, and the region below the curve f2 is a region where ⁇ Y1 ⁇ B2.
  • 10A and 10B are diagrams showing examples of measurement results of stress-strain curves of the current collectors of Example 1 and Comparative Example 1, respectively.
  • the current collector of Example 6 and the current collector of Comparative Example 1 have substantially the same thickness D2 of the resin layer (PET film) and thickness D3 of the metal layer.
  • the stress-strain curves shown in FIGS. 10A and 10B are examples, and may change depending on, for example, variations in the breaking elongation of the PET film.
  • the breaking elongation of the current collector of the example may be smaller than the breaking elongation of the resin layer. Even in that case, the breaking elongation of the current collector is larger (here, 6% or more) than the breaking elongation of the metal layer (here, the copper layer), so that the effect of suppressing the occurrence of breakage of the current collector can be obtained. It is considered to play.
  • Electrode for a power storage device
  • the electricity storage device electrode (hereinafter abbreviated as “electrode”) of the present embodiment is preferably used as the negative electrode of the electricity storage device, but may be used as the positive electrode.
  • Electrode 110 includes current collector 201 and active material layer 210 .
  • Active material layer 210 includes an active material that is oxidized and reduced during charging (or storage) and discharging.
  • Current collector 201 supports active material layer 210 , supplies electrons to active material layer 210 , and receives electrons from active material layer 210 .
  • the current collector 201 is any one of the current collectors 101 to 104 described in the first embodiment. That is, the current collector 201 includes the resin layer 20 and the first metal layer 31 positioned on the first surface 20a side of the resin layer 20 . The current collector 201 may further include a second metal layer 32 positioned on the second surface 20b side of the resin layer 20 .
  • the current collector 201 includes a first portion 201s and a second portion 201t, and the active material layer 210 is arranged on the first portion 201s.
  • the second portion 201t is not provided with the active material layer 210 and functions as a tab for electrical connection to the outside.
  • the active material layer 210 is located on the side of the first metal layer 31 opposite to the resin layer 20 .
  • Active material layer 210 includes a positive electrode active material or a negative electrode active material that absorbs and releases lithium ions.
  • the electrode 110 of this embodiment includes a current collector 201 that has desired electrical properties and high breaking elongation. Therefore, it is possible to suppress cracking of the current collector due to calendering or the like when forming the active material layer 210, thereby improving the process defect rate. In addition, even when the current collector 201 is locally subjected to a large stress due to the expansion and contraction of the active material layer 210 during operation of the battery, deformation of the battery and degradation of characteristics due to breakage of the current collector 201 can be prevented. can be suppressed.
  • the positive electrode and negative electrode 110 can be manufactured by a known manufacturing method.
  • the structure of the electricity storage device electrode of this embodiment is not limited to the structure shown in FIGS. 11A and 11B.
  • the active material layer 210 may be arranged on the side of the second metal layer 32 opposite to the resin layer 20 .
  • active material layer 210 When electrode 110 is used as the positive electrode of an electricity storage device, active material layer 210 contains a positive electrode active material.
  • the positive electrode active material includes, for example, a composite metal oxide containing lithium.
  • the active material layer 210 used for the positive electrode may further contain at least one of a binder and a conductive aid.
  • a binder Various known materials can be used for the binder. Binders in the active material layer 210 used for the positive electrode include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and tetrafluoroethylene-perfluoroalkyl vinyl ether.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • tetrafluoroethylene-perfluoroalkyl vinyl ether tetrafluoroethylene-perfluoroalkyl vinyl ether.
  • Fluorine such as copolymer (PFA), ethylene-tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene-chlorotrifluoroethylene copolymer (ECTFE) and polyvinyl fluoride (PVF) Resin can be used.
  • PFA copolymer
  • ETFE ethylene-tetrafluoroethylene copolymer
  • PCTFE polychlorotrifluoroethylene
  • ECTFE ethylene-chlorotrifluoroethylene copolymer
  • PVF polyvinyl fluoride
  • a vinylidene fluoride-based fluorororubber may be used as the binder.
  • vinylidene fluoride-hexafluoropropylene-based fluororubber VDF-HFP-based fluororubber
  • vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene-based fluororubber VDF-HFP-TFE-based fluororubber
  • vinylidene fluoride- Pentafluoropropylene fluororubber VDF-PFP fluorubber
  • vinylidene fluoride-pentafluoropropylene-tetrafluoroethylene fluororubber VDF-PFP-TFE fluorubber
  • vinylidene fluoride-perfluoromethyl vinyl ether-tetra Fluoroethylene-based fluororubber VDF-PFMVE-TFE-based fluororubber
  • Examples of conductive aids are carbon materials such as carbon powder and carbon nanotubes. Carbon black or the like can be applied to the carbon powder.
  • Other examples of the conductive aid for the active material layer 210 used for the positive electrode are metal powders such as nickel, stainless steel and iron, and powders of conductive oxides such as ITO. Two or more of the above materials may be mixed and contained in the active material layer 210 .
  • the active material layer 210 used for the negative electrode contains a negative electrode active material.
  • the negative electrode active material contains a carbon material.
  • carbon materials include natural or artificial graphite, carbon nanotubes, non-graphitizable carbon, easily graphitizable carbon (soft carbon), low-temperature fired carbon, and the like.
  • the negative electrode active material may contain materials other than the carbon material.
  • alkali metals such as metallic lithium and alkaline earth metals, metals such as tin that can form compounds with metals such as lithium, silicon, silicon-carbon composites, amorphous compounds mainly composed of oxides (SiO x (0 ⁇ x ⁇ 2), tin dioxide, etc.), lithium titanate (Li 4 Ti 5 O 12 ), and other particles may be included.
  • the binder and conductive aid of the active material layer 210 used for the negative electrode can be used in the same manner.
  • Cellulose, styrene/butadiene rubber, ethylene/propylene rubber, polyimide, polyamideimide, acrylic resin, or the like may also be used as a binder for the negative electrode.
  • FIG. 13 is a schematic external view showing an example of the lithium ion secondary battery 301
  • FIG. 14 is an exploded perspective view showing cells in the lithium ion secondary battery shown in FIG.
  • a lithium ion secondary battery a pouch type or laminated type lithium ion secondary battery is exemplified.
  • the illustrated lithium ion secondary battery is of a single layer type, but may be of a laminated type.
  • the positive electrode, separator, and negative electrode that constitute the cell are stacked along the Z direction in the figure.
  • a lithium ion secondary battery 301 includes a cell 310 , a pair of leads 311 connected to the cell 310 , an exterior body 313 covering the cell 310 , and an electrolyte 314 .
  • a cell 310 includes an electrode 110, an electrode 120, and a separator 330 arranged therebetween.
  • cell 310 is a single layer cell that includes a pair of electrodes.
  • One of the electrodes 110 and 120 is configured as a positive electrode containing a positive electrode active material, and the other is configured as a negative electrode containing a negative electrode active material.
  • the electrode 110 is the electrode 110 described in the third embodiment, and configured as a negative electrode, for example.
  • the electrode 120 includes a current collector 202 and an active material layer 220 arranged on one surface of the current collector 202 .
  • the active material layer 220 is a layer containing the negative electrode active material or positive electrode active material described in the second embodiment.
  • the current collector 202 has a laminated structure including a resin layer and a metal layer disposed on one or both surfaces of the resin layer. You may The material and thickness of the resin layer and/or metal layer in the current collector 202 may differ from those of the electrode 110 . Alternatively, the current collector 202 may be a metal current collector made of metal foil.
  • the separator 330 is an insulating porous material.
  • Nonwoven fabrics, porous films, and the like can be used.
  • the electrolyte 314 is arranged in the space inside the exterior body 313 .
  • the electrolyte 314 is a non-aqueous electrolyte containing lithium ions, such as a non-aqueous electrolytic solution containing lithium ions.
  • a sealing material for example, a resin film such as polypropylene
  • a resin film such as polypropylene
  • a nonaqueous electrolytic solution containing a metal salt such as a lithium salt and an organic solvent can be used.
  • Lithium salts include, for example, LiPF6 , LiClO4 , LiBF4 , LiCF3SO3 , LiCF3CF2SO3 , LiC( CF3SO2 ) 3 , LiN( CF3SO2 ) 2 , LiN( CF3 CF2SO2 ) 2 , LiN( CF3SO2 )( C4F9SO2 ) , LiN( CF3CF2CO ) 2 , LiBOB and the like can be used.
  • LiPF6 LiClO4 , LiBF4 , LiCF3SO3 , LiCF3CF2SO3 , LiC( CF3SO2 ) 3 , LiN( CF3SO2 ) 2 , LiN( CF3 CF2SO2 ) 2 , LiN( CF3SO2 )( C4F9SO2
  • cyclic carbonate and chain carbonate can be used.
  • ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate and the like can be used.
  • the lithium ion secondary battery 301 can be manufactured, for example, by the following method. After the electrodes 110 and 120 are produced, the cells 310 are formed by holding the electrodes 110 and 120 such that the active material layers 210 and 220 face each other with the separator 330 interposed therebetween. The obtained cell 310 is inserted into the space of the exterior body 313 . Lithium ion secondary battery 301 is completed by arranging electrolyte 314 in the space of package 313 and sealing package 313 .
  • FIG. 15 is a schematic external view showing another lithium ion secondary battery 302 of the present embodiment
  • FIG. 16 is an exploded perspective view showing cells taken out from the lithium ion secondary battery shown in FIG.
  • the lithium ion secondary battery 302 differs from the lithium ion secondary battery 301 shown in FIG. 13 in that it has a stacked cell 320 .
  • the cell 320 includes multiple electrodes 110 , multiple electrodes 120 , and multiple separators 330 .
  • Cell 320 has a structure in which electrodes 110 and electrodes 120 are alternately stacked with separators 330 interposed therebetween.
  • One of electrode 110 and electrode 120 is a positive electrode and the other is a negative electrode.
  • the electrode 110 is the electrode 110 described in the second embodiment, preferably configured as a negative electrode.
  • Each electrode 110 may have the structure described above with reference to FIG.
  • Each electrode 120 comprises a current collector 202 and active material layers 220 disposed on top and bottom surfaces of the current collector 202 .
  • the current collector 202 may have a laminated structure including a resin layer and metal layers positioned on both sides of the resin layer, or may have a metal current collector made of metal foil. It can be a body.
  • the electricity storage device to which the electrode of the present embodiment can be applied is not limited to the lithium ion secondary battery.
  • the electrode of the present embodiment can also be suitably used, for example, in electric double layer capacitors.
  • the power storage device electrodes according to the embodiments of the present disclosure are useful as power sources for various electronic devices, electric motors, and the like.
  • Power storage devices according to embodiments of the present disclosure include, for example, power sources for vehicles typified by bicycles and passenger cars, power sources for communication devices typified by smartphones, power sources for various sensors, unmanned eXtended vehicles ( UxV)) power supply.
  • UxV unmanned eXtended vehicles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

集電体は、第1表面および第1表面と反対側に位置する第2表面を有する樹脂層と、銅を含む金属層と、を含む集電体であって、金属層は、樹脂層の第1表面側に位置する第1金属層を含み、集電体の降伏応力σY1は、樹脂層の引張破壊応力σB2よりも小さく、集電体の降伏応力σY1[MPa]は、樹脂層の降伏応力σY2[MPa]、樹脂層の厚さD2[μm]、金属層の降伏応力σY3[MPa]、および、金属層の厚さD3[μm]から、下記式(1)、(2) によって求められる値であり、金属層の降伏応力σY3[MPa]は、金属層のX線回折パターンにおける最も強度の高いX線回折ピークの半値幅β[°]から、下記式(3) によって求められる値である。

Description

集電体、蓄電デバイス用電極およびリチウムイオン二次電池、ならびに集電体の製造方法
 本開示は、集電体、蓄電デバイス用電極およびリチウムイオン二次電池、ならびに集電体の製造方法に関する。
 二次電池の集電体として、樹脂フィルムの両面に金属層を形成した複合材を用いることが提案されている(特許文献1)。
特開2014-75191号公報
 樹脂フィルムと金属層とを含む複合材を用いた集電体には、適切な機械的特性が求められる。本開示の実施形態は、適切な機械的特性を有し得る集電体、そのような集電体を用いた蓄電デバイス用電極およびリチウムイオン二次電池を提供する。
 本開示の一実施形態による集電体は、第1表面および前記第1表面と反対側に位置する第2表面を有する樹脂層と、銅を含む金属層と、を含む集電体であって、前記金属層は、前記樹脂層の前記第1表面側に位置する第1金属層を含み、前記集電体の降伏応力σY1[MPa]は、前記樹脂層の降伏応力σY2[MPa]、前記樹脂層の厚さD2[μm]、前記金属層の降伏応力σY3[MPa]、および、前記金属層の厚さD3[μm]から、下記式(1)、(2)
によって求められる値であり、
 前記金属層の降伏応力σY3[MPa]は、前記金属層のX線回折パターンにおける最も強度の高いX線回折ピークの半値幅β[°]から、下記式(3)
によって求められる値である。
 本開示の実施形態によると、適切な機械的特性を有し得る集電体、そのような集電体を用いた蓄電デバイス用電極およびリチウムイオン二次電池が提供される。
本開示の実施形態による集電体の模式的な断面図である。 実施形態による他の集電体の模式的な断面図である。 銅膜のX線回折ピークの半値幅βと降伏応力σY3との関係を示す図である。 参考例の集電体に引張荷重を付加した状態を示す模式的な断面図である。 参考例の集電体に引張荷重を付加した状態を示す模式的な断面図である。 参考例の集電体に引張荷重を付加した状態を示す模式的な断面図である。 実施形態の集電体に引張荷重を付加した状態を示す模式的な断面図である。 実施形態の集電体に引張荷重を付加した状態を示す模式的な断面図である。 実施形態の集電体に引張荷重を付加した状態を示す模式的な断面図である。 変形例の集電体の模式的な断面図である。 変形例の他の集電体の模式的な断面図である。 実施例および比較例の集電体に使用した樹脂層の応力-歪み曲線の一例を示す図である。 実施例および比較例の集電体における金属層の厚さ比Aおよび半値幅βと、割合Bとの関係を示す図である。 実施例1の集電体の応力-ひずみ曲線の一例を示す図である。 比較例1の集電体の応力-ひずみ曲線の一例を示す図である。 本開示による実施形態の蓄電デバイス用電極の分解斜視図である。 図11Aに示す蓄電デバイス用電極の一部を示す断面図である。 他の蓄電デバイス用電極の一部を示す断面図である。 本開示による実施形態のリチウムイオン二次電池の模式的な外観図である。 図13に示すリチウムイオン二次電池におけるセルを取り出して示す分解斜視図である。 他のリチウムイオン二次電池の模式的な外観図である。 図15に示すリチウムイオン二次電池におけるセルを取り出して示す分解斜視図である。
 以下、図面を参照しながら、本開示の実施形態を説明する。以下に説明する集電体、蓄電デバイス用電極およびリチウムイオン二次電池は、本発明の技術思想を具体化するためのものであって、特定的な記載がない限り、本発明を以下のものに限定しない。また、一つの実施形態において説明する内容は、他の実施形態及び変形例にも適用可能である。さらに、図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張していることがある。
 以下の説明において、実質的に同じ機能を有する構成要素は共通の参照符号で示し、説明を省略することがある。あるいは、説明で参照しない構成要素に参照符号を付さない場合がある本開示において「平行」とは、特に他の言及がない限り、2つの直線、辺、面等が0°から±5°程度の範囲にある場合を含む。また、本開示において「垂直」または「直交」とは、特に他の言及がない限り、2つの直線、辺、面等が90°から±5°程度の範囲にある場合を含む。
 以下の説明で提示される数値、形状、材料、ステップ、それらステップの順序などは、あくまでも一例であって、技術的に矛盾が生じない限りにおいて種々の改変が可能である。また、以下に説明する各実施形態も、あくまでも例示であり、技術的に矛盾が生じない限りにおいて種々の組み合わせが可能である。
 本開示の図面に表された部材のそれぞれの寸法、形状等は、説明の便宜のために誇張されていることがある。また、本開示の図面では、過度の複雑さを避けるために、一部の部材を取り出して図示したり、一部の要素の図示を省略したりすることがある。そのため、本開示の図面に表された部材のそれぞれの寸法および部材間の配置は、実際のデバイスにおける部材のそれぞれの寸法および部材間の配置を反映しないことがある。本明細書では、「上面」、「下面」、「上層」および「下層」等の、「上」または「下」を含む用語を使用することがある。しかしながら、それらの用語は、参照した図面における相対的な方向または位置をわかり易さのために用いているに過ぎない。参照した図面における「上」、「下」等の用語による相対的な方向または位置の関係が同一であれば、本開示以外の図面、実際の製品、製造装置等において、参照した図面と同一の配置でなくてもよい。
 本明細書において、「セル」の用語は、少なくとも一対の正極および負極が一体的に組み立てられた構造を指す。本明細書の「電池」の用語は、互いに電気的に接続された1以上の「セル」を有する、電池モジュール、電池パック等の種々の形態を包括する用語として用いられる。
 (第1の実施形態)
 二次電池を製造する際には、通常、集電体の搬送工程およびカレンダ処理工程などの、集電体の体積変化を伴う処理が行われる。このような処理によって、集電体に裂けまたは破れ等が生じると、工程不良率の増大の要因となり得る。また、二次電池の動作時においても、集電体は、充放電に伴って膨張収縮する活物質から応力を受ける。このため、集電体には適切な機械的特性を有することが求められる。
 本発明者は、種々の検討を行った結果、樹脂層および金属層を含む複合材を用いた集電体において、集電体としての伸び率(破断伸度)を高めることによって、製造時や電池動作時における集電体の破れ等を抑制できることを見出した。この知見に基づき、破断伸度を高めることの可能な新規な集電体構造を検討し、本開示の実施形態に想到した。
 図1は、本実施形態の集電体の一例を示す模式的な断面図である。本実施形態の集電体は、リチウムイオン二次電池などの蓄電デバイスの正極および負極のいずれの電極の集電体としても用いることができる。説明の便宜のために、図1には、互いに直交する3つの方向であるX方向、Y方向およびZ方向を示す矢印が示されている。図1は、Y方向に垂直な断面を示す。
 図1に示す集電体101は、樹脂層20と、銅を含む少なくとも1つの金属層30とを備える。樹脂層20と少なくとも1つの金属層30とは、樹脂層20の厚さ方向(ここではZ方向)に積層されている。
 樹脂層20は、集電体101において、金属層30の支持体として機能する。樹脂層20は、第1表面20a、および、第1表面20aと反対側に位置する第2表面20bを有する。樹脂層20は、厚さD2を有する。本明細書では、各層の厚さは、その層の上面と下面との間のZ方向における平均距離をいう。つまり、樹脂層20の厚さD2は、第1表面20aと第2表面20bとの間の平均距離である。
 少なくとも1つの金属層30は、樹脂層20の第1表面20a側に位置する第1金属層31を含む。第1金属層31は、樹脂層20側に位置する第1面31a、および、第1面31aの反対側に位置する第2面31bを有する。第1金属層31は、厚さD31を有する。
 図示する例では、集電体101の上面は、第1金属層31の第2面31bであり、集電体101の下面は、樹脂層20の第2表面20bである。なお、集電体101は、第1金属層31および樹脂層20以外の層をさらに含み得る。
 本実施形態の集電体101は、集電体101としての降伏応力σY1が、樹脂層20の引張破壊応力σB2よりも小さくなるように構成されている。引張破壊応力σB2は、JIS  K7127:1999の規定に準拠して測定されたものである。
 集電体101の降伏応力σY1は、樹脂層20の降伏応力σY2、金属層30の降伏応力σY3、および、金属層30の厚さ比Aから、下記式(1)によって求められる値である。なお、本明細書において、「×」は乗算を表す。
              σY1[MPa]:集電体101の降伏応力
       σY2[MPa]:樹脂層20の降伏応力
       σY3[MPa]:金属層30の降伏応力
       A[-]:金属層30の厚さ比
 式(1)の樹脂層20の降伏応力σY2は、JIS  K7127:1999の規定に準拠して測定された引張降伏応力である。
 式(1)の金属層30の厚さ比Aは、樹脂層20および金属層30の合計厚さに対する金属層30の厚さD3の割合であり、下記式(2)によって求められる値である。
図1の例でいえば、厚さ比Aの値は、D31/(D2+D31)として計算される。
 式(1)の金属層30の降伏応力σY3[MPa]は、金属層30のX線回折パターンにおける最も強度の高いX線回折ピークの半値幅(以下、「半値幅」と略す。)β[°]から、下記式(3)によって求められる値である。最も強度の高いX線回折ピークは、金属層30が銅層の場合、例えば、(111)面のX線回折ピークである。
 式(3)は、本発明者が、金属層の結晶性に着目し、金属層の結晶性と降伏応力との関係を測定することによって導出した式である。式(3)を用いると、金属層30のX線回折を行うことにより、金属層30の降伏応力σY3の算出が可能である。式(3)の導出方法については後述する。
 図1に示す集電体101は、金属層30として第1金属層31のみを有するので、上記式(1)~(3)において、金属層30の降伏応力σY3は、第1金属層31の降伏応力であり、「金属層30の厚さD3」は、第1金属層31の厚さD31である(D3=D31)。なお、本実施形態の集電体は、それぞれが銅を含む2以上の金属層を有してもよい。その場合には、上記式(2)の厚さD3は、それらの金属層の合計厚さとなる。
 図2は、本実施形態の集電体の他の例を示す模式的な断面図である。図2に示す集電体102は、樹脂層20の第2表面20b側に位置する第2金属層32をさらに備える点で、図1に示す集電体101と異なる。このような集電体102は、例えば、積層型セルに用いられ得る。
 集電体102では、第1金属層31、樹脂層20および第2金属層32は、Z方向に積層されている。第2金属層32は、銅を含む。第2金属層32の材料は、例えば、第1金属層31の材料と同じである。なお、第2金属層32の材料は、銅を含んでいればよく、第1金属層31の材料と異なっていてもよい。第2金属層32は厚さD32を有する。厚さD32は、第1金属層31の厚さD31と同じでもよいし異なっていてもよい。
 集電体102も、上記式(1)~(3)より求められる降伏応力σY1が、樹脂層20の引張破壊応力σB2よりも小さくなるように構成されている。式(2)の金属層30の厚さD3は、ここでは、第1金属層31の厚さD31および第2金属層32の厚さD32を足し合わせた値である(D3=D31+D32)。また、第2金属層32が、第1金属層31と同じ材料を用いて同じ条件で形成されており、第2金属層32と第1金属層31との結晶性は略同じ(すなわち半値幅βは略同じ)と考えられる場合には、式(3)の金属層30の半値幅βとして、第1金属層31または第2金属層32のX線回折によって得られた半値幅を用いてもよい。
 <金属層の降伏応力と半値幅との関係式>
 本発明者による上記式(3)の導出方法を説明する。
 銅などの金属は、典型的には、複数の結晶粒からなる多結晶である。多結晶体では、結晶粒径が多結晶体の降伏強度に顕著な影響を及ぼし、結晶粒径が小さくなるほど(つまり、結晶粒界の割合が増加するほど)、降伏強度が増すことが知られている。降伏応力と結晶粒径との関係は、下記のホール・ペッチの式(Hall-Petch relationship)で表される。  
ここで、σは降伏応力、σは摩擦応力、kは結晶粒界のすべりに対する抵抗を示す定数、dは結晶粒径である。銅あるいは銅合金の降伏応力と結晶粒径との関係も、ホール・ペッチの式に従うことが知られている。
 本発明者は、樹脂層および金属層を含む集電体において、金属層の降伏応力σY3(ホール・ペッチの式の降伏応力σに相当)と、金属層のX線回折パターンにおける最も強度の高いX線回折ピークの半値幅βとの関係式を、以下に示す実験結果から導出した。なお、金属層の半値幅βは、金属層の結晶粒径(結晶子サイズ)と逆比例関係にあることが知られている(シェラーの式(Scherrer equation))。
 以下、本発明者の行った実験方法および結果を説明する。
 まず、結晶性の異なる銅膜を用いて、例えば図2に示した構造を有する複数の集電体サンプルを作製した。各集電体サンプルの作製は、樹脂層の両面にそれぞれ、電解めっきによって銅膜を形成することによって行った。樹脂層として、厚さ4.5μmのポリエチレンテレフタレート(PET)膜を用いた。各銅膜の厚さを1.0μmとした。
 次いで、各集電体サンプルの銅膜のX線回折測定を行い、最も強度の高いX線回折ピークの半値幅βを求めた。また、各集電体サンプルについて、JIS  K7127:1999の規定に準拠して引張試験を行うことにより、応力-ひずみ曲線を求めた。次いで、集電体サンプルの応力-ひずみ曲線から、PET膜に依存する部分を差し引いて、銅膜のみの応力―ひずみ曲線を求め、銅膜の降伏応力σY3を得た。
 図3は、各集電体サンプルにおける銅膜の半値幅βと降伏応力σY3との関係をプロットした図である。横軸は半値幅β[°]の正の平方根、縦軸は降伏応力σY3[MPa]である。図3に示す結果から、半値幅βが大きいほど、すなわち結晶子サイズが小さいほど、降伏応力σY3が大きくなることが確認される。また、降伏応力σY3の測定値は、半値幅βの平方根(√β)に概ね比例している。この傾向は、上述したホール・ペッチの式と同様である。
 図3に示す結果に基づいて、半値幅βの平方根(√β)と降伏応力σY3との関係式を線形回帰により算出し、下記式(3)を得た。なお、上記の実験では銅膜を用いたが、銅を含む金属膜であれば、この式によって降伏応力σY3を求めることが可能である。
 <効果>
 本実施形態の集電体101、102は、上記式(1)~(3)により求められる降伏応力σY1が、樹脂層20の引張破壊応力σB2よりも小さくなるように構成されている。σY1<σB2の関係を満たすことで、後述するように、集電体101、102の伸び率(破断伸度)を高めることができる。例えば、集電体101、102の破断伸度は、最大で、樹脂層20の破断伸度と同程度まで高められ得る。これにより、蓄電デバイス用の電極を製造する際の集電体搬送工程およびカレンダ処理工程などにおいて、集電体101、102に破断が生じることを抑制できるので、工程不良率を改善できる。また、集電体101、102を用いた二次電池において、充放電時に伴う活物質の膨張収縮によって集電体101、102に局所的に大きい力がかかった場合でも、集電体101、102の破断や裂けに起因する電池の変形、電池特性の低下(抵抗の増大)および/または特性のばらつきなどを抑制できる。なお、本明細書において、「集電体に破断が生じる」とは、金属層および樹脂層を含む集電体の厚さ全体に亘って破れや裂けが生じた状態を指し、例えば金属層のみに破断部分が生じた状態を含まない。また、「集電体に破断が生じる」とは、集電体の一部に、集電体の厚さ方向に亘る破断部や裂けが形成された状態を含み、必ずしも集電体(例えば電池を構成する集電体)が2以上の部分に完全に分離されていることを意味しない。なお、集電体の破断部のうち、平面視において、線状に延びた破断部を「裂け」と呼ぶことがある。
 集電体101、102としての破断伸度は、特に限定されないが、金属層30の破断伸度(例えば3~5%程度)よりも大きく、樹脂層20の破断伸度以下であってもよい。集電体101、102の破断伸度は、例えば6%よりも大きいことが好ましく、例えば20%以上であってもよい。
 <降伏応力σY1、引張破壊応力σB2と集電体の破断伸度との関係>
 図面を参照しながら、集電体の降伏応力σY1を樹脂層の引張破壊応力σB2よりも小さくすることにより、集電体としての伸び率(破断伸度)を高くできる理由を説明する。
 図4A~図4Cは、降伏応力σY1が樹脂層920の引張破壊応力σB2よりも大きい(σY1>σB2)参考例の集電体900に引張荷重をかけたときの、金属層930および樹脂層920の状態を模式的に例示する拡大断面図である。
 図4Aに示すように、集電体900に対して、図に示すX軸方向に引張荷重Fをかける。引張荷重Fを増加させていくと、金属層930が部分的に薄膜化されることで、くびれ部131が形成される。このような現象は「ネッキング」または「ネッキング現象」と呼ばれる。ネッキングは、例えば、金属層930と樹脂層920との密着性の低い部分で生じ得る。また、ネッキングが生じた部分には、金属層930の上面に、X軸方向に交差する方向(例えばY軸方向に略平行な方向)に延びる亀裂が生じ得る。
 この後、引張荷重Fをさらに増加させると、図4Bに示すように、ネッキングが進み、集電体900にかかっていた応力が集電体900の降伏応力σY1に達すると、金属層930のくびれ部131に破断が生じる(つまり、破断が生じた時点は、集電体900の降伏点である)。金属層930に破断が生じた直後には、樹脂層920のうち破断部132の下方に位置する部分21に、くびれ部131にかかっていた全荷重が加わる。集電体900では、降伏応力σY1は、樹脂層920の引張破壊応力σB2よりも大きいので、金属層930が破断した直後に、樹脂層920の部分21には、引張破壊応力σB2を超える応力がかかる。この結果、図4Cに示すように、樹脂層920の部分21も破断し、集電体900に破断が生じ得る(図10Bの応力―ひずみ曲線参照)。
 このように、参考例の集電体900では、金属層930に破断部132が生じた(すなわち集電体900の降伏した)時点で、集電体900は伸びることなく破断するので、集電体900の破断伸度は小さいと考えられる。
 図5A~図5Cは、降伏応力σY1が樹脂層20の引張破壊応力σB2よりも小さくなるように設定された集電体101に引張荷重をかけたときの、金属層30および樹脂層20の状態を模式的に例示する拡大断面図である。
 図5Aおよび図5Bに示すように、集電体101でも、参考例の集電体900と同様に、引張荷重Fをかけていくと、まず、金属層30にくびれ部131が形成される。引張荷重Fによって集電体101にかかる応力が降伏応力σY1に達すると、くびれ部131に破断が生じ得る。集電体101では、破断部132が生じた直後に樹脂層20の部分21にかかる応力は、樹脂層20の引張破壊応力σB2よりも小さいので、この時点では、樹脂層20に破断は生じない。図5Cに示すように、引張荷重Fの増加に伴い、樹脂層20は、X軸方向にさらに伸びる。従って、集電体101は、図4A~図4Cに示した参考例の集電体900よりも高い破断伸度を有する。
 樹脂層20は、例えば、樹脂層20の部分21にかかる応力が引張破壊応力σB2に達するまで、破断せずに延伸し得る(図10Aの応力―ひずみ曲線参照)。このため、集電体101は、最大で、樹脂層20の破断伸度と略同等の破断伸度を有することが可能である。
 なお、上記では、集電体への引張荷重によって、金属層のネッキングおよび破断が生じる様子、および、金属層と樹脂層との密着性の低い位置でネッキングが発生し得ることなどを説明した。これは、本発明者が、樹脂層および金属層を含む集電体の引張試験を繰り返し行い、試験後の集電体の上面および断面を観察することで得られた知見に基づいている。
 上記では、樹脂層20の片面のみに金属層30が配置された集電体101、900を例に説明したが、樹脂層20の両面に金属層が配置されていても、同様の傾向が得られる。
 参考例の集電体900では、金属層930に微細な破断が生じるのと略同時に、基材である樹脂層920に破断が生じ得る。このため、例えば、電池を製造する際のカレンダ処理で、集電体900が厚さ全体に亘って裂けることによって工程不良が生じる可能性がある。電池動作時でも同様に、活物質から受ける応力によって金属層930および樹脂層920の破断が生じることによって、電池の特性が低下(例えば抵抗が増大)したり、電極が変形したりする可能性もある。これに対し、本実施形態の集電体101によると、カレンダ処理時に金属層30に微細な破断部分が生じても、樹脂層20は同時に破断せず、集電体101の裂けが抑制されるので、工程不良が生じ難い。同様に、電池動作時に金属層30に微細な破断部分が生じた場合でも、参考例に比べて、電池の特性の低下や電極の変形を小さく抑えることができる。
 <各層の応力および厚さ>
 本実施形態では、降伏応力σY1が樹脂層の引張破壊応力σB2よりも小さくなるように(σY1<σB2)、樹脂層の機械特性(降伏応力、引張破壊応力)、金属層の結晶性および厚さ比Aが設定されている。本実施形態の集電体は、積層構造を構成する各層の膜構造、材料、厚さ、形成方法などを制御することにより製造され得る。これらの制御因子は、互いに関連し合っている。例えば、金属層の厚さが異なれば、金属層の適切な形成条件や樹脂層の適切な厚さなどは異なり得る。
 通常は、集電体を設計する際、十分な電気特性を確保するために、比較的厚い金属層を用いるか、または、集電体全体の厚さにおける金属層の厚さ比Aを大きくすることが多いと考えられる。この場合には、式(2)の金属層の厚さ比Aが大きくなる。そうすると、式(1)中の「A×σY3」の項が大きくなるので、集電体の降伏応力σY1を樹脂層の引張破壊応力σB2よりも小さくすることは困難である。これに対し、本実施形態では、金属層30の結晶性に着目し、σY1<σB2の関係を満足するように集電体の設計を行う。例えば、結晶子サイズが比較的大きい(つまり半値幅βの小さい)金属層30を形成し、かつ、金属層30の厚さを増大させないことで、式(1)中の「A×σY3」の項を小さくできる。これにより、σY1<σB2の関係を満たすことができ、高い破断伸度が得られる。さらに、半値幅βの小さい金属層30は、結晶性に優れており、低い電気抵抗(シート抵抗)を有し得る。従って、破断伸度を高める観点から集電体101、102の厚さを抑えた場合でも、十分な電気特性を確保できる。
 以下、再び図1および図2を参照して、集電体101、102を構成する各層の応力、厚さの例をより詳細に説明する。
 本実施形態の集電体101、102の樹脂層20の降伏応力σY2、引張破壊応力σB2、厚さD2、金属層30の厚さ比A、金属層30の厚さD3などは、σY1<σB2を満たすように設定されていればよく、特に限定しない。
 一例として、樹脂層20の厚さD2は、例えば3μm以上、好ましくは4μm以上であってもよい。これにより、集電体101、102としての強度をより確実に確保できる。また、樹脂層20を厚くすることにより、金属層30の厚さ比Aを所望の範囲に調整しやすい。一方、エネルギ密度の向上の観点から、樹脂層20の厚さは、例えば12μm以下、好ましくは6μm以下であってもよい。
 樹脂層20の降伏応力σY2は、例えば120MPa以下であってもよい。引張破壊応力σB2は、例えば150MPa以上であってもよい。
 金属層30の厚さ(合計厚さ)D3は、例えば0.1μm以上であってもよい。これにより、シート抵抗をより低くできる。一方、金属層30の厚さD3は、例えば6μm以下、好ましくは3μm以下であってもよい。これにより、集電体101の重量の増加を抑制できる。また、金属層30の厚さ比Aを所望の範囲に調整しやすくなる。金属層30の厚さD3は、樹脂層20の厚さD2よりも小さくてもよい。金属層30として、樹脂層20の両側にそれぞれ第1金属層31および第2金属層32を設ける場合には、第1金属層31および第2金属層32のそれぞれの厚さは、例えば0.05μm以上1.5μm以下であってもよい。
 金属層30のX線回折パターンにおける最も強度の高いX線回折ピークの半値幅βは、例えば0.33°以下、より好ましくは0.25°以下であってもよい。金属層30の結晶粒径(結晶子サイズ)が大きいほど半値幅βが小さくなる(シェラーの式)。金属層30の降伏応力は、上述したホール・ペッチの式に従うと考えられる。このことから、金属層30中の結晶子サイズが大きいほど、つまり半値幅βが小さいほど、金属層30の降伏応力σY3は小さくなると考えられる。従って、半値幅βを0.33以下、好ましくは0.25°以下にすることにより、式(1)から求められる集電体の降伏応力σY1を、樹脂層の引張破壊応力σB2よりも小さく設定しやすい。一方、半値幅βは、例えば0.08°以上であってもよい。これにより、金属層30の変形(塑性変形)または亀裂などに起因するシート抵抗の低下を抑制できる。
 金属層30の厚さ比Aは、例えば0.44以下であってもよい。これにより、集電体101、102の降伏応力σY1を小さくできるので、破断伸度を高めやすい。また、集電体101、102の重量の増加を抑制できる。一方、金属層30の厚さ比Aは、例えば0.02以上であってもよい。0.02以上であれば、金属層30のシート抵抗を低減できる。
 <樹脂層20>
 樹脂層20は、例えば、熱可塑性樹脂を母材とするシートである。樹脂層の母材としては、ポリエステル系樹脂、ポリアミド系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリオレフィン系樹脂、ポリスチレン系樹脂、フェノール樹脂、ポリウレタン系樹脂、アセタール系樹脂、セロファンおよびエチレン-ビニルアルコール共重合体(EVOH)、ポリエチレンテレフタレート、ポリスチレン(PS)、ポリイミドおよびポリ塩化ビニル等を用いることができる。ポリオレフィン系樹脂の例は、ポリエチレン(PE)およびポリプロピレン(PP)等である。ポリオレフィン系樹脂は、酸変性ポリオレフィン系樹脂であってもよい。ポリエステル系樹脂の例は、ポリブチレンテレフタレート(PBT)およびポリエチレンナフタレート等である。ポリアミド系樹脂の例は、ナイロン6、ナイロン66およびポリメタキシリレンアジパミド(MXD6)等である。例えば、ポリエチレンテレフタレートの一軸延伸シートもしくは二軸延伸シート、または、ポリプロピレンの二軸延伸シートを樹脂層に好適に用いることができる。
 本実施形態では、樹脂層20は、例えば、例えば、ポリエチレンテレフタレート、ポリイミド、ポリプロピレン、ポリカーボネート、ポリアミドおよびポリ塩化ビニルのいずれか1種を少なくとも含むことが好ましい。
 樹脂層20は、単層膜に限定されない。樹脂層20は、複数の樹脂膜を含む積層構造を有してもよい。積層構造を有する場合、樹脂層20の引張破壊応力σB2および降伏応力σY2として、積層構造のうち最も厚い主層の引張破壊応力および降伏応力を用いることができる。または、樹脂層20の降伏応力σY2(または引張破壊応力σB2)として、樹脂層20を構成する各層の降伏応力(または引張応力)を厚さの比で重みづけし、それらを加算した値を用いてもよい。例えば、樹脂層20全体の降伏応力は、樹脂層20を構成する各層の「(樹脂層20全体の厚さに対する比)×降伏応力」の和として求められ得る。
 <金属層30>
 金属層30は、銅を主成分として含むことが好ましい。「主成分として含む」とは、金属層における銅の含有率が50重量%よりも大きいものを含む。金属層30における銅の含有率は、80重量%以上であってもよい。金属層30は、銅を主成分とする合金を含んでもよい。金属層30として、銅層、Cu-Sn、Cu-Niなどの銅合金層等が挙げられる。
 金属層30は低いシート抵抗を有することが好ましい。シート抵抗は、例えば60mΩ/□以下、好ましくは30mΩ/□以下である。
 金属層30は、材料、組成比、形成方法などが互いに異なる複数の金属膜を含んでもよい。金属層30が結晶性の異なる複数の金属膜を含む場合、金属層30に含まれる各金属膜の降伏応力を厚さの比で重みづけし、それらを加算することにより、金属層30の降伏応力を求めてもよい。
 例えば、第1金属層31と第2金属層32とは、互いに異なる材料から形成されていてもよい。その場合には、金属層30の降伏応力σY3は、第1金属層31の半値幅βから求めた第1金属層31の降伏応力σY31と、第2金属層32の半値幅βから求めた第2金属層32の降伏応力を降伏応力σY32とを用いて、例えば下記式(4)、(5)から求めることができる。
 なお、第1金属層31および/または第2金属層32は、単層膜でもよいし、積層膜でもよい。第1金属層31および第2金属層32が積層構造を有する場合、金属層31、32の積層構造のうち最も厚い主層の降伏応力を、上記式(4)の降伏応力σY31、σY32として用いてもよい。
 第1金属層31、第2金属層32と樹脂層20との間にアンダーコート層等を介在させてもよい。また、第1金属層31、第2金属層32の表面に保護層等を設けてもよい。
 (変形例)
 本実施形態の集電体は、樹脂層と金属層との間に位置する他の固体層をさらに備えてもよい。このような固体層を「介在層」と呼ぶ。
 図6および図7は、それぞれ、本実施形態の集電体の他の例を示す模式的な断面図である。
 図6に示す集電体103は、樹脂層20の第1表面20aと第1金属層31との間に、第1介在層41をさらに含む点で、図1に示す集電体101と異なる。
 第1介在層41は、銅以外の金属を主成分として含む。介在層41は、単層膜でもよいし、積層膜でもよい。介在層41は、例えば、樹脂層20と金属材料との結合を強化するためのアンダーコート層またはアンカーコート層であってもよい。アンダーコート層またはアンカーコート層は、アクリル樹脂、ポリオレフィン樹脂などの有機層でもよいし、スパッタリング法などにより形成される金属層でもよい。アンダーコート層を設けることにより、樹脂層20に対する第1金属層31の結合をより強固とし、密着性を高める効果、および/または、第1金属層31へのピンホール形成を抑制する効果が得られる。
 図7に示す集電体104は、樹脂層20の第1表面20aと第1金属層31との間に位置する第1介在層41と、樹脂層20の第2表面20bと第2金属層32との間に位置する第2介在層42とをさらに含む点で、図2に示す集電体102と異なる。
 第1介在層41および第2介在層42は、銅以外の金属を主成分として含む。第1介在層41および第2介在層42の材料および機能は、図6に示す集電体103の第1介在層41と同様であり得る。第1介在層41および第2介在層42の材料は同じでもよいし、互いに異なっていてもよい。
 集電体103、104における第1介在層41および第2介在層42の厚さは、それぞれ、介在層の機能等によって適宜選択され、特に限定しない。第1介在層41は、樹脂層20および第1金属層31よりも薄いことが好ましい。同様に、第2介在層42は、樹脂層20および第2金属層32よりも薄いことが好ましい。第1介在層41の厚さと第2介在層42の厚さとは同じでもよいし、互いに異なっていてもよい。
 なお、本変形例の集電体は、樹脂層20と金属層30との間に位置する、少なくとも1つの介在層を備えていればよい。例えば、本変形例の集電体は、第1金属層31および第2金属層32のいずれか一方のみと樹脂層20との間に介在層を有していてもよい。
 本変形例では、集電体における介在層の厚さ(合計厚さ)D4は、例えば、下記式を満たしてもよい。
上記式中の厚さD4は、集電体における介在層の合計厚さである。つまり、厚さD4は、集電体103では第1介在層41の厚さであり、集電体104では第1介在層41および第2介在層42の合計厚さである。上記式を満たすことで、集電体103、104の降伏応力に対する介在層の影響が小さくなるので、上記式(1)、(2)を用いた設計により、集電体103、104の破断伸度をより確実に改善できる。
 (集電体の製造方法)
 図2に示す集電体102を例に、本実施形態の集電体の製造方法をより具体的に説明する。
 <集電体の作製>
 まず、樹脂層20を準備する。樹脂層20は、例えばポリエチレンテレフタレート膜である。
 次いで、樹脂層20の表面に金属層30を形成する。金属層30は、公知の半導体プロセスによって形成できる。例えば、蒸着、スパッタリング、電解めっき、無電解めっき等を用いてもよい。例えば、樹脂層の表面にシード層を形成した後、電解めっきによりシード層上に銅膜を形成することによって金属層30を形成してもよい。あるいは、金属層30として、樹脂層20の表面に、銅箔などの銅を含む金属箔を貼り付けてもよい。
 ここでは、樹脂層20の第1表面20aに第1金属層31を形成し、樹脂層20の第2表面20bに第2金属層32を形成する。第1金属層31および第2金属層32として、例えば銅膜を形成する。樹脂層20の両面に、例えばスパッタリングによりニッケルクロム(NiCr)または銅のシード層を形成した後、電解めっきによりシード層上に銅膜を形成してもよい。
 第1金属層31および第2金属層32となる金属膜の形成条件および厚さは、式(1)~(3)により得られる降伏応力σY1が、樹脂層20の引張破壊応力σB2よりも小さくなるような条件に調整され得る。金属膜の形成条件は、蒸着の場合には、蒸着時の基板温度、蒸着原料の純度、蒸着速度、蒸着時間などを含む。めっきの場合には、電流密度、成長速度、めっき時間、下地となるシード層の材料、シード層の形成条件、添加剤の種類・量などを含む。スパッタリングの場合には、ターゲットの純度、チャンバー内の到達真空度、スパッタ雰囲気、スパッタ圧、スパッタ電力、成膜速度、基板温度、成膜時間などを含む。
 一例として、金属膜を形成する際のめっき電流密度を高く設定することにより、および/または、シード層をスパッタリング法で形成する場合には、スパッタ電力を高く設定することにより、金属膜の半値幅βを小さく(結晶粒径を大きく)できる。めっき電流密度を高くすると、まず、内部応力の高い金属膜が成長する。この内部応力が駆動力となって、金属膜の再結晶化が進むことにより、結晶性が高められ、結晶粒径の大きい金属膜が形成され得る。また、高いスパッタ電力でシード層を堆積させると、シード層が熱を持つことで、シード層の再結晶化が促進され、結晶性が高められる。結晶性の高いシード層を形成することで、シード層上に、結晶性の高い、すなわち結晶粒径の大きい金属膜を形成することが可能になる。
 <集電体の設計>
 本実施形態では、集電体の降伏応力σY1が、樹脂層の引張破壊応力σB2よりも小さくなるように、集電体の積層構造を構成する各層の降伏応力および厚さを設計する工程を含むことが好ましい。
 集電体の降伏応力σY1は、集電体を構成する各層の「厚さ比a×降伏応力σY」の和によって求めてもよい。「厚さ比a」は、その層の厚さの、集電体を構成する複数の層(図1、図2等に示す金属層30および樹脂層20を含む)の合計厚さに対する割合である。なお、設計工程において、集電体を構成する各層のうち他の層よりも薄い層(厚さ比aの小さい層)を無視してもよい。
 樹脂層の引張破壊応力σB2の値として、例えば引張試験によって測定した値を用いてもよい。その場合、設計工程は、樹脂層の引張破壊応力σB2を測定する工程を含んでもよい。
 設計工程は、金属層のX線回折パターンにおける最も強度の高いX線回折ピークの半値幅βに基づいて、金属層の降伏応力σY3を設計する工程を含んでもよい。この場合、設計工程は、金属層の降伏応力σY3と半値幅βとの関係式を導出する工程を含んでもよい。関係式の導出方法は、図3を参照して前述した方法と同様である。
 または、金属層30の結晶粒径(または結晶子サイズ)をX線回折法以外の方法で測定し、測定した結晶粒径に基づいて、金属層の降伏応力σY3を設計してもよい。
 (実施例および比較例)
 実施例の集電体および比較例の集電体を作製し、集電体の破断伸度を評価した。
 <試料の作製>
 実施例1~実施例9および比較例1~比較例4の集電体として、以下の方法により、図2に示す構造を備えた集電体102を作製した。
 まず、樹脂層20(幅:500mm、長さ:100m)を準備した。実施例1~8および比較例1~3では、樹脂層20として、ポリエチレンテレフタレート(PET)膜(三菱化学ポリエステルフィルム(株)製、ダイヤホイルK880)、実施例9および比較例4では、ポリプロピレン(PP)膜(東レ(株)製、4X-2172)を用いた。各実施例および比較例の樹脂層20の厚さD2を表1に示す。
 次いで、スパッタリングにより、樹脂層20の第1表面20aおよび第2表面20bに、シード層として、厚さが50nmの銅層を形成した。ここでは、スパッタリング時の基材(樹脂層20)の温度を、基材がPET膜の場合には室温、PP膜の場合には-20℃に設定した。この後、樹脂層20の第1表面20a側および第2表面20b側のシード層上に、第1金属層31および第2金属層32として、電解めっきによって銅層をそれぞれ形成した。ここでは、めっき温度を40℃に設定した。このようにして、実施例1~9および比較例1~4の集電体を得た。
 各実施例および各比較例における、シード層を形成する際のスパッタ電力(成膜パワー)、第1金属層31および第2金属層32を形成する際のめっき電流密度、および、第1金属層31および第2金属層32の合計厚さD3を表1に示す。なお、各集電体において、第1金属層31および第2金属層32の厚さを、それぞれ、合計厚さD3の1/2とした。
 <樹脂層20の降伏応力σY2および引張破壊応力σB2の測定>
 実施例および比較例の樹脂層20として用いるPET膜およびPP膜について、上記のJIS規格に準拠して引張試験を行い、各膜の降伏応力σY2および引張破壊応力σB2を求めた。各樹脂層20の降伏応力σY2および引張破壊応力σB2を表1に示す。
 図8は、実施例1~8および比較例1~3の集電体で用いるPET膜の応力-ひずみ曲線の一例を示す図である。図8から、PET膜の降伏応力σY2は約110MPa、引張破壊応力σB2は約225MPaであることが分かる。なお、図8に示す例では、破断伸度は約35%であるが、PET膜の破断伸度は測定サンプル毎にばらつきがあり、大凡25~35%の範囲内であった。
 <半値幅βの測定>
 X線回折法により、各集電体の金属層30の半値幅βを求めた。結果を表1に示す。
 測定結果から、めっき電流密度が高いほど、また、シード層形成時のスパッタ電力が高いほど、半値幅βが小さくなっており、これらの条件によって、金属層30の結晶性を制御できることが分かる。これは、前述したように、めっき電流密度を高く設定することにより、内部応力の大きい金属膜(ここでは銅膜)が成長し、内部応力を駆動力として金属膜の再結晶化が進むことで、結晶性が高められ、半値幅βの小さい金属膜が得られたからと考えられる。また、シード層(ここでは銅膜)を形成する際のスパッタ電力を高く設定することにより、堆積されたシード層で熱による再結晶化が進み、結晶粒径の大きいシード層が得られたからと考えられる。シード層の結晶粒径を大きくすることで、シード層上に結晶粒径の大きい金属膜を成長させることができる。
 <集電体の降伏応力σY1の算出>
 X線回折法で得られた半値幅βおよび上述した式(3)から、各集電体の金属層30の降伏応力σY3を算出した。続いて、金属層30の降伏応力σY3、樹脂層20の降伏応力σY2、金属層30の厚さ比A、および上述した式(1)、(2)によって、各集電体の降伏応力σY1を求めた。得られた降伏応力σY3、σY1の値を表1に併せて示す。
 表1に示すように、実施例1~9では、集電体の降伏応力σY1は、樹脂層20の引張破壊応力σB2(225MPa)よりも小さくなり、比較例1~4では、集電体の降伏応力σY1が樹脂層20の引張破壊応力σB2よりも大きくなった。
 <集電体の破断伸度の評価方法>
 各集電体の破断伸度を、引張試験によって評価した。
 まず、実施例1の集電体から、40個の試験用サンプルを切り出した。ここでは、試験用サンプル間の厚さばらつきを抑えるために、幅が500mmである集電体のうち、エッジから50mm以内の領域(エッジ領域)を除いた部分からサンプリングを行った。なお、エッジ領域は、通常は、電池を製造する際に取り除かれる領域である。
 次いで、各試験用サンプルについて引張試験を実施し、破断伸度を求めた。引張試験は、JIS  K7127:1999の規定に準拠して行った。次いで、40個の試験用サンプルのうち破断伸度が6%以下となった試験用サンプルの割合Bを求めた。
    B={(破断伸度が6%以下の試験用サンプルの数)/40}×100
 他の実施例および比較例の集電体のそれぞれについても同様に、40個の試験用サンプルの引張試験を行い、破断伸度が6%以下となった試験用サンプルの割合Bを求めた。
 6%を基準とした理由は、金属層30に破断が生じた後に樹脂層20がほとんど伸びない場合(図4C参照)には、集電体の破断伸度は、金属層の破断伸度である3~5%程度となり、6%以下になると考えられるからである。金属層30に破断が生じた後に樹脂層20がさらに伸びる場合(図5C参照)には、集電体の破断伸度は、金属層の破断伸度よりも十分大きくなり、理想的には樹脂層20の破断伸度に近い値となり、6%を超えると考えられる。
 <評価結果>
 ・割合B
 各集電体の試験用サンプルに対する引張試験によって得られた割合Bを表1に示す。
 表1に示す結果から、実施例1~9の集電体では、金属層の厚さD3または樹脂層の材料にかかわらず、割合Bが20%以下に抑えられていることが確認された。割合Bが20%以下の集電体では、集電体は全体として所定の伸び率(破断伸度)を有するが、材料的な要因などにより、伸び率の低い(相対的に微小な)領域が離散的に存在していると考えられる。つまり、伸び率の低い微小な領域のそれぞれは、所定の伸び率を有する領域に包囲された状態である。カレンダ処理時等などで集電体にかかる応力は、伸び率の低い領域の周辺の領域にも分散されることから、割合Bが20%以下であれば、集電体の破断は発生し難く、工程不良率は低減され得ると考えられる。同様の理由で、電池動作中にも集電体の破断が抑制され得ると考えられる。従って、実施例1~9の集電体を用いて電池を製造する場合、例えば集電体の搬送時やまたはカレンダ処理時の工程不良率が大幅に低減され得る。
 なお、上記の材料的な要因としては、例えば、樹脂層20においてフィラーが凝集した部分が存在したり、金属層30において不純物の偏析等に起因して再結晶化が阻害された部分が存在したりすることで、集電体に局所的に伸び率の低い領域が生じた可能性などが考えられる。
 一方、樹脂層20の引張破壊応力σB2が集電体の降伏応力σY1よりも大きい比較例1~4では、割合Bが45%を超えており、実施例と比較して大幅に割合Bが高くなった。つまり、比較例1~4の集電体では、半数近く、または半数以上の試験用サンプルで、金属層30の破断後、樹脂層20がほとんど伸びることなく破断している。このような集電体では、集電体面内において、伸び率の低い領域の占める割合が高いので、カレンダ処理時などに集電体にかかる応力によって集電体の破断が生じ、工程不良となる可能性が高くなると考えられる。
 従って、式(1)~(3)により求められる集電体の降伏応力σY1と、樹脂層20の引張破壊応力σB2との関係によって、集電体の破断伸度を制御できることが確認された。
 また、表1の結果では、例えば、樹脂層20の厚さD2が4μm~6μmの範囲において、金属層30の厚さD3が3.0μmを超えたり、半値幅βが0.25°を超えたりすると、割合Bが増加する傾向がある。このことから、厚さD3は例えば3.0μm以下、および/または、半値幅βは例えば0.25°以下が好ましい。一方、集電体のシート抵抗を低減する観点から、金属層30の厚さD3は例えば0.1μm以上であることが好ましい。例えば、樹脂層20の厚さD2:4μm以上6μm以下、金属層30の厚さD3:0.1μm以上3.0μm以下、半値幅β:0.25°以下を全て満たす実施例1および実施例2の集電体では、割合Bが5%以下であり、より確実に破断伸度が改善されることが分かる。なお、樹脂層20の厚さが4μm~6μmの範囲外であっても(例えば実施例3)、金属層30の厚さD2および半値幅βを適切に設定することによって、降伏応力σY1を引張破壊応力σB2よりも低くでき、高い破断伸度を実現できることも確認できる。
 図9は、ポリエチレンテレフタレート膜を樹脂層20として用いた実施例1~8および比較例1~3の集電体における、金属層の厚さ比Aと半値幅βとをプロットした図である。割合Bが15%未満のものを「●」、15%以上20%以下のものを「▲」、20%を超えるものを「×」で表している。図9中の曲線f2は、降伏応力σY1が、ポリエチレンテレフタレート膜の引張応力である225MPaと等しくなるときの半値幅βおよび厚さ比Aの組を示している。曲線f2よりも上方の領域は、σY1>σB2となる領域であり、曲線f2よりも下方の領域は、σY1<σB2を満たす領域である。
 図9から、曲線f2よりも下方の領域に位置するように、すなわちσY1<σB2を満たすように半値幅βおよび厚さ比Aを制御することにより、破断伸度に優れた集電体を実現できることが確認できる。なお、図示しないが、樹脂層として、引張破壊応力σB2が例えば225MPaよりも小さい樹脂膜を用いると、曲線f2が下方(-y側)にずれるので、σY1<σB2を満たす領域がより狭くなる。
 ・応力―ひずみ曲線
 実施例および比較例の集電体の応力―ひずみ曲線を、実施例1および比較例1の集電体を例に説明する。
 図10Aおよび図10Bは、それぞれ、実施例1および比較例1の集電体の応力―ひずみ曲線の測定結果の一例を示す図である。表1から分かるように、実施例6の集電体と比較例1の集電体とでは、樹脂層(PET膜)の厚さD2および金属層の厚さD3は略同じである。
 図10Aに示すように、実施例1の集電体では、引張破壊応力σB2(この例では225MPa)よりも低い降伏応力σY1で金属層に破断が生じている。金属層に破断が生じた後も、樹脂層が応力に応じて変形する(延びる)ので、集電体のひずみは増加する(図5C参照)。集電体にかかる応力が引張破壊応力σB2(225MPa)に達すると、樹脂層も破断する。この例では、集電体の破断伸度は、樹脂層と同程度となり、約35%である。
 一方、図10Bに示すように、比較例1の集電体では、引張破壊応力σB2(この例では、225MPa)よりも高い降伏応力σY1で金属層に破断部が生じる。この時点(降伏点)の直後には、樹脂層のうち金属層の破断部の下方に位置する部分に225MPa以上の応力がかかり、樹脂層は伸びることなく破断する(図4C参照)。このため、集電体の破断伸度は、図10Aに示す実施例1の集電体の破断伸度よりも大幅に小さくなる。この例では、集電体の破断伸度は、3~5%程度である。
 なお、図10A、図10Bに示す応力-ひずみ曲線は例示であり、例えば、PET膜の破断伸度のばらつきによっても変わり得る。実施例の集電体の破断伸度は、樹脂層の破断伸度よりも小さくなる場合もある。その場合でも、集電体の破断伸度が、金属層(ここでは銅層)の破断伸度よりも大きい(ここでは6%以上)ことで、集電体の破断の発生を抑制する効果を奏すると考えられる。
 (第2の実施形態)
 蓄電デバイス用電極の実施形態を説明する。本実施形態の蓄電デバイス用電極(以下、「電極」と略する。)は、好ましくは蓄電デバイスの負極に用いられるが、正極に用いてもよい。
 図11Aは、電極110の分解斜視図であり、図11Bは、電極110の一部を示す断面図である。電極110は、集電体201と、活物質層210とを備える。活物質層210は、充電(または蓄電)および放電に伴って酸化還元される活物質を含む。集電体201は、活物質層210を支持するとともに、活物質層210へ電子を供給し、活物質層210から電子を受け取る。
 集電体201は、第1の実施形態で説明した集電体101~104のいずれかである。すなわち、集電体201は、樹脂層20と、樹脂層20の第1表面20a側に位置する第1金属層31とを備える。集電体201は、樹脂層20の第2表面20b側に位置する第2金属層32をさらに備えてもよい。
 集電体201は、第1部分201sと第2部分201tとを含み、第1部分201sに活物質層210が配置されている。第2部分201tには活物質層210は設けられておらず、外部への電気的接続のためのタブとして機能する。
 活物質層210は、第1金属層31の樹脂層20と反対側に位置する。活物質層210は、リチウムイオンを吸蔵および放出する正極活物質または負極活物質を含む。
 本実施形態の電極110は、所望の電気特性を有し、かつ、破断伸度の高い集電体201を備える。このため、活物質層210を形成する際のカレンダ処理等によって集電体に裂けが生じることを抑制できるので、工程不良率が改善される。また、電池の動作時においても、活物質層210の膨張収縮によって集電体201に局所的に大きい応力がかかった場合でも、集電体201の破断に起因する電池の変形や特性の低下を抑制できる。
 正極用および負極用の電極110は、公知の製造方法によって製造することができる。
 本実施形態の蓄電デバイス用電極の構造は、図11Aおよび図11Bに示す構造に限定されない。例えば、図12に示すように、第2金属層32の樹脂層20と反対側にも活物質層210が配置されていてもよい。
 <活物質層210>
 電極110を蓄電デバイスの正極に用いる場合、活物質層210は、正極活物質を含む。
 正極活物質は、例えば、リチウムを含有する複合金属酸化物を含む。リチウムを含有する複合金属酸化物として、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、リチウムマンガンスピネル(LiMn)、リチウムバナジウム化合物(LiV)、オリビン型LiMPO(ただし、Mは、Co、Ni、Mn、Fe、Mg、Nb、Ti、Al、Zrからなる群より選ばれる1種類以上の元素またはバナジウム酸化物)、チタン酸リチウム(LiTi12)、一般式:LiNiCoMn(x+y+z+a=1、0≦x<1、0≦y<1、0≦z<1、0≦a<1、上記一般式中のMは、Al、Mg、Nb、Ti、Cu、Zn、Crからなる群より選ばれる1種類以上の元素)で表される複合金属酸化物、および、一般式:LiNiCoAl(0.9<x+y+z<1.1)で表される複合金属酸化物等を挙げることができる。正極活物質は、リチウムイオンを吸蔵および放出可能な材料として、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセン等を含有していてもよい。
 正極に用いられる活物質層210は、さらにバインダーおよび導電助剤の少なくとも一方を含んでいてもよい。バインダーには、公知の種々の材料を用いることができる。正極に用いる活物質層210中のバインダーとしては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン-テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)およびポリフッ化ビニル(PVF)等のフッ素樹脂を用いることができる。
 バインダーとして、ビニリデンフルオライド系フッ素ゴムを用いてもよい。例えば、ビニリデンフルオライド-ヘキサフルオロプロピレン系フッ素ゴム(VDF-HFP系フッ素ゴム)、ビニリデンフルオライド-ヘキサフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-HFP-TFE系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン系フッ素ゴム(VDF-PFP系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-PFP-TFE系フッ素ゴム)、ビニリデンフルオライド-パーフルオロメチルビニルエーテル-テトラフルオロエチレン系フッ素ゴム(VDF-PFMVE-TFE系フッ素ゴム)、ビニリデンフルオライド-クロロトリフルオロエチレン系フッ素ゴム(VDF-CTFE系フッ素ゴム)等を正極に用いる活物質層210のバインダーに適用してもよい。
 導電助剤の例は、カーボン粉末、カーボンナノチューブ等の炭素材料である。カーボン粉末には、カーボンブラック等を適用できる。正極に用いる活物質層210の導電助剤の他の例は、ニッケル、ステンレス、鉄等の金属粉末、および、ITO等の導電性酸化物の粉末である。上述した材料の2種以上を混合して活物質層210に含有させてもよい。
 電極110を蓄電デバイスの負極に用いる場合、負極に用いる活物質層210は、負極活物質を含む。
 負極活物質は炭素材料を含む。炭素材料の例としては、例えば、天然または人造の黒鉛、カーボンナノチューブ、難黒鉛化性炭素、易黒鉛化性炭素(ソフトカーボン)、低温度焼成炭素等が挙げられる。負極活物質は炭素材料以外の材料を含んでいてもよい。例えば、金属リチウム等のアルカリ金属およびアルカリ土類金属、リチウム等の金属と化合物を形成できる、スズ等の金属またはシリコン、シリコン・カーボン複合材、酸化物を主体とする非晶質の化合物(SiO(0<x<2)、二酸化スズ等)、チタン酸リチウム(LiTi12)等の粒子を含んでいてもよい。
 負極に用いられる活物質層210のバインダーおよび導電助剤には、上述したバインダーおよび導電助剤を同様に用いることができる。また、負極用のバインダーとして、セルロース、スチレン・ブタジエンゴム、エチレン・プロピレンゴム、ポリイミド、ポリアミドイミド、アクリル樹脂等を用いてもよい。
 (第3の実施形態)
 リチウムイオン二次電池の実施形態を説明する。
 図13は、リチウムイオン二次電池301の一例を示す模式的な外観図であり、図14は、図13に示すリチウムイオン二次電池におけるセルを取り出して示す分解斜視図である。ここでは、リチウムイオン二次電池として、パウチ型あるいはラミネート型と呼ばれるリチウムイオン二次電池を例示する。図示するリチウムイオン二次電池は、単層型であるが、積層型であってもよい。図示する例において、セルを構成する正極、セパレータおよび負極は、図のZ方向に沿って積層されている。
 リチウムイオン二次電池301は、セル310と、セル310に接続された一対のリード311と、セル310を覆う外装体313と、電解質314とを備える。
 セル310は、電極110と、電極120と、これらの間に配置されたセパレータ330とを含む。図示する例では、セル310は、一対の電極を含む単層セルである。
 電極110および電極120のうちの一方が正極活物質を含む正極として、他方が負極活物質を含む負極として構成されている。電極110は、第3の実施形態で説明した電極110であり、例えば負極として構成されている。
 電極120は、集電体202と、集電体202の一方の表面に配置された活物質層220とを備える。活物質層220は、第2の実施形態で説明した負極活物質または正極活物質を含む層である。集電体202は、例えば第1の実施形態で説明した集電体101~104と同様に、樹脂層と、樹脂層の一方または両方の表面に配置された金属層とを含む積層構造を有してもよい。集電体202における樹脂層および/または金属層の材料や厚さは、電極110と異なっていてもよい。あるいは、集電体202は、金属箔からなる金属集電体であってもよい。
 セパレータ330は、絶縁性の多孔質材である。例えば、ポリエチレン、ポリプロピレン等のポリオレフィンの単層フィルムもしくは積層フィルム、または、セルロース、ポリエステル、ポリアクリロニトリル、ポリイミド、ポリアミド(例えば芳香族ポリアミド)、ポリエチレンおよびポリプロピレンからなる群より選択される少なくとも1種の繊維の不織布、多孔質フィルムなどを用いることができる。
 電解質314は、外装体313の内側の空間に配置される。電解質314は、リチウムイオンを含む非水電解質であり、例えば、リチウムイオンを含む非水電解液である。電解質314に非水電解液を適用した場合、典型的には、外装体313とリード311との間に、非水電解液の漏出を防止するための封止材(例えば、ポリプロピレン等の樹脂フィルム、図13において不図示)が配置される。
 電解質314としては、例えば、リチウム塩等の金属塩および有機溶媒を含有する非水電解液を用いることができる。リチウム塩には、例えば、LiPF、LiClO、LiBF、LiCFSO、LiCFCFSO、LiC(CFSO、LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)、LiN(CFCFCO)、LiBOB等を使用できる。これらのリチウム塩の1種を単独で使用してもよく、2種以上を混合させてもよい。
 電解質314の溶媒には、例えば、環状カーボネートおよび鎖状カーボネートを用いることができる。具体的には、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカールボネート等を用いることができる。
 リチウムイオン二次電池301は、例えば以下の方法によって製造できる。電極110、120を作製した後、セパレータ330を介して活物質層210、220同士が対向するように電極110および電極120を保持することで、セル310を形成する。得られたセル310を、外装体313の空間に挿入する。電解質314を外装体313の空間に配置し、外装体313を封止することによって、リチウムイオン二次電池301が完成する。
 図15は、本実施形態の他のリチウムイオン二次電池302を示す模式的な外観図であり、図16は、図15に示すリチウムイオン二次電池におけるセルを取り出して示す分解斜視図である。リチウムイオン二次電池302は、積層型のセル320を有する点で、図13に示すリチウムイオン二次電池301と異なる。
 セル320は、複数の電極110と、複数の電極120と、複数のセパレータ330とを含む。セル320は、セパレータ330を介して電極110および電極120を交互に積層した構造を有する。電極110および電極120のうちの一方が正極であり、他方が負極である。この例では、電極110は、第2の実施形態で説明した電極110であり、好ましくは負極として構成されている。
 各電極110は、図12を参照しながら前述した構造を有し得る。各電極120は、集電体202と、集電体202の上面および下面に配置された活物質層220とを備える。図14を参照して説明したように、集電体202は、樹脂層と、樹脂層の両面に位置する金属層とを含む積層構造を有してもよいし、金属箔からなる金属集電体であってもよい。
 なお、本実施形態の電極を適用可能な蓄電デバイスは、リチウムイオン二次電池に限定されない。本実施形態の電極は、例えば、電気二重層キャパシタなどにも好適に用いられ得る。
 本開示の実施形態による蓄電デバイス用電極は、各種電子機器、電動機等の電源に有用である。本開示の実施形態による蓄電デバイスは、例えば、自転車および乗用車等に代表される車両用の電源、スマートフォン等に代表される通信機器用の電源、各種センサー用の電源、無人機(Unmanned eXtended Vehicle(UxV))の動力用電源に適用可能である。
20     :樹脂層
20a    :樹脂層の第1表面
20b    :樹脂層の第2表面
21     :樹脂層の部分
30     :金属層
31     :第1金属層
31a    :第1金属層の第1面
31b    :第1金属層の第2面
32     :第2金属層
32a    :第2金属層の第1面
32b    :第2金属層の第2面
41     :第1介在層
42     :第2介在層
101、102、103、104    :集電体
110、120    :蓄電デバイス用電極
131    :くびれ部
132    :破断部
201、202    :集電体
201s   :集電体の第1部分
201t   :集電体の第2部分
202    :集電体
210、220    :活物質層
301、302    :リチウムイオン二次電池
310、320    :セル
311    :リード
313    :外装体
314    :電解質
330    :セパレータ

Claims (15)

  1.  第1表面および前記第1表面と反対側に位置する第2表面を有する樹脂層と、
     銅を含む金属層と、を含む集電体であって、
     前記金属層は、前記樹脂層の前記第1表面側に位置する第1金属層を含み、
     前記集電体の降伏応力σY1は、前記樹脂層の引張破壊応力σB2よりも小さく、
     前記集電体の降伏応力σY1[MPa]は、前記樹脂層の降伏応力σY2[MPa]、前記樹脂層の厚さD2[μm]、前記金属層の降伏応力σY3[MPa]、および、前記金属層の厚さD3[μm]から、下記式(1)、(2)
    によって求められる値であり、
     前記金属層の降伏応力σY3[MPa]は、前記金属層のX線回折パターンにおける最も強度の高いX線回折ピークの半値幅β[°]から、下記式(3)  
    によって求められる値である、集電体。
  2.  前記金属層は、前記樹脂層の前記第2表面側に位置する第2金属層をさらに含む、請求項1に記載の集電体。
  3.  前記金属層は、主成分として銅を含む、請求項1または2に記載の集電体。
  4.  前記樹脂層の厚さD2は、4μm以上6μm以下である、請求項1から3のいずれか一項に記載の集電体。
  5.  前記金属層の厚さD3は、0.1μm以上3μm以下である、請求項1から4のいずれか一項に記載の集電体。
  6.  前記半値幅βは、0.25°以下である、請求項1から5のいずれかに記載の集電体。
  7.  前記樹脂層の厚さD2および前記金属層の厚さD3は、
    を満たす、請求項1から6のいずれか一項に記載の集電体。
  8.  前記集電体は、前記樹脂層の前記第1表面と前記第1金属層との間に介在層をさらに含み、前記介在層は、銅以外の金属を主成分として含む、請求項1から7のいずれか一項に記載の集電体。
  9.  前記樹脂層は、ポリエチレンテレフタレート、ポリイミド、ポリプロピレン、ポリカーボネート、ポリアミドおよびポリ塩化ビニルのいずれか1種を少なくとも含む、請求項1から8のいずれか一項に記載の集電体。
  10.  請求項1から9のいずれかに記載の集電体と、
     前記金属層の前記樹脂層と反対側に位置する活物質層と、
    を備える、蓄電デバイス用電極。
  11.  正極と、
     負極と、
     前記負極と前記正極との間に配置されるセパレータと、
     リチウムイオンを含む非水電解質と、を備え、
     前記負極は、請求項10に記載の蓄電デバイス用電極である、リチウムイオン二次電池。
  12.  樹脂層と、銅を含む金属層と、を含む積層構造を有する集電体の製造方法であって、
     前記集電体の降伏応力σY1が、前記樹脂層の引張破壊応力σB2よりも小さくなるように、前記積層構造を構成する各層の降伏応力および厚さを設計する工程を含む、集電体の製造方法。
  13.  前記設計する工程は、前記金属層の結晶粒径または前記金属層のX線回折パターンにおける最も強度の高いX線回折ピークの半値幅βに基づいて、前記金属層の降伏応力σY3を設計する工程を含む、請求項12に記載の集電体の製造方法。
  14.  前記金属層の降伏応力σY3を設計する工程は、前記金属層の降伏応力σY3と前記半値幅βとの関係式を導出する工程を含む、請求項13に記載の集電体の製造方法。
  15.  前記金属層の降伏応力σY3を設計する工程では、前記金属層の降伏応力σY3[MPa]を、前記半値幅β[°]および下記式
    に基づいて設計する、請求項13に記載の集電体の製造方法。
PCT/JP2022/001467 2022-01-17 2022-01-17 集電体、蓄電デバイス用電極およびリチウムイオン二次電池、ならびに集電体の製造方法 WO2023135817A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280088879.2A CN118679609A (zh) 2022-01-17 2022-01-17 集电体、蓄电器件用电极及锂离子二次电池、以及集电体的制造方法
JP2023573812A JPWO2023135817A1 (ja) 2022-01-17 2022-01-17
PCT/JP2022/001467 WO2023135817A1 (ja) 2022-01-17 2022-01-17 集電体、蓄電デバイス用電極およびリチウムイオン二次電池、ならびに集電体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/001467 WO2023135817A1 (ja) 2022-01-17 2022-01-17 集電体、蓄電デバイス用電極およびリチウムイオン二次電池、ならびに集電体の製造方法

Publications (1)

Publication Number Publication Date
WO2023135817A1 true WO2023135817A1 (ja) 2023-07-20

Family

ID=87278704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001467 WO2023135817A1 (ja) 2022-01-17 2022-01-17 集電体、蓄電デバイス用電極およびリチウムイオン二次電池、ならびに集電体の製造方法

Country Status (3)

Country Link
JP (1) JPWO2023135817A1 (ja)
CN (1) CN118679609A (ja)
WO (1) WO2023135817A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031224A (ja) * 2001-04-10 2003-01-31 Toyo Kohan Co Ltd 二次電池用の軽量集電体
JP2009274250A (ja) * 2008-05-13 2009-11-26 Sumitomo Metal Mining Co Ltd 金属被覆ポリイミドフィルム基板
JP2019067514A (ja) * 2017-09-28 2019-04-25 日立化成株式会社 導体形成用組成物、並びに接合体及びその製造方法
JP2020503639A (ja) * 2017-12-05 2020-01-30 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited 集電体、その極シートと電気化学デバイス
JP2020184515A (ja) * 2019-04-28 2020-11-12 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited 負極集電体、負極シート及び電気化学装置
JP2021109981A (ja) * 2020-01-06 2021-08-02 Dowaメタルテック株式会社 複合めっき材およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031224A (ja) * 2001-04-10 2003-01-31 Toyo Kohan Co Ltd 二次電池用の軽量集電体
JP2009274250A (ja) * 2008-05-13 2009-11-26 Sumitomo Metal Mining Co Ltd 金属被覆ポリイミドフィルム基板
JP2019067514A (ja) * 2017-09-28 2019-04-25 日立化成株式会社 導体形成用組成物、並びに接合体及びその製造方法
JP2020503639A (ja) * 2017-12-05 2020-01-30 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited 集電体、その極シートと電気化学デバイス
JP2020184515A (ja) * 2019-04-28 2020-11-12 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited 負極集電体、負極シート及び電気化学装置
JP2021109981A (ja) * 2020-01-06 2021-08-02 Dowaメタルテック株式会社 複合めっき材およびその製造方法

Also Published As

Publication number Publication date
JPWO2023135817A1 (ja) 2023-07-20
CN118679609A (zh) 2024-09-20

Similar Documents

Publication Publication Date Title
US20220093933A1 (en) Electrode plate, electrochemical apparatus, and apparatus thereof
JP5910164B2 (ja) 非水電解質二次電池
US10396331B2 (en) Laminate, secondary battery, battery pack, and vehicle
US7556881B2 (en) Lithium secondary battery
CN110416629A (zh) 全固体电池
EP2685530A1 (en) Negative electrode active material for electrical device, and electrical device
JP2008269972A (ja) 非水溶媒二次電池
CN105934847B (zh) 电器件
JP5246747B2 (ja) リチウムイオン二次電池用負極、およびそれを用いたリチウムイオン二次電池
JP5920217B2 (ja) 二次電池
US11456489B2 (en) Nonaqueous electrolyte secondary battery, and method for producing a nonaqueous electrolyte secondary battery
EP3989314A1 (en) Positive electrode plate, and lithium ion battery and device associated therewith
JP5945401B2 (ja) リチウムイオン二次電池の正極集電体用箔の製造方法
KR100866863B1 (ko) 리튬 이차 전지용 음극, 이의 제조방법 및 이를 포함하는리튬 이차 전지
WO2011016243A1 (ja) 非水電解質二次電池及びその製造方法
CN116230858B (zh) 正极极片、电池以及用电设备
WO2023166633A1 (ja) 集電体、蓄電デバイス用電極およびリチウムイオン二次電池
WO2023135817A1 (ja) 集電体、蓄電デバイス用電極およびリチウムイオン二次電池、ならびに集電体の製造方法
WO2023135818A1 (ja) 集電体、蓄電デバイス用電極およびリチウムイオン二次電池、ならびに集電体の製造方法
WO2022208682A1 (ja) 蓄電デバイス用電極およびリチウムイオン二次電池
JP7311027B2 (ja) 蓄電デバイス用電極およびリチウムイオン二次電池
WO2023053322A1 (ja) 集電体、蓄電デバイス用電極およびリチウムイオン二次電池
JP2023098028A (ja) 集電体、蓄電デバイス用電極、リチウムイオン二次電池および集電体の製造方法
US20230253547A1 (en) Cathode for lithium secondary battery and lithium secondary battery including the same
US20240283009A1 (en) Sulfide electrolyte layer supported dry process electrode layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920342

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023573812

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE