WO2023133852A1 - 电池单体、电池、用电设备及电池单体的制造方法和设备 - Google Patents

电池单体、电池、用电设备及电池单体的制造方法和设备 Download PDF

Info

Publication number
WO2023133852A1
WO2023133852A1 PCT/CN2022/072160 CN2022072160W WO2023133852A1 WO 2023133852 A1 WO2023133852 A1 WO 2023133852A1 CN 2022072160 W CN2022072160 W CN 2022072160W WO 2023133852 A1 WO2023133852 A1 WO 2023133852A1
Authority
WO
WIPO (PCT)
Prior art keywords
support member
sleeve
battery cell
peripheral surface
hole
Prior art date
Application number
PCT/CN2022/072160
Other languages
English (en)
French (fr)
Inventor
朱广浩
邹洋
余文杰
迟庆魁
金海族
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/072160 priority Critical patent/WO2023133852A1/zh
Priority to CN202280027496.4A priority patent/CN117157825A/zh
Publication of WO2023133852A1 publication Critical patent/WO2023133852A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/375Vent means sensitive to or responsive to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • an embodiment of the present application provides a battery cell, which includes: an electrode assembly having a winding center hole, the winding center hole extending from a first end to a second end of the electrode assembly; a support member , the support is tubular and passed through the winding center hole; the sleeve is sleeved on the support and is located between the outer peripheral surface of the support and the inner wall of the winding center hole, so The support member is configured to support the electrode assembly through the sleeve; wherein, a flow guiding channel is defined between the inner peripheral surface of the sleeve and the outer peripheral surface of the support member, and the flow guiding channel is connected from the The first end extends to the second end.
  • the inner space of the support (hereinafter referred to as the central channel) and the guide channel are both used to allow the flow of the electrolyte.
  • the central channel and the guide channel can also be used to allow the gas to flow, so that the pressure inside the battery cell can be kept uniform, and the problems of damage and thermal runaway caused by excessive local internal pressure and high local temperature can be prevented, and the safety of the battery can be improved. . Therefore, the above solution realizes improving the wettability of the electrolyte and avoiding excessive local internal pressure by arranging the parallel central channel and the diversion channel, thereby improving the performance and safety of the battery.
  • a first through hole is provided on the side wall of the support, and the first through hole is used to communicate with the inner space of the support and the flow guiding channel.
  • each diversion channel communicates with the central channel through a plurality of first through holes, reducing the probability that the central channel and the diversion channel cannot communicate with each other due to the blockage of the first through holes, and further reducing the inner diameter of the winding center hole. The probability of the space being blocked, thereby ensuring the performance of the battery cell and the safety of the battery cell.
  • the outer peripheral surface of the support member is a cylindrical surface
  • the inner peripheral surface of the sleeve is a prism surface
  • the outer peripheral surface of the support member is tangent to the inner peripheral surface of the sleeve.
  • the guide channel is formed between two adjacent tangent lines.
  • the support member can be directly inserted into the sleeve during assembly to support the electrode assembly. And form a flow channel, easy to assemble.
  • the sleeve when used in the process of winding and forming the electrode assembly, it can be used to insert the needle. The sleeve can prevent the needle from scratching the pole piece or causing the pole piece to wrinkle.
  • the inner circumference of the sleeve The surface matches the outer peripheral surface of the rolling needle (that is, the outer peripheral surface of the rolling needle is also a prismatic surface), which has the effect of not being easy to slip; after the electrode assembly is wound and formed, the winding needle is pulled out, and the sleeve can temporarily support the electrode assembly to prevent rolling. Collapsing the hole around the central hole also prevents the support from scratching the pole piece or causing the pole piece to wrinkle during insertion and extraction.
  • the diameter of the first through hole is D1
  • the outer diameter of the support member is D2
  • the number of edges on the inner peripheral surface of the sleeve is n, satisfying:
  • the first through hole is not easily blocked by the inner peripheral surface of the sleeve, and it is also ensured that both sides of the first through hole can contact the two adjacent prism surfaces or the two spaced prism surfaces, so as not to support
  • the support area of the member on the circumference of the first through hole is too small, so as to ensure the support strength of the support member to the sleeve and prevent uneven deformation of the sleeve from blocking the first through hole.
  • the outer peripheral surface of the support member is a prism surface
  • the inner peripheral surface of the sleeve is a cylindrical surface
  • the edge of the outer peripheral surface of the support member is in contact with the inner peripheral surface of the sleeve.
  • the surrounding surface is in contact.
  • the first through hole is not easily blocked at any position on the outer peripheral surface of the support member.
  • a second through hole is provided on the side wall of the sleeve, and the second through hole communicates with the flow guiding channel.
  • the diameter of the second through hole is smaller than that of the first through hole, the size of impurities such as pole piece fragments entering the guide channel through the second through hole is small, and it is not easy to block the first through hole. hole, so as to ensure the communication between the diversion channel and the central channel, reduce the probability of the inner space of the winding central hole being blocked, and ensure the infiltration effect of the electrolyte and the safety of the battery cell.
  • the battery cell further includes a buffer, and the buffer has a mesh structure and covers the second through hole.
  • the force of the electrolyte flowing out from the second through hole is buffered, thereby reducing the impact force of the electrolyte on the inner wall of the winding center hole, so as to avoid damage or wrinkling of the pole piece.
  • one of the outer peripheral surface of the support member and the inner peripheral surface of the sleeve is provided with a limiting protrusion, and the other is provided with a limiting groove, and the limiting protrusion Cooperate with the limiting groove to limit the relative rotation of the support member and the sleeve.
  • the supporting member takes into account both the function of circulation and the function of electrical connection, and there is no need to install additional electrical connection parts inside the battery cell, which ensures the energy density of the battery cell and does not need to pass through the shell body to improve The safety of the battery cell is ensured.
  • the second electrode lead-out part is provided with a liquid injection hole, and the liquid injection hole is disposed opposite to one end of the support member.
  • the housing assembly further includes a pressure relief mechanism configured to be activated to discharge the battery when the internal pressure or temperature of the battery cell reaches a threshold
  • the internal pressure of the monomer, the pressure relief mechanism is arranged on the side of the shell assembly close to the second tab and opposite to the other end of the support member.
  • the sleeve functions to insulate and isolate the support member and the electrode assembly, preventing contact between the support member and pole pieces with opposite polarities of the electrode assembly to cause a short circuit, thereby improving the safety of the battery cell.
  • the battery cell further includes: a current collector, the current collector is attached to the second tab and used to connect the second tab to the support member, so as to realize the electrical connection between the second tab and the support member.
  • the support member is provided with a fusing part.
  • the part with the highest temperature of the electrode assembly is often in the center, that is, the position close to the center hole of the winding, and the fuse part of the support can be disconnected first in response to local high temperature and excessive current, so that the battery cell It is impossible to continue charging and discharging, so as to avoid more serious accidents and improve the safety of battery cells.
  • a second through hole is provided on the side wall of the sleeve, the second through hole communicates with the flow guiding channel, and the fuse part is connected to the second through hole stagger.
  • the metal slag generated by the fusing of the support is not easy to pass through the second through hole and enter the winding center hole, so as to prevent the metal slag from piercing the separator and the pole piece, thereby avoiding the overlapping short circuit of the pole pieces with opposite polarities , and avoid causing the support member to overlap short circuit with the polarity opposite to the support member, thereby improving the safety of the battery cell.
  • an embodiment of the present application provides an electric device, which includes the foregoing battery.
  • an embodiment of the present application provides a method for manufacturing a battery cell, which includes: providing an electrode assembly, the electrode assembly has a winding center hole, and the winding center hole extends from the first end of the electrode assembly Extending to the second end; providing a support, the support is tubular; providing a sleeve; sleeve the sleeve on the support, so that the inner peripheral surface of the sleeve and the support A guide channel is defined between the outer peripheral surfaces, and the support member and the sleeve are passed through the winding center hole, so that the support member supports the electrode assembly through the sleeve, and the The flow guide channel extends from the first end to the second end.
  • the embodiment of the present application provides a battery cell manufacturing equipment, which includes: a first providing device for providing an electrode assembly, the electrode assembly has a winding center hole, and the winding center hole is formed from the The first end of the electrode assembly extends to the second end; the second providing device is used to provide a support member, and the support member is tubular; the third providing device is used to provide a sleeve; the assembly device is used for the said The sleeve is sleeved on the support member, so that a guide channel is defined between the inner peripheral surface of the sleeve and the outer peripheral surface of the support member, and is used for passing the support member and the sleeve The winding center hole is formed so that the support member supports the electrode assembly through the sleeve, and the flow guide channel extends from the first end to the second end.
  • Fig. 1 is a schematic diagram of a vehicle provided by an embodiment of the present application.
  • Fig. 2 is an exploded view of a battery provided by an embodiment of the present application
  • Fig. 3 is a front view of a battery cell provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the internal structure of a battery cell provided by an embodiment of the present application.
  • Fig. 6 is a top view of a support and a sleeve provided by an embodiment of the present application.
  • Fig. 7 is the C-C sectional view of Fig. 6;
  • Fig. 9 is a D-D sectional view of Fig. 8.
  • Fig. 12 is an enlarged view of part F of Fig. 4;
  • Fig. 14 is a schematic perspective view of a support provided by an embodiment of the present application.
  • Fig. 15 is a front view of a support provided by an embodiment of the present application.
  • Fig. 16 is the H-H sectional view of Fig. 15;
  • Figure 17 is a schematic diagram of the internal structure of the support and the sleeve provided by an embodiment of the present application.
  • Figure 18 is a perspective view of a support and a sleeve provided by an embodiment of the present application.
  • FIG. 19 is a schematic flowchart of a method for manufacturing a battery cell provided by an embodiment of the present application.
  • Icons 1000-vehicle; 100-battery; 200-motor; 300-controller; 101-box; 1011-first box; 1012-second box; 102-battery unit; 1-electrode assembly ; 1a-first end; 1b-second end; 11-first tab; 12-second tab; 2-support; 21-central channel; 22-first through hole; 23-limiting groove; 24-fusing part; 3-sleeve; 31-second through hole; 32-bumper; 33-limiting protrusion; 4-guiding channel; 5-shell assembly; 51-shell body; 53-second electrode lead-out part; 531-liquid injection hole; 532-seal; 54-pressure relief mechanism; 6-current collector; 61-flow channel; 7-manufacturing equipment; 71-first providing device ; 72 - second providing means; 73 - third providing means; 74 - assembling means.
  • connection In the description of this application, it should be noted that, unless otherwise clearly stipulated and limited, the terms “installation”, “connection”, “connection” and “attachment” should be understood in a broad sense, for example, it may be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediary, and it can be internal communication between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
  • the same reference numerals represent the same components, and for the sake of brevity, detailed descriptions of the same components are omitted in different embodiments. It should be understood that the thickness, length, width and other dimensions of the various components in the embodiments of the application shown in the drawings, as well as the overall thickness, length and width of the integrated device, are for illustrative purposes only, and should not constitute any limitation to the application .
  • “Plurality” in this application refers to two or more (including two).
  • the battery cells may include lithium-ion secondary battery cells, lithium-ion primary battery cells, lithium-sulfur battery cells, sodium-lithium-ion battery cells, sodium-ion battery cells, or magnesium-ion battery cells, etc.
  • the embodiment of the present application does not limit this.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack, and the like.
  • Batteries generally include a case for enclosing one or more battery cells. The box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly includes a positive pole piece, a negative pole piece and a separator.
  • a battery cell works primarily by moving metal ions between the positive and negative pole pieces.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, and the positive electrode active material layer is coated on the surface of the positive electrode current collector; the positive electrode current collector includes a positive electrode current collector and a positive electrode tab, and the positive electrode current collector is coated with a positive electrode active material layer , the positive electrode tab is not coated with the positive electrode active material layer.
  • the material of the positive electrode current collector can be aluminum, the positive electrode active material layer includes the positive electrode active material, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer, and the negative electrode active material layer is coated on the surface of the negative electrode current collector; the negative electrode current collector includes a negative electrode current collector and a negative electrode tab, and the negative electrode current collector is coated with a negative electrode active material layer , the negative electrode tab is not coated with the negative electrode active material layer.
  • the material of the negative electrode current collector may be copper, the negative electrode active material layer includes the negative electrode active material, and the negative electrode active material may be carbon or silicon.
  • the material of the spacer can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene).
  • the development of battery technology should consider various design factors at the same time, such as performance parameters such as energy density, cycle life, discharge capacity, and charge-discharge rate.
  • performance parameters such as energy density, cycle life, discharge capacity, and charge-discharge rate.
  • the infiltration effect of the electrolyte on the pole piece is positively related to the cycle life, discharge capacity and service life of the battery cell.
  • the transmission path of the metal ions will become farther, hindering the shuttle of the metal ions between the positive electrode and the negative electrode, and the electrode that is not wetted by the electrolyte cannot participate in the electrochemical reaction.
  • the interface resistance will also increase, which will affect the cycle performance, discharge capacity and service life of the battery.
  • the forming method of the electrode assembly includes winding type, and the winding type electrode assembly is a wound body formed by cross-stacking positive electrode sheets, negative electrode sheets and separators and then winding around a central axis.
  • the winding center of the wound electrode assembly generally has a winding center hole, which is used to allow the electrolyte to circulate, so that the electrolyte can quickly fill the inside of the battery cell and infiltrate the electrode assembly. Once the winding center hole is blocked, the electrolyte will not flow smoothly, and the electrolyte will not be able to quickly fill the inside of the battery cell, and the electrode assembly will not be well infiltrated.
  • a support and a sleeve are arranged in the winding center hole of the electrode assembly, and the sleeve is sleeved on the support and positioned on the support.
  • the support is configured as a tube, and the center of the support forms a central channel to communicate with the two ends of the electrode assembly, while the outer peripheral surface of the support and the inner wall of the winding center hole A diversion channel is defined between them, and the diversion channel connects the two ends of the electrode assembly. Both the central channel and the diversion channel are used for electrolyte circulation.
  • the support member supports the electrode assembly through the sleeve to prevent the center hole of the winding from collapsing, and prevent the pole pieces of the electrode assembly from loosening inward, so as to prevent the distance between adjacent pole pieces from increasing, thereby avoiding the gap caused by the distance between adjacent pole pieces
  • the increase will lead to the longer transmission path of metal ions and the increase of interface resistance, thereby improving the cycle performance, discharge capacity and service life of the battery.
  • the electrode assembly will generate heat and gas.
  • the winding center hole can be effectively relieved.
  • the problem of blockage is to facilitate the discharge of heat and gas generated in the central area of the electrode assembly, to ensure uniform internal pressure of the battery cell, and to avoid excessive local internal pressure of the battery cell due to blockage of the center hole of the winding, so as not to damage the battery cell or raise security issues.
  • Electrical devices can be vehicles, mobile phones, portable devices, laptops, ships, spacecraft, electric toys and power tools, etc.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles;
  • spacecraft include airplanes, rockets, space shuttles and spacecraft, etc.;
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric boat toys and electric airplane toys, etc.;
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, electric planers, and more.
  • the embodiment of the present application does not impose special limitations on the above electric equipment.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles.
  • a battery 100 , a controller 300 and a motor 200 may be provided inside the vehicle 1000 , and the controller 300 is used to control the battery 100 to supply power to the motor 200 .
  • the battery 100 may be provided at the bottom or front or rear of the vehicle 1000 .
  • the battery 100 can be used for power supply of the vehicle 1000 , for example, the battery 100 can be used as an operating power source of the vehicle 1000 , for a circuit system of the vehicle 1000 , for example, for starting, navigating, and working power requirements of the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but can also be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel oil or natural gas to provide driving power for the vehicle 1000 .
  • the battery 100 may include a plurality of battery cells 102, wherein, the plurality of battery cells 102 are connected in series or in parallel or in combination, and the combination refers to a combination of series and parallel. mix.
  • the battery 100 may also be called a battery 100 pack.
  • a plurality of battery cells 102 may be connected in series, parallel or mixed to form a battery module, and then a plurality of battery modules may be connected in series, parallel or mixed to form the battery 100 . That is to say, a plurality of battery cells 102 can directly form the battery 100 , or can first form a battery module, and then the battery module can form the battery 100 .
  • the battery 100 may further include a box body 101 (or called a cover body), the interior of the box body 101 is a hollow structure, and a plurality of battery cells 102 are accommodated in the box body 101 .
  • the box body 101 may include two parts for accommodating (refer to FIG. 2 ), which are referred to here as the first box body part 1011 and the second box body part 1012 respectively, and the first box body part 1011 and the second box body part 1012 snap together.
  • the shapes of the first box part 1011 and the second box part 1012 may be determined according to the combined shape of the plurality of battery cells 102 , and each of the first box part 1011 and the second box part 1012 may have an opening.
  • both the first box body part 1011 and the second box body part 1012 can be hollow cuboids and each has only one face as an opening surface, the opening of the first box body part 1011 and the opening of the second box body part 1012 are arranged oppositely, and The first box body part 1011 and the second box body part 1012 are buckled together to form the box body 101 with a closed cavity.
  • the first box part 1011 and the second box part 1012 one may also be a cuboid with an opening, and the other may be a cover structure to close the opening of the cuboid.
  • a plurality of battery cells 102 are combined in parallel or in series or mixed and then placed in the box 101 formed by fastening the first box part 1011 and the second box part 1012 .
  • the battery cell 102 includes an electrode assembly 1, a support 2 and a sleeve 3, the electrode assembly 1 has a winding center hole, The winding center hole extends from the first end 1a of the electrode assembly 1 to the second end 1b, the support member 2 is tubular and penetrates through the winding center hole, and the sleeve 3 is sleeved on the support member 2 and located on the outer periphery of the support member 2 Between the surface and the inner wall of the winding center hole, the support member 2 is configured to support the electrode assembly 1 through the sleeve 3; wherein, a flow guide channel 4 is defined between the inner peripheral surface of the sleeve 3 and the outer peripheral surface of the support member 2 , the guide channel 4 extends from the first end 1a to the second end 1b.
  • the first end 1 a and the second end 1 b of the electrode assembly 1 are opposite ends in the extending direction of the winding center hole of the electrode assembly 1 .
  • the support member 2 is a part used to support the electrode assembly 1, and the support member 2 is arranged in the winding center hole of the electrode assembly 1 to prevent the winding center hole from collapsing, so as to prevent the pole pieces of the electrode assembly 1 from loosening inward.
  • the sleeve 3 is a part that separates the support 2 and the electrode assembly 1 .
  • Both the support member 2 and the sleeve 3 are tubular structures, and the support member 2 is inserted into the sleeve 3 .
  • Supporting the electrode assembly 1 by the support member 2 through the sleeve 3 means that the outer peripheral surface of the support member 2 is in contact with the inner peripheral surface of the sleeve 3 , and the outer peripheral surface of the sleeve 3 is in contact with the inner wall of the winding center hole of the electrode assembly 1 .
  • the supporting member 2 can be made of relatively high strength and relatively hard material, such as metal.
  • the guide channel 4 is the gap between the inner peripheral surface of the sleeve 3 and the outer peripheral surface of the support member 2, a part of the outer peripheral surface of the support member 2 is in contact with the inner peripheral surface of the sleeve 3 to support the electrode assembly 1, and the support member 2 The other part of the outer peripheral surface is not in contact with the inner peripheral surface of the sleeve 3 to form the flow guide channel 4 .
  • the guide channel 4 may extend in a straight line from the first end 1a to the second end 1b, or may extend in a curved line from the first end 1a to the second end 1b. In the extending direction of the flow guide channel 4 , the flow area of the flow guide channel 4 may be the same or different, and the flow area refers to the cross-sectional area of the flow guide channel 4 perpendicular to its extending direction.
  • the inner peripheral surface of the support member 2 is surrounded by a central channel 21, while the guide channel 4 is defined between the outer peripheral surface of the support member 2 and the inner wall of the winding center hole, the central channel 21 and the guide channel
  • the channels 4 are all for electrolyte circulation.
  • the central channel 21 can flow through the diversion channel 4.
  • the diversion channel 4 can flow through the central channel 21, so that there is always a channel for the electrolyte to circulate in the winding center hole.
  • a first through hole 22 is provided on the side wall of the support member 2 , and the first through hole 22 is used to communicate with the inner space of the support member 2 and the flow guide channel 4 .
  • the inner space of the support 2 is the space enclosed by the inner peripheral surface of the support 2 , that is, the central passage 21 , that is to say, the central passage 21 mentioned in this application refers to the inner space of the support 2 .
  • the first through hole 22 is a through hole penetrating from the outer peripheral surface of the support member 2 to the inner peripheral surface of the support member 2 .
  • the electrolyte in the central channel 21 can enter the guide channel 4 from the first through hole 22, and the central channel 21 is not blocked.
  • the blocked part can be used for circulating electrolyte or discharge (such as temperature, gas, impurities, etc.), otherwise, the electrolyte or discharge in the guide channel 4 can also enter the central passage 21 through the first through hole 22 for discharge, further
  • the clogging problem is alleviated, the wetting effect of the electrolyte is improved, and the safety of the battery cell 102 is improved.
  • the unblocked part can still play a role in circulation, further alleviating the problem of blockage, improving the infiltration effect of the electrolyte, and improving the performance of the battery cell. 102 for security.
  • FIG. 6 there are multiple flow guide channels 4 , and the multiple flow guide channels 4 are distributed at intervals along the circumference of the support member 2 .
  • the outer peripheral surface of the support member 2 and the inner peripheral surface of the sleeve 3 define a plurality of flow guide channels 4 , and each flow guide channel 4 extends from the first end 1 a to the second end 1 b.
  • the electrolyte can flow through multiple diversion channels 4, and the flow path from the first end 1a to the second end 1b is less likely to be blocked, ensuring that the electrolyte can circulate, Moreover, the flow rate of the plurality of guide channels 4 is greater than the flow rate of a single guide channel 4, which improves the rate and effect of the electrolyte infiltrating the electrode assembly 1; on the other hand, it also improves the discharge rate of the central area of the electrode assembly 1, improving the Safety of the battery cell 102 .
  • each flow guide channel 4 communicates with the inner space of the support member 2 through a plurality of first through holes 22 arranged at intervals along its extending direction.
  • a plurality of first through holes 22 are set, and when one or some first through holes 22 are blocked, another or some other first through holes 22 communicate with the central channel 21 and the guide channel 4, reducing the blockage caused by the first through holes 22 The probability that the central channel 21 and the diversion channel 4 cannot communicate with each other. By ensuring the communication between the central channel 21 and the diversion channel 4, the probability of the inner space of the winding center hole being blocked is reduced, and the infiltration effect of the electrolyte and the battery cell are guaranteed. 102 for security.
  • the outer peripheral surface of the support member 2 is a cylindrical surface
  • the inner peripheral surface of the sleeve 3 is a prismatic surface
  • the outer peripheral surface of the support member 2 and the inner peripheral surface of the sleeve 3 The peripheral surfaces are tangent, and a diversion channel 4 is formed between two adjacent tangent lines.
  • the inner peripheral surface of the sleeve 3 forms a prism-shaped cavity, and the prisms can be triangular prisms, quadrangular prisms, pentagonal prisms, etc., and the prisms can be regular prisms or special-shaped prisms. As shown in FIG. 9 , in this embodiment, the inner peripheral surface of the sleeve 3 encloses a cavity in the shape of a regular hexagonal prism.
  • the support member 2 is cylindrical, and the outer peripheral surface of the support member 2 is a cylindrical surface, and the cylindrical surface is tangent to each surface of the regular hexagonal prism and has a tangent line.
  • the outer peripheral surface of the support member 2 contacts the inner peripheral surface of the sleeve 3 at the tangent, and the rest of the outer peripheral surface of the support member 2 does not contact the inner peripheral surface of the sleeve 3, so that a guide flow is formed between two adjacent tangent lines channel 4.
  • six guide channels 4 are formed between the outer peripheral surface of the support member 2 and the inner peripheral surface of the sleeve 3 .
  • the support member 2 By setting the outer peripheral surface of the support member 2 as a cylindrical surface and the inner peripheral surface of the sleeve 3 as a prism surface, the support member 2 can be directly inserted into the sleeve 3 during assembly to support the electrode assembly 1, and A flow channel 61 is formed, which is convenient for assembly.
  • the sleeve 3 can also be used in the process of winding and forming the electrode assembly 1, and the winding needle on the winding device can be set as a prism with the same shape as the inner space of the sleeve 3, and the outer peripheral surface of the winding needle and the sleeve The inner peripheral surface of 3 cooperates, which has the effect that it is not easy to slip.
  • the winding needle is drawn out, and the sleeve 3 is left in the winding center hole of the electrode assembly 1. On the one hand, it can temporarily support the electrode assembly 1.
  • the diameter of the first through hole 22 is D1
  • the outer diameter of the support member 2 is D2
  • the number of edges on the inner peripheral surface of the sleeve 3 is n, satisfying:
  • the central angle corresponding to the end of the first through hole 22 located on the outer peripheral surface of the support member 2 is ⁇ .
  • the diameter D1 of the first through hole 22 and the diameter D2 of the support member 2 form both sides of a right triangle, and the perpendicular of the diameter D1 of the first through hole 22 bisects the diameter D2 of the support member 2, and equally divides the diameter D2 of the first through hole 22.
  • the central angle ⁇ corresponding to one end of the outer peripheral surface of the support member 2 .
  • the inner peripheral surface of the sleeve 3 and/or the outer peripheral surface of the support member 2 may be squeezed and deformed, that is to say, the inner peripheral surface of the sleeve 3 and the support member
  • the contact position of the outer peripheral surface of 2 is not a tangent line in an ideal state.
  • the inner peripheral surface of the sleeve 3 and the outer peripheral surface of the support member 2 are extruded and deformed to form a region with a certain width.
  • the included angle ⁇ is set to be less than or equal to the internal angle of the prism to ensure that the diameter D1 of the first through hole 22 is less than the side length of the prism.
  • the shapes of the outer peripheral surface of the support member 2 and the inner peripheral surface of the sleeve 3 can be exchanged, that is, the outer peripheral surface of the support member 2 is a prismatic surface, and the inner peripheral surface of the sleeve 3 is a cylinder On the surface, the edge of the outer peripheral surface of the support member 2 abuts against the inner peripheral surface of the sleeve 3 .
  • the support member 2 is a prism, and the outer peripheral surface of the support member 2 is a prism surface.
  • a cylindrical cavity is formed inside the sleeve 3, and the inner peripheral surface of the sleeve 3 is a cylindrical surface.
  • the inner peripheral surface of the sleeve 3 is a circumscribed circle of the outer peripheral surface of the support member 2 , so that the edge of the outer peripheral surface of the support member 2 abuts against the inner peripheral surface of the sleeve 3 .
  • the first through hole 22 is not easily blocked.
  • the guide channel 4 can also be formed between the outer peripheral surface of the support member 2 and the inner peripheral surface of the sleeve 3 in other ways, for example, an inwardly recessed groove is formed on the outer peripheral surface of the support member 2 groove, or form an outwardly recessed groove on the inner peripheral surface of the sleeve 3, so as to avoid full contact between the outer peripheral surface of the support member 2 and the inner peripheral surface of the sleeve 3, and form a flow guiding channel at the position of the groove 4.
  • a second through hole 31 is provided on the side wall of the sleeve 3 , and the second through hole 31 communicates with the flow guide channel 4 .
  • the second through hole 31 is a through hole penetrating from the outer peripheral surface of the sleeve 3 to the inner peripheral surface of the support member 2 .
  • the pole piece on the inner wall of the winding center hole is not easy to be infiltrated.
  • the electrolyte not only It can flow down along the guide channel 4 , and can also infiltrate the pole piece at the center hole of the winding through the second through hole 31 to improve the infiltration effect.
  • the diameter of the second through hole 31 is smaller than the diameter of the first through hole 22 .
  • the diameter of the second through hole 31 is smaller than the diameter of the first through hole 22, impurities such as pole piece fragments that can pass through the second through hole 31 must be able to pass through the first through hole 22, and the first through hole 22 is not easy to be blocked. In this way, the connection between the diversion channel 4 and the central channel 21 is ensured, the probability of the inner space of the winding center hole being blocked is reduced, and the infiltration effect of the electrolyte and the safety of the battery cell 102 are ensured.
  • the battery 100 unit further includes a buffer 32 , and the buffer space is a mesh structure and covers the second through hole 31 .
  • the starting ends of the spacer and the pole piece need to be bonded to the outer peripheral surface of the sleeve 3 respectively.
  • the impact force acting on the inner wall of the winding center hole after the liquid passes through the second through hole 31 is too large, it is easy to cause the bonding position to loosen, causing the starting end of the pole piece, the starting end of the spacer and the outer peripheral surface of the sleeve 3 to separate, Make the pole piece and the spacer lose the tension and shrink and wrinkle.
  • the force of the electrolyte flowing out from the second through hole 31 is buffered, thereby reducing the impact of the electrolyte on the inner wall of the winding center hole. force, so as not to cause pole piece damage or wrinkling.
  • one of the outer peripheral surface of the support member 2 and the inner peripheral surface of the sleeve 3 is provided with a limiting protrusion 33, and the other is provided with a limiting groove 23, and the limiting protrusion 33 is connected with the limiting groove 23.
  • the groove 23 cooperates to limit the relative rotation of the support member 2 and the sleeve 3 .
  • the outer peripheral surface of the support member 2 forms an inwardly concave limiting groove 23, and the outer peripheral surface of the sleeve 3 forms an inwardly protruding limiting protrusion 33, the limiting groove 23 and the limiting protrusion 33 fit to position the support 2 and the sleeve 3 .
  • the displacement of the first through hole 22 is prevented, and the communication between the guide channel 4 and the central channel 21 is ensured.
  • the position of the limiting groove 23 is set at one end of the support member 2 , so as to observe whether the limiting protrusion 33 is located in the limiting groove 23 .
  • the surface of the limiting protrusion 33 is a spherical surface, so as to facilitate entry into the limiting groove 23 .
  • the electrode assembly 1 includes a first tab 11 located at the first end 1a and a second tab 12 located at the second end 1b, the first tab 11 and the second tab The polarities of the tabs 12 are opposite.
  • the battery cell 102 also includes a casing assembly 5, the casing assembly 5 includes a first electrode lead-out portion 52 and a second electrode lead-out portion 53 for inputting or outputting electric energy, the inside of the casing assembly 5 is provided with an electrode assembly 1, and the first electrode leads out part 52 and the second electrode lead-out part 53 are both arranged on the side of the housing assembly 5 close to the first tab 11, the first electrode lead-out part 52 is electrically connected to the first tab 11, and the support member 2 is used to connect the second tab 12 and the second electrode lead-out portion 53 to realize the electrical connection between the second tab 12 and the second electrode lead-out portion 53 .
  • the first pole piece, the second pole piece, and the spacer are prior art. Although not shown in the drawings of this application specification, those skilled in the art should understand their specific structures.
  • the first tab 11 is the part of the first pole piece not coated with the active material layer
  • the second tab 12 is the part of the second pole piece not coated with the active material layer.
  • the first tab 11 and the second tab 12 may protrude from the same side of the electrode assembly 1 , or may protrude from opposite sides respectively.
  • the first tab 11 and the second tab 12 are respectively arranged at both ends of the electrode assembly 1, that is, the first tab 11 is located at the first end 1a of the electrode assembly 1, and the second tab 12 is located at the first end 1a of the electrode assembly 1.
  • the tab 12 is located at the second end 1b of the electrode assembly 1 .
  • the case assembly 5 includes a case body 51 , and the inside of the case body 51 forms a space for accommodating the electrode assembly 1 .
  • the shape of the housing body 51 can be determined according to the specific shape of the electrode assembly 1 . For example, if the electrode assembly 1 has a cylindrical structure, the shell body 51 can be selected as a cylindrical shell; if the electrode assembly 1 has a rectangular parallelepiped structure, the shell body 51 can be selected as a rectangular parallelepiped shell. Exemplarily, both the electrode assembly 1 and the housing body 51 are cylindrical.
  • the shell body 51 can be a cylindrical structure with one end open and one end closed, the first electrode lead-out part 52 is an end cap, and the end cap closes the opening of the shell body 51 , and the second electrode leads out The portion 53 is insulated from the end cap.
  • Both the first electrode lead-out portion 52 and the second electrode lead-out portion 53 are components of the battery cell 102 for inputting and outputting electric energy.
  • the first electrode lead-out part 52 is used for connecting the first tab 11 and the external current-combining member
  • the second electrode-leading part 53 is used for connecting the second tab 12 and the external current-combining member.
  • the second tab 12 is located at the second end 1b of the electrode assembly 1
  • the second electrode lead-out portion 53 is located at the first end 1a of the electrode assembly 1
  • one end of the support 2 is connected to the second tab 12, and the support The other end of 2 is connected to the second electrode lead-out part 53, and the support member 2 transmits electric energy between the second tab 12 and the second electrode lead-out part 53, thereby realizing the electrical connection between the second tab 12 and the second electrode lead-out part 53 .
  • the support member 2 takes into account both the function of circulation and the function of electrical connection, and there is no need to set up additional electrical connection parts inside the battery cell 102, which ensures the energy density of the battery cell 102, and does not need to pass through the shell body 51, which improves the battery life. Monolith 102 security.
  • the second electrode lead-out portion 53 is provided with a liquid injection hole 531 , and the liquid injection hole 531 is disposed opposite to one end of the support member 2 .
  • the liquid injection hole 531 includes a first section, a second section and a third section, the first section, the second section and the third section are connected in sequence, and the first section, the second section
  • the diameters of the third section and the third section decrease successively, and the third section is closer to the inside of the battery cell 102 than the first section.
  • the support member 2 protrudes from the sleeve 3 and extends to the third section, and the outer peripheral surface of the support member 2 fits and connects with the inner peripheral surface of the third section, and the connection method may be bonding or butt welding.
  • the battery cell 102 also includes a sealing member 532 disposed on the third section.
  • the outer peripheral surface of the sealing member 532 is attached and connected to the inner peripheral surface of the third section by bonding or butt welding.
  • the side of the sealing member 532 facing away from the interior of the battery cell 102 serves to enlarge the end surface of the second electrode lead-out portion 53 , which facilitates the connection to an external current converging member.
  • the electrical connection between the second electrode lead-out portion 53 and the return component can be achieved by welding the current-combining component to the sealing member 532 .
  • the battery cell 102 Before leaving the factory, the battery cell 102 needs to be injected, formed, and then closed the liquid injection hole 531.
  • the electrolyte enters the central channel 21 of the support 2 through the liquid injection hole 531, and flows from the other end of the central channel 21.
  • the second section of the liquid injection hole 531 can accommodate the overflowed electrolyte, preventing the electrolyte from flowing out and polluting the shell assembly 5 .
  • the connecting position between the sealing member 532 and the third segment is far away from the second segment, and the electrolyte will not corrode the connecting position between the sealing member 532 and the third segment, thereby improving the sealing performance of the battery cell 102 .
  • the end face of the second electrode lead-out portion 53 located inside the battery cell 102 abuts against the end face of the support member 2, and the two are bonded, welded or contacted for conduction, and the liquid injection hole 531 penetrates to the second
  • the diameter of the liquid injection hole 531 can be larger than the diameter of the central channel 21 or smaller than the diameter of the central channel 21 in the area of the end surface of the electrode lead-out part 53 that is in contact with the support member 2 .
  • liquid injection hole 531 on the first electrode lead-out part 52 opposite to the support member 2 it is convenient to inject liquid through the support member 2, which facilitates the flow of the electrolyte to the other end of the electrode assembly 1, and improves the electrolyte density. Infiltration efficiency.
  • the housing assembly 5 further includes a pressure relief mechanism 54 configured to be activated when the internal pressure or temperature of the battery cell 102 reaches a threshold value to To release the internal pressure of the battery cell 102 , the pressure relief mechanism 54 is disposed on a side of the casing assembly 5 close to the second tab 12 and opposite to the other end of the support member 2 .
  • the pressure relief mechanism 54 refers to an element or component that is activated to release the internal pressure or temperature when the internal pressure or temperature of the battery 100 cell reaches a predetermined threshold.
  • the threshold design varies according to design requirements. The threshold may depend on the materials of one or more of the positive electrode sheet, the negative electrode sheet, the electrolyte and the separator in the battery cell 102 .
  • the pressure relief mechanism 54 can take the form of an explosion-proof valve, an air valve, a pressure relief valve or a safety valve, and can specifically use a pressure-sensitive or temperature-sensitive element or structure, that is, when the internal pressure or temperature of the battery cell 102 reaches When the predetermined threshold is reached, the pressure relief mechanism 54 performs an action or the weak structure provided in the pressure relief mechanism 54 is destroyed, thereby forming an opening or channel for internal pressure or temperature release.
  • the “activation” mentioned in this application means that the pressure release mechanism 54 is activated or activated to a certain state, so that the internal pressure and temperature of the battery cells 102 can be released.
  • Actions by the pressure relief mechanism 54 may include, but are not limited to, at least a portion of the pressure relief mechanism 54 rupture, shatter, be torn, or open, among others.
  • the pressure relief mechanism 54 When the pressure relief mechanism 54 is actuated, the high temperature and high pressure material inside the battery cell 102 will be discharged from the actuated part as discharge. In this way, the pressure and temperature of the battery cells 102 can be released under controllable pressure or temperature, thereby avoiding potential more serious accidents.
  • the emissions from the battery cell 102 mentioned in this application include, but are not limited to: electrolyte, dissolved or split positive and negative electrodes, fragments of separator, high temperature and high pressure gas generated by reaction, flame, etc.
  • the discharge can reach the pressure relief mechanism 54 through the central channel 21 and the flow guide channel 4, the discharge path is short and the discharge speed is fast, and because the central channel 21 and the flow guide channel 4 It is not easy to be blocked, which ensures that the discharge can flow to the pressure relief mechanism 54 to be discharged, and improves the safety of the battery cell 102 .
  • the central channel 21 and the guide channel 4 can be discharged through the other to avoid local high pressure caused by the blockage.
  • the guide channel 4 can be used for circulation, and the discharge will not gather near the pressure relief mechanism 54 (near the second end 1b in the figure), preventing the internal pressure near the pressure relief mechanism 54 from being too large and opening in advance. valve; similarly, the discharge will not gather near the first end 1a, preventing the valve from opening due to excessive internal pressure near the first end 1a, and effectively preventing the battery cell 102 from opening at other positions except the pressure relief mechanism 54. valve.
  • the above technical solution can ensure that the internal pressure of the battery cell 102 is uniform, thereby ensuring the normal use of the battery cell 102 , prolonging the service life and improving safety.
  • the sleeve 3 is made of insulating material.
  • the sleeve 3 Since the sleeve 3 is made of insulating material, the sleeve 3 plays the role of insulating and isolating the support 2 and the electrode assembly 1, preventing the support 2 and the pole pieces of the opposite polarity of the electrode assembly 1 from contacting and short-circuiting, and improving the performance of the battery cell. 102 for security.
  • the battery 100 cell further includes a current collector 6 , the current collector 6 is attached to the second tab 12 and is used to connect the second tab 12 and the support 2 , so as to realize the electrical connection between the second tab 12 and the support member 2 .
  • the current collector 6 is a component used to connect the second tab 12 with the support 2 , through the current collector 6 and the support 2 , the electric energy is delivered from the electrode assembly 1 to the second electrode lead-out portion 53 .
  • the current collecting piece 6 is a plate-shaped structure, and the current collecting piece 6 covers the end surface of the second tab 12 .
  • the position of the current collecting piece 6 corresponding to the central channel 21 forms a through hole to allow the electrolyte to flow.
  • the area of the current collecting piece 6 is larger, which can increase the electrical connection area between the support piece 2 and the second tab 12, improve the flow capacity, and improve the contact between the support piece 2 and the second tab 12. electrical connection reliability. By arranging the current collecting piece 6, the electrical connection between the supporting piece 2 and the second tab 12 is also facilitated, and the connection efficiency is improved.
  • the side of the current collector 6 facing the electrode assembly 1 is provided with a flow channel 61, and the flow channel 61 extends from the edge of the current collector 6 to the middle of the current collector 6, so that the central channel 21 flows out
  • the electrolyte can flow from the edge of the flow channel 61 to the middle, and the electrolyte flowing out of the guide channel 4 can flow from the middle to the edge.
  • the flow channel 61 By setting the flow channel 61, the flow of the electrolyte can be further facilitated, thereby making the inside of the battery cell 102 more rapid. Fully filled with electrolyte to improve the infiltration rate and infiltration effect.
  • the part of the current collector 6 that is not connected to the support 2 is also provided with through holes, these through holes are used to allow the electrolyte to flow to the electrode assembly 1, and also allow the high temperature and high pressure discharge generated in the electrode assembly 1 to flow to the electrode assembly 1. Therefore, the pressure relief mechanism 54 can improve the wetting effect, and can also improve the safety of the battery cell 102 .
  • the support member 2 is provided with a fusing part 24 .
  • the fuse part 24 refers to a component in the battery cell 102 that is used to disconnect when the current is too high or the temperature is too high, so as to prevent the battery cell 102 from continuing to charge and discharge and cause more serious accidents.
  • the fuse part 24 refers to the smallest part of the radial cross-section of the support member 2, so that the flow area of the support member 2 in the fuse part 24 is the smallest. When the current is too large, the fuse part 24 is fused first.
  • the outer peripheral surface of the support member 2 is recessed inwardly to form an annular groove, so that the radial cross section of the support member 2 is the smallest at the place where the annular groove is provided, that is, the fusing part 24 is The part of the supporting member 2 where the annular groove is arranged.
  • the side wall of the support member 2 is provided with a plurality of through holes spaced around the circumference at a certain position in the axial direction, through which the support member 2 The radial cross section of is smallest at this location.
  • the plurality of through holes may serve as the first through holes 22 .
  • the part with the highest temperature of the electrode assembly 1 is often in the center, that is, the position close to the center hole of the winding.
  • the fuse part 24 is disconnected, and the support 2 cannot realize the second tab 12 and the second electrode.
  • the lead-out part 53 is electrically connected so that the battery cell 102 cannot continue to be charged and discharged, so as to avoid more serious accidents and improve the safety of the battery cell 102 .
  • the second through hole 31 provided on the side wall of the sleeve 3 is staggered with the fusing part 24 .
  • the second through hole 31 and the fuse part 24 can be staggered in the axial direction of the support member 2, or they can be staggered in the circumferential direction of the support member 2, or the second through hole 31 and the fuse part 24 are both on the axis of the support member 2.
  • the upward stagger is also staggered in the circumferential direction of the support 2 .
  • the metal slag generated by the fusing of the support member 2 will not pass through the second through hole 31 to pierce the separator and the pole piece, so as to avoid overlapping short circuit of the pole pieces with opposite polarities , so as not to cause an overlapping short circuit between the support member 2 and the polarity opposite to the support member 2 , thereby improving the safety of the battery cell 102 .
  • the second through hole 31 can also be configured to be staggered from the first through hole 22 , and the second through hole 31 and the first through hole 22 can be on the support member 2 staggered in the axial direction of the support member 2, or in the circumferential direction of the support member 2, or the second through hole 31 and the first through hole 22 are staggered both in the axial direction of the support member 2 and in the circumferential direction of the support member 2.
  • the embodiment of the present application provides a battery 100 , as shown in FIG. 2 , the battery 100 includes at least one battery cell 102 described in the above solutions.
  • the battery 100 provided in the embodiment of the present application has good electrolyte wettability of the battery cells 102 , so that the battery 100 has good cycle performance, high discharge capacity, long service life, and good safety.
  • the embodiment of the present application provides an electric device, which may be, but not limited to, the vehicle 1000 shown in FIG. 1 , and the electric device includes the above-mentioned battery 100 .
  • the battery 100 of the electric device has good cycle performance, high discharge capacity, long service life and good safety, so that the electric device has good performance and high safety.
  • the embodiment of the present application provides a method for manufacturing a battery cell 102, as shown in FIG. 19 , the method includes:
  • the electrode assembly 1 has a winding center hole, and the winding center hole extends from the first end 1a of the electrode assembly 1 to the second end 1b;
  • the sleeve 3 is sleeved on the support member 2, so that the guide channel 4 is defined between the inner peripheral surface of the sleeve 3 and the outer peripheral surface of the support member 2, and the support member 2 and the sleeve 3 are passed through the
  • the center hole is wound so that the support member 2 supports the electrode assembly 1 through the sleeve 3, and the flow guide channel 4 extends from the first end 1a to the second end 1b.
  • steps S1 , S2 , and S3 are executed in no particular order, and may also be executed simultaneously.
  • the embodiment of the present application provides a manufacturing equipment 7 of a battery cell 102.
  • the manufacturing equipment 7 includes a first providing device 71, a second providing device 72, a third providing device 73 and an assembly device 74.
  • the first providing device 71 is used for providing the electrode assembly 1 , the electrode assembly 1 has a winding center hole, and the winding center hole extends from the first end 1 a to the second end 1 b of the electrode assembly 1 .
  • the second providing device 72 is used to provide the support 2 , which is in the shape of a tube.
  • the third supply device 73 is used for supplying the sleeve 3 .
  • the assembly device 74 is used to set the sleeve 3 on the support member 2, so that the flow guiding channel 4 is defined between the inner peripheral surface of the sleeve 3 and the outer peripheral surface of the support member 2, and is used to connect the support member 2 and the sleeve
  • the sleeve 3 is passed through the winding center hole, so that the support member 2 supports the electrode assembly 1 through the sleeve 3 , and the flow guide channel 4 extends from the first end 1 a to the second end 1 b.
  • the shell assembly 5 includes a shell body 51, a first electrode lead-out portion 52, a second electrode lead-out portion 53 and a pressure relief mechanism 54.
  • the shell body 51 is a cylindrical structure with one end open and one end closed, and the first electrode lead-out portion 52 is a cover.
  • the second electrode lead-out portion 53 is insulated from the first electrode lead-out portion 52 , and the pressure relief mechanism 54 is set at the closed end of the shell body 51 .
  • the electrode assembly 1 , the support 2 and the sleeve 3 are all disposed inside the casing assembly 5 .
  • the electrode assembly 1 has an opposite first end 1a and a second end 1b, the first end 1a faces the first electrode lead-out portion 52, the second end 1b faces away from the first electrode lead-out portion 52, and the winding center hole of the electrode assembly 1 extends from the first electrode lead-out portion 52.
  • One end 1a extends to a second end 1b, and the electrode assembly 1 has a first tab 11 protruding from the first end 1a and a second tab 12 protruding from the second end 1b.
  • the first electrode lead-out portion 52 is electrically connected to the first tab 11 .
  • the support member 2 is made of hard conductive material (such as metal material), and the sleeve 3 is made of high temperature resistant insulating material (such as plastic material).
  • Both the support 2 and the sleeve 3 are tubular, the support 2 is passed through the winding center hole of the electrode assembly 1, the sleeve 3 is sleeved on the support 2, and the sleeve 3 is located on the outer peripheral surface of the support 2 and the winding Between the inner walls of the central hole, the support member 2 supports the electrode assembly 1 through the sleeve 3, preventing the winding center hole of the electrode assembly 1 from collapsing. Meanwhile, one end of the support member 2 is connected to the second tab 12 , and the other point of the support member 2 is connected to the second electrode lead-out portion 53 , so as to realize the electrical connection between the second tab 12 and the second electrode lead-out portion 53 .
  • the inner space of the tubular support member 2 forms a central channel 21, and the flow guide channel 4 is defined between the inner peripheral surface of the sleeve 3 and the outer peripheral surface of the support member 2, and the central channel 21 and the guide channel 4 are both from the first
  • the end 1a extends to the second end 1b, and the central channel 21 and the guide channel 4 are used to allow the electrolyte to flow.
  • the central channel 21 and the guide channel 4 also It can be used to allow gas circulation to keep the pressure inside the battery cell 102 uniform, prevent damage and thermal runaway caused by excessive local internal pressure and high local temperature, and improve the safety of the battery 100 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

本申请涉及一种电池单体、电池、用电设备及电池单体的制造方法和设备,电池单体包括:电极组件,具有卷绕中心孔,卷绕中心孔从电极组件的第一端延伸至第二端;支撑件,支撑件呈管状且穿设于卷绕中心孔;套筒,套设于支撑件且位于支撑件的外周面和卷绕中心孔的内壁之间,支撑件被配置为通过套筒支撑电极组件;其中,套筒的内周面和支撑件的外周面之间限定出导流通道,导流通道从第一端延伸至第二端。本申请通过设置并行的中心通道(支撑件的内部空间)和导流通道,实现提高电解液浸润性,并避免局部内压过大,从而提高的电池的使用性能和安全性。

Description

电池单体、电池、用电设备及电池单体的制造方法和设备 技术领域
本申请涉及电池技术领域,具体而言,涉及一种电池单体、电池、用电设备及电池单体的制造方法和设备。
背景技术
在追求节能减排的大环境下,电池广泛应用于手机、电脑、电动汽车等用电设备,为用电设备提供电能。随着技术的发展,对电池的使用性能和安全性提出了更高的要求。
发明内容
本申请旨在提供一种电池单体、电池、用电设备及电池单体的制造方法和设备,以提高电池的使用性能和安全性。
本申请的实施例是这样实现的:
第一方面,本申请实施例提供一种电池单体,其包括:电极组件,具有卷绕中心孔,所述卷绕中心孔从所述电极组件的第一端延伸至第二端;支撑件,所述支撑件呈管状且穿设于所述卷绕中心孔;套筒,套设于所述支撑件且位于所述支撑件的外周面和所述卷绕中心孔的内壁之间,所述支撑件被配置为通过所述套筒支撑所述电极组件;其中,所述套筒的内周面和所述支撑件的外周面之间限定出导流通道,所述导流通道从所述第一端延伸至所述第二端。
支撑件的内部空间(以下称中心通道)和导流通道均用于容许电解液流动,中心通道和导流通道中的一者堵塞时另一者可容许电解液流动,防止卷绕中心孔的内部空间被完全堵死,保证电解液能够均匀分布于电池单体内部,提高电解液的浸润性,从而提高电池的循环性能、放电容量和使用寿命。同时中心通道和导流通道还可用于容许气体流通,以使电池单体内部的压力保持均匀,防止局部内压过大、局部温度过高而出现损坏、热失控的问题,提高电池的安全性。因此,上述方案通过设置并行的中心通道和导流通道,实现提高电解液浸润性,并避免局部内压过大,从而提高的电池的使用性能和安全性。
在本申请的一种实施例中,所述支撑件的侧壁上设置有第一通孔,所述第一通孔用于连通所述支撑件的内部空间和所述导流通道。
在上述技术方案中,通过设置第一通孔连通中心通道(即支撑件的内部空间)和导流通道,中心通道和导流通道中的一者局部堵塞时,其未被堵塞的部分仍能起到流通作用,进一步缓解堵塞的问题,提高电解液的浸润效果,提高电池单体的安全性。
在本申请的一种实施例中,所述导流通道的数量为多个,多个所述导流通道沿所述支撑件的周向间隔分布。
在上述技术方案中,通过增加导流通道的数量,多个导流通道与中心通道并行,更不容易出现堵死不流通的问题,另一方面,多个导流通道的流量大于单个导流通道的流量,提高了电解液浸润电极组件的速率和效果,也提高了电极组件的中心区域的排放速率,进一步提高了电池单体的使用性能和安全性。
在本申请的一种实施例中,每个所述导流通道通过沿其延伸方向间隔设置的多个所述第一通孔连通所述支撑件的内部空间。
在上述技术方案中,每个导流通道通过多个第一通孔连通中心通道,减小第一通孔堵塞导致中心通道和导流通道不能互通的几率,进一步减小卷绕中心孔的内部空间被堵死的几率,进而保证电池单体的使用性能和电池单体的安全性。
在本申请的一种实施例中,所述支撑件的外周面为圆柱面,所述套筒的内周面为棱柱面,所 述支撑件的外周面与所述套筒的内周面相切,相邻两条切线之间形成所述导流通道。
在上述技术方案中,通过将支撑件的外周面设置为圆柱面,套筒的内周面设置为棱柱面,装配时直接将支撑件插接于套筒即可起到支撑电极组件的作用,并形成流道,装配方便。另一方面,套筒在电极组件卷绕成型的过程中使用时,可用于插设卷针,套筒能够防止卷针插拔划伤极片或导致极片打皱,同时套筒的内周面与卷针的外周面匹配(也即卷针的外周面也为棱柱面),具有不容易打滑的效果;电极组件卷绕成型后,抽出卷针,套筒能够临时支撑电极组件,防止卷绕中心孔塌孔,还防止支撑件在插拔过程中划伤极片或导致极片打皱。
在本申请的一种实施例中,所述第一通孔的直径为D1,所述支撑件的外径为D2,所述套筒的内周面的棱边的数量为n,满足:
sin5°≤D1/D2≤sin(360°/2n)。
在上述技术方案中,第一通孔不容易被套筒的内周面堵塞,还保证第一通孔的两侧能够接触相邻的两个棱柱面或接触间隔的两个棱柱面,以免支撑件在第一通孔所在圆周的支撑面积过小,从而保证支撑件对套筒的支撑强度,防止套筒不均匀变形导致堵塞第一通孔。
在本申请的一种实施例中,所述支撑件的外周面为棱柱面,所述套筒的内周面为圆柱面,所述支撑件的外周面的棱边与所述套筒的内周面抵接。
在上述技术方案中,当支撑件的外周面为棱柱面、套筒的内周面为圆柱面时,第一通孔在支撑件的外周面的任一位置都不容易被堵塞。
在本申请的一种实施例中,所述套筒的侧壁上设置有第二通孔,所述第二通孔与所述导流通道连通。
在上述技术方案中,电解液不仅能够沿导流通道向下流动,还能够通过第二通孔浸润卷绕中心孔处的极片,提高浸润效果。
在本申请的一种实施例中,所述第二通孔的直径小于所述第一通孔的直径。
在上述技术方案中,由于第二通孔的直径相对第一通孔的直径较小,通过第二通孔进入到导流通道的极片碎片等杂质的尺寸较小,不容易堵塞第一通孔,从而保证导流通道和中心通道连通,减小卷绕中心孔的内部空间被堵死的几率,保证电解液的浸润效果和电池单体的安全性。
在本申请的一种实施例中,所述电池单体还包括缓冲件,所述缓冲件为网状结构且覆盖所述第二通孔。
在上述技术方案中,通过设置缓冲结构,缓冲电解液从第二通孔流出的力,从而减小电解液对卷绕中心孔的内壁的冲击力,以免导致极片损伤或起皱。
在本申请的一种实施例中,所述支撑件的外周面和所述套筒的内周面中的一者设有限位凸起,另一者设有限位槽,所述限位凸起与所述限位槽配合,以限制所述支撑件和所述套筒相对转动。
在上述技术方案中,通过限制支撑件和套筒相对转动,防止第一通孔移位,确保导流通道和中心通道连通。
在本申请的一种实施例中,所述电极组件包括位于所述第一端的第一极耳和位于所述第二端的第二极耳,所述第一极耳和所述第二极耳极性相反;所述电池单体还包括:外壳组件,所述外壳组件包括用于输入或输出电能的第一电极引出部和第二电极引出部,所述外壳组件的内部设有所述电极组件,所述第一电极引出部和所述第二电极引出部均设于所述外壳组件靠近所述第一极耳的一侧,所述第一电极引出部与所述第一极耳电连接,所述支撑件用于连接所述第二极耳与所述第二电极引出部,以实现所述第二极耳与所述第二电极引出部的电连接。
在上述技术方案中,支撑件兼顾用于流通的作用和电连接的作用,无需在电池单体内部另设电连接部件,保证了电池单体的能量密度,也无需通过外壳本体过电,提高了电池单体的安全性。
在本申请的一种实施例中,所述第二电极引出部设置有注液孔,所述注液孔与所述支撑件的 一端相对设置。
在上述技术方案中,便于通过第一电极引出部上的注液孔和支撑件注液,有利于电解液流向电极组件的另一端,提高电解液的浸润效率。
在本申请的一种实施例中,所述外壳组件还包括泄压机构,所述泄压机构被配置为在所述电池单体的内部压力或温度达到阈值时致动以泄放所述电池单体的内部压力,所述泄压机构设置于所述外壳组件靠近所述第二极耳的一侧且与所述支撑件的另一端相对设置。
在上述技术方案中,通过将泄压机构设置在支撑件的另一端,排放物经中心通道和导流通道能够到达泄压机构,排放路径短、排放速度快,由于中心通道和导流通道不容易堵塞,保证了排放物能够流动至泄压机构排出,提高了电池单体的安全性。
在本申请的一种实施例中,所述套筒由绝缘材料制成。
在上述技术方案中,套筒起到绝缘隔离支撑件和电极组件的效果,防止支撑件和电极组件的极性相反的极片接触而短路,提高电池单体的安全性。
在本申请的一种实施例中,所述电池单体还包括:集流件,所述集流件附接于所述第二极耳,并用于连接所述第二极耳和所述支撑件,以实现所述第二极耳和所述支撑件的电连接。
在上述技术方案中,集流件能够增大支撑件与第二极耳的电连接面积,提高过流能力,及提高支撑件与第二极耳的电连接可靠性。通过设置集流件,还方便支撑件与第二极耳电连接,提高了连接效率。
在本申请的一种实施例中,所述支撑件设置有熔断部。
在上述技术方案中,电极组件温度最高的部位往往在中心部位,也即靠近卷绕中心孔的位置,支撑件的熔断部能够率先响应局部高温和过大的电流而断开,使得电池单体无法继续充放电,以免造成更严重的事故,提高电池单体的安全性。
在本申请的一种实施例中,所述套筒的侧壁上设置有第二通孔,所述第二通孔与所述导流通道连通,所述熔断部与所述第二通孔错开。
在上述方案中,支撑件熔断产生的金属渣不容易穿过第二通孔进入卷绕中心孔,以免金属渣刺破隔离件、刺破极片,进而避免极性相反的极片搭接短路,以及避免导致支撑件和与支撑件的极性相反的极片搭接短路,从而提高电池单体的安全性。
第二方面,本申请实施例提供一种电池,其包括前述的电池单体。
第三方面,本申请实施例提供一种用电设备,其包括前述的电池。
第四方面,本申请实施例提供一种电池单体的制造方法,其包括:提供电极组件,所述电极组件具有卷绕中心孔,所述卷绕中心孔从所述电极组件的第一端延伸至第二端;提供支撑件,所述支撑件呈管状;提供套筒;将所述套筒套设于所述支撑件,以使所述套筒的内周面和所述支撑件的外周面之间限定出导流通道,并将所述支撑件和所述套筒穿设于所述卷绕中心孔,以使所述支撑件通过所述套筒支撑所述电极组件,且使所述导流通道从所述第一端延伸至所述第二端。
第五方面,本申请实施例提供一种电池单体的制造设备,其包括:第一提供装置,用于提供电极组件,所述电极组件具有卷绕中心孔,所述卷绕中心孔从所述电极组件的第一端延伸至第二端;第二提供装置,用于提供支撑件,所述支撑件呈管状;第三提供装置,用于提供套筒;组装装置,用于将所述套筒套设于所述支撑件,以使所述套筒的内周面和所述支撑件的外周面之间限定出导流通道,并用于将所述支撑件和所述套筒穿设于所述卷绕中心孔,以使所述支撑件通过所述套筒支撑所述电极组件,且使所述导流通道从所述第一端延伸至所述第二端。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于 本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请一实施例提供的车辆的示意图;
图2为本申请一实施例提供的电池的分解图;
图3为本申请一实施例提供的电池单体的主视图;
图4为本申请一实施例提供的电池单体的内部结构示意图;
图5为图4中B部分放大图;
图6为本申请一实施例提供的支撑件和套筒的俯视图;
图7为图6的C-C剖面图;
图8为本申请一实施例提供的支撑件和套筒的主视图;
图9为图8的D-D剖面图;
图10为本申请一实施例提供的第一通孔的直径示意图;
图11为图8的E-E剖面图;
图12为图4的F部分放大图;
图13为图4的G部分放大图;
图14为本申请一实施例提供的支撑件的立体示意图;
图15为本申请一实施例提供的支撑件的主视图;
图16为图15的H-H剖面图;
图17为本申请一实施例提供的支撑件和套筒的内部结构示意图;
图18为本申请一实施例提供的支撑件和套筒的立体图;
图19为本申请一实施例提供的电池单体的制造方法的流程示意图;
图20为本申请一实施例提供的电池单体的制造设备的示意性框图。
图标:1000-车辆;100-电池;200-马达;300-控制器;101-箱体;1011-第一箱体部;1012-第二箱体部;102-电池单体;1-电极组件;1a-第一端;1b-第二端;11-第一极耳;12-第二极耳;2-支撑件;21-中心通道;22-第一通孔;23-限位槽;24-熔断部;3-套筒;31-第二通孔;32-缓冲件;33-限位凸起;4-导流通道;5-外壳组件;51-外壳本体;52-第一电极引出部;53-第二电极引出部;531-注液孔;532-密封件;54-泄压机构;6-集流件;61-流道;7-制造设备;71-第一提供装置;72-第二提供装置;73-第三提供装置;74-组装装置。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:存在A,同时存在A和B,存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池单体、锂离子一次电池单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,本申请实施例对此并不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解质,电极组件包括正极极片、负极极片和隔离件。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面;正极集流体包括正极集流部和正极极耳,正极集流部涂覆有正极活性物质层,正极极耳未涂覆正极活性物质层。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质层包括正极活性物质,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面;负极集流体包括负极集流部和负极极耳,负极集流部涂覆有负极活性物质层,负极极耳未涂覆负极活性物质层。负极集流体的材料可以为铜,负极活性物质层包括负极活性物质,负极活性物质可以为碳或硅等。隔离件的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数。其中,电解液对极片的浸润效果与电池单体的循环寿命、放电容量和使用寿命正相关。电解液的浸润效果不好时,将导致金属离子的传输路径变远,阻碍金属离子在正极极片和负极极片之间的穿梭,且未被电解液浸润的极片无法参与电化学反应,同时界面电阻也将增大,影响电池的循环性能、放电容量和使用寿命。
电极组件的成型方式包括卷绕式,卷绕式的电极组件是由正极极片、负极极片和隔离件交叉层叠后绕一中心轴线卷绕形成的卷绕体。卷绕式电极组件的卷绕中心一般具有卷绕中心孔,卷绕中心孔用于允许电解液流通,以便电解液能够快速充满电池单体内部并浸润电极组件。一旦卷绕中心孔出现堵塞,将导致电解液流通不畅,电解液无法快速充满电池单体内部,不能较好地浸润电极组件。
鉴于此,为提高电池的循环性能、放电容量和使用寿命,本申请提供一种技术方案,在电极组件的卷绕中心孔设置支撑件和套筒,套筒套设于支撑件并位于支撑件的外周面和卷绕中心孔的内壁之间,支撑件被配置为管状,支撑件的中心形成中心通道以连通电极组件的两端,同时支撑件的外周面和所述卷绕中心孔的内壁之间限定出导流通道,导流通道连通电极组件的两端,中心通道和导流通道均供电解液流通,中心通道堵塞时可通过导流通道流通,导流通道堵塞时可通过中心通道流通,使得卷绕中心孔以内始终具有可供电解液流通的通道,缓解卷绕中心孔堵塞导致电解液浸润效果变差的问题,有效提高电解液的浸润效果,从而提高电池的循环性能、放电容量和使用寿命。
另一方面,支撑件通过套筒支撑电极组件,防止卷绕中心孔塌孔,避免电极组件的极片向内松散,以免相邻极片的间距增大,进而避免由于相邻极片的间距增大导致金属离子的传输路径变远、界面电阻增大,从而提高电池的循环性能、放电容量和使用寿命。
另外,在充放电过程中,电极组件的会产生热量、气体,通过在卷绕中心孔中设置支撑件和套筒,以支撑电极组件并形成中心通道和导流通道,有效缓解卷绕中心孔堵塞的问题,以便于电极组件的中心区域产生的热量、气体排出,保证电池单体的内压均匀,避免卷绕中心孔堵塞导致电池单体的局部内压过大,以免破坏电池单体或引发安全问题。
本申请实施例描述的技术方案适用于电池以及使用电池的用电设备。
用电设备可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电设备不做特殊限制。
以下实施例为了方便说明,以用电设备为车辆为例进行说明。
车辆可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。如图1所示,车辆1000的内部可以设置电池100、控制器300以及马达200,控制器300用来控制电池100为马达200的供电。例如,在车辆1000的底部或车头或车尾可以设置电池100。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源,用于车辆1000的电路系统,例如,用于车辆1000的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池100不仅仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,替代或部分地替代燃油或天然气为车辆1000提供驱动动力。
为了满足不同的使用电力需求,如图2所示,电池100可以包括多个电池单体102,其中,多个电池单体102之间串联或并联或混联,混联是指串联和并联的混合。电池100也可以称为电池100包。可选地,多个电池单体102可以先串联、并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池100。也就是说,多个电池单体102可以直接组成电池100,也可以先组成电池模块,电池模块再组成电池100。
电池100还可以包括箱体101(或称罩体),箱体101内部为中空结构,多个电池单体102容纳于箱体101内。箱体101可以包括两个用于容纳的部分(可参照图2),这里分别称为第一箱体部1011和第二箱体部1012,第一箱体部1011和第二箱体部1012扣合在一起。第一箱体部1011和第二箱体部1012的形状可以根据多个电池单体102组合的形状而定,第一箱体部1011和第二箱体部1012可以均具有一个开口。例如,第一箱体部1011和第二箱体部1012均可以为中空长方体且各自只有一个面为开口面,第一箱体部1011的开口和第二箱体部1012的开口相对设置,并且第一箱体部1011和第二箱体部1012相互扣合形成具有封闭腔室的箱体101。第一箱体部1011和第二箱体部1012中,也可以一者为具有开口的长方体,另一者为盖板结构以封闭长方体的开口。多个电池单体102相互并联或串联或混联组合后置于第一箱体部1011和第二箱体部1012扣合后形成的箱体101内。
下面针对任意一个电池单体102进行详细描述,如图3、图4和图5所示,电池单体102包括电极组件1、支撑件2和套筒3,电极组件1具有卷绕中心孔,卷绕中心孔从电极组件1的第一端1a延伸至第二端1b,支撑件2呈管状且穿设于卷绕中心孔,套筒3套设于支撑件2且位于支撑件2的外周面和卷绕中心孔的内壁之间,支撑件2被配置为通过套筒3支撑电极组件1;其中,套筒3的内周面和支撑件2的外周面之间限定出导流通道4,导流通道4从第一端1a延伸至第二端1b。
电极组件1的第一端1a和第二端1b是电极组件1的卷绕中心孔的延伸方向上相对的两端。
支撑件2是用于支撑电极组件1的部件,支撑件2设置在电极组件1的卷绕中心孔,用于防 止卷绕中心孔塌孔,以免电极组件1的极片向内松散。
套筒3是隔离支撑件2和电极组件1的部件。支撑件2和套筒3均为管状结构,且支撑件2插接在套筒3内。支撑件2通过套筒3支撑电极组件1是指,支撑件2的外周面抵触于套筒3的内周面,套筒3的外周面抵触于电极组件1的卷绕中心孔的内壁。支撑件2可采用强度相对较高、质地相对较硬的材料制成,例如采用金属制成。
导流通道4是套筒3的内周面和支撑件2的外周面之间的间隙,支撑件2的一部分外周面抵触于套筒3的内周面以支撑电极组件1,支撑件2的另一部分外周面与套筒3的内周面不接触以形成导流通道4。导流通道4可以是由第一端1a至第二端1b沿直线延伸,也可以是由第一端1a至第二端1b沿曲线延伸。在导流通道4的延伸方向上,导流通道4的流通面积可以相同,也可以不同,流通面积是指导流通道4的垂直于其延伸方向的横截面面积。
在上述技术方案中,支撑件2的内周面围成中心通道21,同时支撑件2的外周面和所述卷绕中心孔的内壁之间限定出导流通道4,中心通道21和导流通道4均供电解液流通,中心通道21堵塞时可通过导流通道4流通,导流通道4堵塞时可通过中心通道21流通,使得卷绕中心孔以内始终具有可供电解液流通的通道,缓解卷绕中心孔堵塞导致电解液浸润效果变差的问题,有效提高电解液的浸润效果,从而提高电池100的循环性能、放电容量和使用寿命,还缓解电极组件1的中心区域产生的温度、气体等不能排出的问题,避免卷绕中心孔堵塞导致电池单体102的局部内压过大,保证电池单体102的内压均匀,提高电池单体102的安全性。
根据本申请的一些实施例,如图5所示,支撑件2的侧壁上设置有第一通孔22,第一通孔22用于连通支撑件2的内部空间和导流通道4。
支撑件2的内部空间是支撑件2的内周面围成的空间,也即中心通道21,也就是说,本申请中所说的中心通道21都是指支撑件2的内部空间。
第一通孔22是由支撑件2的外周面贯穿至支撑件2的内周面的通孔。
通过设置第一通孔22连通中心通道21和导流通道4,即使中心通道21的局部堵塞,中心通道21内的电解液能够从第一通孔22进入导流通道4,中心通道21未被堵塞的部位能够用于流通电解液或排放物(如温度、气体、杂质等),反之,导流通道4中的电解液或排放物也能够通过第一通孔22进入中心通道21排放,进一步缓解堵塞的问题,提高电解液的浸润效果,提高电池单体102的安全性。也就是说,中心通道21和导流通道4中的一者局部堵塞时,其未被堵塞的部分仍能起到流通作用,进一步缓解堵塞的问题,提高电解液的浸润效果,提高电池单体102的安全性。
根据本申请的一些实施例,如图6所示,导流通道4的数量为多个,多个导流通道4沿支撑件2的周向间隔分布。
换言之,支撑件2的外周面和套筒3的内周面限定出多个导流通道4,每个导流通道4均由第一端1a延伸至第二端1b。
一方面,通过增加导流通道4的数量,电解液可通过多个导流通道4流通,由第一端1a至第二端1b的流通路径更不容易被堵死,保证电解液能够流通,并且多个导流通道4的流量大于单个导流通道4的流量,提高了电解液浸润电极组件1的速率和效果;另一方面,也提高了电极组件1的中心区域的排放速率,提高了电池单体102的安全性。
根据本申请的一些实施例,如图7所示,每个导流通道4通过沿其延伸方向间隔设置的多个第一通孔22连通支撑件2的内部空间。
设置多个第一通孔22,一个或一些第一通孔22堵塞时,另一个或另一些第一通孔22使中心通道21和导流通道4连通,减小第一通孔22堵塞导致中心通道21和导流通道4不能互通的几率,通过保证中心通道21和导流通道4互通,减小卷绕中心孔的内部空间被堵死的几率,保证电解液的浸润效果和电池单体102的安全性。
根据本申请的一些实施例,如图8和图9所示,支撑件2的外周面为圆柱面,套筒3的内周面为棱柱面,支撑件2的外周面与套筒3的内周面相切,相邻两条切线之间形成导流通道4。
套筒3的内周面围成棱柱形的空腔,棱柱可以是三棱柱、四棱柱、五棱柱等,棱柱可以是正棱柱或异形棱柱。如图9所示,本实施例中,套筒3的内周面围成正六棱柱形的空腔。
如图9所示,支撑件2为圆柱形,支撑件2的外周面为圆柱面,圆柱面与正六棱柱的每个面都相切并具有一个切线。支撑件2的外周面在切线处接触套筒3的内周面,支撑件2的外周面的其余部分不接触套筒3的内周面,从而相邻的两条切线之间形成一个导流通道4。如图9中,支撑件2的外周面和套筒3的内周面之间形成六条导流通道4。
通过将支撑件2的外周面设置为圆柱面,套筒3的内周面设置为棱柱面,装配时直接将支撑件2插接于套筒3即可起到支撑电极组件1的作用,并形成流道61,装配方便。
另外,套筒3还可以在电极组件1卷绕成型的过程中使用,可将卷绕设备上的卷针设置为与套筒3的内部空间形状相同的棱柱,卷针的外周面与套筒3的内周面配合,具有不容易打滑的效果,电极组件1卷绕成型后,抽出卷针,套筒3留在电极组件1的卷绕中心孔内,一方面能够临时支撑电极组件1,防止卷绕中心孔塌孔,另一方面减少了套筒3插入卷绕中心孔的步骤,避免插入套筒3的过程中划伤极片、导致极片打皱。
根据本申请的一些实施例,如图10所示,第一通孔22的直径为D1,支撑件2的外径为D2,套筒3的内周面的棱边的数量为n,满足:
sin5°≤D1/D2≤sin(360°/2n)。
参照图10可知,在支撑件2和套筒3的径向截面上,第一通孔22的位于支撑件2的外周面一端所对应的圆心角为α。第一通孔22的直径D1和支撑件2的直径D2构成直角三角形的两边,第一通孔22的直径D1的中垂线将支撑件2的直径D2平分,并平分第一通孔22的位于支撑件2的外周面一端所对应的圆心角α。结合三角形等比定理和正弦定理,得出:D1/D2=sin(α/2),其中,支撑件2的直径D2是确定的,第一通孔22的直径D1大小与夹角α的大小正相关。
当套筒3和支撑件2过盈配合时,套筒3的内周面和/或支撑件2的外周面可能会受挤压变形,也就是说,套筒3的内周面和支撑件2的外周面的接触部位不是理想状态下的切线,套筒3的内周面和支撑件2的外周面相互挤压变形并形成具有一定宽度的区域,当第一通孔22位于支撑件2的外周面的一端恰好在该区域时,第一通孔22容易被套筒3的内周面封堵。为防止第一通孔22被封堵,经过多次试验,设定夹角α的最小值为10°,也即D1/D2=sin(α/2)≥sin5°,使得第一通孔22不容易被堵塞。
另外,设定夹角α小于等于棱柱的内角,以保证第一通孔22的直径D1小于棱柱的边长,这里所说的棱柱的边长是指套筒3的内周面的径向截面所形成的多边形的边长。也即,使D1/D2=sin(α/2)≤sin(360°/2n)。当第一通孔22恰好在支撑件2与套筒3相切的区域时,保证第一通孔22的两侧与其所在的棱柱面的相邻两个棱柱面相切;当第一通孔22在导流通道4所在的区域时,保证第一通孔22的两侧与相邻的两个棱柱面相切;从而保证支撑件2对套筒3的支撑强度,在此情形下,套筒3不容易发生不均匀变形而塌向第一通孔22,从而也起到防止套筒3的内周面堵塞第一通孔22的目的。
根据本申请的另一些实施例,支撑件2的外周面和套筒3的内周面的形状可以调换,也即,支撑件2的外周面为棱柱面,套筒3的内周面为圆柱面,支撑件2的外周面的棱边与套筒3的内周面抵接。
支撑件2为棱柱,支撑件2的外周面为棱柱面。套筒3的内部形成圆柱形的空腔,套筒3的内周面为圆柱面。套筒3的内周面为支撑件2的外周面的外接圆,使得支撑件2的外周面的棱边与套筒3的内周面抵接。
当支撑件2的外周面为棱柱面、套筒3的内周面为圆柱面时,第一通孔22不容易被堵塞。
在其他一些实施例中,还可以通过其他方式在支撑件2的外周面和套筒3的内周面之间形成导流通道4,例如,在支撑件2的外周面上形成向内凹陷的凹槽,或者在套筒3的内周面上形成向外凹陷的凹槽,从而避免支撑件2的外周面和套筒3的内周面全部接触,并在凹槽的位置形成导流通道4。
根据本申请的一些实施例,请再参照图9,套筒3的侧壁上设置有第二通孔31,第二通孔31与导流通道4连通。
第二通孔31是由套筒3的外周面贯穿至支撑件2的内周面的通孔。
由于卷绕中心孔的内壁与套筒3的外周面之间间距小,导致卷绕中心孔的内壁的极片不容易被浸润,通过在套筒3上设置第二通孔31,电解液不仅能够沿导流通道4向下流动,还能够通过第二通孔31浸润卷绕中心孔处的极片,提高浸润效果。
根据本申请的一些实施例,请再参照图9,第二通孔31的直径小于第一通孔22的直径。
由于第二通孔31的直径相对第一通孔22的直径较小,能够通过第二通孔31的极片碎片等杂质一定能够通过第一通孔22,第一通孔22不容易堵塞,从而保证导流通道4和中心通道21连通,减小卷绕中心孔的内部空间被堵死的几率,保证电解液的浸润效果和电池单体102的安全性。
根据本申请的一些实施例,如图9所示,电池100单体还包括缓冲件32,缓冲间为网状结构且覆盖第二通孔31。
当套筒3与卷针配合时,在极片、隔离件绕套筒3卷绕之前,需要将隔离件的起始端、极片的起始端分别粘接于套筒3的外周面,当电解液通过第二通孔31后作用于卷绕中心孔的内壁的冲击力过大时,容易导致粘接位置松动,致使极片的起始端、隔离件起始端与套筒3的外周面脱离,使得极片和隔离件失去拉力而出现收缩、皱起的情况,通过设置缓冲结构,缓冲电解液从第二通孔31流出的力,从而减小电解液冲击在卷绕中心孔的内壁上的力,以免导致极片损伤或起皱。
根据本申请的一些实施例,支撑件2的外周面和套筒3的内周面中的一者设有限位凸起33,另一者设有限位槽23,限位凸起33与限位槽23配合,以限制支撑件2和套筒3相对转动。
如图11所示,支撑件2的外周面形成向内凹陷的限位槽23,套筒3的外周面形成向内凸出的限位凸起33,限位槽23和限位凸起33配合,以定位支撑件2和套筒3。通过限制支撑件2和套筒3相对转动,防止第一通孔22移位,确保导流通道4和中心通道21连通。
可选地,结合图7所示,限位槽23的位置设置在支撑件2的一端,以便于观察限位凸起33是否位于限位槽23内。
可选地,结合图11所示,限位凸起33的表面为球面,以便于进入限位槽23。
根据本申请的一些实施例,请再参见图4,电极组件1包括位于第一端1a的第一极耳11和位于第二端1b的第二极耳12,第一极耳11和第二极耳12极性相反。电池单体102还包括外壳组件5,外壳组件5包括用于输入或输出电能的第一电极引出部52和第二电极引出部53,外壳组件5的内部设有电极组件1,第一电极引出部52和第二电极引出部53均设于外壳组件5靠近第一极耳11的一侧,第一电极引出部52与第一极耳11电连接,支撑件2用于连接第二极耳12与第二电极引出部53,以实现第二极耳12与第二电极引出部53的电连接。
第一极片、第二极片、隔离件为现有技术,本申请说明书附图中虽未示出,本领域技术人员应理解其具体结构。第一极耳11为第一极片的未涂覆活性物质层的部分,第二极耳12为第二极片的未涂覆活性物质层的部分。第一极耳11和第二极耳12可以从电极组件1的同一侧伸出,也可以分别从相反的两侧延伸出。示例性地,如图4所示,第一极耳11和第二极耳12分别设置于电极组件1的两端,也即第一极耳11位于电极组件1的第一端1a,第二极耳12位于电极组件1的第二端1b。
外壳组件5包括外壳本体51,外壳本体51的内部形成用于容纳电极组件1的空间。外壳本体51的形状可根据电极组件1的具体形状来确定。比如,若电极组件1为圆柱体结构,则外壳本体51可选用为圆柱体壳体;若电极组件1为长方体结构,则外壳本体51可选用长方体壳体。示例性地,电极组件1和外壳本体51均为圆柱体。
在一些实施例中,如图4所示,外壳本体51可以为一端开口、一端封闭的筒状结构,第一电极引出部52为端盖,端盖封闭外壳本体51的开口,第二电极引出部53绝缘设置于端盖。
第一电极引出部52和第二电极引出部53都是电池单体102的用于输入和输出电能的部件。第一电极引出部52用于连接第一极耳11和外部的汇流构件,第二电极引出部53用于连接第二极耳12和外部的汇流构件。
结合图4可知,第二极耳12位于电极组件1的第二端1b,第二电极引出部53位于电极组件1的第一端1a,支撑件2的一端连接第二极耳12,支撑件2的另一端连接第二电极引出部53,支撑件2在第二极耳12和第二电极引出部53之间输送电能,从而实现第二极耳12与第二电极引出部53的电连接。支撑件2兼顾用于流通的作用和电连接的作用,无需在电池单体102内部另设电连接部件,保证了电池单体102的能量密度,也无需通过外壳本体51过电,提高了电池单体102的安全性。
根据本申请的一些实施例,结合图4和图12所示,第二电极引出部53设有注液孔531,注液孔531与支撑件2的一端相对设置。
在一些实施例中,如图12所示,注液孔531包括第一段、第二段和第三段,第一段、第二段和第三段依次连接,第一段、第二段和第三段的直径依次减小,第三段相对第一段靠近电池单体102内部。支撑件2伸出套筒3并延伸至第三段,支撑件2的外周面与第三段的内周面贴合并连接,连接方式可以是粘结或对缝焊接。
电池单体102还包括密封件532,密封件532设置在第三段,密封件532的外周面与第三段的内周面贴合并连接,连接方式可以是粘结或对缝焊接。密封件532背离电池单体102内部的一面起到增大第二电极引出部53的端面的作用,有利于连接外部汇流构件。例如,将汇流构件焊接于密封件532,即可实现第二电极引出部53与回流构件电连接。
电池单体102在出厂前需要先注液、化成、再封闭注液孔531,注液时,电解液经注液孔531进入支撑件2的中心通道21,并从中心通道21的另一端流动至电极组件1的第二端1b,以及从第一通孔22进入导流通道4流向电极组件1的第一端1a、第二端1b,使得电解液充满电池单体102内部,有效浸润电极组件1。
在注液时,若中心通道21内的电解液溢出,注液孔531的第二段能够容纳溢出的电解液,防止电解液流出污染外壳组件5。在注液孔531封闭后,密封件532和第三段的连接位置远离第二段,电解液不会腐蚀密封件532和第三段的连接位置,提高电池单体102的密封性。
在另一些实施例中,第二电极引出部53位于电池单体102内部的一端的端面抵接于支撑件2的端面,二者粘接、焊接或接触导电,注液孔531贯穿至第二电极引出部53的端面的与支撑件2接触的区域,注液孔531的直径可以大于中心通道21的直径,也可以小于中心通道21的直径。
在上述技术方案中,通过将第一电极引出部52上的注液孔531与支撑件2相对,便于通过支撑件2注液,有利于电解液流向电极组件1的另一端,提高电解液的浸润效率。
根据本申请的一些实施例,如图4和图13所示,外壳组件5还包括泄压机构54,泄压机构54被配置为在电池单体102的内部压力或温度达到阈值时致动以泄放电池单体102的内部压力,泄压机构54设置于外壳组件5靠近第二极耳12的一侧且与支撑件2的另一端相对设置。
泄压机构54是指电池100单体的内部压力或温度达到预定阈值时致动以泄放内部压力或温度的元件或部件。该阈值设计根据设计需求不同而不同。所述阈值可能取决于电池单体102中的正极极片、负极极片、电解液和隔离膜中一种或几种的材料。泄压机构54可以采用诸如防爆阀、气阀、泄压阀或安全阀等的形式,并可以具体采用压敏或温敏的元件或构造,即,当电池单体102的内部压力或温度达到预定阈值时,泄压机构54执行动作或者泄压机构54中设有的薄弱结构被破坏,从而形成可供内部压力或温度泄放的开口或通道。
本申请中所提到的“致动”是指泄压机构54产生动作或被激活至一定的状态,从而使得电池单体102的内部压力及温度得以被泄放。泄压机构54产生的动作可以包括但不限于:泄压机构54中的至少一部分破裂、破碎、被撕裂或者打开,等等。泄压机构54在致动时,电池单体102的内部的高温高压物质作为排放物会从致动的部位向外排出。以此方式能够在可控压力或温度的情况下使电池单体102发生泄压及泄温,从而避免潜在的更严重的事故发生。本申请中所提到的来自电 池单体102的排放物包括但不限于:电解液、被溶解或分裂的正负极极片、隔离膜的碎片、反应产生的高温高压气体、火焰等等。
通过将泄压机构54设置在支撑件2的另一端,排放物经中心通道21和导流通道4能够到达泄压机构54,排放路径短、排放速度快,并且由于中心通道21和导流通道4不容易堵塞,保证了排放物能够流动至泄压机构54排出,提高了电池单体102的安全性。
另一方面,即使中心通道21和导流通道4中的一者堵塞也可通过另一者排放,避免堵塞导致局部高压。例如,中心通道21堵塞时,导流通道4可用于流通,排放物不会聚集在泄压机构54附近(图中第二端1b附近),防止泄压机构54附近内压过大而提前开阀;同理地,排放物也不会聚集在第一端1a附近,防止第一端1a附近内压过大而开阀,有效防止电池单体102在除泄压机构54以外的其他位置开阀。上述技术方案能够保证电池单体102内部压力均匀,从而保证电池单体102正常使用,延长使用寿命,提高安全性。
根据本申请的一些实施例,套筒3采用绝缘材料制成。
由于套筒3采用绝缘材料制成,套筒3起到绝缘隔离支撑件2和电极组件1的效果,防止支撑件2和电极组件1的极性相反的极片接触而短路,提高电池单体102的安全性。
根据本申请的一些实施例,如图14所示,电池100单体还包括集流件6,集流件6附接于第二极耳12,并用于连接第二极耳12和支撑件2,以实现第二极耳12和支撑件2的电连接。
集流件6是用于将第二极耳12和支撑件2连接的部件,通过集流件6和支撑件2,实现将电能从电极组件1输送至第二电极引出部53。集流件6为平板状结构,集流件6覆盖于第二极耳12的端面,集流件6的与中心通道21对应的位置形成贯穿孔,以容许电解液流通。
通过设置集流件6,集流件6的面积较大,能够增大支撑件2与第二极耳12的电连接面积,提高过流能力,及提高支撑件2与第二极耳12的电连接可靠性。通过设置集流件6,还方便支撑件2与第二极耳12电连接,提高了连接效率。
请再结合图4和图14,集流件6面向电极组件1的一面设有流道61,流道61由集流件6的边缘延伸至集流件6的中部,使得中心通道21流出的电解液能够从流道61的边缘向中部流动,导流通道4流出的电解液能够从中部向边缘流动,通过设置流道61能够进一步方便电解液流动,从而使得电池单体102内部更为快速地充满电解液,提高浸润速率和浸润效果。
请再结合图14,集流件6的未连接支撑件2的部位也设有贯穿孔,这些贯穿孔用于允许电解液流向电极组件1,也允许电极组件1中产生的高温高压排放物流向泄压机构54,因此能够提高浸润效果,也能够提高电池单体102的安全性。
根据本申请的一些实施例,如图14所示,支撑件2设有熔断部24。
熔断部24是指电池单体102中用于在电流过大或温度过高时断开的部件,以免电池单体102继续充放电导致更严重的事故发生。在本实施例中,熔断部24是指支撑件2的径向截面的最小部位,以使得支撑件2在熔断部24的过流面积最小,当电流过大时,熔断部24最先熔断。
在一些实施例中,如图15和图16所示,支撑件2的外周面向内凹陷形成环形凹槽,使得支撑件2的径向截面在设置环形凹槽处最小,也即熔断部24为支撑件2的设置环形凹槽的部位。
在另一些实施例中,如图17所示,支撑件2的侧壁在轴向上的某一位置设有多个绕周向间隔的多个贯穿孔,通过多个贯穿孔使得支撑件2的径向截面在该位置最小。可选地,所述的多个贯穿孔可以作为第一通孔22。
电极组件1温度最高的部位往往在中心部位,也即靠近卷绕中心孔的位置,当温度或电流过大时,熔断部24断开,支撑件2无法实现第二极耳12和第二电极引出部53电连接,使得电池单体102无法继续充放电,以免造成更严重的事故,提高电池单体102的安全性。
根据本申请的一些实施例,如图17所示,套筒3的侧壁上设置的第二通孔31与熔断部24错开。
第二通孔31与熔断部24可以是在支撑件2的轴向上错开,也可以是在支撑件2的周向上错开,或者第二通孔31与熔断部24既在支撑件2的轴向上错开又在支撑件2的周向上错开。
通过将熔断部24与第二通孔31错开,以免支撑件2熔断产生的金属渣穿过第二通孔31刺破隔离件、刺破极片,以免导致极性相反的极片搭接短路,以免导致支撑件2和与支撑件2的极性相反的极片搭接短路,从而提高电池单体102的安全性。
在一些实施例中,如图17和图18所示,第二通孔31还可以被配置为与第一通孔22错开,第二通孔31与第一通孔22可以是在支撑件2的轴向上错开,也可以是在支撑件2的周向上错开,或者第二通孔31与第一通孔22既在支撑件2的轴向上错开又在支撑件2的周向上错开。通过将第一通孔22与第二通孔31错开,以免电解液从第一通孔22中流出后直接经第二通孔31冲击卷绕中心孔的内壁,以免冲力过大导致极片损伤或起皱。
第二方面,本申请实施例提供一种电池100,如图2所示,电池100包括至少一个以上各方案中所述的电池单体102。本申请实施例提供的电池100,其电池单体102的电解液浸润性好,使得电池100的循环性能好、放电容量高、使用寿命长,并且安全性好。
第三方面,本申请实施例提供一种用电设备,用电设备可以是但不限于是图1所示的车辆1000,用电设备包括上述的电池100。用电设备的电池100的循环性能好、放电容量高、使用寿命长、安全性好,使得用电设备的性能好、安全性高。
第四方面,本申请实施例提供一种电池单体102的制造方法,如图19所示,制造方法包括:
S1,提供电极组件1,电极组件1具有卷绕中心孔,卷绕中心孔从电极组件1的第一端1a延伸至第二端1b;
S2,提供支撑件2,支撑件2呈管状;
S3,提供套筒3;
S4,将套筒3套设于支撑件2,以使套筒3的内周面和支撑件2的外周面之间限定出导流通道4,并将支撑件2和套筒3穿设于卷绕中心孔,以使支撑件2通过套筒3支撑电极组件1,且使导流通道4从第一端1a延伸至第二端1b。
需要说明的是,通过上述电池单体102的制造方法制造出的电池单体102的相关结构,可参见上述各实施例提供的电池单体102。
在基于上述的电池单体102的制造方法组装电池单体102时,不必按照上述步骤依次进行,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中提及的顺序执行步骤,或者若干步骤同时执行。例如,步骤S1、S2、S3的执行不分先后,也可以同时进行。
第五方面,本申请实施例提供一种电池单体102的制造设备7,如图20所示,制造设备7包括第一提供装置71、第二提供装置72、第三提供装置73和组装装置74。
第一提供装置71用于提供电极组件1,电极组件1具有卷绕中心孔,卷绕中心孔从电极组件1的第一端1a延伸至第二端1b。
第二提供装置72用于提供支撑件2,支撑件2呈管状。
第三提供装置73用于提供套筒3。
组装装置74,用于将套筒3套设于支撑件2,以使套筒3的内周面和支撑件2的外周面之间限定出导流通道4,并用于将支撑件2和套筒3穿设于卷绕中心孔,以使支撑件2通过套筒3支撑电极组件1,且使导流通道4从第一端1a延伸至第二端1b。
通过上述制造设备7制造出的电池单体102的相关结构,可参见上述各实施例提供的电池单体102。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
根据本申请的一些实施例,请参照图3-图18所示,本申请实施例提供一种圆柱形的电池单体102,电池单体102包括外壳组件5、电极组件1、支撑件2和套筒3。外壳组件5包括外壳本体51、第一电极引出部52、第二电极引出部53和泄压机构54,外壳本体51为一端开口、一端封闭的筒状结构,第一电极引出部52为盖合在外壳本体51的开口端的端盖,第二电极引出部53绝缘设置于第一电极引出部52,泄压机构54设置在外壳本体51的封闭端。电极组件1、支撑件2和套筒3均设置在外壳组件5内。电极组件1具有相对的第一端1a和第二端1b,第一端1a面向第一电极引出部52,第二端1b背离第一电极引出部52,电极组件1的卷绕中心孔从第一端1a延伸至第二端1b,电极组件1具有从第一端1a凸出的第一极耳11和从第二端1b凸出的第二极耳12。第一电极引出部52与第一极耳11电连接。支撑件2采用质地较硬的导电材料制成(如金属材料),套筒3采用耐高温的绝缘材料制成(如塑胶材料)。支撑件2和套筒3均呈管状,支撑件2穿设于电极组件1的卷绕中心孔,套筒3套设于支撑件2,且套筒3位于支撑件2的外周面和卷绕中心孔的内壁之间,使得支撑件2通过套筒3支撑电极组件1,防止电极组件1的卷绕中心孔塌孔。同时,支撑件2的一端连接第二极耳12,支撑件2的另一点连接第二电极引出部53,以实现第二极耳12和第二电极引出部53电连接。其中,管状的支撑件2的内部空间形成中心通道21,套筒3的内周面和支撑件2的外周面之间限定出导流通道4,中心通道21和导流通道4均从第一端1a延伸至第二端1b,中心通道21和导流通道4均用于容许电解液流动,两个通道中的一者堵塞时另一者可容许电解液流动,防止卷绕中心孔的内部空间被完全堵死,保证电解液能够均匀分布于电池单体102内部,提高电解液的浸润性,从而提高电池100的循环性能、放电容量和使用寿命,同时中心通道21和导流通道4还可用于容许气体流通,以使电池单体102内部的压力保持均匀,防止局部内压过大、局部温度过高而出现损坏、热失控的问题,提高电池100的安全性。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (22)

  1. 一种电池单体,其中,包括:
    电极组件,具有卷绕中心孔,所述卷绕中心孔从所述电极组件的第一端延伸至第二端;
    支撑件,所述支撑件呈管状且穿设于所述卷绕中心孔;
    套筒,套设于所述支撑件且位于所述支撑件的外周面和所述卷绕中心孔的内壁之间,所述支撑件被配置为通过所述套筒支撑所述电极组件;
    其中,所述套筒的内周面和所述支撑件的外周面之间限定出导流通道,所述导流通道从所述第一端延伸至所述第二端。
  2. 根据权利要求1所述的电池单体,其中,所述支撑件的侧壁上设置有第一通孔,所述第一通孔用于连通所述支撑件的内部空间和所述导流通道。
  3. 根据权利要求2所述的电池单体,其中,所述导流通道的数量为多个,多个所述导流通道沿所述支撑件的周向间隔分布。
  4. 根据权利要求3所述的电池单体,其中,每个所述导流通道通过沿其延伸方向间隔设置的多个所述第一通孔连通所述支撑件的内部空间。
  5. 根据权利要求2-4任一项所述的电池单体,其中,所述支撑件的外周面为圆柱面,所述套筒的内周面为棱柱面,所述支撑件的外周面与所述套筒的内周面相切,相邻两条切线之间形成所述导流通道。
  6. 根据权利要求5所述的电池单体,其中,所述第一通孔的直径为D1,所述支撑件的外径为D2,所述套筒的内周面的棱边的数量为n,满足:
    sin5°≤D1/D2≤sin(360°/2n)。
  7. 根据权利要求2-4任一项所述的电池单体,其中,所述支撑件的外周面为棱柱面,所述套筒的内周面为圆柱面,所述支撑件的外周面的棱边与所述套筒的内周面抵接。
  8. 根据权利要求2-7任一项所述的电池单体,其中,所述套筒的侧壁上设置有第二通孔,所述第二通孔与所述导流通道连通。
  9. 根据权利要求8所述的电池单体,其中,所述第二通孔的直径小于所述第一通孔的直径。
  10. 根据权利要求8或9所述的电池单体,其中,所述电池单体还包括缓冲件,所述缓冲件为网状结构且覆盖所述第二通孔。
  11. 根据权利要求1-10任一项所述的电池单体,其中,所述支撑件的外周面和所述套筒的内周面中的一者设有限位凸起,另一者设有限位槽,所述限位凸起与所述限位槽配合,以限制所述支撑件和所述套筒相对转动。
  12. 根据权利要求1-11任一项所述的电池单体,其中,所述电极组件包括位于所述第一端的第一极耳和位于所述第二端的第二极耳,所述第一极耳和所述第二极耳极性相反;
    所述电池单体还包括:
    外壳组件,所述外壳组件包括用于输入或输出电能的第一电极引出部和第二电极引出部,所述外壳组件的内部设有所述电极组件,所述第一电极引出部和所述第二电极引出部均设于所述外壳组件靠近所述第一极耳的一侧,所述第一电极引出部与所述第一极耳电连接,所述支撑件用于连接所述第二极耳与所述第二电极引出部,以实现所述第二极耳与所述第二电极引出部的电连接。
  13. 根据权利要求12所述的电池单体,其中,所述第二电极引出部设置有注液孔,所述注液孔与所述支撑件的一端相对设置。
  14. 根据权利要求13所述的电池单体,其中,所述外壳组件还包括泄压机构,所述泄压机构被配置为在所述电池单体的内部压力或温度达到阈值时致动以泄放所述电池单体的内部压力,所述泄压机构设置于所述外壳组件靠近所述第二极耳的一侧且与所述支撑件的另一端相对设置。
  15. 根据权利要求12-14任一项所述的电池单体,其中,所述套筒由绝缘材料制成。
  16. 根据权利要求12-15任一项所述的电池单体,其中,所述电池单体还包括:集流件,所述集流件附接于所述第二极耳,并用于连接所述第二极耳和所述支撑件,以实现所述第二极耳和所述支撑件的电连接。
  17. 根据权利要求12-16任一项所述的电池单体,其中,所述支撑件设置有熔断部。
  18. 根据权利要求17所述的电池单体,其中,所述套筒的侧壁上设置有第二通孔,所述第二通 孔与所述导流通道连通,所述熔断部与所述第二通孔错开。
  19. 一种电池,其中,包括权利要求1-18任一项所述的电池单体。
  20. 一种用电设备,其中,包括权利要求19所述的电池。
  21. 一种电池单体的制造方法,其中,包括:
    提供电极组件,所述电极组件具有卷绕中心孔,所述卷绕中心孔从所述电极组件的第一端延伸至第二端;
    提供支撑件,所述支撑件呈管状;
    提供套筒;
    将所述套筒套设于所述支撑件,以使所述套筒的内周面和所述支撑件的外周面之间限定出导流通道,并将所述支撑件和所述套筒穿设于所述卷绕中心孔,以使所述支撑件通过所述套筒支撑所述电极组件,且使所述导流通道从所述第一端延伸至所述第二端。
  22. 一种电池单体的制造设备,其中,包括:
    第一提供装置,用于提供电极组件,所述电极组件具有卷绕中心孔,所述卷绕中心孔从所述电极组件的第一端延伸至第二端;
    第二提供装置,用于提供支撑件,所述支撑件呈管状;
    第三提供装置,用于提供套筒;
    组装装置,用于将所述套筒套设于所述支撑件,以使所述套筒的内周面和所述支撑件的外周面之间限定出导流通道,并用于将所述支撑件和所述套筒穿设于所述卷绕中心孔,以使所述支撑件通过所述套筒支撑所述电极组件,且使所述导流通道从所述第一端延伸至所述第二端。
PCT/CN2022/072160 2022-01-14 2022-01-14 电池单体、电池、用电设备及电池单体的制造方法和设备 WO2023133852A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/072160 WO2023133852A1 (zh) 2022-01-14 2022-01-14 电池单体、电池、用电设备及电池单体的制造方法和设备
CN202280027496.4A CN117157825A (zh) 2022-01-14 2022-01-14 电池单体、电池、用电设备及电池单体的制造方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/072160 WO2023133852A1 (zh) 2022-01-14 2022-01-14 电池单体、电池、用电设备及电池单体的制造方法和设备

Publications (1)

Publication Number Publication Date
WO2023133852A1 true WO2023133852A1 (zh) 2023-07-20

Family

ID=87279915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072160 WO2023133852A1 (zh) 2022-01-14 2022-01-14 电池单体、电池、用电设备及电池单体的制造方法和设备

Country Status (2)

Country Link
CN (1) CN117157825A (zh)
WO (1) WO2023133852A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204130A (ja) * 1998-01-16 1999-07-30 Furukawa Battery Co Ltd:The 円筒形2次電池
JP2002190314A (ja) * 2000-12-20 2002-07-05 Nissan Motor Co Ltd 電 池
JP2007188855A (ja) * 2005-12-14 2007-07-26 Sony Corp 電池およびセンターピン
CN101546850A (zh) * 2008-03-25 2009-09-30 三星Sdi株式会社 用于二次电池的中心销以及具有该中心销的二次电池
WO2014076828A1 (ja) * 2012-11-19 2014-05-22 株式会社 日立製作所 二次電池
US20200212405A1 (en) * 2018-12-27 2020-07-02 Sf Motors, Inc. Battery cell for an electric vehicle battery pack
CN111416068A (zh) * 2020-04-27 2020-07-14 惠州亿纬锂能股份有限公司 一种电子器件及其制作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204130A (ja) * 1998-01-16 1999-07-30 Furukawa Battery Co Ltd:The 円筒形2次電池
JP2002190314A (ja) * 2000-12-20 2002-07-05 Nissan Motor Co Ltd 電 池
JP2007188855A (ja) * 2005-12-14 2007-07-26 Sony Corp 電池およびセンターピン
CN101546850A (zh) * 2008-03-25 2009-09-30 三星Sdi株式会社 用于二次电池的中心销以及具有该中心销的二次电池
WO2014076828A1 (ja) * 2012-11-19 2014-05-22 株式会社 日立製作所 二次電池
US20200212405A1 (en) * 2018-12-27 2020-07-02 Sf Motors, Inc. Battery cell for an electric vehicle battery pack
CN111416068A (zh) * 2020-04-27 2020-07-14 惠州亿纬锂能股份有限公司 一种电子器件及其制作方法

Also Published As

Publication number Publication date
CN117157825A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
US20220013856A1 (en) Battery and related apparatus, production method and production device therefor
JP2023541357A (ja) 電池セル及びその製造方法並びに製造システム、電池及び電力消費装置
WO2024093100A1 (zh) 电极极片、电极组件、电池单体、电池和用电设备
WO2023131031A1 (zh) 一种电池单体、电池及用电装置
WO2023273390A1 (zh) 集流构件、电池单体、电池以及用电装置
US20220320673A1 (en) Battery, power consumption device, method and device for producing battery
US20230420798A1 (en) Battery, electric apparatus, and method and apparatus for manufacturing battery
WO2023216829A1 (zh) 电池单体、电池及用电装置
US11955658B2 (en) Battery cell and manufacturing method and manufacturing system thereof, battery and power consumption apparatus
WO2023133852A1 (zh) 电池单体、电池、用电设备及电池单体的制造方法和设备
WO2023025104A1 (zh) 电池单体、电池以及用电装置
WO2023236220A1 (zh) 电池单体、电池及用电设备
WO2023028867A1 (zh) 壳体、电池单体、电池及用电设备
WO2023141902A1 (zh) 端盖组件、电池单体、电池以及用电装置
CN215418295U (zh) 卷针套管、电池单体、电池、用电装置和卷绕装置
WO2023133775A1 (zh) 电池单体、电池、用电设备、电池单体的制造方法及设备
CN215496869U (zh) 端盖组件、电池单体、电池及用电设备
WO2024040879A1 (zh) 电池单体、电池及用电设备
EP4345984A1 (en) Battery and electrical apparatus
EP4009433B1 (en) Battery, electric apparatus, and battery manufacturing method and device
WO2024026825A1 (zh) 电池单体、电池及用电装置
US20240162558A1 (en) Battery cell, battery, electrical apparatus, and method and apparatus for manufacturing battery cell
WO2023272501A1 (zh) 电池单体、电池、用电设备及电池单体的制造方法和设备
WO2023133853A1 (zh) 电池单体、电池、用电设备及电池单体的制造方法和设备
WO2024044951A1 (zh) 电池单体、电池及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919500

Country of ref document: EP

Kind code of ref document: A1