WO2023133775A1 - 电池单体、电池、用电设备、电池单体的制造方法及设备 - Google Patents

电池单体、电池、用电设备、电池单体的制造方法及设备 Download PDF

Info

Publication number
WO2023133775A1
WO2023133775A1 PCT/CN2022/071895 CN2022071895W WO2023133775A1 WO 2023133775 A1 WO2023133775 A1 WO 2023133775A1 CN 2022071895 W CN2022071895 W CN 2022071895W WO 2023133775 A1 WO2023133775 A1 WO 2023133775A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
battery cell
medium
insulator
boss
Prior art date
Application number
PCT/CN2022/071895
Other languages
English (en)
French (fr)
Inventor
吴宁生
白璐璐
周文林
柯海波
李全坤
王鹏
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202290000377.5U priority Critical patent/CN220963690U/zh
Priority to PCT/CN2022/071895 priority patent/WO2023133775A1/zh
Publication of WO2023133775A1 publication Critical patent/WO2023133775A1/zh
Priority to US18/411,035 priority patent/US20240154282A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • H01M50/636Closing or sealing filling ports, e.g. using lids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, in particular to a battery cell, a battery, an electrical device, and a method and device for manufacturing the battery cell.
  • the purpose of the present application is to provide a battery cell, a battery, an electrical device, and a method and device for manufacturing the battery cell.
  • the battery cell has high safety.
  • the present application provides a battery cell, which includes: a casing including a first wall, and a medium injection hole is provided on the first wall; an electrode assembly is arranged in the casing; an insulating member is arranged between the first wall and the electrode assembly to insulate and isolate the first wall and the electrode assembly; wherein, the side of the insulating member facing the first wall is provided with a flow guide structure, so The flow guide structure is configured to guide the medium injected from the medium injection hole to the edge of the insulating member, so that the medium enters the inside of the battery cell from the edge of the insulating member.
  • the medium injected from the medium injection hole is guided to the edge of the insulator through the flow guide structure, so that the medium enters the inside of the battery cell from the edge of the insulator, and the flow guide structure can disperse the medium and slow down the flow of the medium.
  • the flow rate can effectively alleviate the impact force of the medium on the electrode assembly, reduce the risk of the electrode assembly being damaged by the medium, and improve the safety of the battery cell.
  • the diversion structure includes a first diversion groove, and along the thickness direction of the first wall, the projection of the medium injection hole on the insulating member is located at the first diversion groove. in the slot.
  • the projection of the medium injection hole on the insulating member corresponds to the first diversion groove, so that the first diversion groove receives the medium injected by the medium injection hole and disperses the medium.
  • the flow guide structure further includes a second flow guide groove, the second flow guide groove is an annular groove extending along the edge of the insulating member, and the first flow guide groove is connected to the first flow guide groove.
  • the first flow guide groove is used to guide the medium to the second flow guide groove.
  • the second diversion groove extends along the edge of the insulator and is an annular groove, and the first diversion groove communicates with the second diversion groove, so that the medium injected into the medium injection hole flows to the edge of the insulator, ensuring that the medium Flows smoothly.
  • the bottom surface of the first flow guide groove is a slope surface, so as to guide the medium to the second flow guide groove.
  • the slope is set so that there is an angle between the bottom surface of the first flow guide groove and the bottom surface of the second flow guide groove, so that the medium in the first flow guide groove can quickly move towards the second flow guide groove Flow, making the medium flow smoothly.
  • both ends of the first diversion groove communicate with the second diversion groove
  • the bottom surface of the first diversion groove includes a first slope surface and a second slope surface, so The first slope extends from the middle of the first guide groove to one end of the first guide groove, and the second slope extends from the middle of the first guide groove to the first guide groove.
  • the projection of the medium injection hole on the insulator is located at the intersection of the first slope and the second slope.
  • the setting form of the first slope and the second slope facilitates the medium injected into the medium injection hole to be guided by the first slope and the second slope toward the two ends of the first diversion groove, so as to facilitate the medium to enter The second diversion groove ensures the smooth flow of medium.
  • the groove wall of the second flow guide groove is provided with a through hole, and the through hole is used for the medium in the second flow guide groove to flow out.
  • the setting of the through hole facilitates the flow of the medium from the second diversion groove, so as to realize the diversion of the medium and facilitate the medium to enter the interior of the battery cell.
  • the projection of the electrode assembly on the insulator does not at least partially overlap with the through hole.
  • the projection of the through hole and the electrode assembly on the insulator at least does not overlap, and when the medium enters the interior of the battery cell from the through hole, the probability of the medium directly acting on the electrode assembly can be reduced , at the limit, the projection of the through hole and the electrode assembly on the insulator does not overlap, and the medium will not directly act on the electrode assembly, reducing the risk of the electrode assembly being damaged by the medium.
  • the insulator has a rectangular shape, and the through hole includes a first sub-through hole, and the first sub-through hole is located at a corner of the insulator.
  • the first sub-through hole is located at the corner of the insulator, which can make reasonable use of the area where the insulator and the electrode assembly do not overlap, which not only ensures the energy density of the battery cell, but also facilitates the medium to enter the interior of the battery cell. Directly impact the electrode assembly.
  • the number of the electrode assemblies is multiple, and the plurality of electrode assemblies are arranged sequentially along the thickness direction thereof, and the electrode assemblies include a flat area and two electrodes connected to the flat area.
  • the bending area at the end, the through hole includes a second sub-through hole, the second sub-through hole is provided at both ends of the length direction of the insulator and is located at the bend of the two adjacent electrode assemblies.
  • the folds are between projections on the insulation.
  • the medium passes through the second sub-through hole.
  • the hole enters the interior of the battery cell, it will not directly act on the electrode assembly, and the space of the insulator is reasonably used to weaken the impact of the medium on the electrode assembly.
  • the groove wall of the second diversion groove includes a bottom wall, an inner wall and an outer wall, the outer wall and the inner wall are oppositely arranged, and the through hole is arranged on the outer wall Or the intersection of the outer side wall and the bottom wall.
  • the second diversion groove is surrounded by the bottom wall, the outer wall and the inner wall.
  • the outer wall and the inner wall point from the bottom wall to the first wall.
  • the insulator includes a bottom plate, a first boss and a second boss, the first boss and the second boss are formed on the bottom plate facing the first wall On one side, the first boss and the second boss are spaced apart, and the first guide groove is formed between the first boss and the second boss.
  • the first guide groove is formed between the first boss and the second boss, and the flow path of the medium is limited by the first boss, the second boss and the bottom plate, the structure is simple, and the insulating member has a high strength.
  • the insulating member further includes a flange, the flange surrounds the bottom plate and protrudes from the bottom plate toward the direction close to the first wall, and the flange Surrounding the first boss and the second boss, the second guide groove is formed between the outer peripheral surface of the first boss and the second boss and the inner peripheral surface of the flange .
  • the flange surrounds the bottom plate and surrounds the first boss and the second boss to form the second guide groove, and the structure is simple, so that the medium enters the interior of the battery cell from the edge of the insulator.
  • the first boss and the second boss abut against the first wall, there is a gap between the flange and the first wall, and the gap is used for For the medium in the second guide groove to flow out.
  • the first boss and the second boss abut against the first wall to ensure the stable positioning of the insulator and the first wall; through the gap between the flange and the first wall, it is convenient for the medium to flow out of the second guide Launder, simple structure, easy to process.
  • the first boss, the second boss and the flange all abut against the first wall.
  • the insulator and the first wall have multiple contact positions and a larger contact area, so that the insulator and the first wall Wall positioning is stable.
  • a first concave portion and a second concave portion are provided on a side of the insulator away from the first wall, the first concave portion corresponds to the position of the first boss, and the first concave portion corresponds to the position of the first boss.
  • the two recesses correspond to the positions of the second bosses.
  • the first recess corresponds to the position of the first boss
  • the second recess corresponds to the position of the second boss
  • the tabs of the electrode assembly can extend into the first recess and the second recess, which can save installation space and improve The energy density of a battery cell.
  • the housing includes a housing and an end cover, the housing has an opening, the end cover covers the opening, and the first wall is the end cover.
  • the first wall is an end cover, and the end cover covers the opening of the casing, which is convenient for processing and assembly.
  • the present application provides a battery, which includes the battery cell in the above embodiment.
  • the present application provides an electric device, which includes the battery cell in the above embodiment, and the battery cell is used to provide electric energy.
  • the present application provides a method for manufacturing a battery cell, which includes: providing a casing, the casing includes a first wall, and the first wall is provided with a medium injection hole; providing an electrode assembly; providing an insulating member, The insulator is provided with a flow guide structure configured to guide the medium injected from the medium injection hole to the edge of the insulator and enter the battery cell from the edge of the insulator Inside; the electrode assembly is arranged in the outer shell, and the insulating member is arranged between the first wall and the electrode assembly to insulate and isolate the first wall and the electrode assembly, so that the The flow guiding structure is located on a side of the insulating member facing the first wall.
  • the guide structure provided by the insulator guides the medium from the edge of the insulator into the inside of the battery cell, which can effectively relieve the impact force of the medium acting on the electrode assembly and reduce the electrode assembly being damaged.
  • the risk of medium damage makes the battery cell have higher safety.
  • the present application provides a battery cell manufacturing equipment, which includes: providing a module for providing a casing, providing an electrode assembly, and providing an insulating member, the casing includes a first wall, and the first wall is set There is a medium injection hole, and the insulator is provided with a flow guide structure, and the flow guide structure is configured to guide the medium injected from the medium injection hole to the edge of the insulator, and enter from the edge of the insulator The inside of the battery cell; an assembly module for disposing the electrode assembly in the casing, and disposing the insulator between the first wall and the electrode assembly to insulate and isolate the first wall A wall and the electrode assembly, such that the flow guiding structure is located on a side of the insulator facing the first wall.
  • the battery cell with high safety can be manufactured by the manufacturing equipment.
  • Fig. 1 is a schematic structural diagram of a vehicle provided according to some embodiments of the present application.
  • Fig. 2 is a schematic diagram of an exploded structure of a battery provided according to some embodiments of the present application.
  • FIG. 3 is a schematic diagram of an exploded structure of a battery cell provided in some embodiments of the present application.
  • Fig. 4 is an isometric view of an insulating member provided according to some embodiments of the present application.
  • Fig. 5 is a cross-sectional view of an assembled first wall and an insulating member according to some embodiments of the present application
  • Fig. 6 is a top view of an insulator provided according to some embodiments of the present application.
  • FIG. 7 is a schematic structural diagram of a through hole of an insulating member provided according to some embodiments of the present application.
  • Fig. 8 is a schematic structural diagram of a through hole of an insulating member provided according to other embodiments of the present application.
  • FIG. 9 is a schematic diagram of the assembly of an electrode assembly and an insulator provided according to some embodiments of the present application.
  • Figure 10 is an enlarged view of A in Figure 9;
  • Fig. 11 is an isometric view of an insulating member provided according to other embodiments of the present application.
  • Fig. 12 is a partial schematic diagram of an assembled insulator and a housing provided according to some embodiments of the present application.
  • Fig. 13 is a partial cross-sectional view of an assembled insulator and an electrode assembly provided according to some embodiments of the present application;
  • Fig. 14 is a partial schematic diagram of an assembled insulator and a housing provided according to other embodiments of the present application.
  • Fig. 15 is a schematic structural diagram of an insulator provided according to some embodiments of the present application.
  • FIG. 16 is a schematic flowchart of a method for manufacturing a battery cell according to some embodiments of the present application.
  • FIG. 17 is a schematic block diagram of manufacturing equipment for battery cells according to some embodiments of the present application.
  • Marking description 100-battery; 101-first part; 102-second part; 10-battery unit; 11-shell; 111-first wall; 1111-medium injection hole; 121-straight area; 122-bending area; 13-insulation; 131-first diversion groove; 1311-first slope; 1312-second slope; 132-second diversion groove; 1321-bottom Wall; 1322-inner side wall; 1323-outer side wall; 133-through hole; 1331-first sub-through hole; 1332-second sub-through hole; 134-bottom plate; 135-first boss; 136-second boss 137-flange; 138-first recess; 139-second recess; 14-electrode terminal; 200-controller; 300-motor; 1000-vehicle; X-thickness direction of the first wall; Y-electrode assembly thickness direction.
  • multiple refers to more than two (including two), similarly, “multiple groups” refers to more than two groups (including two), and “multiple pieces” refers to More than two pieces (including two pieces).
  • a battery refers to a single physical module comprising one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack, and the like.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive pole piece, a negative pole piece and a diaphragm.
  • a battery cell works primarily by moving metal ions between the positive and negative pole pieces.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer is coated on the surface of the positive electrode current collector, and the positive electrode collector without the positive electrode active material layer protrudes from the positive electrode collector coated with the positive electrode active material layer. Fluid, the positive electrode current collector not coated with the positive electrode active material layer is used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer, the negative electrode active material layer is coated on the surface of the negative electrode current collector, and the negative electrode collector without the negative electrode active material layer protrudes from the negative electrode collector coated with the negative electrode active material layer. Fluid, the negative electrode current collector not coated with the negative electrode active material layer is used as the negative electrode tab.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material may be carbon or silicon.
  • the number of positive pole tabs is multiple and stacked together, and the number of negative pole tabs is multiple and stacked together.
  • the material of the diaphragm can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), etc.
  • the diaphragm is arranged between the positive pole piece and the negative pole piece, and is used for insulating and isolating the positive pole piece and the negative pole piece.
  • Power batteries are not only used in energy storage power systems such as hydraulic, thermal, wind and solar power plants, but also widely used in electric vehicles such as electric bicycles, electric motorcycles, electric vehicles, as well as military equipment and aerospace and other fields . With the continuous expansion of power battery application fields, its market demand is also constantly expanding.
  • the safety of a battery cell includes various factors, such as the reliability of the connection between the tab and the adapter, assembly tolerances, untimely opening of the pressure relief mechanism, and damage to the electrode assembly. Among them, damage to the electrode assembly is one of the important factors affecting the safety of the battery cell.
  • the inventors found that during the manufacturing process of battery cells, especially lithium-ion batteries, it is necessary to inject a medium (electrolyte, such as electrolyte) into the interior of the battery cells to facilitate the electrochemical reaction of the electrode assembly. It should be pointed out that the medium is a fluid, and when the medium is injected into the battery cell, the medium has a certain flow velocity.
  • the inventor has designed a battery cell after in-depth research.
  • the flow guide structure By setting a flow guide structure on the side of the insulator facing the first wall, the flow guide structure will be filled by the medium injection hole The injected medium is guided towards the edge of the insulating part, so that the medium enters the interior of the battery cell from the edge of the insulating part.
  • the flow guide structure guides the medium to the edge of the insulator, the medium is dispersed under the guidance of the flow guide structure and the flow rate of the medium slows down.
  • the medium enters the interior of the battery cell, the medium and the electrode The contact area of the components is small and even the medium does not directly impact the electrode components, which can effectively alleviate the impact force of the medium on the electrode components, reduce the risk of the electrode components being damaged by the medium, and improve the safety of the battery cell.
  • the edge of the insulator does not overlap with the electrode assembly.
  • the medium enters the interior of the battery cell from the edge of the insulator, which can also prevent the medium from directly impacting the electrode assembly, making the battery cell
  • the body has higher security.
  • the battery cells disclosed in the embodiments of the present application can be used, but not limited, in electrical equipment such as vehicles, ships, or aircrafts.
  • the battery unit disclosed in this application can be used to form the power supply system of the electrical equipment.
  • the embodiment of the present application provides an electric device that uses a battery as a power source.
  • the electric device can be, but not limited to, a mobile phone, a tablet computer, a notebook computer, an electric toy, an electric tool, an electric bicycle, an electric motorcycle, an electric car, a ship, Spacecraft and more.
  • electric toys may include fixed or mobile electric toys, such as game consoles, electric car toys, electric boat toys, electric airplane toys, etc.
  • spacecraft may include airplanes, rockets, space shuttles, spaceships, etc.
  • a vehicle is used as an example to describe an electric device according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a vehicle 1000 provided according to some embodiments of the present application.
  • the vehicle 1000 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • the interior of the vehicle 1000 is provided with a battery 100 , and the battery 100 may be provided at the bottom, head or tail of the vehicle 1000 .
  • the battery 100 can be used for power supply of the vehicle 1000 , for example, the battery 100 can be used as an operating power source of the vehicle 1000 , used for the circuit system of the vehicle 1000 , for example, used for starting, navigating, and working power requirements of the vehicle 1000 .
  • the vehicle 1000 may further include a controller 200 and a motor 300 , the controller 200 is used to control the battery 100 to supply power to the motor 300 , for example, for starting, navigating and running the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but can also be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel oil or natural gas to provide driving power for the vehicle 1000 .
  • FIG. 2 is a schematic diagram of an exploded structure of a battery 100 provided according to some embodiments of the present application.
  • the battery 100 includes a box body (or called a cover body) and a battery cell 10, and the battery cell 10 is accommodated in the box body.
  • the box body is used to provide accommodating space for the battery cells 10 , and the box body can adopt various structures.
  • the box body may include a first part 101 and a second part 102, the first part 101 and the second part 102 cover each other, and the first part 101 and the second part 102 jointly define a cavity for accommodating the battery cell 10. Accommodate space.
  • the second part 102 can be a hollow structure with one end open, the first part 101 can be a plate-shaped structure, and the first part 101 covers the opening side of the second part 102, so that the first part 101 and the second part 102 jointly define an accommodation space ;
  • the first part 101 and the second part 102 can also be hollow structures with one side opening, and the opening side of the first part 101 is covered by the opening side of the second part 102 .
  • the battery 100 there may be multiple battery cells 10 , and the multiple battery cells 10 may be connected in series, in parallel or in parallel.
  • the mixed connection means that the multiple battery cells 10 are connected in series and in parallel.
  • a plurality of battery cells 10 can be directly connected in series or in parallel or mixed together, and then the whole body composed of a plurality of battery cells 10 is accommodated in the box; of course, the battery 100 can also be a plurality of battery cells 10 connected in series first Or parallel or mixed connection to form a battery module form, and multiple battery modules are connected in series, parallel or mixed to form a whole, and accommodated in the box.
  • the battery 100 may also include other structures, for example, the battery 100 may also include a current flow component for realizing electrical connection between a plurality of battery cells 10 .
  • each battery cell 10 may be a secondary battery or a primary battery; it may also be a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, but not limited thereto.
  • the battery cell 10 provided in the embodiment of the present application is in the shape of a cube.
  • FIG. 3 is a schematic diagram of an exploded structure of a battery cell 10 provided in some embodiments of the present application.
  • the battery cell 10 refers to the smallest unit constituting the battery 100 .
  • the battery cell 10 includes a casing 11 , an electrode assembly 12 , an insulator 13 and other functional components.
  • the casing 11 is a component used to form the internal environment of the battery cell 10 , and the formed internal environment can be used to accommodate the electrode assembly 12 , a medium (such as electrolyte) and other components.
  • the casing 11 may include a casing and an end cover, which may be independent components, or an opening may be provided on the casing, and the internal environment of the battery cell 10 is formed by closing the end cover on the opening.
  • the end cover and the housing can also be integrated. Specifically, the end cover and the housing can form a common connection surface before other components enter the housing. When it is necessary to seal the inside of the housing, the end Cover the housing.
  • the housing may be cuboid in shape.
  • the shape of the housing can be determined according to the specific shape and size of the electrode assembly 12 .
  • the housing can be made of various materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which are not particularly limited in this embodiment of the present application.
  • the end cap refers to a component that covers the opening of the casing to isolate the internal environment of the battery cell 10 from the external environment.
  • the shape of the end cap can be adapted to the shape of the housing to fit the housing.
  • the end cap can be made of a material with a certain hardness and strength (such as aluminum alloy), so that the end cap is not easily deformed when being squeezed and collided, so that the battery cell 10 can have higher structural strength , safety performance can also be improved.
  • Functional components such as electrode terminals 14 may be provided on the end cap. The electrode terminal 14 can be used for electrical connection with the electrode assembly 12 for outputting or inputting electric energy of the battery cell 10 .
  • the end cap may also be provided with a pressure relief mechanism for releasing the internal pressure when the internal pressure or temperature of the battery cell 10 reaches a threshold value.
  • the material of the end cap can also be various, for example, copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which is not particularly limited in this embodiment of the present application.
  • the electrode assembly 12 is a part where electrochemical reactions occur in the battery cell 10 .
  • One or more electrode assemblies 12 may be contained within the housing.
  • the electrode assembly 12 is mainly formed by winding or stacking the positive electrode piece and the negative electrode piece, and usually a separator is provided between the positive electrode piece and the negative electrode piece, and the separator is used for insulating and isolating the positive electrode piece and the negative electrode piece.
  • the part of the positive pole piece and the negative pole piece with the active material constitutes the main body of the electrode assembly 12 , and the parts of the positive pole piece and the negative pole piece without the active material respectively form tabs.
  • the positive pole tab and the negative pole tab can be located at one end of the main body together or at two ends of the main body respectively.
  • the insulator 13 is used to insulate and isolate the electrical connection components inside the housing 11 from the housing 11 to reduce the risk of short circuit.
  • the insulating member 13 may be plastic, rubber or the like.
  • the present application provides a battery cell 10 .
  • the battery cell 10 includes a casing 11 , an electrode assembly 12 and an insulator 13 .
  • the casing 11 includes a first wall 111 , and a medium injection hole 1111 is disposed on the first wall 111 .
  • the electrode assembly 12 is disposed in the casing 11 .
  • the insulator 13 is disposed between the first wall 111 and the electrode assembly 12 to insulate and isolate the first wall 111 and the electrode assembly 12 .
  • the side of the insulating member 13 facing the first wall 111 is provided with a guide structure, and the guide structure is configured to guide the medium injected from the medium injection hole 1111 to the edge of the insulating member 13, so that the medium flows from the edge of the insulating member 13 into the interior of the battery cell 10 .
  • the casing 11 is a component used to form the internal environment of the battery cell 10 , and the formed internal environment can be used to accommodate the electrode assembly 12 , a medium (such as electrolyte) and other components.
  • the first wall 111 is an integral part of the housing 11 .
  • the first wall 111 is provided with a medium injection hole 1111 .
  • the medium injection hole 1111 may be a hole penetrating through the first wall 111 along the thickness direction X of the first wall 111 .
  • the medium injection hole 1111 connects the interior and exterior of the battery cell 10 so that the medium can enter the interior of the battery cell 10 from the exterior of the battery cell 10 .
  • the insulator 13 is disposed between the first wall 111 and the electrode assembly 12 . It can be that the first wall 111 , the insulator 13 and the electrode assembly 12 are sequentially arranged along the thickness direction X of the first wall 111 . In the figure, the direction indicated by the letter X is the thickness direction of the first wall 111 .
  • the flow guide structure is a structure provided on the side of the insulating member 13 facing the first wall 111 for guiding the flow of the medium, which may be a channel for guiding the fluid to pass through.
  • the medium can be an electrolyte, such as an electrolyte, which plays a role in conducting ions between the positive electrode and the negative electrode.
  • the interior of the battery cell 10 refers to the area enclosed by the inner wall of the casing 11 for accommodating the electrode assembly 12 , the insulator 13 is connected to the first wall 111 , and the insulator 13 and the casing 11 define the interior of the battery cell 10 .
  • the medium such as electrolyte
  • the medium injected from the medium injection hole 1111 is guided to the edge of the insulator 13 through the guide structure, so that the medium flows from The edge of the insulator 13 enters the interior of the battery cell 10, and the flow guide structure can disperse the medium and slow down the flow rate of the medium.
  • the contact area between the medium and the electrode assembly 12 is small, and even the medium does not directly impact the electrode.
  • the assembly 12 can effectively alleviate the impact force of the medium acting on the electrode assembly 12 , reduce the risk of the electrode assembly 12 being damaged by the medium, and improve the safety of the battery cell 10 .
  • FIG. 4 is an isometric view of an insulating member 13 provided according to some embodiments of the present application
  • FIG. 5 is a cross-sectional view of an assembled first wall 111 and an insulating member 13 provided according to some embodiments of the present application. .
  • the flow guide structure includes a first flow guide groove 131 , along the thickness direction X of the first wall 111 , the projection of the medium injection hole 1111 on the insulating member 13 is located at Inside the first diversion groove 131 .
  • the first flow guide groove 131 is a groove provided on the insulating member 13 , and the medium can flow in the first flow guide groove 131 .
  • the projection of the medium injection hole 1111 on the insulating member 13 is located in the first diversion groove 131, which means that, as shown in FIG.
  • the medium can be carried by the first guide groove 131 .
  • the projection of the medium injection hole 1111 on the insulating member 13 corresponds to the first diversion groove 131, so that the first diversion groove 131 accepts the medium injected by the medium injection hole 1111, and disperses the medium on the insulating member 13 to slow down the flow of the medium. flow rate.
  • FIG. 6 is a top view of the insulator 13 provided according to some embodiments of the present application, which is a schematic structural view of the insulator 13 from the perspective of the first wall 111 pointing to the direction of the electrode assembly 12 .
  • the flow guide structure further includes a second flow guide groove 132, the second flow guide groove 132 is an annular groove extending along the edge of the insulating member 13, and the first flow guide groove 132 is an annular groove extending along the edge of the insulating member 13.
  • the flow channel 131 communicates with the second flow guide channel 132 , and the first flow guide channel 131 is used to guide the medium to the second flow guide channel 132 .
  • the second guide groove 132 is an annular groove extending on the side of the insulating member 13 facing the first wall 111 and extending around the edge of the insulating member 13. When the medium flows in the second guide groove 132, the medium can surround the insulating member 13 edge flow to allow the medium to have a longer flow path.
  • the second diversion groove 132 extends along the edge of the insulator 13 and is an annular groove.
  • the first diversion groove 131 communicates with the second diversion groove 132, so that the medium injected into the medium injection hole 1111 flows to the edge of the insulator 13, ensuring that The medium flows smoothly.
  • the second guide groove 132 may also be a groove extending along the edge of the insulating member 13 , and the first and last ends of the groove are not connected.
  • the bottom surface of the first flow guide groove 131 is a slope surface, so as to guide the medium to the second flow guide groove 132 .
  • the slope surface is a surface with a certain inclination angle.
  • first diversion groove 131 There are two forms of communication between the first diversion groove 131 and the second diversion groove 132: in the first case, one end of the first diversion groove 131 communicates with the second diversion groove 132, and the other end of the first diversion groove 131 communicates with the second diversion groove 132. One end is disconnected from the second flow guide groove 132.
  • the bottom surface of the first flow guide groove 131 can only guide the medium from one end of the first flow guide groove 131 to the second flow guide groove 132; the second situation , both ends of the first diversion groove 131 communicate with the second diversion groove 132, in this case, the first diversion groove 131 can guide the medium from both ends of the first diversion groove 131 to the second diversion groove Slot 132.
  • the first slope 1311 extends from the middle of the first diversion groove 131 to one end of the first diversion groove 131
  • the second slope 1312 extends from the middle of the first diversion groove 131 to the first
  • the projection of the medium injection hole 1111 on the insulator 13 is located at the intersection of the first slope 1311 and the second slope 1312 .
  • the first slope 1311 and the second slope 1312 are two slopes opposite to each other, and the highest end of the first slope 1311 meets the highest end of the second slope 1312 .
  • the middle part of the first diversion groove 131 can be the middle position of the extension direction of the first diversion groove 131, the first slope surface 1311 and the second slope surface 1312 have the same length in the extension direction of the first diversion groove 131, So that the medium can be evenly distributed.
  • the projection of the medium injection hole 1111 on the insulator 13 is located at the intersection of the first slope 1311 and the second slope 1312.
  • the first slope 1311 and the second slope 1312 divide the flow, a part flows to the second diversion groove 132 through the first slope 1311 , and the other part flows to the second diversion groove 132 through the second slope 1312 .
  • the setting form of the first slope 1311 and the second slope 1312 is convenient for the medium injected by the medium injection hole 1111 to be guided by the first slope 1311 and the second slope 1312 towards the two ends of the first diversion groove 131 to facilitate the medium Enter the second guide groove 132 to ensure smooth flow of the medium.
  • FIG. 7 is a schematic structural diagram of the through hole 133 of the insulating member 13 provided according to some embodiments of the present application.
  • a through hole 133 is provided on the wall of the second flow guide groove 132 , and the through hole 133 is used for the medium in the second flow guide groove 132 to flow out.
  • the through hole 133 is a hole provided on the groove wall of the second flow guide groove 132 , and the through hole 133 makes the second flow guide groove 132 communicate with the inside of the battery cell 10 .
  • the setting of the through hole 133 facilitates the flow of the medium from the second diversion groove 132 to realize the diversion of the medium and facilitate the medium to enter the interior of the battery cell 10 .
  • the projection of the electrode assembly 12 on the insulator 13 does not at least partially overlap with the through hole 133 .
  • the projection of the electrode assembly 12 on the insulator 13 and the through hole 133 at least partially do not overlap may include: the projection of the electrode assembly 12 on the insulator 13 has a partial overlap area with the through hole 133, or the electrode assembly 12 is on the insulator 13 The projection of and the through hole 133 do not overlap.
  • the projection of the electrode assembly 12 on the insulator 13 does not overlap with the through hole 133 , in other words, along the thickness direction X of the first wall 111 , the through hole 133 avoids the electrode assembly 12 .
  • the projection of the through hole 133 and the electrode assembly 12 on the insulator 13 at least partially does not overlap, and when the medium flows out of the second flow guide groove 132 from the through hole 133, it can reduce the direct action of the medium on the The probability of the electrode assembly 12, in the limit, the through hole 133 and the projection of the electrode assembly 12 on the insulator 13 do not overlap, the medium flows along the thickness direction X of the first wall 111 or flows along the direction of gravity, and the medium does not directly impact the electrode assembly 12. Reduce the risk of the electrode assembly 12 being damaged by the medium.
  • FIG. 8 is a schematic structural diagram of the through hole 133 of the insulating member 13 provided according to other embodiments of the present application.
  • the insulator 13 is rectangular, and the through hole 133 includes a first sub-through hole 1331 , and the first sub-through hole 1331 is located at a corner of the insulator 13 .
  • the insulator 13 is rectangular, and corners are formed at intersections of the lengthwise direction and the widthwise direction of the insulator 13 .
  • the electrode assembly 12 includes a straight area and a bending area connecting the two ends of the straight area, and the bending area is close to the corner of the insulator 13, so that the projection of the electrode assembly 12 on the insulator 13 is consistent with that of the insulator. 13 corners do not overlap.
  • the first sub-through hole 1331 is located at the corner of the insulator 13, which can reasonably use the area where the insulator 13 and the electrode assembly 12 do not overlap, not only ensuring the energy density of the battery cell 10, but also facilitating the entry of the medium into the battery cell 10. The electrode assembly 12 is not directly impacted.
  • FIG. 9 is a schematic diagram of the assembly of the electrode assembly 12 and the insulator 13 according to some embodiments of the present application
  • FIG. 10 is an enlarged view of A in FIG. 9
  • the electrode assembly 12 includes a flat region 121 and is connected to The bending regions 122 at the two ends of the straight region 121, as shown in FIG. 8 to FIG. It is located between the projections of the bending regions 122 of two adjacent electrode assemblies 12 on the insulating member 13 .
  • the electrode assembly 12 Along the thickness direction Y of the electrode assembly 12, since a plurality of electrode assemblies 12 are arranged in sequence, and the electrode assembly 12 includes a bending area 122, a space is formed between the bending areas 122 of two adjacent electrode assemblies 12, and the medium from the second When the second through-hole 1332 flows out of the second guide groove 132 and enters this space, the medium will not directly impact the electrode assembly 12 .
  • the direction indicated by the letter Y is the thickness direction of the electrode assembly 12 .
  • the number of second sub-through holes 1332 is multiple, and the plurality of second sub-through holes 1332 are distributed at both ends of the insulator 13 in the length direction, and the second sub-through holes 1332 are also distributed in two adjacent electrode assemblies 12 Between the projections of the bending area 122 on the insulating member 13 . According to the size of the insulator 13 , the number of second sub-through holes 1332 located before the projection of the bending regions 122 of two adjacent electrode assemblies 12 on the insulator 13 may be one or more.
  • the shape of the second sub-hole 1332 can be any shape, for example, triangular, circular, square or irregular.
  • the shape of the second sub-through hole 1332 is irregular, and the second sub-through hole 1332 has two arc segments matching the contour of the bending region 122 , so that the second sub-through hole 1332 has a larger area.
  • the medium passes through the second sub-through hole.
  • the hole 1332 enters the interior of the battery cell 10 , it will not directly act on the electrode assembly 12 , and the space formed between the bending regions 122 of two adjacent electrode assemblies 12 is reasonably utilized to weaken the impact force of the medium on the electrode assembly 12 .
  • the second sub-holes 1332 are disposed at both ends of the insulator 13 in the length direction and between the projections of the bending regions 122 of two adjacent electrode assemblies 12 on the insulator 13 .
  • FIG. 11 is a schematic structural diagram of an insulating member 13 provided according to some embodiments of the present application.
  • the groove wall of the second diversion groove 132 includes a bottom wall 1321, an inner side wall 1322 and an outer side wall 1323, and the outer side wall 1323 and the inner side wall 1322 are arranged oppositely.
  • the hole 133 is disposed on the outer wall 1323 or the intersection of the outer wall 1323 and the bottom wall 1321 .
  • the wall surface of the bottom wall 1321 is the bottom surface of the second guide groove 132 for carrying the medium.
  • the inner wall 1322 and the outer wall 1323 are opposite to each other, and point to the first wall 111 from the bottom wall 1321 .
  • the inner side wall 1322 is the wall of the second diversion groove 132 close to the middle of the insulating member 13
  • the outer side wall 1323 is the wall of the second diversion groove 132 away from the middle part of the insulating member 13
  • the outer side wall 1323 is closer to the inner side wall 1322 edge of the insulation 13.
  • the through hole 133 when the through hole 133 is disposed on the outer wall 1323 , the through hole 133 is closer to the edge of the insulating member 13 , and the through hole 133 penetrates through the outer wall 1323 .
  • the through hole 133 runs through the intersection of the outer wall 1323 and the bottom wall 1321 .
  • FIG. 12 is a partial schematic diagram of the assembly of the insulator 13 and the housing 11 according to some embodiments of the present application. As shown in Figure 12, the arrows in the figure indicate the flow of the medium.
  • the medium enters the interior of the battery cell 10 from the through hole 133 located on the outer wall 1323, it first acts on the inner wall of the casing 11 to slow down the flow velocity and reduce the counter electrode assembly 12 ( Figure 12). 3) impact force.
  • the projection of the electrode assembly 12 on the insulator 13 has a small overlapping area with the edge of the insulator 13, or the electrode assembly 12 is on the insulator 13
  • the projection on the top is located in the insulating member 13, which can prevent the medium from directly acting on the electrode assembly 12 when it enters the interior of the battery cell 10 from the intersection of the outer wall 1323 and the bottom wall 1321, and can effectively weaken the impact of the medium on the electrode assembly 12. force, reducing the damage of the medium to the electrode assembly 12.
  • FIG. 13 is a partial cross-sectional view of the assembled insulator 13 and the electrode assembly 12 provided according to some embodiments of the present application.
  • the electrode assembly 12 When the two edges of the thickness direction Y of the assembly 12 (that is, the width direction of the insulating member 13), when the battery cell 10 is designed to have a larger energy density, along the thickness direction Y of the electrode assembly 12, the electrode assembly 12 The projection on 13 partially overlaps with the through hole 133. In this case, part of the medium flowing out of the through hole 133 will directly act on the electrode assembly 12. However, due to the small overlapping area, this part of the medium has a greater impact on the electrode assembly 12. Small.
  • through holes 133 can also be provided on both edges of the insulator 13 in the length direction.
  • Non-overlapping for example, a non-overlapping area provided between the electrode assembly 12 and the edge of the insulator 13 , or a blank area between two adjacent electrode assemblies 12 .
  • the first sub-through hole 1331 may be disposed on the outer side wall 1323 , or may be disposed at the junction of the outer side wall 1323 and the bottom wall 1321 .
  • the medium can enter the interior of the battery cell 10 along the thickness direction of the insulator 13 without directly impacting the electrode assembly 12, and the medium flows smoothly. , and will not accumulate in the second guide groove 132.
  • the second sub-through hole 1332 may be disposed on the outer side wall 1323 , or may be disposed at the intersection of the outer side wall 1323 and the bottom wall 1321 .
  • the medium can enter the interior of the battery cell 10 along the thickness direction of the insulator 13 without directly impacting the electrode assembly 12, and the medium flows smoothly. , and will not accumulate in the second guide groove 132.
  • the first boss 135 and the second boss 136 are arranged at intervals, and the first guide groove 131 is formed between the first boss 135 and the second boss 136 .
  • the first boss 135 and the second boss 136 are formed on the side of the bottom plate 134 facing the first wall 111 , that is, the first boss 135 and the second boss 136 protrude toward the first wall 111 relative to the bottom plate 134 .
  • the first boss 135 and the second boss 136 are arranged at intervals, there is a space between the surface of the first boss 135 and the surface of the second boss 136, the medium can be accommodated between the first boss 135 and the second boss 136 , so that the medium flows between the first boss 135 and the second boss 136, the surface of the first boss 135 close to the second boss 136 and the surface of the second boss 136 close to the first boss 135 constitute
  • the two side walls of the first diversion groove 131 and the bottom plate 134 between the first boss 135 and the second boss 136 form the bottom wall 1321 of the first diversion groove 131 .
  • the first guide groove 131 is formed between the first boss 135 and the second boss 136, the flow path of the medium is limited by the first boss 135, the second boss 136 and the bottom plate 134, the structure is simple, and the insulator 13 has relatively high strength.
  • the insulator 13 further includes a flange 137, the flange 137 surrounds the bottom plate 134 and protrudes from the bottom plate 134 toward the direction close to the first wall 111, and the flange 137 137 surrounds the first boss 135 and the second boss 136 , and the second guide groove 132 is formed between the outer peripheral surfaces of the first boss 135 and the second coating and the inner peripheral surface of the flange 137 .
  • the flange 137 surrounds the bottom plate 134 , and the flange 137 surrounds the first boss 135 and the second boss 136 , in other words, the flange 137 is arranged around the edge of the bottom plate 134 , constituting the edge of the insulator 13 .
  • the flange 137 protrudes from the bottom plate 134 toward the first wall 111 , and the flange 137 can confine the medium in the space enclosed by the bottom plate 134 and the flange 137 .
  • the flange 137 surrounds the bottom plate 134 and surrounds the first boss 135 and the second boss 136 to form the second guide groove 132, which has a simple structure so that the medium enters the battery cell 10 from the edge of the insulator 13 internal.
  • the first boss 135 and the second boss 136 abut against the first wall 111 , there is a gap between the flange 137 and the first wall 111 , and the gap is used for the second guide groove 132 The medium inside flows out.
  • FIG. 14 is a partial cross-sectional view of the assembled insulator 13 and the housing 11 according to other embodiments of the present application.
  • FIG. 14 shows a schematic diagram of the assembly of the first boss 135 and the first wall 111. There is a gap between the edge 137 and the first wall 111, from which the medium can flow out.
  • the flange 137 forms the second guide groove 132 with the first boss 135 and the second boss 136, the first boss 135 and the second boss 136 abut against the first wall 111, and the flange 137 and the first boss 136 abut against the first wall 111.
  • the medium in the second guide groove 132 can only flow out from the gap between the flange 137 and the first wall 111, and the outflowing medium directly acts on the inner wall of the casing 11, slowing down the flow velocity and impact of the medium force, and reduce the impact damage of the medium to the electrode assembly 12.
  • the first boss 135 and the second boss 136 abut against the first wall 111 to ensure the stable positioning of the insulator 13 and the first wall 111; through the gap between the flange 137 and the first wall 111, it is convenient for the medium to flow out of the first wall 111
  • the second diversion groove 132 has a simple structure and is easy to process.
  • the groove wall of the second flow guide groove 132 can be provided with a through hole 133, so that the medium in the second flow guide groove 132 can pass through the through hole 133 and the flange The gap between 137 and the first wall 111 flows out.
  • the first boss 135, the second boss 136 and the flange 137 all abut against the first wall 111.
  • the first boss 135, the second boss 136 and the flange 137 are all in contact with the first wall 111, forming a blockage at the end of the second guide groove 132 close to the first wall 111, so that the medium is not easy to flow from the flange 137. and the first wall 111, or between the first boss 135 and the second boss 136 and the first wall 111, in this case, the groove wall of the second guide groove 132 is provided with a through hole 133, through which The hole 133 is used for the medium in the second guide groove 132 to flow out.
  • the insulator 13 and the first wall 111 have multiple contact positions and a larger contact area, so that the insulator 13 and the first wall 111 have multiple contact positions and a larger contact area.
  • the first wall 111 is positioned stably.
  • FIG. 15 is a schematic structural diagram of an insulating member 13 provided according to some embodiments of the present application.
  • the side of the insulator 13 away from the first wall 111 is provided with a first recess 138 and a second recess 139 , and the first recess 138 and the first boss The position of 135 corresponds, and the position of the second recess 139 corresponds to the position of the second boss 136 .
  • the first recess 138 and the second recess 139 are disposed on a side of the insulator 13 away from the first wall 111 , that is, the first recess 138 and the second recess 139 face the electrode assembly 12 .
  • the position correspondence between the first concave portion 138 and the first boss 135 means that along the thickness direction X of the first wall 111, the first concave portion 138 overlaps with the first boss 135.
  • the side away from the first wall 111 is recessed toward the first wall 111 , while the first recess 138 is formed, the first boss 135 protrudes from the side of the insulating member 13 facing the first wall 111 .
  • the position correspondence between the second recess 139 and the second boss 136 means that along the thickness direction X of the first wall 111, the second recess 139 overlaps with the second boss 136, in other words, the second recess 139 is separated from the insulating
  • the side of the member 13 facing away from the first wall 111 is recessed toward the first wall 111 , while the second recess 139 is formed, the second boss 136 protrudes from the side of the insulating member 13 facing the first wall 111 .
  • the first recess 138 corresponds to the position of the first boss 135, and the second recess 139 corresponds to the position of the second boss 136.
  • the tab of the electrode assembly 12 can extend into the first recess 138 and the second recess 139, which can save installation space. In order to increase the energy density of the battery cell 10 .
  • the housing 11 includes a housing 112 and an end cover, the housing 112 has an opening, the end cover covers the opening, and the first wall 111 is an end cover.
  • the casing 112 has an opening for the electrode assembly 12 to be placed in the casing 112 .
  • the end cap covers the opening, and is connected with the housing 112 to form a closed chamber for accommodating the battery cells 10 .
  • the housing 112 may be a second wall, and one end of the second wall is disposed around the end cover and forms an opening.
  • the first wall 111 is an end cover, and the end cover covers the opening of the housing 112 for easy processing and assembly.
  • the present application provides a battery, which includes the battery cell 10 described in any solution above.
  • the present application provides an electric device, which includes the battery cell 10 described in any solution above, and the battery cell 10 is used to provide electric energy for the electric device.
  • the electric device may be any of the aforementioned devices or systems using the battery cell 10 .
  • the present application provides a battery cell 10 , and the battery cell 10 includes a casing 11 , an electrode assembly 12 , and an insulator 13 .
  • the housing 11 includes a housing 112 and an end cover, the housing 112 has an opening, the end cover covers the opening, and the end cover is the first wall 111 .
  • the electrode assembly 12 is disposed in the casing 112 .
  • the insulator 13 is disposed between the first wall 111 and the electrode assembly 12 to insulate and isolate the first wall 111 and the electrode assembly 12 .
  • a flow guide structure is provided on a side of the insulating member 13 facing the first wall 111 , and the flow guide structure includes a first flow guide groove 131 and a second flow guide groove 132 .
  • the second guide groove 132 is an annular groove extending along the edge of the insulating member 13 , and the first guide groove 131 communicates with the second guide groove 132 .
  • the first guide groove 131 is used to receive the medium (such as electrolyte) injected into the medium injection hole 1111 and guide the medium to the second guide groove 132 .
  • the groove wall of the second flow guide groove 132 is provided with a through hole 133 , and the through hole 133 is used for the medium in the second flow guide groove 132 to flow out.
  • the through hole 133 is disposed at the intersection of the outer wall 1323 and the bottom wall 1321 of the second guide groove 132 .
  • the insulator 13 is rectangular, and the through hole 133 includes a first sub-through hole 1331 and a second sub-through hole 1332 .
  • the first sub-through hole 1331 is located at the corner of the insulator 13; the number of electrode assemblies 12 is multiple, and the second sub-through hole 1332 is arranged at both ends of the length direction of the insulator 13 and is located at two adjacent electrode assemblies 12 Between the projections of the bending area 122 on the insulating member 13 .
  • the projection of the electrode assembly 12 on the insulator 13 does not overlap with either the first sub-through hole 1331 or the second sub-through hole 1332 .
  • the battery cell 10 can guide the medium injected by the medium injection hole 1111 to the edge of the insulator 13 through the flow guide structure provided on the insulator 13, and enter the interior of the battery cell 10 from the edge of the insulator 13 to guide the flow.
  • the structure can disperse the medium and slow down the flow rate of the medium, which can reduce the direct action of the medium on the electrode assembly 12, alleviate the impact force of the medium acting on the electrode assembly 12, reduce the risk of the electrode assembly 12 being damaged by the medium, and improve the safety of the battery cell 10 sex.
  • FIG. 16 shows a schematic flowchart of a method for manufacturing a battery cell 10 according to some embodiments of the present application. As shown in FIG. 16, the manufacturing method of the battery cell 10 may include:
  • the casing 11 includes a first wall 111, and the first wall 111 is provided with a medium injection hole 1111;
  • the insulating member 13 is provided with a flow guide structure, and the guide structure is configured to guide the medium injected from the medium injection hole 1111 to the edge of the insulating member 13, and enter the battery cell 10 from the edge of the insulating member 13 internal;
  • step "401, providing the shell 11", step “402, providing the electrode assembly 12” and step “403, providing the insulating member 13" is not unique, and in some embodiments, the steps “ 402, provide the electrode assembly 12", step “401, provide the casing 11” and step “403, provide the insulating member 13", or step “403, provide the insulating member 13", step "401, provide the casing 11" in sequence " and "402, providing the electrode assembly 12", the application does not limit the order of step "401, providing the shell 11", step “402, providing the electrode assembly 12” and step “403, providing the insulating member 13".
  • the conduction structure provided by the insulator 13 guides the medium from the edge of the insulator 13 into the interior of the battery cell 10, which can effectively relieve the impact force of the medium acting on the electrode assembly 12 , reducing the risk of the electrode assembly 12 being damaged by the medium, so that the battery cell 10 has higher safety.
  • Fig. 17 shows a schematic block diagram of a battery cell manufacturing device 500 according to some embodiments of the present application.
  • the battery cell manufacturing equipment 500 may include a providing module 501 and an assembling module 502 .
  • the providing module 501 is used to provide the housing 11, the electrode assembly 12 and the insulating member 13.
  • the housing 11 includes a first wall 111, the first wall 111 is provided with a medium injection hole 1111, and the insulating member 13 is provided with a flow guide structure.
  • the member 13 is disposed between the first wall 111 and the electrode assembly 12 to insulate and isolate the first wall 111 and the electrode assembly 12 , so that the current guiding structure is located on the side of the insulating member 13 facing the first wall 111 .
  • the battery cell 10 with high safety can be manufactured through the manufacturing equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例提供一种电池单体、电池、用电设备、电池单体的制造方法及设备。电池单体包括:外壳,包括第一壁,第一壁上设置有介质注入孔;电极组件,设置于外壳内;绝缘件,设置于第一壁和电极组件之间,以绝缘隔离第一壁和电极组件;其中,绝缘件面向第一壁的一侧设置有导流结构,导流结构被配置为将由介质注入孔注入的介质向绝缘件的边缘引导,以使介质从绝缘件的边缘进入电池单体内部。该电池单体,具有较高的安全性。

Description

电池单体、电池、用电设备、电池单体的制造方法及设备 技术领域
本申请涉及电池技术领域,特别是涉及一种电池单体、电池、用电设备、电池单体的制造方法及设备。
背景技术
节能减排是汽车产业可持续发展的关键,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池技术的发展中,除了提高电池的能量密度外,电池的安全性也是一个不可忽视的问题。因此,如何提高电池的安全性,是电池技术中一个亟需解决的技术问题。
发明内容
本申请的目的在于提供一种电池单体、电池、用电设备、电池单体的制造方法及设备。该电池单体,具有较高的安全性。
本申请是通过下述技术方案实现的:
第一方面,本申请提供了一种电池单体,其包括:外壳,包括第一壁,所述第一壁上设置有介质注入孔;电极组件,设置于所述外壳内;绝缘件,设置于所述第一壁和所述电极组件之间,以绝缘隔离所述第一壁和所述电极组件;其中,所述绝缘件面向所述第一壁的一侧设置有导流结构,所述导流结构被配置为将由所述介质注入孔注入的介质向所述绝缘件的边缘引导,以使所述介质从所述绝缘件的边缘进入所述电池单体内部。
根据本申请实施例的电池单体,通过导流结构将由介质注入孔注入的介质向绝缘件的边缘引导,使介质从绝缘件的边缘进入电池单体内部,导流结构能够分散介质并减缓介质的流速,能够有效缓解介质作用于电极组件的冲击力,降低电极组件被介质损坏的风险,提高电池单体的安全性。
根据本申请的一些实施例,所述导流结构包括第一导流槽,沿所述第一壁的厚度方向,所述介质注入孔在所述绝缘件上的投影位于所述第一导流槽内。
在上述方案中,介质注入孔在绝缘件上的投影与第一导流槽对应,以便于第一导流槽承接介质注入孔注入的介质,并使介质分散。
根据本申请的一些实施例,所述导流结构还包括第二导流槽,所述第二导流槽为沿所述绝缘件的边缘延伸的环形槽,所述第一导流槽与所述第二导流槽连通,所述第一导流槽用于将所述介质引导至所述第二导流槽。
在上述方案中,第二导流槽沿绝缘件的边缘延伸且为环形槽,第一导流槽与第二导流槽连通,以实现介质注入孔注入的介质流向绝缘件的边缘,保证介质流动顺畅。
根据本申请的一些实施例,所述第一导流槽的底面为坡面,以将所述介质引导至所述第二导流槽。
在上述方案中,坡面的设置,使得第一导流槽的底面与第二导流槽的底面之间具有夹角,以利于第一导流槽内的介质能够快速朝向第二导流槽流动,使得介质流动顺畅。
根据本申请的一些实施例,所述第一导流槽的两端均与所述第二导流槽连通, 所述第一导流槽的底面包括第一坡面和第二坡面,所述第一坡面从所述第一导流槽的中部延伸至所述第一导流槽的一端,所述第二坡面从所述第一导流槽的中部延伸至所述第一导流槽的另一端,所述介质注入孔在所述绝缘件上的投影位于所述第一坡面和所述第二坡面的交汇处。
在上述方案中,第一坡面和第二坡面的设置形式,便于介质注入孔注入的介质被第一坡面和第二坡面朝向第一导流槽的两端引导,以利于介质进入第二导流槽,保证介质流动顺畅。
根据本申请的一些实施例,所述第二导流槽的槽壁设置有通孔,所述通孔用于供所述第二导流槽内的所述介质流出。
在上述方案中,通孔的设置,便于介质从第二导流槽流出,以实现介质的导流,便于介质进入电池单体内部。
根据本申请的一些实施例,所述电极组件在所述绝缘件上的投影与所述通孔至少部分不重叠。
在上述方案中,沿第一壁的厚度方向,通孔与电极组件在绝缘件上的投影至少不重叠,当介质从通孔进入电池单体内部时,能够减少介质直接作用于电极组件的概率,极限时,通孔与电极组件在绝缘件上的投影不重叠,介质不会直接作用于电极组件,降低电极组件被介质破坏的风险。
根据本申请的一些实施例,所述绝缘件呈矩形,所述通孔包括第一子通孔,所述第一子通孔位于所述绝缘件的拐角处。
在上述方案中,第一子通孔位于绝缘件的拐角处,能够合理利用绝缘件与电极组件未重叠的区域,既保证电池单体的能量密度,又能够利于介质进入电池单体内部时不直接冲击电极组件。
根据本申请的一些实施例,所述电极组件的数量为多个,多个所述电极组件沿其厚度方向依次排布,所述电极组件包括平直区和连接于所述平直区的两端的弯折区,所述通孔包括第二子通孔,所述第二子通孔设置在所述绝缘件的长度方向的两端且位于相邻的两个所述电极组件的所述弯折区在所述绝缘件上的投影之间。
在上述方案中,当电极组件为多个时,通过在绝缘件的与相邻的两个电极组件的弯折区之间的区域对应的位置设置第二子通孔,介质经由第二子通孔进入电池单体内部时不会直接作用于电极组件,合理利用绝缘件的空间,减弱介质对电极组件的冲击力。
根据本申请的一些实施例,所述第二导流槽的槽壁包括底壁、内侧壁和外侧壁,所述外侧壁和所述内侧壁相对设置,所述通孔设置于所述外侧壁或者所述外侧壁和所述底壁的交汇处。
在上述方案中,通过底壁、外侧壁和内侧壁围成第二导流槽,外侧壁和内侧壁由底壁指向第一壁,底壁承载介质,外侧壁和内侧壁约束介质,当通孔设置于外侧壁时,介质从位于外侧壁的通孔进入电池单体内部时先作用于外壳的内壁,减缓流速,减小对电极组件的冲击力;当通孔设置于外侧壁和底壁的交汇处时,由于电极组件在绝缘件上的投影与绝缘件的边缘具有较小的重叠面积、或者电极组件在绝缘件上的投影位于绝缘件内,能够尽量避免介质从位于外侧壁和底壁的交汇处进入电池单体内部时直接作用于电极组件,能够有效减弱介质作用于电极组件的冲击力,减少介质对电极组件的损坏。
根据本申请的一些实施例,所述绝缘件包括底板、第一凸台和第二凸台,所述第一凸台和所述第二凸台形成在所述底板的面向所述第一壁的一侧,所述第一凸台和所述第二凸台间隔设置,所述第一凸台和所述第二凸台之间形成所述第一导流槽。
在上述方案中,第一凸台和第二凸台之间形成第一导流槽,通过第一凸台、第二凸台及底板限定介质的流动路径,结构简单,绝缘件具有较高的强度。
根据本申请的一些实施例,所述绝缘件还包括凸缘,所述凸缘围设在所述底板的周围且从所述底板向靠近所述第一壁的方向凸出,所述凸缘包围所述第一凸台和所述第二凸台,所述第一凸台和所述第二凸台的外周面与所述凸缘的内周面之间形成所 述第二导流槽。
在上述方案中,凸缘围设在底板的周围且包围第一凸台和第二凸台,以形成第二导流槽,结构简单,以便于介质从绝缘件的边缘进入电池单体内部。
根据本申请的一些实施例,所述第一凸台和所述第二凸台抵接于所述第一壁,所述凸缘与所述第一壁之间具有间隙,所述间隙用于供所述第二导流槽内的所述介质流出。
在上述方案中,通过第一凸台和第二凸台抵接于第一壁,保证绝缘件与第一壁定位稳定;通过凸缘与第一壁之间的间隙,便于介质流出第二导流槽,结构简单,便于加工。
根据本申请的一些实施例,所述第一凸台、所述第二凸台和所述凸缘均抵接于所述第一壁。
在上述方案中,由于第一凸台、第二凸台和凸缘均抵接于第一壁,绝缘件与第一壁具有多个接触位置及较大的接触面积,使得绝缘件与第一壁定位稳定。
根据本申请的一些实施例,所述绝缘件的背离所述第一壁的一侧设置有第一凹部和第二凹部,所述第一凹部与所述第一凸台位置对应,所述第二凹部与所述第二凸台位置对应。
在上述方案中,第一凹部与第一凸台位置对应、第二凹部与第二凸台位置对应,电极组件的极耳能够伸入第一凹部和第二凹部,能够节省安装空间,以提高电池单体的能量密度。
根据本申请的一些实施例,所述外壳包括壳体和端盖,所述壳体具有开口,所述端盖覆盖于所述开口,所述第一壁为所述端盖。
在上述方案中,第一壁为端盖,端盖覆盖壳体的开口,便于加工与装配。
第二方面,本申请提供了一种电池,其包括上述实施例中的电池单体。
第三方面,本申请提供了一种用电设备,其包括上述实施例中的电池单体,所述电池单体用于提供电能。
第四方面,本申请提供了一种电池单体的制造方法,其包括:提供外壳,所述外壳包括第一壁,所述第一壁设置有介质注入孔;提供电极组件;提供绝缘件,所述绝缘件设置有导流结构,所述导流结构被配置为将由所述介质注入孔注入的介质向所述绝缘件的边缘引导,并从所述绝缘件的边缘进入所述电池单体内部;将所述电极组件设置于所述外壳内,将所述绝缘件设置于所述第一壁和所述电极组件之间,以绝缘隔离所述第一壁和所述电极组件,使所述导流结构位于所述绝缘件的面向所述第一壁的一侧。
根据本申请实施例的电池单体的制造方法,通过绝缘件设置的导流结构引导介质从绝缘件的边缘进入电池单体内部,能够有效缓解介质作用于电极组件的冲击力,降低电极组件被介质损坏的风险,使得电池单体具有较高的安全性。
第五方面,本申请提供了一种电池单体的制造设备,其包括:提供模块,用于提供外壳、提供电极组件及提供绝缘件,所述外壳包括第一壁,所述第一壁设置有介质注入孔,所述绝缘件设置有导流结构,所述导流结构被配置为将由所述介质注入孔注入的介质向所述绝缘件的边缘引导,并从所述绝缘件的边缘进入所述电池单体内部;组装模块,用于将所述电极组件设置于所述外壳内,将所述绝缘件设置于所述第一壁和所述电极组件之间,以绝缘隔离所述第一壁和所述电极组件,使所述导流结构位于所述绝缘件的面向所述第一壁的一侧。
根据本申请实施例的电池单体的制造设备,通过该制造设备能够制造出安全性较高的电池单体。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为根据本申请一些实施例提供的车辆的结构示意图;
图2为根据本申请一些实施例提供的电池的分解结构示意图;
图3为本申请一些实施例提供的电池单体的分解结构示意图;
图4为根据本申请一些实施例提供的绝缘件的轴测图;
图5为根据本申请一些实施例提供的第一壁与绝缘件装配后的剖视图;
图6为根据本申请一些实施例提供的绝缘件的俯视图;
图7为根据本申请一些实施例提供的绝缘件的通孔的结构示意图;
图8为根据本申请另一些实施例提供的绝缘件的通孔的结构示意图;
图9为根据本申请一些实施例提供的电极组件与绝缘件的装配示意图;
图10为图9的A处放大图;
图11为根据本申请另一些实施例提供的绝缘件的轴测图;
图12为根据本申请一些实施例提供的绝缘件与外壳装配后的局部示意图;
图13为根据本申请一些实施例提供的绝缘件与电极组件装配后的局部剖视图;
图14为根据本申请另一些实施例提供的绝缘件与外壳装配后的局部示意图;
图15为根据本申请一些实施例提供的绝缘件的结构示意图;
图16为本申请一些实施例的电池单体的制造方法的示意性流程图;
图17为本申请一些实施例的电池单体的制造设备的示意性框图;
在附图中,附图并未按照实际的比例绘制。
标记说明:100-电池;101-第一部分;102-第二部分;10-电池单体;11-外壳;111-第一壁;1111-介质注入孔;112-壳体;12-电极组件;121-平直区;122-弯折区;13-绝缘件;131-第一导流槽;1311-第一坡面;1312-第二坡面;132-第二导流槽;1321-底壁;1322-内侧壁;1323-外侧壁;133-通孔;1331-第一子通孔;1332-第二子通孔;134-底板;135-第一凸台;136-第二凸台;137-凸缘;138-第一凹部;139-第二凹部;14-电极端子;200-控制器;300-马达;1000-车辆;X-第一壁的厚度方向;Y-电极组件的厚度方向。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:存在A,同时存在A和B,存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
在本申请中,所提及的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提及的电池可以包括电池模块或电池包等。
电池单体包括电极组件和电解液,电极组件由正极极片、负极极片和隔膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。
隔膜设置于正极极片和负极极片之间,用于绝缘隔离正极极片和负极极片。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
电池技术的发展要同时考虑多方面的设计因素,例如,放电容量、充放电倍率、能量密度及使用寿命等性能参数,另外,还需要考虑安全性。
电池单体的安全性包括多种因素,例如,极耳与转接件的连接可靠性、装配公差、泄压机构打开不及时、电极组件损坏等。其中,电极组件损坏是影响电池单体的安全性的重要因素之一。发明人研究发现,在电池单体制造过程中,尤其是锂离子电池,需要向电池单体的内部注入介质(电解质,如电解液),以便于电极组件发生电化学反应。需要指出的是,介质为流体,在介质向电池单体内部注入时,介质具有一定的流动速度。而在将介质注入电池单体内部的过程中,由于介质的流速过快,并且介质进入电池单体内部时直接冲击电极组件,容易导致隔膜坍塌,从而使得相邻的正极极片与负极极片接触而造成短路,造成安全风险,影响电池单体的安全性。
鉴于此,为了提高电池单体的安全性,发明人经过深入研究,设计了一种电池单体,通过在绝缘件的面向第一壁的一侧设置导流结构,导流结构将由介质注入孔注 入的介质向绝缘件的边缘引导,使得介质从绝缘件的边缘进入电池单体内部。
在这样的电池单体中,由于导流结构将介质向绝缘件的边缘引导,介质在导流结构的引导下分散并且介质的流速减缓,同时,在介质进入电池单体内部时,介质与电极组件的接触区域较小甚至介质不直接冲击电极组件,能够有效缓解介质作用于电极组件的冲击力,降低电极组件被介质损坏的风险,提高电池单体的安全性。
例如,当绝缘件的尺寸大于电极组件的尺寸时,绝缘件的边缘与电极组件不重叠,此时,介质从绝缘件的边缘进入电池单体内部还能够避免介质直接冲击电极组件,使得电池单体具有较高的安全性。
本申请实施例公开的电池单体可以但不限用于车辆、船舶或飞行器等用电设备中。可以使用具备本申请公开的电池单体组成该用电设备的电源系统。
本申请实施例提供一种使用电池作为电源的用电设备,用电设备可以为但不限于手机、平板电脑、笔记本电脑、电动玩具、电动工具、电动自行车、电动摩托车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电装置为车辆为例进行说明。
请参见图1,图1为根据本申请一些实施例提供的车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源,用于车辆1000的电路系统,例如用于车辆1000的启动、导航和运行时的工作用电需求。
车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参见图2,图2为根据本申请一些实施例提供的电池100的分解结构示意图。电池100包括箱体(或称罩体)和电池单体10,电池单体10容纳于箱体内。其中,箱体用于为电池单体10提供容纳空间,箱体可以采用多种结构。在一些实施例中,箱体可以包括第一部分101和第二部分102,第一部分101与第二部分102相互盖合,第一部分101和第二部分102共同限定出用于容纳电池单体10的容纳空间。第二部分102可以为一端开口的空心结构,第一部分101可以为板状结构,第一部分101盖合于第二部分102的开口侧,以使第一部分101与第二部分102共同限定出容纳空间;第一部分101和第二部分102也可以是均为一侧开口的空心结构,第一部分101的开口侧盖合于第二部分102的开口侧。
在电池100中,电池单体10可以是多个,多个电池单体10之间可串联或并联或混联,混联是指多个电池单体10中既有串联又有并联。多个电池单体10之间可直接串联或并联或混联在一起,再将多个电池单体10构成的整体容纳于箱体内;当然,电池100也可以是多个电池单体10先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件,用于实现多个电池单体10之间的电连接。
其中,每个电池单体10可以为二次电池或一次电池;还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。本申请实施例提供的电池单体10呈方体。
请参见图3,图3为本申请一些实施例提供的电池单体10的分解结构示意图。电池单体10是指组成电池100的最小单元。如图所示,电池单体10包括外壳11、电极组件12、绝缘件13以及其他的功能性部件。
外壳11是用于形成电池单体10内部环境的组件,形成的内部环境可以用于容纳电极组件12、介质(如电解液)以及其他部件。外壳11可以包括壳体和端盖,壳体和端盖可以是独立的部件,也可以于壳体上设置开口,通过在开口处使端盖盖合开口以形成电池单体10的内部环境。不限地,也可以使端盖和壳体一体化,具体地,端盖和壳体可以在其他部件入壳前先形成一个共同的连接面,当需要封装壳体的内部时,再使端盖盖合壳体。壳体可以是长方体形。具体地,壳体的形状可以根据电极组件12的具体形状和尺寸大小来确定。壳体的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
端盖是指盖合于壳体的开口处以将电池单体10的内部环境隔绝于外部环境的部件。不限地,端盖的形状可以与壳体的形状相适应以配合壳体。可选地,端盖可以由具有一定硬度和强度的材质(如铝合金)制成,这样,端盖在受挤压碰撞时就不易发生形变,使电池单体10能够具备更高的结构强度,安全性能也可以有所提高。端盖上可以设置有如电极端子14等的功能性部件。电极端子14可以用于与电极组件12电连接,以用于输出或输入电池单体10的电能。在一些实施例中,端盖上还可以设置有用于在电池单体10的内部压力或温度达到阈值时泄放内部压力的泄压机构。端盖的材质也可以是多种的,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施例对此不作特殊限制。
电极组件12是电池单体10中发生电化学反应的部件。壳体内可以包含一个或更多个电极组件12。电极组件12主要由正极极片和负极极片卷绕或层叠放置形成,并且通常在正极极片与负极极片之间设有隔膜,隔膜用于绝缘隔离正极极片和负极极片。正极极片和负极极片具有活性物质的部分构成电极组件12的主体部,正极极片和负极极片不具有活性物质的部分各自构成极耳。正极极耳和负极极耳可以共同位于主体部的一端或是分别位于主体部的两端。在电池的充放电过程中,正极活性物质和负极活性物质与电解液发生反应,极耳连接电极端子14以形成电流回路。
绝缘件13为用于绝缘隔离外壳11内的电连接部件与外壳11,以降低短路的风险。示例性的,绝缘件13可以是塑料、橡胶等。
根据本申请的一些实施例,参见图3。本申请提供了一种电池单体10。如图3所示,电池单体10包括外壳11、电极组件12及绝缘件13。外壳11包括第一壁111,第一壁111上设置有介质注入孔1111。电极组件12设置于外壳11内。绝缘件13设置于第一壁111和电极组件12之间,以绝缘隔离第一壁111和电极组件12。其中,绝缘件13面向第一壁111的一侧设置有导流结构,导流结构被配置为将由介质注入孔1111注入的介质向绝缘件13的边缘引导,以使介质从绝缘件13的边缘进入电池单体10内部。
外壳11是用于形成电池单体10内部环境的组件,形成的内部环境可以用于容纳电极组件12、介质(如电解液)以及其他部件。第一壁111是外壳11的一组成部分,第一壁111上设置有介质注入孔1111,介质注入孔1111可以为沿第一壁111的厚度方向X贯穿第一壁111的孔。介质注入孔1111连通电池单体10内部和外部,以便于介质能够从电池单体10外部进入电池单体10内部。
绝缘件13设置于第一壁111和电极组件12之间,可以为,第一壁111、绝缘件13及电极组件12沿第一壁111的厚度方向X依次排布。图中,字母X所指示的方向为第一壁111的厚度方向。
导流结构为设置于绝缘件13面向第一壁111的一侧的、用于引导介质流动的结构,其可以为引导流体通过的通道。
介质可以为电解质,如电解液,起到在正极、负极之间传导离子的作用。
电池单体10内部是指外壳11的内壁围成的、用于容纳电极组件12的区域,绝缘件13连接于第一壁111,绝缘件13与外壳11限定出电池单体10内部。
根据本申请实施例的电池单体10,在向电池单体10内部注入介质(如电解液)时,通过导流结构将由介质注入孔1111注入的介质向绝缘件13的边缘引导,使介质从绝缘件13的边缘进入电池单体10内部,导流结构能够分散介质并减缓介质的 流速,在介质进入电池单体10内部时,介质与电极组件12的接触区域较小甚至介质不直接冲击电极组件12,能够有效缓解介质作用于电极组件12的冲击力,降低电极组件12被介质损坏的风险,提高电池单体10的安全性。
请参见图4和图5,图4为根据本申请一些实施例提供的绝缘件13的轴测图,图5为根据本申请一些实施例提供的第一壁111与绝缘件13装配后的剖视图。
根据本申请的一些实施例,如图4和图5所示,导流结构包括第一导流槽131,沿第一壁111的厚度方向X,介质注入孔1111在绝缘件13上的投影位于第一导流槽131内。
第一导流槽131为设置于绝缘件13上的槽,介质能够在第一导流槽131内流动。
介质注入孔1111在绝缘件13上的投影位于第一导流槽131内,是指,如图5所示,介质注入孔1111与第一导流槽131在第一壁111的厚度方向X位置对应,当从介质注入孔1111向电池单体10内部注入介质时,介质能够被第一导流槽131承载。
介质注入孔1111在绝缘件13上的投影与第一导流槽131对应,以便于第一导流槽131承接介质注入孔1111注入的介质,并使介质在绝缘件13上分散,减缓介质的流速。
请参见图6,图6为根据本申请一些实施例提供的绝缘件13的俯视图,为由第一壁111指向电极组件12的方向的视角下绝缘件13的结构示意图。根据本申请的一些实施例,如图4至图6所示,导流结构还包括第二导流槽132,第二导流槽132为沿绝缘件13的边缘延伸的环形槽,第一导流槽131与第二导流槽132连通,第一导流槽131用于将介质引导至第二导流槽132。
第二导流槽132为绝缘件13的面向第一壁111的一侧的、且围绕绝缘件13的边缘延伸的环形槽,介质在第二导流槽132内流动时,介质能够围绕绝缘件13的边缘流动,以使介质具有较长的流动路径。
第二导流槽132沿绝缘件13的边缘延伸且为环形槽,第一导流槽131与第二导流槽132连通,以实现介质注入孔1111注入的介质流向绝缘件13的边缘,保证介质流动顺畅。
需要指出的是,在一些实施例中,第二导流槽132还可以为沿绝缘件13的边缘延伸的槽,该槽的首尾两端并未连通。
根据本申请的一些实施例,第一导流槽131的底面为坡面,以将介质引导至第二导流槽132。
坡面为具有一定倾斜角度的面,当介质注入孔1111注入的介质落至第一导流槽131的底面时,介质能够沿着第一导流槽131的底面朝向第二导流槽132流动。
换句话说,第一导流槽131的底面与第二导流槽132的底面之间具有夹角,以利于第一导流槽131内的介质能够快速朝向第二导流槽132流动,使得介质流动顺畅。
第一导流槽131与第二导流槽132的连通形式为两种:第一种情况,第一导流槽131的一端与第二导流槽132连通,第一导流槽131的另一端与第二导流槽132断开,此种情况下,第一导流槽131的底面只能将介质从第一导流槽131的一端引导至第二导流槽132;第二种情况,第一导流槽131的两端均与第二导流槽132连通,此种情况下,第一导流槽131能够将介质从第一导流槽131的两端引导至第二导流槽132。
根据本申请的一些实施例,如图4至图6所示,第一导流槽131的两端均与第二导流槽132连通,第一导流槽131的底面包括第一坡面1311和第二坡面1312,第一坡面1311从第一导流槽131的中部延伸至第一导流槽131的一端,第二坡面1312从第一导流槽131的中部延伸至第一导流槽131的另一端,介质注入孔1111在绝缘件13上的投影位于第一坡面1311和第二坡面1312的交汇处。
第一坡面1311和第二坡面1312为两个相背设置的坡面,第一坡面1311的最高端与第二坡面1312的最高端交汇。
第一导流槽131的中部可以为第一导流槽131的延伸方向的中间位置,第一坡面1311和第二坡面1312在第一导流槽131的延伸方向上具有相同的长度,以使得介质能够均匀分流。
介质注入孔1111在绝缘件13上的投影位于第一坡面1311和第二坡面1312的交汇处,当经由介质注入孔1111注入的介质落至第一导流槽131的底面时,介质被第一坡面1311和第二坡面1312分流,一部分经由第一坡面1311流至第二导流槽132,另一部分经由第二坡面1312流至第二导流槽132。
第一坡面1311和第二坡面1312的设置形式,便于介质注入孔1111注入的介质被第一坡面1311和第二坡面1312朝向第一导流槽131的两端引导,以利于介质进入第二导流槽132,保证介质流动顺畅。
请参见图7,图7为根据本申请一些实施例提供的绝缘件13的通孔133的结构示意图。根据本申请的一些实施例,如图7所示,第二导流槽132的槽壁设置有通孔133,通孔133用于供第二导流槽132内的介质流出。
通孔133为设置于第二导流槽132的槽壁上的孔,通孔133使得第二导流槽132与电池单体10内部连通。
通孔133的设置,便于介质从第二导流槽132流出,以实现介质的导流,便于介质进入电池单体10内部。
需要指出的是,通孔133的数量为多个,多个通孔133沿绝缘件13的边缘间隔分布,以便于介质流出第二导流槽132,保证介质流动顺畅。
根据本申请的一些实施例,电极组件12在绝缘件13上的投影与通孔133至少部分不重叠。
电极组件12在绝缘件13上的投影与通孔133至少部分不重叠可以包括:电极组件12在绝缘件13上的投影与通孔133有部分重叠区域,或者,电极组件12在绝缘件13上的投影与通孔133不重叠。当电极组件12在绝缘件13上的投影与通孔133不重叠时,换句话说,沿第一壁111的厚度方向X,通孔133避让电极组件12。
沿第一壁111的厚度方向X,通孔133与电极组件12在绝缘件13上的投影至少部分不重叠,当介质从通孔133流出第二导流槽132时,能够减少介质直接作用于电极组件12的概率,极限时,通孔133与电极组件12在绝缘件13上的投影不重叠,介质沿第一壁111的厚度方向X流动或沿重力方向流动,介质不会直接冲击电极组件12,降低电极组件12被介质破坏的风险。
请参见图8,图8为根据本申请另一些实施例提供的绝缘件13的通孔133的结构示意图。根据本申请的一些实施例,如图8所示,绝缘件13呈矩形,通孔133包括第一子通孔1331,第一子通孔1331位于绝缘件13的拐角处。
绝缘件13呈矩形,绝缘件13的长度方向与宽度方向的交汇处形成拐角处。
电池单体10中,电极组件12包括平直区和连接平直区的两端的弯折区,弯折区靠近绝缘件13的拐角处,使得电极组件12在绝缘件13上的投影与绝缘件13的拐角处不重叠。第一子通孔1331位于绝缘件13的拐角处,能够合理利用绝缘件13与电极组件12未重叠的区域,既保证电池单体10的能量密度,又能够利于介质进入电池单体10内部时不直接冲击电极组件12。
请参见图9和图10,图9为根据本申请一些实施例提供的电极组件12与绝缘件13的装配示意图,图10为图9的A处放大图。根据本申请的一些实施例,如图3和图9所示,电极组件12的数量为多个,多个电极组件12沿其厚度方向依次排布,电极组件12包括平直区121和连接于平直区121的两端的弯折区122,如图8至图10所示,通孔133包括第二子通孔1332,第二子通孔1332设置在绝缘件13的长度方向的两端且位于相邻的两个电极组件12的弯折区122在绝缘件13上的投影之间。
沿电极组件12的厚度方向Y,由于多个电极组件12依次排布、并且电极组件12包括弯折区122,相邻的两个电极组件12的弯折区122之间形成空间,介质从第二子通孔1332流出第二导流槽132进入此空间时,介质不会直接冲击电极组件12。图中,字母Y所指示的方向为电极组件12的厚度方向。
第二子通孔1332的数量为多个,多个第二子通孔1332分布于绝缘件13的长度方向的两端,并且第二子通孔1332还分布于相邻的两个电极组件12的弯折区122在绝缘件13上的投影之间。根据绝缘件13的尺寸,位于相邻的两个电极组件12的弯折区122在绝缘件13上的投影之前的第二子通孔1332的数量可以为一个或者多个。
第二子通孔1332的形状可以任意形状,例如,三角形、圆形、方形或者异形。可选地,第二子通孔1332的形状为异形,第二子通孔1332具有与弯折区122轮廓匹配的两个弧形段,以使得第二子通孔1332具有较大的面积。
当电极组件12为多个时,通过在绝缘件13的与相邻的两个电极组件12的弯折区122之间的区域对应的位置设置第二子通孔1332,介质经第二子通孔1332进入电池单体10内部时不会直接作用于电极组件12,合理利用相邻的两个电极组件12的弯折区122之间形成的空间,减弱介质对电极组件12的冲击力。
在一些实施例中,电极组件12的数量为多个时,如图8所示,通孔133可以包括第一子通孔1331和第二子通孔1332,第一子通孔1331位于绝缘件13的拐角处,第二子通孔1332设置在绝缘件13的长度方向的两端且位于相邻的两个电极组件12的弯折区122在绝缘件13上的投影之间。
请参见图11,图11为根据本申请一些实施例提供的绝缘件13的结构示意图。根据本申请的一些实施例,如图7和图11所示,第二导流槽132的槽壁包括底壁1321、内侧壁1322和外侧壁1323,外侧壁1323和内侧壁1322相对设置,通孔133设置于外侧壁1323或者外侧壁1323和底壁1321的交汇处。
底壁1321的壁面为第二导流槽132的底面,用于承载介质。内侧壁1322和外侧壁1323相对设置,并且由底壁1321指向第一壁111。内侧壁1322为第二导流槽132的靠近绝缘件13的中部的壁,外侧壁1323为第二导流槽132的远离绝缘件13的中部的壁,外侧壁1323相对于内侧壁1322更靠近绝缘件13的边缘。
如图7所示,通孔133设置于外侧壁1323时,通孔133更靠近绝缘件13的边缘,通孔133贯穿外侧壁1323。
如图11所示,通孔133设置于外侧壁1323和底壁1321的交汇处时,通孔133贯穿外侧壁1323和底壁1321的交汇处。
底壁1321承载介质,外侧壁1323和内侧壁1322约束介质,当通孔133设置于外侧壁1323时,图12为根据本申请一些实施例提供的绝缘件13与外壳11装配后的局部示意图,如图12所示,图中箭头为介质流动示意,介质从位于外侧壁1323的通孔133进入电池单体10内部时先作用于外壳11的内壁,减缓流速,减小对电极组件12(图3所示)的冲击力。当通孔133设置于外侧壁1323和底壁1321的交汇处时,由于电极组件12在绝缘件13上的投影与绝缘件13的边缘具有较小的重叠面积、或者电极组件12在绝缘件13上的投影位于绝缘件13内,能够尽量避免介质从位于外侧壁1323和底壁1321的交汇处进入电池单体10内部时直接作用于电极组件12,能够有效减弱介质作用于电极组件12的冲击力,减少介质对电极组件12的损坏。
例如,在一些实施例中,图13为根据本申请一些实施例提供的绝缘件13与电极组件12装配后的局部剖视图,如图13所示,当通孔133设置于绝缘件13的沿电极组件12的厚度方向Y(也即绝缘件13的宽度方向)的两个边缘时,在电池单体10设计较大的能量密度时,沿电极组件12的厚度方向Y,电极组件12在绝缘件13上的投影与通孔133部分重叠,此种情况下,在该通孔133流出的部分介质会直接作用于电极组件12,但是由于重叠面积较小,该部分介质对电极组件12的影响较小。同时,为了进一步降低介质对电极组件12的冲击,可以在绝缘件13的长度方向的两个边缘也设置通孔133,这部分通孔133被配置为与电极组件12在绝缘件13上的投影不重叠,例如设置于电极组件12与绝缘件13的边缘之间的不重叠区域,或者是,相邻两个电极组件12之间的空白区域。
在通孔133包括第一子通孔1331的实施例中,第一子通孔1331可以设置于外侧壁1323,也可以设置于外侧壁1323和底壁1321的交汇处。例如,第一子通孔1331设置于外侧壁1323和底壁1321的交汇处时,介质能够沿绝缘件13的厚度方向进 入电池单体10内部,且不会直接冲击电极组件12,介质流动顺畅,也不会在第二导流槽132内堆积。
在通孔133包括第二子通孔1332的实施例中,第二子通孔1332可以设置于外侧壁1323,也可以设置于外侧壁1323和底壁1321的交汇处。例如,第二子通孔1332设置于外侧壁1323和底壁1321的交汇处时,介质能够沿绝缘件13的厚度方向进入电池单体10内部,且不会直接冲击电极组件12,介质流动顺畅,也不会在第二导流槽132内堆积。
根据本申请的一些实施例,如图4所示,绝缘件13包括底板134、第一凸台135和第二凸台136,第一凸台135和第二凸台136形成在底板134的面向第一壁111的一侧,第一凸台135和第二凸台136间隔设置,第一凸台135和第二凸台136之间形成第一导流槽131。
第一凸台135和第二凸台136形成在底板134的面向第一壁111的一侧,也即,第一凸台135和第二凸台136相对于底板134朝向第一壁111凸出。
第一凸台135和第二凸台136间隔设置,第一凸台135的表面与第二凸台136的表面之间具有空间,第一凸台135、第二凸台136之间能够容纳介质,以使介质在第一凸台135和第二凸台136之间流动,第一凸台135的靠近第二凸台136的表面与第二凸台136的靠近第一凸台135的表面构成第一导流槽131的两个侧壁,位于第一凸台135和第二凸台136之间的底板134形成第一导流槽131的底壁1321。
第一凸台135和第二凸台136之间形成第一导流槽131,通过第一凸台135、第二凸台136及底板134限定介质的流动路径,结构简单,绝缘件13具有较高的强度。
根据本申请的一些实施例,如图4所示,绝缘件13还包括凸缘137,凸缘137围设在底板134的周围且从底板134向靠近第一壁111的方向凸出,凸缘137包围第一凸台135和第二凸台136,第一凸台135和第二涂药的外周面与凸缘137的内周面之间形成第二导流槽132。
凸缘137围设在底板134的周围,凸缘137围绕第一凸台135和第二凸台136,换句话说,凸缘137围绕底板134的边缘设置,构成绝缘件13的边缘。凸缘137从底板134朝向第一壁111的方向凸出,凸缘137能够将介质限制于底板134与凸缘137围成的空间内。
凸缘137围设在底板134的周围且包围第一凸台135和第二凸台136,以形成第二导流槽132,结构简单,以便于介质从绝缘件13的边缘进入电池单体10内部。
根据本申请的一些实施例,第一凸台135和第二凸台136抵接于第一壁111,凸缘137与第一壁111之间具有间隙,间隙用于供第二导流槽132内的介质流出。
第一凸台135和第二凸台136抵接于第一壁111,绝缘件13与第一壁111具有较大的接触面积,以实现绝缘件13与第一壁111的定位。请参见图14,图14为根据本申请另一些实施例提供的绝缘件13与外壳11装配后的局部剖视图,图14中示出了第一凸台135与第一壁111的装配示意图,凸缘137与第一壁111之间具有间隙,介质能够从该间隙处流出。
由于凸缘137与第一凸台135、第二凸台136围成第二导流槽132,第一凸台135和第二凸台136抵接于第一壁111,凸缘137与第一壁111之间具有间隙,第二导流槽132内的介质只能从凸缘137与第一壁111之间的间隙流出,流出的介质直接作用于外壳11的内壁,减缓介质的流速及冲击力,降低介质对电极组件12的冲击破坏。
通过第一凸台135和第二凸台136抵接于第一壁111,保证绝缘件13与第一壁111定位稳定;通过凸缘137与第一壁111之间的间隙,便于介质流出第二导流槽132,结构简单,便于加工。
进一步地,为了便于介质快速流出第二导流槽132,第二导流槽132的槽壁可以设置有通孔133,以使第二导流槽132内的介质可以通过通孔133以及凸缘137与第一壁111之间的间隙流出。
根据本申请的一些实施例,第一凸台135、第二凸台136和凸缘137均抵接 于第一壁111。
第一凸台135、第二凸台136和凸缘137均抵接于第一壁111,在第二导流槽132的靠近第一壁111的端部形成封堵,介质不易从凸缘137和第一壁111之间、或者第一凸台135和第二凸台136与第一壁111之间流出,此种情况下,第二导流槽132的槽壁设置有通孔133,通孔133用于供第二导流槽132内的介质流出。
由于第一凸台135、第二凸台136和凸缘137均抵接于第一壁111,绝缘件13与第一壁111具有多个接触位置及较大的接触面积,使得绝缘件13与第一壁111定位稳定。
请参见图15,图15为根据本申请一些实施例提供的绝缘件13的结构示意图。根据本申请的一些实施例,如图4和图15所示,绝缘件13的背离第一壁111的一侧设置有第一凹部138和第二凹部139,第一凹部138与第一凸台135位置对应,第二凹部139与第二凸台136位置对应。
第一凹部138和第二凹部139设置于绝缘件13的背离第一壁111的一侧,也即,第一凹部138和第二凹部139面向电极组件12。
第一凹部138与第一凸台135位置对应是指,沿第一壁111的厚度方向X,第一凹部138与第一凸台135重叠,换句话说,第一凹部138从绝缘件13的背离第一壁111的一侧朝向第一壁111凹陷形成,第一凹部138形成的同时,第一凸台135在绝缘件13的面向第一壁111的一侧凸出。
同理,第二凹部139与第二凸台136位置对应是指,沿第一壁111的厚度方向X,第二凹部139与第二凸台136重叠,换句话说,第二凹部139从绝缘件13的背离第一壁111的一侧朝向第一壁111凹陷形成,第二凹部139形成的同时,第二凸台136在绝缘件13的面向第一壁111的一侧凸出。
第一凹部138与第一凸台135位置对应、第二凹部139与第二凸台136位置对应,电极组件12的极耳能够伸入第一凹部138和第二凹部139,能够节省安装空间,以提高电池单体10的能量密度。
根据本申请的一些实施例,如图3所示,外壳11包括壳体112和端盖,壳体112具有开口,端盖覆盖于开口,第一壁111为端盖。
壳体112具有开口,以供电极组件12放置于壳体112内。端盖覆盖于开口,且与壳体112连接形成封闭腔室,以便于容纳电池单体10。壳体112可以为第二壁,第二壁的一端围绕端盖设置且形成开口。
第一壁111为端盖,端盖覆盖壳体112的开口,便于加工与装配。
根据本申请一些实施例,本申请提供了一种电池,其包括上述任一方案所述的电池单体10。
根据本申请一些实施例,本申请提供了一种用电设备,其包括上述任一方案所述的电池单体10,电池单体10用于为用电设备提供电能。
用电设备可以是前述任一应用电池单体10的设备或系统。
根据本申请的一些实施例,参见图3至图15,本申请提供了一种电池单体10,该电池单体10包括外壳11、电极组件12、绝缘件13。外壳11包括壳体112和端盖,壳体112具有开口,端盖覆盖于开口处,端盖为第一壁111。电极组件12设置于壳体112内。绝缘件13设置于第一壁111和电极组件12之间,以绝缘隔离第一壁111和电极组件12。绝缘件13的面向第一壁111的一侧设置有导流结构,导流结构包括第一导流槽131和第二导流槽132。沿第一壁111的厚度方向X,介质注入孔1111在绝缘件13上的投影位于第一导流槽131内。第二导流槽132为沿绝缘件13的边缘延伸的环形槽,第一导流槽131与第二导流槽132连通。第一导流槽131用于承接介质注入孔1111注入的介质(如电解液),并且将介质引导至第二导流槽132。第二导流槽132的槽壁设置有通孔133,通孔133用于供第二导流槽132内的介质流出。通孔133设置于第二导流槽132的外侧壁1323和底壁1321的交汇处。绝缘件13呈矩形,通孔133包括第一子通孔1331和第二子通孔1332。第一子通孔1331位于绝缘件13的拐角处;电极组件12的数量为多个,第二子通孔1332设置在绝缘件13的长度方向的两端 且位于相邻的两个电极组件12的弯折区122在绝缘件13上的投影之间。电极组件12在绝缘件13上的投影与第一子通孔1331和第二子通孔1332均不重叠。该电池单体10,通过绝缘件13上设置的导流结构,能够将介质注入孔1111注入的介质引导至绝缘件13的边缘,并从绝缘件13的边缘进入电池单体10内部,导流结构能够分散介质并减缓介质的流速,能够减少介质直接作用于电极组件12的情况,缓解介质作用于电极组件12的冲击力,降低电极组件12被介质损坏的风险,提高电池单体10的安全性。
图16示出了本申请一些实施例的电池单体10的制造方法的示意性流程图。如图16所示,该电池单体10的制造方法可以包括:
401,提供外壳11,外壳11包括第一壁111,第一壁111设置有介质注入孔1111;
402,提供电极组件12;
403,提供绝缘件13,绝缘件13设置有导流结构,导流结构被配置为将由介质注入孔1111注入的介质向绝缘件13的边缘引导,并从绝缘件13的边缘进入电池单体10内部;
404,将电极组件12设置于外壳11内,将绝缘件13设置于第一壁111和电极组件12之间,以绝缘隔离第一壁111和电极组件12,使导流结构位于绝缘件13的面向第一壁111的一侧。
需要指出的是,步骤“401,提供外壳11”、步骤“402,提供电极组件12”及步骤“403,提供绝缘件13”的顺序并不唯一,在一些实施例中,可以依次进行步骤“402,提供电极组件12”、步骤“401,提供外壳11”及步骤“403,提供绝缘件13”,或者,也可以依次进行步骤“403,提供绝缘件13”、步骤“401,提供外壳11”及“402,提供电极组件12”,本申请对步骤“401,提供外壳11”、步骤“402,提供电极组件12”及步骤“403,提供绝缘件13”的顺序并不作限定。
根据本申请实施例的电池单体10的制造方法,通过绝缘件13设置的导流结构引导介质从绝缘件13的边缘进入电池单体10内部,能够有效缓解介质作用于电极组件12的冲击力,降低电极组件12被介质损坏的风险,使得电池单体10具有较高的安全性。
图17示出了本申请一些实施例的电池单体的制造设备500的示意性框图。如图17所示,该电池单体的制造设备500可以包括提供模块501和组装模块502。提供模块501用于提供外壳11、提供电极组件12及提供绝缘件13,外壳11包括第一壁111,第一壁111设置有介质注入孔1111,绝缘件13设置有导流结构,导流结构被配置为将由介质注入孔1111注入的介质向绝缘件13的边缘引导,并从绝缘件13的边缘进入电池单体10内部;组装模块502用于将电极组件12设置于外壳11内,将绝缘件13设置于第一壁111和电极组件12之间,以绝缘隔离第一壁111和电极组件12,使导流结构位于绝缘件13的面向第一壁111的一侧。
根据本申请实施例的电池单体的制造设备500,通过该制造设备能够制造出安全性较高的电池单体10。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (20)

  1. 一种电池单体,包括:
    外壳,包括第一壁,所述第一壁上设置有介质注入孔;
    电极组件,设置于所述外壳内;
    绝缘件,设置于所述第一壁和所述电极组件之间,以绝缘隔离所述第一壁和所述电极组件;
    其中,所述绝缘件面向所述第一壁的一侧设置有导流结构,所述导流结构被配置为将由所述介质注入孔注入的介质向所述绝缘件的边缘引导,以使所述介质从所述绝缘件的边缘进入所述电池单体内部。
  2. 根据权利要求1所述的电池单体,其中,所述导流结构包括第一导流槽,沿所述第一壁的厚度方向,所述介质注入孔在所述绝缘件上的投影位于所述第一导流槽内。
  3. 根据权利要求2所述的电池单体,其中,所述导流结构还包括第二导流槽,所述第二导流槽为沿所述绝缘件的边缘延伸的环形槽,所述第一导流槽与所述第二导流槽连通,所述第一导流槽用于将所述介质引导至所述第二导流槽。
  4. 根据权利要求3所述的电池单体,其中,所述第一导流槽的底面为坡面,以将所述介质引导至所述第二导流槽。
  5. 根据权利要求4所述的电池单体,其中,所述第一导流槽的两端均与所述第二导流槽连通,所述第一导流槽的底面包括第一坡面和第二坡面,所述第一坡面从所述第一导流槽的中部延伸至所述第一导流槽的一端,所述第二坡面从所述第一导流槽的中部延伸至所述第一导流槽的另一端,所述介质注入孔在所述绝缘件上的投影位于所述第一坡面和所述第二坡面的交汇处。
  6. 根据权利要求3-5中任一项所述的电池单体,其中,所述第二导流槽的槽壁设置有通孔,所述通孔用于供所述第二导流槽内的所述介质流出。
  7. 根据权利要求6所述的电池单体,其中,所述电极组件在所述绝缘件上的投影与所述通孔至少部分不重叠。
  8. 根据权利要求7所述的电池单体,其中,所述绝缘件呈矩形,所述通孔包括第一子通孔,所述第一子通孔位于所述绝缘件的拐角处。
  9. 根据权利要求7或8所述的电池单体,其中,所述电极组件的数量为多个,多个所述电极组件沿其厚度方向依次排布,所述电极组件包括平直区和连接于所述平直区的两端的弯折区,所述通孔包括第二子通孔,所述第二子通孔设置在所述绝缘件的长度方向的两端且位于相邻的两个所述电极组件的所述弯折区在所述绝缘件上的投影之间。
  10. 根据权利要求6-9中任一项所述的电池单体,其中,所述第二导流槽的槽壁包括底壁、内侧壁和外侧壁,所述外侧壁和所述内侧壁相对设置,所述通孔设置于所述外侧壁或者所述外侧壁和所述底壁的交汇处。
  11. 根据权利要求3-10中任一项所述的电池单体,其中,所述绝缘件包括底板、第一凸台和第二凸台,所述第一凸台和所述第二凸台形成在所述底板的面向所述第一壁 的一侧,所述第一凸台和所述第二凸台间隔设置,所述第一凸台和所述第二凸台之间形成所述第一导流槽。
  12. 根据权利要求11所述的电池单体,其中,所述绝缘件还包括凸缘,所述凸缘围设在所述底板的周围且从所述底板向靠近所述第一壁的方向凸出,所述凸缘包围所述第一凸台和所述第二凸台,所述第一凸台和所述第二凸台的外周面与所述凸缘的内周面之间形成所述第二导流槽。
  13. 根据权利要求12所述的电池单体,其中,所述第一凸台和所述第二凸台抵接于所述第一壁,所述凸缘与所述第一壁之间具有间隙,所述间隙用于供所述第二导流槽内的所述介质流出。
  14. 根据权利要求12所述的电池单体,其中,所述第一凸台、所述第二凸台和所述凸缘均抵接于所述第一壁。
  15. 根据权利要求11-14中任一项所述的电池单体,其中,所述绝缘件的背离所述第一壁的一侧设置有第一凹部和第二凹部,所述第一凹部与所述第一凸台位置对应,所述第二凹部与所述第二凸台位置对应。
  16. 根据权利要求1-15中任一项所述的电池单体,其中,所述外壳包括壳体和端盖,所述壳体具有开口,所述端盖覆盖于所述开口,所述第一壁为所述端盖。
  17. 一种电池,包括如权利要求1-16中任一项所述的电池单体。
  18. 一种用电设备,包括如权利要求1-16中任一项所述的电池单体,所述电池单体用于提供电能。
  19. 一种电池单体的制造方法,包括:
    提供外壳,所述外壳包括第一壁,所述第一壁设置有介质注入孔;
    提供电极组件;
    提供绝缘件,所述绝缘件设置有导流结构,所述导流结构被配置为将由所述介质注入孔注入的介质向所述绝缘件的边缘引导,并从所述绝缘件的边缘进入所述电池单体内部;
    将所述电极组件设置于所述外壳内,将所述绝缘件设置于所述第一壁和所述电极组件之间,以绝缘隔离所述第一壁和所述电极组件,使所述导流结构位于所述绝缘件的面向所述第一壁的一侧。
  20. 一种电池单体的制造设备,包括:
    提供模块,用于提供外壳、提供电极组件及提供绝缘件,所述外壳包括第一壁,所述第一壁设置有介质注入孔,所述绝缘件设置有导流结构,所述导流结构被配置为将由所述介质注入孔注入的介质向所述绝缘件的边缘引导,并从所述绝缘件的边缘进入所述电池单体内部;
    组装模块,用于将所述电极组件设置于所述外壳内,将所述绝缘件设置于所述第一壁和所述电极组件之间,以绝缘隔离所述第一壁和所述电极组件,使所述导流结构位于所述绝缘件的面向所述第一壁的一侧。
PCT/CN2022/071895 2022-01-13 2022-01-13 电池单体、电池、用电设备、电池单体的制造方法及设备 WO2023133775A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202290000377.5U CN220963690U (zh) 2022-01-13 2022-01-13 电池单体、电池、用电设备及电池单体的制造设备
PCT/CN2022/071895 WO2023133775A1 (zh) 2022-01-13 2022-01-13 电池单体、电池、用电设备、电池单体的制造方法及设备
US18/411,035 US20240154282A1 (en) 2022-01-13 2024-01-12 Battery cell, battery, power consumption device, and battery cell manufacturing method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/071895 WO2023133775A1 (zh) 2022-01-13 2022-01-13 电池单体、电池、用电设备、电池单体的制造方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/411,035 Continuation US20240154282A1 (en) 2022-01-13 2024-01-12 Battery cell, battery, power consumption device, and battery cell manufacturing method and device

Publications (1)

Publication Number Publication Date
WO2023133775A1 true WO2023133775A1 (zh) 2023-07-20

Family

ID=87280016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071895 WO2023133775A1 (zh) 2022-01-13 2022-01-13 电池单体、电池、用电设备、电池单体的制造方法及设备

Country Status (3)

Country Link
US (1) US20240154282A1 (zh)
CN (1) CN220963690U (zh)
WO (1) WO2023133775A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103066233A (zh) * 2012-12-21 2013-04-24 中银(宁波)电池有限公司 一种圆柱形结构锂电池的上绝缘板
CN203377331U (zh) * 2013-07-29 2014-01-01 宁波慧通新能源科技有限公司 一种带有分流板的蓄电池
JP2015232940A (ja) * 2014-06-09 2015-12-24 株式会社Gsユアサ 蓄電素子、及び蓄電素子の製造方法
JP2018198163A (ja) * 2017-05-24 2018-12-13 トヨタ自動車株式会社 二次電池
CN208478390U (zh) * 2018-07-26 2019-02-05 宁德时代新能源科技股份有限公司 顶盖组件以及二次电池
CN111599951A (zh) * 2020-06-23 2020-08-28 苏州凌威新能源科技有限公司 电池盖板组件
CN212967969U (zh) * 2020-10-13 2021-04-13 厦门海辰新能源科技有限公司 一种锂离子电池的下塑胶结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103066233A (zh) * 2012-12-21 2013-04-24 中银(宁波)电池有限公司 一种圆柱形结构锂电池的上绝缘板
CN203377331U (zh) * 2013-07-29 2014-01-01 宁波慧通新能源科技有限公司 一种带有分流板的蓄电池
JP2015232940A (ja) * 2014-06-09 2015-12-24 株式会社Gsユアサ 蓄電素子、及び蓄電素子の製造方法
JP2018198163A (ja) * 2017-05-24 2018-12-13 トヨタ自動車株式会社 二次電池
CN208478390U (zh) * 2018-07-26 2019-02-05 宁德时代新能源科技股份有限公司 顶盖组件以及二次电池
CN111599951A (zh) * 2020-06-23 2020-08-28 苏州凌威新能源科技有限公司 电池盖板组件
CN212967969U (zh) * 2020-10-13 2021-04-13 厦门海辰新能源科技有限公司 一种锂离子电池的下塑胶结构

Also Published As

Publication number Publication date
CN220963690U (zh) 2024-05-14
US20240154282A1 (en) 2024-05-09

Similar Documents

Publication Publication Date Title
WO2023137950A1 (zh) 卷绕式电极组件、电池单体、电池及用电设备
US11757161B2 (en) Battery cell, battery and electricity consuming device
WO2023020088A1 (zh) 电池单体、电池及用电设备
WO2023221598A1 (zh) 连接组件、电池单体、电池及用电设备
WO2023065923A1 (zh) 电池单体、电池和用电设备
EP4391205A1 (en) Electrode sheet, electrode assembly, battery cell, battery, and electric device
WO2023142700A1 (zh) 电池顶盖、顶盖组件、电池单体、电池及用电装置
WO2023131031A1 (zh) 一种电池单体、电池及用电装置
WO2024021293A1 (zh) 热管理部件、电池以及用电装置
CN216720098U (zh) 电池盖板、电池单体、电池及用电设备
WO2023028864A1 (zh) 泄压装置、电池单体、电池及用电设备
US20230420798A1 (en) Battery, electric apparatus, and method and apparatus for manufacturing battery
WO2023160034A1 (zh) 电池箱体上盖、电池箱体、电池及用电设备
CN217158375U (zh) 一种盖组件、电池单体、电池和用电装置
WO2023130266A1 (zh) 电池单体、电池、用电装置、制备电池单体的方法和装置
WO2023133775A1 (zh) 电池单体、电池、用电设备、电池单体的制造方法及设备
CN216698635U (zh) 圆柱电池单体、电池及用电设备
WO2023160257A1 (zh) 电芯顶盖、电芯、电池、用电设备以及注液嘴
EP4386957A1 (en) Battery cell, cover assembly, battery, electrical device, method, and equipment
WO2023082155A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2024055309A1 (zh) 电池单体、电池及用电设备
WO2024036554A1 (zh) 端盖组件、电池单体、电池以及用电装置
WO2023065366A1 (zh) 电池、用电设备、制备电池单体的方法和设备
CN220963648U (zh) 电池单体、电池及用电设备
CN218351695U (zh) 电池盖板、盖板组件、电池单体、电池及用电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919438

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022919438

Country of ref document: EP

Effective date: 20240513