WO2023272501A1 - 电池单体、电池、用电设备及电池单体的制造方法和设备 - Google Patents

电池单体、电池、用电设备及电池单体的制造方法和设备 Download PDF

Info

Publication number
WO2023272501A1
WO2023272501A1 PCT/CN2021/103206 CN2021103206W WO2023272501A1 WO 2023272501 A1 WO2023272501 A1 WO 2023272501A1 CN 2021103206 W CN2021103206 W CN 2021103206W WO 2023272501 A1 WO2023272501 A1 WO 2023272501A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure relief
battery cell
relief mechanism
welding
electrode assembly
Prior art date
Application number
PCT/CN2021/103206
Other languages
English (en)
French (fr)
Inventor
苏华圣
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2021/103206 priority Critical patent/WO2023272501A1/zh
Priority to EP21827524.6A priority patent/EP4138183A1/en
Priority to CN202180013967.1A priority patent/CN115735297B/zh
Priority to US17/559,928 priority patent/US20220416373A1/en
Publication of WO2023272501A1 publication Critical patent/WO2023272501A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/169Lids or covers characterised by the methods of assembling casings with lids by welding, brazing or soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the field of battery technology, in particular, to a battery cell, a battery, an electrical device, and a method and device for manufacturing the battery cell.
  • Batteries are widely used in electronic equipment, such as mobile phones, laptop computers, battery cars, electric cars, electric airplanes, electric ships, electric toy cars, electric toy ships, electric toy airplanes and electric tools, etc.
  • Embodiments of the present application provide a battery cell, a battery, an electrical device, and a manufacturing method and device for the battery cell, which can effectively improve the safety of the battery cell.
  • an embodiment of the present application provides a battery cell, including: an electrode assembly having a first tab; a casing having an opening for accommodating the electrode assembly; a pressure relief mechanism for When the internal pressure or temperature of the battery cell reaches a threshold, it is activated to release the internal pressure; the end cover is used to cover the opening, and the end cover is provided with a recess, the recess The side of the end cover away from the electrode assembly is recessed along the direction facing the electrode assembly, and the recess is used to accommodate at least a part of the pressure relief mechanism; the end cover is formed at the bottom of the recess.
  • the connection part is used for welding with the first tab to form a first welding part, and the pressure relief mechanism covers the first welding part in the thickness direction of the end cover.
  • the end cap is formed with a connecting portion at the bottom of the concave portion, and the connecting portion is welded to the first lug to form the first welded portion, and the pressure relief mechanism covers the first welded portion in the thickness direction of the end cap, so that the first The welding part and the pressure relief mechanism are distributed in the thickness direction of the end cover.
  • the size of the pressure relief mechanism in the direction perpendicular to the thickness of the end cover will not be limited by the first welding part.
  • the size of the concave part and the pressure relief mechanism can be made according to the requirements. Large, it is beneficial to improve the pressure relief capacity of the pressure relief mechanism and improve the safety of the battery cell.
  • the end cover includes: a cover body for covering the opening, and in the thickness direction, the cover body has a first outer surface and a first inner surface oppositely arranged, so The concave portion is concave from the first outer surface in a direction facing the electrode assembly; and a convex portion is located at a position of the cover body corresponding to the concave portion, and the convex portion is in a direction facing from the first inner surface
  • the direction of the electrode assembly protrudes; wherein, in the thickness direction, the convex portion has an abutment surface facing the electrode assembly, the bottom surface of the concave portion is opposite to the abutment surface, and the abutment surface
  • the abutting surface is used to abut against the first tab, and the connecting portion is formed between the abutting surface and the bottom surface.
  • the convex part is located at the position corresponding to the concave part of the cover body, and protrudes from the first inner surface in a direction facing the electrode assembly, and the convex part can strengthen the position of the concave part of the cover body.
  • a connecting portion for welding with the first tab is formed between the abutting surface of the convex portion and the bottom surface of the concave portion, and the abutting surface of the convex portion can maintain good contact with the first tab when the connecting portion is welded to the first tab, Increase the flow area between the first tab and the end cap.
  • the bottom surface in the thickness direction, is closer to the electrode assembly than the first inner surface; or, the bottom surface is flush with the first inner surface.
  • the bottom surface is closer to the electrode assembly than the first inner surface in the thickness direction of the end cap or the bottom surface is flush with the first inner surface.
  • the space for accommodating the pressure relief mechanism; on the other hand, the distance between the abutting surface of the convex part and the bottom surface of the concave part is relatively small, that is, the thickness of the connecting part is relatively small, so that it is convenient to connect the connecting part and the first pole from the outside of the end cover Ear welding improves the firmness of the connecting part and the first tab after welding.
  • the pressure relief mechanism is welded with the end cover to form a second welded portion, the second welded portion is located outside the first welded portion along a first direction, and the first direction is vertical in the thickness direction.
  • the second welding part formed by welding the pressure relief mechanism and the end cover is located outside the first welding part along the first direction perpendicular to the thickness direction of the end cover, so that the first welding part and the second welding part are at the end There is no overlap in the thickness direction of the cover.
  • no second welding will be formed at the position of the first welding part, so as to avoid the damage of the first welding part due to the secondary welding, which will affect the The firmness after welding the first connecting part and the first tab.
  • the pressure relief mechanism includes a fixing part and a pressure relief part; the outer peripheral wall of the fixing part is welded to the inner peripheral wall of the recess to form the second welding part; the pressure relief part is used for Activated when the internal pressure or temperature of the battery cell reaches a threshold value to vent the internal pressure.
  • the pressure relief part of the pressure relief mechanism is used to release the pressure inside the battery cell
  • the fixing part of the pressure relief mechanism is used to weld and fix the end cap. Since the outer peripheral wall of the fixed part is welded to the inner peripheral wall of the concave part to form a second welded part, the second welded part is kept away from the pressure relief part, reducing the risk of damage to the pressure relief part during the welding process of the fixed part and the end cover .
  • the fixing portion has a thickness greater than that of the pressure relief portion.
  • the thickness of the fixing part is greater than that of the pressure relief part, which facilitates the actuation of the pressure relief mechanism to release the pressure inside the battery cell.
  • the fixing part is entirely located outside the first welding part, and in the thickness direction, the pressure relief part covers the first welding part, and the pressure relief part and the The first welding portion is arranged with gaps along the thickness direction.
  • the pressure relief part covers the first welded part in the thickness direction of the end cover, and the pressure relief part and the first welded part are provided with a gap along the thickness direction.
  • the welding process of the cover will not interfere with the pressure relief mechanism, and can effectively improve the welding quality between the outer peripheral wall of the fixed part and the inner peripheral wall of the concave part.
  • the fixing portion in the thickness direction, covers at least a part of the first welding portion, and a gap is provided between the fixing portion and the first welding portion.
  • the fixing part covers at least a part of the first welding part in the thickness direction of the end cover, and the fixing part and the first welding part are provided with a gap.
  • This structure makes the first welding part weld the fixing part and the end cover The process will not interfere with the pressure relief mechanism, and can effectively improve the welding quality of the outer peripheral wall of the fixed part and the inner peripheral wall of the concave part.
  • the pressure relief mechanism and the connection portion are stacked in the thickness direction, and the pressure relief mechanism is welded to the connection portion to form the second welded portion.
  • the pressure relief mechanism and the connecting portion are arranged in layers along the thickness direction and welded to form a second welding portion, which ensures the firmness of the pressure relief mechanism and the end cover after welding, and can effectively improve the welding efficiency of the pressure relief mechanism and the end cover.
  • the connecting portion is provided with a through hole passing through the connecting portion
  • the pressure relief mechanism covers the through hole, and the through hole is used for communicating the recess with the inside of the battery cell.
  • connection part is provided with a through hole penetrating through the connection part, and the arrangement of the through hole can release the stress generated when the connection part is welded to the first tab.
  • the pressure relief mechanism covers the through hole, and the through hole is used to connect the interior of the battery cell with the concave portion, and the pressure inside the battery cell can be released through the through hole when the pressure relief mechanism is actuated.
  • the through hole is used for injecting electrolyte solution into the interior of the battery cell.
  • the through hole is used to inject the electrolyte into the battery cell, and the through hole is the electrolyte injection hole, that is, the electrolyte can be injected into the battery cell through the through hole.
  • the connecting portion is welded with the first tab to form two first welding portions, and the two first welding portions are located on both sides of the through hole along the first direction, the The first direction is perpendicular to the thickness direction.
  • the connecting part is welded with the first tab to form two first welding parts, and the two first welding parts are located on the two sides of the through hole along the first direction perpendicular to the thickness direction of the end cap.
  • the first welding part and the two first welding parts can both play the role of connecting the first tab and the connecting part, which improves the firmness of the connecting part and the first tab after welding.
  • the pressure relief mechanism is completely contained within the recess.
  • the pressure relief mechanism is completely accommodated in the recess, and the pressure relief mechanism does not occupy the space outside the recess, which reduces the overall volume of the battery cell and is conducive to improving the energy density of the battery.
  • the diameter of the pressure relief mechanism is not less than 1/3 of the diameter of the end cap.
  • the diameter of the pressure relief mechanism is not less than 1/3 of the diameter of the end cap, so that the diameter of the pressure relief mechanism is relatively large, and the pressure relief capability of the pressure relief mechanism is improved.
  • an embodiment of the present application provides a battery, including: the battery cell provided in any one embodiment of the first aspect; and a box for accommodating the battery cell.
  • the embodiments of the present application provide an electric device, including the battery provided in any one embodiment of the second aspect.
  • an embodiment of the present application provides a method for manufacturing a battery cell, the method comprising: providing an electrode assembly having a first tab; providing a casing having an opening; providing a pressure relief mechanism, the The pressure relief mechanism is used to actuate when the internal pressure or temperature of the battery cell reaches a threshold value, so as to release the internal pressure; an end cover is provided, and the end cover is provided with a recess, and the end cover is placed on the A connection part is formed at the bottom of the concave part; the electrode assembly is accommodated in the casing; the end cover is covered on the opening; the connection part is welded to the first tab to form a first welding part; The pressure relief mechanism is installed in the end cover, so that at least a part of the pressure relief mechanism is accommodated in the recess, so that the pressure relief mechanism covers the first welding part in the thickness direction of the end cover; wherein, the The recess is recessed from a side of the end cap away from the electrode assembly along a direction facing the electrode assembly.
  • the embodiment of the present application further provides a battery cell manufacturing equipment, the manufacturing equipment includes: a first providing device for providing an electrode assembly, the electrode assembly has a first tab; a second providing device , for providing a housing with an opening; a third providing means for providing a pressure relief mechanism for actuating when the internal pressure or temperature of the battery cell reaches a threshold value to release the the internal pressure; the fourth providing device is used to provide the end cover, the end cover is provided with a recess, and the end cover is formed with a connecting part at the bottom of the recess; the assembly device is used to accommodate the electrode assembly in the the housing; cover the end cover on the opening; weld the connecting part and the first lug to form a first welded part; install the pressure relief mechanism in the end cover so that the pressure relief mechanism At least a part of the pressure mechanism is accommodated in the recess, so that the pressure relief mechanism covers the first welding portion in the thickness direction of the end cap; wherein, the recess is along the side of the end cap
  • Fig. 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Fig. 2 is a schematic structural diagram of a battery provided by some embodiments of the present application.
  • Fig. 3 is a full cross-sectional view of a battery cell provided by some embodiments of the present application.
  • Figure 4 is an exploded view of the pressure relief mechanism and end cap shown in Figure 3;
  • Fig. 5 is an assembly drawing of the pressure relief mechanism and the end cover shown in Fig. 4;
  • Fig. 6 is a partial view of the battery cell shown in Fig. 3;
  • Fig. 7 is a partial view of a battery cell provided by another embodiment of the present application.
  • Fig. 8 is a partial view of a battery cell provided in some other embodiments of the present application.
  • FIG. 9 is a flowchart of a method for manufacturing a battery cell provided in some embodiments of the present application.
  • Fig. 10 is a schematic block diagram of manufacturing equipment for battery cells provided by some embodiments of the present application.
  • Icons 10-box; 11-first part; 12-second part; 13-accommodating space; 20-battery unit; 21-electrode assembly; 211-main body; 212-first tab; 213-second pole Ear; 214-central hole; 22-shell; 221-shell body; 222-cover; 23-pressure relief mechanism; 231-notch groove; 232-second outer surface; 235-avoidance space; 24-end cover; 241-recess; 2411-bottom surface; 242-connection; 2421-through hole; 243-cover body; -Protrusion; 2441-Abutment surface; 25-First welding part; 26-Electrode terminal; 27-Collector member; 28-Insulator; -motor; 1000-vehicle; 1100-first providing device; 1200-second providing device; 1300-third providing device; 1400-fourth providing device; 1500-assembly device; 2000-manufacturing equipment; Z-thickness direction; X - first direction.
  • connection In the description of this application, it should be noted that, unless otherwise clearly stipulated and limited, the terms “installation”, “connection”, “connection” and “attachment” should be understood in a broad sense, for example, it may be a fixed connection, It can also be detachably connected or integrally connected; it can be directly connected or indirectly connected through an intermediary, and it can be internal communication between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application according to specific situations.
  • “Plurality” in this application refers to two or more (including two).
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, which are not limited in the embodiments of the present application.
  • the battery cell may be in the form of a cylinder, a flat body, or other shapes, which are not limited in this embodiment of the present application.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and pouch battery cells, which are not limited in this embodiment of the present application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack, and the like.
  • Batteries generally include a case for enclosing one or more battery cells. The box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive pole piece, a negative pole piece and a separator.
  • a battery cell works primarily by moving metal ions between the positive and negative pole pieces.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer is coated on the surface of the positive electrode current collector, and the positive electrode collector without the positive electrode active material layer protrudes from the positive electrode collector coated with the positive electrode active material layer. Fluid, the positive electrode current collector not coated with the positive electrode active material layer is used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer, the negative electrode active material layer is coated on the surface of the negative electrode current collector, and the negative electrode collector without the negative electrode active material layer protrudes from the negative electrode collector coated with the negative electrode active material layer. Fluid, the negative electrode current collector not coated with the negative electrode active material layer is used as the negative electrode tab.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material may be carbon or silicon.
  • the number of positive pole tabs is multiple and stacked together, and the number of negative pole tabs is multiple and stacked together.
  • the material of the isolation film may be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene).
  • the electrode assembly may be a wound structure or a laminated structure, which is not limited in the embodiment of the present application.
  • the protection measures include at least the switching element, the selection of an appropriate isolation diaphragm material, and the pressure relief mechanism.
  • the switching element refers to the element that can stop the battery from charging or discharging when the temperature or resistance inside the battery cell reaches a certain threshold.
  • the separator is used to isolate the positive pole piece and the negative pole piece. When the temperature rises to a certain value, it can automatically dissolve the micron-scale (or even nanoscale) micropores attached to it, so that metal ions cannot pass through the separator. Terminate the internal reaction of the battery cell.
  • the pressure relief mechanism refers to an element or part that is activated to release the internal pressure or temperature when the internal pressure or temperature of the battery cell reaches a predetermined threshold.
  • the threshold design varies according to design requirements. The threshold may depend on the materials of one or more of the positive pole piece, the negative pole piece, the electrolyte and the separator in the battery cell.
  • the pressure relief mechanism can take the form of an explosion-proof valve, a burst disk, an air valve, a pressure relief valve, or a safety valve, and can specifically use a pressure-sensitive or temperature-sensitive element or structure, that is, when the internal pressure or temperature of the battery cell When the predetermined threshold is reached, the pressure relief mechanism performs an action or the weak structure provided in the pressure relief mechanism is destroyed, thereby forming an opening or channel for internal pressure or temperature release.
  • the "activation" mentioned in this application means that the pressure relief mechanism is activated or activated to a certain state, so that the internal pressure and temperature of the battery cells can be released.
  • Actions by the pressure relief mechanism may include, but are not limited to, at least a portion of the pressure relief mechanism rupture, shatter, be torn, or open, among others.
  • the pressure relief mechanism When the pressure relief mechanism is actuated, the high-temperature and high-pressure material inside the battery cell will be discharged from the actuated part as discharge. In this way, the pressure and temperature of the battery cells can be released under the condition of controllable pressure or temperature, so as to avoid potential more serious accidents.
  • the emissions from battery cells mentioned in this application include but are not limited to: electrolyte, dissolved or split positive and negative electrodes, fragments of separator, high temperature and high pressure gas generated by reaction, flame, etc.
  • the pressure relief mechanism has poor pressure relief capability (eg, pressure relief efficiency), and cannot release the pressure in time, which may easily cause the battery cell to explode, catch fire, etc., and affect the safety of the battery cell.
  • the pressure relief mechanism is installed on the end cover, and the end cover is provided with a welding groove, and the welding groove is located outside the pressure relief mechanism.
  • the lugs of the components are welded to form the welded part connecting the end cover and the lug. Since the welded part is located outside the pressure relief mechanism, the size of the pressure relief mechanism cannot be enlarged due to the limitation of the welded part, resulting in pressure relief. Insufficient pressure relief capability of the mechanism.
  • the embodiment of the present application provides a technical solution, by providing a recess on the end cover, the recess is recessed from the side of the end cover away from the electrode assembly along the direction facing the electrode assembly, and the recess is used to accommodate at least a part of the pressure relief mechanism,
  • the end cover is formed with a connecting part at the bottom of the concave part, and the connecting part is welded with the first lug to form the first welding part.
  • the pressure relief mechanism covers the first welding part in the thickness direction of the end cover, so that the pressure relief mechanism is perpendicular to the end.
  • the size in the thickness direction of the cover is no longer restricted by the first welding portion, and the size of the concave portion and the pressure relief mechanism can be enlarged according to requirements, which is beneficial to improve the pressure relief capability of the pressure relief mechanism and improve the safety of the battery cell.
  • Electrical devices can be vehicles, mobile phones, portable devices, laptops, ships, spacecraft, electric toys and power tools, etc.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles;
  • spacecraft include airplanes, rockets, space shuttles and spacecraft, etc.;
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric boat toys and electric airplane toys, etc.;
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, electric planers, and more.
  • the embodiment of the present application does not impose special limitations on the above electric equipment.
  • FIG. 1 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • a battery 100 is disposed inside the vehicle 1000 .
  • the battery 100 can be used for power supply of the vehicle 1000 , for example, the battery 100 can be used as an operating power source of the vehicle 1000 .
  • the vehicle 1000 may further include a controller 200 and a motor 300.
  • the controller 200 is used to control the battery 100 to supply power to the motor 300, for example, for starting, navigating, and working power requirements of the vehicle 1000 during driving.
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but can also be used as a driving power source for the vehicle 1000 to provide driving power for the vehicle 1000 instead of or partially replacing fuel oil or natural gas.
  • FIG. 2 is a schematic structural diagram of a battery 100 provided in some embodiments of the present application.
  • the battery 100 includes a box body 10 and a battery cell 20 .
  • the box body 10 may include a first part 11 and a second part 12 , and the first part 11 and the second part 12 cover each other to define an accommodating space 13 for accommodating the battery cells 20 .
  • the first part 11 and the second part 12 can be in various shapes, such as cuboid, cylinder and so on.
  • the first part 11 can be a hollow structure with one side open, and the second part 12 can also be a hollow structure with one side open.
  • Box 10. As shown in Figure 2, it is also possible that the first part 11 is a hollow structure with one side open, the second part 12 is a plate-like structure, and the second part 12 is covered on the open side of the first part 11 to form a housing with an accommodating space 13. Box 10.
  • the first part 11 and the second part 12 can be sealed by a sealing element, and the sealing element can be a sealing ring, a sealant, or the like.
  • the battery 100 there may be one or more battery cells 20 , that is, there may be one or more battery cells 20 accommodated in the case 10 . If there are multiple battery cells 20 , the multiple battery cells 20 can be connected in series, in parallel or in combination. Wherein, the mixed connection means that the plurality of battery cells 20 are both connected in series and in parallel.
  • the battery 100 may further include a confluence component, through which the plurality of battery cells 20 may be electrically connected, so as to realize the series connection, parallel connection or mixed connection of the plurality of battery cells 20 .
  • the bus component may be a metal conductor, such as copper, iron, aluminum, steel, aluminum alloy, and the like.
  • FIG. 3 is a full cross-sectional view of a battery cell 20 provided by some embodiments of the present application.
  • the battery cell 20 may include an electrode assembly 21 , a casing 22 , a pressure relief mechanism 23 and an end cap 24 .
  • the casing 22 has an opening, the casing 22 is used to accommodate the electrode assembly 21, the electrode assembly 21 has a first tab 212, and the pressure relief mechanism 23 is used to activate when the internal pressure or temperature of the battery cell 20 reaches a threshold value to release To release the internal pressure, the end cap 24 is used to cover the opening.
  • the end cap 24 is provided with a recess 241.
  • the recess 241 is recessed from the side of the end cap 24 away from the electrode assembly 21 along the direction facing the electrode assembly 21.
  • the recess 241 is used for At least a portion of the pressure relief mechanism 23 is accommodated.
  • the end cover 24 is formed with a connecting portion 242 at the bottom of the concave portion 241, the connecting portion 242 is used for welding with the first tab 212 to form the first welding portion 25, and the pressure relief mechanism 23 covers the end cover 24 in the thickness direction Z.
  • the first welding part 25 is used for welding with the first tab 212 to form the first welding portion 25 .
  • the end cover 24 forms a connection portion 242 at the bottom of the recess 241
  • the connection portion 242 is welded to the first tab 212 to form the first welding portion 25, and the pressure relief mechanism 23 is located on the end cover.
  • 24 covers the first welding portion 25 in the thickness direction Z, so that the first welding portion 25 and the pressure relief mechanism 23 are distributed in the thickness direction Z of the end cover 24, and the pressure relief mechanism 23 is perpendicular to the thickness direction Z of the end cover 24.
  • the size is not limited by the first welding portion 25 , and the size of the concave portion 241 and the pressure relief mechanism 23 can be enlarged according to requirements, which is beneficial to improve the pressure relief capability of the pressure relief mechanism 23 and improve the safety of the battery cell 20 .
  • the first welding part 25 is the soldering part after the connecting part 242 and the first tab 212 are welded, that is, the part connecting the connecting part 242 and the first tab 212 together after welding.
  • the connecting portion 242 is welded to the first tab 212 to form the first welding portion 25 , which can also be understood that the connecting portion 242 is connected to the first tab 212 through the first welding portion 25 .
  • the connecting portion 242 is connected to the first tab 212 through the first welding portion 25 , so as to realize the electrical connection between the first tab 212 and the end cap 24 , so that the end cap 24 serves as an output pole of the battery cell 20 .
  • the end cap 24 may be the positive output pole of the battery cell 20 or the negative output pole of the battery cell 20 .
  • the first welding portion 25 formed by welding the connecting portion 242 and the first tab 212 may be one or multiple.
  • the end cover 24 is formed with a connection portion 242 at the bottom of the recess 241 , that is, the portion of the end cover 24 from the bottom surface 2411 of the recess 241 to the surface of the end cover 24 along the concave direction of the recess 241 is the connection portion 242 .
  • the pressure relief mechanism 23 is at least partially accommodated in the recess 241 , and the pressure relief mechanism 23 may be partially accommodated in the recess 241 , or the entire pressure relief mechanism 23 may be completely accommodated in the recess 241 .
  • the end cap 24 covers the opening of the housing 22 , and the end cap 24 and the housing 22 jointly define a sealed space for accommodating the electrode assembly 21 and the electrolyte, which may be an electrolyte.
  • the electrode assembly 21 may further include a main body 211 and a second tab 213 , both of the first tab 212 and the second tab 213 protrude from the main body 211 .
  • the main body 211 may include a positive electrode tab, a negative electrode tab, and a separator.
  • the main body 211 may be a winding structure formed by winding the positive pole piece, the separator and the negative pole piece.
  • the main body 211 may also be a laminated structure formed by stacking the positive pole piece, the separator and the negative pole piece.
  • the main body 211 may be a cylindrical structure or a flat structure. If the main body 211 is a cylindrical structure, the electrode assembly 21 as a whole is basically a cylindrical structure; if the main body 211 is a flat body structure, the electrode assembly 21 is also basically a flat body structure.
  • the positive electrode sheet includes a positive electrode collector and a positive electrode active material layer coated on opposite sides of the positive electrode collector.
  • the negative electrode sheet includes a negative electrode current collector and negative electrode active material layers coated on opposite sides of the negative electrode current collector.
  • the polarity of the first tab 212 and the second tab 213 are opposite, the first tab 212 may be a positive tab, the second tab 213 may be a negative tab, or the first tab 212 may be a negative tab, The second tab 213 is a positive tab.
  • the main body 211 may be the part of the electrode assembly 21 corresponding to the area where the pole piece is coated with the active material layer, the negative tab may be the part of the negative pole piece that is not coated with the active material layer, and the positive pole tab may be the part of the positive pole piece that is not coated with the active material layer. A portion coated with an active material layer.
  • the first tab 212 and the second tab 213 can be disposed on the same side of the main body 211 , or can be located on opposite sides of the main body 211 respectively. As shown in FIG. 3 , taking the main body 211 as a cylinder as an example, in the axial direction of the main body 211 , the first tab 212 and the second tab 213 are respectively located on two sides of the main body 211 .
  • the battery cell 20 may further include an electrode terminal 26, the electrode terminal 26 is mounted on the casing 22, the electrode terminal 26 and the end cap 24 are respectively located at two opposite ends of the casing 22, the electrode terminal 26 is used for connecting with the first The dipole lug 213 is electrically connected.
  • the electrode terminal 26 and the end cover 24 are respectively used as two output poles of the battery cell 20, and the electrode terminal 26 may be a positive output pole, and the end cover 24 may be a negative output pole, or the electrode terminal 26 may be a negative output pole, and the end cover may be a negative output pole.
  • 24 is the positive output pole.
  • the first tab 212 is a positive tab and the second tab 213 is a negative tab
  • the end cover 24 is a positive output pole
  • the electrode terminal 26 is a negative output pole
  • the electrode terminal 26 is a negative output pole
  • the electrode terminal 26 is a positive output pole.
  • a current-combining component In the case where a plurality of battery cells 20 are electrically connected through a current-combining component, if one end of the current-combining component is connected to the electrode terminal 26 of one battery cell 20 , the other end of the current-combining component is connected to the end cap 24 of another battery cell 20 . If the electrode terminals 26 of the two battery cells 20 are connected through a converging part, and the end caps 24 of the two battery cells 20 are connected through another converging part, two battery cells 20 are connected in series. The parallel connection of battery cells 20.
  • the electrode terminal 26 and the second tab 213 may be directly connected, for example, the electrode terminal 26 and the second tab 213 are directly welded to realize electrical connection between the two.
  • the electrode terminal 26 and the second tab 213 may also be indirectly connected through an intermediate piece, for example, the electrode terminal 26 and the second tab 213 are connected through a current collecting member 27, and the electrode terminal Both the cover 24 and the second tab 213 can be welded with the current collecting member 27 to realize the electrical connection between the electrode terminal 26 and the second tab 213 .
  • the current collecting member 27 may be a metal conductor, such as copper, iron, aluminum, steel, aluminum alloy and the like.
  • the housing 22 may be in various shapes, such as a cylinder, a cuboid, and the like.
  • the shape of the casing 22 can be determined according to the specific shape of the electrode assembly 21 .
  • the shell 22 can be a cylindrical structure; if the electrode assembly 21 is a flat structure, the shell 22 can be a cuboid structure.
  • the battery cells 20 are cylindrical battery cells 20 ; if the shell 22 is a rectangular parallelepiped structure, the battery cells 20 are square battery cells 20 .
  • the housing 22 is a cylindrical structure.
  • the housing 22 may include a housing body 221 and a cover 222, the cover 222 covers one end of the housing body 221, the end of the housing body 221 facing away from the cover 222 forms an opening, and the end The cover 24 covers the opening.
  • the cover body 222 and the end cap 24 are respectively located at two axial ends of the case body 221 .
  • the electrode terminal 26 can be mounted on the cover body 222 , and the electrode end cover 24 is insulated and connected to the cover body 222 .
  • the battery cell 20 may further include an insulator 28 located inside the case body 221, the insulator 28 is located between the electrode assembly 21 and the cover 222, and the insulator 28 is used to connect the cover 222 to the electrode assembly. 21 insulation isolation.
  • the insulating member 28 can be made of insulating materials such as rubber and plastic.
  • the electrode terminal 26 may not be provided in the battery cell 20 , and the cover body 222 may be electrically connected to the second tab 213 , and the cover body 222 serves as an output pole of the battery cell 20 .
  • the cover body 222 may be insulated from the case body 221 , or the end cap 24 may be insulated from the case body 221 , so as to avoid a short circuit between positive and negative poles.
  • the pressure relief mechanism 23 refers to an element or component that is activated to release the internal pressure or temperature when the internal pressure or temperature of the battery cell 20 reaches a predetermined threshold.
  • the pressure relief mechanism 23 can have various structures, and the pressure relief mechanism 23 can be components such as an explosion-proof valve, a burst disk, an air valve, or a pressure relief valve.
  • FIG. 4 is an exploded view of the pressure relief mechanism 23 and the end cap 24 shown in FIG. Or when the temperature reaches the threshold value, the pressure relief mechanism 23 breaks from the position of the notch groove 231 to realize the actuation of the pressure relief mechanism 23 to form an open channel for the internal pressure or temperature of the battery cell 20 to discharge.
  • the scoring groove 231 on the pressure relief mechanism 23 can be a closed structure with both ends connected, or an unclosed structure with a distance between the two ends. If the notched groove 231 on the pressure relief mechanism 23 is a closed structure, when the internal pressure or temperature of the battery cell 20 reaches a threshold value, the pressure relief mechanism 23 may partially fall off with the notched groove 231 as the boundary to discharge the battery cell. The internal pressure of the body 20; if the pressure relief mechanism 23 is a non-closed structure, when the internal pressure or temperature of the battery cell 20 reaches a threshold value, the pressure relief mechanism 23 can be partially turned around the scored groove 231 to release The internal pressure of the battery cell 20 .
  • the pressure relief mechanism 23 is a rupture disk
  • the scoring groove 231 is an annular structure connected end to end.
  • the size of the pressure relief mechanism 23 directly affects the pressure relief capability of the pressure relief mechanism 23.
  • the pressure relief mechanism 23 and the end cover 24 are all circular as an example ,
  • the diameter of the pressure relief mechanism 23 is not less than 1/3 of the diameter of the end cap 24 .
  • FIG. 5 is an assembly diagram of the pressure relief mechanism 23 and the end cover 24 shown in FIG. 4 .
  • the end cover 24 may include a cover body 243 and a protrusion 244 .
  • the cover body 243 is used to cover the opening.
  • the cover body 243 has a first outer surface 2431 and a first inner surface 2432 arranged oppositely.
  • the recess 241 faces the electrode assembly 21 from the first outer surface 2431. sunken.
  • the protrusion 244 is located at a position corresponding to the recess 241 on the cover body 243 , and the protrusion 244 protrudes from the first inner surface 2432 in a direction facing the electrode assembly 21 .
  • the convex portion 244 has an abutment surface 2441 facing the electrode assembly 21, the bottom surface 2411 of the concave portion 241 is opposite to the abutment surface 2441, and the abutment surface 2441 is used for contacting the first tab 212 (Fig. 5 not shown), a connecting portion 242 is formed between the abutting surface 2441 and the bottom surface 2411 .
  • the convex part 244 is located at the corresponding position of the cover body 243 to the concave part 241 , and protrudes from the first inner surface 2432 in the direction facing the electrode assembly 21 .
  • a connecting portion 242 for welding with the first tab 212 is formed between the abutting surface 2441 of the convex portion 244 and the bottom surface 2411 of the concave portion 241, and the abutting surface 2441 of the convex portion 244 when the connecting portion 242 is welded to the first tab 212 It can maintain good contact with the first tab 212 and increase the flow area between the first tab 212 and the end cover 24 .
  • a connecting portion 242 is formed between the abutting surface 2441 and the bottom surface 2411 of the concave portion 241 . Understandably, in the thickness direction Z of the end cover 24 , the two end surfaces of the connecting portion 242 are the abutting surface 2441 and the bottom surface 2411 .
  • the bottom surface 2411 is closer to the electrode assembly 21 than the first inner surface 2432 (not shown in FIG. 5 ).
  • this structure increases the recessed depth of the recessed part 241, thereby increasing the space of the recessed part 241 for accommodating the pressure relief mechanism 23;
  • the distance is relatively small, that is, the thickness of the connecting portion 242 is relatively small, which is convenient for welding the connecting portion 242 and the first tab 212 from the outside of the end cover 24, and improves the firmness of the connecting portion 242 and the first tab 212 after welding. sex.
  • the bottom surface 2411 may be flush with the first inner surface 2432 , or, in the thickness direction Z, the bottom surface 2411 is further away from the electrode assembly 21 than the first inner surface 2432 .
  • the pressure relief mechanism 23 is completely accommodated in the recess 241, the pressure relief mechanism 23 will not occupy the space outside the recess 241, the overall volume of the battery cell 20 is reduced, and it is beneficial to lift the battery. 100 energy density.
  • the pressure relief mechanism 23 has a second outer surface 232 facing away from the connecting portion 242.
  • the pressure relief mechanism 23 is completely accommodated in the concave portion 241, that is, the second outer surface 232 does not exceed the first outer surface 2431 in the direction away from the connecting portion 242, which can be
  • the second outer surface 232 is flush with the first outer surface 2431 , or the second outer surface 232 may be closer to the connecting portion 242 than the first outer surface 2431 .
  • the scoring groove 231 can be opened on the second outer surface 232 .
  • FIG. 6 is a partial view of the battery cell 20 shown in FIG. , the through hole 2421 is used to connect the inside of the battery cell 20 with the concave portion 241 .
  • the arrangement of the through hole 2421 can release the stress generated when the connecting portion 242 is welded to the first tab 212 . Since the pressure relief mechanism 23 covers the through hole 2421 , the through hole 2421 communicates with the inside of the battery cell 20 and the recess 241 , and the pressure inside the battery cell 20 can be released through the through hole 2421 when the pressure relief mechanism 23 is actuated. That is to say, the through hole 2421 can be used as a pressure relief hole of the end cover 24 .
  • two ends of the through hole 2421 can pass through the abutting surface 2441 and the bottom surface 2411 of the concave portion 241 respectively, so as to communicate the concave portion 241 with the inside of the battery cell 20 .
  • the end cap 24 , the pressure relief mechanism 23 and the concave portion 241 are all circular, and the through hole 2421 is coaxially arranged with the concave portion 241 .
  • the through hole 2421 is used to inject the electrolyte into the battery cell 20 , the through hole 2421 is the electrolyte injection hole, and the electrolyte can be injected into the battery cell 20 through the through hole 2421 .
  • the through hole 2421 covered by the pressure relief mechanism 23 serves as the electrolyte injection hole, there is no need to open another electrolyte injection hole on the end cover 24 , and the end cover 24 can provide a larger space for the pressure relief mechanism 23 .
  • the pressure relief mechanism 23 is not installed in the concave portion 241 of the end cap 24 .
  • the pressure relief mechanism 23 is installed in the concave portion 241 and covers the through hole 2421 .
  • the electrode assembly 21 is formed with a central hole 214 , and the through hole 2421 is disposed opposite to the central hole 214 .
  • This structure enables the internal discharge of the battery cell 20 to be discharged in time through the channel formed by the central hole 214 and the through hole 2421 when the internal pressure or temperature of the battery cell 20 reaches a threshold value;
  • the electrolyte solution can quickly enter the center hole 214 to infiltrate the pole piece.
  • the through hole 2421 may not be used as the electrolyte injection hole.
  • an electrolyte injection hole can be added on the end cover 24.
  • An electrolyte injection hole may also be additionally provided on the cover body 222 .
  • the connecting portion 242 is welded to the first tab 212 to form two first welding portions 25 , and the two first welding portions 25 are located on both sides of the through hole 2421 along the first direction X.
  • the first direction X is perpendicular to the thickness direction Z.
  • the two first welding parts 25 can serve to connect the first tab 212 and the connecting part 242 , which improves the firmness of the connecting part 242 and the first tab 212 after welding.
  • the connecting portion 242 is welded with the first tab 212 to form an annular first welding portion 25 , and the first welding portion 25 is arranged around the through hole 2421 .
  • the pressure relief mechanism 23 and the end cover 24 can be connected and fixed in various ways, for example, the pressure relief mechanism 23 and the end cover 24 are welded, and another example, the pressure relief mechanism 23 and the end cover 24 are bonded.
  • the pressure relief mechanism 23 is welded to the end cover 24 to form a second welding portion 29 , that is, the pressure relief mechanism 23 and the end cover 24 are fixedly connected through the second welding portion 29 .
  • the second welding portion 29 is located outside the first welding portion 25 along the first direction X. As shown in FIG. This structure makes the first welding portion 25 and the second welding portion 29 not overlap in the thickness direction Z of the end cover 24, and when the pressure relief mechanism 23 and the end cover 24 are welded, there will be no gap where the first welding portion 25 is located.
  • the second welding is formed at the position where the first welding part 25 is damaged due to the second welding, which will affect the firmness of the first connecting part 242 and the first tab 212 after welding.
  • the first welding portion 25 is located outside the through hole 2421 , and the second welding portion 29 is farther away from the through hole 2421 than the first welding portion 25 . If the first welding portion 25 is located on the first circumference and the second welding portion 29 is located on the second circumference, then the first circumference is located on the outer circumference of the through hole 2421 , and the second circumference is located on the outer circumference of the first circumference.
  • the end cover 24 When the electrolyte solution is injected into the interior of the battery cell 20 through the through hole 2421, the end cover 24 may have residual electrolyte solution around the through hole 2421. If the welding position of the pressure relief mechanism 23 and the end cover 24 is close In the through hole 2421 , under the influence of the residual electrolyte on the end cover 24 , the welding between the pressure relief mechanism 23 and the end cover 24 is likely to be weak, resulting in a low welding yield. In this embodiment, since the second welding portion 29 is farther away from the through hole 2421 than the first welding portion 25, the welding position of the pressure relief mechanism 23 and the end cover 24 is farther away from the through hole 2421. When the end cover 24 is welded, it is not easily affected by the residual electrolyte around the through hole 2421, which ensures the firmness of the pressure relief mechanism 23 and the end cover 24 after welding, and improves the welding quality rate.
  • the pressure relief mechanism 23 is welded to the end cover 24 to form a second welded portion 29, which may be one or multiple.
  • the second welding portion 29 may be an annular structure arranged around the through hole 2421 , and the pressure relief mechanism 23 and the end cover 24 are sealed through the second welding portion 29 .
  • the pressure relief mechanism 23 may include a fixing portion 233 and a pressure relief portion 234 .
  • the outer peripheral wall of the fixing portion 233 is welded to the inner peripheral wall of the concave portion 241 to form a second welded portion 29 .
  • the pressure relief part 234 is used to activate when the internal pressure or temperature of the battery cell 20 reaches a threshold, so as to release the internal pressure.
  • the pressure relief part 234 of the pressure relief mechanism 23 is used for releasing the pressure inside the battery cell 20
  • the fixing part 233 of the pressure relief mechanism 23 is used for welding and fixing with the end cover 24 . Since the outer peripheral wall of the fixed part 233 is welded to the inner peripheral wall of the recessed part 241 to form the second welded part 29, the second welded part 29 is far away from the pressure relief part 234, reducing the pressure on the fixed part 233 and the end cover 24 during welding.
  • the pressure relief portion 234 poses a risk of injury.
  • the fixing part 233 and the end cover 24 can be welded by butt welding.
  • the connecting portion 242 is provided with a through hole 2421
  • the second welding portion 29 is located at the weld position formed between the outer peripheral wall of the fixed portion 233 and the inner peripheral wall of the concave portion 241, the second welding portion 29 is vertically
  • the end cover 24 is farther away from the through hole 2421 in the thickness direction, so as to reduce the residual electrolyte in the concave part 241 during the process of injecting the electrolyte into the battery cell 20 through the through hole 2421, and cause the fixing part 233 and the end cover 24 to be welded incorrectly. solid risk.
  • the scoring groove 231 may be opened on the pressure relief portion 234 .
  • the thickness of the fixing part 233 is greater than the thickness of the pressure relief part 234, which facilitates the actuation of the pressure relief mechanism 23 to release the pressure inside the battery cell 20, and the depth of the scoring groove 231 does not need to be too deep to realize the pressure relief part. 234 is actuated to release the pressure inside the battery cell 20 .
  • the fixing portion 233 is entirely located outside the first welding portion 25 , that is, the fixing portion 233 does not overlap with the first welding portion 25 in the thickness direction Z.
  • the pressure relief portion 234 covers the first welding portion 25 , and the pressure relief portion 234 and the first welding portion 25 are arranged with a gap along the thickness direction Z.
  • This structure prevents the first welding part 25 from interfering with the pressure relief mechanism 23 in the process of welding the fixing part 233 and the end cover 24, and can effectively improve the welding quality between the outer peripheral wall of the fixing part 233 and the inner peripheral wall of the recessed part 241 . That is to say, this structure can improve the welding quality of the butt welding between the fixing part 233 and the end cover 24 .
  • the thickness of the fixing part 233 is greater than the thickness of the pressure relief part 234, and the fixing part 233 and the pressure relief part 234 jointly define an avoidance space 235, and the avoidance space 235 is used to avoid the first welding part 25, and ensure that the pressure relief part
  • the fixing portion 233 can abut against the bottom surface 2411 of the concave portion 241 so as to weld the fixing portion 233 and the end cap 24 .
  • both the fixing part 233 and the pressure relief part 234 are sheet structures, the surface of the fixing part 233 away from the bottom surface 2411 of the recess 241 is coplanar with the surface of the pressure relief part 234 away from the bottom surface 2411 of the recess 241 and forms a second outer surface 232 , the second outer surface 232 is flush with the first outer surface 2431 .
  • FIG. 7 is a partial view of a battery cell 20 provided in another embodiment of the present application.
  • the fixing portion 233 covers at least a part of the first welding portion 25 , And the fixing portion 233 is provided with a gap with the first welding portion 25 .
  • This structure prevents the first welding part 25 from interfering with the pressure relief mechanism 23 in the process of welding the fixing part 233 and the end cover 24, and can effectively improve the welding quality between the outer peripheral wall of the fixing part 233 and the inner peripheral wall of the recessed part 241 .
  • the fixing part 233 completely covers the first welding part 25 in the thickness direction Z.
  • FIG. 8 is a partial view of a battery cell 20 provided in some other embodiments of the present application.
  • the pressure relief mechanism 23 and the connecting portion 242 are stacked along the thickness direction Z.
  • the connecting part 242 is welded to form the second welding part 29 , which ensures the firmness of the pressure relief mechanism 23 and the end cover 24 after welding, and can effectively improve the welding efficiency of the pressure relief mechanism 23 and the end cover 24 .
  • the pressure relief mechanism 23 and the connecting portion 242 may be fixed by welding through penetration welding.
  • the pressure relief mechanism 23 may be a sheet-like structure with uniform thickness except for the position where the notch groove 231 is provided, and the second surface of the pressure relief mechanism 23 may be larger than the first outer surface 2431 of the cover body 243 Being closer to the connection portion 242 is beneficial for the second welding portion 29 to penetrate the pressure relief mechanism 23 and be fixed with the connection portion 242 , improving the firmness of the pressure relief mechanism 23 and the end cover 24 after welding.
  • FIG. 9 is a flow chart of a method for manufacturing a battery cell 20 provided in some embodiments of the present application.
  • the manufacturing method includes:
  • S300 providing a pressure relief mechanism 23, which is used to activate when the internal pressure or temperature of the battery cell 20 reaches a threshold, so as to release the internal pressure;
  • S400 provide an end cover 24, the end cover 24 is provided with a recess 241, and the end cover 24 forms a connection part 242 at the bottom of the recess 241;
  • S800 Install the pressure relief mechanism 23 in the end cover 24, so that at least a part of the pressure relief mechanism 23 is accommodated in the recess 241, so that the pressure relief mechanism 23 covers the first welding portion 25 in the thickness direction Z of the end cover 24; wherein, the recess 241 is recessed from a side of the end cap 24 away from the electrode assembly 21 along a direction facing the electrode assembly 21 .
  • step S100, step S200, step S300 and step S400 is not limited.
  • step S400 may be performed first, then step S300, then step S200, and then step S100.
  • step S800 may include: placing the pressure relief mechanism 23 in the concave portion 241 , welding the pressure relief mechanism 23 and the end cover 24 to form the second welding portion 29 .
  • the embodiment of the present application also provides a battery cell 20 manufacturing equipment 2000, please refer to FIG. 10, FIG.
  • the first providing device 1100 is used for providing the electrode assembly 21 , and the electrode assembly 21 has a first tab 212 .
  • the second providing device 1200 is used to provide the casing 22 and has an opening.
  • the third providing device 1300 is used for providing the pressure relief mechanism 23, and the pressure relief mechanism 23 is used for actuating when the internal pressure or temperature of the battery cell 20 reaches a threshold value, so as to release the internal pressure.
  • the fourth providing device 1400 is used for providing the end cap 24 , the end cap 24 is provided with a recess 241 , and the end cap 24 is formed with a connecting portion 242 at the bottom of the recess 241 .
  • the assembly device 1500 is used to accommodate the electrode assembly 21 in the casing 22; cover the end cover 24 on the opening; weld the connecting portion 242 and the first tab 212 to form the first welding portion 25; install the pressure relief mechanism 23 on the In the end cover 24 , at least a part of the pressure relief mechanism 23 is accommodated in the concave portion 241 , so that the pressure relief mechanism 23 covers the first welding portion 25 in the thickness direction Z of the end cover 24 .
  • the recess 241 is recessed from a side of the end cap 24 away from the electrode assembly 21 along a direction facing the electrode assembly 21 .
  • the assembling device 1500 may include a first assembling module, a second assembling module, a third assembling module and a fourth assembling module, the first assembling module is used for accommodating the electrode assembly 21 in the casing 22, and the second assembling module is used for accommodating the end cap 24 covers the opening, the third assembly module is used to weld the connecting portion 242 and the first tab 212 to form the first welding portion 25 , and the fourth assembly module is used to install the pressure relief mechanism 23 in the end cover 24 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本申请实施例提供了一种电池单体、电池、用电设备及电池单体的制造方法和设备,属于电池技术领域。其中,电池单体包括电极组件、泄压机构以及端盖。电极组件具有第一极耳。壳体用于容纳电极组件。端盖用于盖合于壳体的开口,端盖上设有凹部,凹部从端盖背离电极组件的一侧沿面向电极组件的方向凹陷,凹部用于容纳泄压机构的至少一部分。端盖在凹部的底部形成有连接部,连接部用于与第一极耳焊接并形成第一焊接部,泄压机构在端盖的厚度方向上覆盖第一焊接部,使得第一焊接部与泄压机构在端盖的厚度方向上分布,泄压机构在垂直于端盖厚度方向上的尺寸不会受到第一焊接部的限制,可适当将凹部和泄压机构的尺寸做大,有利于提升泄压机构的泄压能力。

Description

电池单体、电池、用电设备及电池单体的制造方法和设备 技术领域
本申请涉及电池技术领域,具体而言,涉及一种电池单体、电池、用电设备及电池单体的制造方法和设备。
背景技术
电池广泛用于电子设备,例如手机、笔记本电脑、电瓶车、电动汽车、电动飞机、电动轮船、电动玩具汽车、电动玩具轮船、电动玩具飞机和电动工具等等。
在电池技术中,既需要考虑电池性能的问题,也需要考虑电池的安全性。因此,如何提高电池的安全性是电池技术中一个亟待解决的问题。
发明内容
本申请实施例提供一种电池单体、电池、用电设备及电池单体的制造方法和设备,能够有效提高电池单体的安全性。
第一方面,本申请实施例提供一种电池单体,包括:电极组件,具有第一极耳;壳体,具有开口,所述壳体用于容纳所述电极组件;泄压机构,用于在所述电池单体的内部压力或温度达到阈值时致动,以泄放所述内部的压力;端盖,用于盖合于所述开口,所述端盖上设有凹部,所述凹部从所述端盖背离所述电极组件的一侧沿面向所述电极组件的方向凹陷,所述凹部用于容纳所述泄压机构的至少一部分;所述端盖在所述凹部的底部形成有连接部,所述连接部用于与所述第一极耳焊接并形成第一焊接部,所述泄压机构在所述端盖的厚度方向上覆盖所述第一焊接部。
上述技术方案中,端盖在凹部的底部形成有连接部,连接部与第一极耳焊接并形成第一焊接部,泄压机构在端盖的厚度方向上覆盖第一焊接部,使得第一焊接部与泄压机构在端盖的厚度方向上分布,泄压机构在垂直于端盖厚度方向上的尺寸不会受到第一焊接部的限制,可根据需求将凹部和泄压机构的尺寸做大,有利于提升泄压机构的泄压能力,提高电池单体的安全性。
在一些实施例中,所述端盖包括:盖本体,用于盖合于所述开口,在所述厚度方向上,所述盖本体具有相对布置的第一外表面和第一内表面,所述凹部从所述第一外表面沿面向所述电极组件的方向凹陷;以及凸部,位于所述盖本体与所述凹部相对应的位置,所述凸部从所述第一内表面沿面向所述电极组件的方向凸出;其中,在所述厚度方向上,所述凸部具有面向所述电极组件的抵靠面,所述凹部的底面与所述抵靠面相对设置,所述抵靠面用于与所述第一极耳相抵,所述抵靠面与所述底面之间形成所述连接部。
上述技术方案中,凸部位于盖本体与凹部相对应的位置,并从第一内表面沿面向电极组件的方向凸出,凸部可对盖本体设置凹部的位置起到加强作用。凸部的抵靠面与凹部的底面之间形成用于与第一极耳焊接的连接部,连接部与第一极耳焊接时凸部的抵靠面可与第一极耳保持良好接触,提高第一极耳与端盖之间的过流面积。
在一些实施例中,在所述厚度方向上,所述底面较所述第一内表面更靠近所述电极组件;或,所述底面与所述第一内表面平齐。
上述技术方案中,底面在端盖的厚度方向上较第一内表面更靠近电极组件或底 面与第一内表面平齐,一方面,增大了凹部的凹陷深度,进而增大了凹部用于容纳泄压机构的空间;另一方面,使得凸部的抵靠面与凹部的底面的距离相对较小,即连接部的厚度相对较小,便于从端盖的外部将连接部与第一极耳焊接,提高了连接部与第一极耳焊接后的牢固性。
在一些实施例中,所述泄压机构与所述端盖焊接并形成第二焊接部,所述第二焊接部位于所述第一焊接部沿第一方向的外侧,所述第一方向垂直于所述厚度方向。
上述技术方案中,泄压机构与端盖焊接形成的第二焊接部位于第一焊接部沿垂直于端盖的厚度方向的第一方向的外侧,使得第一焊接部与第二焊接部在端盖的厚度方向上不重叠,在对泄压机构和端盖进行焊接时,不会在第一焊接部所在的位置形成第二次焊接,避免第一焊接部因二次焊接产生损伤,而影响第一连接部与第一极耳焊接后的牢固性。
在一些实施例中,所述泄压机构包括固定部和泄压部;所述固定部的外周壁与所述凹部的内周壁焊接并形成所述第二焊接部;所述泄压部用于在所述电池单体的内部压力或温度达到阈值时致动,以泄放所述内部的压力。
上述技术方案中,泄压机构的泄压部用于泄放电池单体内部的压力,泄压机构的固定部用于与端盖焊接固定。由于固定部的外周壁与凹部的内周壁焊接并形成第二焊接部,使得第二焊接部远离于泄压部,降低在将固定部与端盖进行焊接过程中对泄压部造成损伤的风险。
在一些实施例中,所述固定部的厚度大于所述泄压部的厚度。
上述技术方案中,固定部的厚度大于泄压部的厚度,便于泄压机构致动而泄放电池单体内部的压力。
在一些实施例中,所述固定部整体位于所述第一焊接部的外侧,在所述厚度方向上,所述泄压部覆盖所述第一焊接部,且所述泄压部与所述第一焊接部沿所述厚度方向间隙设置。
上述技术方案中,泄压部在端盖的厚度方向上覆盖第一焊接部,且泄压部与第一焊接部沿厚度方向间隙设置,这种结构使得第一焊接部在对固定部与端盖进行焊接的过程不会对泄压机构造成干扰,可有效提高固定部的外周壁与凹部的内周壁的焊接质量。
在一些实施例中,在所述厚度方向上,所述固定部覆盖所述第一焊接部的至少一部分,且所述固定部与所述第一焊接部间隙设置。
上述技术方案中,固定部在端盖的厚度方向覆盖第一焊接部的至少一部分,固定部与第一焊接部间隙设置,这种结构使得第一焊接部在对固定部与端盖进行焊接的过程不会对泄压机构造成干扰,可有效提高固定部的外周壁与凹部的内周壁的焊接质量。
在一些实施例中,所述泄压机构与所述连接部沿所述厚度方向层叠布置,所述泄压机构与所述连接部焊接并形成所述第二焊接部。
上述技术方案中,泄压机构与连接部沿厚度方向层叠布置并焊接形成第二焊接部,保证泄压机构与端盖焊接后的牢固性,可有效提高泄压机构与端盖的焊接效率。
在一些实施例中,所述连接部上设有贯穿所述连接部的通孔;
所述泄压机构覆盖所述通孔,所述通孔用于连通所述凹部与所述电池单体的内部。
上述技术方案中,连接部上设有贯穿连接部的通孔,通孔的设置可释放连接部与第一极耳焊接时产生的应力。泄压机构覆盖通孔,通孔用于连通电池单体的内部与凹部,在泄压机构致动时可通过通孔泄放电池单体内部的压力。
在一些实施例中,所述通孔用于向所述电池单体的内部注入电解液。
上述技术方案中,通孔用于向电池单体的内部注入电解液,通孔即为电解液注入孔,也就是说,可通过通孔向电池单体内部注入电解液。
在一些实施例中,所述连接部与所述第一极耳焊接形成有两个第一焊接部,所述两个第一焊接部沿第一方向位于所述通孔的两侧,所述第一方向垂直于所述厚度方向。
上述技术方案中,连接部与第一极耳焊接形成两个第一焊接部,且两个第一焊接部沿垂直于端盖的厚度方向的第一方向位于通孔的两侧的两个第一焊接部,两个第一焊接部均可起到连接第一极耳和连接部的作用,提高了连接部与第一极耳焊接后的牢固性。
在一些实施例中,所述泄压机构完全容纳于所述凹部。
上述技术方案中,泄压机构完全容纳于凹部内,泄压机构不会占用凹部以外的空间,减小了电池单体整体体积,有利于提升电池的能量密度。
在一些实施例中,所述泄压机构的直径不小于所述端盖的直径的1/3。
上述技术方案中,泄压机构的直径不小于所述端盖的直径的1/3,使得泄压机构的直径相对较大,提高了泄压机构的泄压能力。
第二方面,本申请实施例提供一种电池,包括:第一方面任意一个实施例提供的电池单体;以及箱体,用于容纳所述电池单体。
第三方面,本申请实施例提供一种用电设备,包括第二方面任意一个实施例提供的电池。
第四方面,本申请实施例提供一种电池单体的制造方法,所述方法包括:提供电极组件,所述电极组件具有第一极耳;提供壳体,具有开口;提供泄压机构,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动,以泄放所述内部的压力;提供端盖,所述端盖设有凹部,所述端盖在所述凹部的底部形成有连接部;将电极组件容纳于所述壳体;将端盖盖合于所述开口;将所述连接部与所述第一极耳焊接并形成第一焊接部;将泄压机构安装于所述端盖内,使所述泄压机构至少一部分容纳于所述凹部,使得所述泄压机构在端盖的厚度方向上覆盖所述第一焊接部;其中,所述凹部从所述端盖背离所述电极组件的一侧沿面向所述电极组件的方向凹陷。
第五方面,本申请实施例还提供一种电池单体的制造设备,所述制造设备包括:第一提供装置,用于提供电极组件,所述电极组件具有第一极耳;第二提供装置,用于提供壳体,具有开口;第三提供装置,用于提供泄压机构,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动,以泄放所述内部的压力;第四提供装置,用于提供端盖,所述端盖设有凹部,所述端盖在所述凹部的底部形成有连接部;组装装置,用于将电极组件容纳于所述壳体;将端盖盖合于所述开口;将所述 连接部与所述第一极耳焊接并形成第一焊接部;将泄压机构安装于所述端盖内,使所述泄压机构至少一部分容纳于所述凹部,使得所述泄压机构在端盖的厚度方向上覆盖所述第一焊接部;其中,所述凹部从所述端盖背离所述电极组件的一侧沿面向所述电极组件的方向凹陷。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的结构示意图;
图3为本申请一些实施例提供的电池单体的全剖视图;
图4为图3所示的泄压机构与端盖爆炸图;
图5为图4所示泄压机构与端盖的装配图;
图6为图3所示的电池单体的局部视图;
图7为本申请另一些实施例提供的电池单体的局部视图;
图8为本申请又一些实施例提供的电池单体的局部视图;
图9为本申请一些实施例提供的电池单体的制造方法的流程图;
图10为本申请一些实施例提供电池单体的制造设备的示意性框图。
图标:10-箱体;11-第一部分;12-第二部分;13-容纳空间;20-电池单体;21-电极组件;211-主体;212-第一极耳;213-第二极耳;214-中心孔;22-壳体;221-壳本体;222-盖体;23-泄压机构;231-刻痕槽;232-第二外表面;233-固定部;234-泄压部;235-避让空间;24-端盖;241-凹部;2411-底面;242-连接部;2421-通孔;243-盖本体;2431-第一外表面;2432-第一内表面;244-凸部;2441-抵靠面;25-第一焊接部;26-电极端子;27-集流构件;28-绝缘件;29-第二焊接部;100-电池;200-控制器;300-马达;1000-车辆;1100-第一提供装置;1200-第二提供装置;1300-第三提供装置;1400-第四提供装置;1500-组装装置;2000-制造设备;Z-厚度方向;X-第一方向。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书 及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“附接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。
对于电池单体来说,主要的安全危险来自于充电和放电过程,同时还有适宜的环境温度设计,为了有效地避免不必要的损失,对电池单体一般会有至少三重保护措施。具体而言,保护措施至少包括开关元件、选择适当的隔离膜材料以及泄压机构。开关元件是指电池单体内的温度或者电阻达到一定阈值时而能够使电池停止充电或者 放电的元件。隔离膜用于隔离正极极片和负极极片,可以在温度上升到一定数值时自动溶解掉附着在其上的微米级(甚至纳米级)微孔,从而使金属离子不能在隔离膜上通过,终止电池单体的内部反应。
泄压机构是指电池单体的内部压力或温度达到预定阈值时致动以泄放内部压力或温度的元件或部件。该阈值设计根据设计需求不同而不同。所述阈值可能取决于电池单体中的正极极片、负极极片、电解液和隔离膜中一种或几种的材料。泄压机构可以采用诸如防爆阀、防爆片、气阀、泄压阀或安全阀等的形式,并可以具体采用压敏或温敏的元件或构造,即,当电池单体的内部压力或温度达到预定阈值时,泄压机构执行动作或者泄压机构中设有的薄弱结构被破坏,从而形成可供内部压力或温度泄放的开口或通道。
本申请中所提到的“致动”是指泄压机构产生动作或被激活至一定的状态,从而使得电池单体的内部压力及温度得以被泄放。泄压机构产生的动作可以包括但不限于:泄压机构中的至少一部分破裂、破碎、被撕裂或者打开,等等。泄压机构在致动时,电池单体的内部的高温高压物质作为排放物会从致动的部位向外排出。以此方式能够在可控压力或温度的情况下使电池单体发生泄压及泄温,从而避免潜在的更严重的事故发生。
本申请中所提到的来自电池单体的排放物包括但不限于:电解液、被溶解或分裂的正负极极片、隔离膜的碎片、反应产生的高温高压气体、火焰,等等。
发明人发现,在电池单体中,泄压机构的泄压能力(如,泄压效率)较差,无法及时泄压,容易导致电池单体爆炸、起火等,影响电池单体的安全性。发明人进一步研究发现,对于一般的电池单体而言,泄压机构安装于端盖上,端盖上设有焊接槽,焊接槽位于泄压机构的外侧,端盖在焊接槽的位置与电极组件的极耳焊接,并形成将端盖与极耳连接在一起的焊接部,由于焊接部位于泄压机构的外侧,泄压机构因受到焊接部的限制而尺寸无法做大,进而导致泄压机构的泄压能力不足。
鉴于此,本申请实施例提供一种技术方案,通过在端盖上设置凹部,凹部从端盖背离电极组件的一侧沿面向电极组件的方向凹陷,凹部用于容纳泄压机构的至少一部分,端盖在凹部的底部形成有连接部,连接部与第一极耳焊接并形成第一焊接部,泄压机构在端盖的厚度方向上覆盖第一焊接部,使得泄压机构在垂直于端盖厚度方向上的尺寸不再受到第一焊接部的限制,可根据需求将凹部和泄压机构的尺寸做大,有利于提升泄压机构的泄压能力,提高电池单体的安全性。
本申请实施例描述的技术方案适用于电池以及使用电池的用电设备。
用电设备可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电设备不做特殊限制。
以下实施例为了方便说明,以用电设备为车辆为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图,车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。
车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为 马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
在一些实施例中,请参照图2,图2为本申请一些实施例提供的电池100的结构示意图,电池100包括箱体10和电池单体20,箱体10用于容纳电池单体20。
箱体10可以包括第一部分11和第二部分12,第一部分11与第二部分12相互盖合,以限定出用于容纳电池单体20的容纳空间13。第一部分11和第二部分12可以是多种形状,比如,长方体、圆柱体等。第一部分11可以是一侧开放的空心结构,第二部分12也可以是一侧开放的空心结构,第二部分12的开放侧盖合于第一部分11的开放侧,则形成具有容纳空间13的箱体10。如图2所示,也可以是第一部分11为一侧开放的空心结构,第二部分12为板状结构,第二部分12盖合于第一部分11的开放侧,则形成具有容纳空间13的箱体10。
第一部分11与第二部分12可以通过密封元件来实现密封,密封元件可以是密封圈、密封胶等。
在电池100中,电池单体20可以一个,也可以是多个,即容纳于箱体10内的电池单体20可以是一个,也可以是多个。若电池单体20为多个,多个电池单体20之间可串联或并联或混联。其中,混联是指多个电池单体20中既有串联又有并联。在一些实施例中,电池100还可以包括汇流部件,多个电池单体20之间可以通过汇流部件实现电连接,以实现多个电池单体20的串联或并联或混联。
汇流部件可以是金属导体,比如,铜、铁、铝、钢、铝合金等。
请参照图3,图3为本申请一些实施例提供的电池单体20的全剖视图,电池单体20可以包括电极组件21、壳体22、泄压机构23和端盖24。壳体22具有开口,壳体22用于容纳电极组件21,电极组件21具有第一极耳212,泄压机构23用于在电池单体20的内部压力或温度达到阈值时致动,以泄放内部的压力,端盖24用于盖合于开口,端盖24上设有凹部241,凹部241从端盖24背离电极组件21的一侧沿面向电极组件21的方向凹陷,凹部241用于容纳泄压机构23的至少一部分。其中,端盖24在凹部241的底部形成有连接部242,连接部242用于与第一极耳212焊接并形成第一焊接部25,泄压机构23在端盖24的厚度方向Z上覆盖第一焊接部25。
在上述结构的电池单体20中,由于端盖24在凹部241的底部形成有连接部242,连接部242与第一极耳212焊接并形成第一焊接部25,泄压机构23在端盖24的厚度方向Z上覆盖第一焊接部25,使得第一焊接部25与泄压机构23在端盖24的厚度方向Z上分布,泄压机构23在垂直于端盖24厚度方向Z上的尺寸不会受到第一焊接部25的限制,可根据需求将凹部241和泄压机构23的尺寸做大,有利于提升泄压机构23的泄压能力,提高电池单体20的安全性。
第一焊接部25即为连接部242与第一极耳212焊接后的焊印部分,也就是焊接后将连接部242与第一极耳212连接在一起的部分。连接部242与第一极耳212焊接形成第一焊接部25,也可理解为,连接部242与第一极耳212通过第一焊接部25连接。当然,连接部242与第一极耳212通过第一焊接部25连接,可实现第一极耳212与端盖24的电连接,使得端盖24作为电池单体20的一个输出极。当然,端盖24可以是电池单体20的正输出极,也可以是电池单体20的负输出极。
连接部242与第一极耳212焊接形成的第一焊接部25可以是一个,也可以是多个。
可理解的,端盖24在凹部241的底部形成有连接部242,也就是说,端盖24 上从凹部241的底面2411沿凹部241的凹陷方向到端盖24表面的部分即为连接部242。泄压机构23至少部分容纳于凹部241内,可以是泄压机构23局部容纳于凹部241内,也可以是泄压机构23整体完全容纳于凹部241内。
在本申请实施例中,端盖24盖合于壳体22的开口,端盖24与壳体22共同限定出密封空间,密封空间用于容纳电极组件21和电解质,电解质可以是电解液。
在一些实施例中,电极组件21还可以包括主体211和第二极耳213,第一极耳212和第二极耳213均凸出于主体211。主体211可以包括正极极片、负极极片和隔离膜。主体211可以是由正极极片、隔离膜和负极极片通过卷绕形成的卷绕式结构,主体211也可以是由正极极片、隔离膜和负极极片通过层叠布置形成的层叠式结构。
主体211可以是圆柱体结构,也可以是扁平体结构。若主体211为圆柱体结构,电极组件21整体也基本呈圆柱体结构;若主体211为扁平体结构,电极组件21整体也基本呈扁平体结构。
正极极片包括正极集流体和涂覆于正极集流体相对的两侧的正极活性物质层。负极极片包括负极集流体和涂覆于负极集流体相对的两侧的负极活性物质层。第一极耳212与第二极耳213极性相反,可以是第一极耳212为正极极耳,第二极耳213为负极极耳,也可以是第一极耳212为负极极耳,第二极耳213为正极极耳。主体211可以是电极组件21中与极片涂覆有活性物质层的区域对应的部分,负极极耳可以是负极极片未涂覆活性物质层的部分,正极极耳可以是正极极极片未涂覆活性物质层的部分。
在电极组件21中,第一极耳212和第二极耳213可以设置于主体211的同一侧,也可以分别位于主体211相对的两侧。如图3所示,以主体211为圆柱体为例,在主体211的轴向上,第一极耳212和第二极耳213分别位于主体211的两侧。
在一些实施例中,电池单体20还可以包括电极端子26,电极端子26安装于壳体22,电极端子26和端盖24分别位于壳体22相对的两端,电极端子26用于与第二极耳213电连接。
电极端子26和端盖24分别作为电池单体20的两个输出极,可以是电极端子26为正输出极,端盖24为负输出极,也可以是电极端子26为负输出极,端盖24为正输出极。当然,若第一极耳212为正极极耳,第二极耳213为负极极耳,则端盖24为正输出极,电极端子26为负输出极;若第一极耳212为负极极耳,第二极耳213为正极极耳,则端盖24为负输出极,电极端子26为正输出极。
在多个电池单体20通过汇流部件实现电连接的情况下,若汇流部件的一端与一个电池单体20的电极端子26连接,汇流部件的另一端与另一个电池单体20的端盖24连接,则实现两个电池单体20的串联;若两个电池单体20的电极端子26通过一个汇流部件连接,两个电池单体20的端盖24通过另一个汇流部件连接,则实现两个电池单体20的并联。
在一些实施例中,电极端子26与第二极耳213可以直接连接,比如,电极端子26与第二极耳213直接焊接,以实现两者的电连接。在另一些实施例中,如图3所示,电极端子26与第二极耳213也可以通过中间件间接连接,比如,电极端子26与第二极耳213通过集流构件27连接,电极端盖24和第二极耳213均可以与集流构件27焊接,以实现电极端子26与第二极耳213的电连接。其中,集流构件27可以是金属导体,比如,铜、铁、铝、钢、铝合金等。
在本申请实施例中,壳体22可以是多种形状,比如,圆柱体、长方体等。壳体22的形状可以根据电极组件21的具体形状来确定。比如,若电极组件21为圆柱体结构,壳体22则可选用圆柱体结构;若电极组件21为扁平体结构,壳体22则可选用 长方体结构。若壳体22为圆柱体结构,电池单体20则为柱形电池单体20;若壳体22为长方体结构,电池单体20则为方形电池单体20。示例性的,在图3中,壳体22为圆柱体结构。
在一些实施例中,请继续参照图3,壳体22可以包括壳本体221和盖体222,盖体222盖合于壳本体221的一端,壳本体221背离盖体222的一端形成开口,端盖24盖合于开口。以壳本体221为圆柱体结构为例,盖体222和端盖24分别位于壳本体221轴向的两端。
电极端子26可以安装于盖体222上,电极端盖24与盖体222绝缘连接。
示例性的,电池单体20还可以包括绝缘件28,绝缘件28位于壳本体221内,绝缘件28位于电极组件21与盖体222之间,绝缘件28用于将盖体222与电极组件21绝缘隔离。绝缘件28可以是橡胶、塑料等绝缘材质。
在一些实施例中,在电池单体20中也可不设置电极端子26,可以是盖体222与第二极耳213电连接,盖体222则作为电池单体20的一个输出极。在这种情况下,可以是盖体222与壳本体221绝缘连接,也可以是端盖24与壳本体221绝缘连接,以避免正负极短路。
在本申请实施例中,泄压机构23是指电池单体20的内部压力或温度达到预定阈值时致动以泄放内部压力或温度的元件或部件。泄压机构23可以是多种结构,泄压机构23可以是诸如防爆阀、防爆片、气阀或泄压阀等部件。
在一些实施例中,请参照图4,图4为图3所示的泄压机构23与端盖24爆炸图,泄压机构23上设有刻痕槽231,在电池单体20的内部压力或温度达到阈值时,泄压机构23从刻痕槽231位置破裂,实现泄压机构23的致动,以形成供电池单体20的内部压力或温度泄放的开口通道。
泄压机构23上的刻痕槽231可以是首尾两端相连的封闭式结构,也可以是首尾两端存在距离的非封闭式结构。若泄压机构23上的刻痕槽231为封闭结构,在电池单体20的内部压力或温度达到阈值时,可以是泄压机构23局部以刻痕槽231为边界脱落,以泄放电池单体20的内部压力;若泄压机构23为非封闭式结构,在电池单体20的内部压力或温度达到阈值时,可以是泄压机构23局部以刻痕槽231为边界翻转,以泄放电池单体20的内部压力。
示例性的,在图4中,泄压机构23为防爆片,刻痕槽231为首尾相连的环形结构,刻痕槽231设置于防爆片背离凹部241的底面2411的表面。
泄压机构23的大小直接影响泄压机构23的泄压能力,为提高泄压机构23的泄压能力,在一些实施例中,以泄压机构23和端盖24的均为圆形为例,泄压机构23直径不小于端盖24的直径的1/3。
在一些实施例中,请参照图5,图5为图4所示泄压机构23与端盖24的装配图,端盖24可以包括盖本体243和凸部244。盖本体243用于盖合于开口,在厚度方向Z上,盖本体243具有相对布置的第一外表面2431和第一内表面2432,凹部241从第一外表面2431沿面向电极组件21的方向凹陷。凸部244位于盖本体243与凹部241相对应的位置,凸部244从第一内表面2432沿面向电极组件21的方向凸出。其中,在厚度方向Z上,凸部244具有面向电极组件21的抵靠面2441,凹部241的底面2411与抵靠面2441相对设置,抵靠面2441用于与第一极耳212(图5未示出)相抵,抵靠面2441与底面2411之间形成连接部242。
凸部244位于盖本体243与凹部241相对应的位置,并从第一内表面2432沿面向电极组件21的方向凸出,凸部244可对盖本体243设置凹部241的位置起到加强作用。凸部244的抵靠面2441与凹部241的底面2411之间形成用于与第一极耳212 焊接的连接部242,连接部242与第一极耳212焊接时凸部244的抵靠面2441可与第一极耳212保持良好接触,提高第一极耳212与端盖24之间的过流面积。
抵靠面2441与凹部241的底面2411之间形成连接部242,可理解的,在端盖24的厚度方向Z上,连接部242的两个端面即为抵靠面2441和底面2411。
可选地,在厚度方向Z上,底面2411较第一内表面2432更靠近电极组件21(图5未示出)。这种结构一方面,增大了凹部241的凹陷深度,进而增大了凹部241用于容纳泄压机构23的空间;另一方面,使得凸部244的抵靠面2441与凹部241的底面2411的距离相对较小,即连接部242的厚度相对较小,便于从端盖24的外部将连接部242与第一极耳212焊接,提高了连接部242与第一极耳212焊接后的牢固性。
在其他实施例中,也可以是底面2411与第一内表面2432平齐,或,在厚度方向Z上,底面2411较第一内表面2432更远离电极组件21。
在一些实施例中,请继续参照图5,泄压机构23完全容纳于凹部241内,泄压机构23不会占用凹部241以外的空间,减小了电池单体20整体体积,有利于提升电池100的能量密度。
泄压机构23具有背离连接部242的第二外表面232,泄压机构23完全容纳于凹部241内,即第二外表面232沿背离连接部242的方向不超过第一外表面2431,可以是第二外表面232与第一外表面2431平齐,也可以是第二外表面232较第一外表面2431更靠近于连接部242。
在泄压机构23设置有刻痕槽231的情况下,刻痕槽231可以开设于第二外表面232。
在一些实施例中,请参照图6,图6为图3所示的电池单体20的局部视图,连接部242上设有贯穿连接部242的通孔2421,泄压机构23覆盖通孔2421,通孔2421用于连通电池单体20的内部与凹部241。
通孔2421的设置可释放连接部242与第一极耳212焊接时产生的应力。由于泄压机构23覆盖通孔2421,通孔2421连通电池单体20的内部与凹部241,在泄压机构23致动时可通过通孔2421泄放电池单体20内部的压力。也就是说,通孔2421可作为端盖24的泄压孔。
其中,通孔2421的两端可以分别贯通抵靠面2441和凹部241的底面2411,以将凹部241与电池单体20的内部连通。
示例性的,端盖24、泄压机构23和凹部241均为圆形,通孔2421与凹部241同轴设置。
可选地,通孔2421用于向电池单体20的内部注入电解液,通孔2421即为电解液注入孔,通过通孔2421可向电池单体20内注入电解液。
由于被泄压机构23覆盖的通孔2421作为电解液注入孔,端盖24上无需再另开设电解液注入孔,端盖24可为泄压机构23提供更大的空间。
可理解的,在通过通孔2421向电池单体20内部注入电解液时,泄压机构23并未安装于端盖24的凹部241内。待向电池单体20内部注入电解液后,再将泄压机构23安装于凹部241内并覆盖通孔2421。
可选地,电极组件21形成有中心孔214,通孔2421与中心孔214相对设置。这种结构一方面,使得电池单体20内部压力或温度达到阈值时,电池单体20内部的排放物能够通过中心孔214和通孔2421形成的通道及时排出,另一方面,使得通过通孔2421向电池单体20内部注入电解液时,电解液能够快速进入到中心孔214内以浸润极片。
当然,在其他实施例中,通孔2421也可不作为电解液注入孔,在这种情况下,为确保能够正常向电池100内部注入电解液,可以在端盖24上另增设电解液注入孔,也可以在盖体222上另增设电解液注入孔。
在一些实施例中,请继续参照图6,连接部242与第一极耳212焊接形成两个第一焊接部25,两个第一焊接部25沿第一方向X位于通孔2421的两侧,第一方向X垂直于厚度方向Z。两个第一焊接部25均可起到连接第一极耳212和连接部242的作用,提高了连接部242与第一极耳212焊接后的牢固性。
在另一些实施例中,连接部242与第一极耳212焊接形成环形的第一焊接部25,第一焊接部25环绕通孔2421布置。
在本申请实施例中,泄压机构23与端盖24可以通过多种方式连接固定,比如,泄压机构23与端盖24焊接,再如,泄压机构23与端盖24粘接。
在一些实施例中,泄压机构23与端盖24焊接并形成第二焊接部29,即泄压机构23与端盖24通过第二焊接部29固定连接。第二焊接部29位于第一焊接部25沿第一方向X的外侧。这种结构使得第一焊接部25与第二焊接部29在端盖24的厚度方向Z上不重叠,在对泄压机构23和端盖24进行焊接时,不会在第一焊接部25所在的位置形成第二次焊接,避免第一焊接部25因二次焊接产生损伤,而影响第一连接部242与第一极耳212焊接后的牢固性。
以连接部242上设有通孔2421为例,在第一方向X上,第一焊接部25位于通孔2421的外侧,第二焊接部29较第一焊接部25更远离通孔2421。若第一焊接部25位于第一圆周上,第二焊接部29位于第二圆周上,则第一圆周位于通孔2421的外周,第二圆周位于第一圆周的外周。
在通过通孔2421向电池单体20的内部注入电解液时,端盖24在通孔2421的周围可能会残留电解液,若在对泄压机构23与端盖24进行焊接时的焊接位置靠近于通孔2421,在端盖24上残留的电解液的影响下,容易出现泄压机构23与端盖24焊接不牢固的情况,导致焊接优良率较低。而本实施例中,由于第二焊接部29较第一焊接部25更远离通孔2421,使得泄压机构23与端盖24的焊接位置更远离于通孔2421,在对泄压机构23与端盖24焊接时,不易受到通孔2421周围残留的电解液的影响,保证泄压机构23与端盖24焊接后的牢固性,提高焊接优良率。
泄压机构23与端盖24焊接并形成第二焊接部29可以是一个,也可以是多个。
示例性的,第二焊接部29可以是环绕通孔2421布置的环形结构,泄压机构23与端盖24通过第二焊接部29实现密封。
在一些实施例中,泄压机构23可以包括固定部233和泄压部234。固定部233的外周壁与凹部241的内周壁焊接并形成第二焊接部29。泄压部234用于在电池单体20的内部压力或温度达到阈值时致动,以泄放内部的压力。
泄压机构23的泄压部234用于泄放电池单体20内部的压力,泄压机构23的固定部233用于与端盖24焊接固定。由于固定部233的外周壁与凹部241的内周壁焊接并形成第二焊接部29,使得第二焊接部29远离于泄压部234,降低在将固定部233与端盖24进行焊接过程中对泄压部234造成损伤的风险。
在实际焊接中,可通过对缝焊接的方式实现固定部233与端盖24的焊接。此外,在连接部242上设有通孔2421的情况下,由于第二焊接部29位于固定部233的外周壁与凹部241的内周壁之间形成的焊缝位置,第二焊接部29在垂直于端盖24厚度的方向上更远离通孔2421,降低在通过通孔2421向电池单体20内注入电解液的过程中凹部241内残留电解液,而造成固定部233与端盖24焊接不牢固的风险。
在本实施例中,刻痕槽231可以开设于泄压部234上。
可选地,固定部233的厚度大于泄压部234的厚度,便于泄压机构23致动而泄放电池单体20内部的压力,刻痕槽231的深度无需太深就能够实现泄压部234致动而泄放电池单体20内部的压力的目的。
在一些实施例中,固定部233整体位于第一焊接部25的外侧,既固定部233在厚度方向Z上与第一焊接部25不重叠。在厚度方向Z上,泄压部234覆盖第一焊接部25,且泄压部234与第一焊接部25沿厚度方向Z间隙设置。这种结构使得第一焊接部25在对固定部233与端盖24进行焊接的过程不会对泄压机构23造成干扰,可有效提高固定部233的外周壁与凹部241的内周壁的焊接质量。也就是说,这种结构可提高固定部233与端盖24对缝焊接的焊接质量。
可选地,固定部233的厚度大于泄压部234的厚度,且固定部233与泄压部234共同界定出避让空间235,避让空间235用于避让第一焊接部25,在保证泄压部234与第一焊接部25沿厚度方向Z间隔设置的情况下,固定部233能够抵靠于凹部241的底面2411,以便于对固定部233与端盖24进行焊接。
示例性的,固定部233与泄压部234均为片状结构,固定部233背离凹部241的底面2411的表面与泄压部234背离凹部241的底面2411的表面共面并形成第二外表面232,第二外表面232与第一外表面2431平齐。
在另一些实施例中,请参照图7,图7为本申请另一些实施例提供的电池单体20的局部视图,在厚度方向Z上,固定部233覆盖第一焊接部25的至少一部分,且固定部233与第一焊接部25间隙设置。这种结构使得第一焊接部25在对固定部233与端盖24进行焊接的过程不会对泄压机构23造成干扰,可有效提高固定部233的外周壁与凹部241的内周壁的焊接质量。
示例性的,固定部233在厚度方向Z上完全覆盖第一焊接部25。
在一些实施例中,请参照图8,图8为本申请又一些实施例提供的电池单体20的局部视图,泄压机构23与连接部242沿厚度方向Z层叠布置,泄压机构23与连接部242焊接并形成第二焊接部29,保证泄压机构23与端盖24焊接后的牢固性,可有效提高泄压机构23与端盖24的焊接效率。
在实际焊接中,可通过穿透焊接的方式将泄压机构23与连接部242焊接固定。
在本实施例中,泄压机构23可以是除设置刻痕槽231的位置以外的区域厚度均匀的片状结构,可以是泄压机构23的第二表面较盖本体243的第一外表面2431更靠近连接部242,有利于第二焊接部29穿透泄压机构23并与连接部242固定,提高泄压机构23与端盖24焊接后的牢固性。
本申请实施例提供一种电池单体20的制造方法,请参照图9,图9为本申请一些实施例提供的电池单体20的制造方法的流程图,制造方法包括:
S100:提供电极组件21,电极组件21具有第一极耳212;
S200:提供壳体22,具有开口;
S300:提供泄压机构23,泄压机构23用于在电池单体20的内部压力或温度达到阈值时致动,以泄放内部的压力;
S400:提供端盖24,端盖24设有凹部241,端盖24在凹部241的底部形成有连接部242;
S500:将电极组件21容纳于壳体22;
S600:将端盖24盖合于壳体22的开口;
S700:将连接部242与第一极耳212焊接并形成第一焊接部25;
S800:将泄压机构23安装于端盖24内,使泄压机构23至少一部分容纳于凹部241,使得泄压机构23在端盖24的厚度方向Z上覆盖第一焊接部25;其中,凹部241从端盖24背离电极组件21的一侧沿面向电极组件21的方向凹陷。
在上述方法中,并不限制步骤S100、步骤S200、步骤S300和步骤S400的先后顺序,比如,可以先执行步骤S400,再执行步骤S300,再执行步骤S200,再执行步骤S100。
在一些实施例中,步骤S800可以包括:将泄压机构23放置于凹部241内,将泄压机构23与端盖24焊接并形成第二焊接部29。
需要说明的是,通过上述各实施例提供的制造方法制造的电池单体20的相关结构,可参见前述各实施例提供的电池单体20,在此不再赘述。
此外,本申请实施例还提供一种电池单体20的制造设备2000,请参照图10,图10为本申请一些实施例提供电池单体20的制造设备2000的示意性框图,制造设备2000包括第一提供装置1100、第二提供装置1200、第三提供装置1300、第四提供装置1400和组装装置1500。
第一提供装置1100用于提供电极组件21,电极组件21具有第一极耳212。第二提供装置1200用于提供壳体22,具有开口。第三提供装置1300用于提供泄压机构23,泄压机构23用于在电池单体20的内部压力或温度达到阈值时致动,以泄放内部的压力。第四提供装置1400用于提供端盖24,端盖24设有凹部241,端盖24在凹部241的底部形成有连接部242。组装装置1500用于将电极组件21容纳于壳体22;将端盖24盖合于开口;将连接部242与第一极耳212焊接并形成第一焊接部25;将泄压机构23安装于端盖24内,使泄压机构23至少一部分容纳于凹部241,使得泄压机构23在端盖24的厚度方向Z上覆盖第一焊接部25。其中,凹部241从端盖24背离电极组件21的一侧沿面向电极组件21的方向凹陷。
组装装置1500可以包括第一组装模块、第二组装模块、第三组装模块和第四组装模块,第一组装模块用于将电极组件21容纳于壳体22,第二组装模块用于将端盖24盖合于开口,第三组装模块用于将连接部242与第一极耳212焊接并形成第一焊接部25,第四组装模块用于将泄压机构23安装于端盖24内。
需要说明的是,通过上述实施例提供的制造设备2000制造的电池单体20的相关结构,可参见前述各实施例提供的电池单体20,在此不再赘述
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
以上实施例仅用以说明本申请的技术方案,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (18)

  1. 一种电池单体,其特征在于,包括:
    电极组件,具有第一极耳;
    壳体,具有开口,所述壳体用于容纳所述电极组件;
    泄压机构,用于在所述电池单体的内部压力或温度达到阈值时致动,以泄放所述内部的压力;
    端盖,用于盖合于所述开口,所述端盖上设有凹部,所述凹部从所述端盖背离所述电极组件的一侧沿面向所述电极组件的方向凹陷,所述凹部用于容纳所述泄压机构的至少一部分;
    所述端盖在所述凹部的底部形成有连接部,所述连接部用于与所述第一极耳焊接并形成第一焊接部,所述泄压机构在所述端盖的厚度方向上覆盖所述第一焊接部。
  2. 根据权利要求1所述的电池单体,其特征在于,所述端盖包括:
    盖本体,用于盖合于所述开口,在所述厚度方向上,所述盖本体具有相对布置的第一外表面和第一内表面,所述凹部从所述第一外表面沿面向所述电极组件的方向凹陷;以及
    凸部,位于所述盖本体与所述凹部相对应的位置,所述凸部从所述第一内表面沿面向所述电极组件的方向凸出;
    其中,在所述厚度方向上,所述凸部具有面向所述电极组件的抵靠面,所述凹部的底面与所述抵靠面相对设置,所述抵靠面用于与所述第一极耳相抵,所述抵靠面与所述底面之间形成所述连接部。
  3. 根据权利要求2所述的电池单体,其特征在于,在所述厚度方向上,所述底面较所述第一内表面更靠近所述电极组件;或,所述底面与所述第一内表面平齐。
  4. 根据权利要求1-3任一项所述的电池单体,其特征在于,所述泄压机构与所述端盖焊接并形成第二焊接部,所述第二焊接部位于所述第一焊接部沿第一方向的外侧,所述第一方向垂直于所述厚度方向。
  5. 根据权利要求4所述的电池单体,其特征在于,所述泄压机构包括固定部和泄压部;
    所述固定部的外周壁与所述凹部的内周壁焊接并形成所述第二焊接部;
    所述泄压部用于在所述电池单体的内部压力或温度达到阈值时致动,以泄放所述内部的压力。
  6. 根据权利要求5所述的电池单体,其特征在于,所述固定部的厚度大于所述泄压部的厚度。
  7. 根据权利要求5或6所述的电池单体,其特征在于,所述固定部整体位于所述第一焊接部的外侧,在所述厚度方向上,所述泄压部覆盖所述第一焊接部,且所述泄压部与所述第一焊接部沿所述厚度方向间隙设置。
  8. 根据权利要求5或6所述的电池单体,其特征在于,在所述厚度方向上,所述固定部覆盖所述第一焊接部的至少一部分,且所述固定部与所述第一焊接部间隙设置。
  9. 根据权利要求4所述的电池单体,其特征在于,所述泄压机构与所述连接部沿所述厚度方向层叠布置,所述泄压机构与所述连接部焊接并形成所述第二焊接部。
  10. 根据权利要求1-9任一项所述的电池单体,其特征在于,所述连接部上设有贯穿所述连接部的通孔;
    所述泄压机构覆盖所述通孔,所述通孔用于连通所述凹部与所述电池单体的内部。
  11. 根据权利要求10所述的电池单体,其特征在于,所述通孔用于向所述电池单体的内部注入电解液。
  12. 根据权利要求10或11所述的电池单体,其特征在于,所述连接部与所述第一极耳焊接形成两个第一焊接部,所述两个第一焊接部沿第一方向位于所述通孔的两侧,所述第一方向垂直于所述厚度方向。
  13. 根据权利要求1-12任一项所述的电池单体,其特征在于,所述泄压机构完全容纳于所述凹部。
  14. 根据权利要求1-13任一项所述的电池单体,其特征在于,所述泄压机构的直径不小于所述端盖的直径的1/3。
  15. 一种电池,其特征在于,包括:
    根据权利要求1-14任一项所述的电池单体;以及
    箱体,用于容纳所述电池单体。
  16. 一种用电设备,其特征在于,包括权利要求15所述的电池。
  17. 一种电池单体的制造方法,其特征在于,所述方法包括:
    提供电极组件,所述电极组件具有第一极耳;
    提供壳体,具有开口;
    提供泄压机构,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动,以泄放所述内部的压力;
    提供端盖,所述端盖设有凹部,所述端盖在所述凹部的底部形成有连接部;
    将电极组件容纳于所述壳体;
    将端盖盖合于所述开口;
    将所述连接部与所述第一极耳焊接并形成第一焊接部;
    将泄压机构安装于所述端盖内,使所述泄压机构至少一部分容纳于所述凹部,使得所述泄压机构在端盖的厚度方向上覆盖所述第一焊接部;
    其中,所述凹部从所述端盖背离所述电极组件的一侧沿面向所述电极组件的方向凹陷。
  18. 一种电池单体的制造设备,其特征在于,所述制造设备包括:
    第一提供装置,用于提供电极组件,所述电极组件具有第一极耳;
    第二提供装置,用于提供壳体,具有开口;
    第三提供装置,用于提供泄压机构,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动,以泄放所述内部的压力;
    第四提供装置,用于提供端盖,所述端盖设有凹部,所述端盖在所述凹部的底部形成有连接部;
    组装装置,用于将电极组件容纳于所述壳体;将端盖盖合于所述开口;将所述连接部与所述第一极耳焊接并形成第一焊接部;将泄压机构安装于所述端盖内,使所述泄压机构至少一部分容纳于所述凹部,使得所述泄压机构在端盖的厚度方向上覆盖所述第一焊接部;
    其中,所述凹部从所述端盖背离所述电极组件的一侧沿面向所述电极组件的方向凹陷。
PCT/CN2021/103206 2021-06-29 2021-06-29 电池单体、电池、用电设备及电池单体的制造方法和设备 WO2023272501A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2021/103206 WO2023272501A1 (zh) 2021-06-29 2021-06-29 电池单体、电池、用电设备及电池单体的制造方法和设备
EP21827524.6A EP4138183A1 (en) 2021-06-29 2021-06-29 Battery cell, battery, electric device, and method and device for manufacturing battery cell
CN202180013967.1A CN115735297B (zh) 2021-06-29 2021-06-29 电池单体、电池、用电设备及电池单体的制造方法和设备
US17/559,928 US20220416373A1 (en) 2021-06-29 2021-12-22 Battery cell, battery, electric apparatus, manufacturing method of battery cell, and manufacturing apparatus of battery cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/103206 WO2023272501A1 (zh) 2021-06-29 2021-06-29 电池单体、电池、用电设备及电池单体的制造方法和设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/559,928 Continuation US20220416373A1 (en) 2021-06-29 2021-12-22 Battery cell, battery, electric apparatus, manufacturing method of battery cell, and manufacturing apparatus of battery cell

Publications (1)

Publication Number Publication Date
WO2023272501A1 true WO2023272501A1 (zh) 2023-01-05

Family

ID=84542642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103206 WO2023272501A1 (zh) 2021-06-29 2021-06-29 电池单体、电池、用电设备及电池单体的制造方法和设备

Country Status (4)

Country Link
US (1) US20220416373A1 (zh)
EP (1) EP4138183A1 (zh)
CN (1) CN115735297B (zh)
WO (1) WO2023272501A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013187172A (ja) * 2012-03-12 2013-09-19 Shin Kobe Electric Mach Co Ltd 鉛蓄電池
CN109103393A (zh) * 2018-09-03 2018-12-28 苏州宇量电池有限公司 一种无顶盖电池结构
CN111564577A (zh) * 2020-05-12 2020-08-21 路华置富电子(深圳)有限公司 具有盖帽支架的电池结构
CN111653710A (zh) * 2020-05-12 2020-09-11 路华置富电子(深圳)有限公司 具有可重复使用安全阀盖帽的电池
CN112151732A (zh) * 2020-09-30 2020-12-29 星恒电源(滁州)有限公司 一种圆形锂电池及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6327069B2 (ja) * 2014-09-01 2018-05-23 株式会社豊田自動織機 蓄電装置
CN112713345B (zh) * 2021-03-26 2021-07-16 江苏时代新能源科技有限公司 电池单体、电池、用电装置、制造方法及制造设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013187172A (ja) * 2012-03-12 2013-09-19 Shin Kobe Electric Mach Co Ltd 鉛蓄電池
CN109103393A (zh) * 2018-09-03 2018-12-28 苏州宇量电池有限公司 一种无顶盖电池结构
CN111564577A (zh) * 2020-05-12 2020-08-21 路华置富电子(深圳)有限公司 具有盖帽支架的电池结构
CN111653710A (zh) * 2020-05-12 2020-09-11 路华置富电子(深圳)有限公司 具有可重复使用安全阀盖帽的电池
CN112151732A (zh) * 2020-09-30 2020-12-29 星恒电源(滁州)有限公司 一种圆形锂电池及其制备方法

Also Published As

Publication number Publication date
US20220416373A1 (en) 2022-12-29
CN115735297A (zh) 2023-03-03
CN115735297B (zh) 2023-12-19
EP4138183A1 (en) 2023-02-22

Similar Documents

Publication Publication Date Title
CN114122486B (zh) 电池单体、电池、用电设备及电池单体的制造方法和设备
WO2023279260A1 (zh) 电池单体、电池、用电设备及电池单体的制造方法和设备
WO2023050835A1 (zh) 端盖组件、电池单体、电池以及用电装置
WO2023004723A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
US20230261312A1 (en) End cover assembly, battery cell, battery, and electrical apparatus
WO2023098258A1 (zh) 电池单体、电池以及用电装置
WO2023005408A1 (zh) 电池单体、电池以及用电装置
WO2022213400A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023004722A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023056719A1 (zh) 端盖、电池单体、电池以及用电装置
US20240313337A1 (en) End Cover, Battery Cell, Battery, and Electrical Device
US20240162558A1 (en) Battery cell, battery, electrical apparatus, and method and apparatus for manufacturing battery cell
WO2023028864A1 (zh) 泄压装置、电池单体、电池及用电设备
WO2023141842A1 (zh) 泄压装置、电池单体、电池及用电设备
WO2023141879A1 (zh) 电池单体及其制造方法和制造设备、电池以及用电装置
WO2023028867A1 (zh) 壳体、电池单体、电池及用电设备
WO2023272501A1 (zh) 电池单体、电池、用电设备及电池单体的制造方法和设备
WO2023070604A1 (zh) 极耳焊接结构、电池单体及用电设备
WO2023071710A1 (zh) 电池单体、电池及用电设备
WO2023065190A1 (zh) 端盖组件、电池单体、电池及用电设备
WO2023097469A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2022252010A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023133855A1 (zh) 电池、用电设备及电池的制备方法和制备装置
WO2024055257A1 (zh) 电池单体、电池及用电装置
WO2023028865A1 (zh) 泄压装置、电池单体、电池及用电设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021827524

Country of ref document: EP

Effective date: 20211229

NENP Non-entry into the national phase

Ref country code: DE