WO2023071710A1 - 电池单体、电池及用电设备 - Google Patents

电池单体、电池及用电设备 Download PDF

Info

Publication number
WO2023071710A1
WO2023071710A1 PCT/CN2022/123367 CN2022123367W WO2023071710A1 WO 2023071710 A1 WO2023071710 A1 WO 2023071710A1 CN 2022123367 W CN2022123367 W CN 2022123367W WO 2023071710 A1 WO2023071710 A1 WO 2023071710A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection
connection area
battery cell
battery
area
Prior art date
Application number
PCT/CN2022/123367
Other languages
English (en)
French (fr)
Inventor
郑东来
史东洋
马豪
李白清
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202280010077.XA priority Critical patent/CN116711143A/zh
Priority to EP22885593.8A priority patent/EP4261987A1/en
Publication of WO2023071710A1 publication Critical patent/WO2023071710A1/zh
Priority to US18/353,987 priority patent/US20230361415A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/169Lids or covers characterised by the methods of assembling casings with lids by welding, brazing or soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of batteries, in particular to a battery cell, a battery and an electrical device.
  • the present application provides a battery cell, a battery and electrical equipment, which can reduce the manufacturing cost of the battery cell while ensuring the safety of the battery, and can further reduce the assembly process of the battery cell.
  • a battery cell which includes a casing with an opening; an electrode assembly accommodated in the casing; an end cap closing the opening, and the end cap is connected to the casing through a first region is sealingly connected with a second connection region, the strength of which is less than that of the second connection region, the first connection region is adapted to be actuated when the internal pressure of the battery cell exceeds a threshold value to Release the internal pressure.
  • first connection area described in the present application is a region with a relatively weak sealing thickness
  • second connection area is a connection area with a normal thickness
  • the end cover is welded to the shell, and the penetration depth of the first connection zone is smaller than the penetration depth of the second connection zone.
  • the strength of the weld seam is positively correlated with the depth of penetration, and the deeper the depth of penetration, the higher the strength of the weld seam.
  • the penetration depth of the first connection zone is not greater than two-thirds of the penetration depth of the second connection zone.
  • the penetration depth of the first connection zone is less than or equal to two-thirds of the penetration depth of the second connection zone, so that the first connection zone is easy to burst when the internal pressure of the battery cell exceeds a certain threshold, so that Release the pressure of the battery cells in time. If the penetration depth of the first connection zone is greater than two-thirds of the penetration depth of the second connection zone, the strength of the first connection zone is relatively high, and it is not easy to explode when the internal pressure of the battery cell exceeds a certain threshold, which may reduce leakage. pressure speed.
  • the penetration depth of the first connection zone is H 1 , which satisfies: 0.1 mm ⁇ H 1 ⁇ 0.4 mm; and/or the penetration depth of the second connection zone is H 2 , which satisfies: 0.6 mm ⁇ H 2 ⁇ 0.9mm.
  • the penetration depth of the first connection zone is between 0.1 and 0.4mm, so that the strength of the first connection zone is between 0.7 and 1.1Mpa, so that the first connection zone can easily exceed the internal pressure of the battery cell. Explodes at a certain threshold.
  • the penetration depth of the second connection area is between 0.6-0.9mm, so that the strength of the second connection area is between 1.5-3Mpa, so as to realize the fixed connection between the end cap and the shell.
  • the risk of pressure flying off the end cap is beneficial to improve the safety of the battery.
  • connection area where the end cap is connected to the housing extends along a rectangular track
  • the connection area includes a long side and a short side
  • the length of the long side is greater than the length of the short side
  • the end cap has a rectangular shape, and after welding along the edge of the end cap with the casing, the formed connection area extends along a rectangular track, which is suitable for square shell batteries.
  • the length of the long side is L 1 , which satisfies: L 1 ⁇ 50 mm; the first connection area is set on the long side, and the length of the first connection area is L 2 , which satisfies : L 1 /3 ⁇ L 2 ⁇ L 1 /2; and/or the first connection area is set on the short side of the connection area, the length of the short side is L 3 , satisfying: L 3 /2 ⁇ L 2 ⁇ 3L 3 /4.
  • the ratio of the long side to the short side of the connection area is within a preset range, and when the long side of the connection area increases, the short side also increases accordingly.
  • the length of the long side is greater than or equal to 50 mm, the lengths of the long side and the short side are both large.
  • the first connecting region can be arranged on the long side, or the first connecting region can be arranged on the short side.
  • the length of the first connection area is 1/3 to 1/2 of the size of the long side, so that the first connection area can longer.
  • the length of the first connection area is relatively short, and the opening formed when the first connection area explodes is small, which is not conducive to rapid pressure release. If L 2 >L 1 /2, the length of the first connection area is longer, and the connection strength between the end cover and the casing is lower.
  • the length of the first connection area is 1/2-3/4 of the size of the short side, so as to make the first connection area longer while satisfying the connection strength between the end cover and the housing.
  • L 2 ⁇ L 3 /2 the length of the first connection area is relatively short, and the opening formed when the first connection area explodes is small, which is not conducive to rapid pressure release. If L 2 >3L 3 /4, the length of the first connection area is longer, and the connection strength between the end cover and the casing is lower.
  • the length of the long side is L 1 , which satisfies: L 1 ⁇ 50 mm; the first connecting region is disposed on the long side.
  • the length of the long side is less than 50mm
  • the length of the short side is relatively short, and it is not suitable to arrange the first connection area on the short side alone (at this time, the first connection area is arranged on the short side, and the first connection area It is not easy to burst, even if it bursts, the opening formed is also small, which is not conducive to rapid pressure relief).
  • the first connection area is arranged on the long side.
  • the length of the long side is L 1 , which satisfies L 1 ⁇ 50mm;
  • the first connection area includes a first segment, a second segment and a third segment connected in sequence, and the first segment and the third segment are sequentially connected.
  • the third section is located on the two opposite long sides, and the second section is located on the short side of the connection area.
  • the first connecting region when the length of the long side is less than 50 mm, the first connecting region may completely occupy one short side and simultaneously occupy a part of each of the two long sides.
  • the first connecting region may form a U-shaped structure. In this way, the first connection area is easy to explode when the internal pressure of the battery cells exceeds a certain threshold, and the opening after the explosion is relatively large, which is beneficial to realize rapid pressure relief.
  • connection area where the end cap is connected to the housing extends along a circular trajectory.
  • the end cap is circular, and after welding along the edge of the end cap with the casing, the formed connection area extends along a circular track, which is suitable for cylindrical batteries.
  • the length of the first connection area is L 2
  • the circumference of the connection area between the end cap and the housing is L 4 , satisfying: 0.2 L 4 ⁇ L 2 ⁇ 0.35 L 4 .
  • the length of the first connection area is 0.2-0.35 of the circumference of the connection area, so as to make the first connection area longer while satisfying the connection strength between the end cap and the housing. If L 2 ⁇ 0.2L 4 , the length of the first connection area is short, and the opening formed when the first connection area explodes is small, which is not conducive to rapid pressure release. If L 2 >0.35L 4 , the length of the first connection zone is longer, and the connection strength between the end cap and the casing is lower.
  • connection area between the first connection area and the second connection area, and the strength of the third connection area is lower than that of the third connection area.
  • the connection position between the connection area and the second connection area gradually decreases to the connection position between the third connection area and the first connection area, and the minimum strength of the third connection area is not less than that of the first connection area strength, the maximum strength of the third connection zone is no greater than the strength of the second connection zone.
  • the third connection area is a transition area, which can realize the transition from the first connection area to the second connection area. In this way, when welding the shell and the end cover, the welding equipment does not need to be shut down, but the welding parameters can be adjusted while welding, so as to improve the welding efficiency. In addition, by setting the third connecting region as a transition region, stress concentration can also be reduced.
  • the end cover is welded to the shell, and the penetration of the third connection zone is from the connection position of the third connection zone and the second connection zone to the third connection zone.
  • the connection position between the zone and the first connection zone gradually decreases, the minimum penetration depth of the third connection zone is not less than the penetration depth of the first connection zone, and the maximum penetration depth of the third connection zone is not greater than the The penetration depth of the second connection zone.
  • the penetration depth of the third connection zone changes gradually to facilitate the transition from the first connection zone to the second connection zone.
  • the perimeter of the connecting area where the end cap is connected to the housing is L 4
  • the length of the third connecting area is L 5 , satisfying: L 5 ⁇ 0.1L 4 .
  • the length of the third connection region is less than or equal to 0.1 times the circumference of the connection region, so that the lengths of the first connection region and the second connection region are longer. If L 5 >0.1L 4 , then the length of the third connection area is longer, and correspondingly, the lengths of the first connection area and the second connection area will be shortened, which may affect the opening size of the first connection area after blasting or affect the end The strength of the connection between the cover and the case.
  • the battery cell includes a plurality of the first connection regions, and the plurality of the first connection regions are arranged at intervals along the circumference of the end cap.
  • the plurality of first connection areas can explode to release the pressure, so as to increase the pressure release speed, which is beneficial to improve the battery life. safety.
  • the battery cell includes two first connection regions, and the two first connection regions are arranged opposite to each other.
  • the two first connection areas are arranged opposite to each other, so that the two first connection areas are not likely to interfere with each other and can release pressure independently.
  • the embodiment of the present application further provides a battery, including the above-mentioned battery cell.
  • an embodiment of the present application further provides an electric device, including the above-mentioned battery, and the battery is configured to provide electric energy for the electric device.
  • Fig. 1 is a schematic structural view of a vehicle disclosed in an embodiment of the present application
  • Fig. 2 is a schematic diagram of an exploded structure of a battery disclosed in an embodiment of the present application
  • Fig. 3 is a schematic structural diagram of a battery module disclosed in an embodiment of the present application.
  • Fig. 4 is an exploded view of a battery cell disclosed in an embodiment of the present application.
  • Fig. 5 is a schematic diagram of a battery cell disclosed in an embodiment of the present application.
  • Fig. 6 is a top view of a battery cell disclosed in an embodiment of the present application.
  • Fig. 7 is a cross-sectional view of a battery cell part A-A disclosed in an embodiment of the present application.
  • Fig. 8 is the sectional view of B-B position among Fig. 6;
  • Fig. 9 is a cross-sectional view of position C-C in Fig. 6;
  • Fig. 10 is a top view of another battery cell disclosed in an embodiment of the present application.
  • Fig. 11 is a top view of another battery cell disclosed in an embodiment of the present application.
  • Fig. 12 is a top view of a battery cell whose connection area extends along a circular trajectory disclosed in an embodiment of the present application;
  • Fig. 13 is a top view of another battery cell disclosed in an embodiment of the present application.
  • Fig. 14 is a top view of a battery cell including two first connection regions disclosed by an embodiment of the present application.
  • Fig. 15 is a top view of a battery cell including three first connection regions disclosed by an embodiment of the present application.
  • Icons 1-vehicle; 10-battery; 11-box; 111-first part; 112-second part; 131-electrode terminal; 200-battery module; 210-housing; 220-electrode assembly; 230-end cover 240-connection region; 241-first connection region; 2411-first segment; 2412-second segment; The third connection area; 20-battery unit; 30-controller; 40-motor.
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, which are not limited in the embodiments of the present application.
  • the battery cell may be in a cylinder, a flat body, a cuboid or other regular or irregular shapes, which is not limited in this embodiment of the present application.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and pouch battery cells, which are not limited in this embodiment of the present application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack, and the like.
  • Batteries generally include a case for enclosing one or more battery cells. The box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive pole piece, a negative pole piece and a separator.
  • a battery cell works primarily by moving metal ions between the positive and negative pole pieces.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer is coated on the surface of the positive electrode current collector, and the positive electrode collector without the positive electrode active material layer protrudes from the positive electrode collector coated with the positive electrode active material layer. Fluid, the positive electrode current collector not coated with the positive electrode active material layer is used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer, the negative electrode active material layer is coated on the surface of the negative electrode current collector, and the negative electrode collector without the negative electrode active material layer protrudes from the negative electrode collector coated with the negative electrode active material layer. Fluid, the negative electrode current collector not coated with the negative electrode active material layer is used as the negative electrode tab.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material may be carbon or silicon.
  • the number of positive pole tabs is multiple and stacked together, and the number of negative pole tabs is multiple and stacked together.
  • the material of the isolation film may be polypropylene (polypropylene, PP) or polyethylene (polyethylene, PE).
  • the electrode assembly may be a wound structure or a laminated structure, which is not limited in the embodiment of the present application.
  • a pressure relief mechanism is generally installed on the battery cell.
  • the pressure relief mechanism refers to an element or part that is activated to release the internal pressure or temperature when the internal pressure or temperature of the battery cell reaches a predetermined threshold.
  • the predetermined threshold can be adjusted according to different design requirements.
  • the predetermined threshold may depend on the materials of one or more of the positive electrode sheet, the negative electrode sheet, the electrolyte and the separator in the battery cell.
  • the pressure relief mechanism can adopt elements or components that are sensitive to pressure or temperature, that is, when the internal pressure or temperature of the battery cell reaches a predetermined threshold, the pressure relief mechanism is actuated, thereby forming a pressure-sensitive or temperature-sensitive pressure relief mechanism. aisle.
  • the "actuation" mentioned in this application refers to the action of the pressure relief mechanism, so that the internal pressure and temperature of the battery cells can be released. Actions by the pressure relief mechanism may include, but are not limited to, at least a portion of the pressure relief mechanism rupture, be torn, or melt, among others. After the pressure relief mechanism is actuated, the high temperature and high pressure material inside the battery cell will be discharged from the pressure relief mechanism as discharge. In this way, the battery cells can be depressurized under controllable pressure or temperature, thereby avoiding potential more serious accidents.
  • the emissions from battery cells mentioned in this application include but are not limited to: electrolyte, dissolved or split positive and negative electrodes, fragments of separator, high temperature and high pressure gas generated by reaction, flame, etc.
  • the pressure relief mechanism on the battery cell has an important impact on the safety of the battery. For example, when a battery cell is short-circuited or overcharged, it may cause thermal runaway inside the battery cell, resulting in a sudden increase in pressure or temperature. In this case, the internal pressure and temperature can be released to the outside through the actuation of the pressure relief mechanism, so as to prevent the battery cells from exploding and igniting.
  • an explosion-proof valve is generally installed on the end cap of the battery cell as a pressure relief mechanism, so that when the internal pressure of the battery cell reaches a certain value, the explosion-proof valve is broken through to release the pressure.
  • the explosion-proof valve has high requirements on the welding process, which will increase the production cost of the battery, and also requires more installation space and assembly processes.
  • the embodiment of the present application provides a battery cell.
  • a weak sealing area is provided at the junction of the shell and the end cap of the battery cell as a pressure relief mechanism for reducing the internal pressure or temperature of the battery cell. actuating to relieve the pressure when a threshold is reached; wherein the weak seal area has a lesser seal thickness than the normal seal area.
  • this solution can also reduce the manufacturing cost of the battery cell, and reduce the occupied space and assembly process.
  • Electrical devices can be vehicles, mobile phones, portable devices, laptops, ships, spacecraft, electric toys and power tools, etc.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles;
  • spacecraft include airplanes, rockets, space shuttles and spacecraft, etc.;
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric boat toys and electric airplane toys, etc.;
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, electric planers, and more.
  • the embodiment of the present application does not impose special limitations on the above electric equipment.
  • FIG. 1 it is a schematic structural diagram of a vehicle 1 according to an embodiment of the present application.
  • the vehicle 1 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or Extended range cars, etc.
  • a motor 40 , a controller 30 and a battery 10 can be arranged inside the vehicle 1 , and the controller 30 is used to control the battery 10 to supply power to the motor 40 .
  • the battery 10 may be provided at the bottom or front or rear of the vehicle 1 .
  • the battery 10 can be used for power supply of the vehicle 1 , for example, the battery 10 can be used as an operating power source of the vehicle 1 , for a circuit system of the vehicle 1 , for example, for starting, navigating and running power requirements of the vehicle 1 .
  • the battery 10 can not only be used as an operating power source for the vehicle 1 , but can also be used as a driving power source for the vehicle 1 , replacing or partially replacing fuel oil or natural gas to provide driving power for the vehicle 1 .
  • the battery 10 may include a plurality of battery cells 20 , wherein the plurality of battery cells 20 may be connected in series, in parallel or in parallel, and the hybrid connection refers to a mixture of series and parallel connections.
  • the battery 10 may also be called a battery pack.
  • a plurality of battery cells 20 may be connected in series, parallel or mixed to form a battery module 200 , and then a plurality of battery modules 200 may be connected in series, parallel or mixed to form a battery 10 . That is to say, a plurality of battery cells 20 may directly form the battery 10 , or may first form the battery module 200 , and the battery module 200 then forms the battery 10 .
  • FIG. 2 shows a schematic structural diagram of a battery 10 according to an embodiment of the present application
  • the battery 10 may include at least one battery module 200 .
  • the battery module 200 includes a plurality of battery cells 20 .
  • the battery 10 may further include a box body 11 , the inside of which is a hollow structure, and a plurality of battery cells 20 are accommodated in the box body 11 .
  • Fig. 2 shows a possible implementation of the box body 11 of the embodiment of the present application.
  • the box body 11 may include two parts, referred to here as the first part 111 and the second part 112 respectively, the first part 111 and the second part 112 are fastened together.
  • the shapes of the first part 111 and the second part 112 may be determined according to the combined shape of the battery module 200, and at least one of the first part 111 and the second part 112 has an opening.
  • the first part 111 and the second part 112 can be hollow cuboids and only one face is an open face, the opening of the first part 111 and the opening of the second part 112 are arranged oppositely, and the first part 111 Interlock with the second part 112 to form the box body 11 with a closed chamber.
  • first part 111 and the second part 112 may be a hollow cuboid with an opening, while the other may be a plate to cover the opening.
  • the second part 112 is a hollow cuboid with only one face as an open face
  • the first part 111 is a plate-shaped example, so the first part 111 is covered at the opening of the second part 112 to form a box with a closed chamber 11.
  • the cavity can be used to accommodate a plurality of battery cells 20 .
  • a plurality of battery cells 20 are combined in parallel, in series or in parallel and placed in the box 11 formed by fastening the first part 111 and the second part 112 .
  • the battery 10 may also include other structures, which will not be repeated here.
  • the battery 10 may also include a confluence part, which is used to realize electrical connection between a plurality of battery cells 20 , such as parallel connection, series connection or mixed connection.
  • the current-combining component can realize the electrical connection between the battery cells 20 by connecting the electrode terminals 131 of the battery cells 20 .
  • the bus member may be fixed to the electrode terminal 131 of the battery cell 20 by welding. The electric energy of the plurality of battery cells 20 can be further drawn out through the box body 11 through the conductive mechanism.
  • the number of battery cells 20 in the battery module 200 can be set to any value.
  • a plurality of battery cells 20 can be connected in series, in parallel or in parallel to achieve greater capacity or power. Since the number of battery cells 20 included in each battery 10 may be large, for the convenience of installation, the battery cells 20 are arranged in groups, and each group of battery cells 20 constitutes a battery module 200 .
  • the number of battery cells 20 included in the battery module 200 is not limited, and can be set according to requirements.
  • FIG. 3 is an example of a battery module 200 .
  • the battery 10 may include a plurality of battery modules 200, and these battery modules 200 may be connected in series, in parallel or in parallel. It can be understood that a plurality of battery cells 20 can be directly assembled into the battery 10 .
  • FIG. 4 is a schematic diagram of an exploded structure of a battery cell 20 according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a battery cell 20 according to an embodiment of the present application.
  • the battery cell 20 includes a casing 210 , an electrode assembly 220 and an end cap 230 .
  • the electrode assembly 220 is accommodated in the casing 210 , and the end cap 230 is used to cover the opening of the casing 210 .
  • the casing 210 is a component for accommodating the electrode assembly 220.
  • the casing 210 may be a hollow structure with an opening at one end, or the casing 210 may be a hollow structure with openings at opposite ends.
  • the housing 210 is a hollow structure with an opening formed at one end, one end cover 230 can be provided; 230 respectively cover the openings at both ends of the housing 210 .
  • the housing 210 can be made of various materials, such as copper, iron, aluminum, steel, aluminum alloy, and the like.
  • the housing 210 can be in various shapes, such as cylinder, cuboid and so on. Exemplarily, in FIG. 4 and FIG. 5 , the casing 210 is a cuboid structure, and the casing 210 is a hollow structure with an opening formed at one end.
  • the number of electrode assemblies 220 in the casing 210 can be set to one or more, as shown in FIG. electrode assembly 220 .
  • the electrode assembly 220 is a part where an electrochemical reaction occurs in the battery cell 20 .
  • the electrode assembly 220 can be a cylinder, a cuboid, etc. If the electrode assembly 220 is a cylinder, the housing 210 can also be a cylinder. If the electrode assembly 220 is a cuboid, the housing 210 can also be a cuboid.
  • the end cap 230 is a component that covers the opening of the casing 210 to isolate the internal environment of the battery cell 20 from the external environment.
  • the shape of the end cover 230 can be adapted to the shape of the housing 210 , as shown in FIG. 4 , the housing 210 is a rectangular parallelepiped structure, and the end cover 230 is a rectangular plate-shaped structure adapted to the housing 210 .
  • the material of the end cover 230 can also be various, for example, copper, iron, aluminum, steel, aluminum alloy, etc.
  • the material of the end cover 230 and the material of the housing 210 can be the same or different.
  • Functional components such as electrode terminals 131 may be disposed on the end cap 230 .
  • the electrode terminal 131 may be used to be electrically connected with the electrode assembly 220 for outputting or inputting electric energy of the battery cell 20 .
  • the battery cell 20 provided in the embodiment of the present application includes a casing 210 , an electrode assembly 220 and an end cap 230 , the casing 210 has an opening, the electrode assembly 220 is accommodated in the casing 210 , and the end cap 230 closes the opening.
  • the end cover 230 and the housing 210 are sealed and connected through the first connection area 241 and the second connection area 242 , the strength of the first connection area 241 is smaller than the strength of the second connection area 242 , and the first connection area 241 is used for connecting the battery cell 20 Actuated to release internal pressure when the internal pressure exceeds a threshold.
  • FIG. 6 is a top view of a battery cell 20 in an embodiment of the present application.
  • the connection area 240 includes a first connection area 241 and a second connection area 242 .
  • the first connection area 241 is shown by the dotted line of A-A
  • the second connection area 242 is shown by the solid line connected with the dotted line.
  • the number of the first connection area 241 may be one or more, which is not limited in this application.
  • the first connection area 241 includes a sealed connection portion between the end cap 230 and the housing 210 at A-A. and a part of the housing 210, when the end cover 230 and the housing 210 are sealed and connected by other seals, the first connection area 241 also includes a part of the seal; the second connection area 242 includes the sealing connection part of the end cover 230 and the housing 210 For example, when the end cover 230 and the housing 210 are directly sealed and connected, the second connection area 242 may include a part of the end cover 230 and a part of the housing 210, and when the end cover 230 and the housing 210 are sealed and connected by other seals, the second connection Region 242 also includes a portion of the seal.
  • the strength of the first connection area 241 is smaller than the strength of the second connection area 242, that is, the first connection area 241 is a relatively weak seal area when the end cover 230 and the housing 210 are connected, so as to serve as a pressure relief mechanism , used to actuate to release the pressure when the pressure or temperature inside the battery cell 20 reaches a threshold value, that is, the internal pressure will push the end cap 230 of the battery cell 20 at the first connection area 241 to release the internal pressure , to prevent the battery cell 20 from exploding and catching fire.
  • the internal pressure of the battery cell 20 can be released without disposing an explosion-proof mechanism on the end cap 230 of the battery 10 , ensuring the safety of the battery 10 .
  • the manufacturing cost, occupied space and assembly process of the battery cell 20 can also be reduced.
  • connection area 240 may be connected by welding to form the connection area 240 .
  • Welding also known as welding, is a manufacturing process and technology that uses heat, high temperature, or high pressure to join metal or other thermoplastic materials such as plastics.
  • FIG. 7 is a schematic cross-sectional view of a part A-A of the battery cell 20 disclosed in the embodiment of the present application when the end cap 230 of the battery cell 20 is connected to the housing 210 by the above-mentioned welding method.
  • the black filling part is the welding part of the end cap 230 and the housing 210, wherein the penetration depth of the first connection zone 241 is smaller than the penetration depth of the second connection zone 242, so that the first connection zone 241 is smaller than the second connection zone 241.
  • the connection area 242 is more easily ruptured by the impact of the internal pressure to release the pressure from the first connection area 241 .
  • the penetration depth refers to the distance from the surface of the weldment to the deepest part of the fusion zone in the butt weld between the end cover 230 and the shell 210 .
  • Weld strength is positively correlated with penetration, the deeper the penetration, the higher the weld strength.
  • the penetration depth of the first connection area 241 is smaller than the penetration depth of the second connection area 242, and the strength of the first connection area 241 is also lower than that of the second connection area 242.
  • the strength of the connection area 242 enables the first connection area 241 to act as a sealing weak area, which bursts to release the pressure when the internal pressure of the battery cell 20 exceeds a certain threshold.
  • the penetration depth of the first connection zone 241 is not greater than two-thirds of the penetration depth of the second connection zone 242 .
  • the penetration depth of the first connection area 241 is less than or equal to two-thirds of the penetration depth of the second connection area 242, so that the first connection area 241 is easy to explode when the internal pressure of the battery cell 20 exceeds a certain threshold, and timely leaks. Release the pressure of the battery cell 20. If the penetration depth of the first connection zone 241 is greater than two-thirds of the penetration depth of the second connection zone 242, the strength of the first connection zone 241 is relatively high, and it is not easy to explode when the internal pressure of the battery cell 20 exceeds a certain threshold. May reduce pressure relief rate.
  • FIG. 6 is a cross-sectional view at position BB in FIG. 6 .
  • FIG. 9 is a cross-sectional view at position CC in FIG. 6 .
  • the penetration depth of the first connecting region 241 is H 1 , which satisfies: 0.1 mm ⁇ H 1 ⁇ 0.4 mm.
  • the penetration depth of the second connecting region 242 is H 2 , which satisfies: 0.6mm ⁇ H 2 ⁇ 0.9mm.
  • the penetration depth refers to the distance from the surface of the weldment to the deepest part of the fusion zone in the butt weld between the end cover 230 and the shell 210 .
  • the penetration depth of the first connecting area 241 is the distance from the surface of the end cover 230 along its thickness direction facing away from the interior of the battery cell 20 to the position of the first connecting area 241 farthest from the above-mentioned surface to the inside of the end cover 230 .
  • the penetration depth of the second connection area 242 is the distance from the surface of the end cover 230 along its thickness direction facing away from the interior of the battery cell 20 to the position of the second connection area 242 farthest from the above-mentioned surface to the interior of the end cover 230 .
  • the traces of the first connection zone 241 can be clearly seen after being cut from the B-B section, so the penetration depth of the first connection zone 241 can be measured.
  • traces of the second connection zone 242 can be clearly seen, so the penetration depth of the second connection zone 242 can be measured.
  • the penetration depth of the first connection area 241 is between 0.1-0.4 mm, so that the strength of the first connection area 241 is between 0.7-1.1 Mpa, so that the first connection area 241 is easy to be exposed to when the internal pressure of the battery cell 20 exceeds a certain threshold. time to blast.
  • the penetration depth of the second connection area 242 is between 0.6-0.9mm, so that the strength of the second connection area 242 is between 1.5-3Mpa, so as to realize the fixed connection between the end cover 230 and the shell 210 .
  • connection area 240 where the end cover 230 is connected to the housing 210 extends along a rectangular track.
  • the connection area 240 includes a long side 243 and a short side 244 , the length of the long side 243 is greater than the length of the short side 244 .
  • connection area 240 extends along a rectangular track, forming a rectangular frame structure.
  • the longer side of the rectangular frame structure is the long side 243 of the connection area 240
  • the shorter side is the short side 244 of the connection area 240 .
  • the end cap 230 is rectangular, and after being welded to the casing 210 along the edge of the end cap 230 , the formed connecting area 240 extends along a rectangular track, which is suitable for a prismatic battery.
  • the length of the long side 243 is L 1 , which satisfies: L 1 ⁇ 50 mm.
  • the first connection region 241 is disposed on the long side 243 , and the length of the first connection region 241 is L 2 , which satisfies: L 1 /3 ⁇ L 2 ⁇ L 1 /2.
  • the first connection region 241 is disposed on the short side 244 of the connection region 240 , the length of the short side 244 is L 3 , which satisfies: L 3 /2 ⁇ L 2 ⁇ 3L 3 /4.
  • the shell 210 and the end cover 230 generally adopt a circular arc transition at the corner position (the intersection of the short side 244 and the long side 243 ), which can reduce stress concentration on the one hand, and avoid cutting the operator on the other hand, increasing safety.
  • the distance between the two short sides 244 opposite to each other can be taken as the length of the long side 243 .
  • the distance between the two opposite long sides 243 can be taken as the length of the short side 244 .
  • the ratio of the long side 243 to the short side 244 of the connection area 240 is within a predetermined range, and the long side 243 of the connection area 240 increases, and the short side 244 of the connection area 240 also increases accordingly.
  • the length of the long side 243 is greater than or equal to 50 mm, the lengths of the long side 243 and the short side 244 are relatively large.
  • the first connecting region 241 can be disposed on the long side 243 , and the first connecting region 241 can also be disposed on the short side 244 .
  • FIG. 6 shows the situation that the first connection area 241 is disposed on the long side 243 .
  • FIG. 10 which is a top view of another battery cell 20 disclosed in an embodiment of the present application.
  • FIG. 10 shows the situation that the first connection area 241 is disposed on the short side 244 .
  • the first connecting region 241 can also be disposed on the long side 243 and the short side 244 at the same time.
  • the length of the first connection area 241 is 1/3 to 1/2 of the size of the long side 243, so as to satisfy the connection strength between the end cover 230 and the housing 210 , so that the first connecting region 241 is longer. If L 2 ⁇ L 1 /3, the length of the first connection area 241 is relatively short, and the opening formed when the first connection area 241 explodes is small, which is not conducive to rapid pressure release. If L 2 >L 1 /2, the length of the first connection area 241 is longer, and the connection strength between the end cover 230 and the housing 210 is lower.
  • the length of the first connecting region 241 can be set relatively large.
  • the length of the first connection area 241 is 1/2 ⁇ 3/4 of the size of the short side 244 , so as to make the first connection area 241 longer while satisfying the connection strength between the end cover 230 and the housing 210 . If L 2 ⁇ L 3 /2, the length of the first connection area 241 is relatively short, and the opening formed when the first connection area 241 explodes is small, which is not conducive to rapid pressure release. If L 2 >3L 3 /4, the length of the first connection area 241 is longer, and the connection strength between the end cover 230 and the housing 210 is lower.
  • the length of the long side 243 is L 1 , which satisfies: L 1 ⁇ 50mm.
  • the first connection area 241 is disposed on the long side 243 .
  • the length of the long side 243 was less than 50mm, the length of the short side 244 was shorter, so it was not suitable to set the first connection zone 241 on the short side 244 alone (the first connection zone 241 was arranged on the short side at this time, the first connection zone 241 It is not easy to burst, even if it bursts, the opening formed is also small, which is not conducive to rapid pressure relief).
  • the first connection area 241 is disposed on the long side 243 .
  • FIG. 11 is a top view of another battery cell 20 disclosed in an embodiment of the present application.
  • the length of the long side 243 is L 1 , satisfying L 1 ⁇ 50mm.
  • the first connection area 241 includes a first section 2411, a second section 2412 and a third section 2413 connected in sequence, the first section 2411 and the third section 2413 are respectively located on two opposite long sides 243, and the second section 2412 is located in the connection area
  • the short side of 240 is 244.
  • the first section 2411 is the part set on one long side 243 in the first connecting area 241
  • the third section 2413 is the part set on the other long side 243 in the first connecting area 241
  • the second section 2412 is the first connecting area In the part of 241 disposed on the short side 244 , the first segment 2411 and the third segment 2413 are oppositely disposed, and the two ends of the second segment 2412 are respectively connected to the first segment 2411 and the third segment 2413 .
  • the second segment 2412 completely occupies one short side 244 .
  • the lengths of the first section 2411 and the third section 2413 can be the same or different.
  • the length of the first segment 2411 can be greater than the length of the third segment 2413 , can also be equal to the length of the third segment 2413 , and can also be smaller than the length of the third segment 2413 .
  • the first connection area 241 can completely occupy one short side 244 and simultaneously occupy a part of each of the two long sides 243 .
  • the first connection region 241 may form a U-shaped structure. In this way, the first connection area 241 is easy to explode when the internal pressure of the battery cell 20 exceeds a certain threshold, and the opening after the explosion is relatively large, which is beneficial to realizing rapid pressure relief.
  • FIG. 12 is a top view of the battery cell 20 in which the connection area 240 extends along a circular track according to an embodiment of the present application.
  • the connection area 240 where the end cap 230 is connected to the housing 210 extends along a circular trajectory.
  • connection area 240 extends along a circular track, forming a ring structure.
  • the end cap 230 is circular, and after welding with the casing 210 along the edge of the end cap 230 , the formed connection area 240 extends along a circular track, which is suitable for a cylindrical battery.
  • the length of the first connection area 241 is L 2
  • the circumference of the connection area 240 where the end cover 230 is connected to the housing 210 is L 4 , satisfying : 0.2L 4 ⁇ L 2 ⁇ 0.35L 4 .
  • the first connection area 241 is an arc, and the length of the first connection area 241 is also the arc length of the arc.
  • the length of the first connection area 241 is 0.2-0.35 of the circumference of the connection area 240 , so as to make the first connection area 241 longer while satisfying the connection strength between the end cover 230 and the housing 210 . If L 2 ⁇ 0.2L 4 , the length of the first connection area 241 is relatively short, and the opening formed when the first connection area 241 explodes is small, which is not conducive to rapid pressure release. If L 2 >0.35L 4 , the length of the first connection area 241 is longer, and the connection strength between the end cover 230 and the housing 210 is lower.
  • FIG. 13 is a top view of another battery cell 20 disclosed in an embodiment of the present application.
  • the strength of the third connection region 245 gradually decreases from the connection position between the third connection region 245 and the second connection region 242 to the connection position between the third connection region 245 and the first connection region 241 .
  • the minimum strength of the third connection region 245 is not less than the strength of the first connection region 241
  • the maximum strength of the third connection region 245 is not greater than the strength of the second connection region 242 .
  • the third connection area 245 is shown in a dotted line in FIG. 13 .
  • the third connection region 245 is a part of the connection region 240 connecting the first connection region 241 and the second connection region 242 .
  • the strength of the third connection area 245 is gradually changed.
  • the third connection area 245 has a first end and a second end, wherein the first end is connected to the first connection area 241 and the second end is connected to the second connection area 242 .
  • the strength of the third connection area 245 gradually increases.
  • the minimum strength of the third connection region 245 can be equal to the strength of the first connection region 241
  • the maximum strength of the third connection region 245 can be equal to the strength of the second connection region 242 .
  • the third connection area 245 is a transition area, which can realize the transition from the first connection area 241 to the second connection area 242 . In this way, when welding the casing 210 and the end cover 230 , the welding equipment does not need to be shut down, but the welding parameters can be adjusted while welding, so as to improve the welding efficiency. In addition, by setting the third connecting region 245 as a transition region, stress concentration can also be reduced.
  • the end cover 230 is welded to the housing 210, and the penetration depth of the third connection area 245 is from the connection position between the third connection area 245 and the second connection area 242 to the third connection area 245 and the first connection area.
  • the connection position of 241 is gradually reduced.
  • the minimum penetration depth of the third connection region 245 is not less than the penetration depth of the first connection region 241
  • the maximum penetration depth of the third connection region 245 is not greater than the penetration depth of the second connection region 242 .
  • the penetration depth of the third connecting region 245 gradually increases.
  • the minimum penetration depth of the third connection zone 245 may be equal to the penetration depth of the first connection zone 241
  • the maximum penetration depth of the third connection zone 245 may be equal to the penetration depth of the second connection zone 242 .
  • the penetration depth of the third connection region 245 changes gradually to facilitate the transition from the first connection region 241 to the second connection region 242 .
  • the circumference of the connection area 240 where the end cover 230 is connected to the housing 210 is L 4
  • the length of the third connection area 245 is L 5 , satisfying : L 5 ⁇ 0.1L 4 .
  • the length of the third connection area 245 is the distance between its two ends.
  • its length is the sum of the length of the part on the long side 243 and the length of the part on the short side 244 .
  • the third connection area 245 is an arc
  • the length of the third connection area 245 is the arc length of the arc.
  • the length of the third connection region 245 is less than or equal to 0.1 times the circumference of the connection region 240 , so that the lengths of the first connection region 241 and the second connection region 242 are longer. If L 5 >0.1L 4 , the length of the third connection area 245 is longer, and correspondingly, the lengths of the first connection area 241 and the second connection area 242 will be shortened, which may affect the opening of the first connection area 241 after blasting The size may affect the connection strength between the end cover 230 and the housing 210 .
  • the battery cell 20 includes a plurality of first connection regions 241 , and the plurality of first connection regions 241 are arranged at intervals along the circumference of the end cap 230 .
  • the battery cell 20 may include two first connection regions 241 , three first connection regions 241 , four first connection regions 241 and more than four first connection regions 241 .
  • the plurality of first connection areas 241 can explode and release pressure, so as to increase the pressure release speed, which is conducive to improving the safety of the battery 10 .
  • FIG. 14 is a top view of a battery cell 20 including two first connecting regions 241 disclosed in an embodiment of the present application.
  • the battery cell 20 includes two first connection regions 241 , and the two first connection regions 241 are oppositely arranged.
  • the two first connection regions 241 can be both disposed on the long side 243 so as to be oppositely disposed along the width direction.
  • the two first connecting regions 241 can also be disposed on the short side 244 so as to be opposite to each other along the length direction.
  • the two first connecting areas 241 can also be circular arcs, and the two first connecting areas 241 are respectively located at two ends of the diameter, so as to realize relative arrangement.
  • the two first connection areas 241 are arranged opposite to each other so that the two first connection areas 241 are not likely to interfere with each other and can release pressure independently.
  • FIG. 15 is a top view of a battery cell 20 including three first connecting regions 241 disclosed in an embodiment of the present application.
  • the battery cell 20 includes three first connection regions 241 , and the three first connection regions 241 are arranged at intervals along the circumference of the end cover 230 .
  • the three first connecting regions 241 can be all set on the long side 243 , or can be set on two long sides 243 respectively, or can be set on a part of the long side 243 and another part on the short side 244 .
  • the embodiment of the present application also provides a battery 10 , including the above-mentioned battery cells 20 .
  • the embodiment of the present application also provides an electric device, including the battery 10 described above, and the battery 10 is used to provide electric energy for the electric device.
  • FIG. 4 please refer to FIG. 15 .
  • the embodiment of the present application provides a battery cell 20 , including a casing 210 , an electrode assembly 220 and an end cap 230 .
  • the casing 210 has an opening, the electrode assembly 220 is accommodated in the casing 210 , and the end cap 230 closes the opening.
  • the end cover 230 and the housing 210 are sealed and connected through the first connection area 241 and the second connection area 242 , and the strength of the first connection area 241 is smaller than that of the second connection area 242 .
  • the first connection area 241 is used to activate to release the internal pressure when the internal pressure of the battery cell 20 exceeds a threshold.
  • the end cap 230 is welded to the housing 210 , and the penetration depth of the first connection area 241 is smaller than the penetration depth of the second connection area 242 .
  • the first connection area 241 between the end cap 230 and the casing 210 will burst to release the pressure when the internal pressure of the battery cell 20 reaches a certain threshold because the seal is relatively weak, ensuring that the battery 10 security.
  • This solution can replace the existing explosion-proof valve technology, reduce the manufacturing cost of the battery cell 20, and further reduce the space occupied by the battery cell 20 and the assembly process. Weld strength is positively correlated with penetration, the deeper the penetration, the higher the weld strength.
  • the penetration depth of the first connection area 241 is smaller than the penetration depth of the second connection area 242, and the strength of the first connection area 241 is also lower than that of the second connection area 242.
  • the strength of the connection area 242 enables the first connection area 241 to act as a sealing weak area, which bursts to release the pressure when the internal pressure of the battery cell 20 exceeds a certain threshold.
  • connection area 240 where the end cover 230 is connected to the housing 210 extends along a rectangular track.
  • the connection area 240 includes a long side 243 and a short side 244 .
  • the length of the long side 243 is greater than the length of the short side 244 .
  • the length of the long side 243 is L 1 , which satisfies: L 1 ⁇ 50mm.
  • the first connection region 241 is disposed on the long side 243 , and the length of the first connection region 241 is L 2 , which satisfies: L 1 /3 ⁇ L 2 ⁇ L 1 /2.
  • the length of the short side 244 is L 3 , which satisfies: L 3 /2 ⁇ L 2 ⁇ 3L 3 /4.
  • the length of the first connection area 241 is 1/3 to 1/2 of the size of the long side 243, so as to satisfy the connection strength between the end cover 230 and the housing 210 , so that the first connecting region 241 is longer.
  • the length of the first connecting region 241 can be set relatively large.
  • the length of the first connection area 241 is 1/2 ⁇ 3/4 of the size of the short side 244 , so as to make the first connection area 241 longer while satisfying the connection strength between the end cover 230 and the housing 210 .
  • the length of the long side 243 is L 1 , which satisfies: L 1 ⁇ 50mm.
  • the first connection area 241 is disposed on the long side 243 .
  • the length of the long side 243 was less than 50mm, the length of the short side 244 was shorter, so it was not suitable to set the first connection zone 241 on the short side 244 alone (the first connection zone 241 was arranged on the short side at this time, the first connection zone 241 It is not easy to burst, even if it bursts, the opening formed is also small, which is not conducive to rapid pressure relief).
  • the first connection area 241 is disposed on the long side 243 .
  • the length of the long side 243 is L 1 , which satisfies L 1 ⁇ 50mm.
  • the first connection area 241 includes a first section 2411, a second section 2412 and a third section 2413 connected in sequence, the first section 2411 and the third section 2413 are respectively located on two opposite long sides 243, and the second section 2412 is located in the connection area
  • the short side of 240 is 244.
  • the first connection area 241 can completely occupy one short side 244 and simultaneously occupy a part of each of the two long sides 243 .
  • the first connection region 241 may form a U-shaped structure. In this way, the first connection area 241 is easy to explode when the internal pressure of the battery cell 20 exceeds a certain threshold, and the opening after the explosion is relatively large, which is beneficial to realizing rapid pressure relief.
  • connection zone 245 Between the circumferential direction of the end cap 230, there is also a third connection zone 245 between the first connection zone 241 and the second connection zone 242, and the strength of the third connection zone 245 depends on the connection between the third connection zone 245 and the second connection zone 242
  • the connection position between the third connection region 245 and the first connection region 241 decreases gradually.
  • the minimum strength of the third connection region 245 is not less than the strength of the first connection region 241
  • the maximum strength of the third connection region 245 is not greater than the strength of the second connection region 242 .
  • the third connection area 245 is a transition area, which can realize the transition from the first connection area 241 to the second connection area 242 .
  • the welding equipment does not need to be shut down, but the welding parameters can be adjusted while welding, so as to improve the welding efficiency.
  • the third connecting region 245 as a transition region, stress concentration can also be reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

本申请实施例提供一种电池单体、电池及用电设备。所述电池单体包括:壳体,具有开口;电极组件,容纳于所述壳体内;端盖,封闭所述开口,所述端盖与所述壳体通过第一连接区与第二连接区密封连接,所述第一连接区的强度小于所述第二连接区的强度,所述第一连接区用于在所述电池单体的内部压力超过阈值时致动以释放所述内部压力。本申请提供的电池单体、电池及用电设备,能够保证电池安全性的同时降低电池单体的制造成本,还能进一步减少电池单体的组装工序。

Description

电池单体、电池及用电设备
相关申请的交叉引用
本申请要求享有2021年11月01日提交的名称为“电池单体、电池、制造电池单体的方法和装置”的PCT专利申请(申请号:PCT/CN2021/128005)的优先权,该申请的部分内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,特别是涉及一种电池单体、电池及用电设备。
背景技术
电池是目前电动汽车的主要动力源,但随着电动汽车数量的增加,已发生多起因电池热失控而引起的起火事故,严重威胁用户的生命财产安全。
电池单体发生异常时,其电池单体内部会迅速产生热量和气体,导致电池单体内部压力增加,需要及时将内部压力排出以防止电池单体发生爆炸而产生更大的危害。因此,如何保证电池单体的安全性,是电池技术中一个亟待解决的问题。
发明内容
本申请提供了一种电池单体、电池及用电设备,在保证电池安全性的同时能够降低电池单体制造的成本,还能进一步减少电池单体的组装工序。
第一方面,提供了一种电池单体,包括壳体,具有开口;电极组件,容纳于所述壳体内;端盖,封闭所述开口,所述端盖与所述壳体通过第一连接区与第二连接区密封连接,所述第一连接区的强度小于所述第二连接区的强度,所述第一连接区用于在所述电池单体的内部压力超过阈值时致动以释放所述内部压力。
应理解,本申请中所述的第一连接区为密封厚度较为薄弱的区域,第二连接区为正常厚度连接的区域。
上述技术方案,在电池单体的内部压力超过阈值时,端盖与壳体的第一连接区由于密封较为薄弱,将在电池单体内部压力达到一定阈值时爆破来释放压力,保证电池的安全性。该方案可以代替现有的防爆阀技术,降低电池单体的制造成本,进一步减少电池单体占用的空间和组装工序。
在一些实施例中,所述端盖与所述壳体焊接连接,所述第一连接区的熔深小于所述第二连接区的熔深。
上述技术方案,焊缝强度与熔深呈正相关,熔深越深,则焊缝强度越高。当电池单体的端盖与壳体通过焊接方式进行连接时,第一连接区的熔深小于第二连接区的熔深,第一连接区的强度也就小于第二连接区的强度,使第一连接区作为密封薄弱区,在电池单体的内部压力超过一定阈值时爆破,以释放压力。
在一些实施例中,所述第一连接区的熔深不大于所述第二连接区的熔深的三分之二。
在上述技术方案中,第一连接区的熔深小于或等于第二连接区的熔深的三分之二,以使得第一连接区在电池单体的内部压力超过一定阈值时容易爆破,以及时泄放电池单体的压力。若第一连接区的熔深大于第二连接区熔深的三分之二,这样,第一连接区的强度较高,不易在电池单体的内部压力超过一定阈值时爆破,可能会降低泄压速度。
在一些实施例中,所述第一连接区的熔深为H 1,满足:0.1mm≤H 1≤0.4mm;和/或所述第二连接区的熔深为H 2,满足:0.6mm≤H 2≤0.9mm。
在上述技术方案中,第一连接区的熔深在0.1~0.4mm之间,使得第一连接区的强度在 0.7~1.1Mpa之间,使第一连接区易于在电池单体的内部压力超过一定阈值时爆破。第二连接区的熔深在0.6~0.9mm之间,使得第二连接区的强度在1.5~3Mpa之间,以实现端盖和壳体的固定连接。并且,第一连接区的最大强度和第二连接区的最小强度之间存在0.4Mpa的差值,使得第二连接区不易受到电池单体的内部压力的作用而打开,降低电池单体的内部压力冲飞端盖的风险,有利于提升电池的安全性。
在一些实施例中,所述端盖与所述壳体连接的连接区沿矩形轨迹延伸,所述连接区包括长边和短边,所述长边的长度大于所述短边的长度。
在上述技术方案中,端盖呈矩形,在沿着端盖的边缘与壳体进行焊接后,形成的连接区沿着矩形轨迹延伸,适用于方壳电池。
在一些实施例中,所述长边的长度为L 1,满足:L 1≥50mm;所述第一连接区设置于所述长边,且所述第一连接区的长度为L 2,满足:L 1/3≤L 2≤L 1/2;和/或所述第一连接区设置于所述连接区的短边,所述短边的长度为L 3,满足:L 3/2≤L 2≤3L 3/4。
在上述技术方案中,一般来说,连接区的长边和短边之比在一个预设范围之内,连接区的长边增长,其短边也相应增长。当长边的长度大于或等于50mm时,长边和短边的长度均较大。可以将第一连接区设置于长边,也可以将第一连接区设置于短边。当第一连接区设置于长边时,第一连接区的长度为长边的尺寸的1/3~1/2,以在满足端盖和壳体连接强度的情况下,使得第一连接区较长。若L 2<L 1/3,则第一连接区的长度较短,在第一连接区爆开时形成的开口较小,不利于快速泄压。若L 2>L 1/2,则第一连接区的长度较长,端盖和壳体的连接强度较低。当第一连接区设置于短边时,由于短边距离角部(短边和长边的相交位置)较近,可以受到角部的加强作用(角部的强度较大),第一连接区的长度可以设置的较大。第一连接区的长度为短边的尺寸的1/2~3/4,以在满足端盖和壳体连接强度的情况下,使得第一连接区较长。若L 2<L 3/2,则第一连接区的长度较短,在第一连接区爆开时形成的开口较小,不利于快速泄压。若L 2>3L 3/4,则第一连接区的长度较长,端盖和壳体的连接强度较低。
在一些实施例中,所述长边的长度为L 1,满足:L 1<50mm;所述第一连接区设置于所述长边。
在上述技术方案中,当长边的长度小于50mm时,短边的长度较短,不宜单独在短边上设置第一连接区(此时将第一连接区设置在短边,第一连接区不易爆开,即使爆开,形成的开口也较小,不利于快速泄压)。此时,将第一连接区设置于长边。
在一些实施例中,所述长边的长度为L 1,满足L 1<50mm;所述第一连接区包括依次相连的第一段、第二段和第三段,所述第一段和所述第三段分别位于相对的两个所述长边,所述第二段位于所述连接区的短边。
在上述技术方案中,当长边的长度小于50mm时,第一连接区可以完全占据一个短边,并同时占据两个长边各自的一部分。第一连接区可以形成U形结构。这样,第一连接区容易在电池单体的内部压力超过一定阈值时爆破,并且爆破后的开口较大,有利于实现快速泄压。
在一些实施例中,所述端盖与所述壳体连接的连接区沿圆形轨迹延伸。
在上述技术方案中,端盖呈圆形,在沿着端盖的边缘与壳体进行焊接后,形成的连接区沿着圆形轨迹延伸,适用于圆柱电池。
在一些实施例中,沿所述端盖的周向,所述第一连接区的长度为L 2,所述端盖与所述壳体连接的连接区的周长为L 4,满足:0.2L 4≤L 2≤0.35L 4
在上述技术方案中,第一连接区的长度为连接区周长的0.2~0.35,以在满足端盖和壳体连接强度的情况下,使得第一连接区较长。若L 2<0.2L 4,则第一连接区的长度较短,在第一连接区爆开时形成的开口较小,不利于快速泄压。若L 2>0.35L 4,则第一连接区的长度较长,端盖和壳体的连接强度较低。
在一些实施例中,沿所述端盖的周向,所述第一连接区和所述第二连接区之间还具有第三 连接区,所述第三连接区的强度从所述第三连接区与所述第二连接区的连接位置到所述第三连接区与所述第一连接区的连接位置逐渐减小,所述第三连接区的最小强度不小于所述第一连接区的强度,所述第三连接区的最大强度不大于所述第二连接区的强度。
在上述技术方案中,第三连接区为过渡区域,能够实现从第一连接区到第二连接区的过渡。这样,在焊接壳体和端盖时,焊接设备不必停机,而是可以边焊接边调整焊接参数,以提升焊接效率。另外,通过设置第三连接区作为过渡区域,还能够降低应力集中。
在一些实施例中,所述端盖与所述壳体焊接连接,所述第三连接区的熔深从所述第三连接区与所述第二连接区的连接位置到所述第三连接区与所述第一连接区的连接位置逐渐减小,所述第三连接区的最小熔深不小于所述第一连接区的熔深,所述第三连接区的最大熔深不大于所述第二连接区的熔深。
在上述技术方案中,由于焊缝强度与熔深呈正相关,熔深越深,则焊缝强度越高。第三连接区的熔深逐渐变化,以便于从第一连接区向第二连接区过渡。
在一些实施例中,沿所述端盖的周向,所述端盖与所述壳体连接的连接区的周长为L 4,所述第三连接区的长度为L 5,满足:L 5≤0.1L 4
在上述技术方案中,第三连接区的长度小于或等于连接区的周长的0.1倍,以使得第一连接区和第二连接区的长度较长。若L 5>0.1L 4,则第三连接区的长度较长,相应地,第一连接区和第二连接区的长度会缩短,可能会影响第一连接区爆破后的开口大小或者影响端盖和壳体的连接强度。
在一些实施例中,所述电池单体包括多个所述第一连接区,多个所述第一连接区沿着所述端盖的周向间隔设置。
在上述技术方案中,通过设置多个第一连接区,在电池单体的内部压力达到一定阈值时,多个第一连接区都能够爆破泄压,以提升泄压速度,有利于提升电池的安全性。
在一些实施例中,所述电池单体包括两个所述第一连接区,两个所述第一连接区相对设置。
在上述技术方案中,将两个第一连接区相对设置,使得两个第一连接区不易互相干扰,能够各自独立泄压。
第二方面,本申请实施例还提供了一种电池,包括上述的电池单体。
第三方面,本申请实施例还提供了一种用电设备,包括上述的电池,所述电池用于为所述用电设备提供电能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例公开的一种车辆的结构示意图;
图2是本申请一实施例公开的一种电池的分解结构示意图;
图3是本申请一实施例公开的一种电池模块的结构示意图;
图4为本申请一实施例公开的一种电池单体的分解图;
图5为本申请一实施例公开的一种电池单体的示意图;
图6为本申请一实施例公开的一种电池单体的俯视图;
图7为本申请一实施例公开的一种电池单体局部A-A的截面图;
图8为图6中B-B位置的剖视图;
图9为图6中C-C位置的剖视图;
图10为本申请一实施例公开的另一种电池单体的俯视图;
图11为本申请一实施例公开的又一种电池单体的俯视图;
图12为本申请一实施例公开的连接区沿圆形轨迹延伸的电池单体的俯视图;
图13为本申请一实施例公开的再一种电池单体的俯视图;
图14为本申请一实施例公开的包括两个第一连接区的电池单体的俯视图;
图15为本申请一实施例公开的包括三个第一连接区的电池单体的俯视图。
图标:1-车辆;10-电池;11-箱体;111-第一部分;112-第二部分;131-电极端子;200-电池模块;210-壳体;220-电极组件;230-端盖;240-连接区;241-第一连接区;2411-第一段;2412-第二段;2413-第三段;242-第二连接区;243-长边;244-短边;245-第三连接区;20-电池单体;30-控制器;40-马达。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它规则或者不规则的形状,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为聚丙烯(polypropylene,PP)或聚乙烯(polyethylene,PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。
对于电池来说,主要的安全危险来自于充电和放电过程,为了提高电池的安全性能,对电池单体一般会设置泄压机构。泄压机构是指电池单体的内部压力或温度达到预定阈值时致动以泄放内部压力或温度的元件或部件。该预定阈值可以根据设计需求不同而进行调整。所述预定阈值可取决于电池单体中的正极极片、负极极片、电解液和隔离膜中一种或几种的材料。泄压机构可以采用诸如对压力敏感或温度敏感的元件或部件,即,当电池单体的内部压力或温度达到预定阈值时,泄压机构致动,从而形成可供内部压力或温度泄放的通道。
本申请中所提到的“致动”是指泄压机构产生动作,从而使得电池单体的内部压力及温度得以被泄放。泄压机构产生的动作可以包括但不限于:泄压机构中的至少一部分破裂、被撕裂或者熔化,等等。泄压机构在致动后,电池单体内部的高温高压物质作为排放物会从泄压机构向外排出。以此方式能够在可控压力或温度的情况下使电池单体发生泄压,从而避免潜在的更严重的事故发生。
本申请中所提到的来自电池单体的排放物包括但不限于:电解液、被溶解或分裂的正负极极片、隔离膜的碎片、反应产生的高温高压气体、火焰,等等。
电池单体上的泄压机构对电池的安全性有着重要影响。例如,当电池单体发生短路、过充等现象时,可能会导致电池单体内部发生热失控从而压力或温度骤升。这种情况下通过泄压机构致动可以将内部压力及温度向外释放,以防止电池单体爆炸、起火。
当前一般会在电池单体的端盖上设置防爆阀,作为泄压机构,从而当电池单体内部压力达到一定值时,冲破防爆阀进行泄压。但是防爆阀对焊接工艺的要求较高,会造成电池的生产成本升高,而且还需要较多的设置空间和组装工序。
针对上述问题,本申请实施例提供了一种电池单体,电池单体的壳体和端盖的连接处设置薄弱密封区作为泄压机构,用于在所述电池单体的内部压力或温度达到阈值时致动以泄放所述压力;其中,薄弱密封区比正常密封区的密封厚度小。这样,当电池单体的内部压力或温度达到阈值时首先冲破薄弱密封区释放所述压力。另外,该方案还可以降低电池单体的制造成本,减少占用的空间和组装工序。
本申请实施例描述的技术方案均适用于各种使用电池的用电设备。
用电设备可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂 轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电设备不做特殊限制。
以下实施例为了方便说明,以用电设备为车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达40,控制器30以及电池10,控制器30用来控制电池10为马达40的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池10可以包括多个电池单体20,其中,多个电池单体20之间可以串联或并联或混联,混联是指串联和并联的混合。电池10也可以称为电池包。在一些实施例中,多个电池单体20可以先串联或并联或混联组成电池模块200,多个电池模块200再串联或并联或混联组成电池10。也就是说,多个电池单体20可以直接组成电池10,也可以先组成电池模块200,电池模块200再组成电池10。
例如,图2示出了本申请一个实施例的一种电池10的结构示意图,电池10可以包括至少一个电池模块200。电池模块200包括多个电池单体20。电池10还可以包括箱体11,箱体11内部为中空结构,多个电池单体20容纳于箱体11内。图2示出了本申请实施例的箱体11的一种可能的实现方式,如图2所示,箱体11可以包括两部分,这里分别称为第一部分111和第二部分112,第一部分111和第二部分112扣合在一起。第一部分111和第二部分112的形状可以根据电池模块200组合的形状而定,第一部分111和第二部分112中至少一个具有一个开口。例如,如图2所示,该第一部分111和第二部分112均可以为中空长方体且各自只有一个面为开口面,第一部分111的开口和第二部分112的开口相对设置,并且第一部分111和第二部分112相互扣合形成具有封闭腔室的箱体11。
再例如,不同于图2所示,第一部分111和第二部分112中可以仅有一个为具有开口的中空长方体,而另一个为板状,以盖合开口。例如,这里以第二部分112为中空长方体且只有一个面为开口面,第一部分111为板状为例,那么第一部分111盖合在第二部分112的开口处以形成具有封闭腔室的箱体11,该腔室可以用于容纳多个电池单体20。多个电池单体20相互并联或串联或混联组合后置于第一部分111和第二部分112扣合后形成的箱体11内。
在一些实施例中,电池10还可以包括其他结构,在此不再一一赘述。例如,该电池10还可以包括汇流部件,汇流部件用于实现多个电池单体20之间的电连接,例如并联或串联或混联。具体地,汇流部件可通过连接电池单体20的电极端子131实现电池单体20之间的电连接。进一步地,汇流部件可通过焊接固定于电池单体20的电极端子131。多个电池单体20的电能可进一步通过导电机构穿过箱体11而引出。
根据不同的电力需求,电池模块200中的电池单体20的数量可以设置为任意数值。多个电池单体20可通过串联、并联或混联的方式连接以实现较大的容量或功率。由于每个电池10中包括的电池单体20的数量可能较多,为了便于安装,将电池单体20分组设置,每组电池单体20组成电池模块200。电池模块200中包括的电池单体20的数量不限,可以根据需求设置。例如,图3为电池模块200的一个示例。电池10可以包括多个电池模块200,这些电池模块200可通过串联、并联或混联的方式进行连接。可以理解的,多个电池单体20可以直接组装成电池10。
图4为本申请一个实施例的一种电池单体20的分解结构示意图。图5为本申请一个实施例的一种电池单体20的结构示意图。如图4和图5所示,该电池单体20包括壳体210、电极组件220和端盖230。电极组件220容纳于壳体210内,端盖230用于盖合于壳体210的开口。壳体210是用于容纳电极组件220的部件,壳体210可以是一端形成开口的空心结构,壳体210也可以是相对的两端形成开口的空心结构。若壳体210为一端形成开口的空心结构,端盖230则可以设置为一个;若壳体210为相对的两端形成开口的空心结构,端盖230则可以设置为两个,两个端盖230分别盖合于壳体210两端的开口。壳体210的材质可以是多种,比如,铜、铁、铝、钢、铝合金等。 壳体210可以是多种形状,比如,圆柱体、长方体等。示例性的,在图4和图5中,壳体210为长方体结构,壳体210为一端形成开口的空心结构。
在该电池单体20中,根据实际使用需求,壳体210内的电极组件220可设置为1个,也可以是多个,如图5所示,电池单体20内设置有1个独立的电极组件220。
电极组件220是电池单体20中发生电化学反应的部件。电极组件220可以是圆柱体、长方体等,若电极组件220为圆柱体结构,壳体210也可以为圆柱体结构,若电极组件220为长方体结构,壳体210也可以为长方体结构。
端盖230是盖合于壳体210的开口以将电池单体20的内部环境与外部环境隔绝的部件。端盖230的形状可以与壳体210的形状相适配,如图4所示,壳体210为长方体结构,端盖230为与壳体210相适配的矩形板状结构。端盖230的材质也可以是多种,比如,铜、铁、铝、钢、铝合金等,端盖230的材质与壳体210的材质可以相同,也可以不同。端盖230上可以设置有如电极端子131等的功能性部件。电极端子131可以用于与电极组件220电连接,以用于输出或输入电池单体20的电能。
在本申请实施例提供的电池单体20,包括壳体210、电极组件220及端盖230,壳体210具有开口,电极组件220容纳于壳体210内,端盖230封闭开口。端盖230与壳体210通过第一连接区241与第二连接区242密封连接,第一连接区241的强度小于第二连接区242的强度,第一连接区241用于在电池单体20的内部压力超过阈值时致动以释放内部压力。
图6是本申请一实施例中电池单体20的俯视图。如图6所示,当端盖230封闭壳体210的开口时,该端盖230与壳体210通过连接区240密封连接。连接区240包括第一连接区241和第二连接区242。其中,第一连接区241如A-A的虚线所示,第二连接区242如与虚线相连的实线所示。第一连接区241的数目可以为一处,也可以为多处,本申请对此不作限定。
应理解,第一连接区241包括位于A-A处,端盖230和壳体210的密封连接部分,例如,端盖230和壳体210直接密封连接时,第一连接区241可以包括一部分端盖230和一部分壳体210,端盖230和壳体210通过其他密封件密封连接时,第一连接区241也包括部分的密封件;第二连接区242包括端盖230和壳体210的密封连接部分,例如,端盖230和壳体210直接密封连接时,第二连接区242可以包括一部分端盖230和一部分壳体210,端盖230和壳体210通过其他密封件密封连接时,第二连接区242也包括部分的密封件。
在本申请实施例中,第一连接区241的强度小于第二连接区242的强度,即第一连接区241为端盖230和壳体210连接时密封较为薄弱的区,以作为泄压机构,用于当电池单体20内部的压力或温度达到阈值时致动以泄放压力,即内部压力会在第一连接区241处将电池单体20的端盖230顶开,释放该内部压力,防止电池单体20爆炸、起火。
通过本申请实施例,一方面,不需要在电池10的端盖230上设置防爆机构也能释放电池单体20的内部压力,保证电池10的安全性。另一方面,还可以降低电池单体20的制造成本、占用的空间及组装工序。
作为一种具体的连接方式,端盖230和壳体210可以通过焊接方式连接,形成连接区240。焊接方式,也称作熔接,是一种以加热、高温或者高压的方式接合金属或其他热塑性材料如塑料的制造工艺及技术。
图7是当电池单体20的端盖230与壳体210通过上述焊接方式连接时,本申请实施例公开的电池单体20局部A-A的示意性截面图。如图7所示,黑色填充部为端盖230和壳体210的焊接部分,其中,第一连接区241的熔深小于第二连接区242的熔深,使得第一连接区241比第二连接区242更容易被内部压力冲击破裂,以从第一连接区241释放该压力。应理解,熔深是指端盖230与壳体210的对接焊缝中从焊件表面到熔化区最深处的距离。焊缝强度与熔深呈正相关,熔深越深,则焊缝强度越高。当电池单体20的端盖230与壳体210通过焊接方式进行连接时,第一连接区241的熔深小于第二连接区242的熔深,第一连接区241的强度也就小于第二连接区242的强度,使第一连接区241作为密封薄弱区,在电池单体20的内部压力超过一定阈值时爆破,以释放压力。
作为一种优选的实施方式,第一连接区241的熔深不大于第二连接区242的熔深的三分之二。
第一连接区241的熔深小于或等于第二连接区242的熔深的三分之二,以使得第一连接区241在电池单体20的内部压力超过一定阈值时容易爆破,以及时泄放电池单体20的压力。若第一连接区241的熔深大于第二连接区242熔深的三分之二,这样,第一连接区241的强度较高,不易在电池单体20的内部压力超过一定阈值时爆破,可能会降低泄压速度。
请参照图6、图8和图9,图8为图6中B-B位置的剖视图。图9为图6中C-C位置的剖视图。在一些实施例中,第一连接区241的熔深为H 1,满足:0.1mm≤H 1≤0.4mm。和/或第二连接区242的熔深为H 2,满足:0.6mm≤H 2≤0.9mm。
熔深是指端盖230与壳体210的对接焊缝中从焊件表面到熔化区最深处的距离。结合到图8中,第一连接区241的熔深为端盖230沿其厚度方向背离电池单体20内部的表面到第一连接区241向端盖230内部最远离上述表面的位置的距离。结合到图9中,第二连接区242的熔深为端盖230沿其厚度方向背离电池单体20内部的表面到第二连接区242向端盖230内部最远离上述表面的位置的距离。
由于焊接前后材料的晶粒会发生改变,因此,从B-B截面剖开后,能够清楚地看到第一连接区241的痕迹,因此能够对第一连接区241的熔深进行测量。同样地,从C-C截面剖开后,能够清楚地看到第二连接区242的痕迹,因此能够对第二连接区242的熔深进行测量。
第一连接区241的熔深的取值可以为:H 1=0.1mm、0.15mm、0.2mm、0.25mm、0.3mm、0.35mm、0.4mm等。
第一连接区241的熔深的取值可以为:H 2=0.6mm、0.65mm、0.7mm、0.75mm、0.8mm、0.85mm、0.9mm等。
第一连接区241的熔深在0.1~0.4mm之间,使得第一连接区241的强度在0.7~1.1Mpa之间,使第一连接区241易于在电池单体20的内部压力超过一定阈值时爆破。第二连接区242的熔深在0.6~0.9mm之间,使得第二连接区242的强度在1.5~3Mpa之间,以实现端盖230和壳体210的固定连接。并且,第一连接区241的最大强度和第二连接区242的最小强度之间存在0.4Mpa的差值,使得第二连接区242不易受到电池单体20的内部压力的作用而打开,降低电池单体20的内部压力冲飞端盖230的风险,有利于提升电池10的安全性。
请再次参照图6,在一些实施例中,端盖230与壳体210连接的连接区240沿矩形轨迹延伸。连接区240包括长边243和短边244,长边243的长度大于短边244的长度。
连接区240沿着矩形轨迹延伸,形成矩形框结构。矩形框结构中较长的一边为连接区240的长边243,较短的一边为连接区240的短边244。
端盖230呈矩形,在沿着端盖230的边缘与壳体210进行焊接后,形成的连接区240沿着矩形轨迹延伸,适用于方壳电池。
在一些实施例中,长边243的长度为L 1,满足:L 1≥50mm。第一连接区241设置于长边243,且第一连接区241的长度为L 2,满足:L 1/3≤L 2≤L 1/2。和/或第一连接区241设置于连接区240的短边244,短边244的长度为L 3,满足:L 3/2≤L 2≤3L 3/4。
壳体210和端盖230一般在角部位置(短边244和长边243的相交位置)采用圆弧过渡,一方面能够降低应力集中,另一方面能够避免割伤操作人员,增加安全性。为了便于测量,可以取相对设置的两个短边244之间的间距作为长边243的长度。相应地,可以取相对设置的两个长边243之间的间距作为短边244的长度。
一般来说,连接区240的长边243和短边244之比在一个预设范围之内,连接区240的长边243增长,其短边244也相应增长。当长边243的长度大于或等于50mm时,长边243和短边244的长度均较大。可以将第一连接区241设置于长边243,也可以将第一连接区241设置于短边244。
请参照图6,图6中示出了第一连接区241设置于长边243的情况。请参照图10,图10为本申请一实施例公开的另一种电池单体20的俯视图。图10中示出了第一连接区241设置于短边244的情况。当然,在L 1≥50mm时,第一连接区241也可以同时设置于长边243和短边244。
当第一连接区241设置于长边243时,第一连接区241的长度的取值可以为:L 2=L 1/3、7L 1/18、4L 1/9、L 1/2等。
当第一连接区241设置于短边244时,第一连接区241的长度的取值可以为:L 2=L 3/2、9L 3/16、5L 3/8、11L 3/16、3L 3/4等。
当第一连接区241设置于长边243时,第一连接区241的长度为长边243的尺寸的1/3~1/2,以在满足端盖230和壳体210连接强度的情况下,使得第一连接区241较长。若L 2<L 1/3,则第一连接区241的长度较短,在第一连接区241爆开时形成的开口较小,不利于快速泄压。若L 2>L 1/2,则第一连接区241的长度较长,端盖230和壳体210的连接强度较低。当第一连接区241设置于短边244时,由于短边244距离角部(短边244和长边243的相交位置)较近,可以受到角部的加强作用(角部的强度较大),第一连接区241的长度可以设置的较大。第一连接区241的长度为短边244的尺寸的1/2~3/4,以在满足端盖230和壳体210连接强度的情况下,使得第一连接区241较长。若L 2<L 3/2,则第一连接区241的长度较短,在第一连接区241爆开时形成的开口较小,不利于快速泄压。若L 2>3L 3/4,则第一连接区241的长度较长,端盖230和壳体210的连接强度较低。
在一些实施例中,长边243的长度为L 1,满足:L 1<50mm。第一连接区241设置于长边243。
当长边243的长度小于50mm时,短边244的长度较短,不宜单独在短边244上设置第一连接区241(此时将第一连接区241设置在短边,第一连接区241不易爆开,即使爆开,形成的开口也较小,不利于快速泄压)。此时,将第一连接区241设置于长边243。
请参照图11,图11为本申请一实施例公开的又一种电池单体20的俯视图。在又一种实施例中,长边243的长度为L 1,满足L 1<50mm。第一连接区241包括依次相连的第一段2411、第二段2412和第三段2413,第一段2411和第三段2413分别位于相对的两个长边243,第二段2412位于连接区240的短边244。
第一段2411是第一连接区241中设置于一个长边243的部分,第三段2413是第一连接区241中设置于另一个长边243的部分,第二段2412是第一连接区241中设置于短边244的部分,第一段2411和第三段2413相对设置,第二段2412的两端分别与第一段2411和第三段2413相连。第二段2412完全占据了一个短边244。
第一段2411和第三段2413的长度可以相同,也可以不同。换句话说,第一段2411的长度可以大于第三段2413的长度,也可以等于第三段2413的长度,还可以小于第三段2413的长度。
当长边243的长度小于50mm时,第一连接区241可以完全占据一个短边244,并同时占据两个长边243各自的一部分。第一连接区241可以形成U形结构。这样,第一连接区241容易在电池单体20的内部压力超过一定阈值时爆破,并且爆破后的开口较大,有利于实现快速泄压。
请参照图12,图12为本申请一实施例公开的连接区240沿圆形轨迹延伸的电池单体20的俯视图。在一些实施例中,端盖230与壳体210连接的连接区240沿圆形轨迹延伸。
连接区240沿着圆形轨迹延伸,形成圆环结构。
端盖230呈圆形,在沿着端盖230的边缘与壳体210进行焊接后,形成的连接区240沿着圆形轨迹延伸,适用于圆柱电池。
请参照图12,在一些实施例中,沿端盖230的周向,第一连接区241的长度为L 2,端盖230与壳体210连接的连接区240的周长为L 4,满足:0.2L 4≤L 2≤0.35L 4
第一连接区241为圆弧,第一连接区241的长度也即该圆弧的弧长。
第一连接区241的长度的取值可以为:L 2=0.2L 4、0.22L 4、0.24L 4、0.26L 4、0.28L 4、0.3L 4、0.32L 4、0.34L 4、0.35L 4等。
第一连接区241的长度为连接区240周长的0.2~0.35,以在满足端盖230和壳体210连接强度的情况下,使得第一连接区241较长。若L 2<0.2L 4,则第一连接区241的长度较短,在第一连接区241爆开时形成的开口较小,不利于快速泄压。若L 2>0.35L 4,则第一连接区241的长度较长,端盖230和壳体210的连接强度较低。
请参照图13,图13为本申请一实施例公开的再一种电池单体20的俯视图。在再一种实施例中,沿端盖230的周向,第一连接区241和第二连接区242之间还具有第三连接区245。第三连接区245的强度从第三连接区245与第二连接区242的连接位置到第三连接区245与第一连接区241的连接位置逐渐减小。第三连接区245的最小强度不小于第一连接区241的强度,第三连接区245的最大强度不大于第二连接区242的强度。
为了便于显示第三连接区245的位置,在图13中以点划线的方式示出第三连接区245。
第三连接区245是连接区240中连接第一连接区241和第二连接区242的部分。第三连接区245的强度是逐渐变化的,第三连接区245具有第一端和第二端,其中,第一端与第一连接区241连接,第二端与第二连接区242连接。沿第一端指向第二端的方向,第三连接区245的强度逐渐增大。为了使过渡效果较好,第三连接区245的最小强度可以等于第一连接区241的强度,第三连接区245的最大强度可以等于第二连接区242的强度。
第三连接区245为过渡区域,能够实现从第一连接区241到第二连接区242的过渡。这样,在焊接壳体210和端盖230时,焊接设备不必停机,而是可以边焊接边调整焊接参数,以提升焊接效率。另外,通过设置第三连接区245作为过渡区域,还能够降低应力集中。
在一些实施例中,端盖230与壳体210焊接连接,第三连接区245的熔深从第三连接区245与第二连接区242的连接位置到第三连接区245与第一连接区241的连接位置逐渐减小。第三连接区245的最小熔深不小于第一连接区241的熔深,第三连接区245的最大熔深不大于第二连接区242的熔深。
沿第一端指向第二端的方向,第三连接区245的熔深逐渐增大。为了使过渡效果较好,第三连接区245的最小熔深可以等于第一连接区241的熔深,第三连接区245的最大熔深可以等于第二连接区242的熔深。
由于焊缝强度与熔深呈正相关,熔深越深,则焊缝强度越高。第三连接区245的熔深逐渐变化,以便于从第一连接区241向第二连接区242过渡。
请参照图13,在一些实施例中,沿端盖230的周向,端盖230与壳体210连接的连接区240的周长为L 4,第三连接区245的长度为L 5,满足:L 5≤0.1L 4
当第三连接区245设置于长边243时,第三连接区245的长度为其两端之间的距离。当第三连接区245设置同时设置于长边243和短边244时,则其长度为在长边243的部分的长度和在短边244的部分的长度之和。当第三连接区245为圆弧时,第三连接区245的长度为圆弧的弧长。
第三连接区245的长度的取值可以为:L 5=0.1L 4、0.09L 4、0.08L 4、0.07L 4、0.06L 4、0.05L 4、0.04L 4、0.03L 4等。
第三连接区245的长度小于或等于连接区240的周长的0.1倍,以使得第一连接区241和第二连接区242的长度较长。若L 5>0.1L 4,则第三连接区245的长度较长,相应地,第一连接区241和第二连接区242的长度会缩短,可能会影响第一连接区241爆破后的开口大小或者影响端盖230和壳体210的连接强度。
在一些实施例中,电池单体20包括多个第一连接区241,多个第一连接区241沿着端盖230的周向间隔设置。
电池单体20可以包括两个第一连接区241、三个第一连接区241、四个第一连接区241以及四个以上的第一连接区241。
通过设置多个第一连接区241,在电池单体20的内部压力达到一定阈值时,多个第一连接区241都能够爆破泄压,以提升泄压速度,有利于提升电池10的安全性。
请参照图14,图14为本申请一实施例公开的包括两个第一连接区241的电池单体20的俯视图。在一些实施例中,电池单体20包括两个第一连接区241,两个第一连接区241相对设置。
两个第一连接区241可以均设置于长边243,以沿着宽度方向相对设置。两个第一连接区241也可以均设置于短边244,以沿着长度方向相对设置。两个第一连接区241还可以均为圆弧,两个第一连接区241分别位于直径的两端,以实现相对设置。
将两个第一连接区241相对设置,使得两个第一连接区241不易互相干扰,能够各自独立泄压。
请参照图15,图15为本申请一实施例公开的包括三个第一连接区241的电池单体20的俯视图。在另一些实施例中,电池单体20包括三个第一连接区241,三个第一连接区241沿着端盖230的周向间隔设置。三个第一连接区241可以均设置于长边243,也可以分别设置于两个长边243,还可以一部分设置于长边243,另一部分设置于短边244。
本申请实施例还提供了一种电池10,包括上述的电池单体20。
本申请实施例还提供了一种用电设备,包括上述的电池10,电池10用于为用电设备提供电能。
根据本申请的一些实施例,请参照图4~图15。
本申请实施例提供了一种电池单体20,包括壳体210、电极组件220和端盖230。壳体210具有开口,电极组件220容纳于壳体210内,端盖230封闭开口。端盖230与壳体210通过第一连接区241与第二连接区242密封连接,第一连接区241的强度小于第二连接区242的强度。第一连接区241用于在电池单体20的内部压力超过阈值时致动以释放内部压力。端盖230与壳体210焊接连接,第一连接区241的熔深小于第二连接区242的熔深。在电池单体20的内部压力超过阈值时,端盖230与壳体210的第一连接区241由于密封较为薄弱,将在电池单体20内部压力达到一定阈值时爆破来释放压力,保证电池10的安全性。该方案可以代替现有的防爆阀技术,降低电池单体20的制造成本,进一步减少电池单体20占用的空间和组装工序。焊缝强度与熔深呈正相关,熔深越深,则焊缝强度越高。当电池单体20的端盖230与壳体210通过焊接方式进行连接时,第一连接区241的熔深小于第二连接区242的熔深,第一连接区241的强度也就小于第二连接区242的强度,使第一连接区241作为密封薄弱区,在电池单体20的内部压力超过一定阈值时爆破,以释放压力。
端盖230与壳体210连接的连接区240沿矩形轨迹延伸,连接区240包括长边243和短边244,长边243的长度大于短边244的长度。长边243的长度为L 1,满足:L 1≥50mm。第一连接区241设置于长边243,且第一连接区241的长度为L 2,满足:L 1/3≤L 2≤L 1/2。和/或第一连接区241设置于连接区240的短边244,短边244的长度为L 3,满足:L 3/2≤L 2≤3L 3/4。当第一连接区241设置于长边243时,第一连接区241的长度为长边243的尺寸的1/3~1/2,以在满足端盖230和壳体210连接强度的情况下,使得第一连接区241较长。当第一连接区241设置于短边244时,由于短边244距离角部(短边244和长边243的相交位置)较近,可以受到角部的加强作用(角部的强度较大),第一连接区241的长度可以设置的较大。第一连接区241的长度为短边244的尺寸的1/2~3/4,以在满足端盖230和壳体210连接强度的情况下,使得第一连接区241较长。
长边243的长度为L 1,满足:L 1<50mm。第一连接区241设置于长边243。当长边243的长度小于50mm时,短边244的长度较短,不宜单独在短边244上设置第一连接区241(此时将第一连接区241设置在短边,第一连接区241不易爆开,即使爆开,形成的开口也较小,不利于快速泄压)。此时,将第一连接区241设置于长边243。
长边243的长度为L 1,满足L 1<50mm。第一连接区241包括依次相连的第一段2411、第二段2412和第三段2413,第一段2411和第三段2413分别位于相对的两个长边243,第二段2412位于连接区240的短边244。当长边243的长度小于50mm时,第一连接区241可以完全占据一个 短边244,并同时占据两个长边243各自的一部分。第一连接区241可以形成U形结构。这样,第一连接区241容易在电池单体20的内部压力超过一定阈值时爆破,并且爆破后的开口较大,有利于实现快速泄压。
沿端盖230的周向,第一连接区241和第二连接区242之间还具有第三连接区245,第三连接区245的强度从第三连接区245与第二连接区242的连接位置到第三连接区245与第一连接区241的连接位置逐渐减小。第三连接区245的最小强度不小于第一连接区241的强度,第三连接区245的最大强度不大于第二连接区242的强度。第三连接区245为过渡区域,能够实现从第一连接区241到第二连接区242的过渡。这样,在焊接壳体210和端盖230时,焊接设备不必停机,而是可以边焊接边调整焊接参数,以提升焊接效率。另外,通过设置第三连接区245作为过渡区域,还能够降低应力集中。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (17)

  1. 一种电池单体,其中,包括:
    壳体,具有开口;
    电极组件,容纳于所述壳体内;
    端盖,封闭所述开口,所述端盖与所述壳体通过第一连接区与第二连接区密封连接,所述第一连接区的强度小于所述第二连接区的强度,所述第一连接区用于在所述电池单体的内部压力超过阈值时致动以释放所述内部压力。
  2. 根据权利要求1所述的电池单体,其中,所述端盖与所述壳体焊接连接,所述第一连接区的熔深小于所述第二连接区的熔深。
  3. 根据权利要求2所述的电池单体,其中,所述第一连接区的熔深不大于所述第二连接区的熔深的三分之二。
  4. 根据权利要求2或3所述的电池单体,其中,所述第一连接区的熔深为H 1,满足:0.1mm≤H 1≤0.4mm;和/或
    所述第二连接区的熔深为H 2,满足:0.6mm≤H 2≤0.9mm。
  5. 根据权利要求2-4任一项所述的电池单体,其中,所述端盖与所述壳体连接的连接区沿矩形轨迹延伸,所述连接区包括长边和短边,所述长边的长度大于所述短边的长度。
  6. 根据权利要求5所述的电池单体,其中,所述长边的长度为L 1,满足:L 1≥50mm;
    所述第一连接区设置于所述长边,且所述第一连接区的长度为L 2,满足:L 1/3≤L 2≤L 1/2;和/或
    所述第一连接区设置于所述连接区的短边,所述短边的长度为L 3,满足:L 3/2≤L 2≤3L 3/4。
  7. 根据权利要求5所述的电池单体,其中,所述长边的长度为L 1,满足:L 1<50mm;
    所述第一连接区设置于所述长边。
  8. 根据权利要求5所述的电池单体,其中,所述长边的长度为L 1,满足L 1<50mm;
    所述第一连接区包括依次相连的第一段、第二段和第三段,所述第一段和所述第三段分别位于相对的两个所述长边,所述第二段位于所述连接区的短边。
  9. 根据权利要求2-4任一项所述的电池单体,其中,所述端盖与所述壳体连接的连接区沿圆形轨迹延伸。
  10. 根据权利要求1-9任一项所述的电池单体,其中,沿所述端盖的周向,所述第一连接区的长度为L 2,所述端盖与所述壳体连接的连接区的周长为L 4,满足:0.2L 4≤L 2≤0.35L 4
  11. 根据权利要求1-10任一项所述的电池单体,其中,沿所述端盖的周向,所述第一连接区和所述第二连接区之间还具有第三连接区,所述第三连接区的强度从所述第三连接区与所述第二连接区的连接位置到所述第三连接区与所述第一连接区的连接位置逐渐减小,所述第三连接区的最小强度不小于所述第一连接区的强度,所述第三连接区的最大强度不大于所述第二连接区的强度。
  12. 根据权利要求11所述的电池单体,其中,所述端盖与所述壳体焊接连接,所述第三连接区的熔深从所述第三连接区与所述第二连接区的连接位置到所述第三连接区与所述第一连接区的连接位置逐渐减小,所述第三连接区的最小熔深不小于所述第一连接区的熔深,所述第三连接区的最大熔深不大于所述第二连接区的熔深。
  13. 根据权利要求11或12所述的电池单体,其中,沿所述端盖的周向,所述端盖与所述壳体连接的连接区的周长为L 4,所述第三连接区的长度为L 5,满足:L 5≤0.1L 4
  14. 根据权利要求1-13任一项所述的电池单体,其中,所述电池单体包括多个所述第一连接区,多个所述第一连接区沿着所述端盖的周向间隔设置。
  15. 根据权利要求14所述的电池单体,其中,所述电池单体包括两个所述第一连接区,两个所述第一连接区相对设置。
  16. 一种电池,其中,包括如权利要求1-15任一项所述的电池单体。
  17. 一种用电设备,其中,包括根据权利要求16所述的电池,所述电池用于为所述用电设备提供电能。
PCT/CN2022/123367 2021-11-01 2022-09-30 电池单体、电池及用电设备 WO2023071710A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280010077.XA CN116711143A (zh) 2021-11-01 2022-09-30 电池单体、电池及用电设备
EP22885593.8A EP4261987A1 (en) 2021-11-01 2022-09-30 Battery cell, battery and electric device
US18/353,987 US20230361415A1 (en) 2021-11-01 2023-07-18 Battery cell, battery, and electrical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2021/128005 2021-11-01
PCT/CN2021/128005 WO2023070683A1 (zh) 2021-11-01 2021-11-01 电池单体、电池、制造电池单体的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/353,987 Continuation US20230361415A1 (en) 2021-11-01 2023-07-18 Battery cell, battery, and electrical device

Publications (1)

Publication Number Publication Date
WO2023071710A1 true WO2023071710A1 (zh) 2023-05-04

Family

ID=86159960

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/128005 WO2023070683A1 (zh) 2021-11-01 2021-11-01 电池单体、电池、制造电池单体的方法和装置
PCT/CN2022/123367 WO2023071710A1 (zh) 2021-11-01 2022-09-30 电池单体、电池及用电设备

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128005 WO2023070683A1 (zh) 2021-11-01 2021-11-01 电池单体、电池、制造电池单体的方法和装置

Country Status (4)

Country Link
US (1) US20230361415A1 (zh)
EP (1) EP4261987A1 (zh)
CN (1) CN116711143A (zh)
WO (2) WO2023070683A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09259842A (ja) * 1996-03-27 1997-10-03 Sanyo Electric Co Ltd 密閉型角形電池
JP2001043845A (ja) * 1999-07-28 2001-02-16 Fuji Elelctrochem Co Ltd 角形電池の防爆機構
JP2001155698A (ja) * 1999-11-29 2001-06-08 Nec Mobile Energy Kk 密閉型電池
JP2003017029A (ja) * 2001-06-29 2003-01-17 Sanyo Electric Co Ltd 封口板及びこれを用いた溶接封口電池
CN1574418A (zh) * 2003-06-19 2005-02-02 三星Sdi株式会社 具有安全阀的二次电池及其制造方法
CN1619860A (zh) * 2003-11-21 2005-05-25 日立麦克赛尔株式会社 密闭方形电池
CN202395051U (zh) * 2011-12-20 2012-08-22 北京鼎能开源电池科技有限公司 具有焊缝泄压防爆结构的电化学密封装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09259842A (ja) * 1996-03-27 1997-10-03 Sanyo Electric Co Ltd 密閉型角形電池
JP2001043845A (ja) * 1999-07-28 2001-02-16 Fuji Elelctrochem Co Ltd 角形電池の防爆機構
JP2001155698A (ja) * 1999-11-29 2001-06-08 Nec Mobile Energy Kk 密閉型電池
JP2003017029A (ja) * 2001-06-29 2003-01-17 Sanyo Electric Co Ltd 封口板及びこれを用いた溶接封口電池
CN1574418A (zh) * 2003-06-19 2005-02-02 三星Sdi株式会社 具有安全阀的二次电池及其制造方法
CN1619860A (zh) * 2003-11-21 2005-05-25 日立麦克赛尔株式会社 密闭方形电池
CN202395051U (zh) * 2011-12-20 2012-08-22 北京鼎能开源电池科技有限公司 具有焊缝泄压防爆结构的电化学密封装置

Also Published As

Publication number Publication date
EP4261987A1 (en) 2023-10-18
CN116711143A (zh) 2023-09-05
US20230361415A1 (en) 2023-11-09
WO2023070683A1 (zh) 2023-05-04

Similar Documents

Publication Publication Date Title
WO2022006890A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
WO2023098258A1 (zh) 电池单体、电池以及用电装置
WO2022006903A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2023050835A1 (zh) 端盖组件、电池单体、电池以及用电装置
WO2023137976A1 (zh) 电池单体、电池以及用电装置
WO2022006891A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2022006892A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2023050631A1 (zh) 端盖组件、电池单体、电池以及用电装置
WO2023004723A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
US20220320677A1 (en) Battery cell and manufacturing method and system therefor, battery and electric device
WO2023279260A1 (zh) 电池单体、电池、用电设备及电池单体的制造方法和设备
WO2023056719A1 (zh) 端盖、电池单体、电池以及用电装置
JP7417741B2 (ja) 電池の筐体、電池、電力消費機器、筐体の製造方法及び装置
JP2023534585A (ja) 電池単体およびその製造方法と製造システム、電池および電力使用装置
WO2022006896A1 (zh) 电池及其相关装置、制备方法和制备设备
WO2022006901A1 (zh) 电池盒、电池单体、电池、制备电池盒的方法和装置
KR20220104219A (ko) 배터리, 장치, 배터리 제조 방법 및 배터리 제조 장치
US20230223641A1 (en) Box of battery, battery, power consumption apparatus, and method and apparatus for producing battery
WO2023141902A1 (zh) 端盖组件、电池单体、电池以及用电装置
WO2023141842A1 (zh) 泄压装置、电池单体、电池及用电设备
WO2023028867A1 (zh) 壳体、电池单体、电池及用电设备
WO2023071710A1 (zh) 电池单体、电池及用电设备
WO2022205080A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2023272501A1 (zh) 电池单体、电池、用电设备及电池单体的制造方法和设备
WO2023133855A1 (zh) 电池、用电设备及电池的制备方法和制备装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885593

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280010077.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022885593

Country of ref document: EP

Effective date: 20230713