WO2023128366A1 - 겔 전해질 조성물 및 이를 포함하는 이차 전지 - Google Patents

겔 전해질 조성물 및 이를 포함하는 이차 전지 Download PDF

Info

Publication number
WO2023128366A1
WO2023128366A1 PCT/KR2022/019815 KR2022019815W WO2023128366A1 WO 2023128366 A1 WO2023128366 A1 WO 2023128366A1 KR 2022019815 W KR2022019815 W KR 2022019815W WO 2023128366 A1 WO2023128366 A1 WO 2023128366A1
Authority
WO
WIPO (PCT)
Prior art keywords
chain
gel electrolyte
fluorine
straight
electrolyte composition
Prior art date
Application number
PCT/KR2022/019815
Other languages
English (en)
French (fr)
Inventor
정서현
김믿음
송현곤
정지홍
Original Assignee
한국화학연구원
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220126618A external-priority patent/KR20230103918A/ko
Application filed by 한국화학연구원, 울산과학기술원 filed Critical 한국화학연구원
Publication of WO2023128366A1 publication Critical patent/WO2023128366A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/22Esters containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/04Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a flame retardant gel electrolyte composition and a secondary battery including the same.
  • a secondary battery refers to a battery that continuously charges and outputs electrical energy, and has conventionally been used for driving power or backup power for mobile phones, notebook computers, or small portable devices.
  • the secondary battery in order to be used as an alternative energy source in various fields, the secondary battery should have characteristics of high output such as high capacity and high-speed charging, and furthermore, it is required to have excellent stability and durability.
  • conventional secondary batteries face technical tradeoffs in which it is difficult to simultaneously improve both high power characteristics and stability.
  • the explosion and combustion of conventional secondary batteries are caused by thermal runaway with high energy released in a short period of time due to a short circuit between the positive electrode and the negative electrode, or by overcharging the secondary battery and increasing the side reaction between the positive electrode active material and the gel-electrolyte, resulting in a voltage increase. It can be caused by various reasons, such as rising.
  • the deterioration problem of the secondary battery is also related to the lifespan of the secondary battery. Specifically, as the temperature of the secondary battery increases, side reactions may increase, resulting in a decrease in the charge/discharge capacity of the secondary battery.
  • a gel polymer electrolyte is an intermediate electrolyte that can simultaneously improve the low stability of a liquid electrolyte and the low ionic conductivity of a solid polymer electrolyte by using the principle of rapid movement of lithium ions through pores formed along polymer fibers entangled in a gel form. am.
  • the development of a gel polymer electrolyte that has excellent performance and significantly reduced risk of explosion and combustion is still insignificant, and the problem of short circuit between the anode and cathode, which is the biggest factor in secondary battery stability, has not been fundamentally resolved.
  • the gel polymer electrolyte generally has poor adhesion to the surface of the negative electrode, and the gel polymer electrolyte has poor workability.
  • the present invention is to solve the above-mentioned problems, by providing a flame retardant gel electrolyte composition that contains a fluorine-containing copolymer and can be gelated on the surface of a negative electrode, thereby solving the problem of deterioration in performance due to deterioration of a secondary battery, and more easily It is possible to manufacture a gel electrolyte, and it is intended to provide an energy storage device having excellent stability and performance by manufacturing a secondary battery including the gel electrolyte composition.
  • a fluorine-containing copolymer including repeating units represented by Formula 1 and Formula 2 below; lithium salt; And an organic solvent; it provides a gel electrolyte composition containing.
  • R 1 , R 2 and R 3 independently of each other are hydrogen or C 1 -C 6 straight or branched chain alkyl
  • X is *-F; or ego,
  • D 1 , D 2 , D 3 and D 4 are each independently selected from hydrogen, fluorine, C 1 -C 6 straight-chain or branched-chain alkyl and fluorinated C 1 -C 6 straight-chain or branched-chain alkyl,
  • D 5 is one selected from fluorine, fluorinated C 1 -C 12 straight-chain or branched-chain alkyl, and fluorinated C 1 -C 12 straight-chain or branched-chain alkoxy;
  • D 6 is one selected from hydrogen, fluorine, fluorinated C 1 -C 12 straight-chain or branched-chain alkyl, and fluorinated C 1 -C 12 straight-chain or branched-chain alkoxy;
  • n is an integer from 0 to 20;
  • y is an integer from 1 to 5;
  • R 4 , R 5 and R 6 independently represent hydrogen or C 1 -C 6 straight or branched chain alkyl
  • a 2 is C 1 -C 6 straight or branched chain alkylene.
  • the anode; cathode; and the gel electrolyte composition wherein the gel electrolyte composition comprises a positive electrode; and a cathode; To form a layer between, it provides a secondary battery.
  • the gel electrolyte composition of the present invention has excellent flame retardancy by including a fluorine-containing copolymer, and thus can prevent fire and explosion problems caused by deterioration of a secondary battery including the gel electrolyte composition, and repeat charge and discharge cycles. Even if it is, the performance degradation of the secondary battery can be minimized.
  • an electrolyte SEI layer can be formed on the negative electrode to prevent deterioration occurring in the negative electrode, and a side reaction with the electrolyte can be suppressed to realize better lifespan characteristics than conventional secondary batteries. there is.
  • 1A is a graph showing flame retardancy characteristics of a gel electrolyte composition according to Example 1.
  • Figure 1b is a graph showing the observation of flame retardancy of the gel electrolyte composition according to Example 4.
  • FIG. 1C is a graph showing flame retardancy of the gel electrolyte composition according to Example 5.
  • FIG. 2 is a graph showing specific capacity and coulombic efficiency while charging and discharging secondary batteries of Examples 11 to 14 and Comparative Example 2 for 600 cycles.
  • 3A is a diagram illustrating a voltage profile according to cycle progress of a secondary battery according to Example 11;
  • 3B is a diagram illustrating a voltage profile according to cycle progress of a secondary battery according to Example 12;
  • 3C is a diagram illustrating a voltage profile according to cycle progress of a secondary battery according to Example 13;
  • 3D is a diagram illustrating a voltage profile according to cycle progress of a secondary battery according to Example 14;
  • 3E is a diagram illustrating a voltage profile according to cycle progress of a secondary battery according to Example 15;
  • a fluorine-containing copolymer including repeating units represented by Formula 1 and Formula 2 below; lithium salt; And an organic solvent; it provides a gel electrolyte composition containing.
  • R 1 , R 2 and R 3 are independently of each other hydrogen or C 1 -C 6 straight or branched chain alkyl
  • X is *-F
  • D 1 , D 2 , D 3 and D 4 are each independently selected from hydrogen, fluorine, C 1 -C 6 straight-chain or branched-chain alkyl and fluorinated C 1 -C 6 straight-chain or branched-chain alkyl
  • D 5 is one selected from fluorine, fluorinated C 1 -C 12 straight-chain or branched-chain alkyl, and fluorinated C 1 -C 12 straight-chain or branched-chain alkoxy
  • D 6 is hydrogen, fluorine, fluorinated C 1 -C 12 straight-chain or branched chain It is one selected from alkyl and fluorinated C 1 -C 12 straight-chain
  • R 4 , R 5 and R 6 are each independently hydrogen or C 1 -C 6 straight or branched chain alkyl, and A 2 is C 1 -C 6 straight or branched chain alkylene.
  • fluorination means that at least one hydrogen is replaced by fluorine.
  • R 1 , R 2 and R 3 are each independently hydrogen or C 1 -C 3 linear or branched chain alkyl
  • X is or
  • D 1 , D 2 , D 3 and D 4 are independently selected from hydrogen, fluorine, C 1 -C 3 straight-chain or branched-chain alkyl and fluorinated C 1 -C 3 straight-chain or branched-chain alkyl
  • D 5 is one selected from fluorine, fluorinated C 1 -C 6 straight-chain or branched chain alkyl and fluorinated C 1 -C 12 straight-chain or branched-chain alkoxy
  • D 6 is hydrogen, fluorine, fluorinated C 1 -C 6 straight or branched chain It may be one selected from alkyl and fluorinated C 1 -C 6 straight-chain or branched-chain alkoxy.
  • X is , , , , , , , and At least one selected from the group consisting of, and D 1 , D 2 , D 3 and D 4 are each independently hydrogen, fluorine, methyl, *-CHF 2 , *-CH 2 F or *-CF 3 It may be there is.
  • R 4 , R 5 and R 6 are each independently hydrogen or C 1 -C 3 straight-chain or branched-chain alkyl, and A 2 is C 1 -C 3 straight-chain alkyl. It could be Ren.
  • the gel electrolyte composition according to the present invention by including a fluorine-containing copolymer, suppresses the reactivity of unpaired electrons formed in the polymer under conditions in which combustion may occur, thereby stopping the chain reaction of the electrolyte composition to prevent combustion.
  • the fluorine-containing copolymer has a molar ratio of the repeating units represented by Formula 1 and Formula 2 of 1:1 to 1:10, preferably 1:2 to 1:8, and more preferably 1:3 to 1:7. It may be included as When the molar ratio of the repeating units represented by Chemical Formulas 1 and 2 contained in the fluorine-containing copolymer satisfies the above numerical range, the prepared gel electrolyte may have excellent flame retardancy, and accordingly, a secondary battery including the gel electrolyte can improve safety and lifespan characteristics, and can be directly crosslinked inside the secondary battery by the cyano group included in the fluorine-containing copolymer, thereby improving workability.
  • the fluorine-containing copolymer may further include a repeating unit represented by Chemical Formula 3 below.
  • R 7 , R 8 and R 9 independently represent hydrogen or C 1 -C 6 straight-chain or branched-chain alkyl.
  • the fluorine-containing copolymer contains 0 to 30 mol%, preferably 0.5 to 20 mol%, more preferably 1 to 15 mol of the repeating unit represented by Formula 3, based on the total repeating units included in the copolymer. It may be included as a %.
  • the solubility of the fluorine-containing copolymer in an oil solvent may be excellent, and the hydroxyl group included in the fluorine-containing copolymer may be Since the lithium salt reacts with water to further activate the reaction to form a strong Lewis acid, the crosslinking rate of the fluorine-containing copolymer can be increased.
  • crosslinking of the gel electrolyte composition can occur when a cyano group of a fluorine-containing copolymer is bonded to a cyano group of another fluorine-containing copolymer.
  • This cross-linking is formed by reacting a lithium salt decomposed at high temperature with a hydroxyl group to form a strong Lewis acid. Since it is formed by forming, the hydroxy group can act as an initiator for cross-linking of the cyano group.
  • the fluorine-containing copolymer may have a number average molecular weight of 10,000 to 1,000,000 g/mol, preferably 10,000 to 300,000 g/mol, and more preferably 10,000 to 200,000 g/mol.
  • a gel electrolyte having excellent ionic conductivity, mechanical strength, heat resistance, electrical resistance and chemical resistance can be implemented.
  • the fluorine-containing copolymer may be included in an amount of 0.1 to 10 parts by weight, preferably 0.1 to 5 parts by weight, and more preferably 1 to 5 parts by weight, based on 100 parts by weight of the gel electrolyte composition.
  • the gel electrolyte composition contains the fluorine-containing copolymer in the above numerical range, it can not only have excellent crosslinking reactivity and flame retardancy, but also have excellent lithium mobility due to the large amount of liquid electrolyte including lithium salt, resulting in excellent electrical conductivity. Accordingly, a secondary battery manufactured including the gel electrolyte composition may exhibit excellent output, charge, and lifespan characteristics.
  • the fluorine-containing copolymer in the presence of a lithium salt and an organic solvent, and in particular, the gel electrolyte can be cross-linked in a secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiBF 4 , LiFSI, LiTFSI, LiSO 3 CF 3 , LiBOB, LiFOB, LiDFOB, LiDFBP, LiTFOP, LiPO 2 F 2 , LiCl, LiBr, LiI, LiB10Cl10, LiCF 3 SO 3 , At least one selected from the group consisting of LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, LiSCN, and LiC(CF 3 SO 2 ) 3 , preferably LiPF 6 , it may be at least one or more selected from the group consisting of LiFSI and LiDFOB.
  • the viscosity of the electrolyte may be lowered and crosslinkability may be improved.
  • the lithium salt may be dissolved in an organic solvent to have a concentration of 0.5 to 3 M, preferably 0.8 to 1.5 M, and more preferably 0.8 to 1.2 M.
  • concentration of the lithium salt satisfies the above numerical range, the crosslinking reactivity of the fluorine-containing copolymer included in the gel electrolyte may be more excellent, and thus, the secondary battery including the gel electrolyte may realize excellent charge and discharge capacity. .
  • the organic solvent is a compound containing a carbonate group
  • it can be used without limitation, but excellent secondary battery performance can be implemented by using a mixture of a cyclic carbonate-based compound and a linear carbonate-based compound.
  • the organic solvent is dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate ( At least selected from the group consisting of ethylpropyl carbonte (EPC), ethylmethyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate (BC) It may include at least one, preferably at least one selected from the group consisting of dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), and ethylene carbonate (EC).
  • the ethylene carbonate (ethylene carbonte, EC) is a cyclic carbonate-based compound, and a gel electrolyte composition containing the same can control viscosity, dissociate lithium salts, and has an excellent permittivity.
  • the charge/discharge capacity of the battery may be improved.
  • the ethylmethyl carbonate (EMC) is a linear carbonate-based compound and has a low freezing point and a high boiling point, so that a gel electrolyte composition including it can have excellent low-temperature characteristics and can suppress low-temperature discharge of a secondary battery, The cycle life of the battery can be improved.
  • the organic solvent may have a volume ratio of ethylene carbonate and ethylmethyl carbonate of 1:1 to 1:10, preferably 1:1 to 1:5, and more preferably 1:2 to 1:3.
  • ethylene carbonate and ethylmethyl carbonate included in the organic solvent are mixed in the above volume ratio range, excellent dielectric constant, lithium salt dissociation characteristics, and low-temperature characteristics may be simultaneously obtained.
  • the gel electrolyte composition may be crosslinked at 20 to 80°C, preferably 30 to 80°C, and more preferably 40 to 70°C.
  • a crosslinking reaction rate is increased and a gel polymer electrolyte having excellent mechanical properties can be prepared.
  • the method for preparing the fluorine-containing copolymer may be prepared by reacting a base copolymer including repeating units represented by Formulas 2 and 3 below with a fluorine-containing compound.
  • R 4 , R 5 and R 6 are each independently hydrogen or C 1 -C 6 straight or branched chain alkyl, and A 2 is C 1 -C 6 straight or branched chain alkylene.
  • R 7 , R 8 and R 9 independently represent hydrogen or C 1 -C 6 straight-chain or branched-chain alkyl.
  • the fluorine-containing copolymer may be prepared by reacting a hydroxyl group included in the base copolymer with a fluorine-containing compound, and the content of the repeating unit represented by Formula 3 may be adjusted according to the mass ratio of the base copolymer and the fluorine-containing compound. Not only can you adjust, but you can also not include it.
  • the fluorine-containing compound is 4- (trifluoromethoxy) benzoic acid (4- (trifluoromethoxy) benzoic acid), pentafluorobenzoic acid (pentafluorobenzoic acid), bis (pentafluorophenyl) carbonate (bis (pentafluorophenyl) carbonate ), trifluoromethanesulfonyl chloride, bis (trifluoromethyl) benzenesulfonyl chloride, pentafluorobenzenesulfonyl chloride, pentafluorobenzyl bromide, heptafluorobutyryl chloride, bis(2,2,2-trifluoroethyl) carbonate, pentafluorobenzoyl chloride (pentafluorobenzoyl chloride), bis(pentafluorophenyl) carbonate, trifluoroethyl methacrylate, heptafluoro-1-butanol, 4- (triflu
  • the fluorine-containing copolymer produced by substitution with the fluorine-containing compound has a high fluorine content, and can realize excellent heat resistance and flame retardancy, and thus, a secondary battery manufactured including the fluorine-containing copolymer can have excellent lifespan characteristics and safety. there is.
  • the fluorine-containing copolymer may be prepared through an ester reaction (DCC coupling, reaction of carbonates with alcohol, reaction of sulfonyl chloride with alcohol) between the base copolymer and the fluorine-containing compound.
  • the esterification reaction may proceed with a coupling agent participating in the reaction.
  • the coupling agent may be different depending on the type of functional group of the fluorine-containing compound, and for example, dicyclohexylcarbodiimide for an ester bond, triethylamine for a carbonate bond, and pyridine for a sulfone bond may be preferable.
  • the coupling agent may be a carbodiimide-based, pyridine-based, and amine-based coupling agent, specifically, dicyclohexylcarbodiimide (DCC), ethyldimethylaminopropyl carboximide, hydroxysuccinimide, diisopropylcarbodiimide It may be at least one selected from the group consisting of bodyimide (DIC), 4-dimethylaminopyridine (DMAP), pyridine, triethylamine, and 2-chloro-1-methylpyridinium iodine, preferably dicyclohexyl. It may be at least one selected from the group consisting of carbodiimide, 4-dimethylaminopyridine, triethylamine and pyridine.
  • DCC dicyclohexylcarbodiimide
  • DMAP 4-dimethylaminopyridine
  • pyridine triethylamine
  • the method for preparing the fluorine-containing copolymer may be prepared by including an aprotic organic solvent.
  • the aprotic organic solvent is at least selected from the group consisting of acetone, acetonitrile, dichloromethane, dimethylformamide, dimethylpropylene urea, dimethyl sulfoxide, ethyl acetate, hexamethylphosphate triamide, pyridine, sulfolane and tetrahydrofuran It may include one or more, but is not necessarily limited thereto as long as it is possible to synthesize a fluorine-containing copolymer.
  • a 1 is C 1 -C 6 alkylene.
  • the content of the vinyl alcohol repeating unit included in the fluorine-containing copolymer may vary depending on the molar ratio of the base copolymer and the fluorine-containing compound in Preparation Formulas 1 to 7, and may not be included at all in some cases. Specifically, if the molar ratio of the base copolymer and the fluorine-containing compound is 1:2 to 1:5, the vinyl alcohol repeating unit may not be included, and if the molar ratio is 1:1 to less than 1:2, vinyl alcohol repeats. It may include units, but may be the same or different depending on the reacting fluorine-containing compound.
  • an anode a cathode; and the gel electrolyte composition, wherein the gel electrolyte composition forms a layer between an anode and a cathode.
  • the secondary battery may have excellent stability as a result of preventing a short circuit between the positive electrode and the negative electrode by including a flame retardant gel electrolyte composition having excellent heat resistance and flame retardancy between the positive electrode and the negative electrode.
  • a solid electrolyte interface (SEI, solid electrolyte interphase ) layer, and excellent mobility of lithium can be implemented on the surface of the negative electrode, so that the capacity retention rate of the secondary battery can be improved.
  • the secondary battery may satisfy Equation 1 below.
  • C 600 is the discharge capacity of a secondary battery after repeated charging and discharging 600 times
  • C 1 is the discharge capacity of the secondary battery after one charge and discharge.
  • Equation 1 represents the charge and discharge capacity of the secondary battery, and in Equation 1, the C 600 /C 1 value may be 0.85 to 0.98, which means that it has excellent lifespan characteristics compared to conventional secondary batteries. can do.
  • the positive active material included in the positive electrode is at least one or more selected from the group consisting of nickel, cobalt, manganese, tin, silicon and aluminum, preferably lithium, nickel, manganese in terms of overcoming the advantages and disadvantages of each metal. And it may be one containing an alloy of cobalt.
  • the negative electrode active material included in the negative electrode may include at least one selected from the group consisting of graphite, silicon, germanium, tin, and antimony, preferably graphite.
  • the gel electrolyte composition may be formed by gelation on the surface of an anode. Accordingly, even if the gel electrolyte composition according to the present invention is applied, it is possible to form a stable solid electrolyte interface (SEI) layer at the negative electrode, which prevents decomposition of the electrolyte and promotes smooth movement of lithium ions, thereby preventing the performance of the lithium secondary battery. and lifespan can be improved.
  • SEI solid electrolyte interface
  • a gel electrolyte composition was prepared in the same manner as in Example 1, except that 0.907 g (0.0044 mol) of 4-(trifluoromethoxy)benzoic acid, a fluorine-containing compound, was added.
  • a gel electrolyte composition was prepared in the same manner as in Example 1, except that 2.3329 g (0.011 mol) of pentafluorobenzoic acid, a fluorine-containing compound, was added.
  • a gel electrolyte composition was prepared in the same manner as in Example 1, except that 0.9331 g (0.0044 mol) of pentafluorobenzoic acid, a fluorine-containing compound, was added.
  • a gel electrolyte composition was prepared in the same manner as in Example 6, except that 2.579 g (0.00825 mol) of Bis(trifluoromethyl)benzenesulfonyl chloride of a fluorine-containing compound was added and the mixed solution was reacted at room temperature for 72 hours.
  • a gel electrolyte composition was prepared in the same manner as in Example 7, except that 1.2 mL (2.2 g, 0.00825 mol) of pentafluorobenzenesulfonyl chloride was added as a fluorine-containing compound.
  • a gel electrolyte composition was prepared in the same manner as in Example 9, except that 0.58 g (0.00275 mol) of trifluoroacetic anhydride was added as a fluorine-containing compound.
  • a gel electrolyte composition was prepared in the same manner as in Example 1, except that the fluorine-containing copolymer was not included.
  • Example 1 4-(Trifluoromethoxy)benzoic acid 1.36 g (0.066 mol) not include O
  • Example 2 4-(Trifluoromethoxy)benzoic acid 0.907 g (0.0044 mol) include O
  • Example 3 Pentafluorobenzoic acid 2.3329 g (0.011 mol) not include O
  • Example 4 Pentafluorobenzoic acid 0.9331 g (0.0044 mol) include O
  • Example 5 Bis(pentafluorophenyl) carbonate 3.2514 g (0.00825 mol) not include O
  • Example 6 Trifluoromethanesulfonyl chloride 1.39 g (0.00825 mol) not include O
  • Example 7 Bis(trifluoromethyl)benzenesulfonyl chloride 2.579g (0.00825 mol) not include O
  • Example 8 Pentafluorobenzenesulfonyl chloride 2.2 g (0.00825
  • Examples 1 to 10 are gel electrolyte compositions containing a fluorine-containing copolymer
  • Comparative Example 1 is a gel electrolyte composition of a copolymer of acrylonitrile-ethylene oxide.
  • 1a to 1c are photographs showing the flame retardancy evaluation results of Examples 1, 4, and 5 including a fluorine-containing copolymer containing an aryl group, and excellent flame retardancy can be confirmed.
  • a secondary battery was prepared using LiNi 0.6 Co 0.2 Mn 0.2 O 2 (NCM 622) as a positive electrode, graphite and the gel electrolyte composition according to Example 1 as a negative electrode.
  • NCM 622 LiNi 0.6 Co 0.2 Mn 0.2 O 2
  • the NCM 622 anode was prepared by mixing LiNi 0.6 Co 0.2 Mn 0.2 O 2 : PVDF : super-P in a mass ratio of 94:3:3 and dissolving it uniformly in N-methyl-2-pyrrolidone (NMP) to prepare a slurry did
  • NMP N-methyl-2-pyrrolidone
  • the prepared slurry was coated on aluminum foil and dried in a vacuum oven at 120° C. for 24 hours to prepare a positive electrode. After loading the prepared positive electrode at a density of 12 mg/cm 2 , a circular shape having a diameter of 14 mm was pierced and used in a coin-type cell.
  • graphite:PVDF:carbon black (Super p) was mixed in a mass ratio of 94:3:3 and then uniformly dissolved in N-methyl-2-pyrrolidone (NMP) to prepare a slurry.
  • NMP N-methyl-2-pyrrolidone
  • the prepared slurry was coated on a copper foil and dried in a vacuum oven at 120° C. for 24 hours to prepare a negative electrode.
  • a circular shape having a diameter of 16 mm was pierced and used in a coin-type cell.
  • the gel electrolyte composition according to Example 1 was disposed between the positive electrode and the negative electrode to complete a coin-type secondary battery.
  • SEI solid electrolyte interphase
  • a secondary battery was manufactured in the same manner as in Example 11, except that the gel electrolyte composition according to Example 3 was applied instead of the gel electrolyte composition according to Example 1.
  • a secondary battery was manufactured in the same manner as in Example 11, except that the gel electrolyte composition according to Example 4 was applied instead of the gel electrolyte composition according to Example 1.
  • a secondary battery was manufactured in the same manner as in Example 11, except that the gel electrolyte composition according to Example 5 was applied instead of the gel electrolyte composition according to Example 1.
  • a secondary battery was manufactured in the same manner as in Example 11, except that the gel electrolyte composition according to Example 9 was applied instead of the gel electrolyte composition according to Example 1.
  • the gelation reaction was started. Thereafter, charging and discharging were performed 600 times under the condition of a rate speed of 0.5 C-rate, and the capacity discharged at one charge and discharge time and the capacity discharged at 600 times were measured, which were calculated by Equation 1 below.
  • Capacity retention rate (%) (Discharge capacity at 600 cycles / Discharge capacity at 1 cycle) ⁇ 100
  • Example 11 Example 1 4-(Trifluoromethoxy)benzoic acid 81.4
  • Example 12 Example 3 Pentafluorobenzoic acid 82.95
  • Example 13 Example 4 Pentafluorobenzoic acid 91.5
  • Example 14 Example 5
  • Example 15 Example 9 Trifluoroacetic anhydride 87.3 Comparative Example 2 Comparative Example 1 liquid electrolyte 80.3
  • the capacity retention rate in Table 2 shows the change in discharge capacity after 600 charge/discharge cycles, which is a measured value inferring the lifespan characteristics of the secondary battery.
  • Examples 11 to 15 include the gel electrolyte compositions according to Examples 1, 3 to 5, and 9, respectively, and the secondary battery capacity retention rate is 81% or more, specifically, in the case of Examples 13 to 15, 85 % or higher was confirmed. This is because the secondary batteries according to Examples 11 to 15 form a stable SEI layer by including the gel electrolyte compositions according to Examples 1, 3 to 5, and 9, thereby preventing deterioration of the negative electrode, thereby preventing side reactions with the electrolyte. is suppressed, and ultimately a more excellent capacity retention rate can be obtained.
  • FIGS. 3A to 3D show capacitance-voltage graphs of Examples 11 to 15 under an initial rate limiting condition of 0.1 C-rate.
  • the amount of the SEI layer generated at the beginning of charge and discharge can be inferred through capacity comparison and coulombic efficiency calculation of the secondary batteries according to Examples 11 to 15 at the beginning of charge and discharge, and how much overvoltage is formed in each battery. can check whether it is In the capacity range of 0 mAh/g to 10 mAh/g, the lower the voltage, the better, but Example 13 was the lowest. In addition, Example 13 also showed the highest value in the capacity retention rate.
  • the gel electrolyte composition of the present invention can implement flame retardancy by containing a fluorine-containing copolymer, and can prevent explosion and fire accidents by improving the stability of a secondary battery including the gel electrolyte composition.
  • a stable SEI layer can be formed on the negative electrode to prevent deterioration occurring in the negative electrode, and side reactions with the electrolyte can be suppressed to realize better lifespan characteristics than conventional secondary batteries. there is.

Abstract

본 발명은 상기 화학식 1 및 화학식 2로 표시되는 반복단위를 포함하는 불소함유 공중합체; 리튬염; 및 유기용매;를 포함하는, 겔 전해질 조성물 및 이를 포함하는 이차전지에 관한 것이다.

Description

겔 전해질 조성물 및 이를 포함하는 이차 전지
본 발명은 난연성 겔 전해질 조성물 및 이를 포함하는 이차전지에 관한 것이다.
이차전지는 전기에너지를 연속적으로 충전 및 출력하는 전지를 의미하는 것으로써, 종래부터 휴대전화, 노트북 또는 소형 휴대기기 등의 구동용 전원이나 백업용 전원 등에 사용되어 왔다.
현재는 전 세계적으로 온실가스로 인한, 지구온난화 문제가 주목되고 있으며, 이 문제를 해결하고자, 자동차, 선박, 항공 및 난방 등의 화석연료를 사용하는 다양한 분야에서, 일부 또는 전체적으로 이차전지의 사용이 증가될 것으로 보인다.
이와 같이 이차전지가 다양한 분야에서 대체 에너지원으로서 활용되기 위해서는 고용량, 고속 충전 등 고출력의 특성을 갖추어야 하고, 나아가 우수한 안정성 및 내구성을 갖출 것이 요구된다. 그러나 종래 이차전지는 고출력 특성과 안정성 두 가지를 동시에 향상시키기 어려운 기술적 상충관계에 직면해 있었다.
특히, 종래의 이차전지의 폭발 및 연소는 양극과 음극 사이에 단락이 발생하여 짧은 시간동안 방출되는 고에너지로 열폭주되거나, 이차전지가 과충전되어 양극 활물질과 겔-전해질의 부반응이 증가함으로써 전압이 상승되는 등의 다양한 원인에 의해 발생할 수 있다.
한편, 이차전지의 열화 문제는 이차전지의 수명과도 연관이 있는데, 구체적으로 이차전지의 온도가 증가함에 따라, 부반응이 증가하여 이차전지의 충방전 용량이 감소하는 결과를 초래할 수 있다.
이러한 이차전지의 안정성 문제를 해결하고자, 열적 안정성이 낮고 전해질의 누액 가능성이 있는 액체 전해질 대신 고분자 매트릭스에 가소제를 넣어 제조하는 겔 고분자 전해질에 대한 연구가 활발히 이루어지고 있다. 겔 고분자 전해질은 겔 형태로 얽혀있는 고분자 섬유를 따라 형성되어 있는 기공들을 통하여 리튬 이온이 빠르게 이동하는 원리를 이용해, 액체전해질의 낮은 안정성과 고체 고분자 전해질의 낮은 이온전도도를 동시에 개선할 수 있는 중간체 전해질이다.
그러나 아직까지 우수한 성능을 가지면서도 폭발 및 연소의 위험이 확연히 감소한 겔 고분자 전해질에 대한 개발은 미미한 상태이며, 이차전지 안정성의 가장 큰 요인인 양극과 음극이 단락되는 문제를 근본적으로 해결하지 못한 상황이다. 또한, 겔 고분자 전해질은 일반적으로 음극 표면에 부착성이 열위한 특성을 가지고, 겔 고분자 전해질의 작업성이 떨어지는 문제도 갖고 있다.
이에 따라, 고출력 성능을 발휘하면서도 이차전지의 안정성을 동시에 향상시킬 수 있도록 난연 성능을 갖고, 작업성이 우수하며 음극 표면에 부착성이 향상된 겔 전해질 조성물의 개발이 필요한 실정이다.
본 발명은 상술한 문제를 해결하기 위한 것으로서, 불소함유 공중합체를 포함하고 음극 표면에서 겔화될 수 있는 난연성의 겔 전해질 조성물을 제공함으로써 이차전지의 열화에 따른 성능 하락 문제를 해결하고, 보다 용이하게 겔 전해질을 제조할 수 있으며, 상기 겔 전해질 조성물을 포함한 이차전지를 제조함으로써 우수한 안정성 및 성능을 가진 에너지 저장장치를 제공하고자 한다.
본 발명의 일 실시 형태에 따르면, 하기 화학식 1 및 화학식 2로 표시되는 반복단위를 포함하는 불소함유 공중합체; 리튬염; 및 유기용매;를 포함하는, 겔 전해질 조성물을 제공한다.
[화학식 1]
Figure PCTKR2022019815-appb-img-000001
상기 화학식 1에서,
A1은 *-C(=O)-*, *-C(=O)O-* 또는 *-S(=O)2-*이며,
R1, R2 및 R3은 서로 독립적으로 수소 또는 C1-C6 직쇄 또는 분지쇄 알킬이며,
X는 *-F,
Figure PCTKR2022019815-appb-img-000002
또는
Figure PCTKR2022019815-appb-img-000003
이고,
D1, D2, D3 및 D4는 서로 독립적으로 수소, 불소, C1-C6 직쇄 또는 분지쇄 알킬 및 불소화 C1-C6 직쇄 또는 분지쇄 알킬에서 선택되는 하나이며,
D5는 불소, 불소화 C1-C12 직쇄 또는 분지쇄 알킬 및 불소화 C1-C12 직쇄 또는 분지쇄 알콕시에서 선택되는 하나이며,
D6는 수소, 불소, 불소화 C1-C12 직쇄 또는 분지쇄 알킬 및 불소화 C1-C12 직쇄 또는 분지쇄 알콕시에서 선택되는 하나이며,
n은 0 내지 20 정수이며,
y는 1 내지 5 정수이다.
[화학식 2]
Figure PCTKR2022019815-appb-img-000004
상기 화학식 2에서,
R4, R5 및 R6은 서로 독립적으로 수소 또는 C1-C6 직쇄 또는 분지쇄 알킬이며,
A2는 C1-C6 직쇄 또는 분지쇄 알킬렌이다.
또한, 본 발명의 다른 일 실시 형태에 따르면, 양극; 음극; 및 상기 겔 전해질 조성물;을 포함하는 이차전지로서, 상기 겔 전해질 조성물은 양극; 및 음극; 사이에 층을 형성하는 것인, 이차전지를 제공한다.
본 발명의 겔 전해질 조성물은 불소함유 공중합체를 포함함으로써 우수한 난연성을 가지게 되고, 이에 따라 상기 겔 전해질 조성물을 포함하는 이차전지의 열화에 따른 화재 및 폭발 문제를 예방할 수 있을 뿐만 아니라, 충방전이 반복되더라도 이차전지의 성능저하를 최소화할 수 있다.
또한, 본 발명에 따른 겔 전해질 조성물을 이용하면 음극상에 전해질 SEI층을 형성하여 음극에서 발생되는 열화를 방지할 수 있고, 전해질과의 부반응을 억제하여 종래의 이차전지보다 우수한 수명 특성을 구현할 수 있다.
도 1a는 실시예 1에 따른 겔 전해질 조성물의 난연 특성을 관찰한 도시이다.
도 1b는 실시예 4에 따른 겔 전해질 조성물의 난연 특성을 관찰한 도시이다.
도 1c는 실시예 5에 따른 겔 전해질 조성물의 난연 특성을 관찰한 도시이다.
도 2는 실시예 11 내지 14 및 비교예 2의 이차전지를 600 사이클 동안 충방전하면서 비용량 및 쿨롱 효율을 나타낸 도시이다.
도 3a는 실시예 11에 따른 이차전지의 사이클 진행에 따른 전압 프로파일을 나타낸 도시이다.
도 3b는 실시예 12에 따른 이차전지의 사이클 진행에 따른 전압 프로파일을 나타낸 도시이다.
도 3c는 실시예 13에 따른 이차전지의 사이클 진행에 따른 전압 프로파일을 나타낸 도시이다.
도 3d는 실시예 14에 따른 이차전지의 사이클 진행에 따른 전압 프로파일을 나타낸 도시이다.
도 3e는 실시예 15에 따른 이차전지의 사이클 진행에 따른 전압 프로파일을 나타낸 도시이다.
이하, 본 발명의 겔 전해질 조성물 및 이를 포함하는 이차 전지에 대해 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다.
본 발명의 일 실시 형태에 따르면, 하기 화학식 1 및 화학식 2로 표시되는 반복단위를 포함하는 불소함유 공중합체; 리튬염; 및 유기용매;를 포함하는, 겔 전해질 조성물을 제공한다.
[화학식 1]
Figure PCTKR2022019815-appb-img-000005
상기 화학식 1에서, A1은 *-C(=O)-*, *-C(=O)O-* 또는 *-S(=O)2-*이며, R1, R2 및 R3은 서로 독립적으로 수소 또는 C1-C6 직쇄 또는 분지쇄 알킬이며, X는 *-F,
Figure PCTKR2022019815-appb-img-000006
또는
Figure PCTKR2022019815-appb-img-000007
이고, D1, D2, D3 및 D4는 서로 독립적으로 수소, 불소, C1-C6 직쇄 또는 분지쇄 알킬 및 불소화 C1-C6 직쇄 또는 분지쇄 알킬에서 선택되는 하나이며, D5는 불소, 불소화 C1-C12 직쇄 또는 분지쇄 알킬 및 불소화 C1-C12 직쇄 또는 분지쇄 알콕시에서 선택되는 하나이며, D6는 수소, 불소, 불소화 C1-C12 직쇄 또는 분지쇄 알킬 및 불소화 C1-C12 직쇄 또는 분지쇄 알콕시에서 선택되는 하나이며, n은 0 내지 20 정수이며, y는 1 내지 5 정수이다.
[화학식 2]
Figure PCTKR2022019815-appb-img-000008
상기 화학식 2에서, R4, R5 및 R6은 서로 독립적으로 수소 또는 C1-C6 직쇄 또는 분지쇄 알킬이며, A2는 C1-C6 직쇄 또는 분지쇄 알킬렌이다.
본 명세서에서, 용어'불소화'는 적어도 하나의 수소가 불소로 치환되는 것을 의미한다.
또한, 본 발명의 일 실시 형태에 따르면, 상기 화학식 1에서, R1, R2 및 R3은 서로 독립적으로 수소 또는 C1-C3 직쇄 또는 분지쇄 알킬이며, X는
Figure PCTKR2022019815-appb-img-000009
또는
Figure PCTKR2022019815-appb-img-000010
이고, D1, D2, D3 및 D4는 서로 독립적으로 수소, 불소, C1-C3 직쇄 또는 분지쇄 알킬 및 불소화 C1-C3 직쇄 또는 분지쇄 알킬에서 선택되는 하나이며, D5는 불소, 불소화 C1-C6 직쇄 또는 분지쇄 알킬 및 불소화 C1-C12 직쇄 또는 분지쇄 알콕시에서 선택되는 하나이며, D6은 수소, 불소, 불소화 C1-C6 직쇄 또는 분지쇄 알킬 및 불소화 C1-C6 직쇄 또는 분지쇄 알콕시에서 선택되는 하나인 것일 수 있다.
구체적인 예로 상기 화학식 1에서, X는
Figure PCTKR2022019815-appb-img-000011
,
Figure PCTKR2022019815-appb-img-000012
,
Figure PCTKR2022019815-appb-img-000013
,
Figure PCTKR2022019815-appb-img-000014
,
Figure PCTKR2022019815-appb-img-000015
,
Figure PCTKR2022019815-appb-img-000016
,
Figure PCTKR2022019815-appb-img-000017
,
Figure PCTKR2022019815-appb-img-000018
Figure PCTKR2022019815-appb-img-000019
으로 이루어진 군으로부터 선택되는 적어도 하나 이상이고, D1, D2, D3 및 D4는 서로 독립적으로 수소, 불소, 메틸, *-CHF2, *-CH2F 또는 *-CF3인 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 화학식 2에서, R4, R5 및 R6은 서로 독립적으로 수소 또는 C1-C3 직쇄 또는 분지쇄 알킬이며, A2는 C1-C3 직쇄 알킬렌인 것일 수 있다.
본 발명에 따른 겔 전해질 조성물은 불소함유 공중합체를 포함함으로써 연소가 일어날 수 있는 조건에서 고분자에 형성된 홀전자의 반응성을 억제하게 되는 결과, 상기 전해질 조성물의 연쇄 반응을 중단시켜 연소가 일어나는 것을 방지할 수 있다.
상기 불소함유 공중합체는 상기 화학식 1 및 화학식 2로 표시되는 반복단위를 1:1 내지 1:10, 바람직하게는 1:2 내지 1:8, 더 바람직하게는 1:3 내지 1:7의 몰비로 포함하는 것일 수 있다. 불소함유 공중합체에 포함되는 상기 화학식 1 및 화학식 2로 표시되는 반복단위의 몰비가 상기 수치범위를 만족하는 경우 제조된 겔 전해질이 우수한 난연성을 가질 수 있고, 이에 따라 상기 겔 전해질을 포함하는 이차전지는 안전성 및 수명 특성이 향상될 수 있으며, 상기 불소함유 공중합체에 포함된 시아노기에 의해 이차전지 내부에서 바로 가교될 수 있는 바, 작업성이 향상될 수 있다.
한편, 상기 불소함유 공중합체는 하기 화학식 3으로 표시되는 반복단위를 더 포함하는 것일 수 있다.
[화학식 3]
Figure PCTKR2022019815-appb-img-000020
상기 화학식 3에서, R7, R8 및 R9는 서로 독립적으로 수소 또는 C1-C6 직쇄 또는 분지쇄 알킬이다.
상기 불소함유 공중합체는 상기 공중합체에 포함되는 총 반복단위에 대해서, 상기 화학식 3으로 표시되는 반복단위를 0 내지 30 mol%, 바람직하게는 0.5 내지 20 mol%, 더 바람직하게는 1 내지 15 mol%로 포함하는 것일 수 있다. 불소함유 공중합체가 상기 화학식 3으로 표시되는 반복단위를 상기 수치범위 내의 함량으로 포함하는 경우 상기 불소함유 공중합체의 유가용매에 대한 용해성이 우수해질 수 있으며, 상기 불소함유 공중합체에 포함된 히드록시기가 리튬염이 물과 반응하여 강한 루이스산을 형성하는 반응을 더욱 활성화시킬 수 있는 바, 불소함유 공중합체의 가교 결합 속도를 증가시킬 수 있다.
구체적으로, 겔 전해질 조성물의 가교는 불소함유 공중합체의 시아노기가 다른 불소함유 공중합체의 시아노기와 결합하여 일어날 수 있는데, 이러한 가교 결합은 높은 온도에서 분해된 리튬염과 히드록시기가 반응하여 강한 루이스산을 형성하여 이루어지기 때문에, 상기 히드록시기가 시아노기의 가교 결합을 위한 개시제로 작용할 수 있다.
즉, 히드록시기를 다량 함유하는 화학식 3의 반복단위가 상기 수치범위만큼 불소함유 공중합체에 포함됨으로써 리튬염 유래의 강한 루이스산을 다량 생성할 수 있는 바, 가교 속도를 증가시킬 수 있는 것이다.
상기 불소함유 공중합체는 수평균분자량이 10,000 내지 1,000,000 g/mol, 바람직하게는 10,000 내지 300,000 g/mol, 더 바람직하게는 10,000 내지 200,000 g/mol인 것일 수 있다. 불소함유 공중합체의 수평균분자량이 상기 수치범위를 만족하는 경우, 우수한 이온 전도도, 기계적 강도, 내열성, 내전성 및 내화학성을 가지는 겔 전해질을 구현할 수 있다.
상기 겔 전해질 조성물 100 중량부를 기준으로 불소함유 공중합체가 0.1 내지 10 중량부, 바람직하게는 0.1 내지 5 중량부, 더 바람직하게는 1 내지 5 중량부로 포함되는 것일 수 있다. 상기 겔 전해질 조성물이 상기 수치범위의 불소함유 공중합체를 포함함에 따라 우수한 가교 반응성 및 난연성을 가질 수 있을 뿐만 아니라, 리튬염을 포함한 액체 전해질이 다량으로 함유되어 뛰어난 리튬 이동성을 가지게 되는 결과 전기전도도가 향상될 수 있으며, 이에 따라 상기 겔 전해질 조성물을 포함하여 제조된 이차전지는 우수한 출력, 충전 및 수명 특성을 나타낼 수 있다.
본 발명에 따른 겔 전해질은 리튬염 및 유기용매의 존재 하에서 상기 불소함유 공중합체가 가교될 수 있으며, 특히 상기 겔 전해질은 이차전지 내에서 가교가 가능할 수 있다.
상기 리튬염은 LiPF6, LiClO4, LiBF4, LiFSI, LiTFSI, LiSO3CF3, LiBOB, LiFOB, LiDFOB, LiDFBP, LiTFOP, LiPO2F2, LiCl, LiBr, LiI, LiB10Cl10, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, LiSCN 및 LiC(CF3SO2)3으로 이루어진 군으로부터 선택되는 적어도 하나 이상, 바람직하게는 LiPF6, LiFSI 및 LiDFOB로 이루어진 군으로부터 선택되는 적어도 하나 이상인 것일 수 있다.
겔 전해질 조성물이 상기 리튬염을 포함함으로써 전해질의 점도를 낮출 수 있으며, 가교성이 보다 우수할 수 있다.
상기 리튬염은 유기용매에 용해되어 농도가 0.5 내지 3 M, 바람직하게는 0.8 내지 1.5 M일 수 있으며, 더 바람직하게는 0.8 내지 1.2 M일 수 있다. 리튬염의 농도가 상기 수치범위를 만족하는 경우, 겔 전해질에 포함된 불소함유 공중합체의 가교 반응성이 더욱 우수할 수 있고, 이에 따라 상기 겔 전해질을 포함하는 이차전지는 우수한 충방전 용량을 구현할 수 있다.
상기 유기용매는 카보네이트기를 포함한 화합물이면, 이에 제한 없이 사용할 수 있으나, 환형 카보네이트계 화합물 및 선형 카보네이트계 화합물을 혼합하여 사용함으로써 우수한 이차전지 성능을 구현할 수 있다.
구체적으로, 상기 유기 용매는 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트(dipropyl carbonte, DPC), 메틸프로필 카보네이트 (methylpropyl carbonate, MPC), 에틸프로필 카보네이트(ethylpropyl carbonte, EPC), 에틸메틸 카보네이트 (ethylmethyl carbonate, EMC), 에틸렌 카보네이트(ethylene carbonte, EC), 프로필렌 카보네이트(propylene carbonte, PC) 및 부틸렌 카보네이트(butylene carbonate, BC)로 이루어진 군으로부터 선택되는 적어도 하나 이상, 바람직하게는 디메틸 카보네이트(dimethyl carbonate, DMC), 에틸메틸 카보네이트 (ethylmethyl carbonate, EMC) 및 에틸렌 카보네이트(ethylene carbonte, EC)로 이루어진 군으로부터 선택되는 적어도 하나 이상을 포함하는 것일 수 있다.
상기 에틸렌 카보네이트(ethylene carbonte, EC)는 환형 카보네이트계 화합물로서, 이를 포함하는 겔 전해질 조성물은 점도를 조절할 수 있고 리튬염을 해리할 수 있으며, 우수한 유전율을 가지는 바, 상기 겔 전해질 조성물을 포함하는 이차전지의 충방전 용량이 향상될 수 있다.
상기 에틸메틸 카보네이트(ethylmethyl carbonate, EMC)는 선형 카보네이트계 화합물로서, 어는점이 낮고, 끓는점이 높아, 이를 포함한 겔 전해질 조성물은 우수한 저온 특성을 가질 수 있고, 이차전지의 저온 방전을 억제할 수 있으며, 전지의 사이클 수명이 향상될 수 있다.
일예로, 상기 유기용매는 에틸렌 카보네이트 및 에틸메틸 카보네이트가 부피비 1:1 내지 1:10, 바람직하게는 1:1 내지 1:5, 더 바람직하게는 1:2 내지 1:3인 것일 수 있다. 상기 유기용매에 포함되는 에틸렌 카보네이트 및 에틸메틸 카보네이트가 상기 부피비 범위로 혼합되는 경우, 우수한 유전율, 리튬염 해리 특성 및 저온 특성을 동시에 가질 수 있다.
상기 겔 전해질 조성물은 20 내지 80℃ 바람직하게는 30 내지 80℃ 더 바람직하게는 40 내지 70℃에서 가교되는 것일 수 있다. 겔 전해질 조성물의 가교 온도가 상기 수치범위를 만족함으로써 가교 반응 속도가 빨라질 뿐만 아니라, 우수한 기계적 물성을 가지는 겔 고분자 전해질을 제조할 수 있다.
상기 불소함유 공중합체 제조방법은 하기 화학식 2 및 화학식 3으로 표시되는 반복단위를 포함하는 베이스 공중합체와 불소함유 화합물을 반응하여 제조되는 것일 수 있다.
[화학식 2]
Figure PCTKR2022019815-appb-img-000021
상기 화학식 2에서, R4, R5 및 R6은 서로 독립적으로 수소 또는 C1-C6 직쇄 또는 분지쇄 알킬이며, A2는 C1-C6 직쇄 또는 분지쇄 알킬렌이다.
[화학식 3]
Figure PCTKR2022019815-appb-img-000022
상기 화학식 3에서, R7, R8 및 R9는 서로 독립적으로 수소 또는 C1-C6 직쇄 또는 분지쇄 알킬이다
상기 불소함유 공중합체는 베이스 공중합체에 포함된 히드록시기와 불소함유 화합물이 반응하여 제조되는 것일 수 있으며, 상기 베이스 공중합체 및 불소함유 화합물의 질량비에 따라, 상기 화학식 3으로 표시되는 반복단위의 함량을 조절할 수 있을 뿐만 아니라, 이를 포함하지 않을 수 있다.
상기 불소함유 화합물은 카르복시기(*-COOH, -COO[할로겐]), 카보네이트기(*-COO-*) 및 설폰기(*-SOOH, *-SOO[할로겐])에서 선택되는 하나 또는 둘 이상의 작용기를 포함하는 것일 수 있으며, 베이스 공중합체와 반응하여 제조된 불소함유 공중합체는 *-C(=O)-*, *-C(=O)O-* 또는 *-S(=O)2-*에서 선택되는 하나의 결합구조를 포함하는 것일 수 있다.
구체적으로, 상기 불소함유 화합물은 4-(트리플루오로메톡시)벤조산(4-(trifluoromethoxy)benzoic acid), 펜타플루오로벤조산(pentafluorobenzoic acid), 비스(펜타플루오로페닐) 카보네이트(bis(pentafluorophenyl) carbonate), 트리플루오로메탄설포닐 클로라이드(trifluoromethanesulfonyl chloride), 비스(트리플루오로메틸)벤젠설포닐 클로라이드(bis(trifluoromethyl)benzenesulfonyl chloride), 펜타플루오로벤젠설포닐 클로라이드(pentafluorobenzenesulfonyl chloride), 펜타플루오로벤질 브로마이드(pentafluorobenzyl bromide), 헵탄플루오로부티릴 클로라이드(heptafluorobutyryl chloride), 비스(2,2,2-트리플루오로에틸) 카보네이트(bis(2,2,2-trifluoroethyl) carbonate), 펜타플루오로벤조일 클로라이드(pentafluorobenzoyl chloride), 비스(펜타플루오로페닐) 카보네이트(bis(pentafluorophenyl) carbonate), 트리플루오로에틸 메타크릴레이트(trifluoroethyl methacrylate), 헵타플루오로-1-부탄올(Heptafluoro-1-butanol), 4-(트리플루오로메톡시)벤젠설포닐 클로라이드(4-(trifluoromethoxy)benzenesulfonyl chloride) 및 4-(트리플루오로메톡시)벤조산(4-(trifluoromethoxy)benzoic acid)로 이루어진 군으로부터 선택되는 적어도 하나 이상을 포함하는 것일 수 있다.
상기 불소함유 화합물로 치환되어 제조되는 불소함유 공중합체는 불소함량이 높아 우수한 내열성 및 난연성을 구현할 수 있고, 이에 따라 상기 불소함유 공중합체를 포함하여 제조된 이차전지는 우수한 수명 특성 및 안전성을 가질 수 있다.
상기 불소함유 공중합체는 상기 베이스 공중합체 및 불소함유 화합물의 에스터 반응(DCC coupling, reaction of carbonates with alcohol, reaction of sulfonyl chloride with alcohol 반응)을 통해 제조되는 것일 수 있다. 상기 에스터 반응은 커플링제가 반응에 참여하여 진행되는 것일 수 있다.
상기 커플링제는 불소함유 화합물의 작용기의 종류에 따라 상이할 수 있으며, 일예로 에스테르 결합에는 디시클로헥실카르보디이미드, 카보네이트 결합에는 트리에틸아민, 설폰 결합에는 피리딘이 바람직할 수 있다.
상기 커플링제는 카보디이미드계, 피리딘계 및 아민계 커플링제일 수 있으며, 구체적으로, 디시클로헥실카르보디이미드(DCC), 에틸디메틸아미노프로필 카르복시이미드, 하이드록시석신이미드, 디이소프로필카르보디이미드(DIC), 4-디메틸아미노피리딘(DMAP), 피디린, 트리에틸아민 및 2-클로로-1-메틸피리디늄요오드로 이루어진 군으로부터 선택되는 적어도 하나 이상일 수 있으며, 바람직하게는 디시클로헥실카르보디이미드, 4-디메틸아미노피리딘, 트리에틸아민 및 피리딘으로 이루어진 군으로부터 선택되는 적어도 하나 이상일 수 있다.
상기 불소함유 공중합체 제조방법은 비양자성 유기용매를 포함하여 제조되는 것일 수 있다. 상기 비양자성 유기용매는 아세톤, 아세토니트릴, 디클로로메탄, 디메틸포름아미드, 디메틸프로필렌우레아, 디메틸설폭사이드, 에틸 아세테이트, 헥사메틸인산트리아미드, 피리딘, 설포란 및 테트라하이드로퓨란으로 이루어지는 군으로부터 선택되는 적어도 하나 이상을 포함하는 것일 수 있으나, 불소함유 공중합체를 합성이 가능한 것이라면 반드시 이에 제한되는 것은 아니다.
상기 불소함유 공중합체 제조방법의 일예로, 하기 제조식 1 내지 7로 나타낼 수 있다.
[제조식 1]
Figure PCTKR2022019815-appb-img-000023
[제조식 2]
Figure PCTKR2022019815-appb-img-000024
[제조식 3]
Figure PCTKR2022019815-appb-img-000025
[제조식 4]
Figure PCTKR2022019815-appb-img-000026
[제조식 5]
Figure PCTKR2022019815-appb-img-000027
[제조식 6]
Figure PCTKR2022019815-appb-img-000028
[제조식 7]
Figure PCTKR2022019815-appb-img-000029
상기 A1은 C1-C6의 알킬렌이다.
상기 불소함유 공중합체에 포함되는 비닐알코올 반복단위의 함량은 제조식 1 내지 7에서 베이스 공중합체 및 불소함유 화합물의 몰비에 따라 상이 할 수 있고, 경우에 따라서는 전혀 포함되지 않을 수 있다. 구체적으로, 베이스 공중합체 및 불소함유 화합물의 몰비가 1:2 내지 1:5이면, 상기 비닐알코올 반복단위가 포함되지 않는 것일 수 있으며, 상기 몰비가 1:1 내지 1:2 미만이면 비닐알코올 반복단위를 포함할 수 있으나, 반응하는 불소함유 화합물에 따라 동일 또는 상이할 수 있다.
본 발명의 다른 일 실시 형태에 따르면, 양극; 음극; 및 상기 겔 전해질 조성물;을 포함하는 이차전지로서, 상기 겔 전해질 조성물은 양극 및 음극 사이에 층을 형성하는 것인 이차전지를 제공한다.
상기 이차전지는 양극 및 음극 사이에 내열성 및 난연성이 우수한 난연성 겔 전해질 조성물을 포함함으로써, 양극과 음극 사이가 단락되는 현상을 방지할 수 있게 되는 결과, 우수한 안정성을 가질 수 있다.
또한, 상기 이차전지는 충전과정에서, 겔 전해질 조성물에 포함된 리튬염이 해리되어 발생한 리튬이온과 상기 겔 전해질 조성물에 포함된 다른 화합물과의 반응으로 음극 표면에 고체 전해질 계면(SEI, solid electrolyte interphase)층을 형성하게 되고, 음극 표면에 우수한 리튬의 이동성을 구현할 수 있어, 이차전지의 용량 유지율이 향상될 수 있다.
상기 이차전지는 하기 식 1을 만족하는 것일 수 있다.
[식 1]
C600/C1 ≥ 0.8
상기 식 1에서,
C600은 600회 충전과 방전을 반복한 이차전지의 방전 용량이며,
C1은 1회 충전과 방전한 이차전지의 방전 용량이다.
구체적으로, 상기 식 1은 이차전지의 충방전 용량을 나타내는 식으로서 상기 식 1에서 C600/C1 값은 0.85 내지 0.98 일 수 있으며, 이는 종래의 이차전지와 대비하여 우수한 수명 특성을 가지는 것을 의미할 수 있다.
상기 양극에 포함되는 양극 활물질은 니켈, 코발트, 망간, 주석, 실리콘 및 알루미늄으로 이루어진 군으로부터 선택되는 적어도 하나 이상, 바람직하게는 각 금속의 장점과 단점을 극복할 수 있다는 측면에서 리튬, 니켈, 망간 및 코발트의 합금을 포함하는 것일 수 있다.
상기 음극에 포함되는 음극 활물질은 흑연, 실리콘, 게르마늄, 주석 및 안티몬으로 이루어진 군으로부터 선택되는 적어도 하나 이상, 바람직하게는 흑연을 포함하는 것일 수 있다.
상기 겔 전해질 조성물은 음극 표면에서 겔화되어 형성된 것일 수 있다. 이에 따라, 본 발명에 따른 겔 전해질 조성물을 적용하더라도 음극에서 안정적인 고체 전해질 계면(SEI)층을 형성할 수 있게 되는 결과, 전해질의 분해를 방지하고 리튬 이온의 원활한 이동을 촉진함으로써 리튬이차전지의 성능 및 수명이 향상될 수 있다.
이하, 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 그러나 이들 실시예는 본 발명의 이해를 돕기 위한 것일 뿐 어떠한 의미로든 본 발명의 범위가 이들 실시예로 한정되는 것은 아니다.
<실시예 1> 겔 전해질 조성물의 제조 1
50 mL 둥근바닥 플라스크에 N,N-Dimethylmethanamide(DMF) 12 mL 및 Poly[Vinylachol-co-3-(vinyloxy)propanenitrile](중량평균분자량: 1.1058x105 g/mol, 비닐알코올 반복단위: 24.2 mol%) 1g(0.0055 mol)을 첨가하고 교반하였다.
그 후, 상기 교반된 혼합물에 하기 표 1에 기재된 불소함유 화합물인 4-(Trifluoromethoxy)benzoic acid 1.36g(0.066 mol) 및 N, N'-Dicyclohexylcarbodiimide(DCC) 2.26g(0.011 mol)을 첨가하였고, 얼음물이 담긴 수조에 상기 혼합물이 담긴 둥근바닥 플라스크를 담군 후, DMAP(4-Dimethylaminopyridine) 0.0559g(0.0004572 mol)을 DMF 3 mL에 용해시키고, 이를 상기 둥근바닥 플라스크에 천천히 첨가하고, 10분 동안 교반하였다.
10분 후, 상온에서 24 시간 동안 교반 및 반응시켰으며, 반응 종료 후, 침전물을 필터하고 남은 고분자 용액을 에탄올에 침전시킨 후, 60℃진공 오븐에서 건조하여 불소함유 공중합체를 제조하였다.
상기 제조된 불소함유 공중합체 0.03g을 1M 리튬염 LiPF6을 포함하는 유기용매(에틸렌 카보네이트(EC) 및 에틸메틸 카보네이트(EMC)가 부피비 3:7로 혼합된 유기용매) 1.47g에 첨가하고 혼합하였다. 그 후, 60℃의 온도로 가교반응하여 겔 전해질 조성물을 제조하였다.
<실시예 2> 겔 전해질 조성물의 제조 2
불소함유 화합물인 4-(Trifluoromethoxy)benzoic acid 0.907g(0.0044 mol)을 첨가한 것을 제외하고는, 실시예 1과 동일한 방법으로 겔 전해질 조성물을 제조하였다.
<실시예 3> 겔 전해질 조성물의 제조 3
불소함유 화합물인 Pentafluorobenzoic acid 2.3329g(0.011 mol)을 첨가한 것을 제외하고는, 실시예 1과 동일한 방법으로 겔 전해질 조성물을 제조하였다.
<실시예 4> 겔 전해질 조성물의 제조 4
불소함유 화합물인 Pentafluorobenzoic acid 0.9331g(0.0044 mol)을 첨가한 것을 제외하고는, 실시예 1과 동일한 방법으로 겔 전해질 조성물을 제조하였다.
<실시예 5> 겔 전해질 조성물의 제조 5
50 mL 둥근바닥 플라스크에 DMF(N,N-Dimethylmethanamide) 15 mL 및 Poly[Vinylachol-co-3-(vinyloxy)propanenitrile](중량평균분자량: 1.1058x105 g/mol, 비닐알코올 반복단위: 24.2 mol%) 1g(0.0055 mol)을 첨가하고 교반하였다.
그 후, 상기 교반된 혼합물에 TEA(triethylamine) 2.2 mL(0.0165 mol)을 넣은 후, 불소함유 화합물인 Bis(pentafluorophenyl) carbonate 3.2514g(0.00825 mol)을 첨가하여, 상온에서 72 시간 반응시켰다.
반응 종료 후, 침전물을 필터하고 남은 고분자 용액은 에탄올에 침전시킨 후, 60℃ 진공 오븐에서 건조하여 불소함유 공중합체를 제조하였다,
상기 제조된 불소함유 공중합체 0.03g을 1M 리튬염 LiPF6을 포함하는 유기용매(에틸렌 카보네이트(EC) 및 에틸메틸 카보네이트(EMC)가 부피비 3:7로 혼합된 유기용매) 1.47 g에 첨가하고 혼합하였다. 그 후, 60℃의 온도로 가교반응하여 겔 전해질 조성물을 제조하였다.
<실시예 6> 겔 전해질 조성물의 제조 6
50 mL 둥근바닥 플라스크에 DMF(N,N-Dimethylmethanamide) 15 mL 및 Poly[Vinylachol-co-3-(vinyloxy)propanenitrile](중량평균분자량: 1.1058x105 g/mol, 비닐알코올: 24.2 mol%) 1g(0.0055 mol)을 첨가하고 교반하였다.
그 후, 상기 교반된 혼합물에 pyridine(2.75 ml, 0.0275 mol)을 넣은 후, 하기 표 1에 기재된 불소함유 화합물인 Trifluoromethanesulfonyl chloride 0.88mL(1.39 g, 0.00825 mol)을 천천히 첨가 후, 46 시간 동안 반응시켰다.
반응 종료 후, 침전물을 필터하고 남은 고분자 용액은 에탄올에 침전시킨 후, 60℃ 진공 오븐에서 건조하여 불소함유 공중합체를 제조하였다.
상기 제조된 불소함유 공중합체 0.03g을 1M 리튬염 LiPF6을 포함하는 유기용매(에틸렌 카보네이트(EC) 및 에틸메틸 카보네이트(EMC)가 부피비 3:7로 혼합된 유기용매) 1.47g에 첨가하고 혼합하였다. 그 후, 60℃의 온도로 가교반응하여 겔 전해질 조성물을 제조하였다.
<실시예 7> 겔 전해질 조성물의 제조 7
불소함유 화합물을 Bis(trifluoromethyl)benzenesulfonyl chloride 2.579 g(0.00825 mol) 첨가한 것 및 혼합 용액을 상온에서 72시간 반응시킨 것을 제외하고는, 실시예 6과 동일한 방법으로 겔 전해질 조성물을 제조하였다.
<실시예 8> 겔 전해질 조성물의 제조 8
불소함유 화합물을 Pentafluorobenzenesulfonyl chloride 1.2mL(2.2g, 0.00825 mol) 첨가한 것을 제외하고는, 실시예 7과 동일한 방법으로 겔 전해질 조성물을 제조하였다.
<실시예 9> 겔 전해질 조성물의 제조 9
용매로서 TEA 대신 pyridine 1.329 mL(0.0165 mol) 및 DAMP 0.1g(0.00825 mol)을 사용한 것 및 불소함유 화합물인 Trifluoroacetic anhydride 1.73g(0.00825 mol)을 첨가한 것을 제외하고는, 실시예 5와 동일한 방법으로 겔 전해질 조성물을 제조하였다.
<실시예 10> 겔 전해질 조성물의 제조 10
불소함유 화합물을 Trifluoroacetic anhydride 0.58g(0.00275 mol) 첨가한 것을 제외하고는, 실시예 9와 동일하게 겔 전해질 조성물을 제조하였다.
<비교예 1> 겔 전해질 조성물의 제조 11
불소함유 공중합체를 포함하지 않는 것을 제외하고는, 실시예 1과 동일한 방법으로 겔 전해질 조성물을 제조하였다.
<실험예 1> 난연성 평가
실시예 1 내지 10 및 비교예 1에 따른 겔 전해질 조성물을 10 mm Х 10 mm Х 10 mm 시편으로 제조한 후, 1초간 1.20 mm 불꽃으로 연소하는 과정을 4번 반복하여 연소 여부를 관찰하였다. 그 결과를 하기 표 1에 나타내었다. 연소가 일어나지 않으면 O, 연소가 일어나면 X로 표시하였다.
PVA-CN의 작용기 치환 화합물
화합물명 첨가량 비닐알코올 반복단위 포함 여부 난연성
실시예 1 4-(Trifluoromethoxy)benzoic acid 1.36g(0.066 mol) 포함하지 않음 O
실시예 2 4-(Trifluoromethoxy)benzoic acid 0.907g(0.0044 mol) 포함 O
실시예 3 Pentafluorobenzoic acid 2.3329g(0.011 mol) 포함하지 않음 O
실시예 4 Pentafluorobenzoic acid 0.9331g(0.0044 mol) 포함 O
실시예 5 Bis(pentafluorophenyl) carbonate 3.2514g(0.00825 mol) 포함하지 않음 O
실시예 6 Trifluoromethanesulfonyl chloride 1.39 g(0.00825 mol) 포함하지 않음 O
실시예 7 Bis(trifluoromethyl)benzenesulfonyl chloride 2.579 g
(0.00825 mol)
포함하지 않음 O
실시예 8 Pentafluorobenzenesulfonyl chloride 2.2g(0.00825 mol) 포함하지 않음 O
실시예 9 Trifluoroacetic anhydride 1.73g(0.00825 mol) 포함하지 않음 O
실시예 10 Trifluoroacetic anhydride 0.58g(0.00275 mol) 포함 O
비교예 1 카보네이트 액체 전해질 X X X
실시예 1 내지 10은 불소함유 공중합체를 포함하는 겔 전해질 조성물이며, 비교예 1은 아크릴로니트릴-에틸렌옥사이드의 공중합체의 겔 전해질 조성물이다.
상기 표 1에서, 실시예 1 내지 10은 비교예 1과 대비하여 모두 난연성이 우수한 것으로 확인되었고, 이는 실시예 1 내지 10의 겔 전해질 조성물에 포함된 불소함유 공중합체가 불소치환기를 포함함에 따른 효과인 것으로 볼 수 있다.
한편, 실시예 1 내지 10에 따른 겔 전해질 조성물의 난연 특성이 우수한 것을 볼 때, 불소함유 공중합체에 포함되는 *-C(=O)O-*, *-OC(=O)O-* 및 *-S(=O)-*의 결합과 상관없이 난연성이 우수한 것을 확인할 수 있다.
또한, 비닐알코올 반복단위의 유무에서 차이가 나는 실시예 1과 2, 실시예 3과 4 및 실시예 9와 10을 대비해보면, 비닐알코올 반복단위의 유무와도 상관없이 실시예 1 내지 10에 따른 겔 전해질 조성물은 모두 난연성이 우수한 것으로 확인되었다.
도 1a 내지 도 1c에는 아릴기(aryl group)를 함유한 불소함유 공중합체를 포함하는 실시예 1, 실시예 4 및 실시예 5의 난연성 평가 결과를 보여주는 사진으로, 우수한 난연성을 확인할 수 있다.
<실시예 11> 겔 전해질을 포함하는 이차전지의 제조 1
양극으로서 LiNi0.6Co0.2Mn0.2O2(NCM 622), 음극으로 흑연(Graphite) 및 실시예 1에 따른 겔 전해질 조성물을 사용하여 이차전지를 제조하였다.
NCM 622 양극은 LiNi0.6Co0.2Mn0.2O2 : PVDF : super-P를 94:3:3의 질량비로 혼합한 후 N-메틸-2-피롤리돈(NMP)에 균일하게 용해시켜 슬러리를 제조하였다. 제조된 슬러리를 알루미늄 호일상에 도포하고, 120℃의 진공 오븐에서 24시간 건조시켜 양극을 제조하였다. 제조된 양극을 12 ㎎/㎠의 밀도로 로딩한 뒤, 14㎜ 지름을 가진 원모양을 뚫어 코인형 셀에 사용하였다.
음극은 흑연: PVDF: 카본블랙(Super p)를 94:3:3 질량비로 혼합한 후 N-메틸-2-피롤리돈(NMP)에 균일하게 용해시켜 슬러리를 제조하였다. 제조된 슬러리를 구리 호일상에 도포하고, 120℃의 진공 오븐에서 24시간 건조시켜 음극을 제조하였다. 제조된 음극을 6 ㎎/㎠의 밀도로 로딩한 뒤, 16㎜ 지름을 가진 원모양을 뚫어 코인형 셀에 사용하였다.
그 후, 실시예 1에 따른 겔 전해질 조성물을 양극과 음극 사이에 배치하여 코인형 이차전지를 완성하였다.
음극 표면에 고체 전해질 계면(SEI, Solid Electrolyte Interphase)층의 형성 및 상기 SEI층에 LiF가 포함되는 것을 확인하였다.
<실시예 12> 겔 전해질을 포함하는 이차전지의 제조 2
실시예 1에 따른 겔 전해질 조성물 대신 실시예 3에 따른 겔 전해질 조성물을 적용한 것을 제외하고는, 실시예 11과 동일한 방법으로 이차전지를 제조하였다.
<실시예 13> 겔 전해질을 포함하는 이차전지의 제조 3
실시예 1에 따른 겔 전해질 조성물 대신 실시예 4에 따른 겔 전해질 조성물을 적용한 것을 제외하고는, 실시예 11과 동일한 방법으로 이차전지를 제조하였다.
<실시예 14> 겔 전해질을 포함하는 이차전지의 제조 4
실시예 1에 따른 겔 전해질 조성물 대신 실시예 5에 따른 겔 전해질 조성물을 적용한 것을 제외하고는, 실시예 11과 동일한 방법으로 이차전지를 제조하였다.
<실시예 15> 겔 전해질을 포함하는 이차전지의 제조 5
실시예 1에 따른 겔 전해질 조성물 대신 실시예 9에 따른 겔 전해질 조성물을 적용한 것을 제외하고는, 실시예 11과 동일한 방법으로 이차전지를 제조하였다.
<비교예 2> 겔 전해질을 포함하는 이차전지의 제조 6
제조된 양극과 음극을 폴리프로필렌/폴리에틸렌/폴리프로필렌(PP/PE/PP) 3층으로 이루어진 분리막과 함께 통상적인 방법으로 폴리머형 전지를 제작한 후, EC(에틸렌 카보네이트):DEC(디에틸 카보네이트):EMC(에틸 메틸카보네이트) = 4:3:3의 부피비로 혼합한 용매에 LiPF6 전해질을 1M의 농도로 용해시켜 제조한 비수성 전해액을 주액하여 리튬 이차전지를 제조하였다.
<실험예 2> 이차전지 정전류 시험법
코인형 이차전지를 구동 온도 25℃에서, 전압범위 3 내지 4.2 V 및 충방전 율속 0.1 C-rate(165 mA/g)의 조건에서 1회 충방전을 진행한 후, 겔화 반응을 시작하였다. 그 후, 율속 0.5 C-rate의 조건에서 600회 충방전을 진행하여, 충방전 1회시에 방전되는 용량과 600회시에 방전되는 용량을 측정하였고, 이를 하기 식 1로 계산하였다.
[식 1]
용량유지율(%)=(600회시 방전 용량/1회시 방전 용량)Х100
계산 결과를 하기 표 2에 나타내었다.
겔 전해질 PVA-CN의 작용기 치환 화합물 용량 유지율(%)
실시예 11 실시예 1 4-(Trifluoromethoxy)benzoic acid 81.4
실시예 12 실시예 3 Pentafluorobenzoic acid 82.95
실시예 13 실시예 4 Pentafluorobenzoic acid 91.5
실시예 14 실시예 5 Bis(pentafluorophenyl) carbonate 86.6
실시예 15 실시예 9 Trifluoroacetic anhydride 87.3
비교예 2 비교예 1 액체 전해질 80.3
표 2의 용량 유지율은 600회의 충방전 이후 방전 용량의 변화를 나타낸 것이며, 이는 이차전지의 수명 특성을 유추하는 측정값이다.
표 2에서, 실시예 11 내지 15는 각각 실시예 1, 3 내지 5 및 9에 따른 겔 전해질 조성물을 포함하는 것으로서, 이차전지 용량 유지율이 81% 이상이며, 구체적으로 실시예 13 내지 15의 경우 85% 이상인 것을 확인하였다. 이는 실시예 11 내지 15에 따른 이차전지가 실시예 1, 3 내지 5 및 9에 따른 겔 전해질 조성물을 포함함으로써 안정적인 SEI 층을 형성하고, 이에 따라 음극의 열화를 방지할 수 있어, 전해질과의 부반응을 억제하게 되고, 궁극적으로 더욱 우수한 용량 유지율을 가질 수 있는 것이다.
한편, 도 3a 내지 도 3d는 실시예 11 내지 실시예 15의 초기 율속 0.1 C-rate 조건에서의 용량-전압 그래프를 나타낸다. 이를 통해 충방전 초기에 실시예 11 내지 실시예 15에 따른 이차전지의 용량 비교 및 쿨롱 효율 계산을 통해 충방전 초기에 생성되는 SEI층의 양을 유추할 수 있으며, 각 전지에 형성되는 과전압이 얼마인지 확인할 수 있다. 0 mAh/g 내지 10 mAh/g의 용량 범위에서 전압이 낮을수록 좋은데, 실시예 13의 경우에서 가장 낮았다. 또한, 용량 유지율에서 역시 실시예 13이 가장 높은 값을 보여주었다.
따라서 본 발명의 겔 전해질 조성물은 불소함유 공중합체를 함유하여 난연성을 구현할 수 있고, 상기 겔 전해질 조성물을 포함하는 이차전지의 안정성을 향상시켜 폭발 및 화재 사고를 예방할 수 있다. 또한, 본 발명에 따른 겔 전해질 조성물을 이용하면 음극상에 안정적인 SEI층을 형성하여 음극에서 발생되는 열화를 방지할 수 있고, 전해질과의 부반응을 억제하여 종래의 이차전지보다 우수한 수명 특성을 구현할 수 있다.

Claims (17)

  1. 하기 화학식 1 및 화학식 2로 표시되는 반복단위를 포함하는 불소함유 공중합체;
    리튬염; 및
    유기용매;를 포함하는, 겔 전해질 조성물.
    [화학식 1]
    Figure PCTKR2022019815-appb-img-000030
    상기 화학식 1에서,
    A1은 *-C(=O)-*, *-C(=O)O-* 또는 *-S(=O)2-*이며,
    R1, R2 및 R3은 서로 독립적으로 수소 또는 C1-C6 직쇄 또는 분지쇄 알킬이며,
    X는 *-F,
    Figure PCTKR2022019815-appb-img-000031
    또는
    Figure PCTKR2022019815-appb-img-000032
    이고,
    D1, D2, D3 및 D4는 서로 독립적으로 수소, 불소, C1-C6 직쇄 또는 분지쇄 알킬 및 불소화 C1-C6 직쇄 또는 분지쇄 알킬에서 선택되는 하나이며,
    D5는 불소, 불소화 C1-C12 직쇄 또는 분지쇄 알킬 및 불소화 C1-C12 직쇄 또는 분지쇄 알콕시에서 선택되는 하나이며,
    D6는 수소, 불소, 불소화 C1-C12 직쇄 또는 분지쇄 알킬 및 불소화 C1-C12 직쇄 또는 분지쇄 알콕시에서 선택되는 하나이며,
    n은 0 내지 20 정수이며,
    y는 1 내지 5 정수이다.
    [화학식 2]
    Figure PCTKR2022019815-appb-img-000033
    상기 화학식 2에서,
    R4, R5 및 R6은 서로 독립적으로 수소 또는 C1-C6 직쇄 또는 분지쇄 알킬이며,
    A2는 C1-C6 직쇄 또는 분지쇄 알킬렌이다.
  2. 청구항 1에 있어서,
    상기 불소함유 공중합체는 하기 화학식 3으로 표시되는 반복단위를 더 포함하는 것인, 겔 전해질 조성물:
    [화학식 3]
    Figure PCTKR2022019815-appb-img-000034
    상기 화학식 3에서,
    R7, R8 및 R9는 서로 독립적으로 수소 또는 C1-C6 직쇄 또는 분지쇄 알킬이다.
  3. 청구항 1에 있어서,
    R1, R2 및 R3은 서로 독립적으로 수소 또는 C1-C3 직쇄 또는 분지쇄 알킬이며,
    X는
    Figure PCTKR2022019815-appb-img-000035
    또는
    Figure PCTKR2022019815-appb-img-000036
    이고,
    D1, D2, D3 및 D4는 서로 독립적으로 수소, 불소, C1-C3 직쇄 또는 분지쇄 알킬 및 불소화 C1-C3 직쇄 또는 분지쇄 알킬에서 선택되는 하나이며,
    D5는 불소, 불소화 C1-C6 직쇄 또는 분지쇄 알킬 및 불소화 C1-C12 직쇄 또는 분지쇄 알콕시에서 선택되는 하나이며,
    D6은 수소, 불소, 불소화 C1-C6 직쇄 또는 분지쇄 알킬 및 불소화 C1-C6 직쇄 또는 분지쇄 알콕시에서 선택되는 하나인, 겔 전해질 조성물.
  4. 청구항 1에 있어서,
    X는
    Figure PCTKR2022019815-appb-img-000037
    ,
    Figure PCTKR2022019815-appb-img-000038
    ,
    Figure PCTKR2022019815-appb-img-000039
    ,
    Figure PCTKR2022019815-appb-img-000040
    ,
    Figure PCTKR2022019815-appb-img-000041
    ,
    Figure PCTKR2022019815-appb-img-000042
    ,
    Figure PCTKR2022019815-appb-img-000043
    ,
    Figure PCTKR2022019815-appb-img-000044
    Figure PCTKR2022019815-appb-img-000045
    으로 이루어진 군으로부터 선택되는 적어도 하나 이상이고,
    D1, D2, D3 및 D4는 서로 독립적으로 수소, 불소, 메틸, *-CHF2, *-CH2F 또는 *-CF3인, 겔 전해질 조성물.
  5. 청구항 1에 있어서,
    R4, R5 및 R6은 서로 독립적으로 수소 또는 C1-C3 직쇄 또는 분지쇄 알킬이며,
    A2는 C1-C3 직쇄 알킬렌인 것인, 겔 전해질 조성물.
  6. 청구항 1에 있어서,
    상기 불소함유 공중합체는 상기 화학식 1 및 화학식 2로 표시되는 반복단위를 1:1 내지 1:10의 몰비로 포함하는 것인, 겔 전해질 조성물.
  7. 청구항 2에 있어서,
    상기 불소함유 공중합체는 상기 공중합체에 포함되는 총 반복단위에 대해서, 상기 화학식 3으로 표시되는 반복단위를 30 mol% 미만으로 포함하는 것인, 겔 전해질 조성물.
  8. 청구항 1에 있어서,
    상기 불소함유 공중합체는 수평균분자량이 10,000 내지 1,000,000 g/mol인 것인, 겔 전해질 조성물.
  9. 청구항 1에 있어서,
    상기 겔 전해질 조성물 100 중량부를 기준으로 불소함유 공중합체가 0.1 내지 10 중량부로 포함되는, 겔 전해질 조성물.
  10. 청구항 1에 있어서,
    상기 리튬염은 LiPF6, LiClO4, LiBF4, LiFSI, LiTFSI, LiSO3CF3, LiBOB, LiFOB, LiDFOB, LiDFBP, LiTFOP, LiPO2F2, LiCl, LiBr, LiI, LiB10Cl10, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, LiSCN 및 LiC(CF3SO2)3으로 이루어진 군으로부터 선택되는 적어도 하나 이상인, 겔 전해질 조성물.
  11. 청구항 1에 있어서,
    상기 유기용매는 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트(dipropyl carbonte, DPC), 메틸프로필 카보네이트 (methylpropyl carbonate, MPC), 에틸프로필 카보네이트(ethylpropyl carbonte, EPC), 에틸메틸 카보네이트 (ethylmethyl carbonate, EMC), 에틸렌 카보네이트(ethylene carbonte, EC), 프로필렌 카보네이트(propylene carbonte, PC) 및 부틸렌 카보네이트(butylene carbonate, BC)로 이루어진 군으로부터 선택되는 하나 또는 둘 이상을 포함하는 것인, 겔 전해질 조성물.
  12. 청구항 1에 있어서,
    상기 겔 전해질 조성물은 20 내지 80℃에서 가교되는 것인 겔 전해질 조성물.
  13. 양극;
    음극; 및
    제 1항 내지 12항 중 어느 한 항의 겔 전해질 조성물;
    을 포함하는 이차전지로서,
    상기 겔 전해질 조성물은 양극 및 음극 사이에 층을 형성하는 것인, 이차전지.
  14. 청구항 13에 있어서.
    상기 이차전지는 하기 식 1을 만족하는 것인, 이차전지.
    [식 1]
    C600/C1 ≥ 0.8
    상기 식 1에서,
    C600은 600회 충전과 방전을 반복한 이차전지의 방전용량이며,
    C1은 1회 충전과 방전한 이차전지의 방전용량이다.
  15. 제 13항에 있어서.
    상기 양극에 포함되는 양극 활물질은 니켈, 코발트, 망간, 주석, 실리콘 및 알루미늄으로 이루어진 군으로부터 선택되는 적어도 하나 이상을 포함하는 것인, 이차전지.
  16. 제 13항에 있어서,
    상기 음극에 포함되는 음극 활물질은 흑연, 실리콘, 게르마늄, 주석 및 안티몬으로 이루어진 군으로부터 선택되는 적어도 하나 이상을 포함하는 것인, 이차전지.
  17. 제 13항에 있어서,
    상기 겔 전해질 조성물은 음극 표면에서 겔화되어 형성된 것인, 이차전지.
PCT/KR2022/019815 2021-12-30 2022-12-07 겔 전해질 조성물 및 이를 포함하는 이차 전지 WO2023128366A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0192829 2021-12-30
KR20210192829 2021-12-30
KR1020220126618A KR20230103918A (ko) 2021-12-30 2022-10-04 겔 전해질 조성물 및 이를 포함하는 이차 전지
KR10-2022-0126618 2022-10-04

Publications (1)

Publication Number Publication Date
WO2023128366A1 true WO2023128366A1 (ko) 2023-07-06

Family

ID=86999514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/019815 WO2023128366A1 (ko) 2021-12-30 2022-12-07 겔 전해질 조성물 및 이를 포함하는 이차 전지

Country Status (1)

Country Link
WO (1) WO2023128366A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100312176B1 (ko) * 1999-03-23 2001-11-14 김충섭 알콕시 실란으로 치환된 디엔 공중합체 및 유기·무기 하이브리드 조성물
US20020119377A1 (en) * 2000-06-16 2002-08-29 Yusuke Suzuki Gel electrolyte and nonaqueous electrolyte battery
JP2004349240A (ja) * 2002-12-25 2004-12-09 Daikin Ind Ltd 含フッ素エーテル鎖を含む含フッ素ポリマーからなる固体電解質
KR20180026358A (ko) * 2016-09-02 2018-03-12 주식회사 엘지화학 젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지
KR101884568B1 (ko) * 2017-06-02 2018-08-02 울산과학기술원 전이금속 이온을 킬레이팅하는 작용기를 포함하고 열적 겔화가 가능한 전이금속 킬레이팅 작용기 중합체

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100312176B1 (ko) * 1999-03-23 2001-11-14 김충섭 알콕시 실란으로 치환된 디엔 공중합체 및 유기·무기 하이브리드 조성물
US20020119377A1 (en) * 2000-06-16 2002-08-29 Yusuke Suzuki Gel electrolyte and nonaqueous electrolyte battery
JP2004349240A (ja) * 2002-12-25 2004-12-09 Daikin Ind Ltd 含フッ素エーテル鎖を含む含フッ素ポリマーからなる固体電解質
KR20180026358A (ko) * 2016-09-02 2018-03-12 주식회사 엘지화학 젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지
KR101884568B1 (ko) * 2017-06-02 2018-08-02 울산과학기술원 전이금속 이온을 킬레이팅하는 작용기를 포함하고 열적 겔화가 가능한 전이금속 킬레이팅 작용기 중합체

Similar Documents

Publication Publication Date Title
WO2015065004A1 (ko) 겔 폴리머 전해질 및 이를 포함하는 리튬 이차전지
WO2013012248A2 (ko) 비수 전해액 및 이를 이용한 리튬 이차전지
WO2013012250A2 (ko) 비수 전해액 및 이를 이용한 리튬 이차전지
WO2018169368A1 (ko) 전해질 첨가제 및 이를 포함하는 리튬 이차전지용 전해질
WO2020067779A1 (ko) 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2015093889A1 (ko) 리튬 이차전지 전해액 및 이를 포함하는 리튬 이차전지
WO2020036336A1 (ko) 리튬 이차 전지용 전해질
WO2015170786A1 (ko) 유기전해액 및 상기 전해액을 채용한 리튬전지
WO2020036337A1 (ko) 리튬 이차 전지용 전해질
WO2019164164A1 (ko) 리튬 이차전지 전해액 및 이를 포함하는 리튬 이차전지
WO2020060295A1 (ko) 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지
WO2013009155A2 (ko) 비수 전해액 및 이를 이용한 리튬 이차전지
WO2021040392A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2023128366A1 (ko) 겔 전해질 조성물 및 이를 포함하는 이차 전지
WO2014088354A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2020009505A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2022169109A1 (ko) 리튬 이차전지용 전해질 및 이를 포함하는 리튬 이차전지
WO2018012877A1 (ko) 고분자, 및 이를 포함하는 전해질과 리튬 전지
WO2022197094A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2020197093A1 (ko) 리튬 이차전지용 전해질 첨가제를 포함하는 리튬 이차전지
WO2019245325A1 (ko) 이차전지용 전해액 및 이를 포함하는 이차전지
WO2021066462A1 (ko) 비수 전해액 및 이를 포함하는 리튬 이차 전지
WO2024080827A1 (ko) 겔 고분자 전해질 형성용 조성물, 그로부터 제조된 겔 고분자 전해질 및 그 제조방법
WO2023113253A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2019009595A1 (ko) 전해질 첨가제 및 이를 포함하는 리튬 이차전지용 비수전해액

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22916512

Country of ref document: EP

Kind code of ref document: A1